
ODI SPECIFICATION
SUPPLEMENT:
ECB Extensions

Documentation Version 1.10
July 31, 2000



Disclaimer Novell, Inc. makes no representations or warranties with respect to the
content or use of this manual, and specifically disclaims any express or
implied warranties of merchantability or fitness for any particular purpose.
Further, Novell, Inc. reserves the right to revise this publication and to
make changes to its content, at any time, without obligation to notify any
person or entity of such revisions or changes.

Further, Novell, Inc. makes no representations or warranties with respect
to any software, and specifically disclaims any express or implied
warranties of merchantability or fitness for any particular purpose.
Further, Novell, Inc. reserves the right to make changes to any and all
parts of Novell software, at any time, without obligation to notify any
person or entity of such changes.

This product may require export authorization from the U.S. Department
of Commerce prior to exporting from the U.S. or Canada.

Copyright © 2000 Novell, Inc. All rights reserved. No part of this
publication may be reproduced, photocopied, stored on a retrieval system,
or transmitted without the express written consent of the publisher.

U.S. Patent Nos 5,553,139; 5,553,143, 5,677,851; 5,758,069; 5,784,560;
5,818,936; 5,864,865; 5,903,650; 5,905,860; 5,910,803 and other Patents
Pending.

trademarks    Novell and NetWare are registered trademarks of Novell, Inc. in the
United States and other countries.

All other company and product names are trademarks or registered
trademarks of their respective owners.

Novell, Inc.
1800 South Novell Place
Provo, UT 84606
U.S.A.

www.novell.com



Version 1.10  (July 31, 2000) i

Contents
1 Introduction............................................................................................................................................. 1

1.1 Problem........................................................................................................................................... 1
1.2 Solution........................................................................................................................................... 1
1.3 Issues............................................................................................................................................... 1

2 ECB Auxiliary Data................................................................................................................................ 2
2.1 Transmit ECB ................................................................................................................................. 2
2.2 Receive ECB................................................................................................................................... 3
2.3 Auxiliary Data format ..................................................................................................................... 5

2.3.1 Auxiliary Data Start ................................................................................................................ 7
2.3.2 Auxiliary Data End ................................................................................................................. 7
2.3.3 Auxiliary Data NULL ............................................................................................................. 8

3 ODI Structures ........................................................................................................................................ 8
3.1 Protocol Stacks................................................................................................................................ 8

3.1.1 Configuration Table ................................................................................................................ 8
3.1.2 Assembly Spec Stacks ............................................................................................................ 9

3.2 MLIDs............................................................................................................................................. 9
3.2.1 MLIDCFG_Flags .................................................................................................................... 9

3.3 C MSM ........................................................................................................................................... 9
3.3.1 CMSM_CONFIG_TABLE..................................................................................................... 9

3.4 C TSM........................................................................................................................................... 10
3.4.1 CTSM_CONFIG_TABLE .................................................................................................... 10

3.5 C HSM .......................................................................................................................................... 10
3.5.1 DRIVER_PARM_BLOCK................................................................................................... 10
3.5.2 MLID_CONFIG_TABLE..................................................................................................... 10

4 Impacts.................................................................................................................................................. 11
4.1 C HSM .......................................................................................................................................... 11
4.2 Protocol Stacks.............................................................................................................................. 11
4.3 Other NLMs.................................................................................................................................. 11
4.4 ODI.H ........................................................................................................................................... 12

5 LSL APIs .............................................................................................................................................. 14
5.1 LSLAllocateAuxDataBuffer ......................................................................................................... 14
5.2 LSLReturnAuxDataBuffer............................................................................................................ 15
5.3 LSLInitializeAuxDataBuffer......................................................................................................... 15
5.4 LSLInsertBlockIntoAuxDataBuffer.............................................................................................. 16
5.5 LSLRemoveBlockFromAuxDataBuffer ....................................................................................... 17
5.6 LSLFindBlockInAuxDataBuffer................................................................................................... 17
5.7 LSLCompressAuxDataBuffer....................................................................................................... 18
5.8 LSLExpandAuxDataBuffer........................................................................................................... 18
5.9 LSLValidateAuxDataBuffer ......................................................................................................... 19

6 C MSM APIs ........................................................................................................................................ 20
6.1 CMSMInitializeAuxDataBuffer.................................................................................................... 20
6.2 CMSMInsertBlockIntoAuxDataBuffer......................................................................................... 20
6.3 CMSMRemoveBlockFromAuxDataBuffer .................................................................................. 21
6.4 CMSMFindBlockInAuxDataBuffer.............................................................................................. 22
6.5 CMSMCompressAuxDataBuffer .................................................................................................. 23
6.6 CMSMExpandAuxDataBuffer...................................................................................................... 23
6.7 CMSMValidateAuxDataBuffer .................................................................................................... 24

APPENDIX A............................................................................................................................................... 25





ODI Specification Supplement: ECB Extensions

Version 1.10 (July 31, 2000) 1

1 Introduction
1.1 Problem
The basic structure of the current ECB used by ODI in NetWare today has been untouched for nearly ten years since
it’s introduction with NetWare 3.0. Early on it was realized that the ECB as defined had limited room to expand. In
1993 there was a proposal to modify the ECB to allow for future expandability. That proposal was tabled for a
variety of reasons, one of which was that it broke the existing software of the day. Over the years the reserved fields
and bits have slowly been defined until there are only a couple of bits left. Today, we are faced with the challenge of
moving forward while preserving the past. We are constantly being asked by our partners in the industry to support
new technologies in the ODI model, such as VLAN and hardware offloading such as IPSec. Many of these
technologies require that additional information must accompany the incoming and outgoing data as it moves up and
down the data path.

Unfortunately, as the reserved field and bits in the ECB have been defined, the current ECB does not have the ability
to support these technologies.

1.2 Solution
This document proposes extensions to the ECB used by the ODI driver model in order to support these new
technologies. This proposal does not change the current ECB structure; instead, it outlines how the current structure
can be used to transport the additional information that must accompany the data. If approved, these changes would
become part of the next C ODI Specification revision.

1.3 Issues
The following is a list of issues that must be understood when reviewing this proposal.

•  All components in the data path must understand the extensions (i.e., bound stacks, prescan stacks,
LSL, MSM, TSMs, HSMs, etc.). Constructing a data path that has a mixture of modules that do and do
not understand the ECB extensions can be catastrophic.

•  NLMs, such as CLIB, that build their own transmit ECBs and NLMs that are ECB-aware will need to
be modified to handle the extensions.

