
ODI Specification Supplement: Hardware Checksumming
October 5, 1999
Novell Confidential

doc_tpl.fm Rev 99a 27 August 99
Legal Notices

Novell, Inc. makes no representations or warranties with respect to the contents or use of this documentation, and
specifically disclaims any express or implied warranties of merchantability or fitness for any particular purpose.
Further, Novell, Inc. reserves the right to revise this publication and to make changes to its content, at any time,
without obligation to notify any person or entity of such revisions or changes.

Further, Novell, Inc. makes no representations or warranties with respect to any software, and specifically disclaims
any express or implied warranties of merchantability or fitness for any particular purpose. Further, Novell, Inc.
reserves the right to make changes to any and all parts of Novell software, at any time, without any obligation to
notify any person or entity of such changes.

This product may require export authorization from the U.S. Department of Commerce prior to exporting from the
U.S. or Canada.

Copyright © 1993-1999 Novell, Inc. All rights reserved. No part of this publication may be reproduced,
photocopied, stored on a retrieval system, or transmitted without the express written consent of the publisher.

U.S. Patent Nos 5,553,139; 5,553,143; 5,677,851; 5,758,069; 5,784,560; 5,818,936; 5,864,865; 5,903,650;
5,905,860; 5,910,803 and other Patents Pending.

Novell, Inc.

122 East 1700 South

Provo, UT 84606

U.S.A.

www.novell.com

Hardware Checksumming

November 1999

104-000199-001

Online Documentation: To access the online documentation for this and other Novell developer products,

and to get updates, see developer.novell.com/ndk. To access online documentation for Novell products, see

www.novell.com/documentation.
Hardware Checksumming
104-000199-001
October 5, 1999

Novell Confidential

doc_tpl.fm Rev 99a 27 August 99
Novell Trademarks

AppNotes is a registered trademark of Novell, Inc.

AppTester is a trademark of Novell, Inc., in the United States.

ArcNet 68 is a trademark of Novell, Inc.

BorderManager is a trademark of Novell, Inc.

C3PO is a trademark of Novell, Inc.

Client 32 is a trademark of Novell, Inc.

ConsoleOne is a trademark of Novell, Inc.

Controlled Access Printer is a trademark of Novell, Inc.

Custom 3rd-Party Object is a trademark of Novell, Inc.

DeveloperNet is a registered trademark of Novell, Inc.

DeveloperNet 2000 is a trademark of Novell, Inc.

GroupWise is a registered trademark of Novell, Inc., in the United States and other countries.

GroupWise 5 is a trademark of Novell, Inc.

Hardware Specific Module is a trademark of Novell, Inc.

HostPublisher is a trademark of Novell, Inc.

Hot Fix is a trademark of Novell, Inc.

HSM is a trademark of Novell, Inc.

InForms is a trademark of Novell, Inc.

Internetwork Packet Exchange is a trademark of Novell, Inc.

IPX is a trademark of Novell, Inc.

IPX/SPX is a trademark of Novell, Inc.

LANalyzer is a registered trademark of Novell, Inc., in the United States and other countries.

Link Support Layer is a trademark of Novell, Inc.

LSL is a trademark of Novell, Inc.

ManageWise is a registered trademark of Novell, Inc., in the United States and other countries.

Mirrored Server Link is a trademark of Novell, Inc.

MLI is a trademark of Novell, Inc.

MLID is a trademark of Novell, Inc.

MSL is a trademark of Novell, Inc.

Multiple Link Interface is a trademark of Novell, Inc.

Multiple Link Interface Driver is a trademark of Novell, Inc.

NControl is a trademark of Novell, Inc.

NCP is a trademark of Novell, Inc.

NDebug is a trademark of Novell, Inc.

NDPS is a registered trademark of Novell, Inc.

NDR is a trademark of Novell, Inc.

NDS is a trademark of Novell, Inc.

NDS Manager is a trademark of Novell, Inc.

NetWare is a registered trademark of Novell, Inc., in the United States and other countries.

NetWare 386 is a trademark of Novell, Inc.

NetWare Aware is a trademark of Novell, Inc.

NetWare Connect is a registered trademark of Novell, Inc, in the United States.

NetWare Core Protocol is a trademark of Novell, Inc.
Hardware Checksumming
104-000199-001
October 5, 1999

Novell Confidential

doc_tpl.fm Rev 99a 27 August 99
NetWare DOS Requester is a trademark of Novell, Inc.

NetWare Loadable Module is a trademark of Novell, Inc.

NetWare MHS is a trademark of Novell, Inc.

NetWare Name Service is a trademark of Novell, Inc.

NetWare Peripheral Architecture is a trademark of Novell, Inc.

NetWare Print Server is a trademark of Novell, Inc.

NetWare Requester is a trademark of Novell, Inc.

NetWare SFT and NetWare SFT III are trademarks of Novell, Inc.

NetWare SQL is a trademark of Novell, Inc.

NetWare Telephony Services is a trademark of Novell, Inc.

NetWare Tools is a trademark of Novell, Inc.

NLM is a trademark of Novell, Inc.

Novell is a registered trademark of Novell, Inc., in the United States and other countries.

Novell Application Launcher is a trademark of Novell, Inc.

Novell Authorized Service Center is a service mark of Novell, Inc.

Novell BorderManager is a trademark of Novell, Inc.

