
ATM ODI HSM Specification
Documentation Part Number: 107-000083-001

June 2, 1997

Novell Labs

ATM ODI HSM Specification
Version 1.0

ATM ODI HSM Specification
Documentation Part Number: 107-000083-001

June 2, 1997

Version 1.0

d i s c l a i m e r Novell, Inc. makes no representations or warranties with respect to the contents or use
of this manual, and specifically disclaims any express or implied warranties of
merchantability or fitness for any particular purpose. Further, Novell, Inc. reserves the
right to revise this publication and to make changes to its content, at any time, without
obligation to notify any person or entity of such revisions or changes.

Further, Novell, Inc. makes no representations or warranties with respect to any
NetWare software, and specifically disclaims any express or implied warranties of
merchantability or fitness for any particular purpose. Further, Novell, Inc. reserves the
right to make changes to any and all parts of NetWare software, at any time, without
any obligation to notify any person or entity of such changes.

t r a d e m a r k s Novell, Inc. has attempted to supply trademark information about company names,
products, and services mentioned in this manual. The following list of trademarks was
derived from various sources.

Novell, NetWare, the N-Design, and the NetWare Logotype are registered trademarks
of Novell, Inc.

Document Release Date: December 23, 1996

Documentation Part Number: 107-000083-001

Copyright  1997 Novell, Inc. All rights reserved. No part of this
publication may be reproduced, photocopied, stored on a retrieval
system, or transmitted without the express written consent of the
publisher.

Novell, Inc.
122 East 1700 South
Provo, UT 84606

Contents iii

Version 1.0

ATM ODI HSM Specification
Documentation Part Number: 107-000083-001

September 9, 1998

Contents

1 Overview

Introduction . 7
What is ATM. . 8
ATM and NetWare. . 9
ATM and HSM. . 9

2 ATM TSM Components

Introduction . 11
Q.2931 Signaling . 11
Q.SAAL1 . 11
Connection Manager . 12
User Interface . 12
HSM Interface . 13
Data Interface . 13
ATM Management and Address Registration 13

3 ATM HSM Interface

Introduction . 15
Building the driver . 16
Specification Version String . 16
Parsing the LOAD driver command line . 17
Optionally loading driver firmware . 17
Registration . 17
Deregistration . 22
HSM Control Interfaces . 22
Get/Return Buffers (ECBs) . 35
Data Interfaces . 36
Interrupts . 37
Polling / Periodic Calls. . 38
Statistics . 38
Additional ATMTSM Interfaces and Interface Summary 38
HSM provided interfaces . 46
Performance issues and the HSM design 48

Version 1.0

iv ODI ATM HSM Specification

ATM ODI HSM Specification
Documentation Part Number: 107-000083-001

September 9, 1998

4 ATM HSM Definitions

Introduction. . 51
Quality of Service Definition . 51

5 Virtual Connection Establishment Flow Diagrams

Introduction. . 55

6 Include Files

Introduction. . 59
ATMQOS.H. . 59
ATMHSMIF.H . 63
ATMHSM.IMP . 76
PARSER.H . 78
PARSER.IMP. . 95

A Glossary

B References

Index

iii

Version 1.0

ATM ODI HSM Specification
Documentation Part Number: 107-000083-001

September 9, 1998

About This Guide

The page numbering format in this document is:

<CHAPTER NUMBER> <HYPHEN> <PAGE NUMBER>

An example and explanation follows:

1-1

2-23

4-45

and so on.

Page numbers are sequential from the beginning of the book and do not restart
at the beginning of each new chapter. This means that the first page of chapter
2 may be on page 23, the first page of chapter 4 may be on page 45.

This numbering format tells you immediately what chapter and page number
you are currently looking at.

iv ODI ATM HSM Specification

Version 1.0

ATM ODI HSM Specification
Documentation Part Number: 107-000083-001

September 9, 1998

Overview 1-5

c h a p t e r

Version 1.0

ATM ODI HSM Specification
Documentation Part Number: 107-000083-001

September 9, 1998

1 Overview

Introduction

This document describes the operation and Application Programming
Interfaces (APIs) of the Asynchronous Transfer Mode-Hardware Specific
Module (ATM-HSM) portion of the Novell Open Data-Link Interface (ODI)
for ATM. The ATMTSM provides two groups of APIs, one is used by ATM
Hardware Specific Modules (HSMs), and one is used by User Applications that
require direct access to ATM services. The HSM API sits at the bottom of the
ATMTSM, while the User Application API sits at the top. An overview
diagram is shown below.

Figure 1-1

ATM Environment
Overview

Protocol
Stack(s)

Lan Emulator
Ethernet HSM

ILMI

Link Support Layer

MSMEthernet TSM

Data Interface
ATM
Mgmt

User
Interface

ATM
Forum 3.0

CONN.
Manager

HSM
Inter-
face

QSAAL

Control

Hardware Specific Module (HSM)

LAN
Emulation
Server(s)

Data

ATM-TSM

Data

Data

1-6 ODI ATM HSM Specification

Version 1.0

ATM ODI HSM Specification
Documentation Part Number: 107-000083-001

September 9, 1998

What is ATM

ATM is the base technology for the next generation of global communications,
spanning diverse applications and providing a variety of interface speeds and
distances. Originally conceived as the switching technology for Broadband
ISDN, ATM now has taken on a wide use for immediate deployment in local
and wide area networks of all types.

The importance of ATM goes beyond pure technology. It is one of the few
networks that can provide real-time and quality of service guarantees required
for the new multimedia data applications. There is consensus across diverse
industry participants of voice, video, and data communications that ATM is the
enabling technology that brings us into the information age.

ATM is not a shared access technology so it is different than conventional LAN
topologies such as Ethernet, Token-Ring and FDDI. Shared access
technologies consist of a common wire used by all attached nodes to
communicate. Adding extra nodes reduces the bandwidth available to the
existing nodes. This sets an upper limit to the number of nodes that can be
attached to a shared access network like Ethernet. ATM does not suffer from
this limitation so the number of nodes supported can be much larger.

Cell Switching Systems

The backbones of an ATM network are high-speed cell switching systems.
These systems, called switches, are interconnected by physical transmission
links. End stations are directly connected to a switch. End stations create
connections between end stations much like X.25. The end stations send data
onto the network as fixed length cells. Each cell is 53 bytes long. Larger frames
(up to 64 Kilobytes) are sliced into cells. The cell containing the end of the
frame can be padded. The sending end stations are responsible for proper
pacing of cells. The pacing is based on a contract that can differ from
connection to connection, the direction of the connection, and the Quality of
Service (QoS) required. Voice and video can use Constant or Variable Bit
Rates, while data is more likely to use Available or Unspecified Bit Rates. All
information, whether it is voice, video or data uses the same cell structure and
size. Transport protocols must be used to guarantee delivery.

The path for a given connection is determined during connection
establishment. This means that per-cell routing is not required. End stations can
create point-to-point or point-to-multipoint connections. For point-to-
multipoint connections, a switch replicates the data and delivers a copy to each
end station, or leaf on the multipoint connection.

Overview 1-7

Version 1.0

ATM ODI HSM Specification
Documentation Part Number: 107-000083-001

September 9, 1998

ATM and NetWare

Unlike conventional LANs, ATM does not necessarily use MAC and LLC
headers. Thus it cannot rely upon the Link Support Layer (LSL) software to do
the per packet demultiplexing.

ATM is connection oriented so other entities are required to establish the
connections. This ATM HSM specification document does not provide the
needed information explaining User Applications used to create Switched
Virtual Connections (SVCs) or Permanent Virtual Connections (PVCs). The
scope of this document is limited to developing the ATM driver for NetWare.
References to the User Interface are provided only for informational purposes.

ATM and HSM

ATMTSM (Topology Specific Module) is the (non-ISO) layer residing
between the ATM HSMs and the ATM User Applications. The ATMTSM
separates the connection management functions from the hardware specific
tasks. This separation means that an HSM does not need to know whether VCs
(Virtual Connections) are permanent or switched, nor does it need to know
whether they are incoming or outgoing.

The ATMTSM enables and disables the VCs individually because the hardware
or firmware is usually responsible for maintaining the VC contracts, such as the
rate of transmission. Conversely, the User Applications do not need to know
any of the hardware-related issues. When establishing a VC, all the User
Application needs to know about the hardware is its interface identifier. The
ATMTSM registers an adapter board with the LSL for each interface that the
HSM registers with the ATMTSM. Thus, the interface identifier is an adapter
board number.

A priority is assigned to each VC. The HSM should be able to make
assignments for receive resources based on the VC priority. When the CPU is
temporarily busy processing previously received frames, the HSM can advance
higher priority frames ahead of lower ones. If the CPU gets behind to the point
where the HSM has a high volume of received frames in queues, it should
discard low priority VC frames, in favor of the high priority VCs. There are
eight priority levels and the higher priorities are typically used for real-time
data.

To optimize performance, the HSM is VC and ECB (NetWare buffer) aware,
for both the transmit and receive interface. Both the HSM and the ATMTSM
maintain their own Adapter Data Space (ADS). During the registration process,

1-8 ODI ATM HSM Specification

Version 1.0

ATM ODI HSM Specification
Documentation Part Number: 107-000083-001

September 9, 1998

the ADS addresses are exchanged. The ATMTSM will pass the HSM's ADS
address when it passes control for interrupts and/or polls. Procedures to lock/
unlock interrupts and/or multiple processors are provided by the ATMTSM.
The HSM will have to determine when locks are needed and call the proper
lock/unlock procedures.

ATM TSM Components 2-9

c h a p t e r

Version 1.0

ATM ODI HSM Specification
Documentation Part Number: 107-000083-001

September 9, 1998

2 ATM TSM Components

Introduction

The ATMTSM contains the following functional components:

• Q.2931 Signaling

• Q.SAAL1

• Connection Manager

• User Interface

• HSM Interface

• Data Interface

• ATM Management

• Data Monitor/Tracing

Q.2931 Signaling

Q.2931 is an ITU-defined call establishment and release protocol. The
ATMTSM contains the signaling logic as defined by the ATM Forum's User-
Network Interface (UNI 3.0) implementation agreement. Signaling is the
protocol used to establish connections with other end stations across one or
more ATM switches.

Q.SAAL1

Q.SAAL1 is a transport-like point-to-point link protocol. The Q.2931 signaling
protocol elements rely on links that guaranty delivery between the end stations
and switches, and between the switches themselves. A link is established

2-10 ATM HSM Specification

Version 1.0

ATM ODI HSM Specification
Documentation Part Number: 107-000083-001

September 9, 1998

between the end station and the switch, as well as between each pair of
switches. These links use a well-known PVC Identifier (PVC 5). The
Q.SAAL1 protocol runs across each individual link.

Connection Manager

The connection manager is the core functionality of the ATMTSM. The
connection manager is responsible for managing the establishment and release
of the virtual connection between the User Application interface and the HSM.
It is implemented as a finite state machine, that receives control indicators from
the User Interface, the HSM Interface, and the Q.2931.

Connection establishment between the ATMTSM and HSM is always done
with two-way handshaking. Connection release, on the other hand, is a
unilateral command that can originate from the User Application, the
ATMTSM or the HSM. After the first handshake, a connection can always be
released, even before it is completely established and enabled.

User Interface

The User Application Interface is documented here for informational purposes
only. Driver developers do not currently have access to the User Interface
hooks.

After the User Application registers with the ATMTSM for an individual
interface (board), the User Interface allows for the setup of Permanent Virtual
Connections (PVCs) and incoming or outgoing Switched Virtual Connections
(SVCs). Leafs can be added to outgoing SVCs. During connection
establishment, the User Application provides a User VC handle and separate
Data and Control entry points. The ATMTSM returns an ATMTSM VC handle
to the User. Once the VC has been established successfully, the User and
ATMTSM will exchange data, qualified only by the handles.

Data passed to the User is accompanied by the User VC handle, and data to the
ATMTSM is accompanied by the ATMTSM VC handle. The User determines
the value of the User VC handle, probably the address of a User Connection
Control Block. The ATMTSM determines the value of the ATMTSM VC
handle. Additional interfaces are available for the User Application to manage
the ATM addresses.

Note

ATM TSM Components 2-11

Version 1.0

ATM ODI HSM Specification
Documentation Part Number: 107-000083-001

September 9, 1998

HSM Interface

The HSM Interface allows one or more HSMs to register and deregister one or
more ATM boards. The ATMTSM allows the HSM to register its hardware
separately and more than once.

This enables an HSM to partially register its hardware, learn about the rest of
the hardware, deregister the partial hardware, and re-register all the required
hardware it needs. After successful registration, the ATMTSM must issue a
Start Interface command. After that command, the ATMTSM requests the
HSM to enable or disable certain VCs. The ATMTSM either knows the VCI
for the PVC, or learns the VCI for the SVC through the Q.2931 signaling
protocol. During VC enable, the ATMTSM exchanges handles with the HSM
(there is an HSM VC handle as well as an ATMTSM VC handle). These
handles are passed between the ATMTSM and HSM. The HSM determines the
value of the HSM VC handle, generally the address of a VC oriented Control
Block. The ATMTSM determines the value of the ATMTSM VC handle.

Data Interface

The data interface is responsible for the data exchange between the HSM and
the User Application once the connection manager has established the VC.
Because the HSM passes the HSM VC handle with incoming data to the
ATMTSM, the ATMTSM can, within a few cycles, switch ownership of the
receive ECB, locate the User VC handle, maintain statistics, and pass the data
along to the User. Outgoing data follows an even faster route through the
ATMTSM, because ECB ownership is not changed.

All the data interfaces between the User Application and the ATMTSM are
done with indirect calls. Indirect calls are also used for data interface between
the HSM and ATMTSM . This allows for remote monitoring and possibly
filtering applications to preview the incoming and outgoing data on a per VC
basis, without negatively affecting the performance for the normal data path.

ATM Management and Address Registration

ATM Management supports the ATM Forum UNI 3.0 ILMI. This component’s
main responsibility is to manage the registration of the ATM addresses. On a
private switch, an ATM address is composed of a Network part and an End
Station Identifier (ESI). The switch defines and manages the Network part of
the address, while the end-station manages the ESIs. The User Interface has
APIs for the ESI management.

2-12 ATM HSM Specification

Version 1.0

ATM ODI HSM Specification
Documentation Part Number: 107-000083-001

September 9, 1998

ATM HSM Interface 3-13

c h a p t e r

Version 1.0

ATM ODI HSM Specification
Documentation Part Number107-000083-001

September 9, 1998

3 ATM HSM Interface

Introduction

This section describes the issues that the developer of an ATM driver (HSM)
needs to consider. The HSM is mostly concerned with the hardware and
firmware issues of the ATM interface board. The ATMTSM performs many of
the common interface functions between NetWare and the HSM. The ATM link
speed can be very high, anywhere from 25 Megabits to 625+ Megabits, so it
must be assumed that the majority of the boards demultiplex VCs with the
hardware and firmware. Therefore, the ATMTSM/HSM interface is “VC
aware”.

The NetWare ODI Developer’s Guide for NetWare Server Driver Hardware
Specific Modules (part number 107-000007-001) provides information about
how to build an HSM. When referencing that specification, bear in mind that
the ATMTSM does not utilize the Adapter Data Space defined for NetWare
LAN drivers in the Media Support Module (MSM).

The HSM can use certain CMSM functions. These functions must not require
the ODI LAN adapter or Frame Data Space.

The few MSM functions that the ATM HSM needs are currently provided by
the ATMTSM. The ATMTSM and HSM do not share a common Adapter Data
Space, they each have their own. When registering the HSM with the
ATMTSM, the ATMTSM acquires a board number. This board number is
associated with an MLID configuration table. The configuration table is not
made available to the HSM.

All interfaces defined by the ATMTSM for the HSM are ANSI-C Language
based. Refer to the appropriate reference manuals for the target platform. For
compiling ATM drivers on NetWare 4.11, refer to the WATCOM C Compiler
manuals.

The term “HSM” is synonymous with driver.Note

3-14 ATM HSM Specification

Version 1.0

ATM ODI HSM Specification
Documentation Part Number107-000083-001

September 9, 1998

This section deals with the following issues:

• Building the driver

• Adding the Specification Version String

• Parsing the LOAD driver command line

• Optionally loading driver firmware

• Registration

• Deregistration

• HSM Control interfaces (bidirectional)

• Get/Return buffers (ECBs)

• Data interfaces

• Interrupts

• Polling / Periodic Calls

• Statistics

• Additional interfaces

Building the driver

Just as with regular ODI drivers, the ATM HSM driver name must have the
suffix “LAN”. The NetWare ODI Server Driver Specification provides
information about how to build a NetWare ODI driver.

Specification Version String

The driver must also have an embedded specification version string to identify
the version of the ATM HSM specification used. The current version is 1.0 for
the ATM driver specification. The 1.00 in the specification string below
signifies version 1.0.

The following string must be added exactly as shown to the ATM HSM where
the global variable declarations are made:

MEON_STRING HSMSPEC[]=“HSM_ATMSPEC_VERSION: 1.0”;

Note that only one space is required between the colon and the one.

ATM HSM Interface 3-15

Version 1.0

ATM ODI HSM Specification
Documentation Part Number107-000083-001

September 9, 1998

MEON_STRING is defined in ODI.H.

Parsing the LOAD driver command line

Often, a driver requires operator-configurable parameters. Examples of
configurable parameters are the port number, shared memory address and size,
interrupt number, DMA channel, slot number, and so on. The driver is
responsible for parsing the command line and passing the various configurable
parameters to ATMTSM during registration. The driver may opt to use CMSM
ParseDriverParameters or PARSER.NLM. The PARSER.H include file
describes how the table driver interfaces with PARSER.NLM.

Optionally loading driver firmware

A procedural interface (atmtsm_get_firmware) is provided that allows the
driver to acquire the memory address and the length of its firmware. The HSM
is responsible for actually loading the firmware onto the board.

Registration

After the driver has been successfully loaded, the HSM driver needs to register
with the ATMTSM. The atmhsmif.h include file contains all the definitions the
driver needs to perform this registration. This file defines a structure called
ATMTSM_REGISTER_HSM_CONTROL.

The HSM must fill out all the fields in this structure and call
atmtsm_register_hsm, passing the address of the structure. If the registration is
successful, the ATMTSM returns a zero value. If the registration fails, the
ATMTSM returns a non-zero value, and logs an appropriate error message on
the console. Registration must be done during driver loading and initialization.

During registration, the ATMTSM will return the board number as well as the
ATMTSM Adapter Data Space (ADS) handle. The HSM must also provide the
ATMTSM with either the size of the HSM Adapter Data Space or its handle. If
the HSM passes a non-zero ADS size, the ATMTSM will allocate the HSM
ADS, and return the HSM ADS handle.

After the HSM has successfully registered, it must register its hardware with
the ATMTSM. If the HSM needs some of the hardware to find out about the
rest of the hardware, it may register/deregister the hardware multiple times.

3-16 ATM HSM Specification

Version 1.0

ATM ODI HSM Specification
Documentation Part Number107-000083-001

September 9, 1998

After successful registration of the HSM and hardware, the driver must pass a
START INTERFACE control command to the ATMTSM. The ATMTSM does
not attempt to verify any contract, nor enable any VCs until after this command
is received. The driver can use the time between the registration and START
INTERFACE to do such initialization as loading firmware, setting up
interrupts, preparing receive and transmit queues, and so on.

