
Novell ODI Specification:
NetWare 16-Bit DOS
Protocol Stacks and MLIDs

ODI Specification Version 4.00

Document Version 1.03

Part Number: 107–00078–001

February 2, 1996

NetWare 16-Bit DOS Protocol Stacks and MLIDs Specification

ii Version 1.03 (February 2, 1996)

Disclaimer

Novell, Inc. makes no representations or warranties with
respect to the contents or use of this manual, and specifically
disclaims any express or implied warranties of merchantability
or fitness for any particular purpose. Further, Novell, Inc.
reserves the right to revise this publication and to make
changes to its content, at any time, without obligation to notify
any person or entity of such revisions or changes.

� Copyright 1995 and 1996 by Novell, Inc. All rights reserved.
This document may be freely copied and distributed as long as
it is reproduced in its entirety and for the benefit of network
product developers. Portions of this document may be included
with other material as long as authorship is attributed to
Novell, Inc. and appropriate copyright notices are included.

Novell, Incorporated
122 East 1700 South
Provo, Utah 84606

Trademarks

Novell, Inc. has attempted to supply trademark information
about company names, products, and services mentioned in
this manual.

Novell and NetWare are registered trademarks of Novell, Inc.

Internetwork Packet Exchange, IPX, Link Support Layer, LSL,
MAC, Multiple Link Interface, MLI, Multiple Link Interface
Driver, MLID, Multiple Protocol Interface, MPI, NE1000,
NE2000, NE2100, NE/2, NE2–32, NTR2000, NetWare System
Interface, NSI, NetWare Access Services, NetWare Core
Protocol, NCP, NetWare Directory Services, NDS, NetWare
DOS Requester, NDR, NetWare Express, NetWare Loadable
Module, NLM, NetWare Management Agent, NetWare
Requester, NetWare Runtime, Novell Embedded Systems
Technology, NEST, Novell Labs, Open Data–Link Interface,
ODI, Packet Burst, RX–Net, SFT, Transactional Tracking
System, TTS, Virtual Loadable Module, VLM are trademarks of
Novell, Inc.

IBM is a registered trademark of International Business
Machines Corporation. AppleTalk is a registered trademark of
Apple Computer, Inc. LAT is a trademark of Digital Equipment
Corporation.

Version 1.03 (February 2, 1996) iii

Table of Contents

Table of Contents iii.

Preface x.
Document Organization x.
Referenced Documents x.
Equates and Structures xi.

LSL Initialization Entry Function Equates xi.
Registration Structures xii.
MemStatStruc Structure xii.
StackChainStruc Structure xii.
LookAheadStruc Structure xiii.
LDestType Bit Definitions xiii.
LPacketAttrib Bit Definitions xiii.
Promiscuous State Flag Bit Definitions xiii.

ODI Architecture I-1.
Section Overview I-2.

Introduction to ODI 1-1.
Chapter Overview 1-2.
Open Data-Link Interface (ODI) 1-3.

Protocol Stacks 1-3.
Link Support Layer (LSL) 1-5.
Multiple Link Interface Drivers (MLIDs) 1-5.

Data Flow 1-6.
Send Data Flow 1-6.
Receive Data Flow 1-7.

Protocol Stacks II-1.
Section Overview II-2.

Overview of Protocol Stacks 2-1.
DOS Environment 2-2.
Protocol Stack Performance 2-2.
Network Interface Card Utilization 2-2.
Hardware/Media Independence 2-3.
Protocol Stack Multiplexing 2-4.
Packet Transmission and Reception 2-4.

Binding Protocol Stacks 2-4.
Receiving Packets 2-6.

1

1.

1

Table of Contents

Version 1.03 (February 2, 1996) iv

Priority Packet Support 2-6.
Stack Filtering 2-7.

Protocol Stack Data Structures 3-1.
Overview 3-2.
Protocol Stack Configuration Table 3-3.

Protocol Stack Configuration Table Structure Sample Code 3-3.
Protocol Stack Statistics Table 3-4.

Protocol Stack Statistics Table Structure Sample Code 3-4.

Protocol Stack Initialization 4-1.
Overview 4-2.
Locating the LSL 4-3.
Registering with the LSL 4-5.
Determining Which Logical Boards to Service 4-6.

Explicit Method 4-6.
Dynamic Method 4-6.

Adding Protocol IDs 4-7.
Multiple Board Support 4-8.
Obtaining Protocol ID Value(s) 4-8.

Customizing a Protocol Stack 4-8.
Line Speed 4-9.
Measuring Effective Network Performance 4-9.
Maximum Packet Size 4-9.
Multicast Support 4-10.
Receive Look Ahead 4-11.

Bind to Logical Board(s) 4-11.
Final Initialization 4-12.
Unhooking the Protocol Stack 4-12.

Unload Module Algorithm 4-12.

Protocol Stack Packet Reception 5-1.
Protocol Stack Packet Receive Operation 5-2.
Receive Routine Events 5-2.
Receive Look Ahead 5-2.

Receive Handler 5-2.
LookAheadStruc Structure 5-3.
Receive Look Ahead Size 5-5.

Protocol Stack Packet Reception Methods 5-6.
Bound Protocol Stack 5-6.
Prescan Protocol Stack 5-6.
Default Protocol Stack 5-6.

StackChainStruc Structure 5-7.
Protocol Receive Handler 5-9.
Protocol Receive Complete Handler 5-11.
ECB Resubmit Procedures 5-14.

Protocol Stack Packet Transmission 6-1.
Overview 6-2.

Table of Contents

Version 1.03 (February 2, 1996) v

Send Routine Events 6-2.
Starting the Packet Send 6-3.

Supporting Multiple Outstanding Transmit Requests 6-3.
Sending the Packet 6-3.
Event Control Blocks 6-3.

Transmit Complete 6-7.
Protocol Transmit Complete Handler 6-8.
Prescan Transmit Protocol Stack Handler 6-9.

Protocol Stack Control Routines 7-1.
Overview 7-2.
BindToMLID 7-3.
GetProtocolStackConfiguration 7-4.
GetProtocolStackStatistics 7-5.
MLIDDeregistered 7-6.
ProtocolManagement 7-7.
ProtocolPromiscuousChange 7-9.
UnbindFromMLID 7-10.

Link Support Layer (LSL) III-1.
Section Overview III-2.

Overview of the LSL 8-1.
Overview 8-2.
Link Support Layer (LSL) 8-3.
LSL Completion Codes 8-3.
Specification Version String 8-4.
LSL Commandline Switches 8-4.

Custom Configuration Files 8-5.

LSL Data Structures 9-1.
Overview 9-2.
LSL Configuration Table 9-3.

LSL Configuration Table Structure 9-3.
LSL Statistics Table 9-4.

LSL Statistics Table Structure 9-5.

LSL Protocol Stack Support Routines 10-1.
Overview 10-2.
AddProtocolID 10-5.
BindStack 10-7.
CancelAESEvent 10-8.
DefragmentECB 10-9.
DeregisterDefaultStackChain 10-10.
DeregisterPrescanRxChain 10-11.
DeregisterPrescanTxChain 10-12.
DeregisterRPLBootROM 10-13.
DeregisterStack 10-14.

Table of Contents

Version 1.03 (February 2, 1996) vi

EndCriticalSection 10-15.
GetBoundBoardInfo 10-16.
GetCriticalSectionStatus 10-17.
GetECB 10-18.
GetHeldPacket 10-19.
GetIntervalMarker 10-21.
GetLSLConfiguration 10-22.
GetLSLStatistics 10-23.
GetMLIDControlEntry 10-24.
GetPIDFromStackIDBoard 10-25.
GetProtocolControlEntry 10-27.
GetStackIDFromName 10-28.
GetStartOfChain 10-29.
GetTickMarker 10-30.
HoldEvent 10-31.
HoldPacket 10-32.
ModifyStackFilter 10-33.
RegisterDefaultStackChain 10-34.
RegisterPrescanRxChain 10-36.
RegisterPrescanTxChain 10-38.
RegisterRPLBootROM 10-40.

RPLBootROMInfoStruc Structure 10-41.
RegisterStack 10-42.

StackInfoStruc Structure 10-42.
RelinquishControl 10-44.
ResubmitDefault 10-45.
ResubmitPrescanRx 10-47.
ResubmitPrescanTx 10-49.
ReturnECB 10-50.
ScanPacket 10-51.
ScheduleAESEvent 10-52.

AESECB Structure 10-52.
SendPacket 10-54.
ServiceEvents 10-55.
StartCriticalSection 10-56.
UnbindStack 10-57.

LSL MLID Support Routines 11-1.
Overview 11-2.
AddProtocolID 11-4.
CancelAESEvent 11-5.
ControlStackFilter 11-6.
DefragmentECB 11-8.
DeregisterMLID 11-9.
EndCriticalSection 11-10.
GetCriticalSectionStatus 11-11.

Table of Contents

Version 1.03 (February 2, 1996) vii

GetECB 11-12.
GetIntervalMarker 11-13.
GetStackECB 11-14.

LookAheadStruc Structure 11-14.
HoldReceiveEvent 11-16.
ReturnECB 11-17.
ScheduleAESEvent 11-18.

AESECB Structure 11-18.
ServiceEvents 11-20.
StartCriticalSection 11-21.
SendComplete 11-22.

LSL Initialization Routines 12-1.
Overview 12-2.
GetEntryPoints 12-3.

LSLInitEntryPointBlock Structure 12-3.
GetMLIDSupportEntry 12-4.
GetProtocolSupportEntry 12-5.
RegisterMLID 12-6.

Information Block on Entry 12-6.
Information Block on Return 12-7.

LSL General Services 13-1.
Overview 13-2.
AddGeneralService 13-3.

GenServiceControlBlock Structure 13-4.
AddMemoryToPool 13-6.
AllocateMemory 13-7.
FreeMemory 13-8.
GetNETCFGPath 13-9.
GetServiceChain 13-10.
MemoryStatistics 13-11.

MemStatStruc Structure 13-11.
ReallocateMemory 13-12.
RemoveGeneralService 13-13.

Multiple Link Interface Drivers (MLIDs) IV-1.
Section Overview IV-2.

Overview of the MLID 14-1.
Overview 14-2.
ODI MLID 14-3.
MLID Procedures 14-3.

MLID Initialization 14-4.
Board Service Routine 14-4.
Packet Transmission 14-4.
Control Routines 14-4.
Timeout Detection 14-5.

Table of Contents

Version 1.03 (February 2, 1996) viii

Driver Remove 14-5.
Events 14-5.

MLID Data Structures and Variables 14-5.
MLID Configuration Table 14-5.
MLID Statistics Table 14-5.

MLID Functionality 14-6.
Multiple Frame Support 14-6.
Source Routing Support 14-7.
Promiscuous Mode Support 14-7.
Multicast Addressing Support 14-8.

MLID Design Considerations 14-8.
Hardware Issues 14-8.

MLID Data Structures 15-1.
Overview 15-2.
Frame Data Space 15-3.
MLID Configuration Table 15-3.

MLID Configuration Table Sample Code 15-4.
Configuration Table Flags 15-12.

Adapter Data Space 15-17.
MLID Statistics Table 15-17.

MLID Statistics Table 15-18.

MLID Initialization 16-1.
Overview 16-2.
MLID Initialization 16-3.

MLID Packet Reception and Transmission 17-1.
Overview 17-2.
MLID Packet Reception 17-3.
Lookahead Buffer 17-4.

Shared RAM 17-5.
Programmed I/O 17-5.
DMA 17-5.

MLID Packet Transmission 17-5.

MLID Control Routines 18-1.
Overview 18-2.
AddMulticastAddress 18-3.

Ethernet Multicasts 18-4.
Token-Ring Multicasts 18-4.
Number of Supported Multicast Addresses Supported 18-5.

DeleteMulticastAddress 18-6.
DriverManagement 18-7.
DriverPoll 18-9.
GetMLIDConfiguration 18-10.
GetMLIDStatistics 18-11.
GetMulticastInfo 18-12.

Table of Contents

Version 1.03 (February 2, 1996) ix

MLIDReset 18-14.
MLIDShutdown 18-15.
PromiscuousChange 18-17.
SetLookAheadSize 18-19.
RegisterTxMonitor 18-20.

Transmit Monitor 18-21.
Transmit Control Block (TCB) 18-21.

Appendixes V-1.

Event Control Blocks (ECBs) A-1.
Overview A-2.

Event Control Block Structure Sample Code A-3.

Compatibility with Multitasking DOS Products B-1.
Globally Accessible Data Buffers B-2.
Microsoft Windows 386 Enhanced Mode B-2.

The 802.2 Type II Frame Header C-1.
Overview C-2.
Support of the 802.2 Type II Frame C-3.

Packet Transmission C-3.
Packet Reception C-3.

Promiscuous Mode D-1.
Overview D-2.
Implementing Promiscuous Mode D-3.
Implementation Considerations D-3.

Multitasking D-3.
Packet Sequencing D-3.
ECB Does not Contain the Entire Packet D-4.
Error Packets D-4.
Logical vs. Physical D-4.

The NET.CFG Configuration File E-1.
Overview E-2.
Main Section Headings E-3.
Locating the NET.CFG File’s Directory E-3.
LAN Driver Keywords and Parameters E-4.

DMA [#selection] Channel E-4.
IRQ [#selection] Interrupt E-4.
MEM [#selection] Address [length] E-4.
Port [#selection] Address [length] E-4.
Slot n E-5.
Node Address h [format] E-5.
Protocol <name> h <frame type> E-5.
Frame <name> Address Mode E-6.
Custom Keywords E-6.

Glossary Gloss-1.

Index Index-1.

x Version 1.03 (February 2, 1996)

Preface

Document Organization
This document describes the ODI architecture, which consists
of three main elements: protocol stacks, the LSL and the LAN
driver (also called Multiple Link Interface Driver or MLID).
This document is organized into sections that discuss each
element of the architecture individually. The document
contains the following sections.

Section I Introduction

Introduces the ODI architecture and discusses the design
issues relevant to the ODI architecture as it applies to the
NetWare environment.

Section II Protocol Stacks

Explains the architecture of an ODI protocol stack and
discusses the design issues relevant to a stack. This section
also discusses protocol stack data structures, initialization,
packet reception and transmission, and control routines.

Section III LSL

Presents a brief overview of the LSL and describes its
configuration and statistics tables. This section also includes
descriptions of the general LSL support routines, the Multiple
Protocol Interface (MPI) support routines, and Multiple Link
Interface (MLI) support routines.

Section IV MLIDs

Explains the architecture of an ODI MLID and discusses the
design issues relevant to an ODI MLID. This section also
discusses MLID data structures, initialization, packet reception
and transmission, and control routines.

Section V Appendixes

Referenced Documents
This document refers to the following Novell products and
documents.

2

2.

2

Preface

Version 1.03 (February 2, 1996) xi

LAN Driver Developer’s Kit, Part number 172-000029–001

NESL Specification: 16-Bit DOS Client Programmer’s
Interface, part number 107-000066-001

Novell ODI Specification: 16-Bit DOS Client HSMs, part
number 107-000054-001

ODI Specification Supplement: Canonical and Noncanonical
Addressing, part number 107-000059-001

ODI Specification Supplement: Frame Types and Protocol IDs,
part number 107-000055-001

ODI Specification Supplement: Source Routing, part number
107-000058-001

ODI Specification Supplement: Standard MLID Message
Definitions, part number 107-000060-001

ODI Specification Supplement: The Hub Management
Interface, part number 107–000023–001

ODI Specification Supplement: The MLID Installation
Information File, part number 107-000056-001

Equates and Structures
MinNumECBs equ 0 ; LSL default

MaxNumECBs equ 50 ; Server’s max /40

MinECBDataSize equ 512 + 74 + 52 ; 512 data + 74 protocol
header + 52 MAC headers.

MaxECBDataSize equ 17954 ; Largest Token-Ring setting

DefaultNumMaxBoards equ 4 ; LSL default

DefaultNumMaxStacks equ 4 ; LSL default

DefaultECBDataSize equ 1514 ; 1514 = 1388 data + 74
protocol headers + 52 MAC
headers

LSL Initialization Entry Function Equates

LSLINIT_MLID_REG equ 1 ; Registers MLID,
; DS:DI –> MLIDRetInfoBlockStruc

LSLINIT_GET_PROTSUP_ENTRY equ 2 ; ES:SI –> LSL entry point Info Block
LSLINIT_GET_MLID_ENTRY equ 3 ; ES:SI –> MLID support entry point
LSLINIT_GET_ENTRY_POINTS equ 4 ; ES:SI –> Extended EntryPointInfoBlock

(V2.10 and above.)

NetWare 16-Bit DOS Protocol Stacks and MLIDs Specification

xii Version 1.03 (February 2, 1996)

Registration Structures
MLIDInfoBlockStruc struc

MIBS_SendEntry dd ?
MIBS_ControlEntry dd ?
MIBS_ConfigTable dd ?

MLIDInfoBlockStruc ends

MLIDRetInfoBlockStruc struc
MRIBS_MLID_SUP dd ?
MRIBS_BoardNum dd ?
MRIBS_ECB_DataSize dd ?

MLIDRetInfoBlockStruc ends

LSLInitEntryPointBlock struc
LSLProtSupEntryPt dd 0 ; Protocol Support Entry (MPI API)
LSLGenSupEntryPt dd 0 ; General Services Entry
LSLMLIDSupEntryPt dd 0 ; MLID Support Entry Point (MLI API)

LSLInitEntryPointBlock ends

MemStatStruc Structure
MemStatStruc struc

MemAvail dw 0 ; in paragraphs
MemInUse dw 0 ; in paragraphs
LargestAvailBlk dw 0 ; in paragraphs
NumAvailBlocks dw 0
MemOverhead dw 0 ; in bytes per allocation
MinAllocation dw 0 ; in bytes

MemStatStruc ends

StackChainStruc Structure
StackChainStruc struc

StkChnLink dd 0 ; Link Field
StkChnBoardNum dw –1 ; Logical Board Number
StkChnPositReq dw STACK_REQ_DEPENDS ; Chain

Position Requested
StkChnHandler dd ? ; Stack’s Tx or Rx Handler
StkChnControl dd ? ; Stack’s Control Entry Point
StkChnID dw 0 ; Stack’s ID Number
StkChnMask dw 83h ; Default (broadcast, multicast, and

direct)
StkChnReserved dd 0 ; Reserved

StackChainStruc ends ; (Size 24 bytes)

STACK_REQ_FIRST equ 0
STACK_REQ_NEXT_FIRST equ 1
STACK_REQ_DEPENDS equ 2
STACK_REQ_NEXT_LAST equ 3
STACK_REQ_LAST equ 4

Preface

Version 1.03 (February 2, 1996) xiii

LookAheadStruc Structure

LookAheadStruc struc
LMediaHeaderPtr dw 2 dup (?)
LookAheadPtr dw 2 dup (?)
LookAheadLen dw ?
LProtID db 6 dup (?)
LBoardNum dw 0
LDataSize dw ?
LImmAddress db 6 dup (?)
LPacketAttrib dw 0
LDestType dw 0
LStartCopyOffset dw 0
LPriorityLevel db 0
LRESERVED db 3 dup (?)

LookAheadStruc ends

LDestType Bit Definitions

DEST_MULTICAST equ0001h
DEST_BROADCAST equ0002h
DEST_REMOTE_UNICAST equ0004h
DEST_REMOTE_MULTICAST equ0008h
DEST_SOURCE_ROUTE equ0010h ; source route info
DEST_ERRORED equ0020h ; super exclusive bit
DEST_MAC_FRAME equ0040h ; exclusive bit
DEST_DIRECT equ0080h
RX_NOT_8022 equ0000h ; non-802.2 packet
RX_8022_TYPE1 equ0100h ; 802.2 type 1 packet
RX_8022_TYPE2 equ0200h ; 802.2 type 2 packet
RX_PRIORITY_FRAME equ0400h ; priority level is indicated
DEST_PROMISCUOUS equ0FFFFh ; all packets. (filter mask

 set by protocols to get all
 packets, including errors)

LPacketAttrib Bit Definitions

PKT_CRC_ERR equ0001h ; CRC error / (FCS error)
PKT_ALIGN_ERR equ0002h ; CRC/frame alignment error
PKT_RUNT_ERR equ0004h ; runt packet
PKT_BIG_ERR equ0010h ; packet larger than media

 allowed
PKT_TYPE_ERR equ0020h ; packet for unsupported

 frame type
PKT_MALFORM_ERR equ0040h ; malformed packet
IMM_ADDR_MSB_FORM equ8000h ; immediate address is MSB

 format.

Promiscuous State Flag Bit Definitions

PROM_OFF equ00h
PROM_MAC equ01h
PROM_NON_MAC equ02h
PROM_STAT equ04h

�

Version 1.03 (February 2, 1996) I-1

Section I ODI Architecture

FDDI.COM

MLID

Ether.COM

MLID

Link Support Layer (LSL)

Ether.COM

MLID

LAN Adapters

IPX/SPX

Protocol
Stack

AppleTalk

Protocol
Stack

Token.COM

MLID

TCP/IP

Protocol
Stack

NetWare Services

NetWare 16-Bit DOS Protocol Stacks and MLIDs Specification

I-2 Version 1.03 (February 2, 1996)

Section Overview
This introduction briefly describes the Open Data-Link
Interface (ODI) specification. It also briefly describes the
design, programming, and functionality factors you must
understand to write MLIDs and protocol stacks.

Chapter 1: Introduction to ODI briefly describes the Open
Data-Link Interface (ODI) specification. You should read this
chapter if you are not familiar with the basic concepts involved
in the ODI specification.

�

Version 1.03 (February 2, 1996) 1-1

Chapter 1 Introduction to ODI

1

1.

1

NetWare 16-Bit DOS Protocol Stacks and MLIDs Specification

1-2 Version 1.03 (February 2, 1996)

Chapter Overview
This chapter briefly describes the Open Data-Link Interface�
(ODI�) specification. It describes the functions of Multiple
Link Interface Drivers, protocol stacks, and the LSL. This
chapter also contains a brief description of data flow through
the ODI model.

Because the ODI specification provides for communications
between a variety of protocols and media, LAN drivers are
called Multiple Link Interface Drivers� (MLIDs�). The Link
Support Layer� (LSL�) handles the transfer of information
between MLIDs and protocol stacks.

Note The terms MLID and LAN driver can be interchanged.

You should read this chapter if you are not familiar with the
basic concepts involved in the ODI specification.

Introduction to ODI

Version 1.03 (February 2, 1996) 1-3

Open Data -Link Interface (ODI)
MLIDs and protocol stacks must conform to the ODI
specification. Figure illustrates the elements that make up the
ODI specification.

FDDI.COM

MLID

Ether.COM

MLID

Link Support Layer (LSL)

Ether.COM

MLID

LAN Adapters

IPX/SPX

Protocol
Stack

AppleTalk

Protocol
Stack

Token.COM

MLID

TCP/IP

Protocol
Stack

NetWare Services

The ODI specification allows multiple network protocols and
adapters (physical boards) to be used concurrently on the same
client or file server. It provides a flexible, high-performance
Data Link Layer interface to Network Layer protocol stacks.
The ODI specification is comprised of the three elements listed
below and illustrated above in Figure 1.1 .

� Protocol Stacks
� Link Support Layer (LSL)
� Multiple Link Interface Drivers (MLIDs)

 Protocol Stacks
Protocol Stack Functionality

Network Layer protocol stacks transmit and receive data over
a logical or physical network. They also handle routing,
connection services, and APIs, and provide an interface to
allow higher layer protocols or applications access to the
protocol stack’s services. As a general rule, protocol stacks
written to the ODI specification provide OSI (Open Systems
Interconnection) Network Layer functionality; however, they
are not limited to this. Figure 1.2 illustrates the ODI/OSI
correspondence.

Figure 1.1
The ODI Specification

NetWare 16-Bit DOS Protocol Stacks and MLIDs Specification

1-4 Version 1.03 (February 2, 1996)

Application

Presentation

Session

Transport

Network

Data Link

Physical

Logical Link Control (LLC)

Media Access Control (MAC)

Protocol
Stack

Link Support
Layer

MLID

LAN adapter

ODI Model

OSI
Model

The Multiple Protocol Interface (MPI)

Protocol stacks communicate with the LSL through the
Multiple Protocol Interface� (MPI�) . The MPI is an interface
that resides between the protocol stack and the LSL (see
Figure 1.3). The MPI provides protocol stacks with all the
APIs that are necessary for the protocol stack to communicate
over the network.

Figure 1.2
How ODI Fits into
the OSI Model

Introduction to ODI

Version 1.03 (February 2, 1996) 1-5

IPX/SPX

Protocol
Stack

AppleTalk

Protocol
Stack

TCP/IP

Protocol
Stack

NetWare Services

Link Support Layer (LSL)

Multiple Protocol Interface (MPI)

ÁÁÁÁ
ÁÁÁÁ

ÁÁÁÁÁ
ÁÁÁÁÁ

ÁÁÁÁÁ
ÁÁÁÁÁ

Link Support Layer (LSL)

The LSL handles the communication between protocol stacks
and MLIDs. Because the ODI allows the physical topology to
support many different types of protocols, the MLID receives
packets destined for different protocol stacks that might be
present in the system. For example, one Ethernet network
might support all of the following protocols: IPX�, TCP/IP,
AppleTalk*, and LAT* (a Digital Equipment Corporation
protocol). The LSL then determines which protocol stack is to
receive the packet. Next, the protocol stack determines what
should be done with the packet or where it should be sent.
When the protocol stack transmits a packet, it hands the
packet to the LSL. The LSL then directs the packet to the
appropriate MLID.

Note The term ‘‘LAN adapter” applies to any network controller that
provides access across a network. This network controller is as
likely to be present directly on the motherboard of a computer
in an embedded system as it is on a network interface card that
inserts into a computer bus.

The LSL also tracks the various protocols and MLIDs that are
currently loaded in the system and provides a consistent
method of finding and using each of the loaded modules.

Multiple Link Interface Drivers (MLIDs)

MLID Functionality

MLIDs are device drivers that handle the sending and
receiving of packets to and from a physical or logical topology
(for example, Ethernet SNAP is a logical topology). MLIDs
interface with a LAN adapter (also referred to as Network

Figure 1.3
The Multiple Protocol
Interface (MPI)

NetWare 16-Bit DOS Protocol Stacks and MLIDs Specification

1-6 Version 1.03 (February 2, 1996)

Interface Card [NIC] or physical board) and handle frame
header appending and stripping. MLIDs also help determine
the packet’s frame type.

Each MLID’s interface with the LAN adapter is determined by
that adapter’s hardware.

All MLIDs can handle packets from various protocols because
the MLID does not interpret the packet. Instead, it passes
received packets to the Link Support Layer (LSL) using Event
Control Blocks (ECBs). ECBs are data structures that the
MLID uses to send or receive packets or to schedule events.

The Multiple Link Interface (MLI)

The MLID communicates with the LSL through the Multiple
Link Interface� (MLI�). The MLI is the interface between the
LSL and the MLID (see Figure 1.4). This interface contains
the APIs necessary to facilitate communication between these
two modules.

ÁÁÁÁ
ÁÁÁÁ
ÁÁÁÁ
ÁÁÁÁ

ÁÁÁÁ
ÁÁÁÁ
ÁÁÁÁ
ÁÁÁÁ

ÁÁÁÁ
ÁÁÁÁ
ÁÁÁÁ
ÁÁÁÁ

ÁÁÁÁ
ÁÁÁÁ
ÁÁÁÁ
ÁÁÁÁ

Link Support Layer (LSL)

MLID
Token.COM

MLID
FDDI.COM

MLID

Multiple Link Interface (MLI)

ÁÁÁÁ
ÁÁÁÁ
ÁÁÁÁ
ÁÁÁÁ

Ether.COM
MLID

ÁÁÁÁ
ÁÁÁÁ
ÁÁÁÁ
ÁÁÁÁ

ÁÁÁÁ
ÁÁÁÁ
ÁÁÁÁ
ÁÁÁÁ

ÁÁÁÁ
ÁÁÁÁ
ÁÁÁÁ
ÁÁÁÁ

Data Flow
When messages are sent and received, the various protocols or
layers add and remove their own information at each layer.
The following diagrams illustrate basic data flow.

Send Data Flow

As Figure 1.5 illustrates, the protocol stack receives data from
the application above it, determines whether the packet must
be split into fragments, determines the size of the fragments,
adds the appropriate protocol header to the data packet, and
sends it to the LSL. The LSL isolates the protocol stack from
the topology and LAN medium below it. The protocol stack
simply passes data to the LSL. The LSL directs the packet to

Figure 1.4
The Multiple Link
Interface (MLI)

Introduction to ODI

Version 1.03 (February 2, 1996) 1-7

the appropriate MLID, which then takes care of the
topology-specific information. This is the reason ODI protocol
stacks are known as being media and frame-type independent.

Stack (IPX)

Application

LSL

Stack: � Determines fragment sizes
� Adds protocol header

DataIPX
Header

Data

As illustrated by Figure 1.6 , the LSL directs the packet to the
appropriate MLID. The MLID then adds the MAC header to
the packet and hands the packet to the LAN adapter.

MLID

LSL

MLID: Adds the Media Access Control
(MAC) header

DataIPX
Header

DataIPX
Header

MAC
Header

Board

LSL: Determines which MLID
should receive the packet
and passes it

In Figure 1.7 the hardware adds the preamble to the packet
and places the packet on the wire.

Board

Wire

DataIPX
Header

MAC
Header

Preamble

Hardware: Adds the preamble and
places the packet on the wire

Receive Data Flow

Figure 1.8 shows the LAN adapter receiving the packet off the
wire and stripping the preamble from the packet. The LAN
adapter then hands the packet to the MLID, which discards
the MAC header from the packet and hands the packet to the

Figure 1.5
Data Flow from
Application to LSL

Figure 1.6
Data Flow from the
LSL to the Board

Figure 1.7
Data Flow from the
Board to the Wire

NetWare 16-Bit DOS Protocol Stacks and MLIDs Specification

1-8 Version 1.03 (February 2, 1996)

LSL. The LSL directs the packet to the appropriate protocol
stack, which then removes the protocol header from the packet
and hands the data to the application.

MLID MLID: � Removes the (MAC) header
� Hands the packet to the LSL

DataIPX
Header

DataIPX
Header

MAC
Header

Board

LSL: Determines which protocol
stack should receive the packet
and passes the packet to that stack.

Wire

DataIPX
Header

MAC
Header

Preamble

Hardware: � Strips the preamble
� Gives the packet to the MLID

Stack (IPX)

Application

Stack: � Removes the protocol header
� Sends the data to the application

Data

DataIPX
Header

LSL

�

Figure 1.8
Receive Data Flow
from Wire to Application

Section II Protocol Stacks

FDDI.COM

MLID

Ether.COM

MLID

Link Support Layer (LSL)

Ether.COM

MLID

LAN Adapters

IPX/SPX

Protocol
Stack

AppleTalk

Protocol
Stack

Token.COM

MLID

TCP/IP

Protocol
Stack

NetWare Services

NetWare 16-Bit DOS Protocol Stacks and MLIDs Specification

II-2 Version 1.03 (February 2, 1996)

Section Overview
This section describes protocol stack initialization,
transmission, and reception routines and it also describes
protocol stack control routines.

Chapter 2: Overview of Protocol Stacks provides an overview of
NetWare protocol stack operation. You should read this chapter
if you have not developed an ODI protocol stack.

Chapter 3: Protocol Stack Data Structures describes the
protocol stack’s configuration and statistics tables. This chapter
provides useful reference material for protocol stack developers.

Chapter 4: Protocol Stack Initialization discusses registering,
binding, and chaining prescan, bound, and default protocol
stacks. You should review this chapter before writing the
protocol stack initialization routine.

Chapter 5: Protocol Stack Packet Reception describes the
protocol stack receive routine and details the prescan and
default protocol stack receive methods. You should review this
chapter before writing the protocol stack receive routine.

Chapter 6: Protocol Stack Packet Transmission describes the
send operation of the protocol stack. You should review this
chapter before writing the protocol stack transmission routine.

Chapter 7: Protocol Stack Control Routines describes the
commands that your protocol stack must provide to support the
MPI interface. This chapter provides useful reference material
for protocol stack developers and should be reviewed before
writing the protocol stack control routines.

�

Version 1.03 (February 2, 1996) 2-1

Chapter 2 Overview of Protocol Stacks

2

2.

2

NetWare 16-Bit DOS Protocol Stacks and MLIDs Specification

2-2 Version 1.03 (February 2, 1996)

DOS Environment

The minimum environment in which your protocol stack is
required to operate is a simple real mode DOS environment.
However, you should keep in mind that your protocol stack
might also be operating with DOS multitasking products such
as Microsoft Windows. Therefore, your protocol stack usually
needs to be compatible with DOS multitasking products (see
Appendix B: Compatibility with Multitasking DOS Products).

Protocol Stack Performance

A protocol stack’s performance is extremely important. To
achieve the best possible performance, develop the transmit
and receive portions of the protocol stack in assembly language.

Network Interface Card Utilization

Each protocol stack minimally utilizes one Network Interface
Card (NIC). (The terms NIC, board, adapter, and card can be
interchanged.) The protocol stack sees each NIC as a logical
board with a corresponding board number. This board number
is a handle the protocol stack uses to refer to the NIC when the
protocol stack requests the LSL to perform a function on the
NIC. Each board number represents a logical NIC operating on
a physical board. (A physical board might support more than
one logical NIC.) To the protocol stack, logical boards appear
identical to physical boards. For example, in some installations,
the NIC might be another protocol stack which is nesting your
protocol stack inside another protocol which is then transferred
onto a physical network. Regardless of the installation, a
protocol stack deals with the physical network by using a board
number handle.

The ODI specification allows multiple LAN adapters and
multiple frame formats on each adapter. Therefore, your
protocol stack should be able to service multiple LAN adapters
when necessary. As a minimum requirement, your protocol
stack will service one logical LAN adapter in the workstation.

Because ODI is a dynamic specification that allows protocol
stacks and LAN driver modules to be loaded and unloaded as
they are needed, we strongly recommend that your protocol
stack be fully unloadable. Chapter 4: Protocol Stack
Initialization discusses module unloading in detail.

 Overview of Protocol Stacks

Version 1.03 (February 2, 1996) 2-3

Application

Presentation

Session

Transport

Network

Data Link

Physical

Logical Link Control (LLC)

Media Access Control (MAC)

Protocol
Stack

Link Support
Layer

MLID

LAN adapter

ODI Model

OSI
Model

Hardware/Media Independence
MLIDs are written to be independent of the network protocol,
which allows MLIDs to be compatible with any protocol.
Protocol stacks require the same independence; they must be
written so that they are independent of the LAN medium and
frame type.

The protocol stack’s interface to the LSL (the OSI Data Link
Layer) is what allows the protocol stack to be independent of
the underlying LAN medium and frame type. In other words,
the protocol stack can be used on any adapter with any frame
format without the need for frame specific code. This allows the
protocol stack to be used in environments that traditionally
have not supported it. There are some specialized protocol
stacks that are written to be frame type aware, but these are
exceptions.

Important We strongly recommend that you develop your protocol stack so
that it is LAN medium and frame type independent.

Figure 2.1
How ODI Fits into
the OSI Model

NetWare 16-Bit DOS Protocol Stacks and MLIDs Specification

2-4 Version 1.03 (February 2, 1996)

Protocol Stack Multiplexing
Multiplexing different protocol types on the same frame type
requires each frame’s protocol type to be uniquely identified.
The LSL returns a unique value known as a Protocol ID (PID)
for each protocol that uses that frame type. The MLID places
this PID value in every transmitted frame, allowing the
physical LAN medium to be viewed as many logical networks
with each protocol communicating on its own wire.

The location and format of the PID in the frame header is LAN
medium and frame type dependent and should not concern the
protocol stack. The LAN driver receives the frames and passes
them to the LSL which then uses the PID to determine which
protocol stack receives the frame.

Packet Transmission and Reception
A protocol stack uses two system handles to concurrently
utilize and service multiple boards in a system:

� The board number specifies the physical network and the
frame type.

� The Protocol ID (PID), together with the board number,
represents the logical wire used on the physical network.

To send a frame on a network, the protocol stack only needs to
know the board number of the NIC that services that network
and the PID, which should be embedded into the media frame
header.

Frame reception is more involved than frame transmission and
requires a protocol stack to be bound to a board in the system.
Binding enables the LSL to route incoming frames to the
protocol stack by providing the address of the protocol stack’s
receive handler routine to the LSL. This routine can be called
at interrupt time and is entered with interrupts disabled. This
routine must not enable interrupts.

Binding Protocol Stacks
The ODI specification defines three types of protocol stacks:

� Bound protocol stacks
� Prescan protocol stacks
� Default protocol stacks

Bound Protocol Stacks

Bound protocol stacks are the most common. A bound protocol
stack requires that frames received from the LSL have a

 Overview of Protocol Stacks

Version 1.03 (February 2, 1996) 2-5

unique, registered Protocol ID (PID) embedded in the frame
header. (The system administrator can use the appropriate
entries in the NET.CFG file to register Protocol IDs for each
protocol stack. See Appendix E: NET.CFG Configuration File)
The appropriate PIDs for a given protocol are usually different
for each frame type. ODI Specification Supplement: Frame
Types and Protocol IDs lists the normal IPX and TCP/IP
protocol stack PID values for some of the more common frame
types.

The LSL uses the embedded PID in the packet header to locate
the appropriate protocol stack to receive the packet. A bound
protocol stack receives only the packets that have the
registered PID for that stack and that pass the stack filter.

Protocol stacks that contain multiple Network Layer protocols
using different PIDs (for example, TCP/IP = IP, ARP, RARP)
must be registered to the LSL as separate and distinct
protocols. In other words, if a protocol uses more than one
Protocol ID, that protocol stack should be logically fragmented
and each fragment registered with the LSL as a separate
protocol stack. However, these fragments can still be located in
the same module and can specify the same receive handler
routine. The receive handler routine then determines for which
subprotocol the frame is intended by examining the StackID
field of the frame’s Event Control Block (ECB).

The bound protocol stack method allows multiple protocol
stacks to service and share a single LAN adapter. This method
also minimizes protocol cross-talk, because the protocol type of
the packet is not determined by parsing the protocol header.

Prescan Protocol Stacks

Prescan protocol stacks receive all incoming packets from a
particular LAN adapter before the packet is routed to the
appropriate bound protocol stack. The protocol stack either
consumes the frame or allows other protocols to process the
frame.

Special purpose protocol stacks such as diagnostic utilities use
this method.

Default Protocol Stacks

A default protocol stack receives every frame not claimed by
any other protocol stack (prescan or bound). In other words, a
default protocol stack receives all leftover frames.

Protocol stacks that provide an alternate Data-Link Layer
solution use this method.

NetWare 16-Bit DOS Protocol Stacks and MLIDs Specification

2-6 Version 1.03 (February 2, 1996)

Receiving Packets
A bound protocol stack must be registered with the LSL and be
bound to an MLID in order to receive packets from that MLID.
Prescan and default stacks must be registered with the LSL in
order to receive packets from the MLID. Registration provides
the LSL with the information required to route packets from
MLIDs to protocol stacks. The following table describes the
steps involved in packet reception.

Table 2.1 Packet Reception
Actor/Agent Action
MLID 1. Upon receipt of a packet, fills out the

LookAheadStruc structure.
2. Passes the LookAheadStruc structure to the
LSL.

LSL 3. Calls registered prescan stacks for the board
number. Each prescan stack in turn gets an
opportunity to consume the packet.
4. In the absence of a prescan stack or if the
prescan stack did not consume the packet, uses
the board number and Protocol ID to route the
packet to the correct, bound protocol stack.
5. In the absence of a bound stack or if the bound
stack did not consume the packet, calls the first
stack in the default stack chain. This procedure
continues until the packet is consumed or there
are no more stacks.
6. In the absence of a default stack or if no ECB
was provided, ignores the packet and returns the
LookAheadStruc structure to the MLID with
instructions to discard the received packet.

Note, a protocol stack consumes a packet by providing an ECB.

A protocol stack can be bound to any number of MLIDs. An
MLID can be bound to multiple stacks.

Priority Packet Support
The MLID sets the MPrioritySup field in the MLID
configuration table to indicate the number of priority levels
available. The MLID indicates that priority support is active by
setting or clearing the PrioritySupportBit bit in the MFlags
field of the MLID configuration table. The MLID can set or
reset the PrioritySupportBit bit as the MLID changes from
Priority Queue Support Enabled to Disabled states. The
PrioritySupportBit bit is checked prior to queueing a packet by
the MLID.

 Overview of Protocol Stacks

Version 1.03 (February 2, 1996) 2-7

The protocol sets the ProtoNum (StackID) field to a value
greater than or equal to 0FFF0h. The values have the following
meanings:

0FFFFh raw send packets; no priority.
0FFFEh – 0FFF8h raw send packets; priority level 1–7.
0FFF7h non-raw send packets; no priority.
0FFF6h – 0FFF0h non-raw send packets; priority level 1–7.

Priority levels are defined as 0 = no priority and 7 as high
priority. To extract the priority level, NEG (2’s complement) the
ProtNum (StackID) field, and AND it with 07h. The resultant
will be a number from 0 to 7 with 0 = No Priority, and 7 being
the highest Priority.

The MLID will normally send the packet directly. If the MLID
is busy and the transmit ECB to be sent is a priority transmit
ECB, the MLID will either queue it in a priority queue for
transmission soon, or transmit the packet out a priority
channel.

After the MLID has transmitted the priority ECB, the MLID
calls the transmit monitor (if it is registered), increments the
necessary counters, and calls SendComplete to return the ECB
to its original owner.

Stack Filtering
As a protocol registers with the LSL, a default filter is assigned
to only allow directed, multicast, and broadcast frames to be
presented to the protocol stack. Old MLIDs do not use the
current LookAheadStruc structures, which have the filter
information included, so the LSL will use the old rules for this
type of MLID; in other words, only these three types of frames
would ever be presented by the LSL. A protocol wanting to see
only errored frames would make the call to the modify stack
filter function and set the pass filter to accept errored packets.

Protocols written to handle only custom types of frames can
reliably use the filter to screen for desired frames. The
following packet types can be selected:

� Multicast
� Broadcast
� Remote unicast
� Remote broadcast
� Source route
� MAC frames
� Direct

NetWare 16-Bit DOS Protocol Stacks and MLIDs Specification

2-8 Version 1.03 (February 2, 1996)

� Priority frames

�

Version 1.03 (February 2, 1996) 3-1

Chapter 3 Protocol Stack Data Structures

3

3.

3

NetWare 16-Bit DOS Protocol Stacks and MLIDs Specification

3-2 Version 1.03 (February 2, 1996)

Overview
This chapter describes the protocol stack’s configuration and
statistics tables.

This chapter provides useful reference material for protocol
stack developers.

 Protocol Stack Data Structures

Version 1.03 (February 2, 1996) 3-3

Protocol Stack Configuration Table

The following describes the protocol stack configuration table
in detail. It includes sample code and a description of the
protocol stack configuration table fields.

Protocol Stack Configuration Table Structure Sample Code

ProtocolConfigStructure struc
PConfigTableMajorVer db 01
PConfigTableMinorVer db 00
PProtocolLongName dw ?,?
PProtocolShortName dw ?,?
PProtocolMajorVer db ?
PProtocolMinorVer db ?
PConfigTableReserved db 16 dup (0)

ProtocolConfigStructure ends

PConfigTableMajorVer
PConfigTableMinorVer

PProtocolLongName
PProtocolShortName

PProtocolMajorVer
PProtocolMinorVer

PConfigTableReserved

Table 3.1 Protocol Stack Configuration Table Field Descriptions
Offset Name Size (in

bytes)
Description

00h PConfigTableMajorVer 01 This field has the major version number of the
configuration table (1 for this specification).

01h PConfigTableMinorVer 01 This field number has the minor version number of the
configuration table (0 for this specification).

02h PProtocolLongName 04 This field contains a far pointer to a length-preceded
ASCII protocol stack description string and cannot be 0.

06h PProtocolShortName 04 This field contains a far pointer to a length-preceded
ASCII string used to register the protocol stack. This
string cannot have more than 15 characters (not including
the length byte or zero terminator) and cannot be 0.

0Ah PProtocolMajorVer 01 This field has the major version number of the protocol
stack. The number in this field is a decimal number (0
through 99).

0Bh PProtocolMinorVer 01 This field has the minor version number of the protocol
stack. The number in this field is a decimal number (0
through 99).

0Ch PProtocolReserved 16 This field is reserved for future use and must be initialized
to 0.

Figure 3.1
Graphic Representation
of the Protocol Stack
Configuration Table

NetWare 16-Bit DOS Protocol Stacks and MLIDs Specification

3-4 Version 1.03 (February 2, 1996)

Protocol Stack Statistics Table

All protocol stacks must keep a statistics table for the purpose
of network management. The following contains a sample of
the statistics table code and a description of each of the fields
in the statistics table.

Protocol Stack Statistics Table Structure Sample Code

ProtocolStatStructure struc
PStatTableMajorVer db 1
PStatTableMinorVer db 00
PNumGenericCounters dw 3
PValidCounterMask dd 00011111111111111111111111111111b
PTotalTxPackets dw 2 dup (0)
PTotalRxPackets dw 2 dup (0)
PIgnoredRxPackets dw 2 dup (0)
PNumCustomCounters dw 0

ProtocolStatStructure ends

PStatTableMajorVer
PStatTableMinorVer

PNumGenericCounters
PValidCounterMask

PTotalTxPackets
PTotalRxPackets

PIgnoredRxPackets
PNumCustomCounters

Table 3.2 Protocol Stack Statistics Table Field Descriptions
Offset Name Size (in

bytes)
Description

00h PStatTableMajorVer 01 This field has the major version number of the statistics
table (0 through 99 decimal);1 for this specification.