Novell Client is a trademark of Novell, Inc.

Novell Directory Services is a trademark of Novell, Inc.

Novell Distributed Print Services is a trademark of Novell, Inc.

Novell Embedded Systems Technology is a registered trademark of Novell, Inc., in the United States and other
countries.

Novell HostPublisher is a trademark of Novell, Inc.

Novell, Yes, Tested & Approved logo is a trademark of Novell, Inc.

ODI is a trademark of Novell, Inc.

Open Data-Link Interface is a trademark of Novell, Inc.

Packet Burst is a trademark of Novell, Inc.

Personal NetWare is a trademark of Novell, Inc.

Printer Agent is a trademark of Novell, Inc.

Public Access Printer is a trademark of Novell, Inc.

QuickFinder is a trademark of Novell, Inc.

Remote Console is a trademark of Novell, Inc.

RX-Net is a trademark of Novell, Inc.

Sequenced Packet Exchange is a trademark of Novell, Inc.

SFT, SFT III, and SFT NetWare are trademarks of Novell, Inc.

SMS is a trademark of Novell, Inc.

SMSTSA is a trademark of Novell, Inc.

SoftSolutions is a registered trademark of SoftSolutions Technology Corporation, a wholly owned subsidiary of
Novell, Inc.

SPX is a trademark of Novell, Inc.

Storage Management Services is a trademark of Novell, Inc.

SVR4 is a trademark of Novell, Inc.

System V is a trademark of Novell, Inc.

Topology Specific Module is a trademark of Novell, Inc.

Transaction Tracking System is a trademark of Novell, Inc.

TSM is a trademark of Novell, Inc.
Hardware Checksumming
104-000199-001
October 5, 1999

Novell Confidential

doc_tpl.fm Rev 99a 27 August 99
TTS is a trademark of Novell, Inc.

Universal Component System is a trademark of Novell, Inc.

ViewMAX is a trademark of Novell, Inc.

ZENworks is a trademark of Novell, Inc.

Third-Party Trademarks

All third-party trademarks are the property of their respective owners.

Java is a trademark or registered trademark of Sun Microsystems, Inc., in the United States and other countries.
 5

Hardware Checksumming
104-000199-001
October 5, 1999

Novell Confidential

doc_tpl.fm Rev 99a 27 August 99
6 Hardware Checksumming

Hardware Checksumming
104-000199-001
October 5, 1999

Novell Confidential

doc_tpl.fm Rev 99a 27 August 99
Contents

1 Introduction

References . 10

2 Novell’s MLID Capability Management ECB

MLID Capability Management ECB Structure Field Definitions 13
Capability Bits Defined for the MLID Capability Management ECB. 16
Management Capabilities Completion ESR. . 17

3 The Protocol’s View of Checksumming

Generating an MLID Capability Management ECB 20
Packet Reception . 20
Packet Transmission . 21

4 The MLID’s View of Checksumming

Upon Receipt of the MLID Capability Management ECB 25
ECB-Aware C HSMs . 26

Packet Reception . 26
Packet Transmission . 27

TCB/RCB C HSMs . 28
Packet Reception . 28
Packet Transmission . 28

5 Hwchksum.h File
Contents 7

Hardware Checksumming
104-000199-001
October 5, 1999

Novell Confidential

doc_tpl.fm Rev 99a 27 August 99
8 Hardware Checksumming

Hardware Checksumming
104-000199-001
October 5, 1999

Novell Confidential

doc_tpl.fm Rev 99a8 27 August 99
1 Introduction

Software checksumming has become so costly in terms of processor usage
that it has become necessary to make use of hardware checksumming. This
document explains how developers can develop protocols and MLIDs that
make use of hardware checksumming that conforms to ODI Specifications:
Hardware Specific Modules (HSMs) (C Language), spec v1.11 and Protocol
Stacks and MLIDS (C Language), spec v1.11.

Generating a checksum for a transmission packet uses many processor cycles
and often flushes the processor cache, which slows down processor time
considerably. Validating a checksum for a reception packet can also use many
processor cycles and flush the processor cache. Protocols and MLIDs must be
developed that rely on the LAN hardware to generate and validate checksums.
This will keep processor usage and cache flushes to a minimum.

This document provides the basic information necessary to develop protocols
and MLIDs or HSMs that rely on the LAN hardware for checksum generation
and validation. Checksums can be generated and validated on hardware that
services the following transport layer protocols:

! TCP

! UDP

! ICMP

! RSVP

Checksums can also be generated and validated on hardware that services the
following network layer protocols regardless of the transport layer protocol it
is servicing:
Introduction 9

Hardware Checksumming
104-000199-001
October 5, 1999

Novell Confidential

doc_tpl.fm Rev 99a 27 August 99
! IPv4

Other protocol specific checksums may be added in the future, but are not
defined in this supplement.

References

The following APIs from ODI Specification:

Protocol Stacks and MLIDS (C Language), spec v1.11, doc v1.20, (May 27,
1997) are referenced in this document.

