Novell.

ODI IPSec Offloading Support

Proposal

Documentation Version 1.00
July 31, 2000

ODI IPSec Offloding Support: Proposal

Disclaimer

trademarks

Novell, Inc. makes no representations or warranties with respect to the content or
use of this manual, and specifically disclaims any express or implied warranties of
merchantability or fitness for any particular purpose. Further, Novell, Inc. reserves
the right to revise this publication and to make changes to its content, at any time,
without obligation to notify any person or entity of such revisions or changes.

Further, Novell, Inc. makes no representations or warranties with respect to any
software, and specifically disclaims any express or implied warranties of
merchantability or fitness for any particular purpose. Further, Novell, Inc. reserves
the right to make changes to any and all parts of Novell software, at any time,
without obligation to notify any person or entity of such changes.

This product may require export authorization from the U.S. Department of
Commerce prior to exporting from the U.S. or Canada.

Copyright © 2000 Novell, Inc. All rights reserved. No part of this publication may
be reproduced, photocopied, stored on a retrieval system, or transmitted without
the express written consent of the publisher.

U.S. Patent Nos 5,553,139; 5,553,143, 5,677,851; 5,758,069; 5,784,560; 5,818,936;
5,864,865; 5,903,650; 5,905,860; 5,910,803 and other Patents Pending.

Novell and NetWare are registered trademarks of Novell, Inc. in the United States
and other countries.

All other company and product names are trademarks or registered trademarks of
their respective owners.

Novell, Inc.

1800 South Novell Place
Provo, UT 84606

USA.

www.novell.com

Company Confidential Version 1.00 (July 31, 2000)

ODI IPSec Offloading Support: Proposal

Contents

[1 INTRODUGCTIONcoiiiiittiiieeiiittiieeeeettieeee et e e e e ettt e e e e etteeeeeaeataeeeeesnbeeeeeeesreeeeesanens 4
A 5|
p.1 RN e L = - 5

P.1.1 Add SECUIEY ASSOCIALION ... evreveerrereeseestestesressesseaseaseeseessessessessessesseasseseessessessessessessensessessessessessessenses 7
D.1.2 Get Hardware CapabilitIEScucveveieeiieiseeteieee et tes e staetaeeeneeseeseesteseesresseaseeseeneenseseesresseens 10
P.1.3 REMOVE SECUITY ASSOCIALIONee.vveuiieeiieetestreteesieeseesteesteesteaeesseesseesseenseassesseesseesseensenssessesssesssessseenses 12
D.1.4 Set SECUNILY CaAPADIIITIES ...c.vvivvictiectieiieieetecee ettt ettt ettt eeta et e e ttesteesteesteereanreenresnsenseenns 12

2 IPSec Auxiliary Data BIOCKS ..o 13|
2.1 Transmit AuXiliary Data.......ooocoo 13
2.2 RN A I A L - W 14
D.2.3 Secondary Use AUXITHANY Datal..........c..cuiiuiiuiieeiiiiiieeceeceeteeteeteee e aevesaestaetaeeesteesreesnresnsasseenes 15
R.3 PACKET TFANSIMISSIONvevieivevisiieteeietetite et te ettt et tesassetesesetesessesesesseressasesessssesessasaseressasesessasesesns 16|
p.4 G qi 16|
R.5 Secondary Packet RECEPTIONov.iureirieieeesessiesssesiessssessssesssssssssesssnses st snsas st snses st snses st snsessnsansssnsanees 16|
= 17|

Version 1.00 (July 31, 2000) Company Confidential 3

ODI IPSec Offloding Support: Proposal

1 Introduction

Many of the new Network Interface Cards (NICs) have the capability of performing crypto operations. Providing the
IP protocol stack with the ability to offload crypto operations, NICs can free up cycles from the host CPU and
increase system performance. This document describes the proposed ODI IPSec Offloading support. If approved
these changes would eventually become part of the next C ODI Specification revision.

The following is a list of issues that must be understood when reviewing this proposal:

* The support described here does not imply that any or all of the IPSec functions are completely removed from
the host.

» Support for ODI IPSec Offloading relies on the ability to pass auxiliary data between modules in the data path
as defined by the ODI ECB Extensions document: ODI Specification Supplement: ECB Extensions.

e ODI IPSec Offloading will only be provided for the NetWare5.x platform.
« IHVs with hardware supporting IPSec Offloading will need to make the appropriate changes to their drivers.
» IP Protocol Stack will need to be updated to use the IPSec hardware offloading capabilities of the hardware.