01h PStatTableMinorVer 01 This field has the minor version number of the statistics
table (0 through 99 decimal); 0 for this specification.

02h PNumGenericCounters 02 This field has the number of dword counters in the
static portion of this table. This field should be set to
0003h for this specification.

04h PValidCountersMask 04 This field contains a bit mask that indicates which
generic counters are used. The value 0 indicates Yes;
the value 1 indicates No. The bit/counter correlations
are determined by shifting left as you move down the
counters in the table. For example, bit 31 represents
TotalTxPackets.

08h PTotalTxPackets 04 This field has the total number of SendPacket requests
made to the LSL.

0Ch PTotalRxPackets 04 This field contains the total number of incoming
packets that were consumed by the protocol stack.

Figure 3.2
Graphic Representation
of the Protocol Stack
Statistics Table

 Protocol Stack Data Structures

Version 1.03 (February 2, 1996) 3-5

Table 3.2 Protocol Stack Statistics Table Field Descriptions
Offset DescriptionSize (in

bytes)
Name

10h PIgnoredRxPackets 04 This field has the total number of times the protocol
receive handler was called with look ahead data, and
the protocol stack did not return a receive ECB.

14h PNumCustomCounters 02 This field contains the total number of custom variables
that follow this word.

There are PNumCustomCounters dwords that start at offset
16h and that correspond to the custom statistics for the
protocol stack. Following these dwords, PNumCustomCounters
pointers (4 bytes each) point to length-preceded ASCII strings
that describe each custom counter.

Example

If PNumCustomCounters = 2:

CustomCounter1 dd 0
CustomCounter2 dd

dd offset: Segment pointer to custom counter
string

dd offset: Segment pointer to custom counter
string

CustomCounterString1 db ‘‘This is Counter 1”
CustomCounterString2 db ‘‘This is Counter 2”

�

Version 1.03 (February 2, 1996) 4-1

Chapter 4 Protocol Stack Initialization

4

4.

4

NetWare 16-Bit DOS Protocol Stacks and MLIDs Specification

4-2 Version 1.03 (February 2, 1996)

Overview
Initializing the protocol stack involves the following general
steps:

1. Locate the LSL.
2. Register the protocol stack.
3. Determine which logical board(s) to service.
4. Obtain the Protocol ID value(s).
5. Customize the protocol stack.
6. Bind the protocol stack to the logical board(s).

If your protocol stack is to become resident, it should free all
the memory it used to hold the initialization code and
initialization data before turning resident.

 Protocol Stack Initialization

Version 1.03 (February 2, 1996) 4-3

Locating the LSL
The LSL module must reside in the system before the user can
load any protocol stacks.

The process usually used to boot an ODI system is outlined
below:

LSL.COM ;Load LSL
NE1000.COM ;Load MLID(s)
IPXODI.COM ;Load protocol(s)
VLM.EXE

A protocol stack must first obtain the LSL API entry points in
order to initialize. Table 4.1 describes the procedure to find
these entry points.

Table 4.1 Finding LSL API Entry Points
Actor/Agent Action

Protocol
Stack

1. Scans the DOS interrupt 2F multiplex slots
for a signature string. (Scanning is required
because the actual interrupt 2F slot used by
the LSL is dynamic.)
2. Returns an error to the operating system if
the protocol stack fails to find the API entry
points.

LSL 3. Returns a far pointer to the LSL’s
initialization entry point after the protocol
stack locates the correct interrupt 2F slot.

Protocol
Stack

4. Calls the LSL’s initialization entry point to
request support entry points.

LSL 5. Returns far pointers to the LSL’s protocol
stack API entry point and to the LSL’s general
services API entry point. (The API
specification for both of these entry points can
be found in Chapter 10: LSL Protocol Stack
Support Routines.)

The following sample code illustrates how to locate the LSL
and also shows how to obtain the protocol stack support and
general services API entry points after the LSL is located.

Sample Code for Locating the LSL

Signature db ’LINKSUP$’
LSLInitHandler dd 0
LSLEntryPoints dd 0 ; Protocol Support API entry point

dd 0 ; General Services API entry point

NetWare 16-Bit DOS Protocol Stacks and MLIDs Specification

4-4 Version 1.03 (February 2, 1996)

FindLSL proc near
sub ax, ax ; Make sure vector is valid
mov es, ax
mov ax, word ptr es:[2Fh*4]
mov cx, word ptr es:[2Fh*4+2]
or ax, cx ; Vector 0?
jz LSLIsNotLoaded
mov ax, 0C000h ; AH = Slot (Start after DOS reserved)

LookForLSLLoop:
push ax
push ds
int 2Fh
cmp al, 0FFh ; Slot used?
pop ds
pop ax
je SlotInUse

TryNextSlot:
inc ah ; Next slot (go until wrap)
jnz LookForLSLLoop
jmp LSLIsNotLoaded

; If LSL then ES:SI points at ’LINKSUP$’ string and
; DX:BX points at LSL initialization entry point

SlotInUse: ; See if this is the LSL’s slot
mov di, si ; See if signature present
mov si, offset Signature
mov cx, 4 ; Compare 8 bytes
rep cmpsw
jnz TryNextSlot

; Found the LSL’s slot. Get the Protocol Stack support and General Services API entry points.
mov word ptr LSLInitHandler, bx
mov word ptr LSLInitHandler+2, dx
push ds
pop es ; ES:SI points at buffer to hold two far pointers
mov si, offset LSLEntryPoints
mov bx, LSLINIT_GET_PROTSUP_ENTRY (2); Function #2–Request support entry points
call LSLInitHandler ; BX destroyed (all other registers preserved)
sub ax, ax ; Return success
ret

LSLIsNotLoaded:
mov ax, Error ; Return error
ret

FindLSL endp

The protocol stack calls the LSL initialization entry point to
obtain the LSL services entry points for the MLID and the
protocol stack. These entry points depend upon the input
parameters contained in the BX register.

 Protocol Stack Initialization

Version 1.03 (February 2, 1996) 4-5

Table 4.2 Input and Return Parameters of Register BX

If BX Equals: Action Return Parameters

LSLINIT_MLID_REG (01h) Request MLID registration. DS:DI has a pointer to the
MLIDRetInfoBlockStruc structure.

LSLINIT_GET_PROTSUP_ENTRY
(02h)

Request protocol stack and general
service API entry points.

ES:SI has a pointer to the LSL
information block.

LSLINIT_GET_MLID_ENTRY (03h) Request MLID API entry point. ES:SI has a pointer to the MLID
support entry point.

LSLINIT_GET_ENTRY_POINTS
(04h)

Request all the LSL’s API entry
points.

ES:SI points to
LSLInitEntryPointBlock.

Note, the LSL information block is a subset of the LSLInitEntryPointBlock structure.

Registering with the LSL
After the protocol stack has located the LSL, the protocol stack
must register itself with the LSL. This accomplishes the
following two items:

� Gives the LSL pointers to the protocol stack’s receive
handler and to the protocol stack’s control handler

� Dynamically assigns a unique stack ID to the protocol stack

The following table illustrates how the receive and control
handlers and the stack ID are used.

Table 4.3 Using the Receive and Control Handlers and
the Stack ID

Actor/Agent Action

LSL 1. Calls the protocol stack’s receive handler
whenever a packet is received that is destined to
that particular protocol stack.

Applications
and LSL

2. Call the protocol stack’s control handler to
obtain configuration information and to issue
defined control functions.

LSL 3. Assigns the stack ID when the protocol stack
registers. The LSL uses the stack ID to track the
protocol stack.

The bound protocol stack registers by invoking the
RegisterStack function as defined in Chapter 10: LSL Protocol
Stack Support Routines.

If the protocol stack is using the prescan or default receive
methods (see Chapter 5: Protocol Stack Packet Reception), it
should register using RegisterPrescanRxChain or
RegisterDefaultStackChain respectively. The LSL assigns a

NetWare 16-Bit DOS Protocol Stacks and MLIDs Specification

4-6 Version 1.03 (February 2, 1996)

stack ID to default and prescan protocol stacks and pointers to
the protocol’s receive and control handlers are still necessary.

Determining Which Logical Boards to Service
Because an ODI system can have multiple LAN adapters and
each adapter can have multiple frame types enabled, protocol
stacks must determine to which boards to bind and service. For
example, a user might have two LAN adapters with each
adapter enabled for four frame types; this translates into eight
logical boards registered with the LSL. The user must then tell
the protocol stack to which boards to bind. Protocol stacks can
determine to which boards to bind by using either the explicit
method or the dynamic method; they should support both
methods.

Explicit Method

Using this method, the user explicitly specifies to which logical
boards the protocol stack should bind. We suggest that for each
protocol entry the user specify a ‘‘BIND” entry in the NET.CFG
file that looks like the following:

BIND #1
BIND #2

Board numbers are displayed when each MLID is loaded.

Note Remember to decrement the board numbers obtained from the
NET.CFG by one before using the number internally.

The protocol stack should first verify whether a specified board
exists and whether a Protocol ID (PID) is available for the
protocol that uses that particular board. The protocol stack can
verify that a board number exists by calling the LSL protocol
support function, GetMLIDControlEntry. If the board is valid,
the protocol stack should determine whether a PID exists for
the protocol on that particular board by calling the
GetPIDFromStackIDBoard function. If a PID is not present for
that protocol, the protocol stack should either add a PID to use
or abort the initialization procedure.

Dynamic Method

If no bind information is specified in the NET.CFG, the protocol
stack should scan for a boards to which to bind. The protocol
stack should scan through all the possible board numbers,
starting with board 0, and call GetMLIDControlEntry, which
returns whether or not the specified board number exists. The
protocol stack should continue scanning and calling

 Protocol Stack Initialization

Version 1.03 (February 2, 1996) 4-7

GetMLIDControlEntry until the message
LSLERR_NO_MORE_ITEMS (8003h) is returned. The
protocol stack then knows that no boards exist at any higher
board numbers. When the protocol stack encounters an active
board, the stack should query the LSL for a PID by calling the
GetPIDFromStackIDBoard support function. If the protocol
stack cannot find a board that has a PID for it, the protocol
stack should either add a PID to be used or abort the
initialization procedure.

Adding Protocol IDs
You should write your protocol stacks so that they are LAN
medium and frame type unaware. Because Protocol ID (PID)
values are determined by the frame type and LAN medium on
which they are used, your protocol stack should not interpret
the PID. Usually, the user of your protocol stack will enter into
the NET.CFG file your protocol stack’s PID for each frame type
board combination. The MLIDs then register each link driver

MLIDname . . . protocol entry to the LSL. As discussed in
the ‘‘Explicit Method” and the ‘‘Dynamic Method” sections
above, the protocol stack obtains the PID by calling
GetPIDFromStackIDBoard. Your protocol stack can register an
appropriate PID for each board it binds to. This procedure
eases the system configuration for the user because the user
does not need to enter any PID values for your protocol stack in
the NET.CFG file.

To add a PID, the protocol stack should know the common PID
value for each of the frames currently defined—for example,
ETHERNET_802.2, TOKEN_RING, NOVELL_RX–NET, etc..
See ODI Specification Supplement: Frame Types and Protocol
IDs for a list of the current frame types.

Before the PID is added, the protocol stack should determine
whether a PID has previously been registered for that stack on
that particular board. The protocol stack determines this by
calling GetPIDFromStackIDBoard. If this call returns a PID,
the protocol stack should use it. If a PID is not returned, the
protocol stack should look at the MLID’s configuration table
FrameType field (see Chapter 15: MLID Data Structures) to
determine whether the protocol stack has a known (default)
PID for that frame type. If the protocol stack does have a
known PID for that frame type, the protocol stack calls
AddProtocolID. If the protocol stack does not have a known
Protocol ID for that frame type (for example, perhaps a new
frame type is being used), the protocol stack should return an

NetWare 16-Bit DOS Protocol Stacks and MLIDs Specification

4-8 Version 1.03 (February 2, 1996)

error to the user stating that a PID must be entered into the
NET.CFG file.

In summary, a protocol stack can add a PID to the LSL for a
particular board if the following two conditions are true:

� A PID for the protocol stack on a particular board has not
been previously registered (determined by
GetPIDFromStackIDBoard).

� The protocol stack is internally aware of a PID for the
board’s frame type. (For example, IPXODI’s PID on frame
type ETHERNET_802.2 is usually E0h, and TCP/IP’s IP
PID on frame type Ethernet_II is usually 800h.)

Checking for a PID before registering your own PID allows the
protocol stack’s default PID to be overridden. This is an
important feature because some users might want your
protocol stack to use a different PID.

Multiple Board Support
The ODI specification allows a protocol stack to be
simultaneously bound to multiple boards. Whether or not your
protocol stack supports multiple boards or is limited to
servicing only one board is for you to decide.

Obtaining Protocol ID Value(s)
The protocol stack usually handles this step when the stack is
determining to which board it can bind. The
GetPIDFromStackIDBoard function returns the assigned
Protocol ID (PID) for that protocol stack on the specified board.
A protocol stack only needs the PID values when it sends
packets and when it registers with the LSL. A protocol stack
should not interpret the PID in any way so that LAN medium
and frame type independence is maintained. The protocol stack
should simply save the obtained PIDs for later use when
transmitting packets.

Customizing a Protocol Stack
One of the ODI specification’s goals is to keep the protocol stack
interface to the LSL and the underlying MLIDs as general and
independent of issues specific to LAN adapters as possible.
However, there are still a number of issues that must be dealt
with during initialization. This means that your protocol stack
must be customized to the particular capabilities of the
underlying MLIDs and the associated LAN adapters. (If the
protocol is interested in supporting NESL events, see NESL
Specification: 16-Bit DOS Client Programmer’s Interface.)

 Protocol Stack Initialization

Version 1.03 (February 2, 1996) 4-9

Line Speed
Most LAN media provide high speed data transfer rates (for
example, 1M to 100M bits per second). Protocol stacks that
retry transmit operations when they do not receive an expected
acknowledgement within a specific period of time might have to
customize timeout values so that they are appropriate to the
speed of the underlying physical LAN medium. Timeout values
can usually be small because acknowledgement transmission
and reception on most LAN media is very fast. However, keep
in mind that the underlying medium might have relatively low
data rates (for example, 2400 baud). Unless the protocol stacks
increase their internal timeout values when they are using a
slow network, excessive and unneeded transmit retries will
occur and adversely affect operation.

Measuring Effective Network Performance
Protocol stacks can use two fields in the MLID’s configuration
table to measure the effective performance of a particular
network: TransportTime and LineSpeed (see Chapter 15: MLID
Data Structures for more detail regarding these fields).

TransportTime

The TransportTime field specifies the time to transmit a 586
byte packet in milliseconds. This field is usually set to a value
of 1 or 2 by all higher speed MLIDs. Lower speed LAN media
must set this field to a higher value.

LineSpeed

The LineSpeed field specifies the effective bits per second data
rate of the underlying LAN medium. This field can be specified
either in megabits per second or kilobits per second.

Maximum Packet Size
Each physical LAN medium has a defined maximum packet
size that it can transmit and receive. Protocol stacks must,
therefore, configure themselves for the maximum amount of
packet data that they can send and receive when using a
particular board. The logical board’s configuration table
contains three maximum packet size fields: MaxDataSize,
BestDataSize and WorstDataSize.

MaxDataSize

MaxDataSize represents the absolute maximum packet size.
The maximum packet size includes all low-level headers with
the exception of the leaders and trailers managed by the
hardware.

NetWare 16-Bit DOS Protocol Stacks and MLIDs Specification

4-10 Version 1.03 (February 2, 1996)

BestDataSize

BestDataSize represents the maximum number of data bytes
that the protocol stack can send and receive when it does not
use certain low-level headers (for example, the source routing
headers in Token-Ring).

WorstDataSize

WorstDataSize represents the maximum number of data bytes
the protocol stack can transmit and receive regardless of any
low-level headers managed by the MLID. Protocol stacks
should always use the WorstDataSize value when they
determine the maximum data packet they can send and
receive. The value of WorstDataSize includes the protocol
stack’s header information.

For example, if the WorstDataSize was set to 1500 bytes and a
protocol stack appends a 16-byte header to all the data it
transmits, the effective maximum amount of data that an
application using that particular protocol stack can transmit
and receive is 1484 (1500 – 16) bytes.

Note A prescan transmit stack can only increase the packet size if
the stack fragments the packet. At no time should the size of
the data being handed to the MLID exceed WorstDataSize.

Multicast Support
A number of protocol stacks take advantage of multicast
transmission, a LAN medium specific capability. Multicast
transmission operates in a similar way to broadcast
transmission: transmitted packets can be targeted to more
than one node. The difference is that broadcast packets are
received by all nodes on a network while multicast packets are
received by a defined subset of all nodes. This allows the
protocol broadcast information to only preempt the resources
on the nodes that will actually receive the protocol stack’s
packets, significantly reducing the performance impact on the
nodes that are not to receive the broadcast packets.

In order for a LAN adapter to become a member of a multicast
group, the group’s multicast address has to be enabled on the
adapter so that any packets received by it will be passed to the
host computer and not discarded at the hardware level.
Protocol stacks determine whether an MLID supports
multicast by examining the MModeFlags field in the MLID
configuration table (see Chapter 15: MLID Data Structures).

Multicast support and the format of the multicast addresses is
LAN medium dependent, and some LAN media do not support

 Protocol Stack Initialization

Version 1.03 (February 2, 1996) 4-11

any type of multicast capability. A protocol stack that utilizes
multicasting must determine whether the MLID is using
noncanonical or canonical addressing by examining the MLID
configuration table entry MModeFlags (see Chapter 15: MLID
Data Structures). (Canonical addressing is a ‘‘generic” form of
addressing that is media independent. See ODI Specification
Supplement: Canonical and Noncanonical Addressing.) If the
MLID is using noncanonical addressing, the protocol stack
must determine the LAN medium type of the underlying LAN
adapter and use the appropriate multicast address. MLIDs
have control functions that add and remove multicast
addresses.

If a protocol stack does not know the format of the LAN
medium’s multicast address, or the LAN medium does not
support multicasts, the protocol stack should simply use real
broadcasts (FF FF FF FF FF FF) instead of multicasts.

Protocol stacks that use multicast addresses should also allow
the user to specify the multicast addresses that the protocol
stack will use for a particular board. This capability is usually
accomplished in the NET.CFG file by using a custom keyword
(group addressing for example) underneath the protocol stack’s
Main Section header. This allows the protocol stack to use
correctly formatted multicast addresses for LAN medium other
than the LAN medium for which the protocol’s multicast code
was originally written.

Receive Look Ahead

As part of the customization, your protocol stack should inform
the underlying MLID about the amount of receive look ahead
data it must have in order to properly process received packets.

This is done by calling the MLID’s control entry point function
SetLookAheadSize.

Bind to Logical Board(s)
One of the last things a protocol stack must do before it
becomes fully operational is to bind to the predetermined
board(s). Binding the protocol stack enables the LSL to route
incoming packets destined for that protocol stack to its receive
handler. You should note that a protocol stack can send packets
without being bound to any board(s).

A protocol stack must be prepared to have its receive handler
invoked after calling the BindStack support function.

NetWare 16-Bit DOS Protocol Stacks and MLIDs Specification

4-12 Version 1.03 (February 2, 1996)

If the protocol stack uses the prescan or default receive
methods, this step is not done. Packet reception for these types
of protocol stacks begins when the RegisterPrescanRxChain or
RegisterDefaultChain commands are issued. Therefore, prescan
and default protocol stacks must wait to register until they are
ready to be fully operational.

Final Initialization
At this point the protocol stack should be fully operational.
Many protocol stacks will exit to DOS as a TSR (Terminate and
Stay Resident program). It is recommended that your module
display to the user the logical board(s) to which it is bound and
servicing. The display should also include the MLID’s short
name and any other information that the user would find
useful.

Unhooking the Protocol Stack
The DOS ODI specification allows protocol stacks and MLIDs
to unhook themselves from the LSL and purge any bindings
between the MLID and the protocol stack. This dynamic
capability allows DOS ODI modules to be loaded and unloaded
as the need arises. Protocol suites that are compliant to the
DOS ODI specification must be fully unloadable by the user.
This chapter describes an algorithm for unloading a TSR
(Terminate and Stay Resident) module.

Unload Module Algorithm
Unloading a module usually entails reloading the transient
module with a ‘‘U” command line option, signalling that the
transient module should find its like module (the resident
module) in the TSR chain and then take the actions necessary
to unhook the resident module from the LSL and other
modules. Finally, the unloading algorithm must free up the
resident module’s memory.

In order to unload a resident module, the transient module
must perform the following general steps:

1. Find the last resident module.
2. Check that the modules are the same version.
3. Check that the module can unload safely.
4. Unhook the resident module.
5. Free the resident module.

Find the Last Resident Module

In order to unload a TSR module, there must be a method of
finding and recognizing the module. You can find TSR modules

 Protocol Stack Initialization

Version 1.03 (February 2, 1996) 4-13

that interface directly with the LSL by using the appropriate
LSL support routine. If the module does not interface directly
with the LSL, you must use another method.

Before you can unload a module, you must obtain the module’s
PSP (Program Segment Prefix) value. This is usually easy
because most TSRs use one segment which, typically, is equal
to its PSP.

Check that Modules are the Same Version

To prevent system corruption, the transient module should
verify that the resident module is the same version (or at least
looks enough like the transient module) so that it can unload
safely. If the transient module has hooked interrupt vectors,
the transient module should verify that these vectors have not
been hooked by another TSR and that the offset value is the
same as the transient module’s ISR offset.

Check that the Module Can Unload Safely

To prevent the user from corrupting the system by unloading a
resident module that is being actively used by other modules,
the transient module should verify that the resident TSR is the
last module in the TSR chain. This assures that no other TSRs
are hooked into the resident module. The sample code below
illustrates the method we suggest you use. You should note
that if the resident TSR is loaded above 640K bytes, the ‘‘last
TSR” check code will not work with most LOAD HI
applications. Therefore, if the resident module is above A000:0,
skip the ‘‘last TSR” code and just allow the unload portion if all
of the protocol’s other safety checks pass.

The following contains sample code for unloading TSRs.

Sample Code for Unhooking TSRs

mov ax, ResModulePSPLocation ; Get installed module’s segment value
cmp ax, 0A000h ; If loaded high don’t do MCB checking
jae SkipMCBChecking

; Now make sure there are no other TSR’s above the installed module.
; Scan past all unused MCB’s or MCB’s in use by DOS. Then check the
; in–use MCB to see if it is our program.

dec ax ; ES points at res modules MCB
mov es, ax

CheckNextMCB:
mov ax, es ; ES:0 –> TSR to remove
add ax, word ptr es:[0003h] ; –> next MCB in chain
inc ax
mov es, ax
cmp word ptr es:[0001h], 0 ; MCB in use?
je CheckNextMCB

NetWare 16-Bit DOS Protocol Stacks and MLIDs Specification

4-14 Version 1.03 (February 2, 1996)

inc ax ; Is it our environment block?
mov dx, word ptr cs:[2Ch]
cmp dx, ax
je CheckNextMCB ; Skip environment blocks
mov cx, word ptr es:[0001h] ; Is this MCB owned by a shell?
mov ds, cx
cmp word ptr ds:[0016h], cx ; Shell’s parent PSP –> self
je CheckNextMCB ; Allow shell MCB’s to be between

; Found a true life MCB used by a TSR. The next MCB must be us or
; another TSR is loaded above the installed TSR.

mov cx, cs ; Segments match (Is this us?)
cmp cx, ax
jne TSRAboveResident ; Jump if error

; No one above resident module
SkipMCBChecking:

Unhook Resident Module

Unhooking the resident module entails deregistering it from
the LSL, restoring any hooked interrupt vectors, and
unhooking the module from any other service it might be using.

Free Resident Module

To free the memory a resident TSR is using, you must pass the
resident module’s PSP segment value in register ES and invoke
the DOS FreeMemory function (#49h). After the resident
module has been freed, the transient module simply exits to
DOS without staying resident. Multi-segmented TSRs must
make more than one call to the FreeMemory to free their
memory. The sample code below illustrates this:

mov es, ResModulePSPLocation ; DOS FreeMemory function
mov ah, 49h
int 21h

�

Version 1.03 (February 2, 1996) 5-1

Chapter 5 Protocol Stack Packet Reception

5

5.

5

NetWare 16-Bit DOS Protocol Stacks and MLIDs Specification

5-2 Version 1.03 (February 2, 1996)

Protocol Stack Packet Receive Operation
When a protocol stack registers with the LSL, the protocol
stack specifies a routine for the LSL to call when an MLID
receives a packet destined for that protocol stack. This routine
is the protocol stack’s receive routine.

Receive Routine Events
The events listed in Table 5.1 must occur during a protocol
stack receive routine.

Table 5.1 Protocol Stack Receive Routine

Actor/
Agent

Action

MLID 1. When a packet is received, fills out a LookAheadStruc structure
and calls the MLID LSL support routine GetStackECB to obtain
from a protocol stack a receive buffer for the packet data. (For
more information on GetStackECB, see Chapter 11: LSL MLID
Support Routines.)

LSL 2. Determines which bound, prescan, or default protocol stacks
will be receiving the packet.
3. Calls the protocol stack that is to receive the data and passes
to the protocol stack a pointer to the LookAheadStruc structure
describing the received packet.

Protocol
Stack

4. Determines whether to receive the packet.
5. Builds an ECB describing a set of receive buffers into which the
packet should be dispersed.
6. Signals to the LSL that this protocol stack will consume the
packet and passes the ECB to the LSL, which passes the ECB to
the MLID.

MLID 7. Copies the packet data into the provided data buffers.
8. Places the ECB into the LSL hold queue.
9. Calls ServiceEvents.

LSL 10. Dispatches the defined ESR (Event Service Routine),
signaling that packet reception is complete.

Receive Look Ahead
The receive method known as receive look ahead entails
passing the beginning portion of the packet up to the protocol
stack. In most cases, this allows the receive packet data to be
dispersed directly into the application buffers. This is the
optimal situation because the receive data only crosses the
host’s bus once.

Receive Handler
Regardless of whether the protocol stack is bound, prescan or
default, the protocol stack is passed look ahead data whenever

 Protocol Stack Packet Reception

Version 1.03 (February 2, 1996) 5-3

its receive handler is invoked. This data should be used to
determine into which receive buffers (if any) the data should be
placed. (Receive buffers can be fragmented.) If the protocol
stack determines that it will consume the packet, it must build
an ECB that describes the receive buffers and then return that
ECB to the MLID. The MLID uses the ECB’s description of the
receive buffers to move the data from the network adapter into
the described protocol receive buffers. When the MLID has
completed the data move, it passes the ECB to the LSL for
event completion. Event completion occurs when the MLID
issues the LSL support command ServiceEvents. This calls the
ECB’s ESR and allows the protocol stack to process the packet.

LookAheadStruc Structure
The LookAheadStruc structure that is given to the protocol
stack’s receive handler is defined below. The LookAheadStruc
structure is valid only in the context of the receive handler. You
should treat the LookAheadStruc structure as read-only, with
the exception of the LStartCopyOffset field.

LookAheadStruc struc
LMediaHeaderPtr dw 2 dup (?)
LookAheadPtr dw 2 dup (?)
LookAheadLen dw ?
LProtID db 6 dup (?)
LBoardNum dw 0
LDataSize dw ?
LImmAddress db 6 dup (?)
LPacketAttrib dw 0
LDestType dw 0
LStartCopyOffset dw 0
LPriorityLevel db 0
LRESERVED db 3 dup (?)

LookAheadStruc ends

LMediaHeaderPtr
This is a far pointer to a buffer containing the complete low-level
media header. The protocol stack typically should not look at the
low-level header information.

LookAheadPtr
This is a far pointer to a buffer containing the start of the
protocol’s header (for example, IPX header). The
LMediaHeaderPtr buffer is guaranteed to immediately precede
the LookAheadPtr buffer (for example, the 802.3/802.2/IPX
headers are contiguous).

LookAheadLen
This contains the length of the LookAheadPtr buffer. This value is
normally the MLID’s currently configured look ahead size.
Adapters that use shared RAM can set this field to the length of
the data packet because the LookAheadPtr points at the entire
packet located in shared RAM. If the received packet’s data

NetWare 16-Bit DOS Protocol Stacks and MLIDs Specification

5-4 Version 1.03 (February 2, 1996)

length is less than the MLID’s configured look ahead size, this
field will be set to the actual packet data length. A protocol stack
should verify that this field is at least the minimum length
required for the protocol stack.

LProtID
This contains the Protocol ID value that was embedded in the
low-level media header. This is the protocol’s assigned Protocol
ID value in the case of a bound stack.

LBoardNum
This contains the logical board number that received this packet.
Remember that the logical board value specifies a LAN adapter
and frame type combination.

LDataSize
The total number of data bytes in the received packet. If the
MLID does not know the size, it will be set to –1, which typically
only occurs on a pipeline adapter.

LImmAddress
This contains the address of the node that the packet was
received from. Note, this address might not be the address of the
node that originated the packet.

LPacketAttrib
Defined by the following bits:

PKT_CRC_ERR equ 0001h ; CRC error / (FCS error)
PKT_ALIGN_ERR equ 0002h ; CRC/frame alignment error
PKT_RUNT_ERR equ 0004h ; runt packet
PKT_BIG_ERR equ 0010h ; packet larger than media

 allowed
PKT_TYPE_ERR equ 0020h ; packet for unsupported

 frame type
PKT_MALFORM_ERR equ 0040h ; malformed packet
IMM_ADDR_MSB_FORM equ 8000h ; immediate address is MSB

 format.

All bits in LPacketAttrib that are not defined are reserved.

LDestType
LDestType and StkChnMask have the following bit assignments:

DEST_MULTICAST equ 0001h
DEST_BROADCAST equ 0002h
DEST_REMOTE_UNICAST equ 0004h
DEST_REMOTE_MULTICAST equ 0008h
DEST_SOURCE_ROUTE equ 0010h ; source route info
DEST_ERRORED equ 0020h ; super exclusive bit
DEST_MAC_FRAME equ 0040h ; exclusive bit
DEST_DIRECT equ 0080h
RX_NOT_8022 equ 0000h ; non-802.2 packet
RX_8022_TYPE1 equ 0100h ; 802.2 type 1 packet
RX_8022_TYPE2 equ 0200h ; 802.2 type 2 packet
RX_PRIORITY_FRAME equ 0400h ; priority level is indicated
DEST_PROMISCUOUS equ 0FFFFh ; all packets. (filter mask

 set by protocols to get all
 packets, including errors)

 Protocol Stack Packet Reception

Version 1.03 (February 2, 1996) 5-5

A protocol stack sets the bits for those types of packets that it
wanted to see in its stack filter mask (see ModifyStackFilter).

MLIDs can set more than one bit if a packet fits into more than
one category according to the following rules: (Tests are made to
determine the type of packet and appropriate bits are set.)

� RX_PRIORITY_FRAME is set in conjunction with other
destination type bits if the MAC indicates that the frame is a
priority frame. This is only valid for those topologies that support
a distinction in priority levels. When this bit is set, the LPriority
field in the LookAheadStruc structure will hold the priority level of
the frame. This bit is not set if the frame is received at the normal
priority level of the topology.

� RX_8022_TYPE1 or RX_8022_TYPE2 is set in conjunction with
other destination bits according to the 802.2 type designation.

� DEST_SOURCE_ROUTE is set in conjunction with other
destination type bits if the packet has source routing information
in the packet (for example, the RII bit is set). If a source routing
module (for example, ROUTE.COM) is not loaded and the length
of the source route field is greater than two bytes (packet is from
a remote ring), all other bits will be cleared.

� DEST_MAC_FRAME is set if the packet is a MAC frame. All
other bits will be cleared.

� DEST_ERRORED is set if an error bit is set in the LPacketAttrib
field. All other bits will be cleared. DEST_ERRORED has the
highest precedence.

LStartCopyOffset
This is set by the protocol stack to indicate where to start the
copy process into the provided ECB buffers. Do not set this
greater than LookAheadDataLen. It is an offset from the
LLookAheadPtr location.

LPriorityLevel
If the RX_PRIORITY_FRAME bit is set, this field is set to the
received packet’s priority.

LRESERVED
This field is reserved.

Note In 802.2 frame types, the received packet’s DSAP is returned in
byte 5 of the ProtocolID field; bytes 0 – 4 are set to 0.

Receive Look Ahead Size

The amount of receive look ahead data needed by a protocol’s
receive handler is usually different for each type of protocol
stack (prescan, bound, or default). The protocol stack can
configure the amount of receive look ahead data the MLID
provides by invoking SET_LOOK_AHEAD_SIZE MLID control
function as part of the protocol’s initialization.

NetWare 16-Bit DOS Protocol Stacks and MLIDs Specification

5-6 Version 1.03 (February 2, 1996)

SET_LOOK_AHEAD_SIZE informs the MLID that a protocol
stack needs the specified number of packet data bytes to
properly determine into which receive buffers a packet should
be placed. The look ahead size value can be any value between
0 and 128 bytes inclusive. The requested size should not
include any room for possible media headers, because the LAN
driver will internally adjust the look ahead size value to
include the LAN medium’s worst case low-level media header
size. If the requested size is larger than the current look ahead
size, the MLID will use the new value. However, if the
requested size is smaller than the current size, the MLID will
not decrease the current size. The look ahead size is set to a
default size of 18.

Protocol Stack Packet Reception Methods
The ODI specification defines three types of protocol stacks:

� bound
� prescan
� default

The following describes each type of protocol stack.

Bound Protocol Stack
Bound protocol stacks receive packets with the appropriate
Protocol ID (PID) in the LookAheadStruc structure’s LProtID
field. The PID is obtained from the low-level frame header. A
bound protocol stack can choose to consume or reject a packet.
If the protocol stack rejects the packet and no default protocol
stack exists for this board, the packet is discarded from the
system.

Prescan Protocol Stack
Prescan protocol stacks use the look ahead method (as do
bound and default stacks) to look at all packets received by a
particular logical board (adapter and frame type combination).
The protocol stack can consume select packets and allow others
to pass onto other prescan stacks or to the appropriate bound
or default protocol stack.

Default Protocol Stack
Default protocol stacks receive packets not consumed by the
prescan and bound protocol stacks. A default protocol stack can
choose to consume or reject a packet. If the packet is rejected, it
is shown to other default stacks in the chains. If no stack
consumes the packet, it is discarded from the system.

 Protocol Stack Packet Reception

Version 1.03 (February 2, 1996) 5-7

We discourage you from using the prescan or default method of
packet reception. This is because a protocol stack parses the
packet header to determine if the packet is the correct type.
Therefore, a protocol stack might receive a packet that passes
the protocol stack’s acceptance tests, but in reality is not the
correct type. This could cause unpredictable results in the
network station.

The prescan and default reception methods should only be used
for specialized protocol stacks that must receive packets having
a large range of Protocol IDs. For example, the 802.2 protocol
stack must receive packets with any destination SAP. Protocol
stacks that provide a Data-Link Layer interface to the network
layer protocol stacks are candidates for using prescan or
default receive methods.

StackChainStruc Structure
StackChainStruc struc

StkChnLink dd 0 ; Link Field
StkChnBoardNum dw –1 ; Logical Board Number
StkChnPositReq dw STACK_REQ_DEPENDS ; Chain

Position Requested
StkChnHandler dd ? ; Stack’s Tx or Rx Handler
StkChnControl dd ? ; Stack’s Control Entry Point
StkChnID dw 0 ; Stack’s ID Number
StkChnMask dw 83h ; Default (broadcast, multicast, and

direct)
StkChnReserved dd 0 ; Reserved

StackChainStruc ends ; (Size 24 bytes)

StkChnMask bits are the same as those defined for LDestType
in the LookAheadStruc structure.

The following are the StkChnPositReq equates:

STACK_REQ_FIRST equ0 ; must be first stack in chain
STACK_REQ_NEXT_FIRS equ1 ; load at next available position

 from front of chain
STACK_REQ_DEPENDS equ2 ; chain position depends on load

 order
STACK_REQ_NEXT_LAST equ3 ; load at next available position

 from end
STACK_REQ_LAST equ4 ; must be last stack in chain

These bits achieve the following prescan chain picture:

LSL Tx –>0 –>1a–>1b –>2c–>2b–>2a –>3b–>3a –>4 –> MLID (NIC)

LSL Rx <–4 <–3a<–3b <–2c<–2b–<2a <–1b<–1a <–0 <– MLID (NIC)

This picture depicts the flow of the packet from the LSL
transmit call to the MLID, and back. ‘‘a” would be the first ‘‘x”

NetWare 16-Bit DOS Protocol Stacks and MLIDs Specification

5-8 Version 1.03 (February 2, 1996)

position requested protocol stack. A protocol stack that is
interested in both send and receive, a
compression/decompression stack for example, might need to
register as a transmit stack as position ‘‘1”
(STACK_REQ_NEXT_FIRST). The stack must then register as
a receive stack position ‘‘3” (STACK_REQ_NEXT_LAST) in
order to ensure that the protocol stack is in the same order
relative to other stacks in the chain. That way the stack would
be assured that the algorithm applied to the packet would be
able to be undone by the receiving station, and visa versa. If a
protocol stack chooses to register for a position of ‘‘2”
(STACK_REQ_DEPENDS), the LSL will do the swapping to
ensure that the packet is seen in the proper order. Using the
load order dependant position ‘‘2” (STACK_REQ_DEPENDS)
provides the greatest flexibility. It is the stack’s responsibility
to request the proper position when registering for both
transmit and receive protocol chains.

Default stacks have the following chain picture:

(Last Stack) 4 <–3a<–3b <–2c<–2b<–2a <–1b<–1a <–0 <– LSL RX (Last
Bound stack)

 Protocol Stack Packet Reception

Version 1.03 (February 2, 1996) 5-9

Protocol Receive Handler
Description The protocol receive handler is invoked when a packet has been

received and the LSL has determined that the packet is
intended for the protocol stack. This definition applies to
bound, prescan, and default protocol stacks.

Entry State DS:DI
has a pointer to the LookAheadStruc structure.

ES:SI
has a pointer to a StackChainStruc structure if the stack is a
prescan or default stack.

Interrupts
are disabled.

Note CLD is cleared.

Return State AX
has a completion code.

ES:SI
has a pointer to an ECB if AX equals LSL_SUCCESSFUL
(0000h).

Flags
Z flag is set according to AX.

Interrupts
are disabled.

DS, DI, BP, SS, SP
are preserved.

Note CLD is cleared.

Completion Codes (AX) LSL_SUCCESSFUL (0000h)
The protocol stack will consume the packet (ES:SI valid).

LSLERR_OUT_OF_RESOURCES (8001h)
The protocol stack will not receive the packet.

Remarks The protocol stack examines the look ahead data as described
by the LookAheadStruc structure and returns an ECB when
appropriate.

The LookAheadStruc structure and its fields are only valid in
the context of this function. This routine must complete
quickly, and interrupts must remain disabled. LAN driver
functions should not be invoked inside this function (for
example, SendPacket should not be invoked inside this
function).

NetWare 16-Bit DOS Protocol Stacks and MLIDs Specification

5-10 Version 1.03 (February 2, 1996)

The ECB must have the following fields and descriptors set
before it returns: EventServiceRoutine, FragmentCount, and
fragment descriptors. You can specify more than one fragment
descriptor. The FragmentCount field cannot be set to 0 and
should not exceed 16.

If the protocol stack also requires the ECB BoardNumber field
to be filled in, the protocol stack should fill it in with the board
number supplied in the LookAheadStruc structure.

If an ECB is returned from this function, the MLID will call the
ESR at a later time, signaling that the packet data has been
transferred to the described receive buffers either successfully
or with an error.

The protocol receive handler can be invoked multiple times
before a previous ECB’s ESR will be called. Therefore, the
protocol stack should allocate and maintain multiple ECBs.

The following fields in the ECB structure must be set by the
protocol stack prior to providing the ECB to the MLID.

� ESR
� FragCount
� Frag descriptors
� BoardNumber (required only if you want board numbers)

Note Prescan and default receive protocol stacks should set the
StackID field if they provide an ECB.

 Protocol Stack Packet Reception

Version 1.03 (February 2, 1996) 5-11

Protocol Receive Complete Handler
Description The LSL invokes this Event Service Routine (ESR) function

after the MLID has dispersed the receive packet’s data (either
with or without error) into the previously provided ECB’s data
buffers and has placed the ECB on the LSL’s holding queue.
When this function is called, the LSL transfers ownership of
the ECB and its associated data buffers back to the protocol
stack.

Entry State ES:SI
has a pointer to an ECB.

Interrupts
are disabled.

Note CLD is cleared.

Return State Interrupts
are disabled.

DS, BP, SS, SP
are preserved.

Note CLD is cleared.

Remarks The following table illustrates the event sequence of the receive
complete handler.

Table 5.2 Receive Complete Handler
Actor/
Agent

Action

MLID 1. Disperses the receive packet data into the receive
buffers supplied by the protocol stack.
2. Gives the ECB to the LSL for temporary holding.
3. Invokes the LSL’s service events routine, after the MLID
has finished servicing the network adapter.

LSL’s
Service
Events
Routine

4. Calls each of the previously queued ECB’s Event
Service Routines (ESRs). (The protocol stack set the
address of the ESR before it returned an ECB to the MLID.)
5. Transfers ownership of the ECB and its associated data
buffers back to the protocol stack when the ECB’s ESR is
called.

When this function is called, the following ECB fields are set:

� PrevLink
� Status

NetWare 16-Bit DOS Protocol Stacks and MLIDs Specification

5-12 Version 1.03 (February 2, 1996)

� ESR
� StackID
� ProtID
� ImmediateAddress
� DriverWS
� DataLength
� FragCount
� fragment descriptions

Note If the MLID is using canonical addressing, the address in the
ImmediateAddress field will be in canonical form.

The ECB Status field can be set to one of the following values:

LSL_SUCCESSFUL (0000h)
Packet was received successfully.

LSLERR_RX_OVERFLOW (8006h)
The supplied data buffers were not large enough to contain the
entire packet but were filled with valid packet data.

LSLERR_CANCELLED (8007h)
The MLID could not complete the receive operation. The data
buffers do not contain valid data.

The ECB StackID field will be set to the Stack ID of the
protocol stack receiving this packet. The LSL assigned this
value when the protocol stack registered.

The LDestType field is stored in the DriverWS field and will use
the following bit assignments:

DEST_MULTICAST equ0001h
DEST_BROADCAST equ0002h
DEST_REMOTE_UNICAST equ0004h
DEST_REMOTE_MULTICAST equ0008h
DEST_SOURCE_ROUTE equ0010h ; source route info
DEST_ERRORED equ0020h ; super exclusive bit
DEST_MAC_FRAME equ0040h ; exclusive bit
DEST_DIRECT equ0080h
RX_NOT_8022 equ0000h ; non-802.2 packet
RX_8022_TYPE1 equ0100h ; 802.2 type 1 packet
RX_8022_TYPE2 equ0200h ; 802.2 type 2 packet
RX_PRIORITY_FRAME equ0400h ; priority level is indicated
DEST_PROMISCUOUS equ0FFFFh ; all packets. (filter mask

 set by protocols to get all
 packets, including errors)

If the MLID configuration table is v1.12 or greater, the MLID
supports 802.2 Type II (see Chapter 15: MLID Data
Structures).

In most cases, the protocol receive complete handler is invoked
from the context of a hardware interrupt. The LAN driver has

 Protocol Stack Packet Reception

Version 1.03 (February 2, 1996) 5-13

finished servicing the network adapter and is ready to restore
the processor registers and exit from its interrupt handler. This
routine might enable interrupts and process for an extended
period of time. However, the routine must switch to an internal
stack and guard against being reentered because the network
hardware is fully functional at this point. MLID control
routines should not be invoked from this routine because they
can be called only at process time. However, the protocol stack
may freely make requests to the LSL (for example, by using the
protocol’s SendPacket function).

NetWare 16-Bit DOS Protocol Stacks and MLIDs Specification

5-14 Version 1.03 (February 2, 1996)

ECB Resubmit Procedures
Prescan and default protocol stacks must be able to place ECBs
back into the chain at the next point from where the ECB was
provided to consume the packet. This allows a protocol stack
that is spell checking, for example, to correct the spelling in a
packet and then send the corrected ECB onto the rest of the
system. Another example is a prescan protocol stack that was
converting packets with EBCDIC characters to ASCII
characters. In both cases, the protocol stack needs to operate on
the ECB and then resubmit the packet to the LSL.

This resubmission is done with the appropriate ResubmitXXX
through the protocol support entry point. Prescan transmit
stacks use ResubmitPrescanTx; prescan receive stacks use
ResubmitPrescanRx; default stacks use ResubmitDefault.
Calling these functions should only be done with data received
through the protocol’s receive/transmit handler.

Prescan transmit protocol stacks send packets that originate
from inside a protocol or from an application to the LSL as part
of a SendPacket function call. This packet traverses the
prescan transmit chain and is eventually presented to the
prescan transmit protocol as a transmit.