! CLSL_GetMLIDControlEntry (Index 18 (0x12))

! MLIDManagement (Index14 (0x0E))

The following structures from ODI Specification: Protocol Stacks and MLIDS
(C Language), spec v1.11, doc v1.20, (May 27, 1997) are referenced in this
document:

! ECB Structure

! ECB.ECB_PreviousLink

! ECB.ECB_StackID

! ECB.ECB_ProtocolID

! ECB.ECB_BoardNumber

! LookAhead

! LookAhead.LkAhd_PktAttr

The following other items from ODI Specification: Protocol Stacks and
MLIDS (C Language), spec v1.11, doc v1.20, (May 27, 1997) are referenced
in this document:

! How to access MLID Control API (Chapter 18 , "MLID Control
Routines").

! The MLID Management IOCTL (Chapter 18 , "MLID Control
Routines").
10 Hardware Checksumming

Hardware Checksumming
104-000199-001
October 5, 1999

Novell Confidential

doc_tpl.fm Rev 99a 27 August 99
! Protocol Stack Initialization (Chapter 4, "Protocol Stack Initialization").
Introduction 11

Hardware Checksumming
104-000199-001
October 5, 1999

Novell Confidential

doc_tpl.fm Rev 99a 27 August 99
12 Hardware Checksumming

Hardware Checksumming
104-000199-001
October 5, 1999

Novell Confidential

doc_tpl.fm Rev 99a8 27 August 99
2 Novell’s MLID Capability Management
ECB

Potocol stacks must call the MLID Management API containing the MLID
Capability Management ECB.

The MLID Capability Management ECB structure is defined as follows:

typedef struct _MAN_CAP_ECB_
{
 struct _MAN_CAP_ECB_ *MCECB_NextLink;
 struct _MAN_CAP_ECB_ *MCECB_PreviousLink;
 UINT16 MCECB_Status;
 void (*MCECB_ESR) (struct _MAN_CAP_ECB_ *);
 UINT16 MCECB_STACKID;
 UINT8 MCECB_IDENT[6];
 PROT_ID MCECB_Protocol_ID;
 UINT32 MCECB_Control;
 UINT32 MCECB_BoardNumber;
 UINT32 MCECB_HSMCapabilities;
 UINT32 MCECB_HSMCapabilitiesState;
 UINT32 MCECB_ProtWorkspace;
 UINT32 MCECB_DriverWorkspace;
 UINT32 MCECB_Reserved[2];
} MANAGEMENT_CAPABILITY_ECB;

MLID Capability Management ECB Structure Field
Definitions

The fields for the MLID Capability Management ECB structure are filled in
and defined as follows:
Novell’s MLID Capability Management ECB 13

Hardware Checksumming
104-000199-001
October 5, 1999

Novell Confidential

doc_tpl.fm Rev 99a 27 August 99
Table 1 MLID Capability Management ECB Structure Field Definitions

*MCECB_NextLink On Entry: Initialized to 0

On Exit: Reserved, currently set to 0

*MCECB_PreviousLink On Entry: Initialized to 0

On Exit: Reserved, currently set to 0

MCECB_Status On Entry: Initialized to 0

On Exit: Completion Code:

! ODISTAT_SUCCESSFUL - All the control functions
were successful.

! ODISTAT_ITEM_NOT_PRESENT - One or more of
the requested capabilities are not supported by the
MLID. The requested capabilities that are supported
were activated and the currently active capabilities,
indicated in the MCECB_HSMCapabilitiesState field,
were set on return.

! ODISTAT_BAD_PARAMETER - None of the
requested capabilities are supported by the MLID.

(*MCECB_ESR) (struct _MAN_CAP_ECB_
*)

On Entry: Pointer to the Event Service Routine (ESR) to
call after the requested capabilities have been activated.
This field may be set to NULL if an ESR is not needed.

On Exit: Unchanged.

(See section 2.3 - Management Capabilities Completion
ESR).

MCECB_STACKID On Entry: The protocol stack ID assigned by the LSL. On
Exit: Unchanged.

MCECB_IDENT[6] On Entry: MANCAP'

On Exit: Unchanged.
14 Hardware Checksumming

Hardware Checksumming
104-000199-001
October 5, 1999

Novell Confidential

doc_tpl.fm Rev 99a 27 August 99
MCECB_Protocol_ID On Entry: The network protocol ID value that identifies the
network protocol that is sending or receiving the packets.
The MLID uses the network protocol ID and the board
number to determine which checksum to generate or
validate. The network protocol ID and the board number
are specified in the transmission ECB (ECB_StackId field)
and the reception ECB (ECB_PreviousLink field).

On Exit: Unchanged.

MCECB_BoardNumber On Entry: The board number to activate the capabilities
on.

On Exit: Unchanged.

MCECB_Control On Entry: One of the following control functions:

 MCECB_CON_GET_CAPABILITIES 0

 MCECB_CON_ENABLE_ACTIVE_CAP 1

 MCECB_CON_DISABLE_ACTIVE_CAP 2

 MCECB_CON_DISABLE_REMOVE_CAP 3

On Exit: Unchanged.

MCECB_HSMCapabilities On Entry: Initialized to 0.

On Exit: The bits set to indicate which capabilities are
possible for the HSM.

(See section 2.2 - Capability Bits Defined for the MLID
Capability Management ECB.)

MCECB_HSMCapabilitiesState On Entry: The bits set to indicate which capabilities the
MCECB_Control field will act on for the specified network
protocol ID and board number combination. This field is
ignored on entry if the
MCECB_CON_GET_CAPABILITIES control function is
used.

On Exit: The bits set to indicate which capabilities are
active for the specified protocol ID and board number
combination.