•  Support for ECB extensions will be provided only in the C ODI specifications. IHVs must have a C
HSM in order to support ECB extensions.

•  Support for ECB extensions in Protocol stacks will be provided with minimum changes to the
Assembly spec, but C Spec support for protocol stacks will be the preferred method of implementation.

•  The extensions require an ODI specification revision. This may cause problems with modules that look
for a specific version and fail if the version does not match exactly.

•  Extensions will be provided only for the NetWare5.x platform.

•  Extensions must be extensible to support future technologies.

•  IHVs with drivers supporting Hardware Checksum offloading will need to be aware of the changes
made to the ECB_StackID and make the appropriate adjustments. (See 2.1 for changes to the Transmit
ECB ECB_StackID field.).



ODI Specification Supplement: ECB Extensions

2 Version 1.10  (July 31, 2000)

•  HSM/Hardware that require ECBs to be located in Memory below 16 MB will not be able to support
ECB extensions.

2 ECB Auxiliary Data
Many new technologies require the ability to associate additional information with the send and receive data being
passed between protocol stacks and drivers. This document will refer to the additional information as auxiliary data.

The ECB header used by ODI in NetWare today has no free space available to place or point to the auxiliary data.
This section describes the proposed usage of the Transmit and Receive ECB definitions for including auxiliary data.

2.1 Transmit ECB
A transmit ECB that includes auxiliary data is identified by the TX_AUX_DATA value in the ECB_StackID field of
the ECB. When this value is present, the ECB has auxiliary data associated with it.

The last fragment pointed to by the fragment list contains the auxiliary data. The length of the auxiliary data is not
reflected in the ECB_DataLength. Also, the ECB_FragmentCount does not include the fragment used for auxiliary
data. However, the number of fragments, including the auxiliary data fragment, must not exceed 16. The format of
the auxiliary data will be described later in this document.

ECB_StackID

When the ECB is prepared by the Protocol to send a packet, the Protocol typically places its Protocol Stack
ID that was assigned by the LSL, when the protocol stack registered, in the ECB_StackID field. The
ECB_StackID field of the ECB may hold the Protocol stack ID given when the stack registered with the
LSL, or a special set of values to communicate raw sends, priority packet transmission, checksumming
generation, or auxiliary data.

The following values are valid for the ECB_StackID field.

0x0000-0x00FF (0-255) Protocol Identification Number assigned by the LSL

0xznFy The ECB_StackID field may contain information concerning the transmit request as defined by
0xznFy.

0xFy Priority Transmission Support. ( See Priority Tx Support, page 5-25, ODI Specification:
C HSM ODI Spec, and ECB_StackID definition, ODI Specification: Protocol Stacks and
MLIDS (C Language) on page A-5) The Fy values are the same as the last byte of the
Priority Send values. The values decode as follows:

Raw Sends

The Raw Send designation indicates that the Protocol has generated the full
MAC header. The MLID will not change the MAC headers on a Raw Send. Raw
Send packets may be checksummed. Fy values for raw sends are defined as
follows:



ODI Specification Supplement: ECB Extensions

Version 1.10 (July 31, 2000) 3

TX_RAW_SEND_PRIORITY_0 0xFF 0 = No Priority
TX_RAW_SEND_PRIORITY_1 0xFE 1 = Lowest Priority
TX_RAW_SEND_PRIORITY_2 0xFD
TX_RAW_SEND_PRIORITY_3 0xFC
TX_RAW_SEND_PRIORITY_4 0xFB
TX_RAW_SEND_PRIORITY_5 0xFA
TX_RAW_SEND_PRIORITY_6 0xF9
TX_RAW_SEND_PRIORITY_7 0xF8 7 = Highest Priority

    
Normal Sends

TX_SEND_PRIORITY_0 0xF7 0 = No Priority
TX_SEND_PRIORITY_1 0xF6 1 = Lowest Priority
TX_SEND_PRIORITY_2 0xF5
TX_SEND_PRIORITY_3 0xF4
TX_SEND_PRIORITY_4 0xF3
TX_SEND_PRIORITY_5 0xF2
TX_SEND_PRIORITY_6 0xF1
TX_SEND_PRIORITY_7 0xF0 7 = Highest Priority

0xFFFy Values from 0xFFF0 – 0xFFFF (zn = 0xFF) indicate legacy raw and normal
send definitions for the ECB_StackID.

0xzn The z and n nibbles of the zn byte provide additional information about the transmit
request. The z and n nibbles are defined as follows:

0xz The z nibble of the zn byte has a pattern of 10xx. The following values are
defined for the z:

TX_NO_CHECKSUM 0x8 No Checksum generation on this
packet.

TX_TRANSPORT_CHECKSUM 0x9 Generate the Transport Layer
Checksum (TCP, UDP, ICMP, RSVP)

TX_NETWORK_CHECKSUM 0xA Generate the Network Layer
Checksum (Ipv4)

0xn The n nibble of the zn byte indicates a value of 0x0 – 0xF. The following values
are defined for the n nibble of the zn byte:

Reserved 0x0 Reserved
TX_AUX_DATA 0x1 Auxiliary Data is present
Reserved 0x2 – 0xF Reserved

2.2 Receive ECB

A receive ECB that includes auxiliary data is identified by the PA_RX_AUX_DATA bit in the ECB_PreviousLink
field of the ECB.  A pointer to the auxiliary data is also provided in the ECB_FragmentCount + 1 fragment pointer
of the ECB.  As the received packet does not start in the first byte of the receive buffer, the offset to the start must be
indicated by setting RCBReserved[28] (for ECB Aware drivers it is the Protocol workspace (PWs_i32val[0])) to the
number of bytes the packet must be shifted for alignment issues plus 8 bytes for the Aux Block fragment pointer.



ODI Specification Supplement: ECB Extensions

4 Version 1.10  (July 31, 2000)

The auxiliary data will always be aligned on the first dword boundary following the valid data in the fragment
structure. This means that there may be up to three bytes of NULL padding between the beginning of the auxiliary
data and the end of the received packet. The CHSM/MLID must always calculate the alignment of the beginning of
the auxiliary data. The length of the auxiliary data is not reflected in the ECB_DataLength field.  Neither does the
ECB_FragmentCount include the fragment used for auxiliary data. However, the number of fragments, including the
auxiliary data fragment, must not exceed 16.  Typically, the number of fragments for receives is always one.  The
format of the auxiliary data is described later in this document.

