
Novell ODI Specification:
16-Bit DOS Client HSMs
(Intel 80x86 Assembly Language)

HSM Specification Version 4.00
Document Version 4.03
Part Number: 107-000054-001
February 2, 1996

16-Bit DOS Client HSM

ii Version 4.03 (February 2, 1996)

Disclaimer
Novell, Inc. makes no representations or warranties with
respect to the contents or use of this manual, and specifically
disclaims any express or implied warranties of merchantability
or fitness for any particular purpose. Further, Novell, Inc.
reserves the right to revise this publication and to make
changes to its content, at any time, without obligation to notify
any person or entity of such revisions or changes.

� Copyright 1994, 1995, and 1996 by Novell, Inc. All rights
reserved. This document may be freely copied and distributed
as long as it is reproduced in its entirety and for the benefit of
network product developers. Portions of this document may be
included with other material as long as authorship is
attributed to Novell, Inc. and appropriate copyright notices are
included.

Novell, Inc.
122 East 1700 South
Provo, Utah 84606

Trademarks
Novell has made every effort to supply trademark information
about company names, products, and services mentioned in
this document. Trademarks indicated below were derived from
various sources.

Novell and NetWare are registered trademarks of Novell, Inc.

Internetwork Packet Exchange, ODI, Open Data-Link Interface, LSL,
Link Support Layer, MLID, Multiple Link Interface Driver, MLI, Multiple
Link Interface, MPI, Multiple Protocol Interface, MSM, Media Support
Module, TSM, Topology Support Module, HSM, Hardware Support
Module, RX-Net, NE1000, NE2000, NE/2, NE2-32, and NTR2000 are
trademarks of Novell, Inc.

Version 4.03 (February 2, 1996) iii

Table Of Contents
Table Of Contents iv.

List of Tables viii.
List of Figures viii.

Preface viii.
Document Organization ix.
Supplementary Documents Referenced x.
Prerequisites x.
Manual Conventions x.

Introduction to ODI 1-1.
Chapter Overview 1-2.
Open Data-Link Interface (ODI) 1-3.

Protocol Stacks 1-3.
Link Support Layer (LSL) 1-5.
Multiple Link Interface Drivers (MLIDs) 1-6.

Data Flow 1-8.
Send Data Flow 1-8.
Receive Data Flow 1-9.

Designing the DOS ODI HSM 2-1.
Chapter Overview 2-2.
The DOS Environment 2-3.

Multitasking Issues 2-3.
.COM File Issues 2-3.
TSR Program Issues 2-3.

Programming and Hardware Issues 2-3.
Programming Issues 2-3.
Hardware Issues 2-5.

DOS ODI HSM Overview 3-1.
Chapter Overview 3-2.
DOS LAN Driver Modules 3-3.
DOS 3-3.

The Modules That Comprise the LAN Driver 3-3.
Developing The Hardware Specific Module (HSM) 3-4.

HSM Data Structures 3-4.
HSM Routines 3-4.
MSM Support for the HSM 3-5.

LAN Driver Capabilities 3-5.
Multiple Frame Support 3-5.

1.

1

1

16-Bit DOS Client HSM

iv Version 4.03 (February 2, 1996)

Multicast Address Support 3-7.
Source Routing Support 3-7.
Promiscuous Mode 3-8.

HSM Data Structures and Variables 4-1.
Chapter Overview 4-2.
Required Variables and Constants 4-3.

Code Segment: General Variables and Constants 4-3.
Init Segment: General Variables and Constants 4-3.
Init Segment: Driver Keywords 4-4.

Variables and Constants Provided by the MSM 4-6.
Code Segment: General Variables and Constants 4-6.
Init Segment: General Variables and Constants 4-9.

Structures Required by the MSM 4-9.
Frame Data Space 4-9.
Description of HSM Configuration Table Fields 4-13.
Configuration Table Flags 4-21.

Adapter Data Space 4-26.
Statistics Table 4-26.
Description of HSM Statistics Table Fields 4-28.

Structures Provided by the MSM 4-31.
AES Event Control Block (AES ECB) 4-31.
Receive Control Block (RCB) 4-32.
Transmit Control Block (TCB) 4-33.

Developer-Written HSM Routines 5-1.
Chapter Overview 5-2.
DriverChangeLookAheadSize 5-3.
DriverInit 5-4.
DriverInit: An Outline 5-10.
DriverISR 5-11.
DriverISR: An Outline 5-17.
DriverManagement 5-18.
DriverMulticastChange 5-19.
DriverPoll 5-21.
DriverPriorityQSupport 5-22.
DriverPromiscuousChange 5-23.
DriverReset 5-24.
DriverSend 5-25.
DriverSend: An Outline 5-27.
DriverShutdown 5-28.

Support Routines Provided by the MSM 6-1.
Chapter Overview 6-2.

Summary of Support Routines 6-2.
Completion Codes 6-4.

HSMProvideTCB 6-5.

Table Of Contents

Version 4.03 (February 2, 1996) v

HSMShutDownMSM 6-6.
MSMBuildTransmitControlBlock 6-7.
MSMCallNESL 6-8.
MSMClearSendQueue 6-9.
MSMGenerateNESLChangeEvent 6-10.
MSMGenerateNESLEvent 6-11.
MSMGenerateNESLResumeEvent 6-12.
MSMGenerateNESLSuspendEvent 6-13.
MSMGetNextSend 6-14.
MSMGetRCB 6-15.
MSMMediaConfigUpdate 6-19.
MSMPrintStringZero 6-20.
MSMRcvComplete 6-22.
MSMRcvCompleteStatus 6-23.
MSMReturnRCB 6-24.
MSMSendComplete 6-25.
MSMSetIRQ 6-26.
MSMUnSetIRQ 6-28.
MSMUpdateMulticast 6-29.

Support Routines Provided by the LSL 7-1.
Chapter Overview 7-2.

Calling the LSL Support Routines 7-2.
Completion Codes 7-2.

CancelAESEvent 7-4.
GetIntervalMarker 7-5.
ScheduleAESEvent 7-6.
ServiceEvents 7-8.

Creating the DOS ODI LAN Driver A-1.
Appendix Overview A-2.
Required Software Tools A-3.

Assembler Package A-3.
Operating Environment A-3.
Debugging Software (Optional) A-3.

Required Files A-3.
Source files A-3.
Include files A-3.

Assembling and Linking the Driver A-3.
Using MASM A-4.
Using TASM A-4.

Other Files A-4.

The NET.CFG Configuration File B-1.
Appendix Overview B-2.
The NET.CFG Configuration File B-3.
NET.CFG File Main Section Headings B-3.

16-Bit DOS Client HSM

vi Version 4.03 (February 2, 1996)

MLID Main Section Headings and Keywords B-3.
MLID Main Section Headings B-3.
MLID Subsidiary Keywords and Parameters B-3.

Supporting PCMCIA Boards C-1.
Appendix Overview C-2.
Supporting PCMCIA Card Services C-3.

During DriverInit C-3.
The Callback Handler and Callback Handler Subroutines C-3.

Transmitting Priority Packets D-1.
Appendix Overview D-2.
Priority Support Algorithm D-3.

Glossary Gloss-1.

Index Index-1.