(See section 2.2 - Capability Bits Defined for the MLID
Capability Management ECB.)

MCECB_ProtWorkspace On Entry: Protocol specific values.

On Exit: Unchanged.
Novell’s MLID Capability Management ECB 15

Hardware Checksumming
104-000199-001
October 5, 1999

Novell Confidential

doc_tpl.fm Rev 99a 27 August 99
Capability Bits Defined for the MLID Capability
Management ECB

Capability bits are to be set in the MCECB_HSMCapabilities and
MCECB_HSMCapabilitiesState fields of the MLID Capability Management
ECB.

The following bit values indicate which checksums can be generated for
transmissions:

HSMCAP_IPv4_CHECKSUM_TX 0x0001
HSMCAP_TCP_CHECKSUM_TX 0x0002
HSMCAP_UDP_CHECKSUM_TX 0x0004
HSMCAP_RSVP_CHECKSUM_TX 0x0008
HSMCAP_ICMP_CHECKSUM_TX 0x0010

The following bit values indicate which checksums can be validated for
receptions:

HSMCAP_IPv4_CHECKSUM_RX 0x0100
HSMCAP_TCP_CHECKSUM_RX 0x0200
HSMCAP_UDP_CHECKSUM_RX 0x0400
HSMCAP_RSVP_CHECKSUM_RX 0x0800
HSMCAP_ICMP_CHECKSUM_RX 0x1000

All other bits are reserved and set to 0.

NOTE: Hardware checksums can only be generated for transport layer
protocols (TCP, UDP, ICMP, and RSVP). If the network layer protocol
(IPv4) needs to fragment a packet, then the transport layer protocol must
handle the checksuming generation and validation for the network layer
protocol.

MCECB_DriverWorkspace On Entry: Initialized to 0.

On Exit: Driver sets to 0.

MCECB_Reserved On Entry: Initialized to 0

On Exit: Reserved, currently set to 0
16 Hardware Checksumming

Hardware Checksumming
104-000199-001
October 5, 1999

Novell Confidential

doc_tpl.fm Rev 99a 27 August 99
Management Capabilities Completion ESR

void (*MCECB_ESR) (struct _MAN_CAP_ECB_ *);

On Entry:

! ecb - Pointer to the MLID Capability Management ECB being completed.

On Exit:

! Unchanged.

Remarks:

If the requested function can be completed synchronously, the MLID will
process the requested function to completion without calling the
MCECB_ESR.

If a delay must occur to act on the MLID Capability Management ECB, the
MLID Management API returns ODISTAT_RESPONSE_DELAYED, and
the MLID calls the MCECB_ESR after processing the requested function to
completion. The MCECB_ESR may be called before the MLID Management
API has completed.
Novell’s MLID Capability Management ECB 17

Hardware Checksumming
104-000199-001
October 5, 1999

Novell Confidential

doc_tpl.fm Rev 99a 27 August 99
18 Hardware Checksumming

Hardware Checksumming
104-000199-001
October 5, 1999

Novell Confidential

doc_tpl.fm Rev 99a8 27 August 99
3 The Protocol’s View of
Checksumming

The protocol must be aware of whether the MLID is capable of generating or
validating checksums for the protocol. If the MLID is capable of generating
or validating checksums for the protocol, then the protocol must call the
MLID Management API to inform the MLID that it must generate or validate
the checksum of the subsequent packet. The protocol indicates this to the
MLID in the ECB of the packet it is sending.

The Protocol must disable all capabilities that it enabled prior to shutting
down. The protocol must set the MCECB_CON_DISABLE_REMOVE_CAP
value in the MCECB_Control field and send the MLID Capability
Management ECB to the MLID prior to shutting down the protocol.

The protocol stack must configure the C HSM to generate checksums as
follows:

1. Determine the MLID's control Entry point.

2. Determine if the MLID supports checksum generation by sending a
MLID Capability Management ECB.

3. If the MLID supports checksum generation, send another MLID
Capability Management ECB indicating which checksums to generate.

4. Flag each ECB the MLID must generate a checksum for in the StackId
field of a transmission ECB.

The protocol stack must configure the C HSM to validate checksums as
follows:
The Protocol’s View of Checksumming 19

Hardware Checksumming
104-000199-001
October 5, 1999

Novell Confidential

doc_tpl.fm Rev 99a 27 August 99
1. Determine the MLID's control Entry point.

2. Determine if the MLID supports checksum validation by sending a MLID
Capability Management ECB.

3. If the MLID supports checksum validation, send another MLID
Capability Management ECB indicating which checksums to validate.

4. The C HSM will flag each ECB it attempts to validate in the
ECB_PreviousLink field of the receive ECB and in the LKAhd_PktAttr
field of the LookAhead structure associated with the received packet.

5. The C HSM will flag each ECB it fails to validate in the
ECB_PreviousLink field of the receive ECB and in the LKAhd_PktAttr
field of the LookAhead structure associated with the received packet.

Generating an MLID Capability Management ECB

The protocol creates an MLID Capability Management ECB to get a list of the
capabilities of the MLID. The protocol sets the appropriate value,
MCECB_CON_GET_CAPABILITIES, in the MCECB_Control field. The
MLID then returns the active capabilities in the
MCECB_HSMCapabilitiesState field. The protocol activates capabilities by
setting MCECB_CON_ENABLE_ACTIVE_CAP in the MCECB_Control
field, setting the appropriate bits in the MCECB_HSMCapabilitiesState field,
and sending the MLID Capability Management ECB to the MLID. The MLID
acts on the MLID Capability Management ECB and returns the active
capabilities in the MCECB_HSMCapabilitiesState field.