For proper syntax, see the respective function descriptions in
Chapter 10: LSL Protocol Stack Support Routines.

�

Version 1.03 (February 2, 1996) 6-1

Chapter 6 Protocol Stack Packet Transmission

6

6.

6

NetWare 16-Bit DOS Protocol Stacks and MLIDs Specification

6-2 Version 1.03 (February 2, 1996)

Overview
In the ODI specification, packet transmission is an
asynchronous operation that entails building an Event Control
Block (ECB) and calling the SendPacket protocol support
routine (see Chapter 10: LSL Protocol Stack Support
Routines). Packets sent through the LSL are connectionless
and, if the conditions warrant, are neither guaranteed to reach
their destination, nor to be placed onto the LAN medium.
Protocol stacks typically do not need to use checksums because
the underlying MLID and LAN adapters guarantee a high
degree of data integrity; however, your protocol stack can use
checksums if you desire.

Note Some protocol stacks must provide guaranteed packet delivery
to the upper layers. If this is the case, your protocol stack must
contain the necessary timeouts, retries, and packet
acknowledgments to realize a guaranteed delivery system.

Send Routine Events
The events listed in the following table must occur during a
protocol stack send routine:

Table 6.1 Protocol Stack Send Routine
Actor/
Agent

Event

Protocol
Stack

1. Hands the ECB to the LSL for transmission.

LSL 2. Passes the ECB to any prescan transmit stack
registered with the ECB’s board number. If
consumed, the prescan transmit stack must
resubmit the ECB or cancel it later. If not
consumed or if there is no prescan transmit stack,
the LSL calls the underlying MLID transmit
handler with a pointer to the ECB.
3. Passes ownership of the ECB and its associated
packet data buffers to the MLID.

MLID 4. Transmits the packet.
5. Passes ownership of the ECB and its associated
packet data buffers to the LSL, regardless of
whether the packet transmission was completed
successfully or with an error.
6. Notifies the transmit monitor of packet
transmission.

LSL 7. Calls the Event Service Routine specified in the
ECB.

Protocol Stack Packet Transmission

Version 1.03 (February 2, 1996) 6-3

Note The ECB and its associated data buffers must not be modified
until ownership is returned to the protocol stack.

Starting the Packet Send
A protocol stack can usually transmit packets at any time.

Caution A protocol stack should not poll for a transmit complete inside
an interrupt handler (for example, IRQ 0). Polling for a
transmit complete inside of an interrupt handler can create a
dead-lock. A protocol stack should also not issue transmit
requests inside its packet look ahead receive handler routine.

Note For information about priority packet transmission, see
‘‘Priority Packet Support” in Chapter 2: Overview of Protocol
Stacks.

Supporting Multiple Outstanding Transmit Requests
The underlying MLIDs generally support multiple outstanding
transmit requests from protocol stacks. While the adapter
transmits one packet onto the LAN medium, the MLID loads
the next transmit packet’s data onto the LAN adapter. The
number of transmits an MLID can give an adapter before the
MLID must queue the ECBs varies, because this number is
MLID-dependent.

When the protocol stack must transmit bursts of packets, it
will achieve its best performance by passing multiple transmit
requests to an underlying MLID. In theory, an MLID can
handle any number of outstanding transmit requests. However,
three outstanding requests have been proven to be adequate.
An MLID that handles more than three active transmit
requests generally does not have higher throughput (three
active transmit requests saturate most LAN adapters). A
protocol stack should be able to have at least three transmits
outstanding on a particular board.

Sending the Packet
To send a packet, the protocol stack must provide data buffers
and an Event Control Block (ECB) describing the data to be
sent. The protocol stack can specify from 1 to 16 data buffers
per transmit request. The underlying MLID will then combine
the buffers to form a single data packet.

Event Control Blocks
An Event Control Block (ECB) is a general purpose request
control block used for transmit and receive events in the ODI

NetWare 16-Bit DOS Protocol Stacks and MLIDs Specification

6-4 Version 1.03 (February 2, 1996)

specification. The ECB ProtocolWorkspace field can be used for
any purpose by the protocol stack because the
ProtocolWorkspace field is not modified by the LSL or the
MLIDs. (See Appendix A: Event Control Blocks (ECBs) for a
more detailed discussion of ECBs.) However, the protocol stack
cannot count on any field or value in the ECB while other parts
of the system own the ECB.

You must set the ECB fields and descriptors listed below before
the protocol stack gives the ECB to the LSL for transmission:

� EventServiceRoutine
� StackID
� BoardNumber
� ProtocolID
� ImmediateAddress
� DataLength
� FragmentCount
� Fragment Descriptors

These fields are treated as read-only by the LSL and the
MLIDs. Therefore, each field does not have to be reinitialized
after a transmit operation unless that field’s value must be
changed.

EventServiceRoutine

The EventServiceRoutine field contains a far pointer to a
routine the LSL calls when the underlying MLID has finished
with the ECB and its data buffers. (See the ‘‘Transmit
Complete” section at the end of this chapter.)

StackID

The StackID field should be initialized with the protocol’s
assigned stack ID. Raw sends and priority packets are also
indicated in this field.

Raw Sends

The ODI specification specifies an optional capability (raw
send) in MLIDs that allows protocol stacks to specify the
complete low-level header when sending a packet. Because
Raw sends force a protocol stack to be LAN medium and frame
type aware, protocol stacks do not generally use raw sends
unless absolutely necessary.

Because a raw send is an optional capability, some MLIDs do
not support it. To determine whether a particular board
supports raw sends, the protocol stack should check the

Protocol Stack Packet Transmission

Version 1.03 (February 2, 1996) 6-5

RawSendBit bit (bit 6 [0040h]) in the MLID configuration table
ModeFlags field. If this bit is set, the MLID supports raw
sends.

A protocol stack signals a raw send to the MLID by placing
0FFFFh, instead of its stack ID, in the StackID field. The
underlying MLID checks this field for 0FFFFh. If this value is
0FFFFh, the MLID will skip over the code to build the
low-level header. The first fragment of the ECB must then
contain the entire low-level header information.

The first data fragment must contain the complete MAC
header, including the source address, for the media in use.
However, in some cases this address will not be used; some
adapters automatically insert the source node address in the
low-level header.

The protocol stack must be completely aware of frame
characteristics. Usually, however, minimum packet length
padding and evenization are handled by the MLID.

BoardNumber

The BoardNumber field specifies on which logical board the
packet should be transmitted. The board number specifies
which physical adapter and which low-level frame format will
be used.

ProtocolID

The ProtocolID field specifies which Protocol ID value will be
embedded into the frame header. This value stamps the packet
as a particular protocol type (for example, IPX, TCP/IP, etc.).

For example, the Ethernet 802.2 frame ECB’s ProtocolID field
contains the Destination Service Access Point (DSAP). The
Source SAP (SSAP) is set equal to the Destination SAP (DSAP
or Protocol ID) when the MLID builds the frame header. The
MLID will also set the 802.2 control byte equal to 03h (UI).

To allow a protocol stack to specify the complete 802.2 header
(for example, DSAP, SSAP, Control 0, Control 1), MLIDs that
support the 802.2 frame allow a special flag in the transmit
ECB ProtocolID field. When this flag is present, the MLID uses
the specified 802.2 header instead of setting SSAP equal to
DSAP and Control equal to 03h (the usual method).

If an explicit 802.2 header needs to be specified, set the
ProtocolID field to the following values:

NetWare 16-Bit DOS Protocol Stacks and MLIDs Specification

6-6 Version 1.03 (February 2, 1996)

Byte 0 x This byte is normally zero. However, if a non-zero
number is specified, the MLID will look for the explicit header
information. x = a zero-based number of bytes in the explicit
number (for example, 00h signifies DSAP, 02h signifies DSAP,
SSAP and Control 0—802.2 Type I header, and 03h signifies
DSAP, SSAP, Control 0, Control 1—802.2 Type II header).

Bytes 1 through 5 These bytes are set by the protocol stack
for an explicit 802.2 header. Unused bytes should be set to 0.

Note If the MLID configuration table version is v1.11, the MLID will
support only 802.2 Type 1 and the additional control byte for
the type number could be present in some 802.2 packets. A
protocol that uses this extra control byte should include this
byte in the first data fragment of the send ECB. (See ODI
Specification Supplement: Frame Types and Protocol IDs for
more information on 802.2 Type II Frame Header Support.) If
the MLID configuration table version is v1.12, or greater, the
MLID supports the flag value in Byte 0.

ImmediateAddress

The ImmediateAddress field contains the destination address
that specifies to which node on the local network the packet
should be sent. This can be a direct, multicast, or broadcast
address. If your protocol stack must receive its own sends, it
must emulate loopback capabilities. The address is expected to
be in the form specified by the MLID MModeFlags field in the
MLID configuration table. Bits 14 and 15 indicate the
appropriate format. (See Chapter 15: MLID Data Structures
and ODI Specification Supplement: Canonical and
Noncanonical Addressing for more information.)

Note The address FF FF FF FF FF FF always indicates a broadcast
packet. (All adapters on the physical network will receive the
packet.)

DataLength

The DataLength field holds the total length of all fragment
descriptor length fields.

FragmentCount

The FragmentCount field specifies the number of fragment
descriptor data structures that follow the FragmentCount field.
This field must contain a value greater than 0 and less than or
equal to 16 (0 < FragmentCount � 16).

Important FragmentCount must never equal 0.

Protocol Stack Packet Transmission

Version 1.03 (February 2, 1996) 6-7

Fragment Descriptors

Each fragment descriptor contains the location and length of a
contiguous section of RAM memory (segment:offset). The
protocol stack can specify a maximum of 16 fragment
descriptors. The MLID will combine the fragments together to
form one contiguous packet.

Note The length field of a fragment descriptor can be 0.

A frame containing only an 802.2 Type II header can be
transmitted by setting the length fields of the fragment
descriptors for the ECB containing the transmit information to
0. The FragmentCount field must be equal to at least 01h. The
ECB ProtocolID field should contain the entire explicit 802.2
Type II header.

Transmit Complete
The events in the following table occur to complete
transmitting a packet.

Table 6.2 Completing Packet Transmission
Actor/
Agent

Action

Protocol
Stack

1. Gives the ECB to the MLID (through the LSL).

MLID 2. Transmits the ECB.
3. Returns the ECB to the LSL.

LSL 4. Places the ECB into a temporary event queue.
MLID 5. Calls the LSL ServiceEvents routine after the

MLID has finished servicing the hardware.
LSL’s
Service
Events
Routine

6. Removes each ECB from the queue in turn.
7. Calls the ESR defined in the ECB Event Service
Routine (ESR). In the case of a transmit complete,
the ESR will be the protocol stack’s transmit
complete handler.

Note The MLID can invoke the protocol stack’s transmit complete
handler before the call to SendPacket returns.

NetWare 16-Bit DOS Protocol Stacks and MLIDs Specification

6-8 Version 1.03 (February 2, 1996)

Protocol Transmit Complete Handler

Description The protocol transmit complete handler is called when a
previous transmit request has completed successfully or with
an error.

Entry State ES:SI
has a pointer to the completed ECB.

Interrupts
are disabled.

Note CLD is cleared.

Return State Interrupts
state is preserved.

DS, BP, SS, SP
are preserved.

Note CLD is cleared.

Remarks When this routine is invoked, the LSL returns ownership of the
ECB and its data buffers to the protocol stack.

A protocol must not use ECBs that it does not own.

This routine must complete quickly because it is usually
invoked from an Interrupt Service Routine. Transmit requests
may be issued from this routine, but the protocol stack must
switch to its own stack.

The ECB Status field is set to one of the following:

LSL_SUCCESSFUL (0000h)
The MLID determined that the transmit was successful. Because
the transmit was connectionless, this completion code does not
mean that the destination received the packet.

LSLERR_NO_SUCH_DRIVER (800Bh)
The LAN adapter specified in the ECB BoardNumber field cannot
be found. This usually means that the MLID has been removed
from memory.

LSLERR_PACKET_ERRORED (800Ch)
The MLID was unable to transmit the packet. The packet was
probably too big.

Protocol Stack Packet Transmission

Version 1.03 (February 2, 1996) 6-9

Prescan Transmit Protocol Stack Handler
Description Ownership of the ECB and its associated data buffer is passed

to the protocol stack when the LSL calls the protocol’s transmit
handler. The protocol’s transmit handler can be called either at
process or interrupt time.

Entry State ES:SI
pointer to transmit ECB.

Interrupts
are disabled.

Return State AX
Zero the protocol stack consumed the packet.
Non-zero the protocol stack returns an ECB the LSL should

route.

ES:SI
has a pointer to an ECB the LSL should route if AX is non-zero.

Interrupts
are disabled.

Flags
are set according to AX.

DS, BP, SS, SP
are preserved.

Remarks This routine can enable interrupts and can process for an
extended period of time if the routine is switched to an internal
stack and has guarded against reentry (the network hardware
can be fully functional at this point, hence packet transmission
ordering must be maintained), or it can treat this as a
run-to-completion event (be aware that this can degrade
performance). MLID control routines must not be invoked from
this routine because they can only be called at process time.
However, the protocol stack can freely make requests to the
LSL (such as GetECB, to obtain another ECB buffer). If the
protocol stack consumes the ECB, after it has finished with it,
it should return the ECB to the LSL using the HoldEvent
support function.

If the protocol stack processes the transmit ECB by queuing it
and servicing the ECB at process time, it can resubmit the
ECB for further processing by other transmit prescan protocol
stacks and for eventual transmission by using the
ReSubmitPreScanTx function.

NetWare 16-Bit DOS Protocol Stacks and MLIDs Specification

6-10 Version 1.03 (February 2, 1996)

Transmitting prescan protocol stacks should treat an ECB
handed to it, whose data it is going to modify, as read-only and
should create a copy of the ECB and process the copy, installing
its Event Service Routine (ESR) in the ECB etc. The reasons
for this are due to the originating protocol stack (bound stacks
for example) can manipulate data in the original ECB when it’s
ESR is called and if the prescan stack manipulates the
data—for example, compression, the data will be
incomprehensible to the original stack. When the prescan
stack’s ESR is called, it in turn should call the ESR in the
original ECB with ES:SI pointing to the original ECB.

Note Data transmitted by prescan stacks are still limited by the
transmitting MLID configuration table’s WorstDataSize (offset
2Ch) value. Also calling the LSL function SendPacket from a
transmit prescan stack can cause the prescan stack’s protocol
transmit handler to be called from itself.

Prescan stacks call resubmit for transmitting data originated
external to the prescan stack. Data originating from the
prescan stack should be sent by calling the LSL SendPacket
function. The LSL will handle calling all the prescan transmit
handlers for data being transmitted on a board with prescan
stacks registered.

�

Version 1.03 (February 2, 1996) 7-1

Chapter 7 Protocol Stack Control Routines

7

7.

7

NetWare 16-Bit DOS Protocol Stacks and MLIDs Specification

7-2 Version 1.03 (February 2, 1996)

Overview
When a protocol stack registers with the LSL, one of the
parameters it passes is a pointer to the protocol stacks control
entry point. Applications and other protocol stacks can obtain
this entry point from the LSL (see Chapter 10: LSL Protocol
Stack Support Routines, GetProtocolControlEntry) and then
invoke it to obtain the protocol’s configuration.

The following is an alphabetical list of the protocol stack
control routines along with their entry point and function
number.

Descriptive Name Function Name Funct. No.
BindToMLID BIND_TO_MLID 2
GetProtocolStackConfiguration GET_STACK_CONFIGURATION 0
GetProtocolStackStatistics GET_STACK_STATISTICS 1
MLIDDeregistered INFORM_MLID_DEREGISTERED 4
ProtocolPromiscuousChange INFORM_PROMISCUOUS_CHANGE 5
ProtocolManagement PROTOCOL_MANAGEMENT 8
UnbindFromMLID UNBIND_FROM_MLID 3
Reserved RESERVED 6
Reserved RESERVED 7

The following is a function number ordered list of the protocol
stack control routines along with their entry point and function
number.

Descriptive Name Function Name Funct. No.
GetProtocolStackConfiguration GET_STACK_CONFIGURATION 0
GetProtocolStackStatistics GET_STACK_STATISTICS 1
Bind to MLID BIND_TO_MLID 2
UnbindFromMLID UNBIND_FROM_MLID 3
MLIDDeregistered INFORM_MLID_DEREGISTERED 4
ProtocolPromiscuousChange INFORM_PROMISCUOUS_CHANGE 5
Reserved RESERVED 6
Reserved RESERVED 7
ProtocolManagement PROTOCOL_MANAGEMENT 8

Protocol Stack Control Routines

Version 1.03 (February 2, 1996) 7-3

BindToMLID
Description Informs the protocol stack that it should bind to a specific

board.

Entry State BX
is equal to BIND_TO_MLID (0002h).

CX
has the board number to which the protocol stack should bind.

ES:SI
has a pointer to an optional parameter string that is protocol
implementation-dependent.

Interrupts
are enabled.

Return State AX
has a completion code.

Flags
Z flag set according to AX.

Interrupts
are enabled.

DS, BP, SS, SP
are preserved.

Completion Codes (AX) LSL_SUCCESSFUL (0000h)
The protocol stack is successfully bound.

LSLERR_BAD_COMMAND (8008h)
The protocol does not support this function.

LSLERR_BAD_PARAMETER (8002h)
The board number was invalid or the parameter pointed to by
ES:SI was invalid.

LSLERR_DUPLICATE_ENTRY (8009h)
The protocol is already bound to a board.

Other protocol implementation-dependent codes

Remarks Because most protocol stacks bind to a board or boards before
staying resident, it is not necessary to implement this function.
However, the protocol stack can implement this function if the
protocol stack must have an external utility invoke the binding
process after the protocol stack has stayed resident or to
provide dynamic linking. The protocol stack must return
LSLERR_BAD_COMMAND (8008h) if it chooses not to support this
function after staying resident.

NetWare 16-Bit DOS Protocol Stacks and MLIDs Specification

7-4 Version 1.03 (February 2, 1996)

GetProtocolStackConfiguration
Description Returns a pointer to the protocol stack configuration table.

Entry State BX
is equal to GET_STACK_CONFIGURATION (0000h).

Interrupts
are enabled.

Return State AX
is always equal to LSL_SUCCESSFUL (0000h).

ES:SI
has a pointer to the protocol stack configuration table.

Flags
Z flag is set according to AX.

Interrupts
are enabled.

DS, BP, SS, SP
are preserved.

Remarks All protocol stacks must support this function.

See Also See Chapter 3: Protocol Stack Data Structures for the format of
the protocol stack configuration table.

Protocol Stack Control Routines

Version 1.03 (February 2, 1996) 7-5

GetProtocolStackStatistics
Description Returns a pointer to the protocol stack internal statistics table.

Entry State BX
is equal to GET_STACK_STATISTICS (0001h).

Interrupts
are enabled.

Return State AX
is always equal to LSL_SUCCESSFUL (0000h).

ES:SI
has a pointer to the protocol stack statistics table.

Flags
Z flag is set according to AX.

Interrupts
are enabled.

DS, BP, SS, SP
are preserved.

Remarks All protocol stacks must support this function.

See Also See Chapter 3: Protocol Stack Data Structures for the format of
the protocol stack statistics table.

NetWare 16-Bit DOS Protocol Stacks and MLIDs Specification

7-6 Version 1.03 (February 2, 1996)

MLIDDeregistered
Description Informs the protocol stacks that the specified board is no longer

available.

Entry State BX
is equal to INFORM_MLID_DEREGISTERED (0004h).

CX
has a board number that has deregistered from the LSL.

Interrupts
are enabled.

Return State AX
has a completion code.

Interrupts
are enabled.

DS, BP, SS, SP
are preserved.

Completion Codes (AX) LSL_SUCCESSFUL (0000h)
The call was acknowledged and might have been acted upon.

LSLERR_BAD_COMMAND (8008h)
The protocol does not support this function.

Remarks The LSL invokes MLIDDeregistered whenever the logical board
that a protocol stack is using has deregistered. The protocol
stack can use this information in any way it chooses and can
even discard it. However, the specified board will not be
available for packet transmission or reception. Also, if the
protocol stack discards the information, the stack must be able
to handle the call and return with AX equal to
LSLERR_BAD_COMMAND (8008h).

See Also DeregisterMLID in Chapter 11: LSL MLID Support Routines.

Protocol Stack Control Routines

Version 1.03 (February 2, 1996) 7-7

ProtocolManagement
Description Provides a generic way of allowing protocol dependent

functions to be defined.

Entry State BX
is equal to PROTOCOL_MANAGEMENT (8).

ES:SI
is a pointer to the management ECB.

Interrupts
are disabled.

Return State AX
has completion code.

ES:SI
is a pointer to the management ECB.

Flags
are set according to AX.

Interrupts
are disabled but might have been temporarily enabled by the
protocol stack.

DS, ES, BP, SI, SS, SP
are preserved.

Completion Codes (AX) LSL_SUCCESSFUL (0000h)
The requested operation was successful. The ECB is returned to
the caller.

LSL_PENDING_SUCCESS (0001h)
The requested operation was successfully started but will
complete asynchronously. The ECB is not returned. The ESR will
be called after the operation completes.

LSLERR_BAD_PARAMETER (8002h)
The first byte of the ECB ProtocolID field is not valid. The first
byte must be greater than 41h (A) and less than 7Eh (~)
inclusive.

LSLERR_BAD_COMMAND (8008h)
Protocol management support is not provided.

LSLERR_NO_SUCH_HANDLER (800Ah)
The Protocol ID value is not supported.

Remarks This control function is provided to allow the protocol a generic
interface to protocol dependant management functions. The
implementation of this function is optional. If this call is not
implemented, a call to this function must return
LSLERR_BAD_COMMAND (8008h).

NetWare 16-Bit DOS Protocol Stacks and MLIDs Specification

7-8 Version 1.03 (February 2, 1996)

The management ECB is of the form of an ECB, but all fields
below the ProtocolID field can be redefined by the protocol.

The ProtocolID field is defined as a 6-byte string that uniquely
identifies the protocol. The first character of the string must be
greater than or equal to 41h (‘‘A”) and less than or equal to 7Eh
(‘‘~”). The remaining characters are defined by the protocol. If
the first character is not greater than or equal to 41h and less
than or equal to 7Eh, the protocol should return with the
completion code LSLERR_BAD_PARAMETER (8002h).

If the protocol does not recognize the value in the ProtocolID
field, the protocol returns a completion code of
LSLERR_NO_SUCH_HANDLER (800Ah).

If the protocol must respond asynchronously to the
management request, it should queue the ECB internally and
return a status of LSL_PENDING_SUCCESS (0001h). When the
queued request is complete, the protocol should place the ECB
on the LSL hold event queue by calling HoldEvent. The LSL
will then process the ECB during the next call to service
events.

See Also DriverManagement

Protocol Stack Control Routines

Version 1.03 (February 2, 1996) 7-9

ProtocolPromiscuousChange
Description Called before a MLID changes the promiscuous state.

Entry State BX
is equal to INFORM_PROMISCUOUS_CHANGE (5).

CX
has the board number.

SI
has the promiscuous state.

PROM_OFF (0000h) = Promiscuous mode off
PROM_MAC (0001h) = All MAC frames to be received.
PROM_NORMAL (0002h)= All non-MAC frames to be received.
PROM_SMT (0004h) = All SMT frames to be received.

Interrupts
are disabled.

Return State AX
contains a completion code.

Interrupts
are unchanged.

DS, BP, SS, SP
are preserved.

Completion Codes (AX) LSL_SUCCESSFUL (0000h)
The requested operation was completed successfully.

LSLERR_BAD_COMMAND (8008h)
This function is not supported.

Remarks A protocol stack implements this control command if it expects
that the MLID is only passing up qualified packets and needs
to adjust its filtering methods if promiscuous mode has been
enabled by another protocol stack. This command will also be
called when an MLID is turning promiscuous mode off. The
MLID is responsible for notifying all of the logical boards using
a particular physical board of each change.

The protocol will only receive the packets that have not been
filtered out by the currently active filter for the protocol.

NetWare 16-Bit DOS Protocol Stacks and MLIDs Specification

7-10 Version 1.03 (February 2, 1996)

UnbindFromMLID
Description Informs the protocol stack that it should unbind from the

specified board.

Entry State BX
is equal to UNBIND_FROM_MLID (0003h).

CX
has the board number from which the protocol stack should
unbind.

ES:SI
has a pointer to a pointer to an optional parameter string that is
protocol implementation-dependent.

Interrupts
are enabled.

Return State AX
has a completion code.

Flags
Z flag set according to AX.

Interrupts
are disabled.

DS, BP, SS, SP
are preserved.

Completion Codes (AX) LSL_SUCCESSFUL (0000h)
The protocol stack unbound successfully.

LSLERR_BAD_PARAMETER (8002h)
The protocol was not bound to the board number in CX.

LSLERR_BAD_COMMAND (8008h)
The protocol does not support this function.

Other protocol implementation-dependent codes.

Remarks Because most protocol stacks only need to unbind when they
are unloaded, they usually do not implement this function.
However, the protocol stack can implement this function if the
protocol needs to support a specialized application.

Protocols supporting mobility or dynamic binding should
implement this function.

The protocol stack must return LSLERR_BAD_COMMAND (8008h)
if it chooses no to support this function after staying resident.

�

Version 1.03 (February 2, 1996) III-1

Section III Link Support Layer (LSL)

FDDI.COM

MLID

Ether.COM

MLID

Link Support Layer (LSL)

Ether.COM

MLID

LAN Adapters

IPX/SPX

Protocol
Stack

AppleTalk

Protocol
Stack

Token.COM

MLID

TCP/IP

Protocol
Stack

NetWare Services

NetWare 16-Bit DOS Protocol Stacks and MLIDs Specification

III-2 Version 1.03 (February 2, 1996)

Section Overview
This section provides a chapter discussing the Link Support
Layer (LSL) configuration and statistics table. It also includes
chapters describing the LSL calls that are used by both the
protocol stacks and the MLID.

Chapter 8: Overview of the LSL provides a brief overview of
the LSL and its functions and a table of completion codes.

Chapter 9: LSL Data Structures describes the fields in the LSL
configuration and statistics table.

Chapter 10: LSL Protocol Stack Support Routines describes
the LSL functions available to protocol stacks.

Chapter 11: LSL MLID Support Routines describes the support
routines provided by the LSL for MLIDs.

Chapter 12: LSL General Services describes general services
provided by the LSL for protocol stacks and MLIDs.

�

Version 1.03 (February 2, 1996) 8-1

Chapter 8 Overview of the LSL

8

8.

8

NetWare 16-Bit DOS Protocol Stacks and MLIDs Specification

8-2 Version 1.03 (February 2, 1996)

Overview
This chapter provides a brief overview of the Link Support
Layer (LSL) and its functions. It also lists the completion codes
the LSL returns in the support routines.

Overview of the LSL

Version 1.03 (February 2, 1996) 8-3

 Link Support Layer (LSL)
The LSL handles the communication between protocol stacks
and MLIDs. Because the ODI specification allows the physical
topology to support many different types of protocols, every
MLID sends and receives packets of different frame types that
are destined for different protocol stacks. The LSL acts as a
demultiplexer, or switchboard, and determines the protocol
stack or MLID that receives the packet.

The LSL also tracks the various protocols and MLIDs that are
currently loaded in the system and provides a consistent
method of finding and using each of the loaded modules.

In addition, the LSL performs the following services:

� Optionally allows a protocol stack to obtain and return
Event Control Blocks (ECBs). (ECBs are control structures
that are used to send or receive packets and to schedule
events.)

� Queues and recovers ECBs for later use.

� Allows protocol stacks to obtain timing services.

� Allows protocol stacks to determine stack IDs and Protocol
IDs (PIDs).

� Allows protocol stacks to obtain MLID statistics.

� Allows protocol stacks to bind with MLIDs.

� Allows protocol stacks to transmit and receive packets
through an MLID.

� Maintains lists of all active stacks and MLIDs.

� Allows protocol stacks to obtain information about MLIDs
and other protocol stacks.

� Allows protocol stacks to change the operational state of
MLIDs. (For example, the protocol stack can cause the
MLID to shut down or reset.)

Note Versions of the LSL are available for the NEC, Fujitsu, IBM,
and compatible computers.

LSL Completion Codes
The following are the completion codes used by the LSL and
other modules (defined in the ODI.INC file).

� LSL_SUCCESSFUL (0000h)
� LSL_PENDING_SUCCESS (0001h)

NetWare 16-Bit DOS Protocol Stacks and MLIDs Specification

8-4 Version 1.03 (February 2, 1996)

� LSLERR_OUT_OF_RESOURCES (8001h)
� LSLERR_BAD_PARAMETER (8002h)
� LSLERR_NO_MORE_ITEMS (8003h)
� LSLERR_ITEM_NOT_PRESENT (8004h)
� LSLERR_FAIL (8005h)
� LSLERR_RX_OVERFLOW (8006h)
� LSLERR_CANCELLED (8007h)
� LSLERR_BAD_COMMAND (8008h)
� LSLERR_DUPLICATE_ENTRY (8009h)
� LSLERR_NO_SUCH_HANDLER (800Ah)
� LSLERR_NO_SUCH_DRIVER (800Bh)
� LSLERR_PACKET_ERRORED (800Ch)

Specification Version String
In order to identify which version of this specification an LSL
conforms to, a version string (the ‘‘specification version string”)
is embedded within the LSL. The specification version string
number (4.00 for this specification) is the actual version
number of the specification. The following is the specification
version string for this specification; it is located in the LSL’s
initialization variable; it is not available at runtime.

ODISPEC db ‘ODI_SPEC_VERSION: 4.00’,0

LSL Commandline Switches
Valid switches: U, R, F, ?, H, V, C=, S.
Only the ”U, ?, C=” are documented in the help.
’U’ or ’R’ Unloads the LSL if possible.
’F’ Forces the unload.
’H’ an equivalent to ’?’, and is used by many of Novell’s Other utilities.
’V’ Shows the signon and version information.
’C=’Used to change the path and/or filename of the configuration file and

is the only 2 letter switch that is valid.
’S’ System check switch that will display the internals of the LSL.

The following information is provided:
The LSL Version is vX.XX
The LSL Configuration Table Version is vX.XX
The LSL Machine type is set to XXX machines.
LSL Initial Entry point = Seg:Offset
LSL protocol Support Entry point = Seg:Offset
LSL General Services Entry point = Seg:Offset
LSL MLID Support Entry Point = Seg:Offset
LSL Config Table pointer = Seg:Offset
LSL Stat Table pointer = Seg:Offset
The Configuration File used was [Path\Filename].
Buffers, XX, Buffer size XXXX bytes, Memory Pool X Bytes.
In addition if there is a MEMPOOL value > zero, then the
MEMPOOL Memory stat structure will also be displayed
Memory Pool
Memory Available: X paragraphs
MemoryInuse: X paragraphs

Overview of the LSL

Version 1.03 (February 2, 1996) 8-5

Largest Available Block X paragraphs
Number Available Blocks X
Memory Management Overhead X bytes
Minimum Allowed Allocation X bytes

Custom Configuration Files

When using the ‘‘C=” commandline switch, the LSL first tries
the [path]\filename as given. If the file is not found, the
filename is searched for in the current working directory. If the
filename still cannot be found, the LSL looks in the load
directory. The filename is considered valid even if the path was
incorrect. After parsing the configuration file, the LSL displays
the relative path and filename of the configuration file that
was parsed.

All MLIDs using an unmodified LAN driver toolkit will use the
same configuration file that the LSL used. It is recommended
and strongly suggested that all protocol stacks and shells (or
requesters) query the LSL and use the same configuration file
unless the user explicitly gives a commandline parameter to
require a different configuration file.

�

Version 1.03 (February 2, 1996) 9-1

Chapter 9 LSL Data Structures

9

9.

9

NetWare 16-Bit DOS Protocol Stacks and MLIDs Specification

9-2 Version 1.03 (February 2, 1996)

Overview
This chapter describes the LSL configuration and statistics
tables and each of the fields in these structures.

LSL Data Structures

Version 1.03 (February 2, 1996) 9-3

LSL Configuration Table
The following describes the LSL configuration table in detail;
specifically, it includes the configuration table structure
definition and a description of each of the configuration table
fields.

LSL Configuration Table Structure
LSLConfigurationStructure struc

LConfigTableMajorVer db 01
LConfigTableMinorVer db 11
LSLNumECB dw 0
LSLConfigReserved0 dw 0
LSLECBDataSize dw 0
LSLConfigReserved1 dw 0
LSLMajorVersion db ?
LSLMinorVersion db ?
LMaxNumBoards dw ?
LMaxNumStacks dw ?
LMachineType db 0
LConfigTableReserved db 11 dup (0)

LSLConfigurationStructure ends

LConfigTableMajorVer
LConfigTableMinorVer

LSLNumECB
LSLConfigReserved0

LSLECBDataSize
LSLConfigReserved1

LSLMajorVersion
LSLMinorVersion
LMaxNumBoards
LMaxNumStacks

LMachineType
LConfigTableReserved

Table 9.1 LSL Configuration Table
Offset Name Size (in

bytes)
Description

00h LConfigTableMajorVer 01 This field has the major version number of the configuration
table (0 through 99 decimal). For this specification, the major
version number is 1.

01h LConfigTableMinorVer 01 This field has the minor version number of the configuration
table (0 through 99 decimal). For this specification, the minor
version number is 11.

02h LSLNumECB 02 The LSL optionally provides ECBs; this is a count of the total
available ECBs.

04h LSLConfigReserved0 02 Reserved

06h LSLECBDataSize 02 The LSL optionally provides ECBs, this is the size of the data
buffer associated with the ECB.

Figure 9.1
Graphic Representation
of the LSL
Configuration Table

NetWare 16-Bit DOS Protocol Stacks and MLIDs Specification

9-4 Version 1.03 (February 2, 1996)

Table 9.1 LSL Configuration Table
Offset DescriptionSize (in

bytes)
Name

08h LSLConfigReserved1 02 Reserved

0Ah LSLMajorVersion 01 This field contains the major version of the LSL (0 through 99
decimal).

0Bh LSLMinorVersion 01 This field contains the minor version of the LSL (0 through 99
decimal).

0Ch LMaxNumBoards 02 This field has the maximum number of boards for which the
LSL is configured.

0Eh LMaxNumStacks 02 This field contains the maximum number of protocol stacks for
which the LSL is configured. In other words, the value of this
field is the maximum number of Protocol IDs identifying
protocol stacks that the LSL can handle—for example, TCP/IP
usually uses 3 PIDs: one for IP, one for ARP, and one for
RARP.

LMachineType 01 This field is defined specifically for each machine version of
the 16-bit DOS ODI LSL. Currently there are three versions of
the LSL available (IBM, NEC, Fujitsu, and their compatible
computers). For each machine type, a language translation
has been bound on for the default language.

10h LConfigTableReserved 12 Reserved.

LSL Statistics Table
The following describes the LSL statistics table in detail;
specifically, it includes the LSL statistics table structure
definition and a description of each of the statistics table fields.

The LSL keeps a statistics table for the purpose of network
management.

LSL Data Structures

Version 1.03 (February 2, 1996) 9-5

LSL Statistics Table Structure

LSLStatStructure struc
LStatTableMajorVer db 01
LStatTableMinorVer db 01
LNumGenericCounters dw 10
LValidCounterMask dd 00000001001111111111111111111111b
LTotalTxPackets dw 2 dup (0)
LGetECBRequests dw 2 dup (0)
LGetECBFailures dw 2 dup (0)
LAESEventCount dw 2 dup (0)
LPostponedEvents dw 2 dup (0)
LECBCancelFailures dw 2 dup (0)
LBuffersReused dw 2 dup (0)
LECBCancelOK dw 2 dup (0)
LTotalRxPackets dw 2 dup (0)
LUnclaimedPackets dw 2 dup (0)
LNumCustomCounters dw 0

LSLStatStructure ends

LStatTableMajorVer
LStatTableMinorVer

LNumGenericCounters
LValidCounterMask

LTotalTxPackets
LGetECBRequests

LGetECBFailures
LAESEventCount

LPostponedEvents
LECBCancelFailures

LBuffersReused
LECBCancelOK
LTotalRxPackets

LUnclaimedPackets
LNumCustomCounters

Table 9.2 LSL Statistics Table Field Descriptions
Offset Name Size (in

bytes)
Description

00h LStatTableMajorVer 01 This field contains the major version number of the
statistics table (0 through 99 decimal). For this
specification, the major version number is 1.

01h LStatTableMinorVer 01 This field contains the minor version number of the
statistics table (0 through 99 decimal). For this
specification, the minor version number is 1.

02h LNumGenericCounters 02 This field has the number of dword counters in the
static portion of this table. For this specification. the
number is 10.

Figure 9.2
Graphical Representation of the
LSL Statistics Table

NetWare 16-Bit DOS Protocol Stacks and MLIDs Specification

9-6 Version 1.03 (February 2, 1996)

Table 9.2 LSL Statistics Table Field Descriptions
Offset DescriptionSize (in

bytes)
Name

04h LValidCountersMask 04 This field contains the bit mask that indicates which
generic counters are used. The value 0 indicates
‘‘Used;” the value 1 indicates ‘‘Unused.” The
bit-to-counter correlations are determined by shifting
left as you move down the counters in the table. For
example, bit 31 corresponds to TotalTxPackets.

08h LTotalTxPackets 04 This field has the total number of SendPacket requests
made to the LSL.

0Ch LGetECBRequests 04 This field contains the number of times the LSL was
requested to provide an ECB.

10h LGetECBFailures 04 This field contains the number of times no ECB was
provided by the LSL.

14h LAESEventsCount 04 This field contains the number of completed AES
events.

18h LPostponedEvents 04 This field has the number of AES, send, and receive
events that were postponed because of critical
sections inside the MLIDs.

1Ch LECBCancelFailures 04 This field contains the number of times
CancelAESEvent was called and failed to find and
cancel the specified AES ECB.

20h LBuffersReused 04 This field contains the number of buffers that were
reused.

24h LECBCancelOK 04 This field has the number of successful calls to
CancelEvent to cancel a receive or transmit ECB.

28h LTotalRxPackets 04 This field has the total number of GetStackECB
requests the MLID has made to the LSL.

2Ch LUnclaimedPackets 04 This field has the total number of times a packet was
received and was not consumed by a protocol stack.

30h LNumCustomCounters 02 This field has the total number of custom variables that
follow this word.

There are NumberCustom dwords that start at offset 32h and
that correspond to the custom statistics for the LSL. Following
these dwords, NumberCustom pointers (4 bytes each) point to
length preceded ASCII strings that describe each custom
counter. Starting with this specification, there are no custom
counters in use.

�

Version 1.03 (February 2, 1996) 10-1

Chapter 10 LSL Protocol Stack Support Routines

10

10.

10

NetWare 16-Bit DOS Protocol Stacks and MLIDs Specification

10-2 Version 1.03 (February 2, 1996)

Overview
The LSL contains a number of services that are available to
protocol stacks. You invoke these services by calling the
protocol stack support entry point obtained when the protocol
stack locates the LSL.

The following is an alphabetical list of the LSL protocol stack
support routines along with their entry point and function
number.

Descriptive Name Function Name Function No.
AddProtocolID PROTSUP_ADD_PID 23 (17h)
BindStack PROTSUP_BIND_STACK_TO_MLID 21 (15h)
CancelAESEvent PROTSUP_CANCEL_EVENT 4
DefragmentECB PROTSUP_DEFRAG_ECB 2
DeregisterDefaultStackChain PROTSUP_DEREGISTER_DEFAULT_CHAIN 30 (1Eh)
DeregisterPrescanRxChain PROTSUP_DEREGISTER_PRESCAN_RX_CHAIN 31 (1Fh)
DeregisterPrescanTxChain PROTSUP_DEREGISTER_PRESCAN_TX_CHAIN 32 (20h)
DeregisterRPLBootROM PROTSUP_DEREGISTER_RPL_BOOTROM 9
DeregisterStack PROTSUP_DEREGISTER_STACK 7
EndCriticalSection PROTSUP_END_CRITICAL_SECTION 39 (27h)
GetBoundBoardInfo PROTSUP_GET_BOUND_BOARD_INFO 42 (2Ah)
Get CriticalSectionStatus PROTSUP_CRITICAL_SECTION_STATUS 40 (28h)
GetECB PROTSUP_GET_ECB 0
GetHeldPacket PROTSUP_GET_HELD_PACKET 14 (0Eh)
GetTickMarker PROTSUP_GET_TICK_MARKER 26 (1Ah)
GetLSLConfiguration PROTSUP_GET_LSL_CONFIG 25 (19h)
GetLSLStatistics PROTSUP_GET_LSL_STATS 20 (14h)
GetMLIDControlEntry PROTSUP_GET_MLID_CTL_ENTRY 18 (12h)
GetPIDFromStackIDBoard PROTSUP_GET_PID_PROTNUM_MLIDNUM 17 (11h)
GetProtocolControlEntry PROTSUP_GET_PROTO_CTL_ENTRY 19 (13h)
GetStackIDFromName PROTSUP_GET_PROTNUM_FROM_NAME 16 (10h)
GetStartOfChain PROTSUP_GET_START_CHAIN 33 (21h)
GetIntervalMarker PROTSUP_GET_INTERVAL_MARK 5
HoldEvent PROTSUP_HOLD_EVENT 37 (25h)
HoldPacket PROTSUP_HOLD_PACKET 13 (0Dh)
ModifyStackFilter PROTSUP_MODIFY_STACK_FILTER 43 (2Bh)
RegisterDefaultStack PROTSUP_REGISTER_DEFAULT_CHAIN 27 (1Bh)
RegisterPrescanRxChain PROTSUP_REGISTER_PRESCAN_RX_CHAIN 28 (1Ch)
RegisterPrescanTxChain PROTSUP_REGISTER_PRESCAN_TX_CHAIN 29 (1Dh)
RegisterRPLBootROM PROTSUP_REGISTER_RPL_BOOTROM 8
RegisterStack PROTSUP_REGISTER_STACK 6
RelinquishControl PROTSUP_RELINQUISH_CONTROL 24 (18h)
ResubmitDefault PROTSUP_RESUBMIT_DEFAULT 34 (22h)
ResubmitPrescanRx PROTSUP_RESUBMIT_PRESCAN_RX 35 (23h)
ResubmitPrescanTx PROTSUP_RESUBMIT_PRESCAN_TX 36 (24h)
ReturnECB PROTSUP_RETURN_ECB 1
ScanPacket PROTSUP_SCAN_PACKET 15 (0Fh)
ScheduleAESEvent PROTSUP_SCHEDULE_AES_EVENT 3

LSL Protocol Stack Support Routines

Version 1.03 (February 2, 1996) 10-3

SendPacket PROTSUP_SEND_PACKET 12 (0Ch)
ServiceEvents PROTSUP_SERVICE_EVENTS 41 (29h)
StartCriticalSection PROTSUP_START_CRITICAL_SECTION 38 (26h)
UnbindStack PROTSUP_UNBIND_STACK_FROM_MLID 22 (16h)

The following is a function number ordered list of the LSL
protocol stack support routines along with their entry point
and function number.

Descriptive Name Function Name Function No.
GetECB PROTSUP_GET_ECB 0
ReturnECB PROTSUP_RETURN_ECB 1
DefragmentECB PROTSUP_DEFRAG_ECB 2
ScheduleAESEvent PROTSUP_SCHEDULE_AES_EVENT 3
CancelAESEvent PROTSUP_CANCEL_EVENT 4
GetIntervalMarker PROTSUP_GET_INTERVAL_MARK 5
RegisterStack PROTSUP_REGISTER_STACK 6
DeregisterStack PROTSUP_DEREGISTER_STACK 7
RegisterRPLBootROM PROTSUP_REGISTER_RPL_BOOTROM 8
DeregisterRPLBootROM PROTSUP_DEREGISTER_RPL_BOOTROM 9
SendPacket PROTSUP_SEND_PACKET 12 (0Ch)
HoldPacket PROTSUP_HOLD_PACKET 13 (0Dh)
GetHeldPacket PROTSUP_GET_HELD_PACKET 14 (0Eh)
ScanPacket PROTSUP_SCAN_PACKET 15 (0Fh)
GetStackIDFromName PROTSUP_GET_PROTNUM_FROM_NAME 16 (10h)
GetPIDFromStackIDBoard PROTSUP_GET_PID_PROTNUM_MLIDNUM 17 (11h)
GetMLIDControlEntry PROTSUP_GET_MLID_CTL_ENTRY 18 (12h)
GetProtocolControlEntry PROTSUP_GET_PROTO_CTL_ENTRY 19 (13h)
GetLSLStatistics PROTSUP_GET_LSL_STATS 20 (14h)
BindStack PROTSUP_BIND_STACK_TO_MLID 21 (15h)
UnbindStack PROTSUP_UNBIND_STACK_FROM_MLID 22 (16h)
AddProtocolID PROTSUP_ADD_PID 23 (17h)
RelinquishControl PROTSUP_RELINQUISH_CONTROL 24 (18h)
GetLSLConfiguration PROTSUP_GET_LSL_CONFIG 25 (19h)
GetTickMarker PROTSUP_GET_TICK_MARKER 26 (1Ah)
RegisterDefaultStack PROTSUP_REGISTER_DEFAULT_CHAIN 27 (1Bh)
RegisterPrescanRxChain PROTSUP_REGISTER_PRESCAN_RX_CHAIN 28 (1Ch)
RegisterPrescanTxChain PROTSUP_REGISTER_PRESCAN_TX_CHAIN 29 (1Dh)
DeregisterDefaultStackChain PROTSUP_DEREGISTER_DEFAULT_CHAIN 30 (1Eh)
DeregisterPrescanRxChain PROTSUP_DEREGISTER_PRESCAN_RX_CHAIN 31 (1Fh)
DeregisterPrescanTxChain PROTSUP_DEREGISTER_PRESCAN_TX_CHAIN 32 (20h)
GetStartOfChain PROTSUP_GET_START_CHAIN 33 (21h)
ResubmitDefault PROTSUP_RESUBMIT_DEFAULT 34 (22h)
ResubmitPrescanRx PROTSUP_RESUBMIT_PRESCAN_RX 35 (23h)
ResubmitPrescanTx PROTSUP_RESUBMIT_PRESCAN_TX 36 (24h)
HoldEvent PROTSUP_HOLD_EVENT 37 (25h)
StartCriticalSection PROTSUP_START_CRITICAL_SECTION 38 (26h)
EndCriticalSection PROTSUP_END_CRITICAL_SECTION 39 (27h)
GetCriticalSectionStatus PROTSUP_CRITICAL_SECTION_STATUS 40 (28h)
ServiceEvents PROTSUP_SERVICE_EVENTS 41 (29h)

NetWare 16-Bit DOS Protocol Stacks and MLIDs Specification

10-4 Version 1.03 (February 2, 1996)

GetBoundBoardInfo PROTSUP_GET_BOUND_BOARD_INFO 42 (2Ah)
ModifyStackFilter PROTSUP_MODIFY_STACK_FILTER 43 (2Bh)

LSL Protocol Stack Support Routines

Version 1.03 (February 2, 1996) 10-5

AddProtocolID
Description Allows a protocol stack to register a Protocol ID for a given

frame type and protocol stack combination

Entry State AX
has the frame type ID to which the new Protocol ID applies (for
example, the frame type ID of ETHERNET_II is 2). See ODI
Specification Supplement: Frame Types and Protocol IDs for a
list of defined frame type IDs and commonly used Protocol IDs.