Table Of Contents

Version 4.03 (February 2, 1996) vii

List of Tables

Table 4.1 HSM Configuration Table 4-13.
Table 4.2 MModeFlags Bit Map Offset 22h 4-21.
Table 4.3 MFlags Bit Map Offset 52h 4-23.
Table 4.4 MSharingFlags Bit Map Offset 5Ah 4-25.
Table 4.5 Statistics Table Field Descriptions 4-28.
Table 4.6 AES ECB Field Descriptions 4-31.
Table 4.7 Receive Control Block Field Descriptions 4-32.
Table 4.8 Transmit Control Block Field Descriptions 4-33.
Table 4.9 Fragment Structure Field Descriptions 4-34.
Table 5.1 Summary of HSM Routines 5-2.
Table 5.2 Specifying an Alternate Node Address 5-8.
Table 5.3 Actions Accomplished by MSMGetRCB 5-14.
Table 6.1 Summary of MSM Support Routines 6-2.
Table 6.2 MSMGetRCB AX Bit Map 6-17.

List of Figures

Figure Prf.1 How Bytes Are Stored in Memory xi.
Figure 1.1 The ODI Specification Diagram 1-3.
Figure 1.2 How ODI Fits into the OSI Model 1-4.
Figure 1.3 The Multiple Protocol Interface (MPI) 1-5.
Figure 1.4 The Multiple Link Interface (MLI) 1-7.
Figure 1.5 MLID Modules 1-7.
Figure 1.6 Data Flow from Application to LSL 1-9.
Figure 1.7 Data Flow from the LSL to the Board 1-9.
Figure 1.8 Data Flow from the Board to the Wire 1-9.
Figure 1.9 Receive Data Flow from Wire to Application 1-10.
Figure 3.1 Implementation of Multiple Frame Support in Ethernet Top. 3-6
Figure 4.1 Configuration Table Sample Source Code 4-11.
Figure 4.2 Graphic Representation of the Configuration Table 4-12.
Figure 4.3 MLID Statistics Table Sample Source Code 4-26.
Figure 4.4 Graphic Representation of the MLID Statistics Table 4-27.

16-Bit DOS Client HSM

viii Version 4.03 (February 2, 1996)

Preface
This document tells you how to use the LAN driver toolkit to
develop the Hardware Specific Module (HSM) of a DOS client
MLID that conforms to Novell’s� Open Data-Link Interface�
(ODI�) specification. ODI allows multiple protocols to operate
in the NetWare� v3.1x (and higher), DOS, and OS/2
environments. Writing a LAN driver that conforms to the ODI
specification ensures compatibility with any protocol that is
also written to the ODI specification (for example, TCP/IP, ISO,
IPX, etc.).

The ODI specification provides many powerful features.
Because of this complexity, we have provided a LAN driver
toolkit to help in LAN driver development. This toolkit provides
two modules, the Media Support Module� (MSM�) and the
Topology Specific Module� (TSM�). These modules contain
some of the major LAN driver portions that the developer
previously wrote. This means that you (the developer) are now
responsible only for that portion of the LAN driver that is
dependent upon your specific LAN adapter. This module is
called the Hardware Specific Module� (HSM�). The MSM and
TSM allow the portion of the LAN driver that you write (the
HSM) to be as simple as possible and still retain all the
features the ODI specification requires. Linked together, these
three modules (MSM, TSM, and HSM) comprise an ODI LAN
driver (also referred to in this document as an MLID�,
Multiple Link Interface Driver�).

The HSM interfaces with the MSM and TSM. However, the
HSM can also interface directly with the Link Support Layer�
(LSL�) when the need arises. The majority of developers will
find the MSM and TSM adequate for their needs. However,
some developers might find they need to modify the MSM
and/or TSM to better suit their particular needs. In either case,
we strongly recommend using the LAN driver toolkit because it
greatly simplifies the task of writing a driver.

Note Unless otherwise specified, all references in this document to
the MSM include both the MSM and the TSM. The developer’s
kit contains sample source code for the HSM. We recommend
that you study this code before writing your HSM. ▲

Preface

Version 4.03 (February 2, 1996) ix

Document Organization
You can use the following table to help locate the information
you need. If you cannot find the subject or term you are looking
for, please check the index.

If you want to know about: Look in:

Assembling and linking Appendix A Creating the
DOS ODI LAN
driver

Custom configuration
keywords

Appendix B The NET.CFG
Configuration
File

Data structures and variables Chapter 4 HSM Data
Structures and
Variables

General theory

HSM

ODI

Chapter 2 Designing the
DOS ODI HSM

Chapter 3 DOS ODI HSM
Overview

Chapter 1 Introduction to
ODI

Routines the HSM must
provide

Chapter 5 Developer-
Written HSM
Routines

Support routines

LSL support routines

MSM support routines

Chapter 7 Support Routines
Provided by the
LSL

Chapter 6 Support Routines
Provided by the
MSM

Supporting PCMCIA boards Appendix C Supporting
PCMCIA Boards

16-Bit DOS Client HSM

x Version 4.03 (February 2, 1996)

Supplementary Documents Referenced

This document refers to the following ODI Specification
Supplements:

The MLID Installation Information File
Part number 107-000056-001

Source Routing
Part number 107-000058-001

Canonical and Noncanonical Addressing
Part number 107-000059-001

Frame Types and Protocol IDs
Part number 107-000055-001

This document also refers to the NESL Specification: 16-Bit
DOS Programmer’s Interface.

Prerequisites

The developer should be experienced with assembly language
programming for the Intel family of microprocessors and have a
sound understanding of event-driven systems, interrupt-driven
drivers and DOS device driver development.

Manual Conventions

All numbers in this document are decimal unless otherwise
specified. Hexadecimal numbers are identified by a trailing ‘h’
(for example, 0FFh). Where bit fields within a byte are
specified, bit 0 is assumed to be the low-order bit.

The following data types are defined:

byte 1-byte unsigned integer
char 1-byte ASCII character
offset 4-byte near offset of an Intel 80386/80486 address

Numeric fields composed of more than one byte can be in one of
two formats: high-low or low-high. High-low numbers contain
the most significant byte in the first byte (the byte with the
lowest address) of the field, the next most significant byte in
the second byte, and so on, with the least significant byte
appearing last (in the highest address). Low-high numbers are
stored in the opposite order. The Intel 80X86 microprocessors
store numbers in low-high order. See Figure Prf.1.

Preface

Version 4.03 (February 2, 1996) xi

0000001Ah

0000001Bh

78

56

34

Least Significant
Byte (LSB)

0000001Ch
Most Significant
Byte (MSB)

Number stored in memory: 12345678h

Example Microprocessor Memory

Memory Addresses

12 0000001Dh

0000001Ah

0000001Bh

12

34

56

Most Significant
Byte (MSB)

0000001Ch
Least Significant
Byte (LSB)

Example Microprocessor Memory

78 0000001Dh

Bytes Stored in Low-High Order Bytes Stored in High-Low Order

Memory Addresses

Names of procedures referred to in the text and set in italics
are listed in the Table of Contents.

�

Figure Prf.1 How Bytes Are
Stored in Memory

16-Bit DOS Client HSM

xii Version 4.03 (February 2, 1996)

Version 4.03 (February 2, 1996) 1-1

Chapter 1 Introduction to ODI

Chapter Overview 1-2.
Open Data-Link Interface (ODI) 1-3.