Packet Reception

Hardware checksum validation is controlled by the C HSM via the
MCECB_HSMCapabilities field of the MLID Capability Management ECB.
The ECB_PreviousLink field of the receive ECB will indicate when the
checksum was validated and whether or not the packet failed validation. This
information will also be contained in the LKAhd_PktAttr field of the
LookAhead structure associated with the incoming packet.
20 Hardware Checksumming

Hardware Checksumming
104-000199-001
October 5, 1999

Novell Confidential

doc_tpl.fm Rev 99a 27 August 99
Packet Transmission

Protocol stacks are assigned protocol stack IDs by the LSL when they are
registered. Typically, protocol stacks put their protocol stack IDs in the
ECB_StackID field of the transmit packet ECB. A set of values that indicate
such things as whether the packet is a raw send, a priority transmit packet, or
whether it requires checksum generation can also be placed in the
ECB_StackID field.

The ECB_StackID field values are as follows:

Table 2 ECB_StackID Field Values

0x0000-0x00FF (0-255) Protocol Identification Number assigned by the LSL

0xFFFF Raw Send

0xFFF0-0xFFFF Priority Sends
The Protocol’s View of Checksumming 21

Hardware Checksumming
104-000199-001
October 5, 1999

Novell Confidential

doc_tpl.fm Rev 99a 27 August 99
Which checksum to generate is determined by the ECB_StackID and
ECB_ProtocolID fields of the ECB. This combination is matched with the
information obtained by the MLID Management API call.

0xzzFy Check Sum Packets

zz is the checksum to generate. The bit pattern for zz is 10xx xxxx.

0x80 = No Checksum generation on this packet.

0x90 = Generate Transport Layer Checksum (TCP, UDP, ICMP, RSVP)

0xA0 = Generate Network Layer Checksum (Ipv4)

Fy is the priority transmission support level.

[See "Priority Tx Support" in ODI Specification: Hardware Specific Modules
(HSMs) (C Language) and the ECB_StackID definition in ODI Specification:
Protocol Stacks and MLIDS (C Language)]

The Fy values are the same as the last byte of the priority send values. These
values decode as follows:

 (Raw Sends)

0xFF = CHK_RAW_SEND_PRIORITY_0 No Priority

0xFE = CHK_RAW_SEND_PRIORITY_1 Lowest Priority

0xFD = CHK_RAW_SEND_PRIORITY_2

0xFC = CHK_RAW_SEND_PRIORITY_3

0xFB = CHK_RAW_SEND_PRIORITY_4

0xFA = CHK_RAW_SEND_PRIORITY_5

0xF9 = CHK_RAW_SEND_PRIORITY_6

0xF8 = CHK_RAW_SEND_PRIORITY_7 Highest Priority

(Normal Sends)

0xF7 = CHK_SEND_PRIORITY_0 No Priority

0xF6 = CHK_SEND_PRIORITY_1 Lowest Priority

0xF5 = CHK_SEND_PRIORITY_2

0xF4 = CHK_SEND_PRIORITY_3

0xF3 = CHK_SEND_PRIORITY_4

0xF2 = CHK_SEND_PRIORITY_5

0xF1 = CHK_SEND_PRIORITY_6

0xF0 = CHK_SEND_PRIORITY_7 Highest Priority

Raw send packets may be checksummed. The raw send designation indicates
that the protocol stack has generated the full MAC header. The MLID will not
change the MAC header on a raw send.

All other bits are reserved and reset to zero.
22 Hardware Checksumming

Hardware Checksumming
104-000199-001
October 5, 1999

Novell Confidential

doc_tpl.fm Rev 99a 27 August 99
For example:

The protocol ID for the IPv4 checksum for an Ethernet_II frame type is 800.
When the HSM generates an IPv4 checksum for Ethernet_II and you have also
indicated no priority, normal send, checksum IP, and TCP for the packet, the
ECB_ProtocolID field will contain 800 and the StackID field will contain
0xB0F7 .
The Protocol’s View of Checksumming 23

Hardware Checksumming
104-000199-001
October 5, 1999

Novell Confidential

doc_tpl.fm Rev 99a 27 August 99
24 Hardware Checksumming

Hardware Checksumming
104-000199-001
October 5, 1999

Novell Confidential

doc_tpl.fm Rev 99a8 27 August 99
4 The MLID’s View of Checksumming

Generally, MLIDs that support checksumming are comprised of the Media
Specific Module (MSM) and the Topology Specific Module (TSM) provided
by the Novell LAN Driver ToolKit, and a Hardware Specific Module (HSM)
written to ODI Specifications: Hardware Specicfic Modules (HSMs) spec
v1.11+ and Protocol Stacks and MLIDs, spec v1.11+.

Typically, C HSMs are not ECB-aware and are not aware of network layer
protocols or MAC layer protocols; however, C HSMs that support
checksumming should generally be ECB-aware.

All C HSMs (ECB-aware or not) report their checksumming capabilities via
the MLID Management API when queried.