The driver must register each ATM interface individually.

Fields passed between HSM and ATMTSM during registration

The following table shows the various fields that are passed between the HSM
and the ATMTSM during registration. The table is only used by the ATMTSM
during the registration process, thus, the HSM might build this table on the
stack:

version

The HSM must insert the ATMTSM_HSM_VERSION constant. This constant
is also defined in the atmhsmif.h include file. The version allows the ATMTSM
to verify that the HSM is built with the same version. When the HSM is built
with an older version, the ATMTSM might be able to support that older driver,
depending on whether the changes warrant backward compatibility. This is
determined on a case-by-case basis.

hsm_nlm_handle_ptr

This field contains the stack-address of the NetWare NLM handle that is passed
to the driver when its initial “start” entry point is being called by NetWare
(immediately after the driver has been loaded). The ATMTSM uses this handle
to allocate various resources for the HSM. This includes reading the firmware,
when defined.

This field is a pointer to the first argument passed to the initial function. For
example:

void hsm_init(void *handle)

{

...

reg.hsm_nlm_handle_ptr=&handle;

...}

Note

ATM HSM Interface 3-17

Version 1.0

ATM ODI HSM Specification
Documentation Part Number107-000083-001

September 9, 1998

hsm_control_proc

This field defines the entry point that the ATMTSM calls whenever it has
Control Information for the HSM. The type and format of this information is
defined later in this section (see ATMTSM to HSM Control Commands). The
entry point must be of C language type ATMTSM_HSM_CONTROL_PROC.

hsm_send_proc

This field defines the entry point that the ATMTSM calls whenever it has a data
frame for the HSM to send. The entry point must be of C language type
ATMTSM_HSM_SEND_PROC.

card_name

This field is a pointer to a string that contains the (long) descriptive name of the
card. The name can contain blanks and must be terminated by a zero. The
ATMTSM will copy this name to a local structure. The maximum length is
MAX_CARD_NAME.

driver_name

This field is a pointer to a string that contains the (short) name of the driver.
The name must be alphanumeric and zero terminated. The ATMTSM will copy
this name to a local structure. The maximum length is
MAX_DRIVER_NAME.

Neither the card nor the driver names are length-preceded. They are regular C type
strings.

board_name

The board name is an optional field that can be up to 17 characters long. It must
be zero terminated.

driver_options

This field defines various driver options. For future compatibility, reserved bits
must be set to zero. The following options are defined:

None (all bits are currently reserved and must be set to zero).

Note

3-18 ATM HSM Specification

Version 1.0

ATM ODI HSM Specification
Documentation Part Number107-000083-001

September 9, 1998

max_frame_size

This field contains the maximum frame size (in bytes) the driver is able to
receive or send. The ATMTSM can return a lower value based on the maximum
ECB size.

custom_stats_ptr

The custom_stats_ptr is a pointer to ATMTSM_CUSTOM_TEXT_LIST,
which is an array of one or more pointers to custom text lines. Each line is zero
byte terminated and no more than 42 characters long (excluding the zero byte).
The array index (0..n) matches the custom counter number passed to
atmtsm_incr_custom_counter or atmtsm_update_custom_counter. The last
entry of the array must be a NULL pointer. Set this pointer to NULL when no
HSM custom statistics are provided.

hsm_ads_size

If the driver wants the ATMTSM to allocate the HSM Adapter Data Space, the
hsm_ads_size field contains the size of that ADS. A zero indicates that field
hsm_ads_handle contains the HSM ADS handle.

hsm_shutdown_proc

If the driver wants to be called at shutdown time, it must insert its shutdown
entry point here. NULL indicates no call. The driver does not need to call the
ATMTSM with any deregistration because this procedure is typically called
prior to a system shutdown that is similar to EXITing the server after
DOWNing it.

hsm_ads_handle

If the hsm_ads_size field is non zero, the ATMTSM will return the HSM ADS
handle. Otherwise the ATMTSM will use the given handle.

tsm_ads_handle

This handle is returned by the ATMTSM upon successful registration. It must
be passed to the ATMTSM when the HSM passes control commands to the
ATMTSM. It is also required when the HSM deregisters from the ATMTSM.

ATM HSM Interface 3-19

Version 1.0

ATM ODI HSM Specification
Documentation Part Number107-000083-001

September 9, 1998

board_number

This value is returned by the ATMTSM upon successful completion of the
registration. The HSM may need the board number to register with other
applications (e.g. SNMP).

poll_support_level

The ATMTSM returns the poll_support_level value. The value is based on the
platform on which the driver is loaded.

Good polling support would be set when the polling rate is an inverse function
of the load of the processor(s). The driver can use this value to determine
whether it should use interrupts, polling or maybe a hybrid by default. The
NetWare Server returns a 2. A DOS Client may return a 1, as its polling
frequency usually depends on infrequent timer interrupts.

future_extension_n

Some room has been reserved for future expansion. The driver must initialize
these fields to zeros. This allows for better backward compatibility.

Return values for atmtsm_register_hsm call

Upon completion of a call to atmtsm_register_hsm, the ATMTSM returns a
zero value if no errors are detected. The following values are returned:

Poll Support Level Definition

Zero No polling support

One Limited polling support

Two Fair polling support

Three Good polling support

Return Value Definition

0 HSM registration successful

-1 HSM and ATMTSM versions mismatch

3-20 ATM HSM Specification

Version 1.0

ATM ODI HSM Specification
Documentation Part Number107-000083-001

September 9, 1998

Deregistration

When the driver is being unloaded, it needs to deregister from the ATMTSM.
Before deregistration, the driver must return all resources it has requested from
the ATMTSM. For example, the driver must return all ECBs that it has
allocated for receive queues. Any data that has been given to the HSM to be
transmitted must also be returned.

Before deregistering, the driver must make sure that a STOP INTERFACE
command has been given to the ATMTSM (assuming that a START
INTERFACE was previously passed). The ATMTSM treats this as an implied
request to disable all currently outstanding VCs. The driver may use the time
between the STOP INTERFACE command and deregistration to do such
things as cancel DMA transfers, stop interrupts, release queues, and so on. The
driver should be aware that during deregistration all the assigned hardware
resources will be released.

The ATMTSM will internally deregister all the registered hardware resources,
thus the driver is not required to explicitly do this.

The driver deregisters itself from the ATMTSM by passing a DEREGISTER
control command.

HSM Control Interfaces

After the driver has registered successfully, the ATMTSM indirectly passes
control commands to the driver through the hsm_control_proc entry point. The
driver must send control replies to some of the ATMTSM control commands.
The control commands and replies deal mainly with enabling and disabling
VCs. The ATMTSM passes commands to the HSM through the
ATM_TSM_TO_HSM_CONTROL structure. The HSM must use the
ATM_HSM_TO_TSM_CONTROL structure. Both the ATMTSM and HSM
must reference these structures only during the time the command or reply is
presented, thus, they can be dynamic (on the stack).

-2 Insufficient resources

-3 Could not register the board with LSL

-4 Firmware load failure

Return Value Definition

ATM HSM Interface 3-21

Version 1.0

ATM ODI HSM Specification
Documentation Part Number107-000083-001

September 9, 1998

The ATMTSM calls the HSM with a control command through the control
entry point passed during registration. The HSM must call the ATMTSM
atmtsm_hsm_control procedure. In both cases, the only parameter is the
address of the appropriate control structure.

Assignment of ATMTSM and HSM handles

To minimize the lookup of VC-related tables by both the HSM and ATMTSM,
each assigns their own VC- specific handle. The assignment is done during
enabling of the VC. Because the ATMTSM initiates the VC enable, it assigns
the tsm_vc_handle first, and passes the value as a “pointer to void” to the HSM,
when it presents the HSM with the control command to enable the VC. When
the HSM replies, it must always pass that tsm_vc_handle back to the
ATMTSM. The same handle must be passed when the HSM presents the
ATMTSM with received frames for that VC.

The HSM can assign the hsm_vc_handle, and either pass it to the ATMTSM
upon return from the command to enable the VC, or when it replies that the VC
has been enabled. The latter is done for drivers that utilize a processor on the
board to make the assignment, in which case that handle might not be known
until the driver gets an acknowledgment from the firmware.

During contract verification, there will just be a tsm_contract_handle. The
HSM must return this handle when replying with the CONTRACT VERIFIED.

In the case the driver returns the hsm_vc_handle during the reply to the ENABLE VC
command, the ATMTSM may need to disable the VC before the driver has been able to
report the hsm_vc_handle back to the ATMTSM. To indicate which VC must be
disabled, the ATMTSM therefore also passes the VCI to the HSM. Such a driver must
be able to locate the VC-related information based on the VCI.

The handles are “pointers to void”. The ATMTSM has no need to know what the HSM's
handle is (it can be the address of a VC Control Block, an index into an array, or the VCI
itself). Conversely, the HSM must never dereference the tsm_vc_handle.

ATMTSM to HSM Control Commands

The ATMTSM to HSM control commands are passed through the entry point
hsm_control_proc. This entry point is passed to the ATMTSM during the HSM
registration. The following control commands are defined:

Note

3-22 ATM HSM Specification

Version 1.0

ATM ODI HSM Specification
Documentation Part Number107-000083-001

September 9, 1998

ATM_TSM_TO_HSM_VERIFY_CONTRACT

This command is given to the HSM before the ATMTSM attempts to enable a
VC. Its purpose is for the HSM to verify that its hardware is capable of
performing the desired contract. The HSM must not reserve any bandwidth at
this time, because there is no guarantee that the actual VC will be enabled. The
HSM must reply with a CONTRACT VERIFIED. The HSM can call the
ATMTSM with this reply before it returns to the ATMTSM from processing the
VERIFY CONTRACT command.

ATM_TSM_TO_HSM_ENABLE_VC

This command is given to the HSM when the actual VC can be enabled. The
HSM can assign the hsm_vc_handle now, and return it to the ATMTSM when
it has completed the handling of this indication, or it can return the
hsm_vc_handle when it passes the VC ENABLED reply to the ATMTSM. The
HSM is allowed to pass the VC ENABLED reply while processing the
ENABLE VC command, or can wait until its firmware has completely enabled
the VC.

ATM_TSM_TO_HSM_DISABLE_VC

This command is given to the HSM when an earlier enabled VC needs to be
disabled. If the HSM is still in the process of enabling the VC, and has not yet
passed the hsm_vc_handle, the HSM must use the VCI. This command is
unilateral. The HSM must not pass any more data or control indications for the
disabled VC.

ATM_TSM_TO_HSM_CONTROL_CHANGE

This command is given to the HSM when the ATMTSM needs to change the
receive control entry points. This can be done when a remote monitor
application wants to begin or end the monitoring of a particular VC.

The ATMTSM to HSM control commands all have a number of fields in
common. When required individual commands have one or more specific
fields. As an example, the fields for the command VERIFY CONTRACT are
referenced by qualifying the control structure name by
“<name>.info.verify_contract”. The common fields are described first,
followed by the various fields for the individual controls.

ATM HSM Interface 3-23

Version 1.0

ATM ODI HSM Specification
Documentation Part Number107-000083-001

September 9, 1998

Common fields of the ATMTSM to HSM Control

control_type

The type of control command that is being given to the HSM.

hsm_ads_handle

The HSM ADS handle assigned after registration.

ATM_TSM_TO_HSM_VERIFY_CONTRACT

tsm_contract_handle

This handle is assigned by the ATMTSM. The HSM must return this handle
when it responds to this indication.

qos

This structure contains the Quality of Service parameters the HSM is asked to
verify. Refer to the Common Definitions section for more information.

ATM_TSM_TO_HSM_ENABLE_VC

tsm_vc_handle

This handle is assigned by the ATMTSM. This is the handle that the HSM must
use when it responds to this indication, as well as when it receives frames for
this VC.

vpi_vci

The Virtual Connection Identifier (VCI).

qos

This structure contains the Quality of Service parameters to be used for this
VC. Refer to the Common Definitions section for more information.

3-24 ATM HSM Specification

Version 1.0

ATM ODI HSM Specification
Documentation Part Number107-000083-001

September 9, 1998

hsm_vc_handle

This is a returned value. It is assigned by the HSM and optionally returned here.
The ATMTSM assigns a NULL_ATM_HANDLE value here, so the HSM does
not need to update this field when it returns the hsm_vc_handle later (when it
replies to this indication with a VC ENABLED).

tsm_rcv_proc

The HSM must use this entry point to forward received data for the VC to the
ATMTSM.

tsm_rcv_get_ecb_proc

The HSM must use this entry point to forward received data for the VC to the
ATMTSM, when it also needs to obtain a new receive ECB.

ATM_TSM_TO_HSM_DISABLE_VC

vpi_vci

The VCI.

hsm_vc_handle

The HSM's handle.

This handle may not yet have been assigned by the HSM, in which case the HSM must
use the VCI. The value will be NULL_ATM_HANDLE when unassigned.

ATM_TSM_TO_HSM_CONTROL_CHANGE

hsm_vc_handle

This is the HSM's handle for the VC.

tsm_rcv_proc

The HSM must use this entry point to forward received data for the VC to the
ATMTSM.

Note

ATM HSM Interface 3-25

Version 1.0

ATM ODI HSM Specification
Documentation Part Number107-000083-001

September 9, 1998

tsm_rcv_get_ecb_proc

The HSM must use this entry point to forward received data for the VC to the
ATMTSM, when it also needs to obtain a new receive ECB.

HSM to ATMTSM Control Commands and Replies

The following HSM to ATMTSM control commands and replies are defined
(and they are passed to the ATMTSM by calling atmtsm_hsm_control):

ATM_HSM_TO_TSM_REGISTER_HW

This command allows the HSM to register its needed hardware resources. The
HSM may register/deregister its hardware multiple times, as some hardware
may be needed to determine the rest of the required hardware. The final
hardware registration must contain all the information needed for normal
operation.

ATM_HSM_TO_TSM_DEREGISTER_HW

This command allows the HSM to deregister the used hardware resources.

ATM_HSM_TO_TSM_DEREGISTER

This command is given by the HSM to deregister the interface. It must be the
last control command for the given interface.

ATM_HSM_TO_TSM_START_INTERFACE

This command must be passed to the ATMTSM after successful registration. It
signals to the ATMTSM that the driver is ready to start normal operations on
the given interface (identified by the ATMTSM ADS handle). The ATMTSM
does not attempt to enable any VCs (or request to verify any contracts), until
the driver has given this indication.

ATM_HSM_TO_TSM_STOP_INTERFACE

This command must be passed to the ATMTSM before the driver deregisters.
The ATMTSM internally releases all the enabled VCs without informing the
HSM. The HSM can also use the STOP/START commands as a way to release
all current VCs. This can be useful after certain hardware errors.

3-26 ATM HSM Specification

Version 1.0

ATM ODI HSM Specification
Documentation Part Number107-000083-001

September 9, 1998

The HSM is allowed to have unanswered VERIFY CONTRACT or ENABLE VC
commands outstanding. The ATMTSM internally releases those as well.

ATM_HSM_TO_TSM_CONTRACT_VERIFIED

The HSM must respond to a VERIFY CONTRACT request from the
ATMTSM with this reply. A boolean accepted indicates whether the HSM can
perform the given QoS parameters. Most QoS parameters deal with
transmission rates. If the QoS specifies that the HSM can adjust the rates, and
the HSM needs to do this, the HSM must report the changed rates.

ATM_HSM_TO_TSM_VC_ENABLED

The HSM must respond to an ENABLE VC request from the ATMTSM with
this reply. The ATMTSM does not present the HSM with any data to send for
this VC until this reply is received.

ATM_HSM_TO_TSM_DISABLE_VC

This command can be passed by the HSM when certain errors are detected for
the given VC. It is unilateral. The ATMTSM must not present the HSM with
any more data or control indications (for the VC) after this command is
received.

The HSM may send this command as a reply to an ENABLE VC command.

ATM_HSM_TO_TSM_STOP_OUTPUT

When the HSM detects that the send queue for a VC is getting full, it can pass
this command to the ATMTSM. The ATMTSM ceases passing send indications
to the HSM for the given VC. The HSM must pass the START OUTPUT
command before the ATMTSM continues sending data.

ATM_HSM_TO_TSM_START_OUTPUT

This command must be sent to the ATMTSM after the send queue for the given
VC has sufficient room for more output.

The HSM to the ATMTSM control commands and replies all have a number of
fields in common. When required, individual indications have one or more
specific fields. As an example, the individual fields for the reply CONTRACT
VERIFIED are referenced by qualifying the control structure name with

Note

ATM HSM Interface 3-27

Version 1.0

ATM ODI HSM Specification
Documentation Part Number107-000083-001

September 9, 1998

“<name>.info.contract_verified”. The common fields are described first,
followed by the various fields for the individual controls.

Common fields of the HSM to ATMTSM Control

control_type

The type of control command or reply that is being passed to the ATMTSM.

tsm_ads_handle

The ATMTSM ADS handle, as assigned during registration.

ATM_HSM_TO_TSM_REGISTER_HW

The hardware specific fields are passed through a pointer to structure
ATM_HSM_HW_INFO. This structure contains the following fields.

transmission_type

This field is a pointer to a string that contains a description of the transmission
type (such as “4B5B”, “SDH”, “IBM”). The maximum length is
MAX_TRANSMISSION_TYPE. This information is used for network
management purposes only.

media_type

This field is a pointer to a string that contains a description of the media type
(such as “COAX”, “UTPx”, “FIBER”). The maximum length is
MAX_MEDIA_TYPE. This information is used for network management
purposes only.

speed

This field refers to the speed of the interface. It can be specified in either
Kilobits per second, Megabits per second or Gigabits per second, based on the
speed_base.

3-28 ATM HSM Specification

Version 1.0

ATM ODI HSM Specification
Documentation Part Number107-000083-001

September 9, 1998

speed_base

This field identifies whether the speed is in Kilobits per second
(SPEED_BASE_KBPS), Megabits per second (SPEED_BASE_MBPS) or
Gigabits per second (SPEED_BASE_GBPS). A speed of 155.52 Megabits per
second can be passed as 155 Megabits per second, or more accurately as
155,520 Kilobits per second.

max_cell_rate

This field refers to the maximum cell rate (per second). For a 155 Megabits per
second Sonet interface with a payload capacity of 149.76 Megabits per second,
this value will be 353,207 (149,760,000 / (53 * 8).

upper_vpc

This field contains the upper value for the Virtual Path Connection number the
HSM supports (0..255). The current implementation of the ATMTSM assumes
a value of zero.

upper_vcc

This field contains the upper value for the Virtual Channel Connection number
the HSM supports (n..65535). A minimum value of 32 allows for a single SVC.

max_physical_fragments

When the driver uses atmtsm_logical_to_physical_list, it must specify the
maximum number of physical fragments available for that conversion. Note
that a single logical fragment may result in multiple physical fragments
because the logical fragment can cross physical page boundaries. Since the
maximum number of logical fragments is 16, the theoretical maximum for this
value is 47, providing the maximum frame size is 64 KBytes and the system
has 4 KByte pages.