Protocol Stacks 1-3.
Protocol Stack Functionality 1-3.
The Multiple Protocol Interface (MPI) 1-4.

Link Support Layer (LSL) 1-5.
Multiple Link Interface Drivers (MLIDs) 1-6.

MLID Functionality 1-6.
The Multiple Link Interface (MLI) 1-6.
LAN Driver Toolkit 1-7.

Data Flow 1-8.
Send Data Flow 1-8.
Receive Data Flow 1-9.

1

1.

1

16-Bit DOS Client HSM

1-2 Version 4.03 (February 2, 1996)

Chapter Overview
This chapter briefly describes the Open Data-Link Interface�
(ODI�) specification. It describes the functions of Multiple
Link Interface Drivers, protocol stacks, and the LSL. This
chapter also contains a brief description of data flow through
the ODI model.

Because the ODI specification provides for communications
between a variety of protocols and media, LAN drivers are
called Multiple Link Interface Drivers (MLIDs). The Link
Support Layer� (LSL�) handles the transfer of information
between MLIDs and protocol stacks.

Note The terms MLID and LAN driver can be interchanged. ▲

You should read this chapter if you are not familiar with the
basic concepts involved in the ODI specification.

Introduction to ODI

Version 4.03 (February 2, 1996) 1-3

Open Data -Link Interface (ODI)
DOS client MLIDs and protocol stacks must conform to the
ODI specification. Figure 1.1 illustrates the elements that
make up the ODI specification.

FDDI.com

MLID

Ether.com

MLID

Link Support Layer (LSL)

Ether.com

MLID

LAN adapters

IPX/SPX

Protocol
Stack

AppleTalk

Protocol
Stack

Token.com

MLID

MSM.OBJ
<TSM>.OBJ
<HSM>.OBJ

TCP/IP

Protocol
Stack

DOS Services

The ODI specification allows multiple network protocols and
LAN adapters (physical boards) to be used concurrently on the
same workstation or file server. It provides a flexible,
high-performance Data Link Layer interface to Network Layer
protocol stacks. The ODI specification is comprised of the three
elements listed below and illustrated above in Figure 1.1 .

� Protocol Stacks
� Link Support Layer (LSL)
� Multiple Link Interface Drivers (MLIDs)

 Protocol Stacks

Protocol Stack Functionality

Network Layer protocol stacks transmit and receive data over
a logical or physical network. They also handle routing,
connection services, and APIs, and provide an interface to
allow higher layer protocols or applications access to the
protocol stack’s services. As a general rule, protocol stacks
written to the ODI specification provide OSI (Open Systems
Interconnection) Network Layer functionality; however, they

Figure 1.1
The ODI Specification
Diagram

16-Bit DOS Client HSM

1-4 Version 4.03 (February 2, 1996)

are not limited to this. Figure 1.2 illustrates the ODI/OSI
correspondence.

Application

Presentation

Session

Transport

Network

Data Link

Physical

Logical Link Control (LLC)

Media Access Control (MAC)

Protocol
Stack

Link Support
Layer

MLID

LAN adapter

ODI Model

OSI
Model

The Multiple Protocol Interface (MPI)

Protocol stacks communicate with the LSL through the
Multiple Protocol Interface� (MPI�) . The MPI is an interface
that resides between the protocol stack and the LSL (see
Figure 1.3). The MPI provides protocol stacks with all the APIs
that are necessary for the protocol stack to communicate over
the network.

Figure 1.2
How ODI Fits into
the OSI Model

Introduction to ODI

Version 4.03 (February 2, 1996) 1-5

IPX/SPX

Protocol
Stack

AppleTalk

Protocol
Stack

TCP/IP

Protocol
Stack

NetWare Services

Link Support Layer (LSL)

Multiple Protocol Interface (MPI)

ÁÁÁÁ
ÁÁÁÁ

ÁÁÁÁÁ
ÁÁÁÁÁ

ÁÁÁÁÁ
ÁÁÁÁÁ

Link Support Layer (LSL)
The LSL handles the communication between protocol stacks
and MLIDs. Because the ODI allows the physical topology to
support many different types of protocols, the MLID receives
packets destined for different protocol stacks that might be
present in the system. For example, one Ethernet network
might support all of the following protocols: IPX, TCP/IP,
AppleTalk, and LAT (a Digital Equipment Corporation
protocol). The LSL then determines which protocol stack is to
receive the packet. Next, the protocol stack determines what
should be done with the packet or where it should be sent.
When the protocol stack transmits a packet, it hands the
packet to the LSL. The LSL then directs the packet to the
appropriate MLID.

The LSL also tracks the various protocols and MLIDs that are
currently loaded in the system and provides a consistent
method of finding and using each of the loaded modules.

In addition, the LSL performs the following services:

� Allows a protocol stack to obtain and return Event Control
Blocks (ECBs). (ECBs are control structures that are used
to send or receive packets or to schedule events.)

� Queues and recovers ECBs for later use.

� Registers and deregisters the protocol stack.

� Allows protocol stacks to obtain timing services.

� Allows protocol stacks to determine Stack and Protocol IDs.

� Allows protocol stacks to obtain MLID statistics.

� Allows protocol stacks to bind with MLIDs.

Figure 1.3
The Multiple Protocol
Interface (MPI)

16-Bit DOS Client HSM

1-6 Version 4.03 (February 2, 1996)

� Allows protocol stacks to transmit and receive packets
through an MLID.

� Maintains lists of all active protocol stacks and MLIDs.

� Allows protocol stacks to obtain information about MLIDs
and other protocol stacks.

� Allows protocol stacks to change the operational state of
MLIDs. (For example, the protocol stack could cause the
MLID to shut down or reset.)

Multiple Link Interface Drivers (MLIDs)

MLID Functionality

MLIDs are device drivers that handle the sending and
receiving of packets to and from a physical or logical topology
(for example, Ethernet SNAP is a logical topology). MLIDs
interface with a LAN adapter (also referred to as Network
Interface Card [NIC] or physical board) and handle frame
header appending and stripping. MLIDs also help determine
the packet’s frame type.

Each MLID’s interface with the LAN adapter is determined by
that adapter’s hardware.

All MLIDs can handle packets from various protocols because
the MLID does not interpret the packet. Instead, it passes
received packets to the Link Support Layer (LSL) using Event
Control Blocks (ECBs). ECBs are data structures that the
MLID uses to send or receive packets or to schedule events.

The Multiple Link Interface (MLI)

The MLID communicates with the LSL through the Multiple
Link Interface� (MLI�). The MLI is the interface between the
LSL and the MLID (see Figure 1.4). This interface contains the
APIs necessary to facilitate communication between these two
modules.