Upon Receipt of the MLID Capability Management ECB

The C HSM receives the MLID Capability Management ECB via the Driver
Management API. The C HSM acts on the bits in the
MCECB_HSMCapabilitiesState field of the MLID Capability Management
ECB as directed by the MCECB_Control field.

To enable any capabilities, the MCECB_Control field value must be set to
MCECB_CON_ENABLE_ACTIVE_CAP. The C HSM will then enable any
capabilities indicated by the bits in the MCECB_HSMCapabilitiesState field.

To disable any capabilities, the MCECB_Control field value must be set to
MCECB_CON_DISABLE_ACTIVE_CAP. The C HSM will then disable
any capabilities indicated by the bits in the MCECB_HSMCapabilitiesState
field.
The MLID’s View of Checksumming 25

Hardware Checksumming
104-000199-001
October 5, 1999

Novell Confidential

doc_tpl.fm Rev 99a 27 August 99
Upon completion of any MLID Capability Management ECB request, the
CHSM always sets the MCECB_HSMCapabilities field and updates the
MCECB_HSMCapabilitiesState field to reflect which checksums are
currently enabled.

The status of any bits that were not set in the MCECB_HSMCapabilitiesState
field is unchanged.

ECB-Aware C HSMs

Packet Reception

When a packet is received, and the checksum capabilities for the board
number / protocol ID combination are active, the ECB-aware C HSM will
provide checksum validation.

The ECB-aware C HSM will indicate whether a packet's checksum has been
validated and whether the checksum was valid or invalid in the
ECB_PreviousLink field of the received packet's ECB. The TSM will also
indicate this information in the LkAhd_PktAttr field of the LookAhead
structure associated with the packet.

NOTE: ECB-aware C HSMs do not fill in or prepare LookAhead structures.
TSMs do this.

Table 3 ECB_PreviousLink Field Definitions - Currently Defined Bits

PAE_CRC_BIT

PAE_CRC_ALIGN_BIT

PAE_RUNT_PACKET_BIT

PAE_TOO_BIG_BIT

PAE_NOT_ENABLED_BIT

PAE_MALFORMED_BIT

PAE_NO_COMPRES_BIT

PAE_NONCAN_ADDR_BIT
26 Hardware Checksumming

Hardware Checksumming
104-000199-001
October 5, 1999

Novell Confidential

doc_tpl.fm Rev 99a 27 August 99
Table 4 ECB_PreviousLink Field Definitions - New Defined Bits

Packet Transmission

ECB-aware C HSMs generate checksums on all transmit packets that have the
appropriate bit(s) set in the ECB_StackID field of the packet's ECB. C HSMs
must be configured according to the information in an MLID Capability
Management ECB before generating any checksums. The StackID field
provides the ECB-aware C HSM with the information it needs to determine
when to generate a checksum (See section 3 - The Protocol's View of
Checksumming). The C HSM uses the board number / protocol ID
combination to determine which checksum to generate.

ECB-aware C HSMs will not transmit packets with checksum generation
codes that are not supported by the MLID. The C HSM will return the TCB to
the protocol stack using <CTSM >SendComplete() with the transmitStatus
parameter set to ODISTAT_PACKET_UNDELIVERABLE. The CTSM will
set the ECB_Status field to ODISTAT_CANCELED in this case.

ECB-aware C HSMs track the capabilities of specific logical boards and only
generate checksums when the checksum capabilities for a specific board
number / protocol ID combination are activated.

PAE_TRANS_PROT_CHKSUM_ER
R

Set if the transport layer protocol checksum failed validation:
TCP, UDP, RSVP, ICMP.

PAE_NET_PROT_CHKSUM_ERR Set if the network layer protocol checksum failed validation: IPv4.

PAE_TRANS_PROT_CHKSUM Set if the transport layer protocol checksum validation was
performed: TCP, UDP, RSVP, ICMP.

PAE_NET_PROT_CHKSUM Set if the network layer protocol checksum validation was
performed: Ipv4.
The MLID’s View of Checksumming 27

Hardware Checksumming
104-000199-001
October 5, 1999

Novell Confidential

doc_tpl.fm Rev 99a 27 August 99
TCB/RCB C HSMs

Packet Reception

When a packet is received, and the checksum capabilities for the board
number / protocol ID combination are active, the C HSM will provide
checksum validation.

The C HSM will indicate whether a packet's checksum has been validated and
whether the checksum was valid or invalid in the rcvStatus parameter of
GetRCB or ProcessGetRCB. The TSM will also indicate this information in
the LkAhd_PktAttr field of the LookAhead structure associated with the
packet and in the ECB_PreviousLink field of the received packet's ECB. See
"ECB_PreviousLink Field Definitions - Currently Defined Bits".

NOTE: C HSMs do not fill in or prepare LookAhead structures. TSMs do
this.

NOTE: On 3.12 and 4.11 servers, the LSL overwrites the
ECB.ECB_PreviousLink field. Checksum validation is only valid if the LSL
Configuration Table is x.xx or higher.

Packet Transmission

C HSMs generate checksums on all transmit packets that have the appropriate
bit(s) set in the ECB_StackID field of the packet's ECB. The ECB_StackID
field of the packet's ECB is accessable via the TCB_STACKID macro.

C HSMs must be configured according to the information in an MLID
Capability Management ECB before generating any checksums. The StackID
field provides the C HSM with the information it needs to determine when to
generate a checksum (See section 3 - The Protocol's View of Checksumming).
The C HSM uses the board number / protocol ID combination to determine
which checksum to generate.