» Anunderstanding of IP Security as specified in the following RFCs and drafts published by the Security
Working Group of the Internet Engineering Task Force (IETF):
e Security Architecture for the Internet Protocol (RFC 2401)
e IP Authentication Header (RFC 2402)
e The use of HMAC-MD5-96 within ESP and AH (RFC 2403)
e The use of HMAC-SHA-1-96 within ESP and AH (RFC 2404)
e« HMAC-MD5 IP Authentication with Replay Prevention (RFC 2085)
« IP Encapsulating Security Payload (ESP) (RFC 2406)
* The ESP CBC-Mode Cipher Algorithms (RFC2451)
» The NULL Encryption Algorithm and its Use with IPSec (RFC 2410)

4 Company Confidential Version 1.00 (July 31, 2000)

ODI IPSec Offloading Support: Proposal

2 IP Security

This section defines the ODI interface between the IP protocol stack and a driver/hardware that supports IPSec
offloading.

ODI defines a mechanism to make use of the hardware functions to support IPSec for normal packet processing. The
IPSec enabled IP protocol stack bound to a driver that supports offloading of IPSec crypto operations performs the
entire packet processing required for IPSec with the exception of functions provided by the driver/hardware. The
stack provides all of the necessary information to the driver so that the driver/hardware can assist with the necessary
IPSec functions for packet transmission and reception processing.

The Management ECB and Auxiliary Data Blocks used for enabling IP Security (IPSec) functions in the
driver/nardware are described in this section.

It should be noted that having the driver perform the security tasks utilizing the host processor does not provide the
gains that are hoped for by using hardware accelerators. MLIDs/HSMs should always provide accurate capabilities
information based on the actual hardware support being utilized.

2.1 IPSec Management ECB

This section describes the IPSec Management ECB functions defined for use with IPSec. The IPSec enabled
protocol stack maintains Security Associations (SA) and communicates changes to the driver using the IPSec
Management ECB.

The following functions will be supported using the IPSec Management ECB.

e Adding Security Associations

e Getting Security Capabilities

e Getting Security Statistics

* Removing Security Associations
e Setting Security Capabilities

The ODI Specification may define additional IPSec Management ECB functions for other driver/hardware features
as it becomes necessary and available.

The IPSec Management ECB consists of a header followed by function specific data. The header is defined as:

typedef struct _IPSEC_ECB_HEADER

{
struct IPSEC_ECB_HEADER *nextLink;
struct IPSEC_ECB_HEADER *previousLink;

UINT16 status;

void (ESR)(struct _IPSEC_ECB_%*);

UINT16 stackID;

PROT_ID protocolID;

UINT32 boardNumber;

UINT32 version;

UINT32 function;

union

{
IPSEC_SA SET securityAssociationSet; /* Add SA */
IPSEC_HW_CAP getHWCapabilitiesSet; [* Get Hardware Capabilities */
UINT32 setCapabilitiesMask; /* enable Capabilities */

Version 1.00 (July 31, 2000) Company Confidential 5

ODI IPSec Offloding Support: Proposal

void SAhandle; [* remove SA */

} funcData;

} IPSEC_ECB_HEADER,;

nextLink

previousLink

On entry this field shall be initialized to zero. It is returned as zero.

On entry this field shall be initialized to zero. It is returned as zero.

Status On entry this field shall be initialized to zero.
On exit, this field shall contain the completion code:
ODISTAT_SUCCESSFUL
The Management ECB was delivered and acted on.
ODISTAT_BAD_PARAMETER
The Management ECB was not delivered or acted on.
ODISTAT_BAD_COMMAND
The function specified is not supported.
ODISTAT_OUT_OF_RESOURCES
Unable to add the SA
ODISTAT_ITEM_NOT_PRESENT
The feature specified to be enabled is not supported.
ESR Pointer to the Event Service Routine (ESR) to call after the requested function has been
completed. This field may be set to NULL if an ESR is not needed.
stackID The protocol stack ID of the IPSec stack assigned by the LSL.
ProtocolID This field shall be set to ‘IPSEC” (left justified and NULL extended).
boardNumber The board number the function is to be performed for.
version The version of the IPSec Management ECB. The version is defined by
IPSEC_MANAGEMENT_ECB_VERSION.
function The IPSec function to perform. Refer to the individual functions for the valid functional data
values associated with this field. Valid values for this field are:
IPSEC_ADD_SECURITY_ASSOCIATION
This function is used to add one or more Security Association(s) (SA).
IPSEC_GET_SECURITY_CAPABILITIES
This function is used to get the security capabilities of the
driver/hardware.
IPSEC_REMOVE_SECURITY_ASSOCIATION
This function is used to remove a security association.
IPSEC_SET_SECURITY_CAPABILITIES
This function is used to enable/disable security capabilities of
driver/hardware.
6 Company Confidential Version 1.00 (July 31, 2000)

ODI IPSec Offloading Support: Proposal

FuncData The function specific payload as defined in the referenced sections:
securityAssociationSet Refer to section 2.1.1 for the definition and usage of this field.
getHWCapabilitiesSet Refer to section 2.1.2 for the definition and usage of this field.
SAhandle Refer to section 2.1.3 for the definition and usage of this field.