Introduction to ODI

Version 4.03 (February 2, 1996) 1-7

ÁÁÁÁ
ÁÁÁÁ
ÁÁÁÁ
ÁÁÁÁ

ÁÁÁÁ
ÁÁÁÁ
ÁÁÁÁ
ÁÁÁÁ

ÁÁÁÁ
ÁÁÁÁ
ÁÁÁÁ
ÁÁÁÁ

ÁÁÁÁ
ÁÁÁÁ
ÁÁÁÁ
ÁÁÁÁ

Link Support Layer (LSL)

MLID
Token.com

MLID
FDDI.com

MLID

Multiple Link Interface (MLI)

ÁÁÁÁ
ÁÁÁÁ
ÁÁÁÁ
ÁÁÁÁ

Ether.com
MLID

ÁÁÁÁ
ÁÁÁÁ
ÁÁÁÁ
ÁÁÁÁ

ÁÁÁÁ
ÁÁÁÁ
ÁÁÁÁ
ÁÁÁÁ

ÁÁÁÁ
ÁÁÁÁ
ÁÁÁÁ
ÁÁÁÁ

Ether.com

LAN Driver Toolkit

Novell has simplified the task of ODI LAN driver development
by furnishing a set of support modules that provide all the tools
necessary to interface a LAN driver to the LSL. These modules
are:

� Media Support Module (MSM)
� Topology Specific Modules (TSM)

These support modules are a collection of procedures, macros,
structures, and variables that simplify driver development.
When using these modules, LAN driver development is reduced
to creating the Hardware Specific Module (HSM). The HSM
handles all hardware interactions. (Figure 1.5 illustrates the
relationship of these modules to an MLID.)

Hardware
Specific
Module

Topology
Specific
Module

Media
Support
Module

MSM

TSM

HSM

MLID

Media Support Module. The Media Support Module (MSM)
contains general functions that are common to all drivers.

Topology Specific Module. The Topology Specific Module
(TSM) manages the operations unique to a specific topology.

Figure 1.4
The Multiple Link
Interface (MLI)

Figure 1.5
MLID Modules

16-Bit DOS Client HSM

1-8 Version 4.03 (February 2, 1996)

TSMs provide support for the standardized media types of
Ethernet, Token-Ring, and FDDI. Multiple frame support is
implemented in the TSM so that all frame types for a given
topology are supported. The possible topology modules are
listed below.

� ETHERNET.OBJ
� TOKEN.OBJ
� FDDITSM.OBJ

Source code for each TSM is provided with the Novell LAN
Driver Developer’s Guide. Although not recommended, you can
create proprietary topology modules by modifying an existing
TSM to meet your requirements or by creating a new module
that provides the same functionality contained in the standard
TSMs; however, your proprietary TSM must conform to the
functionality defined in this specification and have a unique
name.

Hardware Specific Module. You create the Hardware
Specific Module for a specific LAN adapter. The HSM handles
all hardware interactions. Its primary functions include
adapter initialization, reset, and shutdown, as well as packet
reception and transmission. Additional procedures provide
support for timeout detection, multicast addressing, and
promiscuous mode reception. When you use the LAN driver
toolkit to develop an MLID, the HSM is the only module that
you write. This document uses the term ‘‘HSM” to refer to that
portion of the MLID that you develop with this toolkit.

Data Flow
When messages are sent and received, the various protocols or
layers add and remove their own information at each layer.
The following diagrams illustrate basic data flow.

Send Data Flow

As Figure 1.6 illustrates, the protocol stack receives data from
the application above it, determines whether the packet must
be split into fragments, determines the size of the fragments,
adds the appropriate protocol header to the data packet, and
sends it to the LSL. The LSL isolates the protocol stack from
the topology and LAN medium below it. The protocol stack
simply passes data to the LSL. The LSL directs the packet to
the appropriate MLID, which then takes care of the
topology-specific information. This is the reason ODI protocol
stacks are known as being media and frame-type independent.

Introduction to ODI

Version 4.03 (February 2, 1996) 1-9

Stack (IPX)

Application

LSL

Stack: � Determines fragment sizes
� Adds protocol header

DataIPX
Header

Data

As illustrated by Figure 1.7, the LSL directs the packet to the
appropriate MLID. The MLID then adds the MAC header to
the packet and hands the packet to the LAN adapter.

MLID

LSL

MLID: Adds the Media Access Control
(MAC) header

DataIPX
Header

DataIPX
Header

MAC
Header

Board

LSL: Determines which MLID
should receive the packet
and passes it

In Figure 1.8 the hardware adds the preamble to the packet
and places the packet on the wire.

Board

Wire

DataIPX
Header

MAC
Header

Preamble

Hardware: Adds the preamble and
places the packet on the wire

Receive Data Flow

Figure 1.9 shows the LAN adapter receiving the packet off the
wire and stripping the preamble from the packet. The LAN
adapter then hands the packet to the MLID, which discards
the MAC header from the packet and hands the packet to the
LSL. The LSL directs the packet to the appropriate protocol
stack, which then removes the protocol header from the packet
and hands the data to the application.

Figure 1.6
Data Flow from
Application to LSL

Figure 1.7
Data Flow from the
LSL to the Board

Figure 1.8
Data Flow from the
Board to the Wire

16-Bit DOS Client HSM

1-10 Version 4.03 (February 2, 1996)

MLID MLID: � Removes the (MAC) header
� Hands the packet to the LSL

DataIPX
Header

DataIPX
Header

MAC
Header

Board

LSL: Determines which protocol
stack should receive the packet
and passes the packet to that stack.

Wire

DataIPX
Header

MAC
Header

Preamble

Hardware: � Strips the preamble
� Gives the packet to the MLID

Stack (IPX)

Application

Stack: � Removes the protocol header
� Sends the data to the application

Data

DataIPX
Header

LSL

�

Figure 1.9
Receive Data Flow
from Wire to Application

Version 4.03 (February 2, 1996) 2-1

Chapter 2 Designing the DOS ODI HSM

Chapter Overview 2-2.
The DOS Environment 2-3.

Multitasking Issues 2-3.
.COM File Issues 2-3.
TSR Program Issues 2-3.

Programming and Hardware Issues 2-3.
Programming Issues 2-3.

Driver’s Code and Init Sections 2-3.
CGroup 2-4.
Segment Attributes 2-4.
Necessary Routines and Structures 2-4.

Hardware Issues 2-5.
Network Interface Controllers 2-5.
Data Transfer Mode 2-5.
Bus Type 2-5.

2

2.

2

16-Bit DOS Client HSM

2-2 Version 4.03 (February 2, 1996)

Chapter Overview
This chapter briefly describes the design, programming, and
functionality factors you must understand to write DOS ODI
client HSMs. This chapter discusses the LAN driver in the
DOS environment.

You should read this chapter if you have never written a DOS
HSM.

Designing the DOS ODI HSM

Version 4.03 (February 2, 1996) 2-3

The DOS Environment
Because your HSM is to operate in the DOS environment, you
must be aware of the following issues:

� DOS does not multitask
� DOS ODI LAN drivers are not reentrant
� DOS ODI LAN drivers are .COM files
� DOS ODI LAN drivers are Terminate and Stay Resident

(TSR) programs

Multitasking Issues

DOS is not a multitasking operating system. The minimum
environment in which your LAN driver is required to operate is
a simple real mode DOS environment. Usually this means the
operating system can only run one task to completion
(nonmultitasking). However, you should keep in mind that your
LAN driver might also be operating with DOS multitasking
products.

LAN drivers in the DOS environment are not reentrant. Each
LAN adapter located in the workstation contains its own code
and data images in memory. The boards do not share code
images.