C HSMs will not transmit packets with checksum generation codes that are not
supported by the MLID. The C HSM will return the ECB to the protocol stack
using <CTSM >SendCompelete() with the ECB_Status field set to
ODISTAT_BAD_PARAMETER and the transmitStatus parameter set to
ODISTAT_PACKET_UNDELIVERABLE.
28 Hardware Checksumming

Hardware Checksumming
104-000199-001
October 5, 1999

Novell Confidential

doc_tpl.fm Rev 99a 27 August 99
C HSMs track the capabilities of specific logical boards and only generate
checksums when the checksum capabilities for a specific board number /
protocol ID combination are activated.
The MLID’s View of Checksumming 29

Hardware Checksumming
104-000199-001
October 5, 1999

Novell Confidential

doc_tpl.fm Rev 99a 27 August 99
30 Hardware Checksumming

Hardware Checksumming
104-000199-001
October 5, 1999

Novell Confidential

doc_tpl.fm Rev 99a8 27 August 99
5 Hwchksum.h File

/*——————————————————————–*
 * Copyright Unpublished Work of Novell, Inc. All Rights Reserved
 *
 * THIS WORK IS AN UNPUBLISHED WORK AND CONTAINS CONFIDENTIAL,
 * PROPRIETARY AND TRADE SECRET INFORMATION OF NOVELL, INC.
 * ACCESS TO THIS WORK IS RESTRICTED TO (I) NOVELL EMPLOYEES
 * WHO HAVE A NEED TO KNOW TO PERFORM TASKS WITHIN THE SCOPE
 * OF THEIR ASSIGNMENTS AND (ii) ENTITIES OTHER THAN NOVELL
 * WHO HAVE ENTERED INTO APPROPRIATE LICENSE AGREEMENTS.
 * NO PART OF THIS WORK MAY BE USED, PRACTICED, PERFORMED, COPIED,
 * DISTRIBUTED, REVISED, MODIFIED, TRANSLATED, ABRIDGED,
 * CONDENSED, EXPANDED, COLLECTED, COMPILED, LINKED, RECAST,
 * TRANSFORMED OR ADAPTED WITHOUT THE PRIOR WRITTEN CONSENT OF
 * NOVELL. ANY USE OR EXPLOITATION OF THIS WORK WITHOUT AUTHORIZATION
 * COULD SUBJECT THE PERPETRATOR TO CRIMINAL AND CIVIL LIABILITY.
 ——————————————————————–
/**
 *
 * Program Name:C ODI Hardware Checksumming Supplement Header File
 *
 * Filename:HWChkSum.H
 *
 * ODI Spec Ver:1.11
 *
 * Description:This file is the main source for the
 * C ODI SPECIFICATION: Hardware Checksumming
 * Supplement.
 * Structures needed by the MLI or MPI interface for
 * Hardware Checksumming are defined here.
 *
 * Modification History:
 * 971003 JWR Added MCECB_CON_DISABLE_REMOVE_CAP value for the
 * MCECB_Control Field.
 *
Hwchksum.h File 31

Hardware Checksumming
104-000199-001
October 5, 1999

Novell Confidential

doc_tpl.fm Rev 99a 27 August 99
 * 981001 LON Added TCB_STATUS macro for use by TCB aware HSMs.
 *
 * 981105 LON These defines had a typo:
 * PAE_TRANS_PROT_CHKSUM_ERR, PAE_NET_PROT_CHKSUM_ERR,
 * PAE_TRANS_PROT_CHKSUM and PAE_NET_PROT_CHKSUM,
 * – SPD 216043
 *
 **/

#ifndef _ODI_HWChkSum_Include_
#define _ODI_HWChkSum_Include_

/* C ODI Hardware Checksumming Specification Version Numbers */

#define ODI_HWChkSum_VER 02

/* Novell's MLID Capability Management ECB Defined */

typedef struct _MAN_CAP_ECB_
 {
 struct _MAN_CAP_ECB_ *MCECB_NextLink;
 struct _MAN_CAP_ECB_ *MCECB_PreviousLink;
 UINT16 MCECB_Status;
 void (*MCECB_ESR) (struct _MAN_CAP_ECB_ *);
 UINT16 MCECB_STACKID;
 UINT8 MCECB_IDENT[6];
 PROT_ID MCECB_Protocol_ID;
 UINT32 MCECB_Control;
 UINT32 MCECB_BoardNumber;
 UINT32 MCECB_HSMCapabilities;
 UINT32 MCECB_HSMCapabilitiesState;
 UINT32 MCECB_ProtocolWorkSpace;
 UINT32 MCECB_DriverWorkSpace;
 UINT32 MCECB_Reserved[2];
 } MANAGEMENT_CAPABILITY_ECB;

/* MECB_IDENT Value Defined */
 #define MCECB_IDENT_STR { 'M','A','N','C','A','P'} /* 'MANCAP' */

/* MECB_Control Values Defined */
 #define MCECB_CON_GET_CAPABILITIES 0
 #define MCECB_CON_ENABLE_ACTIVE_CAP 1
 #define MCECB_CON_DISABLE_ACTIVE_CAP 2
 #define MCECB_CON_DISABLE_REMOVE_CAP 3