A single logical fragment may result in multiple physical fragments, as the logical
fragment can cross physical page boundaries.

Note

ATM HSM Interface 3-29

Version 1.0

ATM ODI HSM Specification
Documentation Part Number107-000083-001

September 9, 1998

esi

This field contains the 6-byte End Station Identifier (ESI). The HSM may
obtain the ESI through board ROM, or other configuration options. The
ATMTSM will use the ESI to form the default ATM Address for this interface.

hsm_isr_proc

This defines the entry point that receives the interrupts. The entry point must
be of C language type ATMHSM_ISR_PROC.

Set to NULL if not required.

sharing_flags

These flags indicate whether the driver is sharing some of the resources with
another interface. Resources such as Interrupt, DMA, Port, and Memory can be
shared. Set to zero if none are being shared.

bus_tag

This field is for the platform dependent tag of the bus. The HSM may obtain
the bus tag by calling CMSMGetBusTag. Set bus_tag to NULL if it is not being
used or is unknown.

slot_number

This field refers to the slot number and should be set to zero if not used.

channel_number

This field is used for multichannel adapters. Set to zero to indicate that none is
used.

port0

This field contains the first IO port number and should be set to zero if not used.

3-30 ATM HSM Specification

Version 1.0

ATM ODI HSM Specification
Documentation Part Number107-000083-001

September 9, 1998

port0_range

This field specifies how many port numbers are associated with port0 and
should be set to zero if not used.

port1

This field contains the second IO port number and should be set to zero if not
used.

port1_range

This field specifies how many port numbers are associated with port1 and
should be set to zero if not used.

memory0_address

This field contains the first shared memory address and should be set to zero if
not used.

memory0_bytes

This field specifies the number of bytes starting at memory0_address and
should be set to zero if not used.

linear0_address

The ATMTSM returns this value. It is the linear (logical) address for the first
shared memory area.

memory1_address

This field contains the second shared memory address and should be set to zero
if not used.

memory1_bytes

This field specifies the number of bytes used starting at memory1_address and
should be set to zero if not used. The same limitation as for memory0_bytes
applies.

ATM HSM Interface 3-31

Version 1.0

ATM ODI HSM Specification
Documentation Part Number107-000083-001

September 9, 1998

linear1_address

The ATMTSM returns this value. It is the linear (logical) address for the second
shared memory area.

interrupt_number

This field defines the interrupt request level and should be set to 0xff when not
used.

dma_line

This field defines the DMA channel number and should be set to 0xff when not
used.

ATM_HSM_TO_TSM_DEREGISTER_HW

No additional fields are defined.

ATM_HSM_TO_TSM_DEREGISTER

No additional fields are defined.

ATM_HSM_TO_TSM_START_INTERFACE

No additional fields are defined.

ATM_HSM_TO_TSM_STOP_INTERFACE

No additional fields are defined.

ATM_HSM_TO_TSM_CONTRACT_VERIFIED

tsm_contract_handle

This handle must be the same as passed by the ATMTSM when it requested the
HSM to perform the contract verification. After the CONTRACT VERIFIED
reply, this handle is obsolete.

3-32 ATM HSM Specification

Version 1.0

ATM ODI HSM Specification
Documentation Part Number107-000083-001

September 9, 1998

qos

This structure contains the Quality of Service parameters the HSM is able to
support. It must be the same or as close to the same requested by the ATMTSM.
The QoS information is passed completely but the HSM should only be reading
or using fields that make sense. A backward QoS is also used to allow smart
drivers to fine tune their receivers. Refer to the Common Definitions section
for more information.

return_code

This return field is set to zero when the HSM accepts the given QoS for the
contract. Values are HSM_CONTRACT_ACCEPTED and
HSM_CONTRACT_CANNOT_DO_RATE.

ATM_HSM_TO_TSM_VC_ENABLED

tsm_vc_handle

This handle must be the same as passed by the ATMTSM when it requested the
HSM to enable the VC.

hsm_vc_handle

This handle is returned by the HSM. The HSM might already have returned this
handle when it was called by the ATMTSM's ENABLE VC command.

ATM_HSM_TO_TSM_DISABLE_VC

tsm_vc_handle

The ATMTSM-assigned handle for the VC.

reason_code

The reason why the HSM disabled the VC.

ATM HSM Interface 3-33

Version 1.0

ATM ODI HSM Specification
Documentation Part Number107-000083-001

September 9, 1998

ATM_HSM_TO_TSM_STOP_OUTPUT

tsm_vc_handle

The ATMTSM-assigned handle for the VC.

ATM_HSM_TO_TSM_START_OUTPUT

tsm_vc_handle

The ATMTSM-assigned handle for the VC.

Return values for “atmtsm_hsm_control” call

Upon completion of a call to atmtsm_hsm_control, the ATMTSM returns a zero
value when no errors are detected. When errors are detected, the ATMTSM will
have logged appropriate warning messages on the console. The following
values are returned:

Get/Return Buffers (ECBs)

Event Control Blocks (ECBs) are NetWare buffers. The HSM might require
ECBs to prepare the receive queue(s). It can call atmtsm_get_ecb to obtain an
ECB and atmtsm_return_ecb to release it (typically at deregistration time).
When the driver forwards received data and needs another ECB, it can combine

Return Value Definition

0 Control completed successfully

-1 Invalid ATMTSM ADS handle

-2 Invalid control type

-3 Hardware registration failed

-4 START/STOP INTERFACE out of order

-5 Could not start Signaling during START INTERFACE

-6 Interface must be STOPPED first

-7 Invalid ATMTSM VC handle

3-34 ATM HSM Specification

Version 1.0

ATM ODI HSM Specification
Documentation Part Number107-000083-001

September 9, 1998

the two above mentioned procedures by indirectly calling the procedure
tsm_rcv_get_ecb_proc. Transmit buffers must never be returned through
atmtsm_return_ecb, because the driver cannot be sure that the applications
actually use ECBs.

Both atmtsm_get_ecb and tsm_rcv_get_ecb_proc calls will insert the logical
address for the receive data (start-address). Since receive ECBs will be
guaranteed to have a physically contiguous receive area, the ATMTSM will
also insert the physical receive data start-address. A macro called
PHYSICAL_RECV_ADDRESS is provided for HSMs to extract the physical
start-address from the ECB. This eliminates the need for an additional
procedure call.

Data Interfaces

The data interfaces between the HSM and the ATMTSM are available for a
particular VC, after the VC has been enabled. After either the ATMTSM or
HSM has disabled the VC, these interfaces cannot be used anymore. Any
obsolete tsm_vc_handle used by the driver might ABEND the system.
However, the ATMTSM can prevent this for a short time after the VC has been
released, because it does not immediately release the control block associated
with the tsm_vc_handle.

The data interface between the ATMTSM and HSM is “ECB Aware” in both
directions. When using AAL5, the HSM must be able to forward the two
padding bytes (called CPCS/U) of the last cell of each frame. Currently all VCs
should be AAL5. The macro CPCS_U allows the HSM to store or extract these
bytes from the ECB.

The macro RECEIVE_FLAGS is available for the HSM to report the
recognition of congestion to the User Application.

Receive

After the HSM has completed the reception of a frame for an enabled VC, it
must indirectly call tsm_rcv_proc. If the HSM wants to forward received data
and obtain a new ECB, it can indirectly call rcv_get_ecb_proc. The latter is the
same as calling procedure tsm_rcv_proc (indirectly) followed by
atmtsm_get_ecb (directly). Both procedures require the address of the receive
ECB and the tsm_vc_handle as parameters, while tsm_rcv_get_ecb_proc will
return a new receive ECB (this new ECB has no association with the VC).
When the HSM obtains a receive ECB, the ATMTSM will insert the address
where the HSM must start copying the frame to. This address will be in field

ATM HSM Interface 3-35

Version 1.0

ATM ODI HSM Specification
Documentation Part Number107-000083-001

September 9, 1998

ECB_Fragment[0].FragmentAddress. The frame must be copied as a single
fragment.

The ATMTSM will leave at least the size of a pointer of space below the
starting address of the data.

The HSM can use this as a place to store the ECB address, when its DMA only
returns the data address. The HSM does not need to fill out any fields in the
ECB other than ECB_Fragment[0].FragmentLength and ECB_DataLength.
The ECB_FragmentCount is set to 1 when the ECB is acquired. The HSM can
use the fields ECB_NextLink and ECB_PreviousLink for queuing or other
purposes. Because the HSM passes the ECB to the ATMTSM, accompanied by
the tsm_vc_handle, the HSM does not even need to fill in the
ECB_BoardNumber.

Transmit

The ATMTSM passes the frame to be transmitted to the HSM by calling the
ATM HSM entry point hsm_send_proc. This entry point is passed during
registration of the HSM. The ATMTSM passes the ECB address and the
hsm_vc_handle. After the HSM has sent the frame, it must call
atmtsm_send_complete. This procedure requires just the ECB address as a
parameter. HSM must accept fragmented transmit ECBs. There will never be
more than 16 fragments. HSM can use procedure
atmtsm_logical_to_physical_list to convert the logical memory address to a
physical one. HSM can use the fields ECB_NextLink and ECB_PreviousLink
for queuing. It can also use field ECB_DriverWorkspace. Other fields in the
ECB must not be modified by HSM. As for Receive, the ECB_BoardNumber
will not be set by the ATMTSM.

Interrupts

When applicable, HSM can pass an Interrupt Service Routine (ISR) address to
the ATMTSM during registration. When an interrupt occurs, the ATMTSM
will call HSM at that address. The only additional parameter passed to HSM is
hsm_ads_handle. HSM must report the hsm_ads_handle to the ATMTSM
before it expects the first interrupt. The control command that allows HSM to
do this is either PASS ADS HANDLE or START INTERFACE. The HSM can
also assign unique ISR addresses for each individual interface, in which case
interrupts are allowed prior to passing the hsm_ads_handle.

3-36 ATM HSM Specification

Version 1.0

ATM ODI HSM Specification
Documentation Part Number107-000083-001

September 9, 1998

Polling / Periodic Calls

After registration, HSM can request the ATMTSM to be polled regularly. This
is done by passing the poll entry point address to atmtsm_poll_address. Polling
is done on a board by board basis. HSM can stop the polling by passing a
NULL poll entry point address. HSM can change the poll entry point address
at any time.

The driver can also ask the ATMTSM for periodic calls. The HSM must call
atmtsm_periodic_call_address, passing the entry point to be called, as well as
the time between calls. Again, passing a NULL entry point will stop the
periodic calls. The given time is in milliseconds, however the ATMTSM will
round it up to the nearest tick interval. On PC platforms, the tick interval is 55
Milliseconds.

The HSM is called back at process level.

Statistics

The ATMTSM supports General Statistics as well as Custom Statistics. The
custom statistics are divided in two groups. One group is defined and
maintained by the ATMTSM and one group is (optionally) defined and
maintained by the HSM. During registration, the HSM passes an array of
pointers to its custom statistics text lines, terminated by a NULL pointer after
the last one. Three procedures are provided for the HSM to increment or update
its custom statistic counters. These procedures are:

atmtsm_incr_custom_counter

atmtsm_update_custom_counter

atmtsm_set_custom_counter

Additional ATMTSM Interfaces and Interface Summary

This section describes the above defined and some additional interfaces that are
provided by the ATMTSM for use by the HSM. All interfaces are provided
through direct calls.

atmtsm_register_hsm

The HSM registers with the ATMTSM after successful load.

ATM HSM Interface 3-37

Version 1.0

ATM ODI HSM Specification
Documentation Part Number107-000083-001

September 9, 1998

The C definition is:

long atmtsm_register_hsm (ATMTSM_REGISTER_HSM_CONTROL*);

atmtsm_hsm_control

The HSM can call this procedure to pass control information to the ATMTSM.

The C definition is:

long atmtsm_hsm_control (ATM_HSM_TO_TSM_CONTROL*);

atmtsm_poll_address

The HSM can call this procedure to pass its poll address to the ATMTSM.
When a NULL address is passed, the ATMTSM will cease calling the HSM. A
single parameter hsm_ads_handle is passed to the HSM with every call to the
poll procedure.

This procedure is called individually for each interface (board).

The C definition is:

void atmtsm_poll_address (ATM_HANDLE tsm_ads_handle,

ATMHSM_POLL_PROC* hsm_poll_proc,

UINT32 minimum_microseconds_delay);

atmtsm_periodic_call_address

The HSM can call this procedure to pass its periodic call address to the
ATMTSM. When a NULL address is passed, the ATMTSM will cease calling
the HSM. A single parameter hsm_ads_handle is passed to the HSM with
every periodic call.

This procedure is called individually for each interface (board).

The C definition is:

void atmtsm_periodic_call_address (ATM_HANDLE tsm_ads_handle,

ATMHSM_PERIODIC_CALL_PROC* hsm_call_proc,

UINT32 milliseconds);

Note

Note

3-38 ATM HSM Specification

Version 1.0

ATM ODI HSM Specification
Documentation Part Number107-000083-001

September 9, 1998

atmtsm_micro_delay

This procedure is available for the HSMs to introduce a small processor delay.
The given value can only be between 0 and 4095 microseconds. This procedure
also returns the current value of the high resolution timer. It can be called with
interrupts enabled or disabled.

The C definition is:

UINT32 atmtsm_micro_delay (UINT32 micro_seconds);

atmtsm_get_ecb

This procedure can be used when the HSM needs ECBs for the receive
queue(s). A NULL is returned when no ECB is available at the moment.

The C definition is:

struct ATMECB* atmtsm_get_ecb (ATM_HANDLE tsm_ads_handle);

atmtsm_return_ecb

The HSM calls this procedure to return unused receive ECBs.

The C definition is:

void atmtsm_return_ecb (struct ATMECB* ecb_ptr);

atmtsm_send_complete

After transmission of a frame (or when the HSM is being unloaded), the driver
must return the transmission resources by calling this procedure.

The C definition is:

void atmtsm_send_complete (struct ATMECB* ecb_ptr);

atmtsm_printf

This procedure allows the HSM to print (error) messages on the console. It
allows for National Language Enabled messages. The maximum number of
parameters is 8 (excluding the format string). This procedure can only be called
during driver LOAD and UNLOAD.

ATM HSM Interface 3-39

Version 1.0

ATM ODI HSM Specification
Documentation Part Number107-000083-001

September 9, 1998

The C definitions is:

int atmtsm_printf (const char* format, ...);

atmtsm_alloc

This procedure allocate memory for the HSM. The HSM must pass the
tsm_ads_handle as well as the number of bytes. If at this moment not enough
memory is available, a NULL will be returned.

The C definitions is:

void* atmtsm_alloc (ATM_HANDLE tsm_ads_handle, UINT32 bytes);

atmtsm_free

This procedure free the memory allocated through atmtsm_alloc.

The C definitions is:

void atmtsm_free (void* alloc_ptr);

atmtsm_logical_to_physical_list

This procedure allows the HSM to convert the given list of logical memory
addresses to a list of physical memory addresses. Each list consists of one or
more fragment descriptors. Each fragment descriptor consists of an address and
a size. The return value is the number of physical fragments generated (a zero
indicates an error, and the HSM must discard the associated data). The
maximum size of the HSM physical list is passed during registration.

The C definition for atmtsm_logical_to_physical_list is:

UINT32 atmtsm_logical_to_physical_list

(struct atm_ads_rec* tsm_ads_handle,

INT8 logical_fragments,

ATM_FRAGMENT* logical_list,

ATM_FRAGMENT* physical_list);

3-40 ATM HSM Specification

Version 1.0

ATM ODI HSM Specification
Documentation Part Number107-000083-001

September 9, 1998

atmtsm_logical_to_physical

This procedure converts the given logical memory address to the physical
memory address. This procedure can only be used for allocated memory and
receive ECBs. It cannot be used for shared RAM. If needed, the driver must
remember the difference between the logical and physical shared RAM
addresses, and use it to do the conversion locally. For transmit ECB fragments,
the driver must use atmtsm_logical_to_physical_list.

The C definition is:

void* atmtsm_logical_to_physical (void* logical_address);

atmtsm_physical_to_logical

This procedure converts the given physical memory address to the logical
memory address.

The C definition is:

void* atmtsm_physical_to_logical (void* physical_address);

atmtsm_get_firmware

The procedure provides the HSM with the address and length of its firmware.
The HSM can only call this procedure while the interface is stopped. As soon
as the HSM passes the START INTERFACE command, the information is
obsolete.

The C definition is:

UINT8* atmtsm_get_firmware (ATM_HANDLE tsm_ads_handle,

UINT32* firmware_length);

atmtsm_rcv_oam_cell

The procedure is called by the HSM to pass incoming OAM cells for
previously established VCs to the ATMTSM.

The C definition is:

void atmtsm_rcv_oam_cell (ATM_HANDLE tsm_vc_handle,

struct ATMECB* ecb_ptr);

ATM HSM Interface 3-41

Version 1.0

ATM ODI HSM Specification
Documentation Part Number107-000083-001

September 9, 1998

atmtsm_rcv_vc_error

This procedure is called by the HSM to report an error, recognized during
reception of a frame for the given VC. If an ECB was used, it is also passed
(and released). Each error type has an associated ATMTSM custom statistic
counter, which the ATMTSM will increment.

The C definition is:

void atmtsm_rcv_vc_error (ATM_HANDLE tsm_vc_handle,

struct ATMECB* ecb_ptr, UINT8 error_type);

atmtsm_rcv_error

This procedure is called by the HSM to report an error, recognized during
reception of a frame (not associated with an enabled VC). If an ECB was used,
it is also passed (and released). Each error type has an associated ATMTSM
custom statistic counter, which ATMTSM will increment.

The C definition is:

void atmtsm_rcv_error (ATM_HANDLE tsm_ads_handle,

struct ATMECB* ecb_ptr, UINT8 error_type);

atmtsm_incr_custom_counter

This procedure is called by the HSM when it wants to increment the given
HSM custom counter.

The counter_number must match the relative index (0..n) in the array of HSM
custom counter text lines, passed during registration of the HSM.

The C definition is:

void atmtsm_incr_custom_counter (ATM_HANDLE tsm_ads_handle,

UINT8 custom_counter_number);

atmtsm_update_custom_counter

This procedure is functionally the same as atmtsm_incr_custom_counter, with
the exception that the HSM passes the (signed) value to update the counter
with.

3-42 ATM HSM Specification

Version 1.0

ATM ODI HSM Specification
Documentation Part Number107-000083-001

September 9, 1998

The C definition is:

void atmtsm_update_custom_counter (ATM_HANDLE tsm_ads_handle,

UINT8 custom_counter_number, long update_value);

atmtsm_set_custom_counter

This procedure set the given custom counter to the given value.

The C definition is:

void atmtsm_set_custom_counter (ATM_HANDLE tsm_ads_handle,

UINT8 custom_counter_number, UINT32 value);

atmtsm_register_lock

This procedure must be called by the HSM to register and initialize a lock
structure. The HSM can have as many locks as it requires (e.g. per interface,
per receiver/transmitter, per VC, etc.). A lock can be reused many times, and
must be deregistered prior to the HSM unload. This procedure returns a TRUE
if the lock is successfully registered initialized. The lock_id is for debugging
purposes, and must point to a short (statically defined) string.