.COM File Issues

DOS ODI LAN drivers are .COM files, which means they have
only one 64K segment group. (See the ‘‘Hardware and
Programming Issues” section below for more information.)

TSR Program Issues

DOS ODI drivers are TSRs. When the DOS ODI LAN driver
completes its initialization process, the driver terminates and
stays resident (TSR) in memory. Because ODI is a dynamic
specification that allows LAN driver modules to be loaded and
unloaded as they are needed, the LAN driver must be fully
unloadable. The LAN driver toolkit provides this capability.

Programming and Hardware Issues
Programming Issues

Driver’s Code and Init Sections

A DOS ODI LAN driver is a .COM file, thus limiting the driver
to the use of one segment. The driver is broken into two parts,
and these are joined to form one segment. The following are the
two parts:

16-Bit DOS Client HSM

2-4 Version 4.03 (February 2, 1996)

� Code Contains all the run time code and data.

� Init Contains all the code and data which are used only
at initialization time. This part is discarded after
initialization.

These parts are stored in memory in the same order as they are
listed above.

CGroup

The MSM groups the two segment parts into a group called
CGroup. All offsets are relative to CGroup and not to their
individual parts. When referencing relative offsets, always
explicitly specify CGroup so that the assembler generates the
correct offset. For example:

Code segment para public ‘CODE’
MyVariable dw ?

Code ends

Init segment para public ’CODE’
mov si, offset CGroup:MyVariable

Init ends

Important Be aware that placing code or data into your driver in the Code
portion of the segment after initialization wastes memory.
Furthermore, do not place code or data into the Init portion of
the segment that will be needed after the driver has installed
itself. The driver will only use this portion of code and data
during driver initialization. After initialization is complete, the
driver discards the Init portion of code and data. ▲

Segment Attributes

When the driver is setting up a portion of the segment, it
should have the following segment attributes:

para public ‘CODE’

The HSM should include DRIVER.INC at the top of the HSM’s
source file:

DRIVER.INC includes several other include files.

Before you write the HSM, you should go through all include
files, MSM source modules, and sample drivers shipped to you
with this kit. This will enhance your understanding of the
system and help you to write a better driver.

Necessary Routines and Structures

Every LAN driver also needs to have initialization, send,
receive, reset and shutdown routines. These routines contain

Designing the DOS ODI HSM

Version 4.03 (February 2, 1996) 2-5

code that is located in the HSM as well as in the TSM. The
TSM’s portion of the code is typically executed before and after
an HSM routine is called (all calls made to the HSM by the
MSM are near calls). In addition, LAN drivers also need two
data structures: the HSM configuration table and the HSM
statistics table.

(See Appendix A for instructions on assembling and linking
your LAN driver.)

Hardware Issues

Before writing the HSM, you should have a thorough
understanding of the adapter. Knowing the characteristics of
the hardware, bus type, and data transfer mode allows you to
create a more efficient driver.

Network Interface Controllers

You should be familiar with the Network Interface Controller
(NIC) integrated circuit. You should make every effort to obtain
and use current data books and application notes from the
manufacturer. In addition, the manufacturer’s support
engineers can provide up-to-date information on hardware
quirks and modifications.

Data Transfer Mode

The MSM and TSM provide certain support procedures that
are optimized for use with a specific data transfer mode. For
example, the development of the HSM’s packet reception and
transmission routines will be affected by the adapter’s transfer
mode. The following are the data transfer modes:

� Programmed I/O
� Shared RAM (Memory Mapped I/O)
� Direct Memory Access (DMA)
� Bus Master

Bus Type

You should also consider the bus type and size in creating
optimized HSM operations. The HSM’s initialization process
will be affected by the bus type when it initializes and registers
the hardware configuration with the MSM and Link Support
Layer. The following are the bus types:

� Industry Standard Architecture (ISA)
� Micro Channel Architecture
� Extended Industry Standard Architecture (EISA)

16-Bit DOS Client HSM

2-6 Version 4.03 (February 2, 1996)

� Peripheral Component Interconnect (PCI)
� Personal Computer Memory Card International Association

(PCMCIA)
� Video Electronics Standard Association (VESA) Local Bus

�

Version 4.03 (February 2, 1996) 3-1

Chapter 3 DOS ODI HSM Overview

Chapter Overview 3-2.
DOS LAN Driver Modules 3-3.
DOS 3-3.

The Modules That Comprise the LAN Driver 3-3.
Media Support Module (MSM) 3-3.
Topology Specific Module (TSM) 3-3.
Hardware Specific Module (HSM) 3-3.

Developing The Hardware Specific Module (HSM) 3-4.
HSM Data Structures 3-4.

Configuration Table 3-4.
Statistics Table 3-4.

HSM Routines 3-4.
Routines that Must Be Fully Written 3-4.
Routines that Can Be Stubbed 3-5.

MSM Support for the HSM 3-5.
LAN Driver Capabilities 3-5.

Multiple Frame Support 3-5.
Adapter Data Space 3-7.
Frame Data Space 3-7.

Multicast Address Support 3-7.
Source Routing Support 3-7.
Promiscuous Mode 3-8.

3.

3

3

16-Bit DOS Client HSM

3-2 Version 4.03 (February 2, 1996)

Chapter Overview
This chapter provides an overview of writing a DOS ODI client
HSM. It also discusses the procedures and functions that the
HSM should provide. Depending on the hardware and media of
the physical board, your HSM may not need to meet all the
requirements discussed in this chapter.

You should read this chapter if you have never developed an
HSM for a DOS ODI LAN driver.

DOS ODI HSM Overview

Version 4.03 (February 2, 1996) 3-3

DOS LAN Driver Modules

The Modules That Comprise the LAN Driver

An DOS ODI LAN driver is created by linking the following
three modules together:

� MSM.OBJ (Media Support Module)
� <TSM>.OBJ (Topology Specific Module)
� <HSM>.OBJ (Hardware Specific Module)

Media Support Module (MSM)

The Media Support Module (MSM) is common to all DOS ODI
LAN drivers that use the LAN driver toolkit. The MSM
handles all generic initialization and run-time issues.

Topology Specific Module (TSM)

The <TSM>.OBJ module is specific to the topology you are
using. (Replace the <TSM> with the appropriate module
name.) For example, LAN drivers that drive Ethernet LAN
adapters use the ETHERNET.OBJ TSM. The TSM is
responsible for handling frame header appending and
stripping, multicasting, source routing, and any other issues
unique to a particular topology. We provide the following three
TSMs that you can use to develop your LAN driver:

� ETHERNET.OBJ (for Ethernet boards)
� TOKEN.OBJ (for 802.5 token-ring boards)
� FDDITSM.OBJ (for FDDI boards)

Note This list is not exclusive and may change. ▲

Other TSMs are created as new media are supported.
Generally, we do not provide TSMs for proprietary topology
types. If you are supporting a proprietary topology, you must
create your own Topology Specific Module.

Hardware Specific Module (HSM)

The <HSM>.OBJ file contains the hardware-specific code you
will create for a specific physical board. This module is
responsible for handling all hardware interactions.