SetHW(CapabilitiesSet ~ Refer to section 2.1.4 for the definition and usage of this field.

2.1.1 Add Security Association

This function (IPSEC_ADD_SECURITY_ASSOCIATION) is used to add one or more Security
Association(s). The Security Association contains the address, algorithms, keys and other necessary
information needed to protect the data. Security Associations and their Security Parameter Index (SPIs) are
maintained by the key-management protocol of IPSec.

The securityAssociationSet field is used to provide the needed information to add one or more Security
Association(s). The format of the data passed in the IPSec Management ECB to the driver is defined as
follows:

typedef struct IPSEC_SA SET _

{
UINT32 verlPSEC_SA_SET;
UINT32 NUMSAS;
UINT32 setAttributes;
IPSEC_SA securityAssociation[1];
} IPSEC_SA_SET;
verlPSEC_SA SET Version of the IPSEC_SA_SET structure.
NUMSAS Number of SAs in this set. There must be at least one.
setAttributes Attributes applied to all SAs in this set .

IPSEC_SET_ATT_GRPHINT_HARDCACHE
All SAs in this ECB should be cached together on the
hardware if possible. This group of SA’s has a high
probability of being used often.

securityAssociation An array of IPSEC_SA structures defining the SAs being added. The
2" IPSEC_SA follows immediately after the 1.

Version 1.00 (July 31, 2000) Company Confidential 7

ODI IPSec Offloding Support: Proposal

The securityAssociation field is used to provide the needed information to add a Security Association. The format is

defined as follows:

typedef struct IPSEC_SA

{
UINT32 verlPSEC_SA;
void *SAhandle;
SA ATTRIBUTES attributes;
UINT32 SPI;
UINT32 statusSA,;
IP_ADDR destinationAddr;
IP_ADDR sourceAddr;
UINT32 confAlgorithm;
UINT32 confKeyLength;
UINT32 authAlgorithm;
UINT32 authKeyLength;
UINT32 keyBufferLen;
MEON keyBuffer[1];
} IPSEC_SA;
verlPSEC_SA The IPSEC_SA Structure Version.
SAhandle Returned by the driver, and is used by IPSec to indicate this SA in
future commands.
attributes This field indicates attributes of the SA.

typedef struct _ SA_ATTRIBUTES _

{

UINTS8 securityService;
UINTS8 priority;
UINT16 flags;

UINT32 reserved;

} SA_ATTRIBUTES;

securityService This field indicates the type of security service represented by
this Security Association. The following are valid for this
field.

IPSEC_SERVICE_AH
This Security Association is for an Authentication Header
(i.e., AH).

IPSEC_SERVICE_ESP
This Security Association if for an Encapsulated Security
Payload (i.e., ESP).

priority This field indicates the relative importance of keeping the SA
cached on the adapter hardware:

0 do not care, 1 highest — >127 lowest.

Company Confidential Version 1.00 (July 31, 2000)

ODI IPSec Offloading Support: Proposal

flags This field indicates specific attributes that apply to the SA.

IPSEC_ATT_BUNDLE_BIT
This bit indicates that this SA is part of an SA-bundle with the
following SA. SA-bundles will always be added/deleted
together, and the last SA in the bundle must not set this bit.

IPSEC_ATT_TX_SA
This bit indicates that the Security Association is for data
transmission.

IPSEC_ATT_RX_SA
This bit indicates that the Security Association is for data
reception.

IPSEC_ATT_PRIMARYUSE_SA
This bit indicates that the Security Association is for Primary
Use used in normal packet processing.

IPSEC_ATT_SECONDUSE_SA
This bit indicates that the Security Association is for
Secondary Use used in normal packet processing.

IPSEC_ATT_HARDCACHE
This bit indicates that the Security Association should only be
accepted if it will be cached on the hardware.

SPI Security Parameter Index used in combination with the security service
and the IP destination address to uniquely identify the Security
Association.

statusSA The current Status of this SA. Initially set to 0, this field is updated by

the adapter to indicate if this SA was accepted or rejected. The actual
values for this field are TBD.

destinationAddr The IP address of the destination host receiving the packet.
sourceAddr The IP address of the source host sending the packet.
confAlgorithm This field indicates the Confidentiality algorithm to be used. The

following are valid values for this field.
IPSEC_ALG_CBC_3DES
IPSEC_ALG_CBC_DES
IPSEC_ALG_NULL

ConfKeyLength The length, in bytes, of the Confidentiality key in the keybuffer. It is
always the first key in the key buffer.

Version 1.00 (July 31, 2000) Company Confidential 9

ODI IPSec Offloding Support: Proposal

AuthAlgorithm

AuthKeyLength

keyBufferLen

keyBuffer

This field indicates the Authentication algorithm to be used. The
following are valid values for this field.