The C definition is:

UINT8 atmtsm_register_lock (ATMLOCK* lock_ptr, char* lock_id);

atmtsm_deregister_lock

When the HSM is done using the lock, it must call the following procedure.

The C definition is:

void atmtsm_deregister_lock (ATMLOCK* lock_ptr);

atmtsm_lock / atmtsm_lock_ni

These procedures will obtain the lock. The first one will also disable interrupts.
The second one assumes the HSM has disabled them. Both procedures spin to
obtain the lock, when multiple processors are found. The system will abort
when the lock cannot be obtained within a few seconds.

ATM HSM Interface 3-43

Version 1.0

ATM ODI HSM Specification
Documentation Part Number107-000083-001

September 9, 1998

The C definition is:

void atmtsm_lock (ATMLOCK* lock_ptr);

void atmtsm_lock_ni (ATMLOCK* lock_ptr);

atmtsm_conditional_lock / atmtsm_conditional_lock_ni

These procedures will obtain the lock conditionally. If the lock cannot be
obtained on the first attempt, a FALSE will be returned. In a single processor
environment, the lock will always be obtained.

The C definition is:

UINT8 atmtsm_conditional_lock (ATMLOCK* lock_ptr);

UINT8 atmtsm_conditional_lock_ni (ATMLOCK* lock_ptr);

atmtsm_unlock / atmtsm_unlock_ni

These procedures will release the lock. When the lock was obtained with a
atmtsm_lock, it must be released with atmtsm_unlock. The same is true for
atmtsm_lock_ni and atmtsm_unlock_ni.

The C definition is:

void atmtsm_unlock (ATMLOCK* lock_ptr);

void atmtsm_unlock_ni (ATMLOCK* lock_ptr);

3-44 ATM HSM Specification

Version 1.0

ATM ODI HSM Specification
Documentation Part Number107-000083-001

September 9, 1998

tsm_rcv_proc / tsm_rcv_get_ecb_proc (indirect)

The HSM calls one of these procedure indirectly to forward received data to
the ATMTSM. The ATMTSM will provide this procedure address with the
ENABLE VC indication. The reason these procedures are called indirectly is
to allow the ATMTSM defined monitoring procedures. Those procedures can
be changed on a per VC basis. Thus the HSM must retain these procedure
addresses separate for each VC.

The C definitions are:

typedef void ATMHSM_TSM_RCV_PROC

(ATM_HANDLE tsm_vc_handle, struct ATMECB* ecb_ptr);

typedef struct ATMECB* ATMHSM_TSM_RCV_GET_ECB_PROC

(ATM_HANDLE tsm_vc_handle, struct ATMECB* ecb_ptr);

HSM provided interfaces

The following are the procedure entry-points called by the ATMTSM. All
entry-points are called indirectly, and are mostly passed to the ATMTSM
during the HSM registration.

hsm_control_proc (indirect)

The ATMTSM calls this procedure indirectly to pass control information to the
HSM.

The C definition is:

typedef void ATMTSM_HSM_CONTROL_PROC

(ATM_TSM_TO_HSM_CONTROL*);

ATM HSM Interface 3-45

Version 1.0

ATM ODI HSM Specification
Documentation Part Number107-000083-001

September 9, 1998

hsm_send_proc (indirect)

The ATMTSM calls this procedure indirectly to pass data to be transmitted to
the HSM.

The C definition is:

typedef void ATMTSM_HSM_SEND_PROC

(ATM_HANDLE hsm_vc_handle, struct ATMECB* ecb_ptr);

hsm_isr_proc (indirect)

The ATMTSM calls this procedure indirectly to pass and interrupt event to the
HSM.

The C definition is:

typedef void ATMHSM_ISR_PROC (ATM_HANDLE hsm_ads_handle);

hsm_poll_proc (indirect)

The ATMTSM calls this procedure indirectly. This procedure address is passed
to the ATMTSM through a call to atmtsm_poll_address.

The C definition is:

typedef void ATMHSM_POLL_PROC (ATM_HANDLE hsm_ads_handle);

hsm_periodic_call_proc (indirect)

The ATMTSM calls this procedure indirectly and periodically. This procedure
address is passed to the ATMTSM through a call to
atmtsm_periodic_call_address.

The C definition is:

typedef void ATMHSM_PERIODIC_CALL_PROC

(ATM_HANDLE hsm_ads_handle);

3-46 ATM HSM Specification

Version 1.0

ATM ODI HSM Specification
Documentation Part Number107-000083-001

September 9, 1998

Performance issues and the HSM design

Since ATM can deliver a high volume of data it is important that performance
related issues are addressed during the design of the HSM. This section
discusses the problems and provides some tips on how to prevent the high
speed ATM interface(s) from congesting the system's CPU.

Receive

Experience in the past has shown that the CPU performance kept pace with, or
outperformed available LAN capacity. However, multiple Ethernet or Token-
Ring networks have been able to choke 486 systems. This has been particularly
true for higher performance LAN drivers that forward all received frames at an
interrupt priority level. If such a driver does not do any input flow control, it
will simply fill all the receive ECBs. Those ECBs then sit in a Protocol Stacks'
receive queues, waiting for the interrupt level processing to be completed.
Since the interrupt level processing time roughly increases linearly with the
offered load, there is not enough time left for the Protocol Stacks to handle the
received frames. Thus the various receive queues just fill up until the system
runs out of buffers. Once that happens, some drivers still keep the interrupt
level logic busy with the frames to be discarded. And the system has come to a
grinding halt.

One sometimes proposed solution has been to not just pass the received frames
at interrupt level, but also forward the frames at the interrupt level. Thus
running close to 100% of the CPU cycles at an interrupt level. This kind of
solution limits the usefulness of interrupts, and interfaces that really require
interrupts (clocks, error handling, etc.) are losing them due to overruns.

Of course, low performance LAN drivers by design do not cause any such
problems, as they drop incoming frames before they are able to saturate the
system's CPU. The trick for a driver is to find out when (in combination with
other interface drivers) it is making the CPU congested, and only then to start
dropping incoming frames.

One method to accomplish this is for the driver to use a polling mechanism, in
conjunction with a limited receive queue (limited means less than all the
available ECBs). Once the CPU becomes congested, the ATM driver can fill
the limited receive ECB queue. There is no problem if the driver is polled
before the queue is completely filled However, if the queue is full, and more
frames arrive, the driver could use the Quality of Service defined priority.
There is a priority assigned to every Virtual Connection. Lower priority frames
are more likely candidates to be dropped, while higher priority frames could

ATM HSM Interface 3-47

Version 1.0

ATM ODI HSM Specification
Documentation Part Number107-000083-001

September 9, 1998

even use the receive ECBs that are currently occupied with lower priority
frames. If the CPU remains congested, the driver eventually starts to drop the
high priority frames.

The above scheme is adaptive and fair. It also gives the driver a means to favor
higher priority data over lower. It would be much more complex to do
something like this with interrupts. One important thing to remember is that the
HSM should spend as little CPU time as possible on frames it is going to
discard. If a lot of time is being spent on discarded frames, some of the above
described behavior might re-appear.

Transmit

The transmission related issues are not as critical as the ones for receive. The
main reason is that transmission of end station data can never outpace the
available CPU, as the CPU will just limit the amount to what it can generate.
For data that has been received from another interface and that interface does
a good job of flow controlling the input (as suggested in the previous section),
problems will likely be minimal. It is however important that the driver will
give sufficient priority to the output logic, otherwise all output may end up in
the transmit queues.

Transmit versus Receive Priority

Intermediate stations (routers and bridges) work best when the transmit logic
is given some priority over receive. End stations (servers and clients) may work
better when receive is given some priority over transmit. The latter because end
stations have the ability to hold back additional output. Since the ATM HSM
does not know whether it is servicing an end station versus an intermediate
station, and quite often a NetWare Server is both, giving the receive and
transmit equal priority is a good compromise.

3-48 ATM HSM Specification

Version 1.0

ATM ODI HSM Specification
Documentation Part Number107-000083-001

September 9, 1998

Configurable Receive Modes

Unfortunately, the polling logic on client stations than run DOS, OS/2 or
WINDOWS may not work very well, because applications are not required to
yield. The minimum polling rate may depend on the system timer interrupt,
which at 18 times per second is much too low. Polling in those environments
may either be initiated by the HSM, through interrupts at rates of about once
per Millisecond. If the HSM is not able to do this, an alternative is to use
forwarding interrupts.

To make the same HSM work well in the many different environments, it is
suggested that LOAD <driver-name> parameters are provided, that allow an
HSM to operate in either a polled or interrupt mode. Possibly a hybrid solution
of a poll interrupt when the receive queue grows above a certain threshold
could be added as another configurable mode.

ATM HSM Definitions 4-49

c h a p t e r

Version 1.0

ATM ODI HSM Specification
Documentation Part Number: 107-000083-001

September 9, 1998

4 ATM HSM Definitions

Introduction

This section describes the definitions that are common to both the HSM
interface and the User Application Interface.

Quality of Service Definition

The Quality of Service structure used for both HSM and the User Application
interface. The QoS information is passed completely but the HSM should only
be reading or using fields that make sense. It contains the following fields:

rate_type

The rate type defines whether the traffic cell rate is constant, variable (real-time
or non real-time), available or unspecified. These definitions are defined:
RATE_TYPE_CBR, RATE_TYPE_VBR_RT, RATE_TYPE_VCB_NON_RT,
RATE_TYPE_ABR or RATE_TYPE_UBR (best effort).

rate_adjustment

This indicates to HSM whether and how to adjust the requested transmit
rate(s). This should only be done when HSM cannot support the requested rate.
Values are RATE_ADJUST_NONE, RATE_ADJUST_NEAREST,
RATE_ADJUST_LOWER and RATE_ADJUST_HIGHER. HSM is only
given the option to change the rate during the VERIFY CONTRACT phase,
and must report the rate it can support during the CONTRACT VERIFIED
response. If the request is for an EXACT rate and HSM cannot do that rate, it
must report during the CONTRACT VERIFIED that it does not accept the
contract.

4-50 ODI ATM HSM Specification

Version 1.0

ATM ODI HSM Specification
Documentation Part Number: 107-000083-001

September 9, 1998

priority

The priority assigned to this VC. The range is from 0 to 7. It is mainly for use
by HSM.

direction

This is a two-dimensional array. The first element contains the forward and the
second the backward traffic and other direction related parameters. If the user
wants to ADD LEAFs later, the backward rates must be zero. A backward QoS
is also used to allow smart drivers to fine tune their receivers. See below for
further definition of its contents.

The direction array can be indexed with the constants ATM_FORWARD and
ATM_BACKWARD. The direction is based on the User Applications point of
view, such that the user does not need to check which end originated the call.
The ATMTSM will perform the necessary inversion, because signaling
assumes the forward is from the calling to the called party, and backward from
the called to the calling party. Each of the two direction array elements contains
the following fields (note that some fields only apply to a given rate type):

peak_cell_rate

This field defines the peak traffic rate in Cells per Second.

max_sdu_size

This field is the Maximum Service Data Unit size. It is only used for SVCs. A
zero value indicates an unspecified size.

cell_loss_ratio

This field contains the Cell Loss Ration value (from 0 to 4). If the user has
selected UBR, this field is ignored (and 0 is assumed).

sustained_cell_rate

This field defines the sustained traffic rate in Cells per Second. It is only used
for VBR.

ATM HSM Definitions 4-51

Version 1.0

ATM ODI HSM Specification
Documentation Part Number: 107-000083-001

September 9, 1998

burst_size

This field defines the burst size for VBR.

cell_transfer_delay

This field defines the Cell Transfer Delay Tolerance. It is only used for CBR
and VBR.

cell_delay_variation

This field defines the Cell Delay Variation Tolerance. It is only used for Real-
time VBR.

4-52 ODI ATM HSM Specification

Version 1.0

ATM ODI HSM Specification
Documentation Part Number: 107-000083-001

September 9, 1998

Virtual Connection Establishment Flow Diagrams 5-53

c h a p t e r

Version 1.0

ATM ODI HSM Specification
Documentation Part Number: 107-000083-001

September 9, 1998

5 Virtual Connection Establishment
Flow Diagrams

Introduction

Flow diagrams for Virtual Connection establishment This section shows
message exchanges for establishing the various kinds of Virtual Connections.

The shown exchanges are between the User Application, ATMTSM, HSM and
the ATM Switch. For completeness, some of the signaling protocol elements
are shown. They are Call Setup, Call Proceeding, Connect and Connect Ack.

The User Application may start sending data as soon as the VC
ESTABLISHED indication for either the PVC or SVC is received that has the
start_output indication set to TRUE. The called end station will not start
sending any data, until it has received the Connect Ack signaling protocol
element. The ATMTSM will not forward any data to the User, until it has
passed the VC ESTABLISHED indication to the User Application.

API sits at the bottom of the ATMTSM, while the User Application API sits at
the top. An overview diagram is shown below.

5-54 ODI ATM HSM Specification

Version 1.0

ATM ODI HSM Specification
Documentation Part Number: 107-000083-001

September 9, 1998

Figure 5-1

User Application
Virtual Connection

Figure 5-2

Outgoing Switched
Virtual Connection

Permanent Virtual Connection

User Application TSM HSM ATM Switch

VC Enabled

Verify Contract

Establish PVC

Contract Verified

Enable VC

VC Established

(start output) DATA

Outgoing Switched Virtual Connection

User Application TSM HSM ATM Switch

Enable VC

Verify Contract

Establish VC Out

Contract Verified

Call Setup

VC Established

Call Proceeding
(Optional)

Connect

Connect ACK

VC Enabled

Virtual Connection Establishment Flow Diagrams 5-55

Version 1.0

ATM ODI HSM Specification
Documentation Part Number: 107-000083-001

September 9, 1998

Figure 5-3

Incoming Switched
Virtual Connection

Incoming Switched Virtual Connection

User Application TSM HSM ATM Switch

Connect ACK

Enable VC

Verify Contract

Establish VC In

Call Setup

VC In Present
(Accepted)

Contract Verified

Call Proceeding

VC Enabled

Connect

.

.

.

Start Output

VC Established
(Stop Output)

5-56 ODI ATM HSM Specification

Version 1.0

ATM ODI HSM Specification
Documentation Part Number: 107-000083-001

September 9, 1998

Include Files 6-57

c h a p t e r

Version 1.0

ATM ODI HSM Specification
Documentation Part Number: 107-000083-001

September 9, 1998

6 Include Files

Introduction

This section lists the ATM HSM C Include files. Newer versions of these files
may be included in soft copy format. Always use the latest version of these
files.

• ATMQOS.H

• ATMHSMIF.H

• ATMHSM.IMP

• PARSER.H

• PARSER.IMP

ATMQOS.H

/*
 * (C) Copyright 1994-1996 Novell, Inc. All Rights Reserved.
 *
 * File Name : atmqos.h
 * Author : Henk J. Bots
 * Created On : Tue, Mar 8 (14:49:46) 1994
 * Last Modified By: Henk J. Bots
 * Last Modified On: Thu, Nov 2 (13:33:44) 1995
 * Update Count : 48
 * Status : Quality of Service record definitions
 */

/* -----------------------Begin Module Header ------------------------------

$Header: K:/proj/atm/include/vcs/atmqos.h_v 1.1 02 Nov 1995 13:45:40 HBOTS $

$Project: Novell MPR $

6-58 ODI ATM HSM Specification

Version 1.0

ATM ODI HSM Specification
Documentation Part Number: 107-000083-001

September 9, 1998

 This program is an unpublished copyrighted work which is proprietary to
 Novell, Inc. and contains confidential information that is not to be
 reproduced or disclosed to any other person or entity without prior
 written consent from Novell, Inc. in each and every instance.

 WARNING: Unauthorized reproduction of this program as well as
 unauthorized preparation of derivative works based upon the program or
 distribution of copies by sale, rental, lease or lending are violations
 of federal copyright laws and state trade secret laws, punishable by
 civil and criminal penalties.

--

$Log: K:/proj/atm/include/vcs/atmqos.h_v $
 *
 * Rev 1.1 02 Nov 1995 13:45:40 HBOTS
 * Update Copyright message to include 1996.
 *
 * Rev 1.0 21 Apr 1995 12:36:30 HBOTS
 * Correct a signaling problem with AAL parameters.