We have provided the source code to the MSM.OBJ and
<TSM>.OBJ in the files MSM.ASM and <TSM>.ASM. You can
modify the code to suit the particular requirements of your
LAN adapter. However, keep these changes to a minimum and
carefully document them, because Novell updates these
modules as the need arises. If you have changed these modules,

16-Bit DOS Client HSM

3-4 Version 4.03 (February 2, 1996)

you must reincorporate those changes into the new MSM.ASM
and <TSM>.ASM modules when we supply them.

Developing The Hardware Specific Module (HSM)

HSM Data Structures

Every HSM must contain

� One configuration table data structure.
� One statistics table data structure.

Configuration Table

The configuration table is a data structure that defines the
configuration of the physical board and MLID. The fields in
this table are primarily used during initialization and are
referred to by the LSL and the MLID. The requirements for
configuration tables are explained in detail in Chapter .4 The
MSM copies and maintains the configuration table for each
logical board.

Statistics Table

The statistics table is a data structure that contains data on
the operation of the physical board and the MLID. Both the
LSL and the MLID look at fields in this table. Chapter 4
contains a detailed description of this data structure.

HSM Routines

The MSM calls all of the following routines. Therefore, the
HSM must be aware of the entry conditions that exist and
must meet any execution and return conditions the MSM
requires. Chapter 6 describes these conditions.

Important The names of your routines must exactly match the italicized
names of the routines below. ▲

Routines that Must Be Fully Written

You must write the following routines:

� DriverInit (initializes the HSM).
� DriverISR (services interrupts and receives packets).
� DriverMulticastChange (updates the multicast table). If

your hardware does not support multicast addressing, you
may stub this routine.

� DriverReset (resets the hardware).
� DriverSend (sends packets).
� DriverShutdown (shuts down the hardware).

DOS ODI HSM Overview

Version 4.03 (February 2, 1996) 3-5

Routines that Can Be Stubbed

Even if you choose not to support any of the following routines
in your HSM, you must still include the routine, but you can
stub it so that it contains only a return instruction.

� DriverChangeLookAheadSize (changes the look-ahead size).
� DriverManagement (manages HSM specific features).
� DriverPoll (polls the driver).
� DriverPromiscuousChange (changes the promiscuous

mode).

MSM Support for the HSM
Chapter 6 describes the MSM support calls available to the
HSM. These calls handle common driver interactions with the
MSM. The calls are:

� HSMProvideTCB
� HSMShutDownMSM
� MSMBuildTransmitControlBlock
� MSMCallNESL
� MSMClearSendQueue
� MSMGenerateNESLChangeEvent
� MSMGenerateNESLEvent
� MSMGenerateNESLResumeEvent
� MSMGenerateNESLSuspendEvent
� MSMGetNextSend
� MSMGetRCB
� MSMMediaConfigUpdate
� MSMPrintStringZero
� MSMRcvComplete
� MSMRcvCompleteStatus
� MSMReturnRCB
� MSMSendComplete
� MSMSetIRQ
� MSMUnSetIRQ
� MSMUpdateMulticast

LAN Driver Capabilities
Your LAN driver must provide the following capabilities when
feasible. In some instances, this manual recommends certain
ways of implementing these capabilities to allow the HSM to be
as versatile as possible, to run in as many environments as
possible and to coexist successfully with any additional TSRs.
However, you can implement these capabilities as you choose.

Multiple Frame Support
The MSM provides multiple frame support capability.
Therefore, your HSM automatically supports multiple frame

16-Bit DOS Client HSM

3-6 Version 4.03 (February 2, 1996)

types. (You can allocate frame types in the NET.CFG file. See
Appendix B.)

The default frame type for the physical board is 802.2. If your
LAN adapter runs on a topology that supports multiple frame
types, the MSM supports each frame type by using logical
boards (see Figure 3.1). A logical board is merely a piece of code
written to emulate a physical board that uses a specific frame
type.

Frame Data
Space 3

Ethernet_802.2
3

Ethernet SNAP
2

Ethernet_II

1

Data and
Code Spaces

Logical
Boards

Physical
Boards

NE/2

Frame Data
Space 2

Adapter Code
 Space

Frame Data
Space 1

Adapter Data
 Space

Adapter Code
Space

Frame Data
Space 1

Adapter Data
 Space

Frame Data
Space 2

Adapter Code
 Space

Frame Data
Space 1

Adapter Data
 Space

NE/2

NE/2

Ethernet_802.2

1

Ethernet_802.2

Ethernet SNAP

2

1

The NetWare operating system does not concern itself with
distinguishing between logical boards that have exclusive use
of a LAN adapter and logical boards that might share the same
LAN adapter with other logical boards. Only the MLID makes
this distinction.

Figure 3.1
Implementation of
Multiple Frame Support
in Ethernet Topology

DOS ODI HSM Overview

Version 4.03 (February 2, 1996) 3-7

The MSM creates a logical board for each frame type the MLID
supports. Each logical board uses the same code image and the
same adapter data space loaded into memory. However, the
MSM maintains a separate frame data space for each logical
board.

Adapter Data Space

Because DOS ODI LAN drivers are not reentrant, the MSM
allocates in memory only one adapter driver space and one code
space for each physical board. In addition, the MSM also
allocates one frame data space for each frame type (logical
board) supported. The HSM statistics table is included in the
adapter data space.

The ODI specification defines the statistics table (see Chapter
4).

Frame Data Space

Every logical board has one frame data space associated with
it. The frame data space is a structure that contains the frame
specific information necessary for the MSM to support a
specific frame type. The configuration table is part of this
structure. The MSM creates and maintains a separate frame
data space for each frame format that is loaded.

The MSM fills in the configuration table by reading a
configuration file called NET.CFG (see Appendix B). If this file
is not present, the MSM uses the default frame type specified
by the <TSM>.OBJ for that particular topology. If the
NET.CFG file is present, you can specify multiple frame types
in it. In that case, the MSM allocates one configuration table
for each frame type (logical board) by creating a copy of the
configuration table in the MLID’s data space and modifying the
fields appropriately for that logical board.

The ODI specification defines the configuration table (see
Chapter 4).

Multicast Address Support
If the LAN adapter is physically capable of supporting
multicast addressing, the HSM must support it. The HSM I/O
control routine DriverMulticastChange implements multicast
support. (See Chapter 5.)

Source Routing Support
The MSM provides source routing capability. Therefore, your
HSM automatically supports source routing.

16-Bit DOS Client HSM

3-8 Version 4.03 (February 2, 1996)

Only token-ring and FDDI drivers support source routing. In
these drivers, the MSM handles the source routing support;
therefore, the HSM transparently supports it.

Promiscuous Mode

We strongly recommend that your HSM support promiscuous
mode. When MLIDs operate in promiscuous mode, the HSM
configures the hardware to receive all packets on the LAN
medium. This includes bad packets, if possible. Because
various monitoring functions operate in promiscuous mode, we
strongly recommend that your HSM support promiscuous mode
if your adapter is capable of such support. The HSM enables or
disables promiscuous mode upon request by using the
DriverPromiscuousChange routine described in Chapter 5.

�

Version 4.03 (February 2, 1996) 4-1

Chapter 4 HSM Data Structures and Variables

Chapter Overview 4-2.
Required Variables and Constants 4-3.

Code Segment: General Variables and Constants 4-3.
Init Segment: General Variables and Constants 4-3.
Init Segment: Driver Keywords 4-4.