/* MECB_HSMCapabilities defined. */
 #define HSMCAP_IPv4_CHECKSUM_TX 0x0001
32 Hardware Checksumming

Hardware Checksumming
104-000199-001
October 5, 1999

Novell Confidential

doc_tpl.fm Rev 99a 27 August 99
 #define HSMCAP_TCP_CHECKSUM_TX 0x0002
 #define HSMCAP_UDP_CHECKSUM_TX 0x0004
 #define HSMCAP_RSVP_CHECKSUM_TX 0x0008
 #define HSMCAP_ICMP_CHECKSUM_TX 0x0010
 /* Reserved 0x0020 */
 /* Reserved 0x0040 */
 /* Reserved 0x0080 */

 #define HSMCAP_IPv4_CHECKSUM_RX 0x0100
 #define HSMCAP_TCP_CHECKSUM_RX 0x0200
 #define HSMCAP_UDP_CHECKSUM_RX 0x0400
 #define HSMCAP_RSVP_CHECKSUM_RX 0x0800
 #define HSMCAP_ICMP_CHECKSUM_RX 0x1000
 /* Reserved 0x2000 */
 /* Reserved 0x4000 */
 /* Reserved 0x8000 */

/* ECB_StackID and TCB_StackID values defined 0xzzFy */
/* (RAW Sends) */
 #define CHK_RAW_SEND_PRIORITY_0 0x80FF /* No Priority */
 #define CHK_RAW_SEND_PRIORITY_1 0x80FE /* Lowest Priority */
 #define CHK_RAW_SEND_PRIORITY_2 0x80FD
 #define CHK_RAW_SEND_PRIORITY_3 0x80FC
 #define CHK_RAW_SEND_PRIORITY_4 0x80FB
 #define CHK_RAW_SEND_PRIORITY_5 0x80FA
 #define CHK_RAW_SEND_PRIORITY_6 0x80F9
 #define CHK_RAW_SEND_PRIORITY_7 0x80F8 /* Highest Priority */

/* (Normal Sends) */
 #define CHK_SEND_PRIORITY_0 0x80F7 /* No Priority */
 #define CHK_SEND_PRIORITY_1 0x80F6 /* Lowest Priority */
 #define CHK_SEND_PRIORITY_2 0x80F5
 #define CHK_SEND_PRIORITY_3 0x80F4
 #define CHK_SEND_PRIORITY_4 0x80F3
 #define CHK_SEND_PRIORITY_5 0x80F2
 #define CHK_SEND_PRIORITY_6 0x80F1
 #define CHK_SEND_PRIORITY_7 0x80F0 /* Highest Priority */

/* zz bits defined for generation. */
 #define CHK_Generate_Transport 0x1000
 #define CHK_Generate_Network 0x2000

/* PreviousLink ECB Field definitions (and RcvStatus parameter) */
 #define PAE_TRANS_PROT_CHKSUM_ERR 0x00001000
 #define PAE_NET_PROT_CHKSUM_ERR 0x00002000
 #define PAE_TRANS_PROT_CHKSUM 0x00010000
 #define PAE_NET_PROT_CHKSUM 0x00020000
Hwchksum.h File 33

Hardware Checksumming
104-000199-001
October 5, 1999

Novell Confidential

doc_tpl.fm Rev 99a 27 August 99

/* Access MACROS for the TCB aware Drivers to get ECB information */
 #define TCB_STACKID(t) \
 (UINT16 *) ((UINT8*)(t->TCB_FragBlockPtr)-\
 (((UINT8) &(((ECB*)0)->ECB_FragmentCount)) - \
 ((UINT8) &(((ECB*)0)->ECB_StackID))))

 #define TCB_PROTOCOLID(t)\
 (PROT_ID *)((UINT8*)(t->TCB_FragBlockPtr)-\
 (((UINT8) &(((ECB*)0)->ECB_FragmentCount)) - \
 ((UINT8) &(((ECB*)0)->ECB_ProtocolID))))

 #define TCB_BOARDNUMBER(t)\
 (UINT32 *)((UINT8*)(t->TCB_FragBlockPtr)-\
 (((UINT8) &(((ECB*)0)->ECB_FragmentCount)) - \
 ((UINT8) &(((ECB*)0)->ECB_BoardNumber))))

 #define TCB_STATUS(t)\
 (UINT16 *)((UINT8*)(t->TCB_FragBlockPtr)-\
 (((UINT8) &(((ECB*)0)->ECB_FragmentCount)) - \
 ((UINT8) &(((ECB*)0)->ECB_Status))))

#endif /*_ODI_HWChkSum_Include_ */
34 Hardware Checksumming

Hardware Checksumming
104-000199-001
October 5, 1999

Novell Confidential

	Contents
	1 Introduction
	References

	2 Novell’s MLID Capability Management ECB
	MLID Capability Management ECB Structure Field Definitions
	Capability Bits Defined for the MLID Capability Management ECB
	Management Capabilities Completion ESR

	3 The Protocol’s View of Checksumming
	Generating an MLID Capability Management ECB
	Packet Reception
	Packet Transmission

	4 The MLID’s View of Checksumming
	Upon Receipt of the MLID Capability Management ECB
	ECB-Aware C HSMs
	Packet Reception
	Packet Transmission

	TCB/RCB C HSMs
	Packet Reception
	Packet Transmission

	5 Hwchksum.h File