$EndLog: $

--------------------------- End Module Header --------------------------- */

#ifndef ATMQOS_H
#define ATMQOS_H

#ifndef UINT8
#define UINT8 unsigned char
#define UINT16 unsigned short
#define UINT32 unsigned long
#define INT8 signed char
#define INT16 signed short
#define INT32 signed long
#endif

#define NULL 0

#ifndef BYTE
#define BYTE unsigned char
#define WORD unsigned short
#define LONG unsigned long
#endif

#ifndef ATM_HANDLE
#define ATM_HANDLE void*
#define NULL_ATM_HANDLE ((ATM_HANDLE) -1)
#define no_additional_info int ignored
#endif

#define BYTES_PER_CELL 48

Include Files 6-59

Version 1.0

ATM ODI HSM Specification
Documentation Part Number: 107-000083-001

September 9, 1998

#define BITS_PER_CELL (BYTES_PER_CELL * 8)

/*
 * Rate Type and Rate Adjustment definitions
 * ---
 */

#define RATE_TYPE_CBR 0 /* Constant */
#define RATE_TYPE_VBR_RT 1 /* Variable Real Time */
#define RATE_TYPE_VBR_NON_RT 2 /* Variable Non Real Time */
#define RATE_TYPE_ABR 3 /* Available */
#define RATE_TYPE_UBR 4 /* Unspecified */

#define RATE_ADJUST_NONE 0 /* No adjustment allowed */
#define RATE_ADJUST_NEAREST 1 /* Adjust to nearest (higher or lower) */
#define RATE_ADJUST_LOWER 2 /* Adjust to nearest lower value */
#define RATE_ADJUST_HIGHER 3 /* Adjust to nearest higher value */

#define ADJUSTED_NEAREST_CELL_RATE(bps_rate) \
 ((bps_rate + BITS_PER_CELL/2) / BITS_PER_CELL)
#define ADJUSTED_LOWER_CELL_RATE(bps_rate) \
 (bps_rate / BITS_PER_CELL)
#define ADJUSTED_HIGHER_CELL_RATE(bps_rate) \
 ((bps_rate + BITS_PER_CELL-1) / BITS_PER_CELL)

/*
 * Cell Loss Ratio definitions
 * ---------------------------
 *
 * Current switches support only "undefined". For UBR, undefined must
 * be used.
 */

#define CLR_UNDEFINED 0
#define CLR_HIGH_LOSS 1 /* > 10**(-5) */
#define CLR_MEDIUM_LOSS 2 /* 10**(-5) range */
#define CLR_LOW_LOSS 3 /* 10**(-7) range */
#define CLR_VERY_LOW_LOSS 4 /* < 10**(-7) */

/*
 * Note that forward is always the outgoing, and backward the incoming
 * direction, regardless of how the connections was established. The
 * HSM may use the backward information to enhance its receiver.
 */

#define QOS_FORWARD 0 /* forward (send) traffic information */
#define QOS_BACKWARD 1 /* backward (receive) traffic information */

typedef struct atm_directional_info
{
 UINT32 peak_cell_rate; /* Cell per Second */
 UINT16 max_sdu_size; /* Bytes */
 UINT8 cell_loss_ratio;

6-60 ODI ATM HSM Specification

Version 1.0

ATM ODI HSM Specification
Documentation Part Number: 107-000083-001

September 9, 1998

 UINT8 filler;
 union
 {
 struct /* C o n s t a n t B i t R a t e */
 {
 UINT32 filler [2];
 UINT16 cell_transfer_delay; /* Milliseconds */
 }
 cbr;

 struct /* V a r i a b l e B i t R a t e (Real Time) */
 {
 UINT32 sustained_cell_rate; /* Cell per Second */
 UINT32 burst_size; /* Number of Cells */
 UINT16 cell_transfer_delay; /* Milliseconds */
 UINT16 cell_delay_variation; /* Microseconds */
 }
 vbr_rt;

 struct /* V a r i a b l e B i t R a t e (Non Real Time) */
 {
 UINT32 sustained_cell_rate; /* Cell per Second */
 UINT32 burst_size; /* Cells */
 UINT16 cell_transfer_delay; /* Milliseconds */
 }
 vbr_non_rt;

 struct /* A v a i l a b l e B i t R a t e */
 {
 UINT32 minimum_cell_rate; /* Cell per Second */
 }
 abr;

 struct /* U n s p e c i f i e d B i t R a t e */
 {
 no_additional_info;
 }
 ubr;
 }
 info;
}
ATM_DIRECTIONAL_INFO;

typedef struct atm_qos_rec
{
 UINT8 rate_type; /* CBR, VBR_RT, VBR, ABR or UBR */
 UINT8 rate_adjustment;
 UINT8 priority; /* VC priority (0..7) */

 UINT8 filler [1]; /* keep structure aligned */

 ATM_DIRECTIONAL_INFO /* Directional information */
 direction [2]; /* Forward/backward traffic info */

Include Files 6-61

Version 1.0

ATM ODI HSM Specification
Documentation Part Number: 107-000083-001

September 9, 1998

}
ATM_QOS_REC;

#endif /* ATMQOS_H */

ATMHSMIF.H

/*
 * (C) Copyright 1994-1996 Novell, Inc. All Rights Reserved.
 *
 * File Name : atmhsmif.h
 * Author : Henk J. Bots
 * Created On : Fri, Jan 28 (14:14:12) 1994
 * Last Modified By: Henk J. Bots
 * Last Modified On: Wed, May 22 (17:17:56) 1996
 * Update Count : 255
 * Status : ATM TSM provided External Interfaces for HSM's
 */

/* -----------------------Begin Module Header ------------------------------

$Header: K:/proj/atm/include/vcs/atmhsmif.h_v 1.14 31 May 1996 18:24:16 HBOTS $

$Project: Novell MPR $

 This program is an unpublished copyrighted work which is proprietary to
 Novell, Inc. and contains confidential information that is not to be
 reproduced or disclosed to any other person or entity without prior
 written consent from Novell, Inc. in each and every instance.

 WARNING: Unauthorized reproduction of this program as well as
 unauthorized preparation of derivative works based upon the program or
 distribution of copies by sale, rental, lease or lending are violations
 of federal copyright laws and state trade secret laws, punishable by
 civil and criminal penalties.

--

$Log: K:/proj/atm/include/vcs/atmhsmif.h_v $
 *
 * Rev 1.14 31 May 1996 18:24:16 HBOTS
 * Remove usage of old "ecb.h", in favor of "odi.h". Add some more
 * debugging for Call Ref and VPCI owner.
 *
 * Rev 1.13 21 Nov 1995 11:14:02 HBOTS
 * Remove "atmaddr.h" usage for HSMs.
 *
 * Rev 1.12 10 Nov 1995 13:13:52 HBOTS

6-62 ODI ATM HSM Specification

Version 1.0

ATM ODI HSM Specification
Documentation Part Number: 107-000083-001

September 9, 1998

 * Add BusTag to HSM registration. Adapt to MSM/NBI usage.
 *
 * Rev 1.11 02 Nov 1995 13:45:36 HBOTS
 * Update Copyright message to include 1996.
 *
 * Rev 1.10 15 Sep 1995 13:00:28 HBOTS
 * Correct problem with Watcom 10.5 compiler.
 *
 * Rev 1.8 14 Sep 1995 18:03:52 HBOTS
 * Prevent Server crash when driver asks for zero length shared RAM
 * for a non-zero address.
 *
 * Rev 1.7 04 Aug 1995 08:56:46 HBOTS
 * Add HSM Shutdown procedure (called per adapter).
 *
 * Rev 1.5 25 Jul 1995 11:50:56 HBOTS
 * Add API atmtsm_get_maximum_ecb_size.
 *
 * Rev 1.4 09 Jun 1995 17:28:06 HBOTS
 * Pass cell_loss_ratio to HSM for PVCs. Add Send OAM Cell to HSM i/f.
 *
 * Rev 1.3 24 May 1995 18:53:30 HBOTS
 * Use ATMECB (struct _ECB_ or struct ECB, based on ODI.H or ECB.H).
 *
 * Rev 1.2 23 May 1995 16:13:30 HBOTS
 * Use ODI.H instead of ECB.H. Make preparations for C-ODI.
 *
 * Rev 1.1 19 May 1995 15:10:00 HBOTS
 * Add release reason for insufficient VCs.

$EndLog: $

--------------------------- End Module Header --------------------------- */

#ifndef ATMHSMIF_H
#define ATMHSMIF_H

#include "atmqos.h"

#ifndef _ODI_Include_
#include <odi.h>
#endif
#define ATMECB struct _ECB_

/*
 * R E G I S T R A T I O N V E R S I O N N U M B E R
 * ===
 *
 * When the HSM registers with the ATM TSM, it must pass the following
 * version number. The TSM will reject the registration when the
 * version number it has been built with does not match and it cannot
 * support the older version. The oldest version number indicates how
 * much backward compatibility TSM supports.

Include Files 6-63

Version 1.0

ATM ODI HSM Specification
Documentation Part Number: 107-000083-001

September 9, 1998

 */

#define ATMTSM_HSM_VERSION 5
#define ATMTSM_HSM_OLDEST_VERSION 4

/*
 * The following are definitions of the two receive entry points the
 * TSM provides to the HSM.
 */

typedef void ATMHSM_TSM_RCV_PROC
 (ATM_HANDLE tsm_vc_handle, ATMECB* ecb_ptr);
typedef ATMECB* ATMHSM_TSM_RCV_GET_ECB_PROC
 (ATM_HANDLE tsm_vc_handle, ATMECB* ecb_ptr);

typedef int ATMHSM_ISR_PROC (ATM_HANDLE hsm_ads_handle);
typedef void ATMHSM_POLL_PROC (ATM_HANDLE hsm_ads_handle);
typedef void ATMHSM_PERIODIC_PROC (ATM_HANDLE hsm_ads_handle);

/*
 * Data qualifying information
 * ===========================
 *
 * ATM defines a padding word of 16 bits (CPCS/U) to fill the last
 * cell of an AAL5 frame. Some Applications may want to use this word
 * to relay extra information across the VC. The following macro
 * allows the Application and the HSM to pass that information (by
 * using the Driver Workspace bytes 0 and 1). Applications that don't
 * care to use this do not have to fill out these bytes, thus sending
 * garbage across.
 */

#ifdef _ODI_Include_
#define CPCS_U(ecb_ptr) \
 ((ecb_ptr)->ECB_DriverWorkspace.DWs_i16val [0])
#else
#define CPCS_U(ecb_ptr) \
 ((UINT16) &((ecb_ptr)->driverWorkspace [0]))
#endif

/*
 * An congestion flag is passed with incoming data from the HSM to the
 * User Application.
 */

#define RECEIVE_CONGESTION 0x01

#ifdef _ODI_Include_
#define RECEIVE_FLAGS(ecb_ptr) \
 ((ecb_ptr)->ECB_DriverWorkspace.DWs_i8val [2])
#else
#define RECEIVE_FLAGS(ecb_ptr) \
 (ecb_ptr)->driverWorkspace [2])

6-64 ODI ATM HSM Specification

Version 1.0

ATM ODI HSM Specification
Documentation Part Number: 107-000083-001

September 9, 1998

#endif

/*
 * Interrupt and Multiprocessor Lock definitions
 * ===
 */

/*
 * The user must allocate the space for each lock, and guarantee
 * proper alignment (on a memory word boundary). In case of NW386,
 * 32-bit alignment is required.
 *
 * There are two sets of lock calls, one where the TSM will disable
 * interrupts, as well as acquiring the lock, another where just the
 * lock is obtained. The latter have a suffix of "_ni", and assume
 * that the HSM has interrupts disabled.
 */

typedef struct atmtsm_lock
{
 UINT32 lock;
 UINT32 interrupt_flags;
}
ATMTSM_LOCK;

/*
 * T H E H S M _ V C _ H A N D L E , A N D O T H E R I N F O
 * ===
 *
 * The HSM can return the hsm_vc_handle in one of the following ways:
 *
 * - When returning from control ATM_TSM_TO_HSM_ENABLE_VC, by
 * inserting the hsm_vc_handle in field "hsm_vc_handle" of the
 * "atmhsm_control".enable_vc.
 *
 * - Upon passing the control ATM_HSM_TO_TSM_VC_ENABLED to the TSM. If
 * the HSM operates in this way, it may be possible that the TSM calls
 * the HSM with the control ATM_TSM_TO_HSM_DISABLE_VC, with a
 * NULL_ATM_HANDLE. The HSM must be able to accept this control, and
 * use the VPI_VCI number to identify the virtual connection that must
 * be disabled (before it has been completely enabled).
 *
 * The TSM will not pass output to the HSM, until the VC is fully
 * enabled (the 2-way handshake is completed). Conversely, the HSM
 * must not pass input until the VC is fully enabled either.
 *
 * The TSM may call the HSM during processing the positive reply to a
 * Contract Verification (the ATM_HSM_TO_TSM_CONTRACT_VERIFIED), with
 * a ATM_TSM_TO_HSM_ENABLE_VC.
 *
 * Both the ATM_HSM_TO_TSM_DISABLE_VC and ATM_TSM_TO_HSM_DISABLE_VC
 * do not expect a reply (are unilateral).
 */

Include Files 6-65

Version 1.0

ATM ODI HSM Specification
Documentation Part Number: 107-000083-001

September 9, 1998

/*
 * A T M _ H S M _ T O _ T S M _ C O N T R O L
 * ===
 *
 * The following defines the Control information passed from the HSM
 * to the TSM. The HSM, upon registration, passes the Control Entry
 * point (procedure address to be called by the TSM) to the TSM.
 *
 * Note that HSM cannot allocate memory until after the registration
 * is complete. It also may need the registered hardware to obtain
 * such things as the End Station Identifier (ESI). Therefore, after
 * registration but before HSM starts the interface, it can update
 * such control information (ATM_HSM_TO_TSM_UPDATE_CONTROL).
 */

#define ATM_HSM_TO_TSM_REGISTER_HW 1
#define ATM_HSM_TO_TSM_DEREGISTER_HW 2
#define ATM_HSM_TO_TSM_DEREGISTER 3
#define ATM_HSM_TO_TSM_START_INTERFACE 4
#define ATM_HSM_TO_TSM_STOP_INTERFACE 5
#define ATM_HSM_TO_TSM_CONTRACT_VERIFIED 6
#define ATM_HSM_TO_TSM_VC_ENABLED 7
#define ATM_HSM_TO_TSM_DISABLE_VC 8
#define ATM_HSM_TO_TSM_STOP_OUTPUT 9 /* Begin Output Flow Control */
#define ATM_HSM_TO_TSM_START_OUTPUT 10 /* End Output Flow Control */

/*
 * The following defines the information passed during registration of
 * the hardware. For future extention, make sure all unused fields are
 * zero.
 */

typedef struct
{
 char* transmission_type; /* e.g. SDH, SONETSTSx, IBM */
 char* media_type; /* e.g. FIBER, COAX, UTP5 */
 UINT32 speed; /* speed in Kbps/Mbps/Gbps */
 UINT8 speed_base; /* 0=Kbps, 1=Mbps, 2=Gbps */
 UINT8 upper_vpc; /* highest Virtual Path Conn nr */
 UINT16 upper_vcc; /* " Virtual Channel Conn nr */
 UINT32 max_cell_rate; /* Cells per Second */
 UINT8 max_physical_fragments; /* atmtsm_logical_to_physical */
 UINT8 reserved_1 [3];
 void* bus_tag; /* Null or from CMSMGetBusTag */
 UINT8 esi [6];
 UINT8 reserved_2 [14];
 ATMHSM_ISR_PROC*
 hsm_isr_proc; /* interrupt service routine */
 UINT16 sharing_flags;
 UINT16 slot_number;
 UINT16 channel_number;
 UINT16 port0;

6-66 ODI ATM HSM Specification

Version 1.0

ATM ODI HSM Specification
Documentation Part Number: 107-000083-001

September 9, 1998

 UINT16 port0_range;
 UINT16 port1;
 UINT16 port1_range;
 UINT8 interrupt_number; /* (IRQ) 0xff means none used */
 UINT8 dma_line; /* 0xff means none used */
 void* memory0_address; /* shared RAM physical address */
 UINT32 memory0_bytes; /* shared RAM size */
 void* memory1_address;
 UINT32 memory1_bytes;
 void* linear0_address; /* Ret: shared RAM logical addr */
 void* linear1_address;
}
ATM_HSM_HW_INFO;

typedef struct atm_hsm_to_tsm_control
{
 UINT32 control_type;
 ATM_HANDLE tsm_ads_handle;
 union
 {
 struct /* R E G I S T E R _ H W */
 {
 ATM_HSM_HW_INFO* hw_info_ptr;

 } register_hw;

 struct /* D E R E G I S T E R _ H W */
 {
 no_additional_info;

 } deregister_hw;

 struct /* D E R E G I S T E R */
 {
 no_additional_info;

 } deregister;

 struct /* S T A R T _ I N T E R F A C E */
 {
 no_additional_info;

 } start_interface;

 struct /* S T O P _ I N T E R F A C E */
 {
 no_additional_info;

 } stop_interface;

 struct /* C O N T R A C T _ V E R I F I E D */
 {
 ATM_HANDLE tsm_contract_handle;/* set by HSM, as given by TSM */

Include Files 6-67

Version 1.0

ATM ODI HSM Specification
Documentation Part Number: 107-000083-001

September 9, 1998

 ATM_QOS_REC qos; /* quality of service */
 UINT8 return_code; /* 0 when accepted by HSM */

 } contract_verified;

 struct /* V C _ E N A B L E D */
 {
 ATM_HANDLE tsm_vc_handle; /* set by HSM, as given by TSM */
 ATM_HANDLE hsm_vc_handle; /* set by HSM */

 } vc_enabled;

 struct /* D I S A B L E _ V C */
 {
 ATM_HANDLE tsm_vc_handle;
 UINT8 reason_code;

 } disable_vc;

 struct /* S T O P _ O U T P U T */
 {
 ATM_HANDLE tsm_vc_handle;

 } stop_output;

 struct /* S T A R T _ O U T P U T */
 {
 ATM_HANDLE tsm_vc_handle;

 } start_output;

 } info;
}
ATM_HSM_TO_TSM_CONTROL;

/*
 * Errors returned from atmtsm_hsm_control
 * ---------------------------------------
 */

#define ATM_HSM_CTRL_COMPLETE 0
#define ATM_HSM_CTRL_BAD_TSM_ADS_HANDLE -1
#define ATM_HSM_CTRL_INVALID -2
#define ATM_HSM_CTRL_HARDWARE_REGISTER_FAILURE -3
#define ATM_HSM_CTRL_BAD_START_STOP_INTERFACE -4
#define ATM_HSM_CTRL_INTERFACE_MUST_BE_STOPPED -6
#define ATM_HSM_CTRL_HW_ALREADY_REGISTERED -6 /* as previous */
#define ATM_HSM_CTRL_BAD_TSM_VC_HANDLE -7

/*
 * Register Hardware sharing flags
 * -------------------------------
 */

6-68 ODI ATM HSM Specification

Version 1.0

ATM ODI HSM Specification
Documentation Part Number: 107-000083-001

September 9, 1998

#define ATM_SHARE_PORT0 0x0002
#define ATM_SHARE_PORT1 0x0004
#define ATM_SHARE_MEMORY0 0x0008
#define ATM_SHARE_MEMORY1 0x0010
#define ATM_SHARE_INTERRUPT 0x0020
#define ATM_SHARE_DMA 0x0080

/*
 * A T M _ T S M _ T O _ H S M _ C O N T R O L
 * ===
 *
 * The following defines the Control information passed from the TSM
 * to the HSM. The HSM, upon registration, passes the Control Entry
 * point (procedure address to be called by the TSM) to the TSM.
 */

#define ATM_TSM_TO_HSM_VERIFY_CONTRACT 1
#define ATM_TSM_TO_HSM_ENABLE_VC 2
#define ATM_TSM_TO_HSM_DISABLE_VC 3
#define ATM_TSM_TO_HSM_CONTROL_CHANGE 4
#define ATM_TSM_TO_HSM_SEND_OAM_CELL 5

typedef struct atm_tsm_to_hsm_control
{
 UINT32 control_type;
 ATM_HANDLE hsm_ads_handle;
 union
 {
 struct /* V E R I F Y _ C O N T R A C T */
 {
 ATM_HANDLE tsm_contract_handle;
 ATM_QOS_REC qos; /* quality of service */

 } verify_contract;

 struct /* E N A B L E _ V C */
 {
 ATM_HANDLE tsm_vc_handle;
 UINT32 vpi_vci; /* set by TSM */
 ATM_QOS_REC qos; /* quality of service */
 ATM_HANDLE hsm_vc_handle; /* set to NULL_ATM_HANDLE (TSM),
 optionally returned by HSM */
 ATMHSM_TSM_RCV_PROC* tsm_rcv_proc;
 ATMHSM_TSM_RCV_GET_ECB_PROC* tsm_rcv_get_ecb_proc;

 } enable_vc;

 struct /* D I S A B L E _ V C */
 {
 UINT32 vpi_vci;
 ATM_HANDLE hsm_vc_handle; /* passed by TSM (maybe */
 /* NULL_ATM_HANDLE) */

Include Files 6-69

Version 1.0

ATM ODI HSM Specification
Documentation Part Number: 107-000083-001

September 9, 1998

 } disable_vc;

 struct /* C O N T R O L _ C H A N G E */
 {
 ATM_HANDLE hsm_vc_handle;
 ATMHSM_TSM_RCV_PROC* tsm_rcv_proc;
 ATMHSM_TSM_RCV_GET_ECB_PROC* tsm_rcv_get_ecb_proc;

 } control_change;

 struct /* S E N D _ O A M _ C E L L */
 {
 ATM_HANDLE hsm_vc_handle; /* VC to send OAM Cell on */
 ATMECB* oam_cell_ecb_ptr;