The Aux block fragment structure is the same as any data fragment block.  A pointer and a length to the AUX block
must be provided in this field.

ECB_PreviousLink

This field is typically used as a back link to manage a list of ECBs. The current owner of the ECB uses this
field. When an ECB is returned from the MLID containing a received packet, this field contains the
received packet error status and other information defined as follows:

Bit Value Description

PAE_CRC_BIT CRC error (for example, Frame Check Sequence (FCS) error).

PAE_CRC_ALIGN_BIT CRC / Frame Alignment error.

PAE_RUNT_PACKET_BIT Runt packet.

PAE_TOO_BIG_BIT The packet is larger than allowed by media.

PAE_NOT_ENABLED_BIT Received packet for a frame type not supported. For example,
Logical Board not registered for the frame type of the received
packet. A board number associated with the physical adapter
is placed in the lookahead structure.

PAE_MALFORMED_BIT The packet is malformed. For example, the size of the packet
is smaller than the minimum size for Media Header (e.g.,
incomplete MAC Header). Another example is if the contents
of the length field in an Ethernet 802.3 header are larger than
the total packet size.

PA_NO_COMPRES_BIT Do not decompress the received packet.

PA_NONCAN_ADDR_BIT The address present in ECB_ImmediateAddress is in non-
canonical format.

PAE_TRANS_PROT_CHKSUM_ERR The transport layer protocol checksum failed validation: TCP,
UDP, RSVP, ICMP.

PAE_NET_PROT_CHKSUM_ERR The network layer protocol checksum failed validation: Ipv4.

PA_TRANS_PROT_CHKSUM The transport layer protocol checksum validation was
performed: TCP, UDP, RSVP, ICMP.

PA_NET_PROT_CHKSUM The network layer protocol checksum validation was
performed: Ipv4.



ODI Specification Supplement: ECB Extensions

Version 1.10 (July 31, 2000) 5

PA_RX_AUX_DATA Auxiliary Data is associated with the received packet.

If no error bits are set, the packet was received without error and the data can be used. All undefined bits are cleared.

2.3 Auxiliary Data format
Auxiliary data is a physically contiguous chunk of memory that is organized into one or more auxiliary data blocks.
The ODI specification defines the format for the auxiliary data block header. The author of a particular auxiliary
data block defines the payload.  If a piece of software does not recognize a particular data block when parsing the
auxiliary data, then it should skip over it and check the next block.

The total size of all the auxiliary data blocks must not exceed the total size of Auxiliary Data space. For transmits
and receives, the total size of the auxiliary data space is stored in the first auxiliary data block. The size of the
auxiliary data space on transmits is also reflected in the FragmentLength of the FRAGMENT_STRUCT associated
with Auxiliary Data. (See Appendix A, ODI Specification: Protocol Stacks and MLIDs (C Language), Spec v1.11 –
Doc v1.22)

Each auxiliary data block consists of an auxiliary data block header (AUX_DATA_BLOCK_HDR) and the payload
as defined by the author. The AUX_DATA_BLOCK_HDR must be the first element in the auxiliary data block. The
auxiliary data block header is defined as follows:

typedef struct _AUX_DATA_BLOCK_HDR
{

UINT32 auxType;
UINT32 auxVersion;
UINT32 auxLength;
UINT32 auxPayloadVersion;

}AUX_DATA_BLOCK_HDR;

auxType A unique ID that identifies this auxiliary data block. All auxiliary data block auxType
values are assigned by Novell. Third parties that author auxiliary data blocks must
register them with Novell in order to get a unique type value assigned for their auxiliary
data block.

auxVersion The version of the AUX_DATA_BLOCK definition. Set this field to
AUX_DATA_BLOCK_HDR_VERSION.

auxLength Total length in bytes of the auxiliary data block. This length includes the size of the
AUX_DATA_BLOCK_HDR plus the size of the payload.

auxPayloadVersion The version of the payload. The author of the auxiliary data block determines the version
of the payload.

The first auxiliary data block must be of auxType AUX_DATA_START. The last auxiliary data block must be
auxType AUX_DATA_END. Figure 1 shows the format of the Auxiliary Data.



ODI Specification Supplement: ECB Extensions

6 Version 1.10  (July 31, 2000)

Figure 1  Auxiliary Data Format

auxType = AUX_DATA_START
auxVersion = AUX_DATA_BLOCK_HDR_VERSION
auxLength = 24
auxPayloadVersion = AUX_DATA_START_VERSION
auxDataPhysAddr =
auxData Size =

auxType = ?
auxVersion = AUX_DATA_BLOCK_HDR_VERSION
auxLength =
auxPayloadVersion =
payload =

auxType = ?
auxVersion = AUX_DATA_BLOCK_HDR_VERSION
auxLength =
auxPayloadVersion =
payload =

•  

•  

•  

auxType = AUX_DATA_END
auxVersion = AUX_DATA_BLOCK_HDR_VERSION
auxLength = 20
auxPayloadVersion = AUX_DATA_END_VERSION
payload = NULL



ODI Specification Supplement: ECB Extensions

Version 1.10 (July 31, 2000) 7

2.3.1 Auxiliary Data Start

AUX_DATA_START is the first auxiliary data block in an Auxiliary Data fragment. The Auxiliary Data Block
used for AUX_DATA_START is defined as:

typedef struct _AUX_DATA_START_BLOCK_
{

AUX_DATA_BLOCK_HDR hdr;
VOID *auxDataPhysAddr;
UINT32 auxDataSize;

}AUX_DATA_START_BLOCK;

hdr.auxType The auxType field of the Auxiliary Data Block is set to AUX_DATA_START.

hdr.auxVersion Set to AUX_DATA_BLOCK_HDR_VERSION

hdr.auxLength Set to sizeof(AUX_DATA_START_BLOCK)      (24)

hdr.auxPayloadVersion Set to AUX_DATA_START_VERSION

auxDataPhysAddr This field contains the Physical Address for the beginning of Auxiliary Data, or zero.
This field may be set to zero by protocol stacks prior to the delivery of the transmit ECB
to the LSL.  If the field is zero in the transmit path the LSL will fill the field with the
Physical Address.  The physical address is typically placed in this field by the code that
creates the Auxiliary Data fragment. The Physical Address is typically used by actual
hardware adapters.  MLIDs and HSMs must fill this address with either the Physical
Address, or zero.

auxDataSize This field contains the total size of the auxiliary data space. The value stored in this field
includes both used and unused space. This value can be used to calculate the amount of
auxiliary data space that is not currently used for auxiliary data blocks. On transmits, this
field will hold the same value that is stored in the FragmentLength field of the
FRAGMENT_STRUCT associated with Auxiliary Data.