IPSEC_ALG_MD5
IPSEC_ALG_SHA 1
IPSEC_ALG_HMAC_MD5
IPSEC_ALG_HMAC_SHA_1_96
IPSEC_ALG_NULL

The length, in bytes, of the Authentication key. It follows immediately
behind the Confidentiality key in the key buffer.

The length in bytes of the keybuffer.

The buffer itself. This space is allocated with sufficient room for all
keys defined for this SA.

2.1.2 Get Hardware Capabilities
This function (IPSEC_GET_HW_CAPABILITIES) is used to find out the security offloading capabilities
of the hardware. The getHW<Capabilities field is used by this function to return the security offloading
capabilities of the hardware.
typedef struct _ IPSEC_HW_CAP _
{
UINT32 verlPSEC_HW_CAP;
UINT32 maxNumsA,;
UINT32 maxHardSA;
UINT32 currNumSA,;
UINT32 currHardSA,;
UINT32 inboundcapFlags;
UINT32 inboundAlgorCapMask;
UINT32 inboundAlgorActiveMask;
UINT32 outboundcapFlags;
UINT32 outboundAlgorCapMask;
UINT32 outboundAlgorActiveMask;
} IPSEC_HW_CAP;
verlPSEC_HW_CAP Version of the IPSEC_HW_CAP structure;
maxNumSA This field will be set to the max number of SAs that the
driver/hardware can efficiently support. This number must not be less
than the maxHardSA value.
maxHardSA This field will be set to the max number of SAs that can be cached on
the hardware adapter. The maximum number of SAs that can be
handled efficiently should be greater than or equal to the number in this
field.
currNumSA This field indicates the number of SAs currently offloaded.
currHardSA This field indicates the number of SAs currently cached in hardware.
10 Company Confidential Version 1.00 (July 31, 2000)

ODI IPSec Offloading Support: Proposal

inboundcapFlags This field is a bit map field describing the capabilities of outbound

services.

inboundAlgorActiveMask This field is a bit map field indicating which algorithms have been

enabled on the adapter.

inboundAlgorCapMask This field is a bit map field that indicates all of the algorithms that the

adapter can offload in the inbound (rx) path.

outboundcapFlags This field is a bit map field describing the capabilities of outbound

services.

outboundAlgorCapMask This field is a bit map field, and will indicate all of the algorithms that

the adapter can offload in the outbound (tx) path.

outboundAlgorActiveMask This field is a bit map field indicating which algorithms have been

Capability Flag bits:

Capabilities Mask bits:

enabled on the adapter.

IPSEC_CAPFLG_AH
Can perform AH header processing.

IPSEC_CAPFLG_ESP
Can perform ESP header processing.

IPSEC_CAPFLG_NOT_SEQUENCIAL
Can perform only AH or ESP but not both on a single packet. By
default, complete processing of both headers is defined.

IPSEC_CAPFLG_IP_V4
IP version 4 support.

IPSEC_CAPFLG_IP_V6
IP version 6 support.

IPSEC_CAPFLG_TUNNEL_SUPPORT
Processing of both inner and outer IPSEC headers is supported.

The security capabilities fields are bit map fields. The following bits are defined for the Capabilities mask fields:

IPSEC_CAP_MD5 128 bits

IPSEC_CAP_SHA 1 160 bits
IPSEC_CAP_HMAC_MD5 Support for HMAC MD5, 128 bits
IPSEC_CAP_HMAC_MD5_96 96 bits

IPSEC_CAP_HMAC_SHA 1 Support for HMAC SHA-1, 160 bits
IPSEC_CAP_HMAC_SHA 1 96 96 bits