 } send_oam_cell;

 } info;
}
ATM_TSM_TO_HSM_CONTROL;

/*
 * Contract Verify return codes
 * ----------------------------
 */

#define HSM_CONTRACT_ACCEPTED 0
#define HSM_CONTRACT_CANNOT_DO_RATE 1

/*
 * Disable VC reason codes
 * -----------------------
 */

#define HSM_DISABLE_UNDEFINED 0
#define HSM_DISABLE_TOO_MANY_VCS 1

/*
 * Receive Data Error Types (atmtsm_rcv_error/atmtsm_rcv_vc_error)
 * ---
 */

#define RCV_ERROR_DISABLED_VCI 1 /* through "atmtsm_rcv_error" only */
#define RCV_ERROR_CRC 2
#define RCV_ERROR_TIMEOUT 3 /* Missing cells */
#define RCV_ERROR_PDU_TOO_LARGE 4

/*
 * Macro to get the Physical Receive Address for the Receive ECB
 * ---
 *
 * The physical address is inserted by the ATMTSM when the ECB is

6-70 ODI ATM HSM Specification

Version 1.0

ATM ODI HSM Specification
Documentation Part Number: 107-000083-001

September 9, 1998

 * obtained, and thus matches the logical address as stored at that
 * time.
 */

#ifdef _ODI_Include_
#define PHYSICAL_RCV_ADDRESS(ecb_ptr) \
 (*(UINT8**) &(ecb_ptr)->ECB_ProtocolWorkspace.PWs_pval [1])
#else
#define PHYSICAL_RCV_ADDRESS(ecb_ptr) \
 (*(UINT8**) &(ecb_ptr)->socketNumber)
#endif

/*
 * Logical to Physical Fragment list definitions
 * ---
 *
 * The following are definitions used by the HSM and TSM to define the
 * memory fragment lists passed to "atmtsm_logical_to_physical".
 */

typedef struct atmtsm_fragment
{
 void* address;
 INT32 size;
}
ATMTSM_FRAGMENT;

typedef ATMTSM_FRAGMENT ATMTSM_FRAGMENT_LIST [];

/*
 * A T M T S M _ R E G I S T E R _ H S M
 * =====================================
 *
 * The following defines the structure to be used by the HSM when it
 * registers with the ATM TSM.
 */

typedef void ATMTSM_HSM_CONTROL_PROC (struct atm_tsm_to_hsm_control*
 h2t_cptr);
typedef void ATMTSM_HSM_SEND_PROC (ATM_HANDLE hsm_vc_handle,
 ATMECB* ecb_ptr);
typedef void ATMTSM_HSM_SHUTDOWN_PROC (ATM_HANDLE hsm_ads_handle);

typedef UINT8* ATM_CUSTOM_TEXT_LINE;
typedef ATM_CUSTOM_TEXT_LINE ATM_CUSTOM_STATS_LIST [];

/*
 * The following values are returned by the TSM after registration.
 * The value is platform dependend. A NetWare Server returns FAIR
 * since it may run certain applications that sometimes do not yield
 * for 10 Milliseconds or more. A NetWare Client (under NIOS) returns
 * LIMITED because it depends on timer interrupts. UnixWare returns
 * FAIR because it uses 1 Millisecond timer interrupts. Good indicates

Include Files 6-71

Version 1.0

ATM ODI HSM Specification
Documentation Part Number: 107-000083-001

September 9, 1998

 * that the OS polls are truely based on inversed load of the
 * processor(s).
 */

#define POLL_SUPPORT_LEVEL_NONE 0
#define POLL_SUPPORT_LEVEL_LIMITED 1 /* NetWare Client */
#define POLL_SUPPORT_LEVEL_FAIR 2 /* NetWare Server */
#define POLL_SUPPORT_LEVEL_GOOD 3

typedef struct atmtsm_register_hsm_control
{
 /* Values passed by the HSM to the TSM */

 UINT32 version; /* must be ATMTSM_HSM_VERSION */
 struct LoadDefinitionStructure**
 hsm_nlm_handle_ptr; /* passed by NetWare to HSM, */
 /* must point to stack variable */
 ATMTSM_HSM_CONTROL_PROC*
 hsm_control_proc;
 ATMTSM_HSM_SEND_PROC*
 hsm_send_proc; /* driver send routine */
 char* card_name; /* (long) name of card */
 char* driver_name; /* (short) name of driver */
 char* board_name; /* up to 17 characters */
 UINT16 driver_options;
 UINT16 max_frame_size; /* 512..65535 */
 ATM_CUSTOM_STATS_LIST* /* NULL indicates no such Stats */
 custom_stats_ptr;
 UINT32 hsm_ads_size; /* size of HSM Adapter Data Space */
 ATM_HANDLE hsm_ads_handle; /* assigned by TSM or HSM */
 ATMTSM_HSM_SHUTDOWN_PROC*
 hsm_shutdown_proc; /* allows for hardware shutdown */
 UINT8 future_extension_1 [8]; /* preset to zeros */

 /* Values returned by the TSM to the HSM */

 ATM_HANDLE tsm_ads_handle;
 UINT32 board_number;
 UINT8 poll_support_level; /* 0 .. 3 */
 UINT8 future_extension_2 [15]; /* preset to zeros */
}
ATMTSM_REGISTER_HSM_CONTROL;

/*
 * Various driver options (all undefined option bits must be zero)
 * ---
 */

/* None are currently defined */

/*
 * Custom Statistics definitions
 * -----------------------------

6-72 ODI ATM HSM Specification

Version 1.0

ATM ODI HSM Specification
Documentation Part Number: 107-000083-001

September 9, 1998

 *
 * If the HSM uses custom statistics, the following record is an array
 * of pointers to the custom text. There must be one array-element per
 * custom counter, followed by a NULL pointer. Each text line must be
 * zero-byte terminated, and not contain more than 41 characters.
 *
 * To increment a custom statistics counter by one, the HSM must call
 * "atmtsm_incr_custom_counter", passing the custom statistic number
 * (the first one is zero) and the address of the TSM Adapater Data
 * Space.
 */

/*
 * Example of custom statistics usage:
 *
 * static ATM_CUSTOM_STATS_LIST custom_stats =
 * {
 * "Custom Statistic #0 Errors:",
 * "Some Other Custom Statistic Errors:",
 * NULL,
 * };
 */

/*
 * Various other definitions
 * -------------------------
 */

#define MAX_CARD_NAME 62
#define MAX_DRIVER_NAME 8
#define MAX_TRANSMISSION_TYPE 23
#define MAX_MEDIA_TYPE 23

#define SPEED_BASE_KBPS 0
#define SPEED_BASE_MBPS 1
#define SPEED_BASE_GBPS 2

/*
 * Errors returned from atmtsm_register_hsm
 * --
 */

#define ATM_HSM_REG_COMPLETE 0
#define ATM_HSM_REG_VERSION_MISMATCH -1
#define ATM_HSM_REG_NO_RESOURCES -2
#define ATM_HSM_REG_LSL_REGISTER_FAILURE -3
#define ATM_HSM_REG_FIRMWARE_LOAD_FAILED -4

/*
 * A T M T S M E N T R Y - P O I N T S F O R H S M
 * ===
 *
 * After successful VC Enabling, there will be a tsm_vc_handle and a

Include Files 6-73

Version 1.0

ATM ODI HSM Specification
Documentation Part Number: 107-000083-001

September 9, 1998

 * hsm_vc_handle. The HSM defines the value of the hsm_vc_handle. It
 * may be the vpi_vci number, or the address of a HSM defined VC
 * Control Block, or anything else.
 *
 * When the HSM requests an ECB (through atmtsm_get_ecb), the ATM TSM
 * will preset field ecb_ptr->fragmentDescriptor [0].address. The HSM
 * must store the first byte of the incoming frame at this address (in
 * contiguous memory).
 *
 * When the HSM passes input received for a specific VC, it must pass
 * the correct tsm_vc_handle. Receive ECBs are not associated with any
 * VC at the time the HSM requests one. The receive entry points are
 * passed to the HSM during the ESTABLISH VC command, and may be
 * changed by the TSM at a later time.
 *
 * Upon deregistration, the HSM must pass the tsm_ads_handle (same one
 * that was assigned during registration)
 */

extern long atmtsm_register_hsm (ATMTSM_REGISTER_HSM_CONTROL*);
extern long atmtsm_hsm_control (ATM_HSM_TO_TSM_CONTROL*);
extern void atmtsm_poll_address (ATM_HANDLE tsm_ads_handle,
 ATMHSM_POLL_PROC* hsm_poll_proc,
 UINT32 minimum_microseconds_delay);
extern void atmtsm_periodic_call_address (ATM_HANDLE tsm_ads_handle,
 ATMHSM_PERIODIC_PROC* hsm_periodic_proc,
 UINT32 milliseconds);
extern UINT8* atmtsm_get_firmware (ATM_HANDLE tsm_ads_ptr,
 UINT32* firmware_length_ptr);
extern UINT32 atmtsm_micro_delay (long microseconds);
extern UINT32 atmtsm_get_maximum_ecb_size (void);
extern ATMECB* atmtsm_get_ecb (ATM_HANDLE tsm_ads_handle);
extern void atmtsm_return_ecb (ATMECB* ecb_ptr);
extern void atmtsm_send_complete (ATMECB* ecb_ptr);
extern void atmtsm_rcv_oam_cell (ATM_HANDLE tsm_vc_handle, ATMECB* ecb_ptr);
extern void atmtsm_rcv_error (ATM_HANDLE tsm_ads_handle, ATMECB* ecb_ptr,
 UINT8 error_type);
extern void atmtsm_rcv_vc_error (ATM_HANDLE tsm_vc_handle, ATMECB* ecb_ptr,
 UINT8 error_type);
extern void atmtsm_incr_custom_counter (ATM_HANDLE tsm_ads_handle,
 UINT8 custom_counter_number);
extern void atmtsm_update_custom_counter (ATM_HANDLE tsm_ads_handle,
 UINT8 custom_counter_number, long update_value);
extern void atmtsm_set_custom_counter (ATM_HANDLE tsm_ads_ptr,
 UINT8 custom_counter_number, UINT32 value);
extern int atmtsm_printf (const char* format, ...);
extern void* atmtsm_alloc (ATM_HANDLE tsm_ads_handle, UINT32 bytes);
extern void atmtsm_free (void* mem_ptr);
extern UINT32 atmtsm_logical_to_physical_list (ATM_HANDLE tsm_ads_handle,
 INT8 logical_fragments, ATMTSM_FRAGMENT* logical_list,
 ATMTSM_FRAGMENT* physical_list);
extern void* atmtsm_logical_to_physical (void* logical_address);
extern void* atmtsm_physical_to_logical (void* physical_address);

6-74 ODI ATM HSM Specification

Version 1.0

ATM ODI HSM Specification
Documentation Part Number: 107-000083-001

September 9, 1998

extern UINT8 atmtsm_register_lock (struct atmtsm_lock* lock_ptr,
 char* lock_id);
extern void atmtsm_deregister_lock (struct atmtsm_lock* lock_ptr);
extern void atmtsm_lock (struct atmtsm_lock* lock_ptr);
extern void atmtsm_lock_ni (struct atmtsm_lock* lock_ptr);
extern UINT8 atmtsm_conditional_lock (struct atmtsm_lock* lock_ptr);
extern UINT8 atmtsm_conditional_lock_ni (struct atmtsm_lock* lock_ptr);
extern void atmtsm_unlock (struct atmtsm_lock* lock_ptr);
extern void atmtsm_unlock_ni (struct atmtsm_lock* lock_ptr);

#endif /* ATMHSMIF_H */

ATMHSM.IMP

#
(C) Copyright 1995-1996 Novell, Inc. All Rights Reserved.
#
File Name : atmhsm.imp
Author : Henk J. Bots
Created On : Tue, Apr 4 (10:04:12) 1995
Last Modified By: Henk J. Bots
Last Modified On: Tue, May 21 (18:33:24) 1996
Update Count : 12
Status : ATMTSM entry points for HSMs
#
#
$Header: K:/proj/atm/imports/vcs/atmhsm.imv 1.7 21 May 1996 18:33:38 HBOTS $

$Project: Novell MPR ATM Development $

$Creator: Henk J. Bots $

--

This program is an unpublished copyrighted work which is proprietary
to Novell, Inc. and contains confidential information that is not
to be reproduced or disclosed to any other person or entity without
prior written consent from Novell, Inc. in each and every instance.

WARNING: Unauthorized reproduction of this program as well as
unauthorized preparation of derivative works based upon the
program or distribution of copies by sale, rental, lease or
lending are violations of federal copyright laws and stat trade
secret laws, punishable by civil and criminal penalties.
#
--

$Log: K:/proj/atm/imports/vcs/atmhsm.imv $

Rev 1.7 21 May 1996 18:33:38 HBOTS

Include Files 6-75

Version 1.0

ATM ODI HSM Specification
Documentation Part Number: 107-000083-001

September 9, 1998

Remove last comma.

Rev 1.6 20 Feb 1996 10:09:34 HBOTS
Add CMSM import symbols available to ATM HSMs.

Rev 1.3 02 Nov 1995 13:45:44 HBOTS
Update Copyright message to include 1996.
#
 atmtsm_register_hsm,
 atmtsm_hsm_control,
 atmtsm_poll_address,
 atmtsm_periodic_call_address,
 atmtsm_micro_delay,
 atmtsm_get_firmware,
 atmtsm_get_maximum_ecb_size,
 atmtsm_get_ecb,
 atmtsm_return_ecb,
 atmtsm_send_complete,
 atmtsm_printf,
 atmtsm_alloc,
 atmtsm_free,
 atmtsm_logical_to_physical_list,
 atmtsm_logical_to_physical,
 atmtsm_physical_to_logical,
 atmtsm_rcv_oam_cell,
 atmtsm_rcv_error,
 atmtsm_rcv_vc_error,
 atmtsm_incr_custom_counter,
 atmtsm_update_custom_counter,
 atmtsm_set_custom_counter,
 atmtsm_register_lock,
 atmtsm_deregister_lock,
 atmtsm_lock,
 atmtsm_conditional_lock,
 atmtsm_unlock,
 atmtsm_lock_ni,
 atmtsm_conditional_lock_ni,
 atmtsm_unlock_ni,
#
CMSM provided entry points (include "cmsm.h"). These entry points
are safe to be used by non LAN-ODI compliant HSMs.
#
 CMSMGetAlignment,
 CMSMGetBusInfo,
 CMSMGetBusName,
 CMSMGetBusTag,
 CMSMGetBusType,
 CMSMGetBusSpecificInfo,
 CMSMGetCardConfigInfo,
 CMSMGetCurrentTime,
 CMSMGetInstanceNumber,
 CMSMGetInstanceNumberMapping,
 CMSMGetNBIConfiguration,

6-76 ODI ATM HSM Specification

Version 1.0

ATM ODI HSM Specification
Documentation Part Number: 107-000083-001

September 9, 1998

 CMSMGetSlot,
 CMSMGetSlotName,
 CMSMGetUniqueIdentifier,
 CMSMGetUniqueIdentifierParameters,
 CMSMGetMicroTimer,
 CMSMSearchAdapter,
 CMSMScanBusInfo,
 CMSMReadPhysicalMemory,
 CMSMWritePhysicalMemory,
 CMSMRdConfigSpace8,
 CMSMRdConfigSpace16,
 CMSMRdConfigSpace32,
 CMSMWrtConfigSpace8,
 CMSMWrtConfigSpace16,
 CMSMWrtConfigSpace32,
 CMSMYieldWithDelay

PARSER.H

/*
 * (C) Copyright 1995 Novell, Inc., All Rights Reserved.
 *
 * File Name : parser.h
 * Author : Henk J. Bots
 * Created On : Mon, Jul 15 (14:26:22) 1993
 * Last Modified By: Henk J. Bots
 * Last Modified On: Tue, Jun 4 (09:46:18) 1996
 * Update Count : 85
 * Status : Unknown
 */

/* -----------------------Begin Module Header ------------------------------

$Header: K:/proj/parser/include/vcs/parser.h_v 1.6 04 Jun 1996 09:46:32 HBOTS $

$Project: Novell Multiprotocol Brouter $

$Locker: $

 This program is an unpublished copyrighted work which is proprietary to
 Novell, Inc. and contains confidential information that is not to be
 reproduced or disclosed to any other person or entity without prior
 written consent from Novell, Inc. in each and every instance.

 WARNING: Unauthorized reproduction of this program as well as
 unauthorized preparation of derivative works based upon the program or
 distribution of copies by sale, rental, lease or lending are violations
 of federal copyright laws and state trade secret laws, punishable by
 civil and criminal penalties.

Include Files 6-77

Version 1.0

ATM ODI HSM Specification
Documentation Part Number: 107-000083-001

September 9, 1998

--

$Log: K:/proj/parser/include/vcs/parser.h_v $
 *
 * Rev 1.6 04 Jun 1996 09:46:32 HBOTS
 * Add more information to the sample parse code.
 *
 * Rev 1.5 25 Sep 1995 11:36:18 HBOTS
 * Make usage of CLIB optional (by using ImportPublicSymbol).
 *
 * Rev 1.3 10 May 1995 18:07:10 HBOTS
 * Add some more useful comments, and GET_COMMAND_TEXT_PTR macro.
 *
 * Rev 1.2 25 Apr 1995 12:02:36 HBOTS
 * Minor modification for ANSI-C compatibility.
 *
 * Rev 1.1 17 Apr 1995 12:53:36 HBOTS
 * Improve sample code comments.
 *
 * Rev 1.0 13 Apr 1995 17:23:02 HBOTS
 * Initial version of PARSER at its own project directory.
 *
$EndLog: $

--------------------------- End Module Header --------------------------- */

#ifndef PARSER_H
#define PARSER_H

/*
 * When calling PARSER_INITIALIZE, the PARSER_IF_VERSION must be
 * passed. This allows the parser to verify compatibility. An error
 * will be returned when the versions are incompatible. If the version
 * is between the current and the minimum, the parser will accomodate
 * the differences.
 */

#define PARSER_IF_VERSION 5 /* More exported symbols */
#define PARSER_MINIMUM_IF_VERSION 3

#if 0
/***/
/********************* SAMPLE COMMAND PARSER ***************************/
/***/

/*
 * The following is a sample a command parsing program, using the
 * parser defined tables and interfaces. Note that most of the table
 * macros initialize internally used table parts, thus the omission of
 * semi-colons is needed.
 *
 * The parser is not case sensitive. All entered input is converted to
 * upper-case, with the of quote embedded Names.