BX
is equal to PROTSUP_ADD_PID (23 [017h]).

CX:DI
has a pointer to a length-preceded, zero-terminated string
containing the protocol’s short name to which the new Protocol
ID applies.

ES:SI
has a pointer to a 6-byte Protocol ID to register.

Interrupts
are enabled.

Return State AX
has a completion code.

Flags
Z flag set according to AX.

Interrupts
are enabled.

DS, BP, SS, SP
are preserved.

Completion Codes (AX) LSL_SUCCESSFUL (0000h)
The specified Protocol ID was successfully registered with the
LSL.

LSLERR_OUT_OF_RESOURCES (8001h)
The LSL has no resources to register another Protocol ID for the
specified frame type.

LSLERR_BAD_PARAMETER (8002h)
The length of the specified protocol short name is either equal to
0 or is greater than 15.

LSLERR_DUPLICATE_ENTRY (8009h)
A Protocol ID for the specified protocol stack and frame type has
already been registered with the LSL.

Remarks This routine allows a protocol stack to register a Protocol ID for
a given frame type and protocol stack combination. A protocol

NetWare 16-Bit DOS Protocol Stacks and MLIDs Specification

10-6 Version 1.03 (February 2, 1996)

stack should invoke the GetPIDFromStackIDBoard function
before it calls this function because a Protocol ID might have
been previously registered for the specified protocol and frame
type combination. The protocol should use the previously
registered PID.

LSL Protocol Stack Support Routines

Version 1.03 (February 2, 1996) 10-7

BindStack
Description Binds the specified stack ID to the specified board.

Entry State AX
has the protocol stack’s assigned stack ID value.

BX
is equal to PROTSUP_BIND_STACK_TO_MLID (21 [015h]).

CX
has the logical board number to which to bind.

Interrupts
are unspecified.

Return State AX
has a completion code.

Flags
Z flag is set according to AX.

Interrupts
are unchanged.

DS, BP, SS, SP
are preserved.

Completion Codes (AX) LSL_SUCCESSFUL (0000h)
The protocol stack bound successfully to the specified board.

LSLERR_BAD_PARAMETER (8002h)
Either the specified stack ID or the board number was invalid.

LSLERR_DUPLICATE_ENTRY (8009h)
The specified binding already exists.

Remarks This routine binds a protocol stack to an adapter and frame
type combination (logical board) that allows and enables packet
reception. When this routine returns successfully, the specified
binding has occurred. The bound protocol stack will receive the
packets that contain the registered Protocol ID for that stack,
which are received by the specified board, and that pass the
current stack filters, which were setup during registration.

NetWare 16-Bit DOS Protocol Stacks and MLIDs Specification

10-8 Version 1.03 (February 2, 1996)

CancelAESEvent
Description Called by a protocol stack to cancel an AES ECB.

Entry State BX
is equal to PROTSUP_CANCEL_EVENT (4).

ES:SI
has a pointer to an ECB to be canceled (the ESR will not be
called).

Interrupts
are disabled.

Return State AX
has a completion code.

Flags
Z flag is set according to AX.

DS, BP, ES, SI, SS, SP
are preserved.

Completion Codes (AX) LSL_SUCCESSFUL (0000h)
The specified AES event was canceled.

LSLERR_ITEM_NOT_PRESENT (8004h)
The specified ECB is not currently scheduled.

Remarks If the AES ECB was canceled the AES ECB’s Status field will
be set to LSLERR_CANCELLED (8007h). The defined ESR
will not be called.

See Also ScheduleAESEvent

LSL Protocol Stack Support Routines

Version 1.03 (February 2, 1996) 10-9

DefragmentECB
Description Copies a fragmented ECB into a continuous ECB.

Entry State AX
has an offset beyond the end of the destination ECB to where
the ECB data will start to be copied. If AX is –1 (0FFFFh), the
ECB itself will not be copied, and the data pointed to by the
source ECB will be copied into the destination buffer.

BX
is equal to PROTSUP_DEFRAG_ECB (2).

ES:SI
is a pointer to the data destination (an ECB or data buffer).

CX:DI
is a pointer to the ECB source data.

Interrupts
are unspecified.

Return State AX
is equal to LSL_SUCCESSFUL (0000h).

Flags
are set according to AX.

Interrupts
state is preserved.

DS, ES, SI, BP, SS, SP
are preserved.

Remarks This function is used to defragment an ECB into a contiguous
ECB. This function can be used to move only the data pointed
to by the ECB data buffer pointers to a contiguous buffer by
setting AX equal to –1 (0FFFFh). Setting AX to a value other
than –1 will cause the ECB to be copied as well as the data
pointed to by the ECB. The value in AX will be used to reserve
space between the ECB and the start of the first data
fragment. It is assumed that the data buffer pointed to by
ES:SI is large enough to hold the source ECB, data, and the
offset that will be introduced by AX. If AX is equal to –1, the
destination buffer needs to be only as large as the source
ECB.DataLength value.

NetWare 16-Bit DOS Protocol Stacks and MLIDs Specification

10-10 Version 1.03 (February 2, 1996)

DeregisterDefaultStackChain
Description Deregisters the default receive protocol stack described by the

StackChainStruc structure.

Entry State BX
is equal to PROTSUP_DEREGISTER_DEFAULT_CHAIN (30
[1Eh]).

ES:SI
is a pointer to the StackChainStruc structure for the protocol
stack that describes the default protocol stack.

Interrupts
are disabled.

Return State AX
has a completion code.

Flags
Z flag set according to AX.

Interrupts
are unchanged.

DS, BP, SS, SP
are preserved.

Completion Codes (AX) LSL_SUCCESSFUL (0000h)
The command was successfully executed.

LSLERR_ITEM_NOT_PRESENT (8004h)
The StackChainStruc structure was not found in the chain for the
board number described in the StackChainStruc structure.

Remarks This function is called by protocol stacks that are to be
removed from the protocol stack default chain. The LSL will
release the StackChainStruc structure back to the calling protocol
stack.

After successfully returning from this function, the
StackChainStruc structure is released back to the originating
stack. After this function returns, the LSL will no longer
present data to this stack.

LSL Protocol Stack Support Routines

Version 1.03 (February 2, 1996) 10-11

DeregisterPrescanRxChain
Description Deregisters the prescan receive protocol stack described by the

StackChainStruc structure.

Entry State BX
is equal to PROTSUP_DEREGISTER_PRESCAN_RX_CHAIN
(31 [1Fh]).

ES:SI
is a pointer to StackChainStruc structure for the deregistering
protocol.

Interrupts
are disabled.

Return State AX
has a completion code.

Flags
Z flag set according to AX.

Interrupts
are unchanged.

DS, BP, SS, SP
are preserved.

Completion Codes (AX) LSL_SUCCESSFUL (0000h)
The command was successfully executed.

LSLERR_ITEM_NOT_PRESENT (8004h)
The StackChainStruc structure was not found in the chain for the
board number described in the StackChainStruc.

Remarks This function is called by protocol stacks that are to be removed
from the protocol stack prescan receive chain.

After successfully returning from this function, the
StackChainStruc structure is released back to the originating
stack. After this function returns, the LSL will no longer
present data to this stack.

NetWare 16-Bit DOS Protocol Stacks and MLIDs Specification

10-12 Version 1.03 (February 2, 1996)

DeregisterPrescanTxChain
Description Removes a prescan protocol stack from the prescan chain for

the board number described in the StackChainStruc structure.

Entry State BX
is equal to PROTSUP_DEREGISTER_PRESCAN_TX_CHAIN
(32 [20h]).

ES:SI
Pointer to the prescan transmit protocol stack’s StackChainStruc
structure.

Interrupts
are disabled.

Return State AX
has a completion code.

Flags
Z flag set according to AX.

Interrupts
are unchanged.

DS, BP, SS, SP
are preserved.

Completion Codes (AX) LSL_SUCCESSFUL (0000h)
The command was successfully executed.

LSLERR_ITEM_NOT_PRESENT (8004h)
The StackChainStruc structure was not found in the chain for the
board number described in StackChainStruc.

Remarks Called by protocol stacks to be removed from the protocol stack
prescan transmit chain.

After successfully returning from this function, the
StackChainStruc structure is released back to the originating
stack. After this function returns, the LSL will no longer
present data to this stack.

LSL Protocol Stack Support Routines

Version 1.03 (February 2, 1996) 10-13

DeregisterRPLBootROM
Description Deregisters an RPL boot ROM stack from the LSL.

Entry State AX
has the board number to deregister.

BX
is equal to PROTSUP_DEREGISTER_RPL_BOOTROM (9).

Interrupts
are disabled.

Return State AX
has a completion code.

Flag
is set according to AX.

Interrupts
are disabled.

DS, BP, SS, SP
are preserved.

Completion Codes (AX) LSL_SUCCESSFUL (0000h)
The protocol stack was successfully deregistered.

LSLERR_BAD_PARAMETER (8002h)
The specified board does not exist.

LSLERR_ITEM_NOT_PRESENT (8004h)
The protocol stack is not presently registered.

Remarks This routine deregisters the protocol stack used by the RPL
boot ROM from the specified board. After this call, the protocol
stack will not receive any more incoming packets and must
make the RegisterRPLBootROM call again to start receiving
packets.

NetWare 16-Bit DOS Protocol Stacks and MLIDs Specification

10-14 Version 1.03 (February 2, 1996)

DeregisterStack
Description Removes a bound protocol stack from the LSL’s list of known

protocol stacks.

Entry State AX
has the protocol stack ID value.

BX
is equal to PROTSUP_DEREGISTER_STACK (7).

Interrupts
are disabled.

Return State AX
has a completion code.

Flag
Z flag set according to AX.

Interrupts
are disabled.

DS, BP, SS, SP
are preserved.

Completion Codes (AX) LSL_SUCCESSFUL (0000h)
The protocol stack was successfully deregistered.

LSLERR_ITEM_NOT_PRESENT (8004h)
The protocol stack is not presently registered.

Remarks After this call, the protocol stack will not receive any more
incoming packets and must make the RegisterStack and
BindStack calls again to start receiving packets.

This command implicitly unbinds the protocol stack from all
the MLIDs to which it was bound.

LSL Protocol Stack Support Routines

Version 1.03 (February 2, 1996) 10-15

EndCriticalSection
Description Ends a critical section.

Entry State BX
is equal to PROTSUP_END_CRITICAL_SECTION (39 [27h]).

Interrupts
are disabled.

Return State Interrupts
disabled but might have been enabled during the routine.

DS, BP, SS, SP
are preserved.

All other registers are destroyed.

Remarks This function is called by stacks that have previously started a
critical section by a call to StartCriticalSection.
StartCriticalSection should always be used in conjunction with
a subsequent call to EndCriticalSection.

NetWare 16-Bit DOS Protocol Stacks and MLIDs Specification

10-16 Version 1.03 (February 2, 1996)

GetBoundBoardInfo
Description Used to obtain information about a board.

Entry State AX
is equal to the board number.

BX
is equal to PROTSUP_GET_BOUND_BOARD_INFO (42 [2Ah]).

Interrupts
are in any state.

Return State AX
has a completion code.

DX:BX
has a StackID mask indicating which stacks are bound to the
given board number if AX equals LSL_SUCCESSFUL (0000h).

Flags
Z flag is set according to AX.

DS, BP, SS, SP
are preserved.

CX, DI, SI
are destroyed.

Completion Codes (AX) LSL_SUCCESSFUL (0000h)
The StackID mask is in DX:BX.

LSLERR_ITEM_NOT_PRESENT (8004h)
The board number is invalid.

Remarks If successful this function returns in DX:BX a mask of stack
IDs for the stacks that are bound to the board identified by the
board number in AX—for example, if a given board has two
stacks bound to it, one with stack ID 0 and the other with stack
ID 1, then bits 0 and 1 would be set (BX = 3).

Note Currently, the maximum number of stacks is 16, therefore DX
will always return 0.

LSL Protocol Stack Support Routines

Version 1.03 (February 2, 1996) 10-17

GetCriticalSectionStatus
Description Returns the number of critical sections that are currently

active.

Entry State BX
is equal to PROTSUP_CRITICAL_SECTION_STATUS (40
[28h]).

Interrupts
are unspecified.

Return State BX
has the total number of outstanding calls to start critical section.

Interrupts
are unchanged.

All other registers are preserved.

NetWare 16-Bit DOS Protocol Stacks and MLIDs Specification

10-18 Version 1.03 (February 2, 1996)

GetECB
Description Allocates one of the LSL’s ECB buffers.

Entry State BX
is equal to PROTSUP_GET_ECB (0).

Interrupts
are disabled.

Return State AX
has a completion code.

ES:SI
is a pointer to the ECB if AX is LSL_SUCCESSFUL (0000h).

DS, BP, SS, SP
are preserved.

Completion Codes (AX) LSL_SUCCESSFUL (0000h)
The ECB was allocated successfully.

LSLERR_OUT_OF_RESOURCES (8001h)
Out of ECBs.

Remarks When you call GetECB, it tries to obtain an ECB from the
LSL’s pool of ECBs. The end user must place ‘‘BUFFERS xx yy”
under the link support section heading in the NET.CFG file.
ECBs obtained from the LSL should be returned with the
ReturnECB function. If the LSL was configured with no ECBs
or there are no ECBs left in the pool, this function returns
LSLERR_OUT_OF_RESOURCES (8001h).

LSL Protocol Stack Support Routines

Version 1.03 (February 2, 1996) 10-19

GetHeldPacket
Description Allows a protocol stack to remove an ECB from the hold queue.

Entry State BX
is equal to PROTSUP_GET_MLID_PACKET (14 [0Eh]).

ES:SI
If ES:SI equal s 0:0

AX stack ID
CX match word

The first ECB that satisfies the following two conditions is
removed from the hold queue:

The ECB’s stack ID matches the value in AX.
The first word of the protocol workspace matches the
value in CX.

Note, if CX = 0FFFFh, the match on the protocol workspace
will be ignored.

If ES:SI is not equal to 0:0
AX stack ID
The ECB indicated in ES:SI is removed from the hold queue.

Interrupts
are disabled.

Return State AX
has a completion code.

ES:SI
has a pointer to the ECB if AX equals LSL_SUCCESSFUL
(0000h).

Interrupts
are disabled.

Flags
are set according to AX.

DS, BP, SS, SP
are preserved.

Completion Codes (AX) LSL_SUCCESSFUL (0000h)
The pointer to the ECB was found.

LSLERR_ITEM_NOT_PRESENT (8004h)
The ECB was not found or the hold queue was empty.

LSLERR_BAD_COMMAND (8008h)
The function was not available.

Remarks This function is called to retrieve an ECB that was previously
placed on the hold queue by a call to HoldPacket.

NetWare 16-Bit DOS Protocol Stacks and MLIDs Specification

10-20 Version 1.03 (February 2, 1996)

Note ECBs placed on the hold queue might be used by other
protocols in the system. In this case, this function returns
LSLERR_ITEM_NOT_PRESENT (8004h).

Note This function is not available if the LSL is not providing ECBs.

LSL Protocol Stack Support Routines

Version 1.03 (February 2, 1996) 10-21

GetIntervalMarker
Description Returns a timing marker in milliseconds. The timing marker is

used for machine-independent time measurement.

Entry State BX
is equal to PROTSUP_GET_INTERVAL_MARK (5).

Interrupts
state is unspecified.

Return State DX:AX
has the current dword interval time in milliseconds.

Interrupts
state is unchanged; interrupts are not enabled inside the routine.

All other registers are preserved.

Remarks The actual value returned has no relation to any real-world
absolute time. However, when time marker values are
compared with each other, the difference is elapsed time in
milliseconds.

On an IBM compatible computers, the marker is incremented
every 1/18th of a second (55 milliseconds). On a Japanese
Fujitsu (FMR) computer, the marker is incremented every 10
milliseconds. On a Japanese NEC or compatible computer, the
marker is incremented every 33 milliseconds.

NetWare 16-Bit DOS Protocol Stacks and MLIDs Specification

10-22 Version 1.03 (February 2, 1996)

GetLSLConfiguration
Description Obtains a pointer to the LSL configuration table.

Entry State BX
is equal to PROTSUP_GET_LSL_CONFIG (25 [19h]).

Interrupts
are unspecified.

Return State AX
is always equal to LSL_SUCCESSFUL (0000h).

ES:SI
has a pointer to the LSL configuration table.

Flags
Z flag is set according to AX.

Interrupts
state is unchanged.

DS, BP, SS, SP
are preserved.

Remarks This routine returns a pointer to the LSL configuration table.
The configuration table is normally used to obtain the LSL’s
current version number (for example, 2.10). The version
number can be used to determine if certain LSL features are
present. (See Chapter 9: LSL Data Structures for the LSL
configuration table.)

LSL Protocol Stack Support Routines

Version 1.03 (February 2, 1996) 10-23

GetLSLStatistics
Description Obtains a pointer to the LSL statistics table.

Entry State BX
is equal to PROTSUP_GET_LSL_STATS (20 [14h]).

Interrupts
are unspecified.

Return State AX
is always equal to LSL_SUCCESSFUL (0000h).

ES:SI
has a pointer to the LSL statistics table.

Flags
Z flag set according to AX.

Interrupts
are unchanged.

DS, BP, SS, SP
are preserved.

Remarks This routine returns a pointer to the LSL statistics table. (See
Chapter 9: LSL Data Structures for the LSL statistics table.)

NetWare 16-Bit DOS Protocol Stacks and MLIDs Specification

10-24 Version 1.03 (February 2, 1996)

GetMLIDControlEntry

Description Returns the MLID control entry point for the specified logical
board.

Entry State AX
has the logical board number for which to return the entry point.

BX
is equal to PROTSUP_GET_MLID_CTL_ENTRY (18 [12h]).

Interrupts
are unspecified.

Return State AX
has a completion code.

ES:SI
has a pointer to an MLID control handler routine if AX equals
LSL_SUCCESSFUL (0000h).

Flags
are set according to AX.

Interrupts
are unchanged.

DS, BP, SS, SP
are preserved.

Completion Codes (AX) LSL_SUCCESSFUL (0000h)
A pointer to an MLID control handler routine has been returned.

LSLERR_NO_MORE_ITEMS (8003h)
The board number does not exist and there are no boards at
higher AX values.

LSLERR_ITEM_NOT_PRESENT (8004h)
The board number does not exist, but there might be boards at
higher AX values.

Remarks This routine returns the specified MLID’s control handler
routine.

The MLID control handler routine can be called directly by a
protocol or an application to obtain configuration information
and to issue defined commands. (See Chapter 18: MLID
Control Routines for the defined MLID control routines.)

LSL Protocol Stack Support Routines

Version 1.03 (February 2, 1996) 10-25

GetPIDFromStackIDBoard
Description Returns a Protocol ID that corresponds to a protocol and frame

type combination. Protocol stacks use this value to fill in the
ProtocolID field of all send ECBs.

Entry State AX
has the stack ID of a protocol for which to find the Protocol ID.

BX
is equal to PROTSUP_GET_PID_PROTNUM_MLIDNUM (17
[11h]).

CX
has the logical board number.

ES:SI
has a pointer to a 6-byte buffer which will hold the Protocol ID if
AX equals LSL_SUCCESSFUL (0000h) when this routine
returns.

Interrupts
are unspecified.

Return State AX
has a completion code.

ES:SI
has a pointer to a 6-byte buffer which will hold the Protocol ID if
AX equals LSL_SUCCESSFUL (0000h) when this routine
returns.

Flag
Z flag set according to AX.

Interrupts
are unchanged; interrupts are not enabled inside this routine.

DS, BP, SS, SP
are preserved.

Completion Codes (AX) LSL_SUCCESSFUL (0000h)
A Protocol ID was found that corresponds to a protocol and
frame type combination.

LSLERR_BAD_PARAMETER (8002h)
The stack ID or the board number does not exist.

LSLERR_ITEM_NOT_PRESENT (8004h)
A Protocol ID has not been registered for the specified
combination.

Remarks The returned Protocol ID is the value assigned to the protocol
for the frame type (for example, ETHERNET_II) that is

NetWare 16-Bit DOS Protocol Stacks and MLIDs Specification

10-26 Version 1.03 (February 2, 1996)

represented by the board number in CX. The Protocol ID is
registered by MLIDs according to the ‘‘link driver . . . Protocol”
keyword entries in the NET.CFG file. If a Protocol ID is not
present, a protocol stack can add its own Protocol ID.

Note A protocol should not hard-code the Protocol ID because a user
might want to change it through the NET.CFG file. The
protocol stack should use this function to obtain it.

LSL Protocol Stack Support Routines

Version 1.03 (February 2, 1996) 10-27

GetProtocolControlEntry
Description Returns the protocol’s control entry point for the specified

bound stack ID.

Entry State AX
has the Stack ID to locate.

BX
is equal to PROTSUP_GET_PROTO_CTL_ENTRY (19 [13h]).

Interrupts
are unspecified.

Return State AX
has a completion code.

ES:SI
has a pointer to a protocol stack’s control handler routine if AX
equals LSL_SUCCESSFUL (0000h).

Flags
Z flag is set according to AX.

Interrupts
are unchanged.

DS, BP, SS, SP
are preserved.

Completion Codes (AX) LSL_SUCCESSFUL (0000h)
The control handler routine of the specified bound protocol stack
has been returned.

LSLERR_NO_MORE_ITEMS (8003h)
The Stack ID does not exist and there are no more bound Stack
IDs at a higher value.

LSLERR_ITEM_NOT_PRESENT (8004h)
The Stack ID does not exist but there might be more bound
Stack IDs at a higher value.

Remarks The protocol control handler routine can be called directly by a
protocol or an application to obtain configuration information
and to issue defined commands. (See Chapter 7: Protocol Stack
Control Routines for the defined protocol control routines.)

See Also For prescan receive prescan and default stacks, see
GetStartOfChain.

NetWare 16-Bit DOS Protocol Stacks and MLIDs Specification

10-28 Version 1.03 (February 2, 1996)

GetStackIDFromName
Description Allows a protocol stack or an application to obtain its own or

any other stack ID.

Entry State BX
is equal to PROTSUP_GET_PROTNUM_FROM_NAME (16
[10h]).

ES:SI
has a pointer to a length-preceded, zero-terminated string
containing the short name of the protocol stack.

Interrupts
are unspecified.

Return State AX
has a completion code.

BX
has the stack ID for the specified protocol stack if AX equals
LSL_SUCCESSFUL (0000h).

Flag
Z flag is set according to AX.

Interrupts
are unchanged.

DS, BP, SS, SP
are preserved.

Completion Codes (AX) LSL_SUCCESSFUL (0000h)
The protocol stack or application has obtained a stack ID, which
was returned in BX.

LSLERR_BAD_PARAMETER (8002h)
The length of the stack name is greater than 15 or equal to 0.

LSLERR_ITEM_NOT_PRESENT (8004h)
A stack ID is not presently registered.

Remarks The stack name is not case sensitive.

LSL Protocol Stack Support Routines

Version 1.03 (February 2, 1996) 10-29

GetStartOfChain
Description Obtains the start of each type of protocol stack chain. The

caller must treat the chain as read-only.

Entry State BX
is equal to PROTSUP_GET_START_CHAIN (33 [21h]).

CX
is the board number.

Interrupts
are disabled.

Return State AX
has a completion code.

ES:BX
is a pointer to a pointer to the start of the default protocol stack
chain.

ES:DI
is a pointer to a pointer to the start of the prescan transmit
protocol stack chain.

ES:SI
is a pointer to a pointer to the start of the prescan receive
protocol stack chain.

Flags
Z flag is set according to AX.

Interrupts
are unchanged.

DS, BP, SS, SP
are preserved.

Note The pointers point to a pointer equal to 0 (NULL) if there is
nothing in the chain.

Completion Codes (AX) LSL_SUCCESSFUL (0000h)
The requested operation was completed successfully.

LSLERR_BAD_PARAMETER (8002h)
The board does not exist.

Remarks This function provides a method to search for registered stacks
through its StackChainStruc structures. All values in each
StackChainStruc must be treated as read-only.

See Also ModifyStackFilter

NetWare 16-Bit DOS Protocol Stacks and MLIDs Specification

10-30 Version 1.03 (February 2, 1996)

GetTickMarker
Description Returns the number of ticks that have occurred since the LSL

was loaded.

Entry State BX
is equal to PROTSUP_GET_TICK_MARKER (26 [1Ah]).

Interrupts
are unspecified.

Return State AX
is equal to the number of ticks since the LSL was loaded.

Interrupts
are unchanged.

All registers are preserved except AX.

Remarks The tick count is only updated when interrupts are enabled.

On an IBM compatible computers, the marker is incremented
every 1/18th of a second (55 milliseconds). On a Japanese
Fujitsu (FMR) computer, the marker is incremented every 10
milliseconds. On a Japanese NEC or compatible computer, the
marker is incremented every 33 milliseconds.

LSL Protocol Stack Support Routines

Version 1.03 (February 2, 1996) 10-31

HoldEvent
Description Places an ECB on the LSL’s event hold queue.

Entry State BX
is equal to PROTSUP_HOLD_EVENT (37 [25h]).

ES:SI
is a pointer to a completed ECB.

Interrupts
are disabled.

Return State AX
has a completion code.

Flags
Z flag is set according to AX.

Interrupts
are unchanged.

DS, BP, SS, SP
are preserved.

Remarks ECBs are placed on the event hold queue. The ECB’s ESR
routines are called by the LSL during a call to ServiceEvents.

This function is called when an ECB is filled in. Protocol stacks
that have processed a prescan ECB and obtained a new ECB
will fill in the new ECB and then call this function with ES:SI
pointing to the new ECB. When the ESR of the new ECB is
called, the ESR of the prescan ECB should be called, or the
prescan ECB should be placed on the hold event queue (by
calling this function) at that time.

NetWare 16-Bit DOS Protocol Stacks and MLIDs Specification

10-32 Version 1.03 (February 2, 1996)

HoldPacket
Description Places the specified ECB on the end of the LSL’s ECB hold

queue.

Entry State BX
is equal to PROTSUP_HOLD_PACKET (13 [0Dh]).

ES:SI
is a pointer to the ECB to be placed in the queue.

Interrupts
are disabled.

Return State AX
has a completion code.

Interrupts
are disabled.

DS, SS, SP, BP, ES, SI
are preserved.

Completion Codes (AX) LSL_SUCCESSFUL (0000h)
The requested operation was completed successfully.

LSLERR_BAD_COMMAND (8008h)
The LSL is not configured to support this function.

Remarks Protocols that are not managing their own ECB buffers can use
this function to hold an ECB on the LSL’s hold queue. It might
be taken by another stack if the ECB is from the original pool
of ECBs provided by the LSL.

Note This function is not valid if no ECBs are provided by the LSL.

LSL Protocol Stack Support Routines

Version 1.03 (February 2, 1996) 10-33

ModifyStackFilter
Description Called by protocol stacks to modify or read its StkChnMask.

Entry State AX
is the board number.

BX
is equal to PROTSUP_MODIFY_STACK_FILTER (43 [2Bh]).

CX
has the stack ID (bound stacks) or chain ID (prescan and default
stacks).

DX
has the new StkChnMask filter bits (if equal to 0, it reads the
current value).

Return State DX
has the current StkChnMask value for this board and stack
combination.

Interrupts
are unchanged.

DS, BP, SS, SP
are preserved.

Completion Codes (AX) LSL_SUCCESSFUL (0000h)
The requested operation was completed successfully.

LSLERR_BAD_PARAMETER (8002h)
The board Value is incorrect.

LSLERR_ITEM_NOT_PRESENT (8004h)
The stack/chain ID was not found.

Remarks This function is used to change the StackChainStruc structure
that the protocol stack registered with the LSL. Changes
should only be made by the LSL until the protocol deregisters.
Bound stacks have an internal filter that the LSL maintains;
this function is used to change that filter. A program can call
this to determine what a particular stack is filtering on.

By default, the StkChnMask field is set to (DEST_MULTICAST
+ DEST_BROADCAST + DEST_DIRECT = 83h) when a
protocol registers.

This function is called to change or read the StkChainMask
value of the protocol identified by the stack ID passed in CX.
Protocols should not modify the filter mask directly.

NetWare 16-Bit DOS Protocol Stacks and MLIDs Specification

10-34 Version 1.03 (February 2, 1996)

RegisterDefaultStackChain
Description Called to place the protocol in the default protocol stack chain.

Entry State BX
is equal to PROTSUP_REGISTER_DEFAULT_CHAIN (27
[1Bh]).

ES:SI
has a pointer to the StackChainStruc structure.

Interrupts
are enabled; call only at process time.

Return State AX
has a completion code.

Flags
Z flag set according to AX.

Interrupts
are enabled, but might have been disabled in the routine.

DS, BP, SS, SP
are preserved.

Completion Codes (AX) LSL_SUCCESSFUL (0000h)
The command was successfully executed.

LSLERR_BAD_PARAMETER (8002h)
The board does not exist or a bad position requested.

LSLERR_DUPLICATE_ENTRY (8009h)
Requested chain position already occupied. Since there can only
be one first and one last in the chain, this error code only occurs
if STACK_REQ_FIRST (0) or STACK_REQ_LAST (4) is
requested. The other position requests are limited only by
system memory.

Remarks Default protocols are generally protocols that have a number of
Protocol IDs it is servicing. Default stacks are used for 802.2
protocol stacks—for example, where the DSAP and SSAP are
not constant values.

A default stack makes this call after it has fully initialized
itself. After this call returns, packets not consumed by a
previous stack will start to be presented. The default stack’s
receive handler can be called any time after this call is
initialized. The default stack’s receive handler is called with
DS:DI pointing at a LookAheadStruc structure.

The relative position in a default stack chain is determined by
the values in the StackChainStruc structure that is passed in.

LSL Protocol Stack Support Routines

Version 1.03 (February 2, 1996) 10-35

The StkChnMask field is set to (DEST_MULTICAST +
DEST_BROADCAST + DEST_DIRECT).
PROTSUP_MODIFY_STACK_FILTER is used to change the
StkChnMask value.

Each packet received by BoardNumber, listed in the
StackChainStruc structure, that meets one of the StkChnMask
field requirements, and has not been consumed by a prior
prescan or bound stack receive handler, is handed to the
receive handler pointed to by StkChnHandler.

The StackChainStruc structure passed in becomes linked in to
the LSL’s chain structure and must remain available to the
LSL until after the deregister call is made.

NetWare 16-Bit DOS Protocol Stacks and MLIDs Specification

10-36 Version 1.03 (February 2, 1996)

RegisterPrescanRxChain
Description Called to place the protocol in the prescan receive protocol

stack chain.

Entry State BX
is equal to PROTSUP_REGISTER_PRESCAN_RX_CHAIN (28
[1Ch]).

ES:SI
has a pointer to the StackChainStruc structure.

Interrupts
are enabled; call only at process time.

Return State AX
has a completion code.

Flags
Z flag is set according to AX.

Interrupts
are enabled but might have been disabled in the routine.

DS, BP, SS, SP
are preserved.

Completion Codes (AX) LSL_SUCCESSFUL (0000h)
The command was successfully executed.

LSLERR_BAD_PARAMETER (8002h)
The board number does not exist or a bad position requested.

LSLERR_DUPLICATE_ENTRY (8009h)
Requested chain position already occupied. Since there can only
be one first and one last in the chain, this error code only occurs
if STACK_REQ_FIRST (0) or STACK_REQ_LAST (4) is
requested. The other position requests are limited only by
system memory.

Remarks A prescan stack makes this call after it has fully initialized
itself. After this call returns, packets not consumed by a
previous stack will start to be presented. The prescan stack’s
receive handler can be called at any time after this call is
initialized. The prescan stack’s receive handler is called with
DS:DI pointing at a LookAheadStruc structure.

The relative position in a prescan receive stack chain is
determined by the values in the StackChainStruc structure
that is passed in. The StkChnMask field is set to
(DEST_MULTICAST + DEST_BROADCAST +

LSL Protocol Stack Support Routines

Version 1.03 (February 2, 1996) 10-37

DEST_DIRECT). PROTSUP_MODIFY_STACK_FILTER is
used to change the StkChnMask value.

Each packet received by BoardNumber, listed in the
StackChainStruc structure, that meets one of the StkChnMask
field requirements, and has not been consumed by a prior
prescan or bound stack receive handler, is handed to the
receive handler pointed to by StkChnHandler.

The StackChainStruc structure passed in becomes linked in to
the LSL’s chain structure and must remain available to the
LSL until after the deregister call is made.

NetWare 16-Bit DOS Protocol Stacks and MLIDs Specification

10-38 Version 1.03 (February 2, 1996)

RegisterPrescanTxChain
Description Called to place the protocol in the prescan transmit protocol

stack chain.

Entry State BX
is equal to PROTSUP_REGISTER_PRESCAN_TX_CHAIN (29
[1Dh]).

ES:SI
has a pointer to the StackChainStruc structure.

Interrupts
are enabled; call only at process time.

Return State AX
has a completion code.

Flags
Z flag is set according to AX.

Interrupts
are enabled but might have been disabled during the routine.

DS, BP, SS, SP
are preserved.

Completion Codes (AX) LSL_SUCCESSFUL (0000h)
The command was successfully executed.

LSLERR_BAD_PARAMETER (8002h)
The board does not exist or a bad position requested.

LSLERR_DUPLICATE_ENTRY (8009h)
Requested chain position already occupied. Since there can only
be one first and one last in the chain, this error code only occurs
if STACK_REQ_FIRST (0) or STACK_REQ_LAST (4) is
requested. The other position requests are handled only by
system memory.

Remarks A prescan stack makes this call after it has fully initialized
itself. After this call returns, packets not consumed by a
previous stack will start to be presented. The prescan stack’s
transmit handler can be called at any time after this call is
initialized. The prescan stack’s receive handler is called with
ES:SI pointing at a TxECB structure.

The relative position in a prescan transmit stack chain is
determined by the values in the StackChainStruc structure
that is passed in. The StkChnMask is not used for prescan
transmit protocol stacks.

LSL Protocol Stack Support Routines

Version 1.03 (February 2, 1996) 10-39

The StackChainStruc structure passed in becomes linked in to
the LSL’s chain structure and must remain available to the
LSL until after the deregister call is made.

All transmit ECBs that are not consumed by an up chain
prescan transmit stack will be presented to the prescan
transmit stack.

NetWare 16-Bit DOS Protocol Stacks and MLIDs Specification

10-40 Version 1.03 (February 2, 1996)

RegisterRPLBootROM

Description Allows the RPL boot ROM protocol stack the ability to process
packets by registering a default protocol stack with the LSL for
the specified board.

Entry State AX
has the logical board number for which the boot ROM protocol
stack should register as a default stack.

BX
is equal to PROTSUP_REGISTER_RPL_BOOTROM (8).

ES:SI
has a pointer to an 8-byte table.

Interrupts
are unspecified.

Return State AX
has a completion code.

Flags
Z flag is set according to AX.

Interrupts
are unchanged; interrupts are not enabled inside of this routine.

DS, BP, SS, SP
are preserved.

Completion Codes (AX) LSL_SUCCESSFUL (0000h)
The protocol stack registered successfully.

LSLERR_BAD_PARAMETER (8002h)
The board does not exist.

LSLERR_DUPLICATE_ENTRY (8009h)
An RPL boot ROM stack is already registered for the given board
number.

Remarks The protocol stack can receive packets immediately after this
routine returns.

The 8-byte table passed in ES:SI must contain the information
in RPLBootROMInfoStruc.

Only one RPL boot ROM can be registered per board.

LSL Protocol Stack Support Routines

Version 1.03 (February 2, 1996) 10-41

RPLBootROMInfoStruc Structure
RPLBootStackInfoStruc struc

RPLBootStackReceiveHandler dd ?
RPLBootStackControlHandler dd ?

RPLBootStackInfoStruc ends

RPLBootStackReceiveHandler
This field has a far pointer to the protocol stack’s receive handler
routine. This routine is called when the MLID receives a packet
and neither the prescan nor the bound stacks have accepted the
packet.

RPLBootStackControlHandler
This field contains a far pointer to the RPL boot ROM protocol
stack’s control handler routine. Applications might call this
routine.

Note The RPLBootStackInfoStruc structure does not need to be
present after RegisterRPLStack returns.

NetWare 16-Bit DOS Protocol Stacks and MLIDs Specification

10-42 Version 1.03 (February 2, 1996)

RegisterStack
Description Registers a bound protocol stack with the LSL and returns an

LSL-assigned handle for the stack (the stack ID).

Entry State BX
is equal to PROTSUP_REGISTER_STACK (6).

ES:SI
has a pointer to a 12-byte table.

Interrupts
are unspecified.

Return State AX
has a completion code.

BX
has the assigned stack ID if the call was successful.

Flags
Z flag is set according to AX.

Interrupts
are unchanged; interrupts are not enabled inside this routine.

DS, BP, SS, SP
are preserved.

Completion Codes (AX) LSL_SUCCESSFUL (0000h)
The stack has been successfully registered.

LSLERR_OUT_OF_RESOURCES (8001h)
The maximum number of stacks is already registered.

LSLERR_BAD_PARAMETER (8002h)
The stack name length was greater than 15 or is equal to 0.

LSLERR_DUPLICATE_ENTRY (8009h)
The specified stack is already registered.

Remarks The 12-byte table passed in ES:SI must contain the
StackInfoStruc structure.

StackInfoStruc Structure
StackInfoStruc struc

StackNamePtr dd ?
StackReceiveHandler dd ?
StackControlHandler dd ?

StackInfoStruc ends

StackNamePtr
This field contains a far pointer to the protocol stack’s short
name (for example, IPX). This string is length-preceded and

LSL Protocol Stack Support Routines

Version 1.03 (February 2, 1996) 10-43

zero-terminated. (The length byte does not include the length
byte or zero termination byte.)

StackReceiveHandler
This field has a far pointer to the protocol’s receive handler
routine. This routine is called when a packet has been received
by an MLID with the protocol stack’s Protocol ID and has passed
the stack’s packet filtering. The filter is set by the LSL to 83h
(DEST_MULTICAST + DEST_BROADCAST +
DEST_DIRECT).

StackControlHandler
This field has a far pointer to the protocol stack’s control handler
routine. Applications call this routine.

The StackInfoStruc structure and the string pointed to by
StackNamePtr do not need to be present after RegisterStack
returns. The protocol stack’s stack receive handler will not be
called until the protocol has bound to a board (see BindStack).

The stack name must uniquely identify the registering stack.

A protocol stack uses ModifyStackFilter to modify its filter from
the default value of 83h (DEST_MULTICAST +
DEST_BROADCAST + DEST_DIRECT).

NetWare 16-Bit DOS Protocol Stacks and MLIDs Specification

10-44 Version 1.03 (February 2, 1996)

RelinquishControl
Description Allows a protocol stack to yield control to the LSL, allowing the

LSL to perform any necessary background processing.

Entry State BX
is equal to PROTSUP_RELINQUISH_CONTROL (24 [18h]).

Interrupts
are enabled.

Return State Interrupts
are enabled.

DS, BP, SS, SP
are preserved.

Remarks Protocol stacks that are waiting for an event (such as SendECB
to complete) to occur should make this call. MLIDs that are not
interrupt driven and, therefore, rely on polling from the LSL to
process network events, will be polled when a protocol stack
invokes this function.

LSL Protocol Stack Support Routines

Version 1.03 (February 2, 1996) 10-45

ResubmitDefault
Description Allows default chained protocol stacks that originally queued

and later processed at process time receive ECB’s to be passed
back to the LSL for further processing by the default stack. The
LSL passes the ECB to the next protocol stack in the chain.

Entry State BX
is equal to PROTSUP_RESUBMIT_DEFAULT (34 [22h]).

DS:DI
has a pointer to the LookAheadStruc structure.

ES:SI
has a pointer to the current (your) stack chain node structure.

Return State ES:SI
has a pointer to the ECB to fill. The ECB fragment count and
fragment descriptor fields describe the buffers to be filled if AX
equals LSL_SUCCESSFUL (0000h).

Flags
Z flag set according to AX.

Interrupts
are enabled but might have been disabled during the routine.

DS, BP, SS, SP
are preserved.

Completion Codes (AX) LSL_SUCCESSFUL (0000h)
The command was successfully executed. EI:SI points to an
ECB that is to be filled.

LSLERR_OUT_OF_RESOURCES (8001h)
The LSL was unable to obtain an ECB for this packet. EI:SI is
not valid. The packet can be discarded.

Remarks A default stack makes this call to send the data to the next
protocol in the chain.

A protocol that is resubmitting an ECB must provide the same
level of look ahead service that the MLID provides if an ECB is
returned; it is the protocol’s responsibility to fill the ECB’s
buffer and place it on the LSL’s hold queue.

Protocols are in effect logically MLIDs when they call this
function. The LookAheadStruc structure must be fully filled
out, and if an ECB is returned, the calling protocol must fill in
the data buffer and all of the following fields:

NetWare 16-Bit DOS Protocol Stacks and MLIDs Specification

10-46 Version 1.03 (February 2, 1996)

� Status
� StackID
� ImmediateAddress
� DriverWorkspace
� PrevLink
� DriverWS
� DataLength

LSL Protocol Stack Support Routines

Version 1.03 (February 2, 1996) 10-47

ResubmitPrescanRx
Description Allows prescan receive chained protocol stacks that originally

queued and later processed at process time receive ECB’s to be
passed back to the LSL for further processing; the LSL passes
it to the next protocol stack in the chain.

Entry State BX
is equal to PROTSUP_RESUBMIT_PRESCAN_RX (35 [23h]).

DS:DI
has a pointer to the LookAheadStruc structure.

ES:SI
has a pointer to the current (your) stack chain node structure if
AX equals LSL_SUCCESSFUL (0000h).

Return State ES:SI
has a pointer to the ECB to fill. The ECB fragment count and
fragment descriptor fields describe the buffers to be filled.

Flag
Z flag is set according to AX.

Interrupts
are enabled but might have been disabled during the routine.

DS, BP, SS, SP
are preserved.

Completion Codes (AX) LSL_SUCCESSFUL (0000h)
The command was successfully executed, and ES:SI points to
the ECB to be filled.

LSLERR_OUT_OF_RESOURCES (8001h)
The LSL was unable to obtain an ECB for this packet, and ES:SI
is invalid.

Remarks A prescan receive protocol stack makes the call to send the data
to the next protocol in the stack.

A protocol that is resubmitting an ECB must provide the same
level of look ahead service that the MLID provides if an ECB is
returned; it is the protocol’s responsibility to fill the ECB’s
buffer and place it on the LSL’s hold queue.

Protocols are in effect logically MLIDs when they call this
function. The LookAheadStruc structure must be fully filled
out, and if an ECB is returned, the calling protocol must fill in
the data buffer and all of the following fields:

NetWare 16-Bit DOS Protocol Stacks and MLIDs Specification

10-48 Version 1.03 (February 2, 1996)

� Status
� StackID
� ImmediateAddress
� DriverWorkspace
� PrevLink
� DriverWS
� DataLength

LSL Protocol Stack Support Routines

Version 1.03 (February 2, 1996) 10-49

ResubmitPrescanTx
Description Allows prescan transmit chained protocol stacks that originally

queued and later processed at process time transmit ECB’s to
be passed back to the LSL for further processing; the LSL
passes it to the next protocol stack in the chain.

Entry State BX
is equal to PROTSUP_RESUBMIT_PRESCAN_TX (36 [24h]).

DS:DI
has a pointer to the current (your) stack chain node structure.