Variables and Constants Provided by the MSM 4-6.
Code Segment: General Variables and Constants 4-6.
Init Segment: General Variables and Constants 4-9.

Structures Required by the MSM 4-9.
Frame Data Space 4-9.
Description of HSM Configuration Table Fields 4-13.
Configuration Table Flags 4-21.

Adapter Data Space 4-26.
Statistics Table 4-26.
Description of HSM Statistics Table Fields 4-28.

Structures Provided by the MSM 4-31.
AES Event Control Block (AES ECB) 4-31.
Receive Control Block (RCB) 4-32.
Transmit Control Block (TCB) 4-33.

4.

4

4

16-Bit DOS Client HSM

4-2 Version 4.03 (February 2, 1996)

Chapter Overview
This chapter describes general structures and variables that
the HSM uses. Because each structure and variable name in
this chapter is predefined, you must use these exactly as they
appear in this document.

� Required Variables and Constants

This section describes the variables and constants that
must be present in the HSM in order to avoid linker errors.

� Variables and Constants Provided by the MSM

This section describes some of the variables and constants
the MSM provides for your optional use.

� Structures Required by the MSM

This section describes the structures and tables that must
be present in the HSM in order to avoid linker errors.

� Structures Provided by the MSM

This section describes some of the structures and tables the
MSM provides for your optional use.

This chapter contains useful reference material for the
developer.

HSM Data Structures and Variables

Version 4.03 (February 2, 1996) 4-3

Required Variables and Constants
The variables and constants listed must be present in the
HSM.

Code Segment: General Variables and Constants
DriverConfigTable : label

DriverConfigTable is a label that must immediately precede the
HSM configuration table. The MSM uses this label to locate the
configuration table that follows.

Example

DriverConfigTable label byte
MSignature db ‘HardwareDriverMLID ’ ;Note the 8

;spaces at
;the end of
;the string

MConfigTableMajorVer db 01
MConfigTableMinorVer db 13 ;v1.13 for this table
MNodeAddress db 6 dup (0ffh)

.

.

.
MDMALine2 db 0

DriverStatTable : label

DriverStatTable is a label that must immediately precede the
statistics table. The MSM uses this label to locate the various
fields in the table that follows it. See the definition of the HSM
statistics table on page 4-26 and in the ODI.INC file.

Example

DriverStatTable label byte
DriverStatMajorVer db 01
DriverStatMinorVer db 01;v1.01 for this table
NumberGenericCounters dw 14
ValidCountersMask dd 0
.
.
.

Init Segment: General Variables and Constants
DriverMainSectionText : byte

The MSM uses the DriverMainSectionText string variable to
locate the HSM’s section text inside the NET.CFG file. The
string in DriverMainSectionText must be in upper case and the
‘LINK DRIVER’ string must be the first part, followed by the
driver name. The driver name is usually the name of the
MLID’s executable file. This string must be zero-terminated.

16-Bit DOS Client HSM

4-4 Version 4.03 (February 2, 1996)

Example

DriverMainSectionText db ‘LINK DRIVER NE1000’,0

DriverSignOnMessage : byte

The MSM displays the DriverSignOnMessage string variable
when it loads. The HSM defines this string to contain the
company name, board name, two spaces, version, one space,
and date string, followed by the appropriate copyright
messages. The string must be zero-terminated. Furthermore,
the string ‘VeRsIoN=’ must immediately precede the
DriverSignOnMessage. The string ‘VeRsIoN=’ must use the
mixed case exactly as it appears in this document.

Important In order to identify which version of this specification an HSM
conforms to, a version string (the ‘‘specification version string”)
must be embedded into the HSM. The specification version
string number (4.00 for this specification) is the actual version
number of the specification. The following is the specification
version string for this specification; it must be added to the
HSM where the global variable declarations are made exactly
as shown:

HSMSPEC db ‘HSM_SPEC_VERSION: 4.00’,0

▲

Example

HSMSPEC db ‘HSM_SPEC_VERSION: 4.00’,0
db ‘VeRsIoN=’

DriverSignOnMessage db ‘Novell NE2 Ethernet MLID’
db ‘ v1.00 (950831)’,0Dh,0Ah
db ‘(C) Copyright 1991–1995 Novell, ’
db ‘Inc. All Rights Reserved.’,0

Init Segment: Driver Keywords
DriverKeywordText : word

DriverKeywordText is a word table of pointers to strings
defining the text for each parameter that the MSM uses to
parse the NET.CFG file. This variable must be present to avoid
linking errors, regardless of whether the HSM implements
custom keywords.

Example

DriverKeywordText dw offset CGroup:MaxPacketText
dw offset CGroup:CableTypeText

DriverKeywordTextLen : word

DriverKeywordTextLen is a table of words defining the length of
each keyword string defined in the DriverKeywordText table.

HSM Data Structures and Variables

Version 4.03 (February 2, 1996) 4-5

This variable must be present to avoid linker errors, regardless
of whether the HSM implements this feature.

Example

DriverKeywordTextLen dw MaxPacketTextLen
dw CableTypeTextLen

DriverNumKeywords : abs

DriverNumKeywords is a constant that specifies the number of
driver defined NET.CFG keywords. This variable must be
present to avoid linker errors, regardless of whether the HSM
implements this feature. HSMs set this to 0, if the HSM has no
custom NET.CFG keywords.

Example

DriverNumKeywords equ 2

DriverProcessKeywordTab : word

DriverProcessKeywordTab is a table of word pointers to near
procedures the MSM calls when it encounters the associated
keyword parameter in the NET.CFG file. Whether or not the
HSM uses custom keywords, this variable must be present to
avoid linker errors.

Example

DriverProcessKeywordTab dw offset CGroup:ProcMaxPack
dw offset CGroup:ProcCableType

Defining and Using Driver KeyWords

The example below illustrates how the driver defines and uses
DriverKeywordText, DriverKeywordTextLen,
DriverProcessKeywordTab, and DriverNumKeywords. The
example assumes the driver has two unique keywords.

Example

DriverNumKeywords equ 2

MaxPacketText db ‘MAX PACKET SIZE’
MaxPacketTextLen equ $–MaxPacketText
CableTypeText db ‘CABLE TYPE THICK’
CableTypeTextLen equ $–CableTypeText

DriverKeywordText dw offset CGroup:MaxPacketText
dw offset CGroup:CableTypeText

DriverKeywordTextLen dw MaxPacketTextLen
dw CableTypeTextLen

DriverProcessKeywordTab dw offset CGroup:ProcessMaxPacketSize

16-Bit DOS Client HSM

4-6 Version 4.03 (February 2, 1996)

dw offset CGroup:ProcessCableType
;
; DS CGroup
; SI –> buffer holding any parms
; BX –> Configuration Table
; Interrupts enabled
; CLD is in effect
ProcessMaxPacketSize proc near

call MSMEatWhite ; Point SI at parameter
jnz RanOutOfFile
call MSMAtoI ; Get the desired packet size value
mov MyMaxPacketSize, ax

RanOutOfFile:
ret

ProcessMaxPacketSize endp
ProcessCableType proc near

mov CableType, 1 ; Signal cable type
ret

ProcessCableType endp

Variables and Constants Provided by the MSM
Code Segment: General Variables and Constants

LSLSupport : dword

LSLSupport is a double word variable that holds the far
address of the LSL’s MLID entry point. This variable is used to
invoke the MLID support functions. Remember that DS must
equal CGroup when using this variable unless a segment
override prefix is used as shown in the example below. For
example, to get the LSL’s millisecond interval marker, you
would execute the following code:

Example

mov bx, MLIDSUP_GET_INTERVAL_MARKER
call cs:LSLSupport

MSMEOIFlag : byte

MSMEOIFlag is a byte variable that signals whether an EOI
operation should be issued to the slave programmable interrupt
controller (PIC) when processing a hardware interrupt in the
HSM. The HSM uses this flag when issuing EOI commands
inside its DriverISR procedure. This flag is set to a nonzero
value when it is necessary for the HSM to issue EOI to the
slave PIC (port A0h) in addition to the master PIC. If this flag
is 0, the HSM need only issue EOI to the master PIC (port
20h). This byte is valid after calling MSMSetIRQ.