6-78 ODI ATM HSM Specification

Version 1.0

ATM ODI HSM Specification
Documentation Part Number: 107-000083-001

September 9, 1998

 *
 * Parameter must be separated by a comma and/or one or more spaces
 * (or tabs). Multiple spaces/tabs/commas are treated as a single
 * space.
 *
 * The parser can check integer ranges, minimum and maximum lengths of
 * names, upper byte value of a given address (e.g. for a 46 bit
 * address).
 *
 * A boolean parameter may be defined by just its parameter name
 * (indicating a TRUE).
 *
 * A list of values must either be enclosed in parentheses "(1 2 3)" or
 * brackets "{ 1 2 4 }".
 *
 *
 * Example of some possible parameters and values:
 * ---
 *
 * Integer value: KW = 2, KW=0xff, KW=-7, KW=(0x22, 00012 56)
 *
 * Hex value: KW=0ff00, KW=100 KW=f19b
 * (parser will optionally perform range checking)
 *
 * Boolean value: KW, KW=true, KW=off, KW=yes, KW = on
 *
 * Name: KW=target_name, KW = "Name of thing", KW={n1,n2}
 * (parser will perform min/max length checking)
 *
 * Equate: KW=ieee, KW=dec, KW=none
 *
 * Address (hex): KW=1b-2-0-5a, KW=00001b02005a, KW=$d8-40-0-5a
 * ($ prefix indicates canonical conversion)
 *
 * Address (decimal): KW=128.55.12.14 KW=0x80.55.12.14 KW=1700.62000
 * (parser will check upper value of individual elements)
 *
 * Multi-Address: KW=(36:a00:1200:5:b2 1b-22-4-a6 1)
 *
 * Dual types: KW=55, KW=off (user specifies which two types are
 * allowed, hopefully preventing ambiguities, e.g. not
 * mixing names and alpha equates)
 *
 * The user has the option to Preview selected parameters and possibly
 * modify the associated values. This may be useful for things like
 * NODE=1b2578L, where the L needs to be removed prior to converting
 * the address. The user can convert the value to $1b2578 (which the
 * parser will use upon return to do canonical conversion).
 */

UINT32 parse_my_command (UINT8* command_text)

{

Include Files 6-79

Version 1.0

ATM ODI HSM Specification
Documentation Part Number: 107-000083-001

September 9, 1998

 static initial_load = TRUE;

 /*
 * The following are the user defined values that the parser will
 * return from ParserGetNextParameterAndValue (as user_id). It can be
 * used to identify the given parameter.
 */

#define PARM_STP 1
#define PARM_T 2
#define PARM_FS 3
#define PARM_VRN 4
#define PARM_NODE 5
#define PARM_IPA 6
#define PARM_LL 7
#define PARM_AA 8
#define PARM_DEBUG 9

 /*
 * NOTE that all table entries must be in upper case (with the
 * exception of user help and dimensions), otherwise the user is
 * forced to enter the Equated value as a string (KW="none") (the
 * parser will internally convert the (non-string) user entered data
 * to upper case prior to the various table lookups).
 */

 static PV_EQUATE pvt_stp =
 {
 { "IEEE", 1 },
 { "DEC", 2 },
 { "NONE", 0 },
 { "OFF", 0 },
 { NULL }, /* end of table */
 };
 static PV_COMPLEX_ADDRESS pvt_aa [] =
 {
 PVE_COMPLEX_ADDRESS (HEX_ADDRESS, 13 * 8, ':', WORD_SEPARATOR)
 PVE_COMPLEX_ADDRESS (HEX_ADDRESS, 6 * 8, '-', BYTE_SEPARATOR)
 PVE_COMPLEX_ADDRESS (HEX_ADDRESS, 1 * 8, '\0', NO_SEPARATOR)
 PVE_COMPLEX_ADDRESS_END
 };
 static UINT8* d_bytes = "Bytes"; /* For Help purposes only */
 static PV_INT_RANGE pvt_fs = { 512, 17800, &d_bytes };
 static PV_INT_RANGE pvt_vrn = { 1, 4095, NULL };
 static PV_EQUATE pvt_vrn_equ =
 {
 { "NONE", 0 },
 { "OFF", 0 },
 { NULL },
 };
 /*
 * NOTE that the preferred order for DUAL TYPES is:
 * 1) PDE_BOOLEAN

6-80 ODI ATM HSM Specification

Version 1.0

ATM ODI HSM Specification
Documentation Part Number: 107-000083-001

September 9, 1998

 * 2) PDE_EQUATE
 * 3) PDE_NAME
 * 4) PDE_HEX/INT(_RANGE) / PDE_ADDRESS (don't mix these!)
 */

 static PV_DUAL_TYPE dpvt_vrn =
 {
 PDE_EQUATE (PFP_NONE, &pvt_vrn_equ)
 PDE_INT_RANGE (PFP_NONE, &pvt_vrn)
 };
 static UINT8 *fs_help = "\t\t\tDefines maximum negotiated Frame Size\n";
 static UINT8 *t_help = "\t\t\tTarget Name is for the Call Manager\n";

 PARSER_PARAMETER_TABLE (test_parm_tbl)
 PTE_EQUATE ("SPANNING_TREE_PROTOCOL", "STP", PARM_STP,
 NO_USER_HELP, PFP_NONE, &pvt_stp)
 PTE_NAME ("TARGET", "T", PARM_T,
 &t_help, PFP_NONE, 1, 47)
 PTE_INT_RANGE ("FRAME_SIZES", "FS", PARM_FS,
 &fs_help, PFP_LIST_ALLOWED | PFP_DUPL_ALLOWED, &pvt_fs)
 PTE_DUAL_TYPE ("VIRTUAL_RING_NUMBER", "VRN", PARM_VRN,
 NO_USER_HELP, &dpvt_vrn)
 PTE_ADDRESS ("NODE", NULL, PARM_NODE,
 NO_USER_HELP, PFP_NONE,
 HEX_ADDRESS, 48, '-', BYTE_SEPARATOR)
 PTE_ADDRESS ("IP_ADDRESS", "IPA", PARM_IPA,
 NO_USER_HELP, PFP_REQUIRED,
 DECIMAL_ADDRESS, 32, '.', BYTE_SEPARATOR)
 PTE_INT ("LEARNING_LEVEL", "LL", PARM_LL,
 NO_USER_HELP, PFP_NONE)
 PTE_COMPLEX_ADDRESS ("ATM_ADDRESS", "AA", PARM_AA,
 NO_USER_HELP, PFP_NONE, &pvt_aa)
 PTE_BOOLEAN ("DEBUG", NULL, PARM_DEBUG,
 NO_USER_HELP, PFP_SUPPRESS_HELP)
 PARSER_PARAMETER_TABLE_END;

 PARSER_COMMAND_TABLE (test_cmd, "LOAD MYCOMMAND", PFC_NONE,
 test_parm_tbl, NULL);

 PARSER_INTERFACE pi;

 if (!ParserInitialize (&pi, &test_cmd, command_text,
 PARSER_IF_VERSION, NULL))
 {
 if (pi.user_id == PUI_HELP_REQUEST)
 {
 if (!initial_load)
 return (0); /* Help request complete */
 }
 return (1); /* Error or initial load Help request */
 }
 while (ParserGetNextParameterAndValue (&pi))
 {

Include Files 6-81

Version 1.0

ATM ODI HSM Specification
Documentation Part Number: 107-000083-001

September 9, 1998

 switch (pi.user_id)
 {
 case PARM_STP:
 /* pi_ptr->value.equ contains user defined equated value */
 break;
 case PARM_T:
 /* pi_ptr->value.name contains C-like name string */
 break;
 case PARM_FS:
 /*
 * Note that elements from a list of values can either be
 * obtaines with the following "while" loop, or by just doing
 * the next ParserGetNextParameterAndValue call, which will come
 * here with the next value for the same parameter.
 */
 do
 {
 /* pi_ptr->value.uint contains frame size */
 }
 while (pi.in_list && ParserGetNextValue (&pi));
 break;
 case PARM_VRN:
 /* pi_ptr->value.uint contains ring number */
 break;
 case PARM_NODE:
 case PARM_IPA:
 /* pi_ptr->value.address contains address bytes, size
 depends on maximum number of bits of address. If user
 entered less, parser will zero fill the upper byte(s). */
 break;
 case PARM_LL:
 /* pi.value.uint/sint contains LL value */
 break;
 case PARM_AA:
 {
 int i;
 for (i = 0; i < PARSER_MAX_ADDRESS; i++)
 OutputToScreen (screen_ptr, " %02x",
 pi.value.address [i]);
 OutputToScreen (screen_ptr, "\n");
 }
 break;
 case PARM_DEBUG:
 if (pi.value.boolean)
 EnterDebugger ();
 default:
 return (2); /* error */
 break;
 }
 }
 initial_load = FALSE;
 return (0); /* no errors */
}

6-82 ODI ATM HSM Specification

Version 1.0

ATM ODI HSM Specification
Documentation Part Number: 107-000083-001

September 9, 1998

/*
 * The NetWare loader will call the NLM start procedure with (at
 * least) the following parameters:
 */

long nlm_start_proc (struct LoadDefinitionStructure* nlm_handle,
 void* screen_ptr,
 UINT8* command_text_ptr)
{

}

/*
 * If macro GET_COMMAND_TEXT_PTR is used, the NLM start procedure may
 * look as follows:
 */

long nlm_start_proc (struct LoadDefinitionStructure* nlm_handle)
{
 UINT8 command_text_ptr = GET_COMMAND_TEXT_PTR (&nlm_handle);

}

/*
 * When the user entered "LOAD xxx.NLM p1=x p2=y", the command text
 * pointer will directly point to "p1=x p2=y", thus that pointer can
 * be passed unchanged to ParserInitialize.
 */

/***/
/***************** END OF SAMPLE COMMAND PARSER ************************/
/***/
#endif

#define LITTLE_ENDIAN /* do byte swapping things */

#ifndef UINT8
#define UINT8 unsigned char
#endif

#ifndef UINT16
#define UINT16 unsigned short
#endif

#ifndef UINT32
#define UINT32 unsigned long
#endif

#ifndef INT32
#define INT32 long
#endif

Include Files 6-83

Version 1.0

ATM ODI HSM Specification
Documentation Part Number: 107-000083-001

September 9, 1998

#ifndef NULL
#define NULL 0
#endif

#ifndef FALSE
#define FALSE 0
#define TRUE 1
#endif

#define GET_COMMAND_TEXT_PTR(nlm_handle_pptr) \
 *((UINT8**) (nlm_handle_pptr) + 2)

#define PARSER_MAX_PARM_SIZE 31
#define PARSER_MAX_VALUE_SIZE 63 /* per value (element of list) */

#define PARSER_MAX_ADDRESS 20

#define NO_USER_HELP NULL

#ifdef LITTLE_ENDIAN
#define STORE_BYTES(b1, b2, b3, b4) \
 (b4<<24) + (b3<<16) + (b2<<8) + b1
#else
#define STORE_BYTES(b1, b2, b3, b4) \
 (b1<<24) + (b2<<16) + (b3<<8) + b4
#endif

/*
 * Macros to build the Parser command, parameter and parameter value
 * tables. The user_id is assigned by the user (0..239), and will be
 * returned by the parser as a way to identify the found parameter.
 * The (optional) help should be a single line of up to 55 characters,
 * preceeded by a 3 Tab characters ("\t\t\t"), and terminated by a
 * NewLine character ("\n").
 */

#define PARSER_COMMAND_TABLE(command_table_name, command_id_string, \
 command_flags, parameter_table_name, \
 parameter_preview_call_ptr) \
static COMMAND_TABLE command_table_name = \
{ \
 command_id_string, /* id, for error messages */ \
 command_flags, /* PFC_... flags */ \
 parameter_table_name, \
 parameter_preview_call_ptr, \
};

#define PARSER_PARAMETER_TABLE(parameter_table_name) \
static PARAMETER_TABLE parameter_table_name = \
{
#define PARSER_PARAMETER_TABLE_END \
 { NULL }, \
};

6-84 ODI ATM HSM Specification

Version 1.0

ATM ODI HSM Specification
Documentation Part Number: 107-000083-001

September 9, 1998

#define PTE_EQUATE(long_name, short_name, user_id, help, \
 parm_flags, equate_values) \
 { \
 long_name, short_name, help, user_id, \
 PDE_EQUATE (parm_flags, equate_values) \
 },
#define PTE_NAME(long_name, short_name, user_id, help, \
 parm_flags, min_size, max_size) \
 { \
 long_name, short_name, help, user_id, \
 PDE_NAME (parm_flags, min_size, max_size) \
 },
#define PTE_BOOLEAN(long_name, short_name, user_id, help, \
 parm_flags) \
 { \
 long_name, short_name, help, user_id, \
 PDE_BOOLEAN (parm_flags) \
 },
#define PTE_INT_RANGE(long_name, short_name, user_id, help, \
 parm_flags, range_values) \
 { \
 long_name, short_name, help, user_id, \
 PDE_INT_RANGE (parm_flags, range_values) \
 },
#define PTE_HEX_RANGE(long_name, short_name, user_id, help, \
 parm_flags, range_values) \
 { \
 long_name, short_name, help, user_id, \
 PDE_HEX_RANGE (parm_flags, range_values) \
 },
#define PTE_INT(long_name, short_name, user_id, help, \
 parm_flags) \
 { \
 long_name, short_name, help, user_id, \
 PDE_INT (parm_flags) \
 },
#define PTE_HEX(long_name, short_name, user_id, help, \
 parm_flags) \
 { \
 long_name, short_name, help, user_id, \
 PDE_HEX (parm_flags) \
 },
#define PTE_ADDRESS(long_name, short_name, user_id, help, \
 parm_flags, base, nr_bits, separator, \
 bytes_per_separator) \
 { \
 long_name, short_name, help, user_id, \
 { PT_ADDRESS, parm_flags, \
 STORE_BYTES (base, nr_bits, separator, \
 bytes_per_separator) }, \
 },
#define PTE_COMPLEX_ADDRESS(long_name, short_name, user_id, \

Include Files 6-85

Version 1.0

ATM ODI HSM Specification
Documentation Part Number: 107-000083-001

September 9, 1998

 help, parm_flags, complex_addr_pvt) \
 { \
 long_name, short_name, help, user_id, \
 { PT_COMPLEX_ADDRESS, parm_flags|PFP_LIST_ALLOWED, \
 complex_addr_pvt }, \
 },
#define PTE_DUAL_TYPE(long_name, short_name, user_id, help, \
 dual_type_pvt) \
 { \
 long_name, short_name, help, user_id, \
 { PT_DUAL_TYPE, 0, dual_type_pvt }, \
 },
#define PTE_USER_PARSED(long_name, short_name, user_id, help, \
 parm_flags) \
 { \
 long_name, short_name, help, user_id, \
 { PT_USER_PARSED, parm_flags }, \
 },

/*
 * The following macros define parameter types that can be used for
 * the "dual type".
 */

#define PDE_EQUATE(parm_flags, equate_values) \
 { PT_EQUATE, parm_flags, equate_values },

#define PDE_NAME(parm_flags, min_size, max_size) \
 { PT_NAME, parm_flags|PFP_EMPTY_ALLOWED, \
 STORE_BYTES (min_size, max_size, 0, 0) },

#define PDE_INT_RANGE(parm_flags, range_values) \
 { PT_INT_RANGE, parm_flags, range_values },

#define PDE_HEX_RANGE(parm_flags, range_values) \
 { PT_HEX_RANGE, parm_flags, range_values },

#define PDE_INT(parm_flags) \
 { PT_INT_RANGE, parm_flags, NULL },

#define PDE_BOOLEAN(parm_flags) \
 { PT_BOOLEAN, parm_flags|PFP_EMPTY_ALLOWED, NULL },

#define PDE_HEX(parm_flags) \
 { PT_HEX_RANGE, parm_flags, NULL },

#define PDE_ADDRESS(parm_flags, base, nr_bits, \
 separator, bytes_per_separator) \
 { PT_ADDRESS, parm_flags, STORE_BYTES (base, \
 nr_bits, separator, bytes_per_separator) },

/*
 * The following definitions are values passed to PTE_ADDRESS.

6-86 ODI ATM HSM Specification

Version 1.0

ATM ODI HSM Specification
Documentation Part Number: 107-000083-001

September 9, 1998

 */

#define HEX_ADDRESS 16 /* Address given in Hexadecimal */
#define DECIMAL_ADDRESS 10
#define OCTAL_ADDRESS 8

#define NO_SEPARATOR 0
#define BYTE_SEPARATOR 1 /* Separator between Bytes, */
#define WORD_SEPARATOR 2 /* Words (16 bits)*/
#define DWORD_SEPARATOR 4 /* or DoubleWords (32 bits) */

/*
 * Definitions for PTE_COMPLEX_ADDRESS (PVT initialization)
 */

#define PVE_COMPLEX_ADDRESS(base, nr_bits, separator, \
 bytes_per_separator) \
 { base, nr_bits, separator, bytes_per_separator },
#define PVE_COMPLEX_ADDRESS_END { 0, 0, 0, 0 },

/*
 * In case an error, after calling PARSER_GET_GIVEN_PARM_AND_VALUE or
 * PARSER_GET_NEXT_PARM_AND_VALUE the parser will return the following
 * USER_ID's. Note that the parser will have issued an appropriate
 * error message.
 */

#define PUI_PARAMETER_MISSING 0xff /* required parameter is missing */
#define PUI_PARAMETER_UNKNOWN 0xfe /* unknown paramater */
#define PUI_VALUE_BAD 0xfd /* parameter value bad */
#define PUI_HELP_REQUEST 0xfc /* user has been shown help screen */

#define PUI_PARSER_DEFINED 0xf0 /* user has user_id's 0..239 */

/*
 * Definition of the command "flags"
 * ---------------------------------
 */

#define PFC_NONE 0x0000
#define PFC_UNKNOWN_PARMS_ALLOWED 0x8000 /* allow (ignore) unknown parms */

/*
 * Definition of the parameter "flags"
 * -----------------------------------
 */

#define PFP_NONE 0x0000
#define PFP_REQUIRED 0x0001 /* Parameter (KW) required. Command */
 /* fails when this parameter is omitted */
#define PFP_SUPPRESS_HELP 0x0002 /* suppress help for this parameter */
#define PFP_LIST_ALLOWED 0x0004 /* KW = (v1, v2, v3), or KW = v1 */
 /* Lists can use either (..) or {..} */

Include Files 6-87

Version 1.0

ATM ODI HSM Specification
Documentation Part Number: 107-000083-001

September 9, 1998

#define PFP_DUPL_ALLOWED 0x0008 /* Allow same parameters more than once */
#define PFP_QUOTES_ALLOWED 0x0010 /* Parm value (name) may be quoted, */
 /* allowing special characters */
#define PFP_PREVIEW_CALL 0x0020 /* Call preview procedure, user_id, */
 /* parm_type, given_parm, given_value */
 /* will be filled out, given value may */
 /* be modified by the user */
#define PFP_EMPTY_ALLOWED 0x0200 /* Allow parameter without value */
 /* e.g KW or KW="" */
#define PFP_UNSUPPORTED 0x0100 /* (currently) not supported parameter */
 /* if specified, parser will give error */

/*
 * Parameter Types, and associated records (if applicable)
 * ---
 */
 /* examples of usage: */
#define PT_USER_PARSED 0 /* parser does not process, user may */
#define PT_INT_RANGE 1 /* KW=17 or KW=0x1a (performs range checks) */
#define PT_HEX_RANGE 2 /* KW=1a0 or KW=0x1a0 (performs range checks) */
#define PT_BOOLEAN 3 /* KW=ON|OFF|TRUE|FALSE|YES|NO (or just KW) */
#define PT_NAME 4 /* KW=any_name (or KW = "any name") */
#define PT_EQUATE 5 /* KW=ieee|dec|none */
#define PT_ADDRESS 6 /* KW=8-0-02-1a-1-3b or 0800021a013b */
#define PT_COMPLEX_ADDRESS 7 /* KW=(5:a657:34:2330 1b-22-44 2) */