ES:SI
has a pointer to the transmit ECB if AX = LSL_SUCCESSFUL
(0000h).

Return State Flags
Z flag is set according to AX.

Interrupts
are enabled but might have been disabled during the routine.

DS, BP, SS, SP
are preserved.

Completion Codes (AX) LSL_SUCCESSFUL (0000h)
The command was successfully executed.

LSLERR_BAD_PARAMETER (8002h)
The board does not exist.

Remarks Prescan transmit stacks use this function to transmit ECBs it
originally queued and has processed. If a prescan transmit
stack has data to transmit, it should use the SendPacket
function. This function should only be used for ECBs
originating external to the prescan transmit stack.

If a new ECB is created, the old ECB can be placed on the LSL
event hold queue prior to making this call or when the ESR of
the new ECB is called.

NetWare 16-Bit DOS Protocol Stacks and MLIDs Specification

10-50 Version 1.03 (February 2, 1996)

ReturnECB
Description Returns an LSL provided ECB.

Entry State BX
is equal to PROTSUP_RETURN_ECB (1).

ES:SI
is a pointer to the ECB to be returned.

Interrupts
are disabled.

Return State AX
has a completion code.

Interrupts
are disabled.

DS, BP, SS, SP
are preserved.

Completion Codes (AX) LSL_SUCCESSFUL (0000h)
The ECB was returned successfully.

LSLERR_BAD_PARAMETER (8002h)
The ECB is not the LSL’s.

Remarks This function is called to return an ECB obtained from the LSL
GetECB function. ECBs provided by other modules should not
be passed to this function.

Note This function is not available if the LSL is not providing ECBs.

LSL Protocol Stack Support Routines

Version 1.03 (February 2, 1996) 10-51

ScanPacket
Description Searches for a specific ECB on the LSL’s ECB hold queue.

Entry State AX
has the stack ID of the requesting stack.

BX
is equal to PROTSUP_SCAN_PACKET (15 [0Fh]).

ES:SI
is a pointer to the ECB to begin searching from. If equal to 0, the
search starts from the beginning of the list.

CX
0FFFHh ignore ProtoWS field.
xxxx use in matching ProtoWS field.

Interrupts
are disabled.

Return State AX
has a completion code.

ES:SI
is a pointer to the ECB if AX equals LSL_SUCCESSFUL
(0000h).

Interrupts
are disabled.

DS, BP, SS, SP
are preserved.

Completion Codes (AX) LSL_SUCCESSFUL (0000h)
The searched for ECB was found.

LSLERR_NO_MORE_ITEMS (8003h)
The hold queue was empty or the ECB could not be found.

LSLERR_BAD_COMMAND (8008h)
The LSL is not configured to support this function.

Remarks This function is not available if the LSL is not providing ECBs.

NetWare 16-Bit DOS Protocol Stacks and MLIDs Specification

10-52 Version 1.03 (February 2, 1996)

ScheduleAESEvent
Description Schedules an asynchronous event scheduler (AES) event.

Entry State BX
is equal to PROTSUP_SCHEDULE_AES_EVENT (3).

ES:SI
has a pointer to an AESECB structure (the ESR must be valid).

Interrupts
are unspecified.

Return State AX
is always equal to LSL_SUCCESSFUL (0000h).

Flags
Z flag is set according to AX.

Interrupts
state is unchanged; interrupts are disabled inside this routine.

DS, BP, ES, SI, SS, SP
are preserved.

Remarks

AESECB Structure
AESECB struc

AESLink dd ?
MSecondValue dd ?
AESStatus dw ?
AESESR dd ?

AESECB ends

AESLink
This field is used by the LSL for list management.

MSecondValue
This field specifies the number of milliseconds to wait before
invoking the defined AESESR routine. This field must be
initialized each time the ECB is passed to ScheduleAESEvent.

AESStatus
This field is set to 0 when the AESESR is invoked.

AESESR
This field specifies a routine that is to be invoked when the
specified time has expired. This field must point to a valid routine
and only needs to be initialized once. The ESR must complete
quickly because it is executing in the context of a timer interrupt.

The ESR can reschedule itself after it resets the MSecondValue,
thus creating a simple polling function.

LSL Protocol Stack Support Routines

Version 1.03 (February 2, 1996) 10-53

An ECB that is already in use by the LSL AES system must
not be passed again to ScheduleAESEvent. To reset the AES
event time, use CancelAESEvent and then issue a new
ScheduleAESEvent call.

NetWare 16-Bit DOS Protocol Stacks and MLIDs Specification

10-54 Version 1.03 (February 2, 1996)

SendPacket
Description Sends a packet, as described by an ECB, to the specified MLID

for transmission.

Entry State BX
is equal to PROTSUP_SEND_PACKET (12 [0Ch]).

ES:SI
has a pointer to a send ECB.

Interrupts
are unspecified.

Return State Interrupts
are disabled.

DS, BP, SS, SP
are preserved.

Remarks The ECB’s ESR might be invoked before this function returns.

Any module might use this function to send a packet. Protocols
do not need to be registered or bound to use this function.

Note Prescan transmit stacks do not use this function to send data
they received through their transmit handler.

LSL Protocol Stack Support Routines

Version 1.03 (February 2, 1996) 10-55

ServiceEvents
Description This routine is invoked to complete the processing of network

events queued on the LSL’s holding queue. The ECBs in the
queue are processed in the same order that they arrived in the
queue (FIFO).

Entry State BX
is equal to PROTSUP_SERVICE_EVENTS (41 [29h]).

Interrupts
are unspecified.

Return State Interrupts
are disabled.

DS, BP, SS, SP
are preserved.

Remarks An MLID’s ISR calls ServiceEvents immediately before the ISR
restores the registers. The MLID should have completed all
hardware processing, and the ISR should be ready to accept a
new interrupt.

The ServiceEvents routine calls each queued ECB’s ESR, to
pass ECBs to the appropriate protocol stacks.

While inside this routine, interrupts might be enabled and the
MLID’s send handler routine could be called.

Caution If this routine is not called when queued events are
outstanding, the events may never complete.

Caution The MLID must not be in a critical section, or have any
internal lock-out semaphores set, when this routine is called
because this routine could call a protocol ESR which could
issue a transmit request to the MLID and then wait for the
transmit request to finish. If the MLID postpones the transmit
request, the machine will deadlock.

NetWare 16-Bit DOS Protocol Stacks and MLIDs Specification

10-56 Version 1.03 (February 2, 1996)

StartCriticalSection
Description Starts a critical section.

Entry State BX
is equal to PROTSUP_START_CRITICAL_SECTION (38 [26h]).

Interrupts
are disabled.

Return State BX
is destroyed.

Interrupts
are unchanged.

All other registers and direction flags are preserved.

Remarks Whenever this function is called, EndCriticalSection must also
be called after the reason for the critical section no longer
exists.

LSL Protocol Stack Support Routines

Version 1.03 (February 2, 1996) 10-57

UnbindStack
Description Unbinds a protocol stack from a logical board (an adapter and

frame type combination).

Entry State AX
has the protocol stack’s assigned StackID value.

BX
is equal to PROTSUP_UNBIND_STACK_FROM_MLID (22
[16h]).

CX
has the logical board number from which to unbind.

Interrupts
are unspecified.

Return State AX
has a completion code.

Flag
Z flag is set according to AX.

Interrupts
are unchanged; interrupts are not enabled inside this routine.

DS, BP, SS, SP
are preserved.

Completion Codes (AX) LSL_SUCCESSFUL (0000h)
The protocol stack was unbound from a logical board (adapter
and frame type combination).

LSLERR_BAD_PARAMETER (8002h)
The specified stack ID or the board number is invalid.

LSLERR_ITEM_NOT_PRESENT (8004h)
The specified binding does not exist.

Remarks After this routine successfully returns, packet reception
between the specified protocol stack and logical board is
disabled. DeregisterStack performs this operation implicitly.

�

Version 1.03 (February 2, 1996) 11-1

Chapter 11 LSL MLID Support Routines

11

11.

11

NetWare 16-Bit DOS Protocol Stacks and MLIDs Specification

11-2 Version 1.03 (February 2, 1996)

Overview
This chapter describes the LSL support routines that are used
by the MLID and that are referred to in this document. A
protocol stack may sometimes need to use these routines.

The following is an alphabetical list of the LSL MLID support
routines along with their entry point and function number.

Descriptive Name Function Name Function No
AddProtocolID MLIDSUP_ADD_PID 15 (0Fh)
CancelAESEvent MLIDSUP_CANCEL_AES_EVENT 4
ControlStackFilter MLIDSUP_CONTROL_STACK_FILTER 17 (11h)
DefragmentECB MLIDSUP_DEFRAG_ECB 2
DeregisterMLID MLIDSUP_DEREGISTER_MLID 6
EndCriticalSection MLIDSUP_END_CRITICAL_SECTION 9
GetCriticalSectionStatus MLIDSUP_CRITICAL_SECTION_STATUS 10 (0Ah)
GetECB MLIDSUP_GET_ECB 0
GetIntervalMarker MLIDSUP_GET_INTERVAL_MARKER 5
GetStackECB MLIDSUP_GET_STACK_ECB 16 (10h)
HoldReceiveEvent MLIDSUP_HOLD_RECV_EVENT 7
ReturnECB MLIDSUP_RETURN_ECB 1
ScheduleAESEvent MLIDSUP_SCHEDULE_AES_EVENT 3
SendComplete MLIDSUP_SEND_COMPLETE 14 (0Eh)
ServiceEvents MLIDSUP_SERVICE_EVENTS 11 (0Bh)
StartCriticalSection MLIDSUP_START_CRITICAL_SECTION 8
Reserved RESERVED 12 (0Ch)
Reserved RESERVED 13 (0Dh)

The following is a function number ordered list of the LSL
MLID support routines along with their entry point and
function number.

Descriptive Name Function Name Function No
GetECB MLIDSUP_GET_ECB 0
ReturnECB MLIDSUP_RETURN_ECB 1
DefragmentECB MLIDSUP_DEFRAG_ECB 2
ScheduleAESEvent MLIDSUP_SCHEDULE_AES_EVENT 3
CancelAESEvent MLIDSUP_CANCEL_AES_EVENT 4
GetIntervalMarker MLIDSUP_GET_INTERVAL_MARKER 5
DeregisterMLID MLIDSUP_DEREGISTER_MLID 6
HoldReceiveEvent MLIDSUP_HOLD_RECV_EVENT 7
StartCriticalSection MLIDSUP_START_CRITICAL_SECTION 8
EndCriticalSection MLIDSUP_END_CRITICAL_SECTION 9
GetCriticalSectionStatus MLIDSUP_CRITICAL_SECTION_STATUS 10 (0Ah)
ServiceEvents MLIDSUP_SERVICE_EVENTS 11 (0Bh)
Reserved RESERVED 12 (0Ch)
Reserved RESERVED 13 (0Dh)

LSL MLID Support Routines

Version 1.03 (February 2, 1996) 11-3

SendComplete MLIDSUP_SEND_COMPLETE 14 (0Eh)
AddProtocolID MLIDSUP_ADD_PID 15 (0Fh)
GetStackECB MLIDSUP_GET_STACK_ECB 16 (10h)
ControlStackFilter MLIDSUP_CONTROL_STACK_FILTER 17 (11h)

NetWare 16-Bit DOS Protocol Stacks and MLIDs Specification

11-4 Version 1.03 (February 2, 1996)

AddProtocolID
Description Allows an MLID to register a Protocol ID for a given frame type

and protocol stack combination

Entry State AX
has the frame type ID to which the new Protocol ID applies (for
example, the frame type ID of ETHERNET_II is 2). See ODI
Specification Supplement: Frame Types and Protocol IDs for a
list of defined frame type IDs and commonly used Protocol IDs.

BX
is equal to MLIDSUP_ADD_PID (15 [0Fh]).

CX:DI
has a pointer to a length-preceded, zero-terminated string
containing the protocol’s short name to which the new Protocol
ID applies.

ES:SI
is a pointer to a 6-byte Protocol ID to register.

Interrupts
are enabled.

Return State AX
has a completion code.

Flags
Z flag set according to AX.

Interrupts
are enabled.

DS, BP, SS, SP
are preserved.

Completion Codes (AX) LSL_SUCCESSFUL (0000h)
The specified Protocol ID was successfully registered with the
LSL.

LSLERR_OUT_OF_RESOURCES (8001h)
The LSL has no resources to register another Protocol ID for the
specified frame type.

LSLERR_BAD_PARAMETER (8002h)
The length of the specified protocol short name is either equal to
0 or is greater than 15.

LSLERR_DUPLICATE_ENTRY (8009h)
A Protocol ID for the specified protocol stack and frame type has
already been registered with the LSL.

Remarks This function is called by the MLID to add Protocol IDs
specified in the NET.CFG file. The ‘‘Protocol x y” keyword with
x equal to the Protocol ID and y equal to the frame type.

LSL MLID Support Routines

Version 1.03 (February 2, 1996) 11-5

CancelAESEvent
Description Called by the MLID to cancel a previously scheduled event or

an ECB on the event hold queue.

Entry State BX
is equal to MLIDSUP_CANCEL_AES_EVENT (4).

ES:SI
pointer to the ECB to be canceled (the ESR will not be called).

Interrupts
are disabled.

Return State AX
has a completion code.

Interrupts
are disabled.

DS, ES, BP, SI, SS, SP
are preserved.

Completion Codes (AX) LSL_SUCCESSFUL (0000h)
The specified AES event was canceled.

LSLERR_ITEM_NOT_PRESENT (8004h)
The specified ECB is not currently scheduled.

Remarks This function is called by the MLID to cancel an AES ECB.

If the AES ECB was canceled the AES ECB’s Status field will
be set to LSLERR_CANCELLED (8007h). The defined ESR
will not be called.

See Also ScheduleAESEvent

NetWare 16-Bit DOS Protocol Stacks and MLIDs Specification

11-6 Version 1.03 (February 2, 1996)

ControlStackFilter
Description Called by the MLID to pass a protocol control function call to

each of the protocol stacks registered with a particular board
number.

Entry State AX
has the protocol control function.

BX
is equal to MLIDSUP_CONTROL_STACK_FILTER (17 [11h]).

CX
has the protocol control parameters (passed on to each protocol
stack unchanged).

DX
has the StkChnMask filter bits.

ES:SI
has the parameter buffer (optionally), which is passed on to each
protocol stack unchanged.

BP
has the logical board number.

Return State AX
has a completion code.

BX
has the protocol control function.

DI
is destroyed.

Flags
set according to AX.

Interrupts
are unchanged.

All other registers are preserved.

Completion Codes (AX) LSL_SUCCESSFUL (0000h)
The requested operation was completed successfully.

LSLERR_BAD_PARAMETER (8002h)
Board number is bad.

The LSL calls all of the protocol stacks that have registered
with the calling MLID board number and have a bit matching
in StkChnMask. If the MLID wishes to send the control
function to all of the registered protocol stacks, a ’–1’ is passed
in for the StkChnMask bits. No return codes are available from

LSL MLID Support Routines

Version 1.03 (February 2, 1996) 11-7

the called stacks. Each call is made assuming that the
parameters for the control function are correct.

NetWare 16-Bit DOS Protocol Stacks and MLIDs Specification

11-8 Version 1.03 (February 2, 1996)

DefragmentECB

Description Copies a fragmented ECB into a continuous ECB.

Entry State AX
has an offset beyond the end of the destination ECB to where
the ECB data will start to be copied. If AX is –1 (0FFFFh), the
ECB itself will not be copied, but the data pointed to by the
source ECB will be copied into the destination buffer.

BX
is equal to MLIDSUP_DEFRAG_ECB (2).

ES:SI
is a pointer to the data destination.

CX:DI
is a pointer to the source ECB.

Interrupts
are unspecified.

Return State AX
is always equal to LSL_SUCCESSFUL (0000h).

Flags
are set according to AX.

Interrupts
are preserved.

DS, ES, BP, SI, SS, SP
are preserved.

Remarks This function is used to defragment an ECB into a contiguous
ECB. This function can be used to move only the data pointed
to by the ECB data buffer pointers to a contiguous buffer by
setting AX equal to –1 (0FFFFh). Setting AX to a value other
than –1 will cause the ECB to be copied as well as the data
pointed to by the ECB. The value in AX will be used to reserve
space between the ECB and the start of the first data
fragment. It is assumed that the data buffer pointed to by
ES:SI is large enough to hold the source ECB, data, and the
offset that will be introduced by AX. If AX is equal to –1, the
destination buffer needs to be only as large as the source
ECB.DataLength value.

11–8

LSL MLID Support Routines

Version 1.03 (February 2, 1996) 11-9

DeregisterMLID
Description Deregisters an MLID from the LSL.

Entry State AX
has the board number to deregister.

BX
is equal to MLIDSUP_DEREGISTER_MLID (6).

Interrupts
are enabled.

Return State AX
has a completion code.

Interrupts
are enabled.

DS, BP, SS, SP
are preserved.

Completion Codes (AX) LSL_SUCCESSFUL (0000h)
The MLID was successfully deregistered.

LSLERR_BAD_PARAMETER (8002h)
The board number is invalid.

Remarks The MLID should clear its send queue before calling this
procedure.

The LSL will notify all protocols still bound to the board
number the MLID deregistered.

NetWare 16-Bit DOS Protocol Stacks and MLIDs Specification

11-10 Version 1.03 (February 2, 1996)

EndCriticalSection
Description Ends the critical section started by an MLID.

Entry State BX
is equal to MLIDSUP_END_CRITICAL_SECTION (9).

Interrupts
are disabled.

Return State Interrupts
disabled but might have been enabled during the routine.

DS, BP, SS, SP
are preserved.

All other registers are destroyed.

Remarks This function is called by MLIDs that have previously started a
critical section by a call to StartCriticalSection.
StartCriticalSection should always be used in conjunction with
a subsequent call to EndCriticalSection.

LSL MLID Support Routines

Version 1.03 (February 2, 1996) 11-11

GetCriticalSectionStatus
Description Returns the number of critical sections that are currently

active.

Entry State BX
is equal to MLIDSUP_GET_CRITICAL_SECTION_STATUS (10
[0Ah]).

Interrupts
are unspecified.

Return State BX
has the total number of outstanding calls to StartCriticalSection.

Interrupts
are unchanged.

All other registers are preserved.

Remarks MLIDs use this routine to avoid waiting for completion of
events—for example, an AES that has been posted while inside
a critical section.

NetWare 16-Bit DOS Protocol Stacks and MLIDs Specification

11-12 Version 1.03 (February 2, 1996)

GetECB
Description Allocates one of the LSL’s ECB buffers.

Entry State BX
is equal to MLIDSUP_GET_ECB (0).

Interrupts
are disabled.

Return State AX
has a completion code.

ES:SI
is a pointer to the ECB if AX is LSL_SUCCESSFUL (0000h).

DS, BP, SS, SP
are preserved.

Completion Codes (AX) LSL_SUCCESSFUL (0000h)
The ECB was allocated successfully.

LSLERR_OUT_OF_RESOURCES (8001h)
Out of ECBs.

Remarks MLIDs call GetStackECB to obtain ECBs to pass receive
information up. This function is provided for completeness in
the specification.

When you call GetECB, it tries to obtain an ECB from the
LSL’s pool of ECBs. The end user must place ‘‘BUFFERS xx yy”
under the link support section heading in the NET.CFG file.
ECBs obtained from the LSL should be returned with the
ReturnECB function. If the LSL was configured with no ECBs
or there are no ECBs left in the pool, this function returns
LSLERR_OUT_OF_RESOURCES (8001h).

MLIDs that obtain ECBs from the LSL are not passed on to the
system. A LookAhead structure and a call to GetStackECB
must be made to pass a receive packet to the receiving protocol.

LSL MLID Support Routines

Version 1.03 (February 2, 1996) 11-13

GetIntervalMarker
Description Returns a timing marker in milliseconds. The timing marker is

used for computer independent time measurements.

Entry State BX
is equal to MLIDSUP_GET_INTERVAL_MARKER (5).

Interrupts
are unspecified.

Return State DX:AX
has the current dword interval time in milliseconds.

Interrupts
state is unchanged; interrupts are not enabled inside the routine.

All other registers are preserved.

Remarks The actual value returned has no relation to any real-world
absolute time. However, when time marker values are
compared with each other, the difference is elapsed time in
milliseconds.

On an IBM compatible computers, the marker is incremented
every 1/18th of a second (55 milliseconds). On a Japanese
Fujitsu (FMR) computer, the marker is incremented every 10
milliseconds. On a Japanese NEC or compatible computer, the
marker is incremented every 33 milliseconds.

NetWare 16-Bit DOS Protocol Stacks and MLIDs Specification

11-14 Version 1.03 (February 2, 1996)

GetStackECB
Description This routine is called to obtain a communications buffer.

Entry State BX
is equal to MLIDSUP_GET_STACK_ECB (16 [10h]).

DS:DI
has a far pointer to the LookAheadStruc structure.

Interrupts
are disabled.

Return State AX
has a completion code.

ES:SI
has a far pointer to an ECB if AX equals LSL_SUCCESSFUL
(0000h).

Flags
Z flag set according to AX.

Interrupts
are disabled.

DS, BP, DI, SS, SP
are preserved.

Completion Codes (AX) LSL_SUCCESSFUL (0000h)
The function was successful, and ES:SI points to a valid ECB.

LSLERR_OUT_OF_RESOURCES (8001h)
The LSL was unable to obtain an ECB for this packet.

Remarks A far pointer to the LookAheadStruc structure will be passed to
this call from a protocol stack. (For more information on the
LookAheadStruc structure, see Chapter 5: Protocol Stack
Packet Reception.)

LookAheadStruc Structure
LookAheadStruc struc

LMediaHeaderPtr dw 2 dup (?)
LookAheadPtr dw 2 dup (?)
LookAheadLen dw ?
LProtID db 6 dup (?)
LBoardNum dw 0
LDataSize dw ?
LImmAddress db 6 dup (?)
LPacketAttrib dw 0
LDestType dw 0
LStartCopyOffset dw 0

LSL MLID Support Routines

Version 1.03 (February 2, 1996) 11-15

LPriorityLevel db 0
LRESERVED db 3 dup (?)

LookAheadStruc ends

NetWare 16-Bit DOS Protocol Stacks and MLIDs Specification

11-16 Version 1.03 (February 2, 1996)

HoldReceiveEvent
Description Places an ECB on the LSL’s event hold queue.

Entry State BX
is equal to MLIDSUP_HOLD_RECV_EVENT (7).

ES:SI
is a pointer to a completed received ECB.

Interrupts
are disabled.

Return State Interrupts
are unchanged.

DS, BP, SS, SP
are preserved.

Remarks ECBs are placed on the event hold queue. The ECB’s ESR
routines are called by the LSL during a call to ServiceEvents.

This function is called when an ECB is filled in by the MLID.

LSL MLID Support Routines

Version 1.03 (February 2, 1996) 11-17

ReturnECB
Description Return’s an LSL provided ECB.

Entry State BX
is equal to MLIDSUP_RETURN_ECB (1).

ES:SI
is a pointer to the ECB to be returned.

Interprets
are disabled.

Return State AX
has a completion code.

Interrupts
are disabled.

DS, BP, SS, SP
are preserved.

Completion Codes (AX) LSL_SUCCESSFUL (0000h)
The ECB was returned successfully.

LSLERR_BAD_PARAMETER (8002h)
The ECB is not the LSL’s.

Remarks This function is called to return an ECB obtained from the LSL
GetECB function. ECBs provided by other modules should not
be passed to this function.

Note This function is not available if the LSL is not providing ECBs.

NetWare 16-Bit DOS Protocol Stacks and MLIDs Specification

11-18 Version 1.03 (February 2, 1996)

ScheduleAESEvent
Description Schedules an asynchronous event scheduler (AES) event.

Entry State BX
is equal to MLIDSUP_SCHEDULE_AES_EVENT (3).

ES:SI
has a pointer to an AESECB structure. ESR must be valid.

Interrupts
are unspecified.

Return State AX
is always equal to LSL_SUCCESSFUL (0000h).

Flags
Z flag set according to AX.

Interrupts
state is unchanged; interrupts are not enabled inside this routine.

DS, BP, ES, SI, SS, SP
are preserved.

Remarks

AESECB Structure
AESECB struc

AESLink dd ?
MSecondValue dd ?
AESStatus dw ?
AESESR dd ?

AESECB ends

AESLink
This field is used by the LSL for list management.

MSecondValue
This field specifies the number of milliseconds to wait before
invoking the defined AESESR routine. This field must be
initialized each time the ECB is passed to ScheduleAESEvent.

AESStatus
This field is set to 0 when the AESESR is invoked.

AESESR
This field specifies a routine that is to be invoked when the
specified time has expired. This field must point to a valid routine
and only needs to be initialized once. The ESR must complete
quickly because it is executing in the context of a timer interrupt.

The ESR can reschedule itself after it resets the MSecondValue,
thus creating a simple polling function.

LSL MLID Support Routines

Version 1.03 (February 2, 1996) 11-19

An ECB that is already in use by the LSL AES system must
not be passed again to ScheduleAESEvent. To reset the AES
event time, use CancelAESEvent and then issue a new
ScheduleAESEvent call.

NetWare 16-Bit DOS Protocol Stacks and MLIDs Specification

11-20 Version 1.03 (February 2, 1996)

ServiceEvents
Description This routine is invoked to complete the processing of network

events queued on the LSL’s holding queue. The ECBs in the
queue are processed in the same order that they arrived in the
queue (FIFO).

Entry State BX
is equal to MLIDSUP_SERVICE_EVENTS (11 [0Bh]).

Interrupts
are unspecified.

Return State Interrupts
are disabled.

DS, BP, SS, SP
are preserved.

Remarks An MLID’s ISR calls ServiceEvents immediately before the ISR
restores the registers. The MLID should have completed all
hardware processing, and the ISR should be ready to accept a
new interrupt.

The ServiceEvents routine calls each queued ECB’s ESR, to
pass ECBs to the appropriate protocol stacks.

While inside this routine, interrupts might be enabled and the
MLID’s send handler routine could be called.

Caution If this routine is not called when queued events are
outstanding, the events may never complete.

Caution The MLID must not be in a critical section, or have any
internal lock-out semaphores set, when this routine is called
because this routine could call a protocol ESR which could
issue a transmit request to the MLID and then wait for the
transmit request to finish. If the MLID postpones the transmit
request, the machine will deadlock.

LSL MLID Support Routines

Version 1.03 (February 2, 1996) 11-21

StartCriticalSection
Description Starts a critical section.

Entry State BX
is equal to MLIDSUP_START_CRITICAL_SECTION (8).

Interrupts
are disabled.

Return State BX
is destroyed.

Interrupts
are unchanged.

All other registers and direction flags are preserved.

Remarks Whenever this function is called, EndCriticalSection must also
be called after the reason for the critical section no longer
exists.

NetWare 16-Bit DOS Protocol Stacks and MLIDs Specification

11-22 Version 1.03 (February 2, 1996)

SendComplete
Description Called to place a transmit ECB on the LSL’s hold event queue.

Entry State BX
is equal to MLIDSUP_SEND_COMPLETE (14 [0Eh]).

ES:SI
is a pointer to the ECB.

Interrupts
are disabled.

Return State Interrupts
are disabled.

DS, SS, SP, BP
are preserved.

Remarks All MLIDs call this function after they they complete copying
the information out of the transmit ECB. The MLID might call
this prior to actually transmitting data on the wire.

�

Version 1.03 (February 2, 1996) 12-1

Chapter 12 LSL Initialization Routines

12

12.

12

NetWare 16-Bit DOS Protocol Stacks and MLIDs Specification

12-2 Version 1.03 (February 2, 1996)

Overview
This chapter describes the LSL initialization routines.

The following is an alphabetical list of the LSL initialization
routines along with their entry point and function number.

Descriptive Name Function Name Funct. No.
GetEntryPoints LSLINIT_GET_ENTRY_POINTS 4
GetMLIDSupportEntry LSLINIT_GET_MLID_ENTRY 3
GetProtocolSupportEntry LSLINIT_GET_PROTSUP_ENTRY 2
RegisterMLID LSLINIT_MLID_REG 1

The following is a function number ordered list the LSL
initialization routines along with their entry point and function
number.

Descriptive Name Function Name Funct. No.
RegisterMLID LSLINIT_MLID_REG 1
GetProtocolSupportEntry LSLINIT_GET_PROTSUP_ENTRY 2
GetMLIDSupportEntry LSLINIT_GET_MLID_ENTRY 3
GetEntryPoints LSLINIT_GET_ENTRY_POINTS 4

 LSL Initialization Routines

Version 1.03 (February 2, 1996) 12-3

GetEntryPoints
Description Used to obtain all the LSL provided entry points.

Entry State BX
is equal to LSLINIT_GET_ENTRY_POINTS (4).

ES:SI
has a buffer for a LSL initialization entry point block
(LSLInitEntryPointBlock).

Return State BX
is destroyed.

ES:SI
has the LSL initialization entry point block buffer filled with the
LSL support entry points.

All other registers are preserved.

Remarks The functional equates that are used with each entry point are
named according to the entry point: PROTSUP_xxx equates are
used with the LSLProtSupEntryPt entry point, GENSERV_xxx
equates are used with the LSLGenSupEntryPt, MLIDSUP_xxx
equates are used with the LSLMLIDSupEntryPt entry point.

LSLInitEntryPointBlock Structure
LSLInitEntryPointBlock struc

LSLProtSupEntryPt dd 0
LSLGenSupEntryPt dd 0
LSLMLIDSupEntryPt dd 0

LSLInitEntryPointBlock ends

LSLProtSupEntryPt
This field has the protocol support entry point.

LSLGenSupEntryPt
This field has the general services support entry point.

LSLMLIDSupEntryPt
This field has the MLID support entry point.

NetWare 16-Bit DOS Protocol Stacks and MLIDs Specification

12-4 Version 1.03 (February 2, 1996)

GetMLIDSupportEntry
Description Obtains the MLID support entry point.

Entry State BX
is equal to LSLINIT_GET_MLID_ENTRY (3).

Return State BX
is destroyed.

ES:SI
has the MLID support entry point.

All other registers are preserved.

Remarks The value returned in ES:SI is a far pointer to the MLID
support entry point. All of the functional equates whose names
start with ‘‘MLIDSUP” use this entry point.

 LSL Initialization Routines

Version 1.03 (February 2, 1996) 12-5

GetProtocolSupportEntry
Description Obtains the protocol stack support and general services entry

points.

Entry State BX
is equal to LSLINIT_GET_PROTSUP_ENTRY (2).

ES:SI
has a pointer to an 8-byte buffer.

Return State BX
is destroyed.

ES:SI
has a pointer to an 8-byte buffer that is filled in with a far pointer
to the protocol stack and to the general services entry point.

All other registers are preserved.

Remarks If all three entry points (protocol stack, general services, and
MLID) are needed, use GetEntryPoints.

The 8-byte buffer is defined as follows:

� protocol support API entry point
� general services support API entry point

NetWare 16-Bit DOS Protocol Stacks and MLIDs Specification

12-6 Version 1.03 (February 2, 1996)

RegisterMLID
Description Resisters an MLID with the LSL.

Entry State BX
is equal to LSLINIT_MLID_REG (1).

DS:DI
is a buffer supplied by the MLID for returning information
(MLIDRetInfoBlock).

ES:SI
is a pointer to the MLID information block (MLIDInfoBlockStruc).

Return State AX
has a completion code.

DS:DI
has a pointer to the returned information block
(MLIDRetInfoBlock).

DS, BP, SS, SP
are preserved.

Completion Codes (AX) LSL_SUCCESSFUL (0000h)
The MLID is successfully registered.

LSLERR_OUT_OF_RESOURCES (8001h)
Exceeded maximum number of boards supported in the LSL.

Remarks

Information Block on Entry
MLIDInfoBlockStruc struc

MIBS_SendEntry dd ?
MIBS_ControlEntry dd ?
MIBS_ConfigTable dd ?

MLIDInfoBlockStruc ends

Field descriptions:

MIBS_SendEntry
This contains a far pointer to the MLID’s transmit entry point.
When the LSL has a packet for the MLID to send, it will be sent
through this address.

MIBS_ControlEntry
This has a far pointer to the MLID’s control entry point. See
Chapter 18: MLID Control Routines for a description of the
control functions.

MIBS_ConfigTable

 LSL Initialization Routines

Version 1.03 (February 2, 1996) 12-7

This contains a far pointer to the MLID’s configuration table.

Information Block on Return
MLIDRetInfoBlockStruc struc

MRIBS_MLID_SUP dd ?
MRIBS_BoardNum dw ?
MRIBS_ECB_DataSize dw ?

MLIDRetInfoBlockStruc ends

Field descriptions:

MRIBS_MLID_SUP
This contains a far pointer to the LSL’s MLID support entry point.

MRIBS_BoardNum
This contains the LSL assigned board number for this logical
board.

MRIBS__ECBDataSize
This is the size of the ECB’s provided by the LSL if the LSL is
configured to provide them. If the LSL is not providing ECBs, this
field is set to 1514.

For additional information, see MLIDInitialization in Chapter
16: MLID Initialization.

�

Version 1.03 (February 2, 1996) 13-1

Chapter 13 LSL General Services

13

13.

13

NetWare 16-Bit DOS Protocol Stacks and MLIDs Specification

13-2 Version 1.03 (February 2, 1996)

Overview
The LSL provides a number of services to all modules in a
system. You can invoke the LSL’s general services by calling
the general service entry point that the protocol stack obtains
when it locates the LSL. This interface also allows applications
to register custom general services with the LSL.

Note General services provided by applications are documented by
the providing application.

The following is an alphabetical list of the LSL general service
routines along with their entry point and function number.

Descriptive Name Function Name Funct. No.
AddGeneralService GENSERV_ADD_GENERAL_SERVICE 5
AddMemoryToPool GENSERV_ADD_MEMORY_TO_POOL 4
AllocateMemory GENSERV_ALLOC_MEMORY 0
FreeMemory GENSERV_FREE_MEMORY 1
GetNETCFGPath GENSERV_GET_NETCFG_PATH 7
GetServiceChain GENSERV_GET_SERVICE_CHAIN 9
MemoryStatistics GENSERV_MEMORY_STATISTICS 3
ReallocateMemory GENSERV_REALLOC_MEMORY 2
RemoveGeneralService GENSERV_REMOVE_GENERAL_SERVICE 6
Reserved GENSERV_RESERVED 8

The following is a function number ordered list of the general
service routines along with their entry point and function
number.

Descriptive Name Function Name Funct. No.
AllocateMemory GENSERV_ALLOC_MEMORY 0
FreeMemory GENSERV_FREE_MEMORY 1
ReallocateMemory GENSERV_REALLOC_MEMORY 2
MemoryStatistics GENSERV_MEMORY_STATISTICS 3
AddMemoryToPool GENSERV_ADD_MEMORY_TO_POOL 4
AddGeneralService GENSERV_ADD_GENERAL_SERVICE 5
RemoveGeneralService GENSERV_REMOVE_GENERAL_SERVICE 6
GetNETCFGPath GENSERV_GET_NETCFG_PATH 7
Reserved GENSERV_RESERVED 8
GetServiceChain GENSERV_GET_SERVICE_CHAIN 9

 LSL General Services

Version 1.03 (February 2, 1996) 13-3

AddGeneralService
Description This routine allows protocol stacks, MLIDs, and applications to

add new commands to the LSL’s general services entry point.

Entry State BX
is equal to GENSERV_ADD_GENERAL_SERVICE (5).

ES:SI
has a pointer to a general service control block.

Interrupts
are enabled.

Return State AX
has a completion code.

Flags
Z flag is set according to AX.

Interrupts
are enabled.

DS, BP, SS, SP
are preserved.

Completion Codes (AX) LSL_SUCCESSFUL (0000h)
The protocol stack was able to register a new command with the
LSL.

LSLERR_DUPLICATE_ENTRY (8009h)
An LSL general service with the requested command code
already exists.

Remarks The LSL owns the memory for the general service control block
until the service is removed by the RemoveGeneralService call.
The application should not change any of the fields after
AddGeneralService is called.

The new command’s entry will be called whenever the LSL’s
general service entry point is entered with a command code
that matches the command code in the control block.

AddGeneralService is especially useful to enable a process to
locate other pieces of itself. For example, a protocol stack could
register itself to allow another piece of the protocol stack, which
might not always be loaded, to find and communicate with the
master piece of the protocol stack.

Before the protocol stack can add a new general service, the
protocol stack must locate an available command code in the

NetWare 16-Bit DOS Protocol Stacks and MLIDs Specification

13-4 Version 1.03 (February 2, 1996)

range 8000h–FFFFh. To locate the available command code,
the protocol stack calls the general service entry point with the
desired command code in BX and AX equal to 0. If the
command code is already in use, AX is returned still equal to 0,
and ES:SI has a pointer to a description record (detailed
below). The description record can be examined to determine
what general service is installed for this command code. If the
command code is not in use, AX will contain
LSLERR_BAD_COMMAND (8008h).

New general services must support AX = 0 as an incoming
parameter and must return AX = 0. In addition, ES:SI must
point to the service’s description record described below.
Optionally, DX:BX can contain an entry point for the service.

The general service description record is shown in the following
table.

Table 13.1 General Service Description Record
Offset Name Size (in

bytes)
Description

00h GenServiceName 11 This field has the ASCII general service name. This
name has no leading length byte.

0Bh GenServiceMonth 1 This field contains the decimal value that matches the
month the service’s executable code was generated (for
example, 12 = December).

0Ch GenServiceDay 1 This field contains the decimal value that matches the
day of the month that the service’s executable code was
generated.

0Dh GenServiceYear 1 This field has the decimal value matching the year the
service’s executable code was generated (for example,
91 = year 1991).

0Eh MajorVersion 1 This field has the decimal major version of the general
service.

0Fh MinorVersion 1 This field contains the decimal minor version of the
general service.

GenServiceControlBlock Structure
GenServiceControlBlock struc
GenServiceLink dd ?
GenServiceAddress dd ?
GenServiceCommand dw ?
GenServiceControlBlock ends

GenServiceLink
This field is used by the LSL to manage a list of general service
control blocks.

 LSL General Services

Version 1.03 (February 2, 1996) 13-5

GenServiceAddress
This field contains the application’s entry point that is invoked
when the defined general service is invoked. This must be set by
the application adding the new general service.

GenServiceCommand
This field has the general service command code that is used to
invoke this function. The application must set this field before the
application adds the new general service.

NetWare 16-Bit DOS Protocol Stacks and MLIDs Specification

13-6 Version 1.03 (February 2, 1996)

AddMemoryToPool
Description Allows a protocol stack or Terminate and Stay Resident (TSR)

application to give more memory to the buffer pool.

Entry State BX
is equal to GENSERV_ADD_MEMORY_TO_POOL (4).

ES
has the segment address to add to the pool.

CX
is the number of paragraphs to add to the pool.

Interrupts
are enabled.

Return State AX
always returns LSL_SUCCESSFUL (0000h).

Interrupts
are enabled.

DS, BP, SS, SP
are preserved.

Remarks Once memory is given to the pool, it cannot be removed.

 LSL General Services

Version 1.03 (February 2, 1996) 13-7

AllocateMemory
Description Allocates a block of memory to the protocol stack.

Entry State BX
is equal to GENSERV_ALLOC_MEMORY (0).

CX
is the number of bytes to allocate.

Interrupts
are enabled.

Return State AX
has a completion code.

ES:SI
is a pointer to the allocated memory if AX equals
LSL_SUCCESSFUL (0000h).

Interrupts
are enabled.

DS, BP, SS, SP
are preserved.

Completion Codes (AX) LSL_SUCCESSFUL (0000h)
Memory was available and ES:SI will point to the allocated
memory.

LSLERR_OUT_OF_RESOURCES (8001h)
The memory pool does not have enough memory to satisfy a
request.

LSLERR_BAD_PARAMETER (8002h)
A request needs more memory than allowed. The maximum
number is 65516 bytes.

NetWare 16-Bit DOS Protocol Stacks and MLIDs Specification

13-8 Version 1.03 (February 2, 1996)

FreeMemory
Description Returns a piece of memory that was previously allocated with

the AllocateMemory function.

Entry State BX
is equal to GENSERV_FREE_MEMORY (1).

ES:SI
is a pointer to the block of memory to free.

Interrupts
are enabled.

Return State AX
has a completion code.

Interrupts
are enabled.

DS, BP, SS, SP
are preserved.

Completion Codes (AX) LSL_SUCCESSFUL (0000h)
The memory was successfully returned to the pool.

LSLERR_BAD_PARAMETER (8002h)
The pointer returned did not come from the memory pool.

 LSL General Services

Version 1.03 (February 2, 1996) 13-9

GetNETCFGPath
Description Returns a fully formed path specification to the NET.CFG file

as found by the LSL when the LSL initialized.

Entry State BX
is equal to GENSERV_GET_NETCFG_PATH (7 [7h]).

Interrupts
state is unspecified.

Return State AX
is always equal to LSL_SUCCESSFUL (0000h).

DS:DX
has a pointer to an ASCII path and configuration filename.

Flags
Z flag is set according to AX.

Interrupts
are unchanged.

ES, CX, DI, SI, BP, SS, SP
are preserved.

Remarks If the LSL could not find a NET.CFG file when it loaded, the
returned string will be ‘‘NET.CFG”, which is adequate for
attempting an open in the calling module’s current working
directory. LSL.COM searches for the NET.CFG in the following
order:

1. The current working directory at the time the LSL was
loaded.

2. The directory from which LSL.COM was loaded (possibly a
search path).

Because all ODI modules use this function, the users are able
to define one NET.CFG file that all modules will use as they
are loaded.

NetWare 16-Bit DOS Protocol Stacks and MLIDs Specification

13-10 Version 1.03 (February 2, 1996)

GetServiceChain
Description Returns the start of the general services chain. The chain is of

all general services that have been added to the LSL since it
was loaded.

Entry State BX
is equal to GENSERV_GET_SERVICE_CHAIN (9).

Return State AX
is equal to LSL_SUCCESSFUL (0000h).

ES:BX
Head of general services chain.

Interrupts
are unchanged.

All other registers are preserved.

Remarks This function returns the start of a chain to scan for a free
service number or to determine what a function is.

The chain and all values should be regarded as read-only.

 LSL General Services

Version 1.03 (February 2, 1996) 13-11

MemoryStatistics
Description Returns information about the LSL’s memory system.

Entry State BX
is equal to GENSERV_MEMORY_STATISTICS (3).

ES:SI
is a pointer to a 6-word block that information will be returned in
(MemStatStruc).

Interrupts
are unspecified.

Return State AX
is equal to LSL_SUCCESSFUL (0000h).

ES:SI
is a pointer to a MemStatStruc block.

Interrupts
are unchanged.

All other registers are preserved.

Remarks

MemStatStruc Structure

MemStatStruc struc
MemAvail dw 0
MemInUse dw 0
LargestAvailBlk dw 0
NumAvailBlocks dw 0
MemOverhead dw 0
MinAllocation dw 0

MemStatStruc ends

MemAvail
the number of paragraphs of memory available.

MemInUse
the number of paragraphs of memory in use.

LargestAvailBlk
the number of paragraphs in the largest block of memory.

NumAvailBlocks
the number of available blocks of memory.

MemOverhead
the number of bytes overhead per allocation.

MinAllocation
the number of bytes minimum allocation.

NetWare 16-Bit DOS Protocol Stacks and MLIDs Specification

13-12 Version 1.03 (February 2, 1996)

ReallocateMemory
Description Allows reduction of the size of the allocated memory block,

returning some of the memory to the pool.

Entry State BX
is equal to GENSERV_REALLOC_MEMORY (2).

ES:SI
has a pointer to the memory block to be resized.

CX
is the requested new memory block size; it must be less than the
original memory block size. If CX is equal to 0FFFFh, the
memory size of the block is returned.

Interrupts
are enabled.

Return State AX
has a completion code.

CX
is the size of the memory block.

ES:SI
has a pointer to the resized memory block.

Interrupts
are enabled.

DS, SS, SP, BP
are preserved.

Completion Codes (AX) LSL_SUCCESSFUL (0000h)
The sizing was completed and/or the the size was returned.

LSLERR_BAD_PARAMETER (8002h)
More memory than was in the original block of memory is
requested.

 LSL General Services

Version 1.03 (February 2, 1996) 13-13

RemoveGeneralService
Description Removes a general service that was previously added using

AddGeneralService.

Entry State BX
is equal to GENSERV_REMOVE_GENERAL_SERVICE (6).

ES:SI
has a pointer to a general service control block described in the
AddGeneralService definition; this must be the same general
service control block passed to the AddGeneralService and not a
copy of it.

Interrupts
are enabled.

Return State AX
has a completion code.

ES:SI
has a pointer to the general services control block that was
returned.

Flags
Z flag is set according to AX.

Interrupts
are enabled.

DS, BP, SS, SP
are preserved.

Completion Codes (AX) LSL_SUCCESSFUL (0000h)
The general service was removed.

LSLERR_ITEM_NOT_PRESENT (8004h)
The general service could not be found.

Remarks This function is invoked to remove a general service that the
caller previously installed. Prior to exiting the system, all
added general services should be removed by the providing
module.