Version 1.00 (July 31, 2000) Company Confidential 11

ODI IPSec Offloding Support: Proposal

IPSEC_CAP_CBC_DES_40 Support for DES-CBC 40 bit keying
IPSEC_CAP_CBC_DES 56 Support for DES-CBC 56 bit keying
IPSEC_CAP_CBC_3DES Support for 3DES-CBC 168 bit keying
2.1.3 Remove Security Association
This function (IPSEC_REMOVE_SECURITY_ASSOCIATION) is used to remove a Security Association.
The SAhandle field is used to indicate which Security Association is to be removed. The SAhandle was
returned by the driver when the Security Association was added.
SAhandle The handle returned by the driver in the Add SA command. If the SAhandle is for an SA
with the SA-bundle bit set, then all the SAs will be removed in sequence until an SA
without the SA-Bundle bit is found. Care must be taken to remove the first SAin a
bundle in order to ensure that all SAs in a bundle are removed.
2.1.4 Set Security Capabilities
This function (IPSEC_SET_SECURITY_CAPABILITIES) is used to enable capabilities of the
driver/hardware. The IPSEC management ECB setCapabilitiesMask field is used to enable the security
features of the driver/hardware.
typedef struct _ IPSEC__ HW_CAP SET _
{
UINT32 verlPSEC_HW_CAP_SET;
UINT32 inboundCapFlags;
UINT32 inboundAlgorReqMask;
UINT32 inboundAlgorActiveMask;
UINT32 outboundCapFlags;
UINT32 outboundAlgorReqMask;
UINT32 outboundAlgorActiveMask;
} IPSEC_HW_CAP_SET,;
verlPSEC_HW_CAP_SET Version of this structure.
inboundCapFlags This field is a bit map field indicating the information about the
inbound service ---TBD.
inboundAlgorReqMask Inbound Algorithm Request Mask is a bit map field that indicates the
algorithms that are being requested to be enabled or disabled as
indicated in the capFlags field.
inboundAlgorActiveMask This field is a bit map field indicating which algorithms have been
activated.
outboundCapFlags This field is a bit map field indicating the information about the
outbound service ---TBD.
outboundAlgorReqMask Outbound Algorithm Request Mask is a bit map field that indicates the
algorithms that are being requested to be enabled or disabled as
indicated in the capFlags field.
12 Company Confidential Version 1.00 (July 31, 2000)

ODI IPSec Offloading Support: Proposal

outboundAlgorActiveMask This field is a bit map field indicating which algorithms have been
activated.

Capability Flag bits:
IPSEC_CAPFLGS_DISABLE
When this bit is set, the Request mask indicates which Algorithms to disable.

Other bits are TBD.

Capabilities Mask bits:
The security capabilities fields are bit map fields. The following bits are defined for the Capabilities mask fields:

IPSEC_CAP_MD5 128 bits

IPSEC_CAP_SHA 1 160 bits

IPSEC_CAP_HMAC_MD5 Support for HMAC MD5, 128 bits
IPSEC_CAP_HMAC_MD5_96 96 bits

IPSEC_CAP_HMAC_SHA _1 Support for HMAC SHA-1, 160 bits
IPSEC_CAP_HMAC_SHA 1 96 96 bits

IPSEC_CAP_CBC_DES 40 Support for DES-CBC 40 bit keying
IPSEC_CAP_CBC_DES 56 Support for DES-CBC 56 bit keying
IPSEC_CAP_CBC_3DES Support for 3DES-CBC 168 bit keying

2.2 IPSec Auxiliary Data Blocks

2.2.1 Transmit Auxiliary Data
The Auxiliary Data Block used by IPSec during the transmission of data is defined as:

typedef struct IPSEC_TX_AUX_DATA BLOCK _

{
AUX_DATA BLOCK_HDR hdr;
void outer AH_SAhandle;
void outer ESP_SAhandle;
void inner_AH_SAhandle;
void inner_ESP_SAhandle;

} IPSEC_TX_AUX_DATA BLOCK;

hdr.type The type field of the Auxiliary Data Block is set to IPSEC_TX.

hdr.version Set to AUX_DATA_BLOCK_HDR_VERSION.

Version 1.00 (July 31, 2000) Company Confidential 13

ODI IPSec Offloding Support: Proposal

hdr.length 24 bytes;
16 bytes for the auxiliary data block header plus the size of payload in bytes.

hdr.payloadVersion Setto IPSEC_TX PAYLOAD_VERSION.
outer AH_SAhandle SAhandle for the Outer IPSec AH header, set to NULL if not used/needed.
outer_ ESP_SAhandle SAhandle for the Outer IPSec ESP header, set to NULL if not used/needed.

inner_AH_SAhandle SAhandle for the Inner IPSec AH header (tunneled header) set to NULL if
tunnelling is not used/needed.

inner_ESP_SAhandle SAhandle for the Inner IPSec ESP header (tunneled header) set to NULL if
tunnelling is not used/needed.

2.2.2 Receive Auxiliary Data
The Auxiliary Data Block used by IPSec during the reception of data is defined as:

typedef struct IPSEC_RX_AUX_DATA BLOCK _

AUX_DATA BLOCK_HDR hdr;
UINT32 IPSecStatus;
UINT32 reserved;

}PSEC_RX_AUX_DATA_BLOCK;

hdr.type The Type field of the Auxiliary Data Block is set to IPSEC_RX.
hdr.version Set to AUX_DATA BLOCK_HDR_VERSION.
hdr.length 24 bytes:
16 bytes for the auxiliary data block header plus the size of payload in bytes.
hdr.payloadVersion Setto IPSEC_RX_PAYLOAD_VERSION.
IPSecStatus fStﬁtus _bits that must be set accordingly may include but not be limited to the
ollowing:

IPSEC_OUTER_AH_CHECKED
IPSEC_OUTER_AH_MATCH
IPSEC_OUTER_ESP_DECRYPTED
IPSEC_OUTER_ESP_AUTH_CHECKED
IPSEC_OUTER_ESP_AUTH_MATCHED
IPSEC_INNER_AH_CHECKED
IPSEC_INNER_AH_MATCH
IPSEC_INNER_ESP_DECRYPTED
IPSEC_INNER_ESP_AUTH_CHECKED
IPSEC_INNER_ESP_AUTH_MATCHED

Reserved For this version of the spec, this field shall be set to 0.