#define PT_DUAL_TYPE 9 /* KW=34 or KW=none */

typedef struct pv_int_range
{
 INT32 lower_value; /* lower value can be negative */
 INT32 upper_value;
 UINT8** dimension; /* optional dimension (e.g. "Seconds") */

} PV_INT_RANGE;

#define PV_HEX_RANGE PV_INT_RANGE

typedef struct pv_equate_entry
{
 UINT8* name; /* NULL is end of list */
 UINT16 value; /* value associated with the name */

} PV_EQUATE_ENTRY;

typedef PV_EQUATE_ENTRY PV_EQUATE [];

typedef struct pv_name
{
 UINT8 min_length; /* minimum length (0..47) */
 UINT8 max_length; /* excluding string terminating zero (0..47) */

} PV_NAME;

6-88 ODI ATM HSM Specification

Version 1.0

ATM ODI HSM Specification
Documentation Part Number: 107-000083-001

September 9, 1998

typedef struct pv_address
{
 UINT8 base; /* Base (8, 10, 16) */
 UINT8 bits; /* maximum nr of bits (1..64) */
 UINT8 separator; /* separator character ('-') */
 UINT8 separated_bytes; /* between 0..4 bytes can be separated */

} PV_ADDRESS;

#define PV_COMPLEX_ADDRESS PV_ADDRESS

/*
 * Parameter Value Table definition (overlapping)
 * --
 */

typedef struct pv_types
{
 union
 {
 void* void_ptr;

 PV_EQUATE_ENTRY* equ_tbl_ptr;
 struct pv_dual_type* dual_type_tbl_ptr;
 PV_INT_RANGE* int_range_tbl_ptr;
 PV_COMPLEX_ADDRESS* complex_address_tbl_ptr;
 PV_ADDRESS address_tbl;
 PV_NAME name_tbl;
 } u;

} PV_TYPES;

/*
 * Parameter list definitions
 * --------------------------
 */

typedef struct pv_parm_info
{
 UINT8 parm_type;
 UINT16 flags;
 PV_TYPES pv_type;

} PV_PARM_INFO;

typedef struct pv_dual_type
{
 PV_PARM_INFO info_1;
 PV_PARM_INFO info_2;

} PV_DUAL_TYPE;

Include Files 6-89

Version 1.0

ATM ODI HSM Specification
Documentation Part Number: 107-000083-001

September 9, 1998

typedef struct parameter_entry
{
 UINT8* name; /* required (long or only) name */
 UINT8* alternate_name; /* optional (short) name */
 UINT8** user_help; /* ptr->ptr allows for NLS support */
 UINT8 user_id; /* assigned by caller (must be 0..239) */
 PV_PARM_INFO info;

} PARAMETER_ENTRY;

typedef PARAMETER_ENTRY PARAMETER_TABLE [];

/*
 * Parser interface record (defined by user, passed to parser)
 * ---
 */

typedef void ERROR_CALL (char* error_text);

typedef struct parser_interface
{
 /* The following fields are initialized and used by the Parser only */

 UINT8 if_version;
 UINT8 spare1 [2];
 UINT8 list_index;
 struct command_table* command_table_ptr;
 UINT8* command_text_ptr;
 PARAMETER_ENTRY* parm_list_entry_ptr;
 UINT8* next_text_ptr;
 ERROR_CALL* error_call_ptr;
 UINT8 get_next_count;

 /* The following fields can be referenced by the caller */

 UINT8 in_list; /* non-0: KW=(v1,v2,v3), for v1 and v2 */
 UINT8 bad_value;
 UINT8 user_id; /* copied from parm_list table */
 UINT8 given_parm [PARSER_MAX_PARM_SIZE + 1];
 UINT8 given_value [PARSER_MAX_VALUE_SIZE + 1];
 short parm_type; /* found parameter type (e.g. PT_INT_RANGE) */
 union
 {
 UINT32 uint; /* PT_INT/HEX_RANGE */
 INT32 sint; /* PT_INT/HEX_RANGE */
 UINT32 boolean; /* PT_BOOLEAN */
 UINT8 name [PARSER_MAX_VALUE_SIZE + 1]; /* PT_NAME */
 UINT32 equ; /* PT_EQUS */
 UINT8 address [PARSER_MAX_ADDRESS]; /* PT_ADDRESS */
 UINT8 user [PARSER_MAX_VALUE_SIZE + 1]; /* PT_USER_PARSED */

 } value; /* returned value */

6-90 ODI ATM HSM Specification

Version 1.0

ATM ODI HSM Specification
Documentation Part Number: 107-000083-001

September 9, 1998

} PARSER_INTERFACE;

/*
 * Command parameter table definitions
 * -----------------------------------
 */

typedef void PARAMETER_PREVIEW_CALL (struct parser_interface* pi_ptr);

typedef struct command_table
{
 UINT8* command_name;
 UINT32 command_flags;
 PARAMETER_TABLE* parm_list_ptr;
 PARAMETER_PREVIEW_CALL* parm_preview_call_ptr;

} COMMAND_TABLE;

/*
 * ==================================
 * = Extern entry point definitions =
 * ==================================
 */

/* NAME: P a r s e r I n i t i a l i z e
 *
 * FUNCTION:
 * Initialize the parser interface record. At this time, the parser
 * will also check for errors (using only the table provided
 * information). When the user enters a '?' as a parameter, the parser
 * will show the help screen.
 *
 * ALGORITHM:
 * The user passes the command_table and the command_text addresses.
 * This procedure will do all the required initialization of the
 * parser interface record. A FALSE will be returned if any errors are
 * found. The associated error message has already been displayed. The
 * caller should not continue parsing when an error is detected, as
 * that may cause doubly displayed error messages. The given interface
 * version must be less than or equal to the currently known version,
 * and no lower than the parsers allowed minimum (the parser knows the
 * minimum level that is still compatible).
 *
 * A FALSE will also be returned after the help display has been
 * shown. The user_id will reflect this (PUI_HELP_REQUEST).
 *
 * The error_call_ptr allows the user to receive all the error message
 * strings (for private logging purposes).
 *
 * PARAMETERS:
 * parser_interface address
 * command_table_ptr
 * command_text_ptr

Include Files 6-91

Version 1.0

ATM ODI HSM Specification
Documentation Part Number: 107-000083-001

September 9, 1998

 * if_version
 * error_call_ptr (if NULL parser will call OutputToConsole)
 *
 * RETURN:
 * TRUE - initialization is successful
 * FALSE - error found (parsing with given table information)
 */

extern int ParserInitialize (PARSER_INTERFACE* pi_ptr,
 COMMAND_TABLE* command_table_ptr,
 unsigned char* command_text_ptr,
 int if_version,
 ERROR_CALL* error_call_ptr);

/* NAME: P a r s e r G e t N e x t P a r a m e t e r A n d V a l u e
 *
 * FUNCTION:
 * Obtain the next parameter and associated value for given command.
 *
 * ALGORITHM:
 * This procedure locates the next parameter in the command string.
 * Parameters that have already been processed individually (through
 * the use of ParserGetGivenParameterAndValue) will be skipped.
 *
 * PARAMETERS:
 * Parser interface table
 *
 * RETURN:
 * FALSE - end of command line or error (error message issued)
 * TRUE - good parameter and value found
 */

extern int ParserGetNextParameterAndValue (PARSER_INTERFACE* pi_ptr);

/* NAME: P a r s e r G e t G i v e n P a r a m e t e r A n d V a l u e
 *
 * FUNCTION:
 * Get the value for a specifically given parameter.
 *
 * ALGORITHM:
 * Locate the given parameter in the command text, and return the
 * value. A specified parameter will only be returned to the caller
 * once. This allows the caller to mix ParserGetGivenParameterAndValue
 * and ParserGetNextParameterAndValue calls. This can be useful when a
 * specific parameter is needed to determine if a default value must
 * be used (when this parameter is omitted), or when parameters must
 * be processed in a certain order, other than entered on the command
 * line. A FALSE is returned when the parameter is not found, when it
 * has already been seen by the user, or when it has a bad value. The
 * interface record will contain additional information in case of an
 * error.

6-92 ODI ATM HSM Specification

Version 1.0

ATM ODI HSM Specification
Documentation Part Number: 107-000083-001

September 9, 1998

 *
 * PARAMETERS:
 * Parameter interface table
 * Parameter name (either long or short form) - in UPPER case
 *
 * RETURN:
 * FALSE - parameter not found, or has a bad value (see pi_ptr->..)
 * TRUE - parameter and good value found
 */

extern int ParserGetGivenParameterAndValue (PARSER_INTERFACE* pi_ptr,
 UINT8* parm_name);

/* NAME: P a r s e r G e t N e x t V a l u e
 *
 * FUNCTION:
 * Obtain the next parameter value for a list.
 *
 * ALGORITHM:
 * Parameters are specified as <Keyw1 = v1>, <Keyw2=v2> (spaces and
 * commas are optional). The user may only call this procedure when a
 * list of parameters <Keyw = (v1,v2,v3)> is found, to obtain the
 * value of p2, p3, etc (the first parameter value is passed by the
 * ParserGetNextParameterAndValue or ParserGetGivenParameterAndValue
 * call).
 *
 * PARAMETERS:
 * pi_ptr
 *
 * RETURN:
 * FALSE - error in value (message issued)
 * TRUE - good value found for current parameter
 */

extern int ParserGetNextValue (PARSER_INTERFACE* pi_ptr);

/*
 * Export of some general purpose string manipulation procedures. The
 * Parser will attempt to import NLS aware symbols. and use those when
 * available. This eliminates the forced dependency on CLIB.
 *
 * Note that ParserXprintf only supports the very basic string
 * replacements. They are: %x, %d, %0Nx (N=1..9), %c, %s and %%.
 */

typedef char *VA_LIST [1];
extern int ParserSprintf (char*, char*, ...);
extern int ParserVsprintf (char *s, const char *format, VA_LIST arg);
extern char* ParserIncrement (char*, int);
extern char ParserCharVal (char*);
extern char ParserCharUpr (char);
extern int ParserStrlen (char*);

Include Files 6-93

Version 1.0

ATM ODI HSM Specification
Documentation Part Number: 107-000083-001

September 9, 1998

extern char* ParserStrcat (char* dst, const char* t);
extern char* ParserStrcpy (char* dst, const char* t);
extern char* ParserUtoa (unsigned value, char* buffer, unsigned int radix);

#endif

PARSER.IMP

#
(C) Copyright 1995 Novell, Inc., All Rights Reserved.
#
File Name : parser.imp
Author : Henk J. Bots
Created On : Thu, Sep 21 (11:35:17) 1995
Last Modified By: Henk J. Bots
Last Modified On: Wed, Nov 29 (14:19:43) 1995
Update Count : 4
Status : Parser Exported Symbols.
#
 ParserInitialize,
 ParserGetNextValue,
 ParserGetNextParameterAndValue,
 ParserGetGivenParameterAndValue,
 ParserSprintf,
 ParserVsprintf,
 ParserIncrement,
 ParserCharVal,
 ParserCharUpr,
 ParserStrlen,
 ParserStrcat,
 ParserStrcpy,
 ParserUtoa

6-94 ODI ATM HSM Specification

Version 1.0

ATM ODI HSM Specification
Documentation Part Number: 107-000083-001

September 9, 1998

Glossary A-95

a p p e n d i x

Version 1.0

ATM ODI HSM Specification
Documentation Part Number: 107-000083-001

September 9, 1998

A Glossary

ADS

Adapter Data Space.

API

Application Program Interface.

ATM

Asynchronous Transfer Mode. A cell-switching communication technology
that supports data, voice and video. Speeds vary from the low Mbits to Gbits.

ATM Forum

An industry alliance of more than 500 companies dedicated to rapidly
standardizing ATM through design and specification work.

ATM Switch

A hardware device that takes an incoming ATM cell and directs it to one or
more of many potential output interfaces.

CO-IPX

Connection Oriented IPX.

ECB

Event Control Block: a NetWare data buffer, also containing qualifying
information about the data.

A-96 ODI ATM HSM Specification

Version 1.0

ATM ODI HSM Specification
Documentation Part Number: 107-000083-001

September 9, 1998

Gbits

Giga bits per second (equivalent to 1,000 Mbits).

HSM

Hardware Specific Module. The lowest component of the ODI architecture,
responsible for the hardware specific handling of an adapter boards. Also
called the driver.

ILMI

Interim Local Management Interface.

ISDN

Integrated Services Digital Network.

ITU

International Telephone Union.

LLC

Logical Link Control.

LSL

Link Support Layer.

LMI

Layer Management Interface.

MAC

Media Access Control.

Mbits

Mega bits per second (One million bits per second).

Glossary A-97

Version 1.0

ATM ODI HSM Specification
Documentation Part Number: 107-000083-001

September 9, 1998

MLID

Multiple Link Interface Driver.

MSM

Media Support Module.

NLM

NetWare Loadable Module.

NNI

Network-to-Network Interface.

ODI

Open Data-link Interface.

PVC

Permanent Virtual Connection.

QoS

Quality of Service. Term to describe delay, throughput, bandwidth, and so on
of a Virtual Connection.

SDU

Service Data Unit

SVC

Switched Virtual Connection.

A-98 ODI ATM HSM Specification

Version 1.0

ATM ODI HSM Specification
Documentation Part Number: 107-000083-001

September 9, 1998

TSM

More correctly referred to as the ATMTSM or the Topology Specific Module.
A component of the ODI architecture that is specific to the media-type (such as
Ethernet, Token-Ring, FDDI, etc.).

UNI

User-to-Network Interface.

VC

Virtual Connection. A point-to-point or point-to-multipoint connection
between ATM end stations. Can either be switched or permanent.

VCI

Virtual Connection Identifier. A 32-bit identifier, consisting of the 16bit Virtual
Path Connection Identifier and the 16-bit Virtual Channel Identifier.

References B-99

a p p e n d i x

Version 1.0

ATM ODI HSM Specification
Documentation Part Number: 107-000083-001

September 9, 1998

B References

ATM User-Network Interface Specification Version 3.0

ITU Draft Recommendation Q.SAAL1, DT/11/3-38

NetWare ODI Server Driver Specification

B-100 ODI ATM HSM Specification

Version 1.0

ATM ODI HSM Specification
Documentation Part Number: 107-000083-001

September 9, 1998

 Index101

Version 1.0

ATM ODI HSM Specification
Documentation Part Number: 107-000083-001

September 9, 1998

Index

A
API (See also Application Programming Interface) 7
Assignment of TSM and HSM handles 23
ATM and HSM 9
ATM and NetWare 9
ATM definition 8
ATM Forum 3.0 Signaling 11
ATM Management 13
ATMADDR.H 63
ATMHSMIF.H 63
ATMQOS.H 59
ATM-TSM components 11
atmtsm_alloc 41
atmtsm_conditional_lock / atmtsm_conditional_lock_ni

45
atmtsm_deregister_lock 45
atmtsm_free 41
atmtsm_get_ecb 40
atmtsm_get_firmware 42
atmtsm_hsm_control 39
atmtsm_incr_custom_counter 43
atmtsm_lock / atmtsm_lock_ni 45
atmtsm_logical_to_physical 41, 42
atmtsm_micro_delay 40
atmtsm_periodic_call_address 39
atmtsm_poll_address 39
atmtsm_printf 41
atmtsm_rcv_error 43
atmtsm_rcv_oam_cell 43
atmtsm_rcv_vc_error 43
atmtsm_register_hsm 38
atmtsm_register_lock 44
atmtsm_return_ecb 40

atmtsm_send_complete 40
atmtsm_set_custom_counter 44
atmtsm_unlock / atmtsm_unlock_ni 45
atmtsm_update_custom_counter 44

B
board_name 19
board_number 21
Building the driver 16

C
card_name 19
channel_number 31
Configurable Receive Modes 50
Connection Manage 12
control_type 25, 29
custom_stats_ptr 20

D
Data Interface 13
Data Interfaces 36
Definition of ATM 8
Deregistration 21
dma_line 33
driver_name 19
driver_options 19

102 ODI ATM HSM Specification

Version 1.0

ATM ODI HSM Specification
Documentation Part Number: 107-000083-001

September 9, 1998

E
esi 31

F
Fields passed between HSM and TSM 18
future_extension_n 21

G
Get/Return Buffers (ECBs) 35
Glossary 97

H
HSM and TSM handle assignments 23
HSM Control Interfaces 22
HSM from TSM Control Commands 23
HSM Interface 13
HSM provided interfaces 46
hsm_ads_handle 20, 25
hsm_ads_size 20
hsm_control_proc 19
hsm_control_proc (indirect) 46
hsm_isr_proc 31
hsm_isr_proc (indirect) 47
hsm_nlm_handle_ptr 18
hsm_periodic_call_proc (indirect) 47
hsm_poll_proc (indirect) 47
hsm_send_proc 19
hsm_send_proc (indirect) 47
hsm_shutdown_proc 20
hsm_vc_handl 26
hsm_vc_handle 26, 34

I
Interrupt locking/unlocking 10

interrupt_number 33
Interrupts 37
ITU-definitions 11

L
Length-preceded verses regular C type strings 19
Lock/unlock interrupts 10

M
max_cell_rate 30
max_frame_size 20
max_physical_fragments 30
media_type 29
memory0_address 32
memory0_bytes 32
memory1_addres 32
memory1_bytes 32

O
Optimizing performance 9
Optionally loading driver firmware 17

P
Parsing the LOAD driver command line 17
Performance issues and the HSM design 48
Performance Optimization 9
poll_support_level 21
Polling / Periodic Calls 38
port0 31
port0_range 32
port1 32
port1_range 32

Index103

Version 1.0

ATM ODI HSM Specification
Documentation Part Number: 107-000083-001

September 9, 1998

Q
Q.SAAL1 11
qos 25, 34
Quality of Service Definition 51

R
reason_code 34
Receive data interface 36
Registration 17
Return values for "atmtsm_hsm_control" 35
Return values for atmtsm_register_hsm 21
return_code 34

S
sharing_flags 31
slot_number 31
speed 29
speed_base 30
Statistics 38

T
transmission_type 29
Transmit data interface 37
Transmit versus Receive Priority 49
TSM and HSM handle assignments 23
TSM to HSM Control Commands 23
tsm_ads_handl 20
tsm_ads_handle 29
tsm_contract_handle 25, 33
tsm_rcv_get_ecb_proc 26, 27
tsm_rcv_proc 26
tsm_rcv_proc / tsm_rcv_get_ecb_proc (indirect) 46
tsm_vc_handle 25, 34, 35

U
upper_vcc 30
upper_vpc 30
User Interface 12
User-Network Interface (UNI) 11

V
vpi_vci 25, 26

W
What is ATM 8

104 ODI ATM HSM Specification

Version 1.0

ATM ODI HSM Specification
Documentation Part Number: 107-000083-001

September 9, 1998