�

Version 1.03 (February 2, 1996) IV-1

Section IV Multiple Link Interface Drivers (MLIDs)

Ether.COM

MLID

Ether.COM

MLID

Link Support Layer (LSL)

FDDI.COM

MLID

LAN Adapters

IPX/SPX

Protocol
Stack

AppleTalk

Protocol
Stack

Token.COM

MLID

TCP/IP

Protocol
Stack

NetWare Services

NetWare 16-Bit DOS Protocol Stacks and MLIDs Specification

IV-2 Version 1.03 (February 2, 1996)

Section Overview
This section introduces Multiple Interface Link Drivers
(MLIDs) and describes MLID initialization, transmission, and
reception routines. This section also provides chapters
describing MLID control routines.

Chapter 14: Overview of the MLID describes the procedures
and functions that the MLID should provide. You should read
this chapter if you have never written an ODI MLID before.

Chapter 15: MLID Data Structures describes the data
structures and variables that the MLID must define. This
chapter contains useful reference material for the developer.

Chapter 16: MLID Initialization describes the steps required
to initialize an MLID. You should review this chapter before
writing the MLID initialization routine.

Chapter 17: MLID Packet Reception and Transmission
describes the packet reception and transmission methods
available to the developer. You should review this chapter
before writing the MLID packet reception and/or transmission
routine.

Chapter 18: MLID Control Routines describes the control
procedures that an MLID is required to provide.

�

Version 1.03 (February 2, 1996) 14-1

Chapter 14 Overview of the MLID

14

14.

14

NetWare 16-Bit DOS Protocol Stacks and MLIDs Specification

14-2 Version 1.03 (February 2, 1996)

Overview
This chapter describes the procedures and functionality that
the MLID provides. However, depending on the hardware and
supported topology of your LAN adapter, your MLID might not
need to meet all of the requirements discussed in this chapter.

You should read this chapter if you have never written an ODI
MLID before.

Note As an alternative to writing a complete MLID, you may want to
write a Hardware Specific Module (HSM) by getting the LAN
Driver Developer’s Kit toolkit. This toolkit provides most of the
code for the MLID and only requires you to write the HSM,
which is easier to do than writing a complete MLID.

Overview of the MLID

Version 1.03 (February 2, 1996) 14-3

ODI MLID
MLIDs handle the sending and receiving of packets on the
network. MLIDs drive a LAN adapter (also referred to as
Network Interface Card or NIC) and handle frame header
appending and stripping. They also determine the packet’s
frame type.

The requirements of your LAN adapter dictate how you write
your MLID.

MLID Procedures
The ODI specification defines the following procedures:

� MLID initialization routine (required)
� Board service routine (one or both are

required)
– Interrupt Service Routine (ISR)
– Driver polling routine

� Packet transmission routine (required)

The MLID also supports the following control procedures:

� Control procedures for ODI IOCTLs
–AddMulticastAddress (required if hardware

supports multicast
addressing)

– DeleteMulticastAddress (required if hardware
supports multicast
addressing)

– GetMLIDConfiguration (required)
– GetMLIDStatistics (required)
– PromiscuousChange (recommended)
– SetLookAheadSize (required)
– RegisterTxMonitor (required)
– DriverManagement (optional)
– DriverPoll (optional)
– MLIDReset (required)
– MLIDShutdown (required)

� Timeout detection
– Interrupt call back routine (optional)
– AES call back routine (optional)

� MLID removal routine (required)

The specific hardware requirements of a LAN adapter can
require that you write additional procedures; however, the
procedures listed above represent the generic code elements
found in every MLID.

NetWare 16-Bit DOS Protocol Stacks and MLIDs Specification

14-4 Version 1.03 (February 2, 1996)

A brief description of each procedure is presented throughout
the rest of this chapter. These descriptions are high-level
generalizations only and are not true in every case, nor do they
describe every possible case or the optimal algorithm for
implementation.

MLID Initialization
In general terms, the MLID’s initialization routine must
perform the following actions:

� Allocate memory for the MLID’s variables and structures.

� Parse the standard command line options.

� Parse NET.CFG entries for the MLID.

� Process custom command line parameters and custom
firmware.

� Register the MLID with the LSL.

� Provide a hook for the MLID’s board service routine by
allocating an interrupt or by establishing a polling
procedure.

� Schedule callback events for timeout detection and recovery.

� Initialize the LAN adapter.

Board Service Routine
The board service routine generally needs to detect and handle
the following events on the LAN adapter:

� Received packet
� Packet reception error
� Completed transmission
� Packet transmission error

The MLID can be notified of these events by an interrupt
service routine (ISR), a polling procedure, or a polling
procedure with interrupt backup.

Packet Transmission
The MLID’s packet transmission routine is called whenever a
packet needs to be transmitted onto the wire. The MLID must
build the necessary frame and media headers and then send
the packet. The MLID can implement priority packet
transmission if applicable.

Control Routines
Among the control procedures that the MLID must provide are
control procedures to support multicast addressing (if the

Overview of the MLID

Version 1.03 (February 2, 1996) 14-5

hardware supports it) and procedures to reset and shut down
the hardware. The MLID can also supply a control procedure to
support promiscuous mode.

MLIDs might also implement the driver management support
routine.

Timeout Detection
The MLID can schedule an AES event that it uses at specified
intervals. For example, the MLID might need to be called
regularly to inspect the LAN adapter and determine if the
adapter has failed to complete a transmission. If a timeout
error had occurred, the procedure discards the packet being
sent, resets the board, and begins transmitting the next packet
in the send queue.

Driver Remove
Every MLID must have a remove procedure that allows the
user to unload the MLID from the operating system. This
procedure must shut down the LAN adapter and return any
resources that the MLID allocated from the operating system.

Events
The MLID should be implemented so it is NESL (NetWare
Event Service Layer Event) compliant. See NESL Specification:
16-Bit DOS Client Programmer’s Interface for more
information.

MLID Data Structures and Variables
In addition to the procedures discussed above, the MLID must
also contain certain data structures and variables. The
following are the primary structures:

� MLID configuration table
� MLID statistics table

MLID Configuration Table
The MLID configuration table is a data structure that defines
the configuration of the LAN adapter and MLID. The fields in
this table are primarily used during initialization and are
referred to by the LSL and MLID. The requirements for MLID
configuration tables are described in detail in Chapter 15:
MLID Data Structures

MLID Statistics Table
The MLID statistics table is a data structure that contains data
on the operation of the LAN adapter and the MLID. Chapter

NetWare 16-Bit DOS Protocol Stacks and MLIDs Specification

14-6 Version 1.03 (February 2, 1996)

15: MLID Data Structures contains a detailed description of
this data structure.

MLID Functionality
The MLID should include the following support if possible:

� multiple frame
� source routing
� promiscuous mode
� multicast addressing (required if the adapter can support

multicast addressing)

Note In some instances this specification makes recommendations
on how to implement certain functionality, but these are only
recommendations, and it is up to you to implement the
functionality correctly.

Multiple Frame Support

If the LAN adapter runs on a topology that supports multiple
frame types, the MLID should support all the frame types for
that particular topology. You can implement multiple frame
support by using logical boards.

Multiple Frame Support and Logical Boards

Your MLID creates a ‘‘logical board” for each frame type
configured. Each logical board looks like a separate physical
board to the other modules in the system. The MLID should
provide this feature.

Adapter Data Space

The adapter data space contains the hardware specific
information that the MLID needs to drive the LAN adapter
(interrupt number, beginning memory address, etc.). The
statistics table required by the ODI specification is contained
in the adapter data space. The MLID allocates one adapter
data space for each LAN adapter, regardless of the number of
logical boards (frame types) it supports.

Frame Data Space

Every logical board has a frame data space associated with it.
The frame data space contains the frame-specific information
the MLID needs to support that frame type. The MLID
allocates a frame data space for each logical board. The MLID
then copies the configuration table template for that logical
board into its frame data space.

Overview of the MLID

Version 1.03 (February 2, 1996) 14-7

Note The MLID must create a frame data space for every frame type
that is loaded.

Frame Data
Space 3

Ethernet_802.2
3

Ethernet SNAP
2

Ethernet_II

1

Data and
Code Spaces

Logical
Boards

Physical
Boards

NE/2

Frame Data
Space 2

Adapter Code
 Space

Frame Data
Space 1

Adapter Data
 Space

Adapter Code
Space

Frame Data
Space 1

Adapter Data
 Space

Frame Data
Space 2

Adapter Code
 Space

Frame Data
Space 1

Adapter Data
 Space

NE/2

NE/2

Ethernet_802.2

1

Ethernet_802.2

Ethernet SNAP

2

1

Source Routing Support

The ODI Specification Supplement: Source Routing describes
how to add and configure source routing in the MLID. If your
LAN adapter is cable of supporting source routing—for
example, Token-Ring and FDDI topologies, it should do so.

Promiscuous Mode Support

When MLIDs operate in promiscuous mode, they pass all of the
packets they receive to the upper layers. This includes bad
packets, if possible. Because various monitoring functions

Figure 14.1
Implementation of
Multiple Frame Support
in Ethernet Topology

NetWare 16-Bit DOS Protocol Stacks and MLIDs Specification

14-8 Version 1.03 (February 2, 1996)

operate in promiscuous mode, your MLID should support
promiscuous mode if your adapter is capable of such support.

Multicast Addressing Support
If your LAN adapter is capable of supporting multicast
addressing, your MLID must support it. The
AddMulticastAddress and DeleteMulticastAddress IOCTLs
implement multicast support. These control procedures are
discussed in more detail in Chapter 18: MLID Control
Routines.

MLID Design Considerations
The following section discusses hardware and coding issues you
must consider when developing the MLID.

Hardware Issues
Every type of LAN adapter, such as the NE1000 and NE2000,
has different hardware and data transfer characteristics. A
thorough understanding of your LAN adapter and LAN
topology will allow you to create a more efficient driver. Keep in
mind that the board and chip manufacturer’s support
engineers can provide you with up-to-date information
regarding their hardware.

Data Transfer Mode

The LAN adapter’s mode of data transfer is a primary
consideration in MLID development. To achieve the highest
performance, you must select support procedures matched to
the data transfer mode. The data transfer modes are:

� Programmed I/O
� Shared RAM (Memory Mapped I/O)
� Direct Memory Access (DMA)
� Bus Master

Bus Type

You must also consider the LAN adapter’s bus type and size.
The following are common bus types:

� Industry Standard Architecture (ISA)
� Micro Channel Architecture
� Extended Industry Standard Architecture (EISA)
� Personal Computer Memory Card International Association

(PCMCIA)
� Peripheral Component Interconnect (PCI)

�

Version 1.03 (February 2, 1996) 15-1

Chapter 15 MLID Data Structures

15

15.

15

NetWare 16-Bit DOS Protocol Stacks and MLIDs Specification

15-2 Version 1.03 (February 2, 1996)

Overview
This chapter describes the data structures and variables that
the MLID must define. All the data structures defined in this
chapter must be present in the CGroup segment of the MLID.

MLID Data Structures

Version 1.03 (February 2, 1996) 15-3

Frame Data Space
The ODI specification requires that every MLID have a
configuration table as part of the frame data space. The MLID
keeps a copy of the configuration table template in the CGroup
segment. The MLID uses the configuration table in the CGroup
segment as the working configuration table for the default
logical board and as a template for the configuration tables it
must copy for each loaded logical board. When the MLID
allocates the frame data space for each logical board (frame
type) that loads, it copies the configuration table template for
that logical board into that logical board’s frame data space.
Because external processes can also access this table, the ODI
specification defines this table’s format strictly.

Frame Data Space
Configuration Table 802.2

SNAP

EII

Data and
Code Spaces

Logical
Boards

Physical
Board

Adapter Code Space

Frame Data Space
Configuration Table

Frame Data Space
Configuration Table

Adapter Data Space
Hardware Specific Vars

Statistics Table

MLID Configuration Table
The MLID configuration table contains information about the
MLID and its configuration. The MLID must define one
configuration table for each logical board number assigned by
the LSL. Variables in this structure include the interrupt
number, port I/O address, node address, and other MLID
specific parameters.

The MLID must define the configuration table to contain the
LAN adapter’s default configuration and any other information
about that configuration. The table must be defined by the
fields described in this chapter with each entry filled in
accordingly. Certain variables in the configuration table are
specific to your MLID. Other variables are specific to the LAN
adapter the MLID is running.

Note All data strings in the configuration table are length preceded
and NULL terminated. These strings consist of a one-byte

Figure 15.1
Frame and Adapter
Data Space

NetWare 16-Bit DOS Protocol Stacks and MLIDs Specification

15-4 Version 1.03 (February 2, 1996)

length (not counting the length byte or NULL), the data string
itself, and a terminating 0 (NULL) byte.

Important A protocol stack treats the MLID configuration table as
read-only!

MLID Configuration Table Sample Code

MLIDConfigurationStructure struc

MSignature db ‘HardwareDriverMLID’,8 dup (‘ ’)
MConfigTableMajorVer db 01
MConfigTableMinorVer db 13
MNodeAddress db 6 dup (?)
MModeFlags dw 81h
MBoardNumber dw ?
MBoardInstance dw ?
MMaxPacketSize dw 0
MBestDataSize dw 0
MWorstDataSize dw 0
MCardLongName dd 0
MCardShortName dd 0
MFrameString dd 0
MReserved0 dw 0
MFrameID dw 0
MTransportTime dw 1
MRouteHandler dd 0
MLookAheadSize dw 18
MLineSpeed dw 0
MReserved1 db 6 dup (0)
MPrioritySup db 0
MBusID db –1
MMLIDMajorVer db 0
MMLIDMinorVer db 0
MFlags dw 0
MSendRetries dw 0
MLink dd 0
MSharingFlags dw 1
MSlot dw 0
MIOAddress1 dw 0
MIORange1 dw 0
MIOAddress2 dw 0
MIORange2 dw 0
MMemoryAddress1 dd 0
MMemorySize1 dw 0
MMemoryAddress2 dd 0
MMemorySize2 dw 0
MIRQLine1 db 0FFh
MIRQLine2 db 0FFh
MDMALine1 db 0FFh
MDMALine2 db 0FFh

MLIDConfigurationStructure ends

MLID Data Structures

Version 1.03 (February 2, 1996) 15-5

MSignature
MConfigTableMajorVer
MConfigTableMinorVer

MNodeAddress
MModeFlags

MBoardNumber
MBoardInstance

MMaxPacketSize
MBestDataSize

MWorstDataSize
MCardLongName
MCardShortName

MFrameString
MReserved0

MFrameID
MTransportTime
MRouteHandler

MLineSpeed
MReserved1

MBusID

MMLIDMinorVer
MFlags

MSendRetries
MLink

MSharingFlags
MSlot

MIOAddress1
MIORange1

MIOAddress2

MMemoryAddress1
MMemorySize1

MMemoryAddress2
MMemorySize2

MIRQLine1
MIRQLine2

MDMALine1
MDMALine2

MIORange2

MLookAheadSize

MPrioritySup

. . .

MMLIDMajorVer

Figure 15.2
Graphic Representation of the
MLID Configuration Table

NetWare 16-Bit DOS Protocol Stacks and MLIDs Specification

15-6 Version 1.03 (February 2, 1996)

Table 15.1 MLID Configuration Table Field Descriptions

Offset Name Size
(in bytes)

Description

0h MSignature 26 This field contains the string ‘‘HardwareDriverMLID”
with eight spaces appended.

1Ah MConfigTableMajorVer 1 This field defines the current major version of the
configuration table structure. As changes are made to
this structure, the revision level will be altered. For this
specification, set this field to 01.

1Bh MConfigTableMinorVer 1 This field defines the current minor version of the
configuration table structure. For this specification, set
this field to 13.

1Ch MNodeAddress 6 This field holds the card’s node address. The MLID
sets this field during the initialization routine. (See ODI
Specification Supplement: Canonical and
Noncanonical Addressing for more information.)

22h MModeFlags 2 This field contains flags, which are defined in Table
15.2.

24h MBoardNumber 2 During initialization, the MLID sets this field to the
board number returned by RegisterMLID.

26h MBoardInstance 2 The MLID sets this field to the logical board instance
for the MLID. There is a BoardInstance number (zero
based) for each logical board. With Each physical
board, the BoardInstance number for the logical boards
restarts at 0.

For example, you have two physical boards with two
frame types loaded on each of them. The
BoardInstance number for the first logical board on
each of the physical adapters is 0; the BoardInstance
for each of the second logical boards on each physical
adapter is 1.

28h MMaxPacketSize 2 This field defines the largest possible packet size that
the MLID and LAN adapter combination can transmit
and/or receive. This value includes all headers.
Typically, Ethernet MLIDs set this field to 1514 decimal.

For example, because Token-Ring drivers can send
and receive a number of different packet sizes, a
Token-Ring MLID must determine the appropriate
packet size during initialization and place that value in
this field.

Token-Ring MLIDs should support 4KB (4096 [data] +
30 [source routing] + 22 [MAC] + 74 [protocol header]
= 4222) packet sizes whenever possible and practical.
The value in this field cannot be less than 638 decimal
(512 + 30 [source routing] + 22 [MAC] + 74 [protocol
header] = 638).

MLID Data Structures

Version 1.03 (February 2, 1996) 15-7

Table 15.1 MLID Configuration Table Field Descriptions (continued)

Offset DescriptionSize
(in bytes)

Name

2Ah MBestDataSize 2 The MLID sets this field during initialization. The MLID
subtracts the length of the smallest media header(s)
from the value in the MMaxPacketSize field.

For example, an Ethernet MLID sets this field to 1500
decimal (1514 – 14 [MAC] = 1500) if the MLID runs the
Ethernet_II packet type. A Token-Ring MLID sets this
field to MMaxPacketSize – 14 [MAC] – 3 [802.2 UI] if
the MLID’s packet type is Token-Ring.

2Ch MWorstDataSize 2 The MLID sets this field during initialization. The MLID
subtracts the length of the largest media headers(s)
from the MMaxPacketSize field.

For example, a Token-Ring MLID sets this field to
MMaxPacketSize – 14 [MAC] – 3 [802.2 UI] – 30
[source routing] – 5 [SNAP] if the MLID’s packet type is
Token-Ring SNAP. An Ethernet_II MLID sets this field
to 1500 (MMaxPacketSize–14[MAC]=1500). Note,
protocol stacks use the value in this field to determine
the largest packet size this driver can send or receive.

2Eh MCardLongName 4 This field holds a far pointer to a length-preceded,
zero-terminated string that contains a full description of
the LAN adapter.

32h MCardShortName 4 This field holds a far pointer to a length-preceded,
zero-terminated string that holds a single descriptive
name. The maximum length of this string is 8
characters, not including the length byte or zero
terminator. The legal characters are 0–9, upper- and
lower-case A–Z, and the underscore.

We recommend that this string contain the MLID’s
filename.

36h MFrameString 4 This field holds a far pointer to a length-preceded,
zero-terminated string describing the frame and media
type being used by this logical board. (See the ODI
Specification Supplement: Frame Types and Protocol
IDs.)

3Ah MReserved0 2 Set this field to 0.

3Ch MFrameID 2 This field describes the frame and media type the
logical board is using. (See the ODI Specification
Supplement: Frame Types and Protocol IDs.)

3Eh MTransportTime 2 The MLID sets this field to define the number of
milliseconds it takes the MLID and LAN adapter to
transmit a 512-byte data packet.

The MLID cannot set this field to 0. Most MLIDs set
this field to a value of 1.

If the MLID drives a board on a slow asynchronous
line, it sets this field according to a representative
value.

NetWare 16-Bit DOS Protocol Stacks and MLIDs Specification

15-8 Version 1.03 (February 2, 1996)

Table 15.1 MLID Configuration Table Field Descriptions (continued)

Offset DescriptionSize
(in bytes)

Name

40h MRouteHandler 4 MLIDs that support source routing use this field in
conjunction with ROUTE.COM. MLIDs initialize this
field to 0 and then do not modify it. (See the ODI
Specification Supplement: Source Routing for a
discussion of source routing.)

44h MLookAheadSize 2 This field holds the configured look ahead size as set
by protocol stacks. The MLID initializes this field to a
default value of 18 bytes.

When it receives a packet, the MLID uses this value
and the maximum possible media header to determine
the amount of look ahead data it must pass to the
GetStackECB routine. The value in this field can be
changed at any time. Therefore, the MLID must refer to
this field for every packet it receives.

The maximum value this field can be set to is 128
bytes.

46h MLineSpeed 2 This field holds the data rate used by the LAN
adapter’s medium. The MLID sets this field to an
appropriate value.

This value is normally specified in megabits per
second (Mbps). If the line speed is less than 1 Mbps or
if it is a fractional number, the value of this field can be
defined in kilobits per second (Kbps) by setting the
most significant bit (bit 15) to 1. This field is undefined
if it is set to 0.

For example:
If the speed of the line driver is 10 Mbps, put 10
(decimal) in this field.

If the speed is 2.5 Mbps, then the value of this field is
2500 (decimal) logically ORed with 8000h (most
significant bit is 1 for Kbps).

If the line speed can be selected, as with Token-Ring,
the MLID determines the selected line speed and
places that value in this field. Some common values
are listed below:

Ethernet 10Mbps 000Ah
Token-Ring 4Mbps 0004h

Token-Ring 16Mbps 0010h
FDDI 100 Mbps 0064h
ISDN 64 Kbps 8040h

48h MReserved1 6 This field is reserved. Set this field to 0.

4Eh MPrioritySup 1 This field contains the number of priority levels that the
MLID can handle. This field has a maximum of 7
priorities (1–7). Zero indicates no priority packet
support. Therefore, the MLID can set this field to a
value of 0 through 7.

MLID Data Structures

Version 1.03 (February 2, 1996) 15-9

Table 15.1 MLID Configuration Table Field Descriptions (continued)

Offset DescriptionSize
(in bytes)

Name

4Fh MBusID 1 If the MLID supports multiple bus types, it checks this
field during initialization to determine which bus it
should be initialized for.

This field is defined as follows:
BUS_ID_ISA equ 0
BUS_ID_MCA equ 1
BUS_ID_EISA equ 2
BUS_ID_PCMCIA equ 3
BUS_ID_PCI equ 4
BUS_ID_VESA equ 5
BUS_ID_HSM_DEFAULT equ –1

If MBusID is set to –1, the MLID searches each of the
machine’s busses for a supported LAN adapter and
initializes the first LAN adapter it finds. The MLID
determines the order to search the busses in.

If MBusID is initially set to default, the MLID sets it to
the appropriate bus ID.

50h MMLIDMajorVer 1 This field defines the current major revision level of the
MLID. This field must match the revision level
displayed in the DriverSignOnMessage string. For
example, if the MLID’s current version is 2.01, this field
is set to 2.

51h MMLIDMinorVer 1 This field defines the current minor revision level of the
MLID. This field must match the revision level
displayed by the DriverSignOnMessage string. For
example, if the MLID’s current version is 2.01, this field
is set to 01.

52h MFlags 2 This field contains flags, which are defined in Table
15.3.

54h MSendRetries 2 The MLID initializes this field to an appropriate value
that represents the number of times the MLID will retry
an errored transmission operation before giving up.

Note: 10 is a nominal default.

56h MLink 4 The MLID sets this field to 0 and does not modify it.

5Ah MSharingFlags 2 This field contains flags, which are defined in Table
15.4.

5Ch MSlot 2 The MLID initializes this field to 0.

MLIDs that control slot-based LAN adapters (for
example, the Micro Channel Architecture bus boards)
use this field. If the MLID is for an ISA board, it can
ignore this field. If the MLID is for a Micro Channel
Architecture, PCI, or EISA type board, it sets the slot
number of the LAN adapter it is driving.

Slot numbers are 1-based. An initial value of 0 implies
that the MLID scans for the board.

The user can override this value with the NET.CFG file.

NetWare 16-Bit DOS Protocol Stacks and MLIDs Specification

15-10 Version 1.03 (February 2, 1996)

Table 15.1 MLID Configuration Table Field Descriptions (continued)

Offset DescriptionSize
(in bytes)

Name

5Eh MIOAddress1 2 The MLID initializes this field to the default I/O port
base address.

If the MLID is self-configurable, it determines the
appropriate value for the LAN adapter and places that
value in this field before it returns from initialization. If
the MLID does not use I/O ports, it sets this field to 0.

The user can override the default value using the
NET.CFG file.

60h MIORange1 2 This field defines the number of I/O ports decoded by
the LAN adapter at MIOAddress1. Set this field to 0 if
the LAN adapter does not use I/O ports.

62h MIOAddress2 2 This field allows the MLID to define two I/O port base
addresses. The definition is the same as
MIOAddress1. Set this to 0 if the LAN adapter does not
have a second range of I/O ports.

The user can override the default value using the
NET.CFG file.

64h MIORange2 2 This field defines the number of I/O ports decoded by
the LAN adapter at MIOAddress2. Set this field to 0 if
the LAN adapter does not use I/O ports.

66h MMemoryAddress1 4 The MLID initializes this field to the LAN adapter’s
default base memory address.

If the MLID is self-configurable, it determines the
appropriate value for the LAN adapter and places that
value in this field before returning from initialization.

If the LAN adapter does not use or define shared RAM
or ROM, the MLID sets this field to 0.

This value is an absolute physical address. For
example, if a LAN adapter’s RAM were located at
C000:0, the value in this field would be C0000.

The user can override the default value using the
NET.CFG file.

6Ah MMemorySize1 2 This field defines the number of paragraphs (16 bytes)
decoded at MMemoryAddress1. If MMemoryAddress1
is not defined, the MLID sets this field to 0.

6Ch MMemoryAddress2 4 This field allows the MLID to define a second memory
address range for the MLID’s LAN adapter to use.

For example, MemoryAddress1 could define the
starting address of the LAN adapter’s RAM, and this
field could define the starting address of the LAN
adapter’s ROM. Set this field to 0 if the LAN adapter
does not define a second memory range.

If the MLID is self-configurable, it determines the
appropriate value for the LAN adapter and places that
value into this field before returning from initialization.

The user can override the default value using the
NET.CFG file.

MLID Data Structures

Version 1.03 (February 2, 1996) 15-11

Table 15.1 MLID Configuration Table Field Descriptions (continued)

Offset DescriptionSize
(in bytes)

Name

70h MMemorySize2 2 This field defines the number of paragraphs (16 bytes)
decoded at MemoryAddress2. If MemoryAddress2 is
not defined, the MLID sets this field to 0.

72h MIRQLine1 1 The MLID initializes this field to the LAN adapter’s
default interrupt request line (IRQ).

If the MLID is self-configurable, it determines the
appropriate value for the LAN adapter and places that
value into this field before returning from initialization.

If the LAN adapter does not use an interrupt line, the
MLID sets this field to 0FFh (unused). If the MLID’s
LAN adapter supports IRQ 2 or 9, the MLID sets the
value to be consistent with the LAN adapter’s
documentation.

For example, if the LAN adapter’s documentation
specifies the default jumper setting as IRQ 2, the MLID
places a value of 2 in this field. If the LAN adapter’s
documentation specifies a default jumper setting as
IRQ 9, the MLID places a value of 9 in this field.
The MLID sets this field to 0FFh if the field is not
needed. The MLID must handle the IRQ 2 – IRQ 9
overlap correctly.

The user can override the default value using the
NET.CFG file.

73h MIRQLine2 1 The MLID uses this field if the MLID’s LAN adapter
uses a second IRQ line. Set this field to 0FFh if it is not
needed.

The user can override the default value using the
NET.CFG file.

74h MDMALine1 1 The MLID initializes this field to the LAN adapter’s
default DMA channel number.

If the MLID is self-configurable, it determines the
appropriate value for the LAN adapter and places that
value in this field before returning from initialization.

If the LAN adapter does not use DMA, the MLID sets
this field to 0FFh (unused).

The user can override the default value using the
NET.CFG file.

75h MDMALine2 1 The MLID uses this field if the MLID’s LAN adapter
uses a second DMA channel. Set this field to 0FFh if
the field is not needed.

The user can override the default value using the
NET.CFG file.

NetWare 16-Bit DOS Protocol Stacks and MLIDs Specification

15-12 Version 1.03 (February 2, 1996)

Configuration Table Flags
This section contains bit maps that describe the bits in each of
the configuration table flags.

MModeFlags

15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0
0 0 0 0 0 1 0 1

Default Values

Table
MModeFlags Bit Description

MModeFlags Bit Description

Bit # Description

0 Reserved. Set this bit to 1 for backward compatibility.

1 UsesDMABit. The MLID sets this bit if it uses DMA or bus-mastering.

2 Reserved. Set to 0.

3 MulticastBit. The MLID sets this bit if it supports multicast addressing. The MLID must support
multicast addressing, if the hardware supports it.

4 PointToPointBit. Set this bit to allow the MLID to bind with a protocol stack without providing a
network number. No network number exists in point-to-point connections. The MLID must set this
bit if the MLID supports dynamic call setup or teardown. Typically, asynchronous or X.25 MLIDs
set this bit.

5 NeedsPollingBit. Setting this bit causes the system to call the MLID every timer tick and
whenever a protocol stack relinquishes control. Only MLIDs that do not have interrupt capabilities
use this bit. Do not use this feature to implement a watchdog function; instead, use the
ScheduleAESEvent function available through the LSL.

6 RawSend. The MLID sets this bit to 1 if it supports raw sends.

7 Reserved. Set to 1 for backward compatibility.

8 Reserved. Set to 0.

9 Reserved. Set to 0.

10 Reserved. Set to 0.

11 Reserved. Set to 0.

12 Reserved. Set to 0.

13 PromiscuousModeBit. The MLID sets this bit if it supports promiscuous mode.

Table 15.2

MLID Data Structures

Version 1.03 (February 2, 1996) 15-13

MModeFlags Bit Description

Bit # Description

15, 14 The MLID sets these bits to indicate whether the MNodeAddress field of the configuration table
contains a canonical or a noncanonical address.

Bit 15 indicates whether the node address format is configurable.

Bit 14 indicates whether the configuration table MNodeAddress field contains the node address in
canonical or noncanonical form. The state of bit 14 is only defined when bit 15 is set.

The bit 15/bit 14 combinations are:

00 = MNodeAddress format is unspecified. The node address is assumed to be in
the physical layer’s native format.

01 = This is an illegal value and must not occur.

10 = MNodeAddress is canonical.

11 = MNodeAddress is noncanonical.

(See the ODI Specification Supplement: Canonical and Noncanonical Addressing.)

NetWare 16-Bit DOS Protocol Stacks and MLIDs Specification

15-14 Version 1.03 (February 2, 1996)

MFlags

The MLID sets the bits in this field to indicate different
support mechanisms, such as multicast filtering and multicast
address format.

15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0
0 0 0 0 0 0 0 0 0 0 0 0

Default Values

Table 15.3
MFlags Bit Description

 MFlags Bit Description

Bit # Description

0 Reserved. Set to 0.

1 Reserved. Set to 0.

2 Reserved. Set to 0.

3 Reserved. Set to 0.

4 Reserved. Set to 0.

5 Reserved. Set to 0.

6 Reserved. Set to 0.

7 Reserved. Set to 0.

8 Reserved. Set to 0.

10,9 These bits indicate different support mechanisms for multicast filtering and multicast address
format. These bits are only valid if bit 3 of the MModeFlags is set, indicating that the MLID
supports multicast addressing.

The MLID sets bit 10 if it has specialized adapter hardware (such as hardware that utilizes CAM
memory).

Note: If an MLID that usually defaults to using functional addresses also supports group
addressing and sets bit 10, it receives both functional and group addresses.

The state of bit 9 is defined only if bit 10 is set. Bit 9 is set if the adapter completely filters group
addresses and the MLID does not need to perform any checking. The MLID can dynamically set
and clear bit 9. For example, if the adapter utilizes CAM memory but has temporarily run out of
memory, the MLID must temporarily filter the group addresses. In this case, the MLID would reset
bit 9.

The bit 10/bit 9 combinations are:
00 = The format of the multicast address defaults to that of the topology:

Ethernet => Multicast addressing, in other words, Group addressing
Token-Ring => Functional addressing/Group addressing
FDDI => Group addressing

01 = Illegal value and must not occur.
10 = Filter group address in MLID. Group addressing is supported by the specialized

adapter hardware.
11 = Adapter filtered group address. MLID software checking is not required. Group

addressing is supported by the specialized adapter hardware.

(See the ODI Specification Supplement: Canonical and Noncanonical Addressing.)

11 NESL_REQUIRED_BIT. If this bit is set, the LAN driver requires the NetWare Event Service
Layer. The MLID should not load if this bit is set and the NESL is unavailable. For more
information about the NetWare Event Service Layer (NESL), see the NESL Specification: 16-Bit
DOS Client Programmer’s Interface.

MLID Data Structures

Version 1.03 (February 2, 1996) 15-15

 MFlags Bit Description

Bit # Description

12 PrioritySupportBit. The MLID sets this bit during initialization if the following conditions are met:

� The MLID has provided priority service support.

� The MLID has set the MPrioritySup field to something other than 0.

Note: The MLID may temporarily clear this bit to disable priority support.

13 Reserved. Set to 0.

14 Reserved. Set to 0.

15 Reserved. Set to 0.

NetWare 16-Bit DOS Protocol Stacks and MLIDs Specification

15-16 Version 1.03 (February 2, 1996)

MSharingFlags

This field informs the system which hardware resources an
MLID and LAN adapter combination can share with other
MLID and LAN adapter combinations. The first bit indicates
when the MLID is shutdown. The MLID sets and clears this
bit. If the MLID supports shareable interrupts, it must set the
CanShareIRQ bit.

15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0
0 0 0 0 0 0 0 1

Default Values

Table 15.4
MSharingFlags Bit Description

 MSharingFlags Bit Description

Bit # Description

0 ShutDownBit. Set to 1 if the LAN adapter is currently shutdown.

1 CanShareIO1. Set to 1 if the LAN adapter can share I/O port 1.

2 CanShareIO2. Set to 1 if the LAN adapter can share I/O port 2.

3 CanShareMemory1. Set to 1 if the LAN adapter can share memory range 1.

4 CanShareMemory2. Set to 1 if the LAN adapter can share memory range 2.

5 CanShareIRQ1. Set to 1 if the LAN adapter can share interrupt 1.

6 CanShareIRQ2. Set to 1 if the LAN adapter can share interrupt 2.

7 CanShareDMA1. Set to 1 if the LAN adapter can share DMA channel 1.

8 CanShareDMA2. Set to 1 if the LAN adapter can share DMA channel 2.

9 Reserved. Set to 0.

10 Reserved. Set to 0.

11 Reserved. Set to 0.

12 Reserved. Set to 0.

13 Reserved. Set to 0.

14 Reserved. Set to 0.

15 Reserved. Set to 0.

MLID Data Structures

Version 1.03 (February 2, 1996) 15-17

Adapter Data Space
The MLID must allocate and initialize a space called
AdapterDataSpace. This space must contain the data that is
specific to a particular LAN adapter. You must determine what
hardware-specific fields the MLID needs in this space in order
to drive its particular LAN adapter. But keep in mind that this
space must also contain the MLID statistics table.

Frame Data Space
Configuration Table 802.2

SNAP

EII

Data and
Code Spaces

Logical
Boards

Physical
Board

Adapter Code Space

Frame Data Space
Configuration Table

Frame Data Space
Configuration Table

Adapter Data Space
Hardware Specific Vars

Statistics Table

MLID Statistics Table
This section describes the MLID statistics table in detail. This
section includes the statistics table definition and a description
of each of the statistics table fields.

All MLIDs must keep a statistics table for each physical
adapter for the purpose of network management. The following
is the format of an MLID statistics table.

Important A protocol stack treats this table as read only!

The statistics table contains various diagnostic counters. All
statistics counters listed must be present in the table. These
counters can be grouped into the following categories.

� Generic Statistics Counters
� Custom Statistics Counters

Figure 15.3
Driver Frame and
Adapter Data Space

NetWare 16-Bit DOS Protocol Stacks and MLIDs Specification

15-18 Version 1.03 (February 2, 1996)

MLID Statistics Table
MLIDStatStructure struc

MStatTableMajorVer db 01
MStatTableMinorVer db 01 ;1.01
MNumGenericCounters dw 14
MValidCounterMask dd ? ;
MTotalTxPackets dw 2 dup (0)
MTotalRxPackets dw 2 dup (0)
MNoECBsAvailable dw 2 dup (0)
MTxTooBig dw 2 dup (0)
MTxTooSmall dw 2 dup (0)
MRxOverflow dw 2 dup (0)
MRxTooBig dw 2 dup (0)
MRxTooSmall dw 2 dup (0)
MTxMiscError dw 2 dup (0)
MRxMiscError dw 2 dup (0)
MTxRetryCount dw 2 dup (0)
MRxChecksumError dw 2 dup (0)
MRxMismatchError dw 2 dup (0)
MQueueDepth dw 2 dup (0)
MNumCustomCounters dw ?
CustomCounter0 dd 0

.

.
CustomCounter? dd 0

dw offset CGroup:CustomCounterStr0
dw segment CGroup:CustomCounterStr0
 .
 .
dw offset CGroup:CustomCounterStr?
dw segment CGroup:CustomCounterStr?

MLIDStatStructure ends
Message CustomCounterStr0 ‘Custom Counter Text for Counter 0’

.

.
Message CustomCounterStr? ‘Custom Counter Text for Counter ?’

Message is a macro that length-prepends and zero-terminates a
text string.

Message macro name, string
Local Tail
name db (tail–2) – name

db string, 0
tail equ $

endm

MLID Data Structures

Version 1.03 (February 2, 1996) 15-19

MStatTableMajorVer
MStatTableMinorVer

MNumGenericCounters
MValidCounterMask

MTotalTxPackets
MTotalRxPackets

MNoECBsAvailable
MTxTooBig

MTxTooSmall
MRxOverflow

MRxTooBig
MRxTooSmall
MTxMiscError
MRxMiscError

MTxRetryCount
MRxRetryCount

MRxChecksumCount

MQueueDepth
MNumCustomCounters

CustomCounter0

MRxMismatchLow

.

.

.

.

.

.

CustomCounter?

Figure 15.4
Graphic Representation
of the MLID Statistics Table

NetWare 16-Bit DOS Protocol Stacks and MLIDs Specification

15-20 Version 1.03 (February 2, 1996)

 Table 15.5 MLID Statistics Table Field Descriptions

Offset Name Size
 (in bytes)

Description

00h MStatTableMajorVer 1 This field defines the current major version of the statistics
table. For this specification, set this field to 1.

01h MStatTableMinorVer 1 This field defines the current minor version of the statistics
table. For this specification, set this field to 01. (The current
version of the statistics table is 1.01; MDriverStatMajorVer =
1, MDriverStatMinorVer = 01.)

02h MNumGenericCounters 2 This field defines the number of generic counters defined in
the statistics table. Currently this number is 14.

04h MValidCounterMask 4 This bit field is used to signal which generic counters the
MLID is actually using. The bit field is 32 bits long and the
most significant bit corresponds to the first generic counter,
MTotalTxCount. A bit value of 1 disables the counter; a bit
value of 0 enables the counter.

08h MTotalTxPackets 4 This field contains the total number of packets that the MLID
requested to transmit. Whether or not they were actually
transmitted depends upon the MLID.

0Eh MTotalRxPackets 4 This field contains the total number of incoming packets for
which the MLID received an ECB.

10h MNoECBsAvailable 4 This field is used to count the number of incoming packets
that were not received or wanted because an ECB was not
provided by a protocol stack after calling GetStackECB..

14h MTxTooBig 4 This field has the number of requested packets for
transmission that were too big to send.

18h MTxTooSmall 4 This field contains the number of requested packets for
transmission that were normally too small to be transmitted.

1Ch MRxOverflow 4 The MLID increments this field when the LAN adapter runs
out of internal receive buffers.

20h MRxTooBig 4 This field has the number of incoming packets that were
bigger than the value in MMaxPacketSize.

24h MRxTooSmall 4 This field contains the number of incoming packets that were
smaller than the minimum legal size for the media.

28h MTxMiscError 4 This field contains the number of transmission requests that
were not sent because of errors other than those explicitly
listed in this table.

2Ch MRxMiscError 4 This field has the number of incoming packets that were lost
because of errors other than those explicitly listed in this
table.

30h MTxRetryCount 4 The MLID increments this field when the MLID must
retransmit because of a hardware failure—for example, too
many collisions.

34h MRxChecksumError 4 This field has the total number of incoming packets which
were lost due to checksum and/or CRC errors.

38h MRxMismatchError 4 This field contains the total number of incoming packets
which were lost due to conflicting information given by the
hardware and the media-specific header.

MLID Data Structures

Version 1.03 (February 2, 1996) 15-21

 Table 15.5 MLID Statistics Table Field Descriptions (continued)

Offset DescriptionSize
 (in bytes)

Name

3Ch MQueueDepth 4 The MLID increments this field whenever it queues a packet.
It decrements this field whenever it removes a transmit
packet from the transmit queue.

41h MNumCustomCounters 2 This field has the total number of custom variables which
follow this WORD. The statistics table allows the MLID to
define a number of custom counters. These counters are
MLID specific and can count any interesting event which you
think would be useful for a system administrator. Each
custom counter allows you to define a corresponding
descriptive text string that is length-preceded and
zero-terminated. Keep the number of custom counters to a
minimum to conserve DOS memory.

When a custom counter corresponding to a receive or
transmit error event is incremented, the MLID also
increments the appropriate MiscCount counter (for example,
TxMiscCount). The miscellaneous counters total all custom
defined error events. We recommend that counter increments
be done as follows:

addRxOverflowCount+0, 1
adc RxOverflowCount+2, 0
Note: You can define other counters for debugging purposes,
but remove them when the driver is shipped to an end user.

�

Version 1.03 (February 2, 1996) 16-1

Chapter 16 MLID Initialization

16

16.

16

NetWare 16-Bit DOS Protocol Stacks and MLIDs Specification

16-2 Version 1.03 (February 2, 1996)

Overview
This chapter covers the steps involved in initializing and
registering the MLID.

You should review this chapter before writing the MLID
initialization routine.

MLID Initialization

Version 1.03 (February 2, 1996) 16-3

MLID Initialization
If your MLID is to be resident, it should free all the memory it
used to hold the initialization code and data before turning
resident. (The process of freeing initialization code and data is
a design implementation decision.)

Under the ODI specification, the MLID has two essential
functions:

� to take packets off the LAN adapter and pass them to the
LSL and

� to take packets from the LSL and place them on the board.

Before the MLID can perform its functions, it must be
initialized. The initialization process of an MLID under DOS
occurs in the following stages:

1) The MLID registers with the LSL. An MLID locates the
LSL in the same way that a protocol stack does; therefore,
see ‘‘Locating the LSL” in Chapter 4: Protocol Stack
Initialization for the steps in locating the LSL.

2) The MLID reads the NET.CFG file and fills in the MLID
configuration table with the necessary information.

3) The MLID calls the LSL initialization entry point with the
following information:

BX LSLINIT_MLID_REG
MLID initialization function code

ES:SI Points to the MLIDInfoBlockStruc

MLIDInfoBlockStruc struc
MIBS_SendEntry dd ?
MIBS_ControlEntry dd ?
MIBS_ConfigTable dd ?

MLIDInfoBlockStruc ends

MIBS_SendEntry
Address of the MLID send entry point. All packets to be sent on
the network will be sent through this address.

MIBS_ControlEntry
Address of the MLID control entry point.

MIBS_ConfigTable
Address of the MLID configuration table valid at the time this call
is made.

DS:DI Pointer to MLIDRetInfoBlockStruc) for the
LSL to return configuration information.

NetWare 16-Bit DOS Protocol Stacks and MLIDs Specification

16-4 Version 1.03 (February 2, 1996)

MLIDRetInfoBlockStruc struc
MRIBS_MLID_SUP dd ?
MRIBS_BoardNum dd ?
MRIBS_ECB_DataSize dd ?

MLIDRetInfoBlockStruc ends

MRIBS_MLID_SUP
Address of the MLID support entry point of the LSL.

MRIBS_BoardNum
Board number assigned to the MLID.

MRIBS_ECB_DataSize
Maximum buffer size of receive ECBs in the system.

4) At this point, the MLID should initialize the hardware. If
the hardware fails, make the DeRegisterMLID call to the
MLID support entry point to remove the MLID from the
LSL’s list of MLIDs. The process should then be terminated
and an error message sent to the user.

5) The MLID informs the LSL about the protocols the MLID
can process. The protocols are processed using the
AddProtocolID call. Only Protocol IDs mentioned in
NET.CFG should be added, since there are a limited
number of protocol stacks supported by the LSL.

6) The MLID terminates execution in the operating system
and remains resident. At this point, the driver is installed
in the computer’s system and is able to begin sending and
receiving packets.

The MLID repeats Step 3 for each frame type. The LSL assigns
a unique board number on each call to RegisterMLID.

�

Version 1.03 (February 2, 1996) 17-1

Chapter 17 MLID Packet Reception and
Transmission

17

17.

17

NetWare 16-Bit DOS Protocol Stacks and MLIDs Specification

17-2 Version 1.03 (February 2, 1996)

Overview
This chapter describes the steps involved in MLID packet
reception and transmission. This chapter also describes how to
provide a receive look ahead buffer. You should read this
chapter before writing a packet transmission and/or packet
reception routine.

 MLID Packet Reception and Transmission

Version 1.03 (February 2, 1996) 17-3

MLID Packet Reception
When the physical board obtains a packet from the network, it
generates an interrupt to which the MLID responds by calling
its packet receive handler or board service routine. Generally,
the receive handler requests an ECB from the LSL and then
fills it in with information about the incoming packet. When
the ECB is filled out, the MLID passes the address of the ECB
to the LSL. The LSL then transfers the information to the
correct protocol stack.