2.3.2 Auxiliary Data End

AUX_DATA_END is the last auxiliary data block in an Auxiliary Data fragment. The Auxiliary Data Block used
for AUX_DATA_END is defined as follows:

typedef struct _AUX_DATA_END_BLOCK_
AUX_DATA_BLOCK_HDR hdr;
UINT32 terminator;

}AUX_DATA_END_BLOCK;

hdr.auxType The auxType field of the Auxiliary Data Block is set to AUX_DATA_END.

hdr.auxVersion Set to AUX_DATA_BLOCK_HDR_VERSION

hdr.auxLength Set to sizeof(AUX_DATA_END_BLOCK)  (20)

hdr.auxPayloadVersion Set to AUX_DATA_END_VERSION



ODI Specification Supplement: ECB Extensions

8 Version 1.10  (July 31, 2000)

terminator This field is set to NULL.

2.3.3 Auxiliary Data NULL

AUX_DATA_NULL is an optional element.  If present the AUX_DATA_NULL auxiliary data block must fall
between AUX_DATA_START and AUX_DATA_END auxiliary data blocks.  The AUX_DATA_NULL auxiliary
block is a place-holder and is to be skipped over when scanning the auxiliary data buffer.  The AUX_DATA_NULL
auxiliary data block enables the deletion and insertion of auxiliary data blocks in the auxiliary data buffer without
performing a copy.  The auxiliary data block used for AUX_DATA_NULL is defined as follows:

typedef struct _AUX_DATA_NULL_BLOCK_
{

AUX_DATA_BLOCK_HDR hdr;
}AUX_DATA_NULL_BLOCK;

hdr.auxType The auxType field of the Auxiliary Data Block is set to AUX_DATA_NULL.

hdr.auxVersion Set to AUX_DATA_BLOCK_HDR_VERSION

hdr.auxLength The size of the AUX_DATA_BLOCK_HDR plus any additional space associated with
the NULL auxiliary data block.

hdr.auxPayloadVersion Set to AUX_DATA_NULL_VERSION

3 ODI Structures
This section describes the changes required to other ODI structures to identify components that are ECB Auxiliary
Data aware.

3.1 Protocol Stacks

3.1.1  Configuration Table

PConfigTable_ODISpecMajorVersion This field contains the major version of the ODI Specification
that the Protocol Stack is written to. For example, if the
version of the ODI Specification is 1.11, the value of this field
is 1. The ECB Extensions are being proposed for ODI
Specification version 1.20. This field will remain at 1.

PConfigTable_ODISpecMinorVersion This field contains the minor version of the ODI Specification
that the Protocol Stack is written to. For example, if the
version of the ODI Specification is 1.11, the value of this field
is 11. The ECB Extensions are being proposed for ODI
Specification version 1.20. This field will be set to 20.

PConfigTable_SystemFlags Added a bit definition for indicating AUX data support:



ODI Specification Supplement: ECB Extensions

Version 1.10 (July 31, 2000) 9

PSTK_CFG_AUX_SUP_BIT The protocol sets this bit if it is ECB auxiliary data
aware.  However, it does not imply that the protocol will
interpret or act upon the information contained in the auxiliary
data blocks.

3.1.2 Assembly Spec Stacks
Recognizing that on the NetWare 5.1 platform the protocols are currently written to the Assembly spec, this
section details the changes needed to minimally indicate Aux Data support.

3.1.2.1 Configuration Table
CFGMajorVersion This field contains the major version of the Config table

structure definition. This field will remain at 1.

CFGMinorVersion This field contains the minor version of the Config table
structure definition.  This field should be changed to 11.

Stack_Flags A New field that contains the new bit definitions to indicate
support for MP and AUX data support.

AUX_DATA_SUPPORT  The new bit defined to indicate support for Aux data.

3.2 MLIDs
3.2.1 MLIDCFG_Flags

MF_ECB_AUX_SUP_BIT The MLID sets this bit if it is ECB auxiliary data
aware. However, it does not imply that the MLID
knows how to interpret or act upon the information
contained in the auxiliary data blocks. It does mean
that the MLID can safely process ECBs that contain
auxiliary data. For example, if a transmit ECB with
auxiliary data was handed to the MLID for
processing, the MLID would not process the last
fragment in the fragment list, treating it as if it were
data to be transmitted.

3.3 C MSM
The C MSM configuration information returned by CMSMGetConfigInfo.

3.3.1 CMSM_CONFIG_TABLE

CMSMCFG_ODISpecMajorVersion This field contains the major version of the ODI Specification
that this version of the C MSM is written to. For example, if
the version of the ODI Specification is 1.11, the value of this
field is 1. For this proposal, this field will remain at 1.

CTSMCFG_ODISpecMinorVersion This field contains the minor version of the ODI Specification
that this version of the C MSM is written to. For example, if



ODI Specification Supplement: ECB Extensions

10 Version 1.10  (July 31, 2000)

the version of the ODI Specification is 1.11, the value of this
field is 11. For this proposal this field will be set to 20.

3.4 C TSM
The <CTSM> configuration information returned by <CTSM>GetConfigInfo.

3.4.1 CTSM_CONFIG_TABLE

CTSMCFG_ODISpecMajorVersion This field contains the major version of the ODI Specification
that this version of the <CTSM> is written to. For example, if
the version of the ODI Specification is 1.11, the value of this
field is 1. For this proposal this field will remain at 1.

CTSMCFG_ODISpecMinorVersion This field contains the minor version of the ODI Specification
that this version of the <CTSM> is written to. For example, if
the version of the ODI Specification is 1.11, the value of this
field is 11. For this proposal this field will be set to 20.

3.5 C HSM
3.5.1 DRIVER_PARM_BLOCK

The HSMSpecVersionStringPtr field in the Driver Parameter Block will be updated to reflect the version of
the ODI Specification.

HSMSpecVersionStringPtr Pointer to the version string that describes the version of the HSM
specification to which the HSM is written. For this proposal, the string
is defined by Novell as “HSM_CSPEC_VERSION: 1.20”.