14 Company Confidential Version 1.00 (July 31, 2000)

ODI IPSec Offloading Support: Proposal

2.2.3 Secondary Use Auxiliary Data
The Auxiliary Data Block used by IPSec during the Secondary Use operation is defined as:

typedef struct _IPSEC_SECOND_USE_AUX_DATA_BLOCK_

{
AUX_DATA_BLOCK_HDR hdr;
Void outer AH_SAhandle;
void outer ESP _SAhandle;
void inner_AH_SAhandle;
void inner_ESP_SAhandle;
UINT32 IPSecStatus;
UINT32 reserved,;

}PSEC_SECOND_USE_AUX_DATA_BLOCK;

hdr.type The type field of the Auxiliary Data Block is set to IPSEC_SECOND_USE.
hdr.version Set to AUX_DATA BLOCK_HDR_VERSION.
hdr.length 32 bytes;

16 bytes for the auxiliary data block header plus the size of payload in bytes.
hdr.payloadVersion Setto IPSEC_SECOND_USE_PAYLOAD_VERSION.
outer AH_SAhandle SAhandle for the Outer IPSec AH header, set to NULL if not used/needed.
outer_ ESP_SAhandle SAhandle for the Outer IPSec ESP header, set to NULL if not used/needed.

inner_AH_SAhandle SAhandle for the Inner IPSec AH header (tunneled header) set to NULL if
tunnelling is not used/needed.

inner_ESP_SAhandle SAhandle for the Inner IPSec ESP header (tunneled header) set to NULL if
tunnelling is not used/needed.

IPSecStatus Status bits that must be set accordingly may include but not be limited to the
following:

IPSEC_OUTER_AH_CHECKED
IPSEC_OUTER_AH_MATCH
IPSEC_OUTER_ESP_DECRYPTED
IPSEC_OUTER_ESP_AUTH_CHECKED
IPSEC_OUTER_ESP_AUTH_MATCHED
IPSEC_INNER_AH_CHECKED
IPSEC_INNER_AH_MATCH
IPSEC_INNER_ESP_DECRYPTED
IPSEC_INNER_ESP_AUTH_CHECKED
IPSEC_INNER_ESP_AUTH_MATCHED

Reserved For this version of the spec, this field shall be set to 0.

Version 1.00 (July 31, 2000) Company Confidential 15

ODI IPSec Offloding Support: Proposal

2.3 Packet Transmission

When the IP protocol stack makes a transmission request on which it wants IPSec processing to be done by the
driver/hardware, it will set the TX_AUX_DATA value in the n nibble of the ECB_StackID field, indicating that
there is auxiliary data associated with the ECB. The stack will include within the auxiliary data an auxiliary data
block of type IPSEC_TX. The IPSEC_TX auxiliary data block will contain the handle(s) to the Security
Sssociation(s) that are to be use when processing the packet.

2.4 Packet Reception

During the processing of an incoming packet, the driver will pass additional information within the ECB using the
auxiliary data mechanism. The driver will set the PAE_RX_AUX_DATA bit in the ECB_PreviousLink field and
include an IPSEC_RX auxiliary data block in the auxiliary data that follows immediately after the valid data in the
ECB fragment list.

2.5 Secondary Packet Reception

If the Adapter was not able to process a given packet on the initial reception, the IPSEC stack may use the NIC to
process the packet through its secondary use interface. This is achieved by transmitting the packet, but setting the
Auxiliary block type to Secondary Use. The Driver/NIC shall not place the packet on the wire, but will process the
packet with the indicated SAs, and set the status in the AUX block. When the IPSEC stack gets the TX_Complete
indication, then it can read the ECB and AUX data blocks for the processed packet.