When the MLID receives a packet, it generally performs the
following steps.

1) Saves the state and disables system interrupts if not
already disabled.

2) Starts an internal critical section.

3) Enables system interrupts so external processes can occur.
The MLID performs the following, order sensitive,
procedures:

a) Disables the physical board’s interrupts.
b) Clears the interrupt from the appropriate PICs.
c) Enables system interrupts.

4) Fills in the LookAheadStruc structure. Make sure the
appropriate bits are set.

5) If the packet contains errors, sets the DEST_ERRORED bit
in the LDestType field of the LookAheadStruc structure and
fill out the appropriate error bit in the LPacketAttrib field.

6) Requests a receive buffer (ECB) by calling the LSL support
routine GetStackECB with a pointer to the LookAheadStruc
structure.

7) Performs one of the following steps, depending on whether
an ECB was available:

a) If a receive ECB is not available, discards the
packet.

b) If a receive ECB is available, copies the data into the
buffer described by the ECB. This buffer can be
fragmented. The media header is not included as
part of the data.

8) Sets the following fields in the ECB:

NetWare 16-Bit DOS Protocol Stacks and MLIDs Specification

17-4 Version 1.03 (February 2, 1996)

� PreviousLink
� Status
� ImmediateAddress
� DataLength
� DriverWorkspace

For a description of these fields, see the ECB field
descriptions in Appendix A: Event Control Blocks
(ECBs).

9) Transfers the data.

10) Calls HoldReceiveEvent; this call places the specified ECB
on the LSL’s holding queue for processing.

11) Increments the appropriate counters.

12) Checks if the board has received another packet. If the
board has received another packet, initiates the packet
reception process again.

13) Returns interrupts to their original state before exiting the
procedure by performing the following, order sensitive
steps:

a) Disables system interrupts.
b) Enables the physical board’s interrupts.
c) Enables system interrupts.

14) Terminates the internal critical section.

15) Calls ServiceEvents, which must be called prior to exiting
the procedure in order to process any queued ECBs that
have been placed on the hold queue.

16) Returns control back to the calling procedure by restoring
the registers and doing an IRET.

The board service routine might also receive transmit complete
interrupts. In this case, this procedure must be able to handle
the additional overhead involved in completing and re-issuing
send requests.

Lookahead Buffer
The MLID must be able to provide the look ahead data before it
can obtain a receive buffer. You can use one of three methods to
move receive data from the physical board to host memory:

� Shared Memory
� Programmed I/O

 MLID Packet Reception and Transmission

Version 1.03 (February 2, 1996) 17-5

� DMA

The method you chose is determined by the physical board.

Shared RAM

If the board uses shared RAM, LkAhd_MediaHeaderPtr and
LkAhd_DataLookAheadPtr of the LookAheadStruc structure
point to the appropriate point in the shared RAM area.

Programmed I/O

If the board uses port I/O to transfer packet data to system
memory, you must create a buffer in the MLID that is large
enough to hold the look ahead portion of the packet. The
maximum size of this buffer is 128 bytes plus the size of the
media header. For example, the maximum buffer an Ethernet
packet needs is 150 bytes (128 bytes data + 22 bytes [14 MAC
header + 3 802.2 UI (AAAA03) + 5 SNAP header] media
header). After reading in the minimum number of bytes
necessary to provide the look ahead data, set the
LkAhd_MediaHeaderPtr pointer to point to the start of the
data in this buffer and set the LkAhd_DataLookAheadPtr data
pointer to point to the appropriate point in this buffer.

DMA

If the board uses DMA, you should create a continuous,
intermediate buffer that is capable of holding the largest
possible packet. The MLID will transfer the entire packet off
the board into this buffer. You should set the
LkAhd_MediaHeaderPtr pointer and the
LkAhd_DataLookAheadPtr data pointer to point to the
appropriate points in this buffer

MLID Packet Transmission
The MLID transmits packets through the physical board.
When a packet is ready to be sent, the protocol stack prepares
an Event Control Block (ECB) and calls the LSL’s send packet
routine. The LSL inspects the ECB board number and calls the
associated MLID send handler. (The send handler entry point
is exchanged with the LSL during initialization time.)

In order to prepare a packet for transmission when called by
the LSL, the MLID generally performs the following steps:

1) Starts an internal critical section.

a) Disable system interrupts.

NetWare 16-Bit DOS Protocol Stacks and MLIDs Specification

17-6 Version 1.03 (February 2, 1996)

b) Disable the physical board’s interrupts.
c) Enable system interrupts.

2) Checks if the hardware is busy with a send. If it is, the
MLID queues the send and rechecks to see if the hardware
is busy.

3) Sets the busy flag and inspects the ECB for raw sends, if
the hardware is not busy sending.

4) Determines whether the packet is a raw send.

a) If the packet is a raw send, the MLID does not need
to generate the media header.

b) If the packet is not a raw send, the MLID must
generate a media header.

5) Enables system interrupts in order to allow external
processes to occur. The following steps explain the order
sensitive step.

6) Begins transmission of the header and data by issuing a
send request to the hardware.

7) Increments appropriate counters.

8) Performs one of the following, depending upon whether the
transmission is lying or non-lying:

Non-lying sends
After the send operation has completed, the MLID sets
the ECB_Status field to 0 if the send was successful or
to an appropriate error code if the send was
unsuccessful. (This usually takes place in the Interrupt
Service Routine (ISR) after receiving a send complete
interrupt.)

Lying sends
Immediately following the send request to the
hardware, the MLID sets the ECB_Status field to 0 as if
the send had completed successfully.

Note If priority support is provided, the MLID should
transmit the frame by the corresponding priority
means.

9) Returns the ECB by calling SendComplete. If a transmit
monitor is registered, the completed MLID creates a TCB to
pass to the monitor for its inspection prior to calling
SendComplete.

 MLID Packet Reception and Transmission

Version 1.03 (February 2, 1996) 17-7

Note If the MLID is doing non-lying sends, it must maintain a
pointer to the ECB. SendComplete requires a pointer to the
ECB to be returned. If the MLID is doing non-lying sends,
the packet is usually returned in the ISR.

10) The MLID checks its internal queue for pending transmits
and initiates the next send if any pending transmits are
found.

11) Returns interrupts to their original state before exiting the
procedure. The following steps give the order sensitive
steps.

a) Disable system interrupts.
b) Enable the physical board’s interrupts.
c) Enable system interrupts.

12) Terminates the internal critical section and calls
ServiceEvents, which must be called prior to exiting the
procedure to process any queued ECBs that have been
placed on the send queue.

13. Returns control to the calling procedure.

Note The entity that made the transmit request should not poll for
completion of the transmit request but should wait until it’s
ESR in the transmit ECB is called. Polling for completion of the
transit request can cause dead-locks to occur and the system to
fail.

�

Version 1.03 (February 2, 1996) 18-1

Chapter 18 MLID Control Routines

18

18.

18

NetWare 16-Bit DOS Protocol Stacks and MLIDs Specification

18-2 Version 1.03 (February 2, 1996)

Overview

The ODI specification requires an MLID to provide a number of
control procedures to protocol stacks. Protocol stacks can obtain
the MLID control entry point by calling GetMLIDControlEntry
and then invoking the returned entry point with the proper
registers set. These functions can only be called at process
time.

The following lists the MLID control routines along with their
entry point and function number in alphabetical order.

Descriptive Name Function Name Funct. No.
AddMulticastAddress ADD_MULTICAST_ADDRESS 2
DeleteMulticastAddress DELETE_MULTICAST_ADDRESS 3
DriverManagement DRIVER_MANAGEMENT 14
DriverPoll DRIVER_POLL 12
GetMLIDConfiguration GET_MLID_CONFIGURATION 0
GetMLIDStatistics GET_MLID_STATISTICS 1
GetMulticastInfo GET_MULTICAST_INFO 15
MLIDReset MLID_RESET 6
MLIDShutdown MLID_SHUTDOWN 5
PromiscuousChange PROMISCUOUS_CHANGE 10
RegisterTxMonitor REGISTER_TX_MONITOR 4
SetLookAheadSize SET_LOOK_AHEAD_SIZE 9
Reserved RESERVED 7
Reserved RESERVED 8
Reserved RESERVED 11
Reserved RESERVED 13

The following lists the MLID control routines along with their
entry point and function number in function number order.

Descriptive Name Function Name Funct. No.
GetMLIDConfiguration GET_MLID_CONFIGURATION 0
GetMLIDStatistics GET_MLID_STATISTICS 1
AddMulticastAddress ADD_MULTICAST_ADDRESS 2
DeleteMulticastAddress DELETE_MULTICAST_ADDRESS 3
RegisterTxMonitor REGISTER_TX_MONITOR 4
MLIDShutdown MLID_SHUTDOWN 5
MLIDReset MLID_RESET 6
Reserved RESERVED 7
Reserved RESERVED 8
SetLookAheadSize SET_LOOK_AHEAD_SIZE 9
PromiscuousChange PROMISCUOUS_CHANGE 10
Reserved RESERVED 11

DriverPoll DRIVER_POLL 12
Reserved RESERVED 13
DriverManagement DRIVER_MANAGEMENT 14
GetMulticastInfo GET_MULTICAST_INFO 15

MLID Control Routines

Version 1.03 (February 2, 1996) 18-3

AddMulticastAddress
Description Adds the specified node address to the multicast address table.

Entry State AX
has the number of a logical board.

BX
is equal to ADD_MULTICAST_ADDRESS (2).

ES:SI
has a pointer to the 6-byte multicast buffer holding the multicast
address.

Interrupts
are enabled.

Return State AX
has a completion code.

Flags
Z flag is set according to AX.

Interrupts
are enabled.

DS, BP, SS, SP
are preserved.

Completion Codes (AX) LSL_SUCCESSFUL (0000h)
Multicast was successfully enabled.

LSLERR_OUT_OF_RESOURCES (8001h)
The MLID has insufficient resources to enable the multicast
address.

LSLERR_BAD_PARAMETER (8002h)
The specified multicast address is invalid for the MLID’s media
type, or the board number is invalid.

LSLERR_BAD_COMMAND (8008h)
Multicast addressing is not supported by the MLID and/or the
underlying hardware device.

Remarks Protocol stacks that will enable multicast reception should first
check the MulticastBit bit in the MLID configuration table’s
MModeFlags field. Some LAN media (for example, RX-Net) do
not support multicast. When an underlying MLID/adapter does
not support multicasting, the protocol stack should use
broadcast transmission instead.

The MLID will keep a count of the times a specified address is
added. When an address is deleted by DeleteMulticastAddress,

NetWare 16-Bit DOS Protocol Stacks and MLIDs Specification

18-4 Version 1.03 (February 2, 1996)

the count is decremented. When the count is 0, the address is
disabled. This behavior allows two or more protocols to safely
use the same multicast address.

The MLID manages enabled multicast addresses according to
the physical adapter. The format of a multicast address is LAN
medium dependent. The two most common formats are for
Ethernet (Ethernet_II/IEEE 802.3) and Token-Ring (802.5),
which are summarized below. Proprietary LAN media that
support multicast can have alternate address encoding
methods. Therefore, a protocol stack should allow a multicast
address that can be configured by the user (for example, a
NET.CFG parameter). This allows the protocol stack to work
correctly on proprietary LAN media.

Ethernet Multicasts

Ethernet multicast addresses must have bit 0 of byte 0 set to 1
(for example, x1 xx xx xx xx xx). The address is value based;
each value is unique and separate from other values. Most
adapters for Ethernet create a multicast hash table to filter
incoming packets destined to a multicast group. Hashing is not
usually a guaranteed filter; therefore, more than one multicast
address might be received by the adapter. This will cause the
underlying MLID to receive unwanted multicast packets. The
MLID will complete the filtering so that only addresses enabled
through this command are actually passed to protocol stacks.

Token-Ring Multicasts

Token-Ring multicast addresses in an ODI system are usually
Token-Ring functional addresses. However, support for group
addresses has been included in some Token-Ring hardware.
New MLIDs should determine if the hardware will support
both functional and group addressing and provide as much
support as possible for both types of addressing. These
addresses are bit based: each bit position in the address
signifies an unique address (in other words, more than one
address can be specified by simply setting multiple bits).
Addresses always begin with C0–00, leaving 32 bits (4 bytes)
for functional addresses. However, four of the 32 possible bits
are reserved by IBM, leaving 28 unique multicast addresses
available.

More than one multicast address can be added when you
invoke the AddMulticastAddress command. For example, if C0
00 00 01 00 00 and C0 00 00 02 00 00 need to be enabled,
AddMulticastAddress can be called twice (once for each

MLID Control Routines

Version 1.03 (February 2, 1996) 18-5

address) or simply called once with C0 00 00 03 00 00. Both
methods are equivalent.

Token-Ring MLIDs keep a use count for each functional
address bit. Token-Ring MLIDs can also implement global
addressing.

Note Functional addresses should never be sent on the medium with
more than one function bit set. If more than one function bit is
set, the address will not work on all media. For example,
Token-Ring accepts a functional address that has more than
one function bit set but PCN_II does not.

Number of Supported Multicast Addresses Supported

The number of multicast addresses supported by an underlying
MLID/LAN medium is not specified by ODI specification. In the
case of Token-Ring, the maximum number supported is
specified by the definition of the address, with 28 being the
maximum. Ethernet, however, has an almost infinite number of
possible addresses. The maximum supported by the server
MLID will usually be high (32 or more) and low (2 to 16) in a
client MLID. The Novell ODI Specification: 16-Bit DOS Client
HSMs toolkit allows for a maximum of 16 multicast addresses.

See Also GetMulticastInfo

ODI Specification Supplement: Canonical and Noncanonical
Addressing for information regarding canonical and
noncanonical addressing

NetWare 16-Bit DOS Protocol Stacks and MLIDs Specification

18-6 Version 1.03 (February 2, 1996)

DeleteMulticastAddress

Description Disables reception of a previously enabled multicast address.

Entry State AX
has the number of a logical board.

BX
is equal to DELETE_MULTICAST_ADDRESS (3).

ES:SI
has a pointer to the 6-byte multicast address to delete from the
multicast address list.

Interrupts
are enabled.

Return State AX
has a completion code.

Interrupts
state is preserved.

Flags
Z flag set according to AX.

DS, BP, SS, SP
are preserved.

Completion Codes (AX) LSL_SUCCESSFUL (0000h)
One instance of the address was successfully deleted.

LSLERR_BAD_PARAMETER (8002h)
The specified multicast address is invalid for the MLID’s media
type, or the board number is invalid (see AddMulticastAddress).

LSLERR_ITEM_NOT_PRESENT (8004h)
The specified address is not presently enabled in the MLID.

LSLERR_BAD_COMMAND (8008h)
Multicast addressing is not supported by the MLID and/or the
underlying hardware device.

Remarks This routine disables reception of a previously enabled
multicast address. This command decrements the MLID’s use
count for the specified address. When the use count becomes 0,
response of that address is disabled. (See AddMulticastAddress
for a discussion of multicast address formats.)

MLID Control Routines

Version 1.03 (February 2, 1996) 18-7

DriverManagement
Description Provides a generic way of allowing protocol dependent

functions to be defined.

Entry State AX
has the number of a logical board.

BX
is equal to MLID_MANAGEMENT (14).

ES:SI
is a pointer to the management ECB.

Interrupts
are disabled.

Return State AX
has a completion code.

ES:SI
is a pointer to the management ECB.

Flags
are set according to AX.

Interrupts
are disabled but might have been temporarily enabled by the
MLID stack.

DS, ES, SI, BP, SS, SP
are preserved.

Completion Codes (AX) LSL_SUCCESSFUL (0000h)
The requested operation was successful. The ECB was returned
to the caller.

LSL_PENDING_SUCCESS (0001h)
The requested operation was successfully started but will
complete asynchronously. The ECB is not returned. The ESR will
be called after the operation completes.

LSLERR_BAD_PARAMETER (8002h)
The board number is invalid, or the first byte of the ECB
ProtocolID field is invalid. The first byte must be greater than 41h
(A) or less than 7Eh (~) inclusive.

LSLERR_BAD_COMMAND (8008h)
MLID management support is not provided.

LSLERR_NO_SUCH_HANDLER (800Ah)
The Protocol ID value is not supported.

Remarks This control function is provided to allow the MLID a generic
interface to MLID dependant management functions. The

NetWare 16-Bit DOS Protocol Stacks and MLIDs Specification

18-8 Version 1.03 (February 2, 1996)

implementation of this function is optional. If not implemented,
a call to this function must return LSLERR_BAD_COMMAND
(8008h).

The management ECB is of the form of an ECB, but all fields
below the ProtocolID field can be redefined by the MLID.

The ProtocolID field is defined as a 6-byte string that uniquely
identifies the MLID. The first character of the string must be
greater than or equal to 41h (‘‘A”) and less than or equal to 7Eh
(‘‘~”). The remaining characters are defined by the MLID. If the
first character is not greater than or equal to 41h and less than
or equal to 7Eh, the MLID should return with the completion
code LSLERR_BAD_PARAMETER (8002h).

If the MLID does not recognize the value in the ProtocolID
field, the MLID returns a completion code of
LSLERR_NO_SUCH_HANDLER (800Ah).

If the MLID must respond asynchronously to the management
request, it should queue the ECB internally and return a
status of LSL_PENDING_SUCCESS (0001h). When the queued
request is complete, the MLID should place the ECB on the
LSL hold event queue by calling HoldReceiveEvent. The LSL
will then process the ECB during the next call to service
events.

See Also ProtocolManagement

Refer to ODI Specification Supplement: The Hub Management
Interface and ODI Specification Supplement: Brouter Support
for an implementation of this procedure.

MLID Control Routines

Version 1.03 (February 2, 1996) 18-9

DriverPoll
Description Assists polled MLIDs.

Entry State AX
is a board number.

BX
is equal to DRIVER_POLL (12 [0Ch]).

Interrupts
interrupts are disabled but might be enabled by the driver.

Return State Interrupts
are preserved.

DS, BP, SS, SP
are preserved.

Remarks DriverPoll is an optional routine the LSL calls periodically to
assist polled drivers every timer tick. The LSL also calls
DriverPoll every time a protocol stack relinquishes control to
the LSL. MLIDs written for adapters that do not have
interrupt capabilities use this call; most MLIDs do not use it. If
an MLID does need polling, it sets the NeedsPolling bit inside
the MLID configuration table ModeFlags field (bit 5).

Important DriverPoll should not be used for watchdog or timeout
functions; instead, the MLID should schedule a reoccurring
AES event that has a relatively long timeout (for example, 1
second) for this purpose.

DriverPoll generally behaves in the same manner as an
interrupt service routine. However, a critical section is not set
up before the MLID invokes DriverPoll. Therefore, if this
routine runs with its interrupts enabled, the MLID must
explicitly enter and exit a critical section.

Important This routine must complete quickly because it is usually called
from a timer interrupt.

Calling DriverPoll with an invalid board number can cause
DriverPoll to abort before completing function execution.

NetWare 16-Bit DOS Protocol Stacks and MLIDs Specification

18-10 Version 1.03 (February 2, 1996)

GetMLIDConfiguration
Description Returns a pointer to the MLID configuration table for the

specified logical board.

Entry State AX
has the number of a logical board.

BX
is equal to GET_MLID_CONFIGURATION (0).

Interrupts
are enabled.

Return State AX
has a completion code.

ES:SI
has a pointer to the MLID configuration table.

Flags
Z flag set according to AX.

Interrupts
are enabled.

DS, BP, SS, SP
are preserved.

Completion Codes (AX) LSL_SUCCESSFUL (0000h)
ES:SI has a pointer to the MLID configuration table.

LSLERR_BAD_PARAMETER (8002h)
The board number is invalid. ES:SI returned as an invalid
pointer.

Remarks This command is supported by all MLIDs. A separate
configuration table is maintained by the MLID for each adapter
and frame type combination. (See Chapter 15: MLID Data
Structures for the format of the MLID configuration table.)

MLID Control Routines

Version 1.03 (February 2, 1996) 18-11

GetMLIDStatistics
Description Returns a pointer to the MLID statistics table for the specified

board.

Entry State AX
has the number of a logical board.

BX
is equal to GET_MLID_STATISTICS (1).

Interrupts
are enabled.

Return State AX
has a completion code.

ES:SI
has a pointer to the MLID statistics table.

Flags
Z flag set according to AX.

Interrupts
are enabled.

DS, BP, SS, SP
are preserved.

Completion Codes (AX) LSL_SUCCESSFUL (0000h)
ES:SI has a pointer to the MLID statistics table.

LSLERR_BAD_PARAMETER (8002h)
The board number is invalid. ES:SI returned as an invalid
pointer.

Remarks All MLIDs support this command.

The MLID maintains one statistics table for each physical
adapter. Each frame type (or logical board) present for that
physical adapter uses the same table. The board number in AX
can be any of the logical board values present for a physical
adapter. Regardless of the logical board number,
GetMLIDStatistics will return the same table for each logical
board associated with the MLID. (See Chapter 15: MLID Data
Structures for the format of the MLID statistics table.)

NetWare 16-Bit DOS Protocol Stacks and MLIDs Specification

18-12 Version 1.03 (February 2, 1996)

GetMulticastInfo
Description Allows various management entities to obtain the location of

the group (multicast) and /or functional address table that the
MLID is using.

Entry State AX
has the number of a logical board.

BX
is equal to GET_MULTICAST_INFO (15).

Interrupts
are enabled.

Return State AX
has the completion code.

CX
the number of entries in the group (multicast) table.

ES:DI
has a pointer to the functional address buffer in use.

ES:SI
has a pointer to the group (multicast) table in use.

Flags
Z flag is set according to AX.

Interrupts
are enabled.

DS, BP, SS, SP
are preserved.

Completion Codes (AX) LSL_SUCCESSFUL (0000h)
ES:SI and ES:DI are valid pointers.

LSLERR_BAD_PARAMETER (8002h)
An invalid board number was specified.

LSLERR_BAD_COMMAND (8008h)
Multicast addressing is not supported by the MLID and/or the
underlying hardware device.

Remarks The functional address pointer (DI) will be equal to 0 if the
MLID and/or topology does not support functional addressing.
The functional address buffer is a 6-byte buffer with all active
functional bits set. The address will be in the topology
dependant bit order.

The group (multicast) table consists of a number of multicast
table entries; the number of entries is indicated in CX on
return. The format of each group (multicast) table entry is
defined as follows:

MLID Control Routines

Version 1.03 (February 2, 1996) 18-13

MulticastTableEntry struc
MulticastAddress db 6 dup (?)
MulticastUseage dw 0

MulticastTableEntry ends

MulticastAddress
The multicast address in the topology transmission format. For
example, Token-Ring is in MSB (noncanonical) format, and
Ethernet is in LSB (canonical) format.

MulticastUsage
A counter indicating the number of calls made to activate this
address. A value of 0 indicates that this address is not currently
active.

See Also AddMulticast, DeleteMulticast

See ODI Specification Supplement: Canonical and
Noncanonical Addressing for information regarding canonical
and noncanonical addressing.

NetWare 16-Bit DOS Protocol Stacks and MLIDs Specification

18-14 Version 1.03 (February 2, 1996)

MLIDReset
Description Causes the MLID to totally reinitialize the physical adapter.

Entry State AX
has the number of a logical board.

BX
is equal to MLID_RESET (6).

Interrupts
are enabled.

Return State AX
has a completion code.

Flag
Z flag set according to AX.

Interrupts
are enabled.

DS, BP, SS, SP
are preserved.

Completion Codes (AX) LSL_SUCCESSFUL (0000h)
The physical card has been reactivated.

LSLERR_BAD_PARAMETER (8002h)
The board number is invalid.

LSLERR_FAIL (8005h)
The MLID was unable to reset its hardware. This might indicate a
hardware failure or system corruption.

Remarks This command also brings an MLID back into active operation
if it was temporarily shut down.

The ShutDownBit bit in each logical board’s MLID
configuration table MSharingFlags field will be reset to 0 when
this function returns.

This function leaves enabled any multicast addresses that were
previously enabled.

MLID Control Routines

Version 1.03 (February 2, 1996) 18-15

MLIDShutdown
Description Allows an application to shut down a physical adapter.

Entry State AX
has the number of a logical board.

BX
is equal to MLID_SHUTDOWN (5).

CX
0000h shut down hardware and deregister with the LSL

(permanent shutdown).
non-zero shut down hardware only (temporary shutdown).

Interrupts
are enabled.

Return State AX
has a completion code.

Flags
Z flag set according to AX.

Interrupts
are enabled.

DS, BP, SS, SP
are preserved.

Completion Codes (AX) LSL_SUCCESSFUL (0000h)
The MLID was successfully shut down.

LSLERR_BAD_PARAMETER (8002h)
The board number is invalid.

LSLERR_FAIL (8005h)
The MLID was unable to shutdown its hardware. This might
indicate a hardware failure or system corruption.

Remarks If the MLID is permanently shutdown, a subsequent call to
MLIDReset will not be successful. Permanent shutdowns are
normally only used to completely disable the hardware and
restore any hooked interrupt vectors and return all system
resources. A permanent shutdown causes the MLID to release
all memory resources, including memory used for code and any
data.

MLIDs that are temporarily shut down can be brought back
into operation by invoking the MLIDReset control command.
All the adapter’s logical boards represented by the logical board
number in AX are affected by this command. All logical board

NetWare 16-Bit DOS Protocol Stacks and MLIDs Specification

18-16 Version 1.03 (February 2, 1996)

configuration tables that are affected by this command will
have their ShutDownBit bit set in the MSharingFlags field.

Any outstanding protocol transmit and receive ECBs will be
returned before this command is completed.

A NESL (NetWare Event Service Layer) event should be
generated by this routine for each logical board.

MLID Control Routines

Version 1.03 (February 2, 1996) 18-17

PromiscuousChange
Description Invoked by protocol stacks to enable or disable promiscuous

mode on the MLID’s adapter.

Entry State AX
contains the board number.

BX
is equal to PROMISCUOUS_CHANGE (10 [0Ah]).

CX
has the promiscuous state.

PROM_OFF (0000h) = Promiscuous mode off
PROM_MAC (0001h) = All MAC frames to be received.
PROM_NONMAC (0002h) = All non-MAC frames to be received.
PROM_SMT (0004h) = All SMT frames to be received.

Interrupts
are disabled.

Note CLD is in effect.

Return State AX
contains a completion code.

CX
has the current promiscuous state.

Interrupts
are disabled.

Flags
are set according to the value in AX.

DS, BP, SS, SP
are preserved.

Completion Codes (AX) LSL_SUCCESSFUL (0000h)
The requested operation was completed successfully.

LSLERR_BAD_PARAMETER (8002h)
The board number is invalid.

LSLERR_BAD_COMMAND (8008h)
This MLID does not support promiscuous mode.

Remarks A protocol stack can enable promiscuous mode multiple times
without error; however, only the current call is in effect. The
current value of the CX register determines whether
promiscuous mode is enabled or disabled. If the LAN medium
or adapter does not distinguish between MAC and non-MAC

NetWare 16-Bit DOS Protocol Stacks and MLIDs Specification

18-18 Version 1.03 (February 2, 1996)

frames (for example, Ethernet does not differentiate between
MAC or non-MAC frames), non-zero values in the CX register
enable promiscuous mode.

Call this function only at process time.

All adapters that have promiscuous mode enabled should pass
up bad packets, if possible.

MLIDs that support promiscuous mode set bit 13 in the
MModeFlags field of the MLID configuration table.

All stacks bound to each logical board provided by the MLID
will be notified of a change to the promiscuous status through
the LSL .

MLID Control Routines

Version 1.03 (February 2, 1996) 18-19

SetLookAheadSize
Description Tells the MLID the amount of look ahead data that is needed

by the caller to properly process received packets.

Entry State AX
has a logical board number.

BX
is equal to SET_LOOK_AHEAD_SIZE (9).

CX
has the requested look ahead size (0–128).

Interrupts
are enabled.

Return State AX
has a completion code.

Flags
Z flag set according to AX.

Interrupts
are enabled.

DS, BP, SS, SP
are preserved.

Completion Codes (AX) LSL_SUCCESSFUL (0000h)
The LookkAhead size is now at least as large as the requested
size.

LSLERR_BAD_PARAMETER (8002h)
The board number is invalid. LookAhead size was not changed.

Remarks As part of a protocol stack’s initialization, this function should
be invoked to properly configure the MLID specified in AX for
the amount of look ahead data a protocol stack needs for packet
reception. If the requested size is less than the MLID’s current
look ahead size value, the MLID will use the larger value. In
other words, it is impossible to adjust the size downward.

The default look ahead size is 18 bytes.

NetWare 16-Bit DOS Protocol Stacks and MLIDs Specification

18-20 Version 1.03 (February 2, 1996)

RegisterTxMonitor

Description Registers a transmit monitor with the MLID.

Entry State AX
is the logical board number.

BX
is equal to REGISTER_TX_MONITOR (4).

CX
zero Disable transmit monitoring.
non-zero Enable transmit monitoring.

ES:SI
Dword pointer to transmit monitor routine.

Interrupts
are disabled.

Return State AX
has a completion code.

Flags
are set according to AX.

Interrupts
are disabled.

DS, ES, SI, BP, SS, SP
are preserved.

Completion Codes (AX) LSL_SUCCESSFUL (0000h)
The requested operation was completed successfully.

LSLERR_OUT_OF_RESOURCES (8001h)
A transmit monitor is already registered for this logical board
number.

LSLERR_BAD_PARAMETER (8002h)
The board number is invalid or unable to deregister because
ES:SI pointed to a different transmit monitor routine than was
previously registered.

Remarks Protocols invoke RegisterTxMonitor when they want to monitor
the packets the adapter is transmitting. The MLID will call the
transmit monitor routine pointed to by ES:SI after the packet
is sent to the adapter for transmission. This provides the
protocol with the exact bytes being transmitted on the media.

MLID Control Routines

Version 1.03 (February 2, 1996) 18-21

Transmit Monitor
The transmit monitor is passed a TCB in DS:SI. The transmit
monitor can copy part or all of the packet described by the ECB
but cannot modify it.

Entry State DS:SI
has a pointer to an TCB.

Interrupts
are disabled.

Return State Interrupts
are disabled and remained disabled.

All registers must be preserved.

Remarks

An MLID calls this function after a transmit has completed.
This provides the transmit monitor a look at the actual
transmitted packet.

Transmit Control Block (TCB)
The MLID constructs a TCB to describe the data it receives
from a protocol stack. The TCB structure includes a pointer to
a separate FragmentStructure as well as the entire media
header. Below are descriptions of the fields in the TCB and
FragmentStructure.

TCBStructure struc
TCBDriverWS db 6 dup (0)
TCBDataLength dw 0
TCBFragStrucPtr dd 0
TCBMediaHeaderLen dw 0
TCBMediaHeader db 0?

TCBStructure end

Transmit Control Block (TCB)

Offset Name Size
 (in bytes)

Description

00h TCBDriverWS 6 The MLID can use this field
for any purpose.

06h TCBDataLength 2 This field contains the
length of the frame, as
described by the data
fragments, plus the media
header. This value will
never be 0.

NetWare 16-Bit DOS Protocol Stacks and MLIDs Specification

18-22 Version 1.03 (February 2, 1996)

Transmit Control Block (TCB) (continued)

Offset DescriptionSize
 (in bytes)

Name

08h TCBFragStrucPtr 4 This field contains a far
pointer to a list of fragments
as defined by the
FragmentStructure.

0Ch TCBMediaHeaderLen 2 This field is the length of
the media header which
follows this field in memory.
This value can have a
value of 0.

0Eh TCBMediaHeader 1 This is the start of the
media header (the media
header buffer is part of the
TCB).

The FragmentStructure is defined as follows:

FragmentStructure struc
FFragmentCount dw 0 ;number of fragment descriptors
FFrag0Address dd 0 ;1st fragment buffer
FFrag0Length dw 0 ;1st fragment buffer length

FragmentStructure ends

Additional fragments for FFragment Count > 1
FFrag?Address dd 0
FFrag?Length dw 0

Fragment Structure

Offset Name Size
 (in bytes)

Description

00h FFragmentCount 2 This field contains the number of
fragment descriptors following
this field. This field cannot be set
to 0.

02h FFrag0Address 4 This field contains a far pointer to
a buffer that contains part of the
frame data.

06h FFrag0Length 2 This field contains the length of
the buffer that was pointed to by
the previous field. This can be set
to 0.

08h FFrag?Address
FFrag?Len

4
2

The fragment structure (address
and length) is repeated for
additional fragments if
FFragmentCount > 1.

�

Version 1.03 (February 2, 1996) V-1

Section V Appendixes

FDDI.COM

MLID

Ether.COM

MLID

Link Support Layer (LSL)

Ether.COM

MLID

LAN Adapters

IPX/SPX

Protocol
Stack

AppleTalk

Protocol
Stack

Token.COM

MLID

TCP/IP

Protocol
Stack

NetWare Services

Version 1.03 (February 2, 1996) A-1

Appendix A Event Control Blocks (ECBs)

A.

A

A

NetWare 16-Bit DOS Protocol Stacks and MLIDs Specification

A-2 Version 1.03 (February 2, 1996)

Overview
The ODI system uses Event Control Blocks (ECBs) for two
purposes:

� to describe the protocol data during packet transmission
and

� to describe the protocol buffers during packet reception

The format of the ECB is the same regardless of whether it is a
send or a receive ECB.

This appendix includes the ECB structure in sample code, a
graphic representation of the ECB, and a description of the
ECB fields.

Event Control Blocks (ECBs)

Version 1.03 (February 2, 1996) A-3

Event Control Block Structure Sample Code
ECB struc

NextLink dd 0
PrevLink dd 0
Status dw 0
ESR dd ?
StackID dw ?
ProtID db 6 dup (?)
BoardNum dw ?
ImmAddr db 6 dup (?)
DriverWS db 4 dup (?)
ProtocolWS dw 4 dup (?)
DataLen dw 0
FragCount dw 1
Frag1Addr dd ?
Frag1Len dw ?

ECB ends

NextLink
PreviousLink

Status
EventServiceRoutine

StackID
ProtocolID

BoardNumber
ImmediateAddress

DriverWorkspace
ProtocolWorkspace

DataLength

Fragment?Address
FragmentCount

Fragment?Length

Figure 18.1
Graphical Representation
of Event Control Block

NetWare 16-Bit DOS Protocol Stacks and MLIDs Specification

A-4 Version 1.03 (February 2, 1996)

Table G.1 Event Control Block Field Descriptions
Offset Name Size (in

bytes)
Description

00h NextLink 4 This field is typically used as a forward link to manage a
list of ECBs. The current owner of the ECB (the protocol
stack, in this case) uses this field.

04h PreviousLink 4 This field is typically used as a back link to manage a list
of ECBs. The current owner of the ECB (the protocol
stack, in this case) uses this field. This field is also used to
pass receive information when in a receive ECB.

Word pointer PreviousLink+0 holds the same value as in
the LPacketAttrib field of the LookAheadStruc structure
that was presented to obtain the ECB. The first byte
(PreviousLink+0) is restricted to error conditions.

08h Status 2 This field indicates the completion status of an ECB. This
field is invalid until the associated Event Service Routine
is called. If the routine is successful, this field will be equal
to 0000h.

Status is 0 for error free reception. If the size of the ECB’s
buffers is less than the FrameDataLength value, Status
will be set to LSLERR_RX_OVERFLOW (8006h). The
Data buffers will be filled with as much of the data as
possible. If any of the error bits in the PreviousLink+0 field
are set, the ECB will be returned with Status set to
LSLERR_CANCELLED (8007h). The DEST_ERRORED
bit would be set in word pointer DriverWS+0.
DEST_ERRORED is an exclusive bit and thus will be the
only bit set in an error case.

0Ah EventServiceRoutine 4 The protocol stack sets this field to point to an appropriate
routine that is to be called when the send or receive event
is complete (either successfully or with an error). This field
must point to a valid handler.

0Eh StackID 2 When a packet is transmitted, the protocol stack sets this
field to the protocol stack’s assigned stack ID before the
protocol stack sends the ECB to the LSL. When a packet
is being received, the LSL sets this field to the stack ID
assigned to the protocol stack that is receiving the packet.
If a packet is being transmitted as a raw send, the protocol
stack can set this field to 0FFFFh as a signal to the
underlying MLID that this is a raw send. This gives the
protocol stack the ability to specify the complete packet,
including all low-level headers. See ‘‘Priority Packet
Support’ in Chapter 2: Overview of Protocol Stacks for a
complete list of priority values.

Event Control Blocks (ECBs)

Version 1.03 (February 2, 1996) A-5

Table G.1 Event Control Block Field Descriptions
Offset DescriptionSize (in

bytes)
Name

10h ProtocolID 6 This field contains the Protocol ID (PID) value for sends
and receives. If the ECB is a send ECB, the protocol stack
sets this field before calling SendPacket. In a send ECB,
the Protocol ID is embedded into the low-level packet
header by the underlying MLID and is used to uniquely
identify the packet as the caller’s protocol type.
In a receive ECB, the MLID stores in this field the Protocol
ID embedded in the low–level packet header. 802.2
frames store only the DSAP in the Protocol ID field.
The Protocol ID is stored in high-low order.
See ODI Specification Supplement: Frame Types and
Protocol IDs for an explanation of explicitly defining the
802.2 header to use in a transmit ECB.

16h BoardNumber 2 When an MLID registers with the LSL, the MLID is given a
logical board number. The BoardNumber field of the
configuration table contains that board number. On sends,
a protocol stack fills in this field to indicate the target
logical board.

18h ImmediateAddress 6 If the ECB is a send ECB, the protocol stack sets this field
before calling SendPacket. The immediate address is the
destination address of the packet on the physical network.

If the ECB is a receive ECB, the underlying MLID sets this
field to the packet’s source node address before the MLID
returns the ECB to the protocol stack. This source
address is the node on the same physical network that
just sent the packet.

If the MLID is utilizing canonical addressing, the
immediate address should be in canonical form.

1Eh DriverWorkspace 4 This field is generally reserved for use by the MLID.
Protocol stacks should not modify this field, unless the
protocol stack currently owns the ECB.

The first word of the workspace is defined as the
DestinationAddressType field for the receive packets. The
MLID sets this word to the same value as LDestType in
the LookAheadStruc structure when it is a receive ECB.

Word pointer DriverWorkspace+2 holds the
FrameDataLength value of the packet.

22h ProtocolWorkspace 8 This field is reserved for use by the originating protocol
stack and must not be modified by the LSL or MLIDs.

2Ah DataLength 2 This field holds the amount of valid data contained in the
ECB’s buffers.

2Ch FragmentCount 2 This field contains the number of fragment buffer
descriptors immediately following this field. This value
cannot be 0 or larger than 16.

NetWare 16-Bit DOS Protocol Stacks and MLIDs Specification

A-6 Version 1.03 (February 2, 1996)

Table G.1 Event Control Block Field Descriptions
Offset DescriptionSize (in

bytes)
Name

2Eh Fragment?Address 4 This field specifies a far pointer to a data buffer of
Fragment?Length.

32h Fragment?Length 2 This field specifies the length of the buffer pointed to by
Fragment?Address. This field can be 0, in which case the
MLID will skip over it when transmitting or receiving data.

�

Version 1.03 (February 2, 1996) B-1

Appendix B Compatibility with Multitasking DOS
Products

B.

B

B

NetWare 16-Bit DOS Protocol Stacks and MLIDs Specification

B-2 Version 1.03 (February 2, 1996)

Globally Accessible Data Buffers
The INTEL80386 microprocessor enables an 80386 protected
mode application to create and maintain multiple virtual 8086
machines, or DOS boxes. Each DOS box can be preempted so
that more than one DOS application can run at once
(multitasking). DOS ODI modules can coexist with these
products if all data structures and code entry points used by
the LSL and underlying MLIDs are globally accessible from the
context of any DOS box.

DOS applications (for example, NETX.COM) running on top of
ODI modules send and receive packets through a network
protocol that uses data buffers provided by the application
programs. Unfortunately, this means that the application can
only access the buffers in the real mode of the DOS box in
which the application is operating. If the application accesses a
buffer from another DOS box, that buffer will not be the
intended buffer, but a random piece of memory that happens to
exist at the same SEGMENT:OFFSET address. If this happens,
the intended results of the application will not be achieved.

Before Network Layer protocols can send or receive using an
ECB, the ECB, the ECB’s ESR, and the associated data buffers
must be globally accessible. These data structures and routines
must be accessible at interrupt time or after a context switch to
another DOS box.

Microsoft Windows 386 Enhanced Mode
When DOS device drivers (including TSRs) run under
Microsoft Windows, they should interface to a Window’s Virtual
Device Driver (VxD) that has been written to conform with
multitasking issues (for example, memory globalization). If
your protocol stack will be operating under Microsoft Windows,
you will probably have to develop a VxD for your protocol stack.
Refer to the Microsoft Windows SDK for more information.

�

Version 1.03 (February 2, 1996) C-1

Appendix C The 802.2 Type II Frame Header

C.

C

C

NetWare 16-Bit DOS Protocol Stacks and MLIDs Specification

C-2 Version 1.03 (February 2, 1996)

Overview
This appendix describes the changes that enable a protocol
stack to receive packets with 802.2 Type II headers.

The 802.2 Type II Frame Header

Version 1.03 (February 2, 1996) C-3

Support of the 802.2 Type II Frame
Protocol stacks previously supported only the 802.2 Type I
frame. When a Type II packet was received, the stacks
considered the second control byte of the header as part of the
packet’s data.

Packet Transmission

Previously, if a protocol stack needed to specify the complete
802.2 Type I header, the protocol stack would place a value of
02h in Byte 0 of the ProtocolID field of the transmit ECB. Now,
in order to allow a protocol stack to support 802.2 Type II
headers, the ProtocolID field of the transmit ECB can be filled
out according to the following table:

Table K.1 ProtocolID Field
Protocol Stacks

that:
Byte

0
Byte

1
Byte

2
Byte

3
Byte

4
Byte

5
Are not 802.2 aware
(for example, IPX)

0 0 0 0 0 DSAP

Specifically specify
the 802.2
Type I header

2 0 0 DSAP SSAP Ctrl0

Explicitly specify the
802.2
Type II header

3 0 DSAP SSAP Ctrl0 Ctrl1

Byte 0 contains the number of extra bytes in the ProtocolID
field defining the explicit 802.2 header. The protocol stack
should use byte 0 as a zero-based count of how many bytes of
the 802.2 header is contained in the ProtocolID field. For
example, if the value in byte 0 is 02h, the 802.2 header starts
with the third byte following the ProtocolID field.

The value in byte 0 is a count and should not be compared for a
specific value except to check for the special case of 0. If the
value in byte 0 is equal to 0, byte 5 of the ProtocolID field
contains the DSAP field of an 802.2 Type I header. (The 802.2
header DSAP = SSAP, and UI = 03. For example, DSAP = E0
generates E0 E0 03, an 802.2 Type I UI header.)

Packet Reception

Bits 0 and 1 of the Ctrl0 field indicate whether an 802.2 header
is Type I or Type II. If both bit 0 and bit 1 are set, the header is
802.2 Type I. Any other combination (00, 01, 10) indicates an
802.2 Type II header. The MLID no longer uses the first byte of

NetWare 16-Bit DOS Protocol Stacks and MLIDs Specification

C-4 Version 1.03 (February 2, 1996)

the first fragment buffer as the Ctrl1 field for an 802.2 Type II
header; the first byte of the first fragment buffer now contains
the first byte of the received packet’s data. The ProtocolID field
of the receive ECB contains the DSAP value of the 802.2
header regardless of whether the header is Type I or Type II.

If a packet contains an 802.2 header, the RX_8022_TYPEx bit
will be set in the LDestType field of the LookAheadStruc
structure. After the MLID has filled in the ECB, the first word
of the DriverWS field of the ECB will be filled in with the same
value. If RX_8022_TYPE2 bit is set, the Ctrl0 and Ctrl1 fields
exist in the MAC header. If a protocol needs the 802.2 Type 1 or
Type 2 header information, it should be saved at look ahead
time.

�

Version 1.03 (February 2, 1996) D-1

Appendix D Promiscuous Mode

D.

D

D

NetWare 16-Bit DOS Protocol Stacks and MLIDs Specification

D-2 Version 1.03 (February 2, 1996)

Overview
This appendix describes how promiscuous mode can be
implemented and some of the issues involved in
implementation.

Promiscuous Mode

Version 1.03 (February 2, 1996) D-3

Implementing Promiscuous Mode
An MLID can receive a packet in one of four ways:

� The packet is routed specifically to the MLID.

� The packet is a broadcast packet and is received by all
MLIDs on the LAN.

� The packet is a multicast packet, and the MLID’s address is
in the multicast table. (The multicast table is typically
limited to 16 in DOS ODI.)

� The MLID has enabled promiscuous mode and is receiving
all packets on the wire.

When the MLID receives a packet, it must determine the
packet type. If the LAN adapter is capable of receiving errored
frames in promiscuous mode, it should do so.

Protocols that wish to receive and/or monitor promiscuous
traffic need to do the following things.

1. Obtain the entry point for the logical board you wish to
monitor.

2. Register with the LSL as a prescan receive or default stack.

3. Call the LSL’s ModifyStackFilter function to adjust to see
desired packet types.

4. Call the appropriate routine to enable promiscuous mode.

After these steps, packets that pass the filter will start being
presented to the protocol’s receive handler.