3.5.2 MLID_CONFIG_TABLE

MLIDCFG_SGCount This field contains the maximum number of scatter/gather elements the
adapter is capable of handling. The C HSM sets this variable. This field
is only valid if the MM_FRAGS_PHYS_BIT bit in the
MLIDCFG_ModeFlags field is set. The minimum value is 2 for non-
ECB aware C HSMs (1 for the MAC header and 1 for data). The
minimum value is 1 for ECB aware C HSMs. The maximum value is
17 (1 for the MAC header and 16 for data).

C HSMs that support auxiliary data need to adhere to the following
guidelines for the minimum values. The minimum value is 3 for non-
ECB aware (i.e., TCB aware) C HSMs. The minimum value is 2 for
ECB aware C HSMs.

MLIDCFG_Flags

MF_ECB_AUX_SUP_BIT The C HSM sets this bit if it is ECB auxiliary data
aware. However, it does not imply that the C HSM
knows how to interpret or act upon the information
contained in the auxiliary data blocks. It does mean



ODI Specification Supplement: ECB Extensions

Version 1.10 (July 31, 2000) 11

that the C HSM can safely process ECBs that contain
auxiliary data. For example, if a transmit ECB with
auxiliary data was handed to the C HSM for
processing, the C HSM would not process the last
fragment in the fragment list, treating it as if it were
data to be transmitted.

4 Impacts
This section describes the changes needed in ODI modules in order to support ECB Auxiliary Data.

4.1 C HSM
The HSM must ensure that the auxiliary data is handled correctly. The HSM will parse for auxiliary data blocks.
When it finds an auxiliary data block where action is needed, it will perform the necessary processing based on
the content of the auxiliary data block.

•  Support Structure updates as described in Sections 2 and 3.

•  Send and receive paths must be able to handle properly the presence of auxiliary data.

4.2 Protocol Stacks

Protocol Stacks must ensure that ECBs constructed or processed by the stack handle auxiliary data correctly.
This applies to all types of stacks (i.e., bound, prescan, and default). Below are some of the areas that
protocol stacks will need to update:

•  Support structure updates as described in Sections 2 and 3.

•  The data path must be auxiliary data aware.

•  Send and receive paths must be able to handle properly the presence of auxiliary data.

4.3 Other NLMs

Some NLMs have chosen to create their own transmit ECBs. These NLMs that are ECB aware must ensure
that ECBs constructed or processed by an NLM handle auxiliary data correctly. The things that these NLMs
must be aware of include the following:

•  Must support structure updates as described in Sections 2 and 3.

•  Must verify that data path is auxiliary data aware.

•  Send and receive paths must be able to handle properly the presence of auxiliary data.



ODI Specification Supplement: ECB Extensions

12 Version 1.10  (July 31, 2000)

4.4 ODI.H
This section summarizes the modifications to odi.h. Comments are not spelled out in this section but can be gathered
from the previous section where they are described in detail.

The minor version define in the C ODI Specification Version Numbers section has been changed to the following:

#define ODI_SPEC_MINOR_VER 20

Added the following to the PConfigTable_SystemFlags definition:

#define PSTK_CFG_AUX_SUP_BIT 0x00000002

Added the following to Stack ID Definitions section:

Raw Sends

#define TX_RAW_SEND_PRIORITY_0 0xFF 0 = No Priority
#define TX_RAW_SEND_PRIORITY_1 0xFE 1 = Lowest Priority
#define TX_RAW_SEND_PRIORITY_2 0xFD
#define TX_RAW_SEND_PRIORITY_3 0xFC
#define TX_RAW_SEND_PRIORITY_4 0xFB
#define TX_RAW_SEND_PRIORITY_5 0xFA
#define TX_RAW_SEND_PRIORITY_6 0xF9
#define TX_RAW_SEND_PRIORITY_7 0xF8 7 = Highest Priority

    
Normal Sends

#define TX_SEND_PRIORITY_0 0xF7 0 = No Priority
#define TX_SEND_PRIORITY_1 0xF6 1 = Lowest Priority
#define TX_SEND_PRIORITY_2 0xF5
#define TX_SEND_PRIORITY_3 0xF4
#define TX_SEND_PRIORITY_4 0xF3
#define TX_SEND_PRIORITY_5 0xF2
#define TX_SEND_PRIORITY_6 0xF1
#define TX_SEND_PRIORITY_7 0xF0 7 = Highest Priority

/* 0xFFFy Values from 0xFFF0 – 0xFFFF (zn = 0xFF) indicate legacy raw and normal send
definitions for the ECB_StackID.

   0xzn The z and n nibbles of the zn byte provide additional information about the transmit request. The z
and n nibbles are defined as follows:

   0xz The z nibble of the zn byte has a pattern of 10xx. The following values are defined for the z: */

#define TX_NO_CHECKSUM 0x8 No Checksum generation on this packet.
#define TX_TRANSPORT_CHECKSUM 0x9 Generate the Transport Layer Checksum
#define TX_NETWORK_CHECKSUM 0xA Generate the Network Layer Checksum (Ipv4)

/* 0xn The n nibble of the zn byte indicates a value of 0x0 – 0xF. The following values are defined for
the n nibble of the zn byte: */



ODI Specification Supplement: ECB Extensions

Version 1.10 (July 31, 2000) 13

#define TX_AUX_DATA 0x1 /* Auxiliary Data is present. */

Added the following to the Rx Packet Attributes section:

#define PA_RX_AUX_DATA 0x00800000 /* Set if auxiliary data is present. */

Added the following to the MLIDCFG_FLAGS bit definition section:

#define MF_ECB_AUX_SUP_BIT      0x2000h

Created a new section in the area of the ECB definition and added the following:

#define AUX_DATA_BLOCK_HDR_VERSION 1

/* Auxiliary Data Block Types */

#define AUX_DATA_START 1
#define AUX_DATA_END 2
#define AUX_DATA_NULL 3

typedef struct _AUX_DATA_BLOCK_HDR_
{

UINT32 auxType;
UINT32 auxVersion;
UINT32 auxLength;
UINT32 auxPayloadVersion;

}AUX_DATA_BLOCK_HDR;

#define AUX_DATA_START_VERSION 1

typedef struct _AUX_DATA_START_BLOCK_
{

AUX_DATA_BLOCK_HDR hdr;
VOID *auxDataPhysAddr;
UINT32 auxDataSize;

}AUX_DATA_START_BLOCK;

#define AUX_DATA_END_VERSION 1

typedef struct _AUX_DATA_END_BLOCK_
{

AUX_DATA_BLOCK_HDR hdr;
UINT32 terminator;

}AUX_DATA_END_BLOCK;