16 Company Confidential Version 1.00 (July 31, 2000)

ODI IPSec Offloading Support: Proposal

3 IPSEC.H

This section defines IPSEC.H that is included by protocol stack and drivers for ODI IPSec Offloading Support.

e *|PSec Management ECB structure and defines.
*

**/

#define IPSEC_MANAGEMENT_ECB_VERSION 1

typedef struct IPSEC_ECB_ HEADER

{
struct IPSEC_ECB_HEADER *nextLink;
struct IPSEC_ECB_HEADER *previousLink;

UINT16 status;

void (ESR)(struct _IPSEC_ECB_%*);

UINT16 stackID;

PROT_ID protocolID;

UINT32 boardNumber;

UINT32 version;

UINT32 function;

union

{
IPSEC_SA SET securityAssociationSet; /* Add SA */
IPSEC_HW_CAP getHWCapabilitiesSet; [* Get Hardware Capabilities */
UINT32 setCapabilitiesMask; /* enable Capabilities */
void SAhandle; / * remove SA */

} funcData;

} IPSEC_ECB_HEADER,;

/* Defines for IPSec Management ECB functions */

#define IPSEC_ADD_SECURITY_ASSOCIATION
#define IPSEC_GET_SECURITY_CAPABILITIES
#define IPSEC_REMOVE_SECURITY_ASSOCIATION
#define IPSEC_SET_SECURITY_CAPABILITIES

A wWNPE

[** *k*% *k* *k*% * *k* *k*% *k*% * *k*% *k*%

*

* Defines and structures for adding security associations
*

Khkkkhkhhkkhkhhkkhhkhkkhhkkhhkhkkhhkkirhkhhkhkrhhhhrhhhhhhhihhkhhkhkhhrhkhkhhhhhkihkkiihkikikx

typedef struct IPSEC_SA SET _

{
UINT32 verlPSEC_SA SET;
UINT32 NUMSAS;
UINT32 setAttributes;
IPSEC_SA securityAssociation;

} IPSEC_SA _SET;

Version 1.00 (July 31, 2000) Company Confidential 17

ODI IPSec Offloding Support: Proposal

/* SA_SET: Set Attributes*/
#define IPSEC_SET_ATT_GRPHINT_HARDCACHE

typedef struct IPSEC_SA

{
UINT32 verlPSEC_SA;
void *SAhandle;
SA_ATTRIBUTES attributes;
UINT32 SPI;
UINT32 statusSA,;
IP_ADDR destinationAddr;
IP_ADDR sourceAddr;
UINT32 confAlgorithm;
UINT32 confKeyLength;
UINT32 authAlgorithm
UINT32 authKeyLength;
UINT32 keyBufferLen;
MEON keyBuffer[1];

} IPSEC_SA;

typedef struct _ SA_ATTRIBUTES _

UINTS securityService;
UINTS priority;
UINT16 flags;

UINT32 reserved;

} SA_ATTRIBUTES;

/* SA_ATTRIBUTES: Security Services */

#define IPSEC_SERVICE_AH 0x0001
#define IPSEC_SERVICE_ESP 0x0002
/* SA_ATTRIBUTES: Flag */

#define IPSEC_ATT_BUNDLE_BIT 0x0001
#define IPSEC_ATT _TX_SA 0x0002
#define IPSEC_ATT _RX_SA 0x0004
#define IPSEC_ATT _PRIMARY_USE_SA 0x0008
#define IPSEC_ATT _SECOUND_USE_SA 0x0010
#define IPSEC_ATT _HARDCACHE 0x0020
/* Confidentiality Algorithm ID defines - */

#define IPSEC_ALG_NULL 0x0000

#define IPSEC_ALG_CBC_DES 0x0001

#define IPSEC_ALG_CBC_3DES 0x0002

18 Company Confidential

Version 1.00 (July 31, 2000)

ODI IPSec Offloading Support: Proposal

/* Authentication Algorithm ID defines */
/* (use of IPSEC_ALG_NULL for Authentication is also valid) */

#define IPSEC_ALG_MD5 0x0001

#define IPSEC_ALG_SHA 1 0x0002

#define IPSEC_ALG_HMAC_MD5 0x0003

#define IPSEC_ALG_HMAC_MD5_96 0x0004

#define IPSEC_ALG_HMAC_SHA 1 0x0005

#define IPSEC_ALG_HMAC_SHA 1 96 0x0006

R R T T ——— EE—— sk ek e ek
*

* Get Hardware Capabilities Structure Definition.

*

**/

typedef struct _ IPSEC_HW_CAP _

{
UINT32 verlPSEC_HW_CAP;
UINT32 maxNumSA,
UINT32 maxHardSA,
UINT32 currNumSA,
UINT32 currHardSA,;
UINT32 inboundCapFlags;
UINT32 inboundAlgorCapMask;
UINT32 inboundAlgorActiveMask;
UINT32 outboundCapFlags;
UINT32 outboundAlgorCapMask;
UINT32 outboundAlgorActiveMask;

} IPSEC_HW_CAP;

[** *k*% *k*% *k*% * *k*% *k*% *k*% * *k*% *k*%

*

* Defines for Get Cap Flags bits.