Implementation Considerations
Prescan and default protocol stacks need to consider the
following when looking at operations on ECBs.

Multitasking

Global buffers should be provided to the LSL and lower layers.
Task switching and real-protected mode switching must also be
handled appropriately.

Packet Sequencing

Prescan and default protocol stacks must ensure that receive
and transmit packets are kept in sequence. While a protocol
stack is operating on a packet, all subsequent packets must be
queued to maintain the proper sequence.

NetWare 16-Bit DOS Protocol Stacks and MLIDs Specification

D-4 Version 1.03 (February 2, 1996)

ECB Does not Contain the Entire Packet

If a bound protocol stack supplies the ECB for a received
packet and does not need the entire packet, the ECB might not
contain all of the received packet’s data. For example, the
packet might contain 100 bytes, but the protocol stack might
only need to transfer 80 bytes to its supplied buffers. While this
might be a rare occurrence, it can be detected if the protocol
stack examines the DataLength field of the ECB, and compares
this field to the LookAheadStruc structure’s LDataSize field.
Prescan and default stacks should always supply full sized
ECBs for packets that they are consuming and that they will be
resubmitting to the LSL.

Error Packets

When in promiscuous mode, error packets can be received by
setting the appropriate bit through calling the
ModifyStackFilter function in the LSL protocol support entry
point. The LDestType field in the LookAheadStruc structure
will have only the DestError bit set, and the actual error type
will be defined in the LPacketAttrib field in the
LookAheadStruc structure. All error packets that are received
without identifying a board number will be received on the first
logical board for the physical board; usually, this is board
number 0 if there is only one LAN adapter in the machine.

Logical vs. Physical

Promiscuous mode is enabled on a physical board basis, but
stack chaining is only available on a logical board basis. In
other words, when you enable promiscuous mode on one logical
board, promiscuous mode is enabled on the physical board
basis, and all logical boards on that physical adapter will have
promiscuous mode enabled also. This does not present a
problem since the filtering provided at the LSL precludes
sending any packet to protocols other than those that have a
filter set appropriately.

If a frame type is not loaded, or there is an error that causes
the MLID to not be able to determine the frame type, it is
received on the first logical (default) board of the MLID in
question.

�

Version 1.03 (February 2, 1996) E-1

Appendix E The NET.CFG Configuration File

E.

E

E

NetWare 16-Bit DOS Protocol Stacks and MLIDs Specification

E-2 Version 1.03 (February 2, 1996)

Overview
The NET.CFG file is used by the various ODI modules
(including the protocol stack and MLID) to obtain the network
system configuration information at initialization time. The
MLID parses the NET.CFG, evaluates the MLID parameters,
and then sets those parameters in the MLID configuration
table.

Each node (workstation) in a network system contains at least
one network interface card (NIC), the NIC’s MLID, the LSL,
and the protocol stacks.

As each element of the network system loads into the computer
system, it reads the NET.CFG file to find configuration
information concerning its operation.

The NET.CFG Configuration File

Version 1.03 (February 2, 1996) E-3

Main Section Headings
Main section headings must be flush left and typically begin
with one of the following labels: Protocol, Link Support, or Link
Driver. Protocol stacks use the ‘‘Protocol” main section heading.
The ‘‘Protocol” entry is followed by the name of the protocol
stack to which the information in the section following the
heading refers. This enables an ODI module to locate its
configuration section. All configuration entries following the
Main Section Heading must be preceded with white spaces.
The end of the configuration information for a specific module
is signaled by the occurrence of another main section heading
or the end of the file. The following example illustrates a
sample NET.CFG file entry:

protocol ipx
bind #2

protocol abc
multicast 011234567890 ;Fictitious keyword

link driver ne1000
int 3
port 330

The text in the NET.CFG is not case sensitive and the text
parameters are delimited by white space. Any comments
should be preceded by a semicolon (;). For example:

protocol ipx ;Main section header for IPX
bind #1 ;Inform IPX that it should bind

;to logical board 1

A protocol’s main section header should use an intuitive name
such as the protocol’s executable file name—for example,
TCP/IP.

During initialization, the protocol stack parses the NET.CFG
for its main section header. The protocol then parses and
interprets the configuration entries until the parser reaches
the end of the file or until another main section header is
encountered.

Locating the NET.CFG File’s Directory
The LSL general service function GetNetcfgPath (see Chapter
12: LSL General Services) is available to the protocol stack to
enable it to locate the directory in which the LSL found the
NET.CFG file. All ODI modules should use this API function to
open the NET.CFG file so that all modules use a common
NET.CFG file.

NetWare 16-Bit DOS Protocol Stacks and MLIDs Specification

E-4 Version 1.03 (February 2, 1996)

LAN Driver Keywords and Parameters
DMA [#selection] Channel

If the MLID uses multiple DMA channels, DMA configures
DMA#selection n to be channel n. #Selection can be #1 or #2 (it
is assumed to be #1 if this parameter is absent). You might
have or need multiple DMA entries.

Example

; Example NET.CFG file; this file is not functional

; Configure DMA selection 1 to be channel 7
Link driver 3c505

DMA #1 7

IRQ [#selection] Interrupt
IRQ configures the #selection n to be IRQ n. #Selection can be
#1 or #2 (it is assumed to be #1 if this parameter is absent). If
the MLID uses multiple interrupt lines, you can have multiple
IRQ entries.

Example

; Example NET.CFG file; this file is not functional

; Configure selection 1 to be interrupt 9
Link driver NE2000

IRQ #1 9

MEM [#selection] Address [length]
MEM configures the #nth memory address and range at
address for length paragraphs. The address must be an
absolute physical address. #Selection can be #1 or #2 (it is
assumed to be #1 if this parameter is absent). You might have
or need multiple MEM entries.

Example

; Example NET.CFG file; this file is not functional

; Configure memory address and range
Link driver TRXNET

MEM #1 C0000 80

Port [#selection] Address [length]
Port configures the #nth I/O port address and range at address
for length ports. #Selection can be #1 or #2 (it is assumed to be
#1 if this parameter is absent). You might have or need
multiple Port entries.

The NET.CFG Configuration File

Version 1.03 (February 2, 1996) E-5

Example

; Example NET.CFG file; this file is not functional

; Set up the card. Note that these settings are fictitious.
Link driver NE1000

port 320

Slot n
Slot indicates which slot contains the card for the MLID. N is 1
based; that is, the first slot is one (1), not zero (0).

Slot ?

Slot ? indicates that the MLID is to scan the slots for the
adapter. This is the default mode.

Example

; Example NET.CFG file; this file is not functional

Link driver ne2
slot 3

Node Address h [format]
Node Address overrides any hard-coded node address in the
MLID’s hardware, if the hardware will allow it.

You can use either canonical or noncanonical format for any
media when overriding the node address. For example:

Node Address 080000A5646BL Node address in canonical form.
Node Address 1000005A26D6M Node address in noncanonical form.

If M or L is not specified, the default for overriding the node
address is the physical layer form of the address.

Example

; Example NET.CFG file; this file is not functional

; Set up the ne2 card. Note that all settings are fictitious.
Link driver ne2

node address 1234abcd

;Set up the ne2 card for address in canonical form.
Link driver ne2

node address 1234abcdL

;Set up the ne2 card for address in noncanonical form.
Link driver ne2

node address 1234abcdM

Protocol <name> h <frame type>
Protocol tells the MLID that the named protocol has a protocol
identification number of h. This enables new protocols (or

NetWare 16-Bit DOS Protocol Stacks and MLIDs Specification

E-6 Version 1.03 (February 2, 1996)

overrides the default) to be handled by existing MLIDs. The
MLID uses this information to make the AddProtocolID call to
the LSL during its initialization.

Example

; Example NET.CFG file; this file is not functional

; Identify IPX as 8137h on Ethernet_II, identify IP
as 800h, identify ARP as 806h
Link driver NE1000

Frame Ethernet_II
Protocol IPX 8137 Ethernet_II
Protocol IP 800 Ethernet_II
Protocol ARP 806 Ethernet_II

Frame <name> Address Mode
Frame configures the link-level frame type to be <name>. The
MLID will create this link-level frame if there is a possibility of
more than one type. Multiple frame types can be loaded
concurrently.

The following keywords set the OBR mode.

LSB Addresses are presented in canonical mode to the
hardware.

MSB Addresses are presented in noncanonical mode to the
hardware.

Example

; Example NET.CFG file; this file is not functional

; Configure the MLID to support 4 frame types
Link driver NE2000

Frame Ethernet_II
Frame Ethernet_802.3
Frame Ethernet_802.2
Frame Ethernet_SNAP

; Configure the MLID for OBR support by frame type
Link Driver TOKEN

Node Address 020012345678L
Frame Token–Ring MSB
Frame Token–Ring_Snap LSB

Where Token-Ring is in MSB format and Token–Ring_SNAP is
in LSB format. The appropriate configuration tables for each
frame will indicate the MSB/LSB configuration.

Custom Keywords
A protocol stack can define custom configuration keywords as
the keywords are needed. All protocol modules should at least

The NET.CFG Configuration File

Version 1.03 (February 2, 1996) E-7

parse and understand the ‘‘Bind” keyword with its associated
logical board number. The board number specified must be
preceded by a pound sign (#) and must be one-based (meaning
that the first board number must start with one). You must
keep in mind, however, that internally, board numbers are
zero-based. Therefore, when the protocol stack obtains a board
number from the NET.CFG file, it must subtract one from that
number so that the board number is converted to a zero-based
number for internal use. Remember, also, that before the
protocol stack displays the board number on the monitor, the
protocol stack must add one to the board number, converting it
to a one-base number. Additional board number entries must
be entered on another line. Following is an example NET.CFG
file for a fictitious protocol stack:

protocol ABC
bind #1
bind #5

protocol XYZ
bind #5

�

Version 1.03 (February 2, 1996) Glossary-1

Glossary

19

19.

19

NetWare 16-Bit DOS Protocol Stacks and MLIDs Specification

Glossary-2 Version 1.03 (February 2, 1996)

Abort

To execute an orderly termination of a
process whenever the process cannot or
should not complete.

Adapter

A circuit board driven by software. In
the context of this document an adapter
refers to a physical board. See also NIC,
MLID, Driver.

Address

A unique group of characters that
correspond either to a selected memory
location, an input/output port, or a
device on the network. See also Node
address.

AES––Asynchronous Event Scheduler

An auxiliary service that measures
elapsed time and triggers events at the
conclusion of measured time intervals.

API––Application Programming
Interface

A defined set of routines that enables
two software modules to pass
information between them.

ARP––Address Resolution Protocol

The protocol used by TCP/IP to locate
nodes on a network.

Asynchronous process

A process that does not depend upon
occurrence of a timing signal.

Bit

A binary digit that can only be 0 or 1.

Broadcast

A simultaneous transmission of data
from a single source to all destination
addresses on a network.

Buffer
A data area used for the temporary
storage of data being moved between
processes.

Bus
The hardware interface upon which
data is transferred.

Byte
A sequence of 8 bits.

CAM––Content Addressable Memory
Memory that resides on a LAN adapter.
In the context of this specification, this
memory is used to hold the group
addresses that the adapter is to filter.

Completion code
A code returned by a routine to indicate
that the routine has completed either
successfully or unsuccessfully.

Control Block
A data structure that is used by a
process to store control information. See
also ECB.

Destination Address
A field that identifies the physical
location to which data is to be sent.

Driver
The software module that operates a
circuit board. In the context of this
document, driver refers to a software
module that drives a network board (or
adapter) and enables a device to
communicate over a LAN. See also
Adapter, NIC, MLID.

ECB––Event Control Block
A data structure that contains the
information required to coordinate the
scheduling and activation of certain
operations. All ODI layers and AES
functions act upon ECBs.

EISA––Extended Industry Standard
Architecture

A 32-bit bus standard, a superset of the
ISA standard.

Glossary

Version 1.03 (February 2, 1996) Glossary-3

EOI––End of Interrupt

A command issued to the interrupt
controller (PIC) indicating an end of
interrupt.

ESR––Event Service Routine

An application-defined procedure that
is called after an event occurs. An event
can be the completion of a send request,
the completion of a listen request, or
the recurrence of an event that
rescheduled itself with the AES.

Ethernet

A data-link protocol that specifies how
data is placed on and retrieved from a
common transmission medium.

FDDI––Fiber Distributed Data
Interface

A cable interface capable of
transmitting data at 100 Mbps. FDDI
can operate over fiber lines or
twisted-pair cable.

Frame

The unit of transmission on the
network. The frame includes the
associated addresses and control
information in the Media Access
Control (MAC) Layer and the
transmitted data.

HSM—Hardware Specific Module

One of three modules comprising the
LAN driver toolkit. The developer
writes the HSM to handle all hardware
interactions for a specific physical
board.

Interrupt

A hardware signal that causes the
orderly suspension of the currently
executing process in order to execute a
special program (or interrupt handler).

IOCTL––I/O Control
MLID procedures that perform specific
actions (for example, add multicast
address, reset, shut down, etc.).

IP––Internet Protocol
The protocol used by TCP/IP. IP is
connectionless and was designed to
handle a large number of WANs and
LANs on an internetwork.

IPX––Internet Packet Exchange
An implementation of the Internetwork
Datagram Packet (IDP) protocol from
Xerox. It allows applications running on
NetWare workstations to take
advantage of NetWare communications
drivers to communicate directly with
other workstations, servers, or devices
on the internetwork.

ISA––Industry Standard Architecture
An 8/16-bit bus standard used with
Intel’s microprocessors.

ISR––Interrupt Service Routine
Routine that is executed to handle a
hardware or software interrupt request.

LAN––Local Area Network
At least two computers (usually located
in the same building) connected
together in such a way as to allow them
to communicate and share resources.

LSL––Link Support Layer
An ODI layer through which multiple
protocol packets are directed from the
MLID to a designated protocol stack,
and vice versa. The LSL directs
incoming and outgoing packets.

MAC Header––Media Access Control
Header

Controls the transmission of packets
through a network. The MAC header
includes source and destination data.

Medium
The physical carrier of a signal.

NetWare 16-Bit DOS Protocol Stacks and MLIDs Specification

Glossary-4 Version 1.03 (February 2, 1996)

Micro Channel Architecture
A bus standard defined by IBM.

MLI––Multiple Link Interface
The interface between the MLID and
the LSL that allows multiple MLIDs to
exist concurrently.

MLID––Multiple Link Interface Driver
The ODI layer that receives and
transmits packets to a hardware device.
This acronym refers to ODI LAN
drivers.

MMIO––Memory Mapped I/O
An architecture for input and output
that allows I/O ports to be accessed as
though they were memory locations.

MPI�––Multiple Protocol Interface
The interface between the LSL and a
Network Layer protocol stack that
allows different communication
protocols to operate concurrently.

MSM—Media Support Module
One of three modules comprising the
LAN driver toolkit. The MSM
standardizes and manages the generic
details of interfacing ODI MLIDs to the
LSL and the operating system.

Multicast
The simultaneous transmission of data
from a single source to a selected group
of destination addresses on the
network.

NIC––Network Interface
Controller/Card

The physical network board installed in
workstations and file servers.

NLM––NetWare Loadable Module
Applications that are loaded
dynamically and integrated with all the
NetWare server operating systems
starting with NetWare 3.

Node
Any network device that transmits
and/or receives data. The device must
have a physical board and a unique
address. See also Node Address.

Node Address
A unique combination of characters
that corresponds to a physical board on
the network. Each adapter must have a
unique node address.

ODI––Open Data–Link Interface
The model that allows multiple network
protocols, physical boards, and frame
types to coexist on a single workstation
or server.

OSI––Open Systems Interconnection
A standard communications model that
defines communications between
computer systems.

Packet
The unit of transmission on the
network. The packet includes the
associated addresses and control
information.

Peripheral Component
Interconnect—PCI

A 32-bit or 64-bit bus standard with
multiplexed address and data lines.

Personal Computer Memory Card
International Association—PCMCIA

A 16-bit bus standard.

PID––Protocol Identification
A stamp containing a globally
administered value (1 to 6 bytes in
length) that reflects the protocol stack
in use (for example, E0h=IPX 802.2).
The PID located in every packet is a
stamp that uniquely identifies the
packet as belonging to a specific
protocol.

Glossary

Version 1.03 (February 2, 1996) Glossary-5

Protocol
The set of rules and conventions that
determines how data is to be
transmitted and received on the
network.

Pseudocode
Describes computer program
algorithms generically without using
the specific syntax of any programming
language.

RAM––Random Access Memory
The computer’s (or physical board’s)
storage area into which data can be
entered and retrieved nonsequentially.

RCB––Receive Control Block
A data structure used by the MLID to
receive data.

ROM––Read Only Memory
The portion of the computer’s (or
physical board’s) storage area that can
be read only (write operations are
ignored).

Shared RAM
The RAM on some physical boards that
can be accessed by either the computer
or the physical board on which the
RAM is installed.

Source Address
A field in a frame that identifies the
physical location of a node that is
sending the packet.

SPX––Sequenced Packet Exchange
A Session Layer protocol that uses IPX.
SPX provides connection oriented
services and guarantees packet
delivery.

Stubbed Routine
A routine that contains only an
instruction to return to the caller of the
routine.

Synchronous Process
A process that depends upon the
occurrence of another event such as a
timing signal.

TCB––Transmit Control Block
The data structure used by an HSM to
transmit data. The structure is
typically used by MLIDs using the LAN
Driver Toolkit. This structure is also
used by MLIDs to pass information to
transmit monitors.

TCP––Transmission Control Protocol
Allows a process on one machine to
send a stream of data to a process on
another machine.

Token–Ring
A network that utilizes a ring topology
and passes a token from one device to
another. A node that is ready to send
data can capture the token and send
the data for as long as it holds the
token.

TSM—Topology Specific Module
One of three modules comprising the
LAN driver toolkit. The <TSM>.OBJ
manages the operations unique to a
specific media type.

TSR––Terminate-and-Stay-Resident
A DOS program or routine that remains
in memory after being loaded and
subsequently exited.

VAP––Value Added Process
A process that runs ‘‘on top” of the
NetWare 2 network operating system
(in much the same way a word
processing or spreadsheet application
runs on top of DOS). VAPs tie in with
the network operating system so that
additional enhancements can provide
services without interfering with the
network’s normal operation.

NetWare 16-Bit DOS Protocol Stacks and MLIDs Specification

Glossary-6 Version 1.03 (February 2, 1996)

Virtual Machine
An illusion of multiple processes, each
executing on its own processor with its
own memory. The resources of the
physical computer can be used to share
the CPU and make it appear that each
process has its own processor. The
virtual machine is created with an
interface that appears to be identical to
the underlying hardware.

WAN––Wide Area Network
At least two computers remotely
connected together in such a way as to
allow them to communicate over wide
distances and to share resources.

Version 1.03 (February 2, 1996) Index-1

Index

20

20.

20

NetWare 16-Bit DOS Protocol Stacks and MLIDs Specification

Index-2 Version 1.03 (February 2, 1996)

Numbers
802.2 header, DriverWorkspace field, 5-12

802.2 header, specifying, 6-5

802.2 Type II frame, specifying, C-3

A
adapter data space, 15-17

defined, 14-6

AddGeneralService, defined, 13-3

Adding Protocol ID, process, 4-7

adding Protocol IDs, 4-7

AddmemoryToPool, defined, 13-6

AddMulticastAddress, defined, 18-3

AddProtocolID, defined, 10-5, 11-4

AESECB structure, 10-52, 11-18

AESESR, AESECB field defined, 10-52, 11-18

AESLink, AESECB field, defined, 10-52, 11-18

AESStatus, AESECB field defined, 10-52, 11-18

AllocateMemory, defined, 13-7

B
BestDataSize, 4-10

HSM configuration table field, defined, 15-7

Binding
dynamic, 4-6
NET.CFG file entry, 4-6
overview, 2-4
process, 4-6

binding to logical boards, 4-11

BindStack, defined, 10-7

BindToMLID, defined, 7-3

bit maps
MFlags, 15-14
MModeFlags, 15-12
MSharingFlags, 15-16

board, service routine, overview, 14-4

Board number
defined, 2-2
using, 2-4

board support, multiple, 4-8

Board, logical. See Logical board, 2-2

BoardInstance, HSM configuration table field,
defined, 15-6

BoardNumber
Event Control Block field, defined, A-5
HSM configuration table field, defined, 15-6

BoardNumber field, 6-5

Bound protocol stack, defined, 2-4, 5-6

Brouter, document, 18-8

buffer, lookahead, 17-4

bus type
Extended Industry Standard Architecture

(EISA), 14-8
Industry Standard Architecture (ISA), 14-8
listed, 14-8
Micro Channel Architecture, 14-8
Peripheral Component Interconnect (PCI),

14-8
Personal Computer Memory Card Interna-

tional Association (PCMCIA), 14-8

C
CancelAESEvent, defined, 10-8, 11-5

canonical and noncanonical addressing, docu-
ment, xi, 4-11, 6-6, 18-5, 18-13

commandline switches, LSL, 8-4

Completion codes, LSL. See LSL completion
codes, 8-3

ConfigMajorVersion, LSL configuration table
field, defined, 9-3

ConfigMinorVersion, LSL configuration table
field, defined, 9-3

ConfigTableLink, HSM configuration table
field, defined, 15-9

ConfigTableMajorVer, HSM configuration table
field, defined, 15-6

ConfigTableMinorVer, HSM configuration table
field, defined, 15-6

configuration files, custom, 8-5

configuration table
MLID, 14-5, 15-3

major version, 15-6
minor version, 15-6

protocol stack, 3-3

control, routines, MLID, overview, 14-4

Control commands for protocol stacks, Bind-
ToMLID, 7-3

Index

Version 1.03 (February 2, 1996) Index-3

control procedure
required, 14-3
supported, 14-3

ControlStackFilter, defined, 11-6

custom configuration files, 8-5

customizing protocol stacks, 4-8

D
data, transfer mode, methods, 14-8

data flow
receive, 1-7
send, 1-6

data space
adapter, 15-17
frame, 15-3

data structures, MLID, 14-5

DataLength, Event Control Block field, de-
fined, A-5

DataLength field, 6-6

Default protocol stack, defined, 2-2, 2-5, 5-6

DefaultStackControlHandler, DefaultStackInfo
structure field, defined, 10-41

DefaultStackInfo structure, defined, 10-41

DefaultStackReceiveHandler, DefaultStackInfo
structure field, defined, 10-41

DefragmentECB, defined, 10-9, 11-8

DeleteMulticastAddress, defined, 18-6

DeregisterDefaultStackChain, defined, 10-10

DeregisterMLID, defined, 11-9

DeregisterPrescanRxChain, defined, 10-11

DeregisterPrescanTxChain, defined, 10-12

DeregisterRPLBootROM, defined, 10-13

DeregisterStack, defined, 10-14

destination, determining packet, 8-3

determining, packet destination, 1-5, 8-3

DMA, lookahead, 17-5

DMA keyword, E-4

DMALine, HSM configuration table field, de-
fined, 15-11

document
Brouter supplement, 18-8
canonical and noncanonical addressing sup-

plement, xi, 4-11, 6-6, 18-5, 18-13
frame types, xi, 2-5, 4-7, 6-6, 10-5, 11-4, A-5
hub management interface, xi, 18-8
installation information file, xi
MLID message definition, xi
NESL specification, xi, 4-8, 14-5
other, x
protocol IDs (PIDs), xi, 2-5, 4-7, 6-6, 10-5,

11-4, A-5
source routing, xi
supplement, x

DOS Environment, protocol stack, 2-2

DriverMajorVer, HSM configuration table field,
defined, 15-9

DriverManagement, defined, 18-7

DriverMinorVer, HSM configuration table field,
defined, 15-9

DriverPoll, defined, 18-9

DriverWorkspace, Event Control Block field,
defined, A-5

E
ECB. See Event Control Block (ECB), A-2

EndCriticalSection, defined, 10-15, 11-10

entry point
LSLGenSupEntryPt, 12-3
LSLMLIDSupEntryPt, 12-3
LSLProtSupEntryPt, 12-3

Event Control Block (ECB)
AESECB, defined, 10-52, 11-18
defined, A-3
overview, 6-3, A-2
ProtocolWorkspace field, 6-4
sample code, A-3
sending packets, 6-4
StackID ECB field, values of, 5-12
Status ECB field, values of, 5-12

EventServiceRoutine, Event Control Block
field, defined, A-4

EventServiceRoutine field, 6-4

Explicit, 4-6

Extended Industry Standard Architecture
(EISA) bus, 14-8

NetWare 16-Bit DOS Protocol Stacks and MLIDs Specification

Index-4 Version 1.03 (February 2, 1996)

F
FFrag?Address, FragmentStructure field, de-

fined, 18-22

FFrag?Len, FragmentStructure field, defined,
18-22

FFrag0Address, FragmentStructure field, de-
fined, 18-22

FFrag0Length, FragmentStructure field, de-
fined, 18-22

FFragmentCount, FragmentStructure field,
defined, 18-22

files, custome configuration, 8-5

filtering, stack, 2-7

Flags, HSM configuration table field, defined,
15-9

flags
MFlags, bit map, 15-14
MLIDModeFlags, OBR support, bits 14 and

15, 15-13
MSharingFlags, bit map, 15-16

flow of data
receive, 1-7
send, 1-6

Fragment descriptors, defined, 6-7

Fragment?Address, Event Control Block field,
defined, A-6

Fragment?Length, Event Control Block field,
defined, A-6

FragmentCount, Event Control Block field, de-
fined, A-5

FragmentCount field, 6-6

FragmentStructure, structure provided by
MSM, defined, 18-22

frame
data space, 15-3

defined, 14-6
supporting multiple types, 14-6
type, relation of to logical board, 14-6

Frame keyword, E-6

Frame Reception. See Receiving packets, 5-2

Frame transmission. See Sending packets, 6-2

frame type, document, xi, 2-5, 4-7, 6-6, 10-5,
11-4, A-5

FrameTypeID, HSM configuration table field,
defined, 15-7

FrameTypeString, HSM configuration table
field, defined, 15-7

FreeMemory, defined, 13-8

G
General Service Description Record, defined,

13-4

GenServiceControlBlock structure, 13-4

GetBoundBoardInfo, defined, 10-16

GetCriticalSectionStatus, defined, 10-17, 11-11

GetECB, defined, 10-18, 11-12

GetEntryPoints, defined, 12-3

GetHeldPacket, defined, 10-19

GetIntervalMarker, defined, 10-21, 11-13

GetLSLConfiguration, defined, 10-22

GetLSLStatistics, defined, 10-23

GetMLIDConfiguration, defined, 18-10

GetMLIDControlEntry, defined, 10-24

GetMLIDStatistics, defined, 18-11

GetMLIDSupportEntry, defined, 12-4

GetMulticastInfo, 18-12

GetNETCFGPath, defined, 13-9

GetPIDFromStackIDBoard, defined, 10-25

GetProtocolControlEntry, defined, 10-27

GetProtocolStackConfiguration, defined, 7-4

GetProtocolStackStatistics, defined, 7-5

GetProtocolSupportEntry, defined, 12-5

GetServiceChain, defined, 13-10

GetStackECB, defined, 11-14

GetStackIDFromName, defined, 10-28

GetStartOfChain, defined, 10-29

GetTickMarker, defined, 10-30

H
hardware

bus type, listed, 14-8
data transfer, 14-8

Hardware/Media independence, 2-3

HoldEvent, defined, 10-31

HoldPacket, defined, 10-32

Index

Version 1.03 (February 2, 1996) Index-5

HoldReceiveEvent, defined, 11-16

hub management interface, document, xi, 18-8

I
ImmediateAddress, Event Control Block field,

defined, A-5

ImmediateAddress field, 6-6

Industry Standard Architecture (ISA) bus, 14-8

Initialization, protocol stack
overview, 4-2
process, 4-2

initializing, MLID, 14-4, 16-3

installation information file, document, xi

Interrupt handler, polling from, 6-3

IntLine, HSM configuration table field, de-
fined, 15-11

IRQ keyword, E-4

K
Keywords, NET.CFG file, E-4

L
LAESEventsCount, LSL statistics table field

defined, 9-6

LAN adapters, multiple allowed by ODI, 2-2

LBoardNum, Receive LookAhead structure
field, defined, 5-4

LDataSize, Receive LookAhead structure field,
defined, 5-4

LDestType field, xiii, 5-4

LECBCancelFailures, LSL statistics table field
defined, 9-6

LECBCancelOK, LSL statistics table field de-
fined, 9-6

LImmAddress field, 5-4

line speed, protocol stack, 4-9

LineSpeed, HSM configuration table field, de-
fined, 15-8

Link Support Layer (LSL)
defined, 1-5, 8-3
locating, 4-3

registering with, 4-5

Link Support Layer API entry points, locating,
4-3

LMediaHeaderPtr, Receive LookAhead struc-
ture field, defined, 5-3

LNumCustomCounters, LSL statistics table
field defined, 9-6

LNumGenericCounters, LSL statistics table
field defined, 9-5

loading the LSL, 4-3

Locating the LSL, locating LSL API entry
points, 4-3

logical, board, relation of to frame type, 14-6

Logical board, defined, 2-2

logical board
binding to, 4-11
servicing, 4-6

Logical network, defined, 2-4

look ahead, 4-11

Look ahead data
configuring, 5-5
defined, 5-2

look ahead structure, xiii, 5-3, 11-14

lookahead
buffer, 17-4
DMA, 17-5
programmed I/O, 17-5
shared RAM, 17-5

LookAhead structure, defined, 5-3

LookAheadLen, Receive LookAhead structure
field, defined, 5-3

LookAheadPtr, Receive LookAhead structure
field, defined, 5-3

LookAheadSize, HSM configuration table field,
defined, 15-8

LookAheadStruc structure, xiii, 5-3, 11-14

LPacketAttrib field, xiii, 5-4

LPostponedEvents, LSL statistics table field
defined, 9-6

LPriorityLevel field, 5-5

LProtID, Receive LookAhead structure field,
defined, 5-4

LSL, loading, 4-3

LSL API entry points, locating, 4-3

LSL commandline switches, 8-4

NetWare 16-Bit DOS Protocol Stacks and MLIDs Specification

Index-6 Version 1.03 (February 2, 1996)

LSL completion codes, list of, 8-3

LSL protocol stack services
BindStack, 10-7
CancelAESEvent, 10-8
DeregisterRPLBootROM, 10-13

LSLGenSupEntryPt entry point, 12-3

LSLInitEntryPointBlock structure, 12-3

LSLMajorVersion, LSL configuration table
field, defined, 9-4

LSLMinorVersion, LSL configuration table
field, defined, 9-4

LSLMLIDSupEntryPt entry point, 12-3

LSLProtSupEntryPt entry point, 12-3

LStartCopyOffset field, 5-5

LStatTableMajorVer, LSL statistics table field
defined, 9-5

LStatTableMinorVer, LSL statistics table field
defined, 9-5

LTotalRxPackets, LSL statistics table field de-
fined, 9-6

LTotalTxPackets, LSL statistics table field de-
fined, 9-6

LUnclaimedPackets, LSL statistics table field
defined, 9-6

LValidCountersMask, LSL statistics table field
defined, 9-6

lying send, 17-6

M
MaxBoardsNum, LSL configuration table field,

defined, 9-4

MaxDataSize, 4-9

Maximum packet size, configuring, 4-9

MaxPacketSize, HSM configuration table field,
defined, 15-6

MaxStacksNum, LSL configuration table field,
defined, 9-4

MBusID, HSM configuration table field, de-
fined, 15-9

MEM keyword, E-4

MemoryAddress, HSM configuration table
field, defined, 15-10

MemorySize, HSM configuration table field,
defined, 15-10, 15-11

MemoryStatistics, defined, 13-11

MemStatStruc structure, 13-11

MFlags, bit map, 15-14

Micro Channel Architecture bus, 14-8

MIOAddress, HSM configuration table field
defined, 15-10

MIORange
HSM configuration table field defined, 15-10
HSM configuration table field, defined, 15-10

MLI (Multiple Link Interface), defined, 1-6

MLID
configuration table

major version, 15-6
minor version, 15-6

statistics table, 15-18
major version, 15-20
minor version, 15-20

MLID (Multiple Link Interface Driver)
configuration table, 15-3
control routines, overview, 14-4
defined, 1-5
functions of, 16-3
message definition, document, xi
multiple frame support. See frame, support-

ing multiple types
removing, overview, 14-5
timeout detection, 14-5

MLIDDeregistered, defined, 7-6

MLIDInfoBlockStruc structure, xii, 16-3

MLIDReset, defined, 18-14

MLIDRetInfoBlockStruc structure, xii, 16-4

MLIDShutdown, defined, 18-15

MModeFlags, bit map, 15-12

MNoECBsAvailable, HSM statistics table field,
defined, 15-20

MNumCustomCounters, HSM statistics table
field, defined, 15-21

MNumGenericCounters, HSM statistics table
field, defined, 15-20

ModeFlags, HSM configuration table field, de-
fined, 15-6

ModifyStackFilter, defined, 10-33

MPrioritySup, HSM configuration table field,
defined, 15-8

MQueueDepth, HSM statistics table field, de-
fined, 15-21

MRxChecksumError, HSM statistics table
field, defined, 15-20

Index

Version 1.03 (February 2, 1996) Index-7

MRxMiscCount, HSM statistics table field, de-
fined, 15-20

MRxMismatchError, HSM statistics table field,
defined, 15-20

MRxOverflow, HSM statistics table field, de-
fined, 15-20

MRxTooSmall, HSM statistics table field, de-
fined, 15-20

MSecondValue, AESECB field, defined, 10-52,
11-18

MSharingFlags, bit map, 15-16

MStatTableMajorVer, HSM statistics table
field, defined, 15-20

MStatTableMinorVer, HSM statistics table
field, defined, 15-20

MTotalRxPackets, HSM statistics table field,
defined, 15-20

MTotalTxPackets, HSM statistics table field,
defined, 15-20

MTxMiscError, HSM statistics table field, de-
fined, 15-20

MTxRetry, HSM statistics table field, defined,
15-20

MTxTooBig, HSM statistics table field, defined,
15-20

MTxTooSmall, HSM statistics table field, de-
fined, 15-20

multicast addressing, support, MLID, 14-8

Multicast transmission
defined, 4-10
Ethernet addresses, 18-4
maximum number of addresses, 18-5
media dependence of, 4-10
NET.CFG file, 4-11
specifying support of, 4-10
Token–Ring addresses, 18-4
unknown addresses, 4-11

multiple board support, protocol stack, 4-8

multiple frame support, MLID, 14-6

Multiple Link Interface Driver (MLID)
configuration table, 14-5
data structures, 14-5
definition, 14-3
design considerations, 14-8
initializing, 14-4, 16-3
multicast addressing support, 14-8
multiple frame support, 14-6

packet reception, 17-3
packet transmission, 17-5
promiscuous mode support, 14-7
recommended functionality, 14-6
source routing support, 14-7
statistics table, 14-5

Multiple outstanding transmits, supporting,
6-3

Multiple Protocol Interface (MPI), defined, 1-4
Multiplexing protocol stacks, procedure, 2-4
Multitasking

compatibility, B-2
data buffer access, B-2
running under Microsoft Windows, B-2

MValidCounterMask, HSM statistics table
field, defined, 15-20

N
NESL, document, xi, 4-8, 14-5
NET.CFG file

”Bind” entry, 4-6
custom configuration keywords, E-6
example of, E-7
keywords, LAN driver, E-4
locating the directory, E-3
main section headers, E-3
minimum keyword required, E-6
multicast addresses, 4-11
parsing, E-3
sample entry, E-3
text in, E-3

Network Interface Card, utilization of, 2-2
Network logical. See Logical network, 2-4
NextLink, Event Control Block field, defined,

A-4
NIC. See Network Interface Card, 2-2
NICLongName, HSM configuration table field,

defined, 15-7
NICShortName, HSM configuration table field,

defined, 15-7
Node Address keyword, E-5
NodeAddress, HSM configuration table field,

defined, 15-6
non-lying send, 17-6
Novell, Inc., ii

O
ODI, OSI, correspondence to, 2-2

NetWare 16-Bit DOS Protocol Stacks and MLIDs Specification

Index-8 Version 1.03 (February 2, 1996)

ODI (Open Data-Link Interface) specification
defined, 1-3
illustrated, 1-3
OSI, correspondence to, 1-3

ODI system, booting, 4-3

Outstanding transmit requests, number of, 6-3

P
Packet

receiving, overview, 2-4, 5-2
receiving, process, 5-2
sending, completion of, 6-7
sending, overview, 2-4, 6-2
sending, process, 6-3
size, configuring maximum for MLID, 4-9
transmitting, 6-2

packet
destination, determining, 1-5, 8-3
flow, 1-6
reception, MLID, 17-3
transmission, 14-4

Packet bursts, sending, 6-3

Packet receive routine, process, 5-2

packet reception, 2-6

Packet reception methods
bound protocol stack, 5-6
default protocol stack, 5-6
prescan protocol stack, 5-6

Packet send routine
process, 6-2, 6-3
transmit complete, 6-7

Packet size, maximum size for MLID, configur-
ing, 4-9

packet transmission, MLID, 17-5

Packets, sending bursts of, 6-3

PConfigTableMajorVer, protocol stack configu-
ration table field defined, 3-3

PConfigTableMinorVer, protocol stack configu-
ration table field defined, 3-3

Peripheral Component Interconnect (PCI) bus,
14-8

Personal Computer Memory Card Internation-
al Association (PCMCIA) bus, 14-8

PID. See Protocol ID (PID), 2-4

PIgnoredRxPackets, protocol stack statistics
table field, 3-5

PNumCustomCounters, protocol stack statis-
tics table field, 3-5

PNumGenericCounters, protocol stack statis-
tics table field, 3-4

Port keyword, E-4

PProtocolLongName, protocol stack configura-
tion table field defined, 3-3

PProtocolMajorVer, protocol stack configura-
tion table field defined, 3-3

PProtocolMinorVer, protocol stack configura-
tion table field defined, 3-3

PProtocolReserved, protocol stack configura-
tion table field defined, 3-3

PProtocolShortName, protocol stack configura-
tion table field defined, 3-3

Prescan protocol stack, defined, 2-5, 5-6

prescan transmit protocol stack handler, 6-9

PreviousLink, Event Control Block field, de-
fined, A-4

priority packet support, 2-6

priority sends, 2-6

Programmed I/O, lookahead, 17-5

promiscuous mode
defined, 14-7
support, MLID, 14-7

PromiscuousChange, defined, 18-17

Protocol ID (PID)
adding, conditions for, 4-8
adding, procedure for, 4-7
bytes defined, C-3
defined, 2-4
location and format of in frame header, 2-4
obtaining, 4-8
overriding, 4-8

Protocol IDs, adding, 4-7

Protocol keyword, E-5

protocol receive complete handler, 5-11

protocol receive handler, 5-9

Protocol stack
bound, 2-4, 5-6
default, 2-2, 2-5, 5-6
initializing, 4-2
minimum environment required, 2-2
minimum number of LAN adapters, 2-2
multiplexing, 2-4

Index

Version 1.03 (February 2, 1996) Index-9

performance, 2-2
prescan, 2-5, 5-6
unloading, 4-12
utilizing multiple boards, 2-4

protocol stack
configuration table, 3-3
customizing, 4-8
defined, 1-3
handler, prescan transmit, 6-9
line speed, 4-9
measuring performance, 4-9
multiple board support, 4-8
statistics table, 3-4
transport time, 4-9

protocol transmit complete handler, 6-8

ProtocolConfigStructure, structure, 3-3

ProtocolID
802.2 header, 6-5
Event Control Block field, defined, A-5

ProtocolID field, 6-5

ProtocolManagement, defined, 7-7

ProtocolPromiscuousChange, defined, 7-9

ProtocolReceiveCompleteHandler, ECB fields
to set, 5-11

ProtocolReceiveHandler, ECB fields to set, 5-10

ProtocolTransmitCompleteHandler
Status ECB field, setting, 6-8
transmitting from, 6-8

ProtocolWorkspace
Event Control Block field, defined, A-5
using, 6-3

PStatTableMajorVer, protocol stack statistics
table field, 3-4

PStatTableMinorVer, protocol stack statistics
table field, 3-4

PTotalRxPackets, protocol stack statistics table
field, 3-4

PTotalTxPackets, protocol stack statistics table
field, 3-4

PValidCountersMask, protocol stack statistics
table field defined, 3-4

Q
QueueDepth, HSM configuration table field,

defined, 15-8

R
Raw send

addressing, 6-5
defined, 6-4
requirements, 6-5
specifying, 6-4

ReallocateMemory, defined, 13-12

receive complete handler, protocol, 5-11

receive handler, protocol, 5-9

receive look ahead, 4-11

Receive Look Ahead structure, 5-3

Receive Look Ahead, defined, 5-2

receive lookahead, buffer, 17-4

Receive routine, 5-2

Receiving frames. See Receiving packets, 5-2

Receiving packets
ECB fields to set, 5-10, 5-11
overview, 2-4, 5-2
process, 5-2
protocol stack’s role in, 2-4, 5-6
receive routine, 6-2

RegisterDefaultStackChain, defined, 10-34

registering
MLID, with LSL, 16-3
transmit monitor, 18-20

Registering with LSL
bound protocol stack, 4-5
default protocol stack, 4-5
prescan protocol stack, 4-5
receive and control handlers role in, 4-5
Stack ID field’s role in, 4-5

registering with the LSL, 4-5

RegisterMLID, defined, 12-6

RegisterPrescanRxChain, defined, 10-36

RegisterPrescanTxChain, defined, 10-38

RegisterRPLBootROM, defined, 10-40

RegisterStack, defined, 10-42

RegisterTxMonitor, defined, 18-20

RelinquishControl, defined, 10-44

RemoveGeneralService, defined, 13-13

removing, MLID, overview, 14-5

required control procedures, 14-3

ResubmitDefault, defined, 10-45

ResubmitPrescanRx, defined, 10-47

NetWare 16-Bit DOS Protocol Stacks and MLIDs Specification

Index-10 Version 1.03 (February 2, 1996)

ResubmitPrescanTx, defined, 10-49

ReturnECB, defined, 10-50, 11-17

RPLBootROMInfoStruc structure, 10-41

RxTooBigCount, HSM statistics table field, de-
fined, 15-20

S
ScanPacket, defined, 10-51

ScheduleAESEvent, defined, 10-52, 11-18

SendComplete, defined, 11-22

Sending packets
ECB fields to set, 6-4
ECB’s role in, 6-2
ECBs provided by protocol stack, 6-3
outstanding transmit requests, 6-3
overview, 6-2
packet bursts, 6-3
polling for transmit complete, 6-3
process, 6-2
protocol stack’s role in, 2-4
transmit complete, 6-7

SendPacket, defined, 10-54

SendRetries, HSM configuration table field,
defined, 15-9

ServiceEvents, defined, 10-55, 11-20

servicing, logical board, 4-6

SetLookAheadSize
configuring look ahead data, 5-5
defined, 18-19

Shared RAM, lookahead, 17-5

SharingFlags, HSM configuration table field,
defined, 15-9

Signature, HSM configuration table field, de-
fined, 15-6

Slot, HSM configuration table field, defined,
15-9

Slot keyword, E-5

source routing, document, xi

source routing support, MLID, 14-7

SourceRouteHandler, HSM configuration table
field, defined, 15-8

specification version number, 8-4

specification version string, 8-4

stacj filtering, 2-7

StackChainStruc structure, xii, 5-7

StackID, Event Control Block field, defined,
A-4

StackID field, 6-4

StackInfoStruc structure, 10-42

StartCriticalSection, defined, 10-56, 11-21

statistics counter
custom, 15-17
generic, 15-17

statistics table
HSM, sample code, 15-18
MLID, 14-5, 15-18

major version, 15-20
minor version, 15-20

protocol stack, 3-4

Status, Event Control Block field, defined, A-4

Status ECB field, defined, 5-12

structure
AESECB, 10-52, 11-18
GenServiceControlBlock, 13-4
LookAheadStruc, xiii, 5-3, 11-14
LSLInitEntryPointBlock, 12-3
MemStatStruc, 13-11
RPLBootROMInfoStruc, 10-41
StackChainStruc, xii, 5-7
StackInfoStruc, 10-42
TCB, 18-21

structures provided by MSM, FragmentStruc-
ture, 18-22

switches, LSL commandline, 8-4

T
TCB (Transmit Control Block), defined, 18-21

TCBDataLength, TCB field, defined, 18-21

TCBDriverWS, TCB field, defined, 18-21

TCBFragStrucPtr, TCB field, defined, 18-22

TCBMediaHeader, TCB field, defined, 18-22

TCBMediaHeaderLen, TCB field, defined,
18-22

timeout, MLID, overview, 14-5

timeout detection, MLID, 14-5

trademark, ii

transmit complete handler, protocol, 6-8

Transmit complete, process, 6-7

Transmit monitor, defined, 18-21

Index

Version 1.03 (February 2, 1996) Index-11

transmit monitor, registering, 18-20

transmitting, packets, 14-4

TransportTime, HSM configuration table field,
defined, 15-7

U
UnbindFromMLID, defined, 7-10

UnbindStack, defined, 10-57

Unloading protocol stack, algorithm for, 4-12

V
version string, specification, 8-4

W
WorstDataSize, 4-10

HSM configuration table field, defined, 15-7