#define AUX_DATA_NULL_VERSION 1

typedef struct _AUX_DATA_NULL_BLOCK_
{

AUX_DATA_BLOCK_HDR hdr;
}AUX_DATA_NULL_BLOCK;



ODI Specification Supplement: ECB Extensions

14 Version 1.10  (July 31, 2000)

5 LSL APIs
This section defines APIs provided by the LSL for use by protocol stacks and MLIDs.

5.1 LSLAllocateAuxDataBuffer
Allocates and initializes an auxiliary data buffer.  Generally used by protocol stacks.

Syntax long LSLAllocateAuxDataBuffer (
long size,
RTag *rTag,
long blkSize,

                                void **bufferPtr,
void **blkPtr ) ;

Input Parameters

size Minimum size required for the auxiliary data buffer.

rTag Pointer to a valid resource tag with signature of ECBSignature.

blkSize Size of NULL block to be added to the buffer between the START and END blocks if a
NULL block is to be created.  If a NULL block is not to be created then this field is set to
0.

bufferPtr Destination where the pointer to the new auxiliary data buffer is to be stored.

blkPtr Destination to store the pointer to the NULL block created within the auxiliary data
buffer if one was requested.  Set to NULL if blkSize is zero or if the location within the
auxiliary data block is not required.

Output Parameters

bufferPtr Contains the pointer to where the new auxiliary data buffer is to be stored.

blkPtr Contains the pointer to the NULL block created within the auxiliary data buffer if one
was requested.

Return Values

Successful The requested operation was completed successfully.

BadParameters One or move input parameters were invalid.

OutOfResources Resources were not available to fill the request.

Remarks

Allocates an auxiliary data buffer with valid START and END blocks and an optional NULL block. The
size of the buffer and the NULL block are specified at call time. The optional NULL block can be used as a
space holder for another block type that will overwrite the NULL block later.



ODI Specification Supplement: ECB Extensions

Version 1.10 (July 31, 2000) 15

5.2 LSLReturnAuxDataBuffer

Returns aux data buffers back to the system. Generally used by protocol stacks.

Syntax  long LSLReturnAuxDataBuffer (
void *bufferPtr ) ;

Input Parameters

bufferPtr Pointer to the auxiliary data buffer being returned.

Output Parameters

None

Return Values

Successful The requested operation was completed successfully.

BadParameters The parameter was invalid.
Remarks

Returns an aux data buffer acquired with LSLAllocateAuxDataBuffer.

5.3 LSLInitializeAuxDataBuffer
Initializes an auxiliary data buffer by formatting the START and END auxiliary data blocks. Optionally inserts a
NULL auxiliary data block if specified by the caller. Generally used by protocol stacks and MLIDs.

Syntax  long LSLInitializeAuxDataBuffer (
long size,
void *bufferPtr,
long blkSize,
void **blkPtr ) ;

 Input Parameters

size The size of the auxiliary data buffer in bytes.

bufferPtr Pointer to an existing auxiliary data buffer.

blkSize The size of NULL auxiliary data block to be inserted between START and END auxiliary
data blocks. If a NULL auxiliary data block is not to be inserted, set this field to zero.

blkPtr Destination where the NULL auxiliary data block pointer is to be stored. Set to NULL if
blkSize is zero or if the location within the auxiliary data block is not required.

Output Parameters

blkPtr Contains a pointer to the NULL auxiliary data block.



ODI Specification Supplement: ECB Extensions

16 Version 1.10  (July 31, 2000)

Return Values

Successful The requested operation was completed successfully.

BadParameters One or more parameters were invalid.

Remarks

Initializes an auxiliary data buffer with the START and END auxiliary blocks with an optional NULL
auxiliary data block between them.

5.4 LSLInsertBlockIntoAuxDataBuffer

Inserts a new NULL auxiliary data block into an auxiliary data buffer. Generally used by protocol stacks and MLIDs

Syntax long  LSLInsertBlockIntoAuxDataBuffer (
void *bufferPtr,
long size,
void **blkPtr ) ;

 Input Parameters

bufferPtr Pointer to a valid auxiliary data buffer.

size The size of the NULL block to be inserted.

blkPtr The destination where the pointer to the NULL auxiliary data block will be stored.  Set to
NULL if the location of the block within the auxiliary data buffer is not required.

Output Parameters

blkPtr Contains a pointer to the NULL auxiliary data block.

Return Values

Successful The requested operation was completed successfully.

BadParameters One or more of the parameters were invalid.

OutOfResources Resources were not available to fill the request.

Remarks

Finds a NULL auxiliary block of the correct size or breaks a larger NULL auxiliary data block into two
NULL auxiliary data blocks, one being the requested size.  If there is not an existing NULL auxiliary data
block that meets the requirement then a new NULL auxiliary block of the requested size is created in front of
the END block.



ODI Specification Supplement: ECB Extensions

Version 1.10 (July 31, 2000) 17

5.5 LSLRemoveBlockFromAuxDataBuffer
Removes the specified auxiliary data block from an auxiliary data buffer by reformatting it into a NULL block.
Generally used by protocol stacks and MLIDs

Syntax  long LSLRemoveBlockFromAuxDataBuffer (
 void *bufferPtr,
void *blkPtr ) ;

Input Parameters

bufferPtr Pointer to the auxiliary data buffer.

blkPtr Pointer to the auxiliary data block to be removed.

Output Parameters

None

Return Values

Successful The requested operation was completed successfully.

BadParameters One or more of the parameters were invalid.

Remarks

An existing auxiliary data block is removed by being converted into a NULL auxiliary data block.

5.6 LSLFindBlockInAuxDataBuffer
Locates a specified auxiliary data block in an auxiliary data buffer. Generally used by protocol stacks and MLIDs

Syntax long LSLFindBlockInAuxDataBuffer(
void *bufferPtr,
long blockType,
void **blockPtr ) ;

Input Parameters

bufferPtr Pointer to the beginning of a valid auxiliary data buffer or a pointer to a valid auxiliary
data block within an auxiliary data buffer.

blockType Block type to search for.

blockPtr Destination to store pointer of requested auxiliary data block.  Set to NULL if caller
wants to test if type exists but does not care where it is located within the auxiliary data
buffer.

Output Parameters

blockPtr Contains the pointer to requested auxiliary data block.



ODI Specification Supplement: ECB Extensions

18 Version 1.10  (July 31, 2000)

Return Values

Successful The requested operation was completed successfully.

BadParameters One or more of the parameters were invalid.