*

**/

#define IPSEC_CAPFLG_AH 0x0001
#define IPSEC_CAPFLG_ESP 0x0002
#define IPSEC_CAPFLG_NOT_SEQUENCIAL 0x0004
#define IPSEC_CAPFLG_IP_V4 0x0008
#define IPSEC_CAPFLG_IP_V6 0x0010

#define IPSEC_CAPFLG_TUNNEL_SUPPORT 0x0020

/
*
* Set Hardware Capabilities Structure Definition.
*

**/

typedef struct _ IPSEC__ HW_CAP SET _

{
UINT32 verlPSEC_HW_CAP_SET;
UINT32 inboundCapFlags;
UINT32 inboundAlgorReqMask;
UINT32 inboundAlgorActiveMask;
UINT32 outboundCapFlags;
UINT32 outboundAlgorReqMask;
UINT32 outboundAlgorActiveMask;

Version 1.00 (July 31, 2000) Company Confidential 19

ODI IPSec Offloding Support: Proposal

} IPSEC_HW_CAP_SET;

[** *k*% *k*% *k*% * *k*% *k* *k*% * *k* *k*%

*

* Defines for Set Cap Flags bits.

*

**/

#define IPSEC_CAPFLGS_DISABLE 0x8000

I‘ * * %% * %% * %% * * %% * %% * %% * * %% * %%
*

* Defines for Get and Set Algorithm Mask bits.

*

**/

#define IPSEC_CAP _MD5 0x0001
#define IPSEC_CAP_SHA_1 0X0002
#define IPSEC_CAP_HMAC_MD5 0x0003
#define IPSEC_CAP_HMAC_MD5_96 0x0004
#define IPSEC_CAP_HMAC_SHA 1 0x0005
#define IPSEC_CAP_HMAC_SHA_1 96 0Xx0006
#define IPSEC_CAP_CBC_DES_40 0x0007
#define IPSEC_CAP_CBC_DES_56 0X0008
#define IPSEC_CAP_CBC_3DES 0X0009

/**

*

* Auxiliary data block for packet transmission

*

**/

#define IPSEC_TX_PAYLOAD_VERSION 1

typedef struct IPSEC_TX_AUX_ DATA BLOCK _

{
AUX_DATA BLOCK_HDR hdr;
void outer AH_SAhandle;
void outer_ ESP_SAhandle;
void inner_ AH_SAhandle;
void inner_ESP_SAhandle;

} IPSEC_TX_AUX_DATA BLOCK;

[** *k*% *k*% *k*% * *k*% *k*% *k*% * *k* *k*%

*

* Auxiliary data block for packet reception
*

**/

#define IPSEC_RX_PAYLOAD_VERSION 1

20 Company Confidential Version 1.00 (July 31, 2000)

ODI IPSec Offloading Support: Proposal

typedef struct IPSEC_RX_AUX_ DATA BLOCK

{
AUX DATA BLOCK HDR hdr;
UINT32 IPSecStatus;
UINT32 reserved;

}PSEC_RX_AUX_DATA_BLOCK;

/* Possible Status Attributes to be set in Aux Data Block status field */

IPSEC_OUTER_AH_CHECKED 0x00000001
IPSEC_OUTER_AH_MATCH 0x00000002
IPSEC_OUTER_ESP_DECRYPTED 0x00000004
IPSEC_OUTER_ESP_AUTH_CHECKED 0x00000008
IPSEC_OUTER_ESP_AUTH_MATCHED 0x00000010
IPSEC_INTER_AH_CHECKED 0x00000020
IPSEC_INTER_AH_MATCH 0x00000040
IPSEC_INTER_ESP_DECRYPTED 0x00000080
IPSEC_INTER_ESP_AUTH_CHECKED 0x00000100
IPSEC_INTER_ESP_AUTH_MATCHED 0x00000200

It
[** *k*% *k*% *k*% * *k*k *k*% *k*% * *k*% *k*%

*

* Auxiliary data block for Secondary Use reception
*

*k*k *kk *k*k *k*k *k*k *k*k *kk ***k *kkk ***k xx/

#define IPSEC_SECOND_USE_PAYLOAD_VERSION 1

typedef struct IPSEC_SECOND_USE_AUX DATA BLOCK _

{
AUX_DATA_BLOCK_HDR hdr;
void outer_AH_SAhandle;
void outer_ ESP_SAhandle;
void inner_AH_SAhandle;
void inner_ESP_SAhandle;
UINT32 IPSecStatus;
UINT32 reserved;

}PSEC_SECOND_USE_AUX_DATA_BLOCK;

Version 1.00 (July 31, 2000) Company Confidential 21

	Introduction
	IP Security
	IPSec Management ECB
	Add Security Association
	Get Hardware Capabilities
	Remove Security Association
	Set Security Capabilities

	IPSec Auxiliary Data Blocks
	Transmit Auxiliary Data
	Receive Auxiliary Data
	Secondary Use Auxiliary Data

	Packet Transmission
	Packet Reception
	Secondary Packet Reception

	IPSEC.H