ItemNotPresent An auxiliary data block of the requested type was not found.

Remarks

Locates an auxiliary data block of requested type within an auxiliary data buffer. The bufferPtr does not
need to point to the START auxiliary data block if used as a find next auxiliary block.  If used as a find
next, the parameter bufferPtr contains the address of a valid auxiliary data block to begin the search.

Input parameter blockPtr can be set to NULL if caller wants to test if type exists but does not care where it
is located within the auxiliary data buffer.

5.7 LSLCompressAuxDataBuffer
Removes all NULL auxiliary data blocks from an auxiliary data buffer. Generally used by protocol stacks and
MLIDs

Syntax long LSLCompressAuxDataBuffer (
 void *bufferPtr ) ;

Input Parameters

bufferPtr A pointer to a valid auxiliary data buffer.

Output Parameters

None

Return Values

Successful The requested operation was completed successfully.

BadParameters The input parameter was invalid.

Remarks

Removes all NULL auxiliary data blocks from an auxiliary data buffer.

5.8 LSLExpandAuxDataBuffer
Inserts a NULL auxiliary data block in front of the END auxiliary data block. Generally used by protocol stacks and
MLIDs

Syntax long LSLExpandAuxDataBuffer (
void *bufferPtr ) ;

Input Parameters

bufferPtr A pointer to a valid auxiliary data buffer.



ODI Specification Supplement: ECB Extensions

Version 1.10 (July 31, 2000) 19

Output Parameters

None

Return Values

Successful The requested operation was completed successfully.

BadParameters The input parameter was invalid.

OutOfResources Resources were not available to fill the request.

Remarks

Expands the auxiliary data buffer by adding a NULL auxiliary data block before the END auxiliary block
equal to the size of all the available space in the auxiliary data buffer. All other NULL auxiliary blocks are
decompressed so that the auxiliary data buffer will contain only one NULL auxiliary data block of the
maximum size possible.

5.9 LSLValidateAuxDataBuffer
Runs through the auxiliary data buffer and checks for consistency of the auxiliary data blocks. Generally used by
protocol stacks and MLIDs

Syntax long LSLValidateAuxDataBuffer (
void *bufferPtr ) ;

Input Parameters

bufferPtr Pointer to the auxiliary data buffer to validate.

Output Parameters

None

Return Values

Successful The requested operation was completed successfully.

BadParameters Pointer to the auxiliary data buffer is invalid.

BadCommand The auxiliary data buffer pointed to by bufferPtr is invalid.

Remarks

Used to test an auxiliary data buffer to see if it is well formed.



ODI Specification Supplement: ECB Extensions

20 Version 1.10  (July 31, 2000)

6 C MSM APIs
This section defines APIs provided by the C MSM for use by C HSMs.

6.1 CMSMInitializeAuxDataBuffer
Initializes an auxiliary data buffer by formatting the START and END auxiliary data blocks. Optionally inserts a
NULL auxiliary data block if specified by the caller. Generally used by protocol stacks and MLIDs.

Syntax  ODISTAT CMSMInitializeAuxDataBuffer (
UINT32 size,
void *bufferPtr,
UINT32 blkSize,
void **blkPtr ) ;

 Input Parameters

size The size of auxiliary data buffer in bytes.

bufferPtr Pointer to an existing auxiliary data buffer.

blkSize The size of NULL auxiliary data block to be inserted between START and END auxiliary
data blocks. If a NULL auxiliary data block is not to be inserted, set this field to zero.

blkPtr Destination where the NULL auxiliary data block pointer is to be stored. Set to NULL if
blkSize is zero or if the location within the auxiliary data block is not required.

Output Parameters

blkPtr Contains a pointer to the NULL auxiliary data block.

Return Values

ODISTAT_SUCCESSFUL The requested operation was completed successfully.

ODISTAT_BAD_PARAMETER One or more parameters were invalid.

ODISTAT_BAD_COMMAND This API is not supported on this version of NetWare.

Remarks

Initializes an auxiliary data buffer with the START and END auxiliary blocks with an optional NULL
auxiliary data block between them.

6.2 CMSMInsertBlockIntoAuxDataBuffer

Inserts a new NULL auxiliary data block into an auxiliary data buffer. Generally used by protocol stacks and MLIDs



ODI Specification Supplement: ECB Extensions

Version 1.10 (July 31, 2000) 21

Syntax ODISTAT  CMSMInsertBlockIntoAuxDataBuffer (
void *bufferPtr,
UINT32 size,
void **blkPtr ) ;

 Input Parameters

bufferPtr Pointer to a valid auxiliary data buffer.

size The size of the NULL block to be inserted.

blkPtr The destination where the pointer to the NULL auxiliary data block will be stored.  Set to
NULL if the location of the block within the auxiliary data buffer is not required.

Output Parameters

blkPtr Contains a pointer to the NULL auxiliary data block.

Return Values

ODISTAT_SUCCESSFUL The requested operation was completed successfully.

ODISTAT_BAD_PARAMETER One or more of the parameters were invalid.

ODISTAT_OUT_OF_RESOURCES Resources were not available to fill the request.

ODISTAT_BAD_COMMAND This API is not supported on this version of NetWare.

Remarks

Finds a NULL auxiliary block of the correct size or breaks a larger NULL auxiliary data block into two
NULL auxiliary data blocks, one being the requested size.  If there is not an existing NULL auxiliary data
block that meets the requirement then a new NULL auxiliary block of the requested size is created in front of
the END block.

6.3 CMSMRemoveBlockFromAuxDataBuffer
Removes the specified auxiliary data block from an auxiliary data buffer by reformatting it into a NULL block.
Generally used by protocol stacks and MLIDs

Syntax  ODISTAT CMSMRemoveBlockFromAuxDataBuffer (
 void *bufferPtr,
void *blkPtr ) ;

Input Parameters

bufferPtr Pointer to the auxiliary data buffer.

blkPtr Pointer to the auxiliary data block to be removed.

Output Parameters



ODI Specification Supplement: ECB Extensions

22 Version 1.10  (July 31, 2000)

None

Return Values

ODISTAT_SUCCESSFUL The requested operation was completed successfully.

ODISTAT_BAD_PARAMETER One or more of the parameters were invalid.

ODISTAT_BAD_COMMAND This API is not supported on this version of NetWare.

Remarks

An existing auxiliary data block is removed by being converted into a NULL auxiliary data block.

6.4 CMSMFindBlockInAuxDataBuffer
Locates a specified auxiliary data block in an auxiliary data buffer. Generally used by protocol stacks and MLIDs

Syntax ODISTAT CMSMFindBlockInAuxDataBuffer(
void *bufferPtr,
UINT32 blockType,
void **blockPtr ) ;

Input Parameters

bufferPtr Pointer to the beginning of a valid auxiliary data buffer or a pointer to a valid auxiliary
data block within an auxiliary data buffer.

blockType Block type to search for.

blockPtr Destination to store pointer of requested auxiliary data block.  Set to NULL if caller
wants to test if type exists but does not care where it is located within the auxiliary data
buffer

Output Parameters

blockPtr Contains the pointer to the requested auxiliary data block.

Return Values

ODISTAT_SUCCESSFUL The requested operation was completed successfully.

ODISTAT_BAD_PARAMETER One or more of the parameters were invalid.

ODISTAT_ITEM_NOT_PRESENT An auxiliary data block of the requested type was not found.

ODISTAT_BAD_COMMAND This API is not supported on this version of NetWare.

Remarks



ODI Specification Supplement: ECB Extensions

Version 1.10 (July 31, 2000) 23

Locates an auxiliary data block of requested type within an auxiliary data buffer. The bufferPtr does not
need to point to the START auxiliary data block if used as a find next auxiliary block.  If used as a find
next, the parameter bufferPtr contains the address of a valid auxiliary data block to begin the search.

Input parameter blockPtr can be set to NULL if caller wants to test if type exists but does not care where it
is located within the auxiliary data buffer.

6.5 CMSMCompressAuxDataBuffer
Removes all NULL auxiliary data blocks from an auxiliary data buffer. Generally used by protocol stacks and
MLIDs

Syntax ODISTAT CMSMCompressAuxDataBuffer (
 void *bufferPtr ) ;

Input Parameters

bufferPtr A pointer to a valid auxiliary data buffer.

Output Parameters

None

Return Values

ODISTAT_SUCCESSFUL The requested operation was completed successfully.

ODISTAT_BAD_PARAMETER The input parameter was invalid.

ODISTAT_BAD_COMMAND This API is not supported on this version of NetWare.

Remarks

Removes all NULL auxiliary data blocks from an auxiliary data buffer.

6.6 CMSMExpandAuxDataBuffer
Inserts a NULL auxiliary data block in front of the END auxiliary data block. Generally used by protocol stacks and
MLIDs

Syntax ODISTAT CMSMExpandAuxDataBuffer (
void *bufferPtr ) ;

Input Parameters

bufferPtr A pointer to a valid auxiliary data buffer.



ODI Specification Supplement: ECB Extensions

24 Version 1.10  (July 31, 2000)

Output Parameters

None

Return Values

ODISTAT_SUCCESSFUL The requested operation was completed successfully.

ODISTAT_BAD_PARAMETER The input parameter was invalid.

ODISTAT_OUT_OF_RESOURCES Resources were not available to fill the request.

ODISTAT_BAD_COMMAND This API is not supported on this version of NetWare.

Remarks

Expands the auxiliary data buffer by adding a NULL auxiliary data block before the END auxiliary block
equal to the size of all the available space in the auxiliary data buffer. All other NULL auxiliary blocks are
decompressed so that the auxiliary data buffer will contain only one NULL auxiliary data block of the
maximum size possible.

6.7 CMSMValidateAuxDataBuffer
Runs through the auxiliary data buffer and checks for consistency of the auxiliary data blocks. Generally used by
protocol stacks and MLIDs

Syntax ODISTAT CMSMValidateAuxDataBuffer (
void *bufferPtr ) ;

Input Parameters

bufferPtr Pointer to the auxiliary data buffer to validate.

Output Parameters

None

Return Values

ODISTAT_SUCCESSFUL The requested operation was completed successfully.

ODISTAT_BAD_PARAMETER Pointer to the auxiliary data buffer is invalid.

ODISTAT_BAD_COMMAND The auxiliary data buffer pointed to by bufferPtr is invalid or this API
is not supported on this version of NetWare.

Remarks

Used to test an auxiliary data buffer to see if it is well formed.



ODI Specification Supplement: ECB Extensions

Version 1.10 (July 31, 2000) 25

APPENDIX A
ECB Extension Aware Protocol Stack Existing Protocol Stack (non-aware)

ECB Extension Aware MLID/HSM
Bind Allowed Bind NOT Allowed

Existing MLID/HSM (non-aware)
Bind Allowed Bind Allowed

Table: 1 Bindings Allowed with ECB Extensions.

Issues with Binding:

1. As HSMs or MLIDs do not know if the packet received will be handed to a Protocol Stack that is
unaware of the ECB extensions, the binding of such a combination is precluded.

2. Protocol Stacks can cause MLIDs/HSMs to start to pass auxiliary data. They are also aware of non-
extension formats, so new Aux-Aware Protocol Stacks can bind to older/Non-Auxiliary data
MLIDs/HSMs.


	Introduction
	Problem
	Solution
	Issues

	ECB Auxiliary Data
	Transmit ECB
	Receive ECB
	Auxiliary Data format
	Auxiliary Data Start
	Auxiliary Data End
	Auxiliary Data NULL


	ODI Structures
	Protocol Stacks
	Configuration Table
	Assembly Spec Stacks
	Configuration Table


	MLIDs
	MLIDCFG_Flags

	C MSM
	CMSM_CONFIG_TABLE

	C TSM
	CTSM_CONFIG_TABLE

	C HSM
	DRIVER_PARM_BLOCK
	MLID_CONFIG_TABLE


	Impacts
	C HSM
	Protocol Stacks
	Other NLMs
	ODI.H

	LSL APIs
	LSLAllocateAuxDataBuffer
	LSLReturnAuxDataBuffer
	LSLInitializeAuxDataBuffer
	LSLInsertBlockIntoAuxDataBuffer
	LSLRemoveBlockFromAuxDataBuffer
	LSLFindBlockInAuxDataBuffer
	LSLCompressAuxDataBuffer
	LSLExpandAuxDataBuffer
	LSLValidateAuxDataBuffer

	C MSM APIs
	CMSMInitializeAuxDataBuffer
	CMSMInsertBlockIntoAuxDataBuffer
	CMSMRemoveBlockFromAuxDataBuffer
	CMSMFindBlockInAuxDataBuffer
	CMSMCompressAuxDataBuffer
	CMSMExpandAuxDataBuffer
	CMSMValidateAuxDataBuffer

	APPENDIX A