Example

cmp MSMEOIFlag, 0 ;Do we need to EOI the slave?
JNE EOISlavePIC ;NE=YES, EOI the slave.

HSM Data Structures and Variables

Version 4.03 (February 2, 1996) 4-7

MSMIntMaskOff : byte

MSMIntMaskOff is a byte variable that holds an appropriate
mask value that when ORed with the current 8259 mask value
disables the 8259’s interrupt line specified in the configuration
table’s MIRQLine1 field. This interrupt is usually the LAN
adapter’s interrupt. The MSM sets up this variable during the
call to MSMSetIRQ.

Example

;Disable LAN adapter’s interrupt line
mov dx, MSMIntMaskPort
in al, dx ;Read current mask value
slow ;Add at least 500ns delay
or al, MSMIntMaskOff
out dx, al ;Output new mask value

MSMIntMaskOn : byte

MSMIRQMaskOn is a byte variable that holds an appropriate
mask value that when ANDed with the current 8259 mask
value will enable the 8259’s interrupt line specified in the
configuration table’s MIRQLine1 field. This interrupt is usually
the LAN adapter’s interrupt. The MSM sets up this variable
during the call to MSMSetIRQ.

Example

;Enable LAN adapter’s interrupt line
mov dx, MSMIntMaskPort
in al, dx ;Read current mask value
slow ;Add at least 500ns delay
and al, MSMIntMaskOn
out dx, al ;Output new mask value

The slow macro is defined as follows:

slow macro
push ax
in al, 61h
in al, 61h
in al, 61h
pop ax

endm

MSMIntMaskPort : word

MSMIntMaskPort is a word variable that holds the port
address of the 8259 mask register applicable to the interrupt
line specified in the configuration table’s MIRQLine1 field. The
MSM sets up this variable when it calls MSMSetIRQ. The
HSM uses MSMIntMaskPort whenever the HSM must enable
or disable a LAN adapter’s interrupt line. (See the example for
MSMIntMaskOn and MSMIntMaskOff.)

16-Bit DOS Client HSM

4-8 Version 4.03 (February 2, 1996)

MSMLookAheadSegment : word

MSMLookAheadSegment is a word variable that the HSM sets
during the DriverInit routine. The MSM uses the
MSMLookaheadSegment variable to initialize some of its
internal data structures at initialization time instead of run
time, thereby increasing performance. The HSM sets this
variable to the value of the segment where the receive look
ahead data is located. Shared memory based HSMs usually set
this variable to the segment address of the LAN adapter’s
shared memory. I/O and DMA based LAN adapters set this
variable to CGroup because they provide look ahead data using
an internally allocated buffer. The HSM sets this variable
when initialization has been successful and before the HSM
returns from DriverInit.

The HSM calls MSMMediaConfigUpdate if it must modify this
variable after returning from DriverInit.

Example

mov ax, cs
mov MSMLookAheadSegment, ax ;Where AX contains

;the segment value.

MSMMaxMulticastAddr : equate

MSMMaxMulticastAddr is a decimal equate indicating the
maximum number of multicast addresses the MSM can handle.
For example, the MSM might be able to handle 16 entries in
the multicast table. This equate would then be set to 16.

MSMPhysNodeAddress : 6–byte

MSMPhysNodeAddress is a 6-byte variable that provides the
MLID’s node address in the format required by the hardware.

MSMPriorityQSupportPtr : word

MSMPriorityQSupportPtr is a word variable that holds the
near address of a function supplied by the HSM. This function
enables the HSM to queue packets according to priority.

MSMSystemFlags : byte

MSMSystemFlags is a byte variable that holds information
concerning the HSM’s environment. Check the MSM.INC file
for the current bit definitions. Note that you can set more than
one bit. For example, if the machine were 80386 based, the
ATFlag bit and I386Flag bit would both be set.

The following bits are defined:

HSM Data Structures and Variables

Version 4.03 (February 2, 1996) 4-9

Example

ATFlag 01h ;Set if this machine’s processor is
;a 80286 or higher.

MCAFlag 02h ;Set if this machine contains a
;Micro Channel bus.

EISAFlag 04h ;Set if this machine contains a
;EISA bus.

I386Flag 08h ;Set if this machine’s processor is
;an 80386 or higher.

PCIFlag 10h ;Set if this machine contains a Peripheral
;Component Interface BIOS.

CSFlag 20h ;Set if PCMCIA Card Services is present.
NESLFlag 80h ;Set if the NetWare Event Service Layer (NESL) is

;present.

MSMTxFreeCount : byte

MSMTxFreeCount is a byte variable the HSM initializes to
hold the number of hardware transmit resources the driver
currently has available. The HSM increments this variable
whenever a transmit resource becomes available. The HSM
also sets this variable accordingly whenever the HSM is doing
an internal hardware reset. MSMGetNextSend decrements this
variable.

For example, if the HSM has two maximum size transmit
buffers available on its LAN adapter, it sets MSMTxFreeCount
equal to 2. If the LAN adapter supports hardware queuing and
a large number of possible outstanding transmits, the HSM
sets the variable to a value that represents the number of
transmits the LAN adapter can process.

Note The MSM allocates MAX_TCB_ALLOCATED Transmit Control
Blocks (TCBs). Therefore, MSMTxFreeCount cannot exceed
MAX_TCB_ALLOCATED. ▲

Example

inc MSMTxFreeCount ;After Tx resource becomes available.

MSMTxMonPtr : dword

MSMTxMonPtr is a double word variable that holds the far
address of a registered transmit monitor. The
MSMSendComplete routine calls the transmit monitor.

Init Segment: General Variables and Constants
No required variables or constants.

Structures Required by the MSM
Frame Data Space

The MSM calls DriverInit which initializes the adapter and the
configuration table. After returning from DriverInit, the MSM

16-Bit DOS Client HSM

4-10 Version 4.03 (February 2, 1996)

allocates the frame data space and creates a copy of the
configuration table in this area. The MSM allocates a separate
frame data space containing a separate configuration table for
each frame the driver supports. If the HSM modifies any
configuration table field after it returns from DriverInit, it
must call MSMMediaConfigUpdate.

Configuration Table
Code segment

The HSM must define one configuration table containing
information about the HSM and its configuration. The table
must be defined by the fields shown below with each entry
filled accordingly.

The following figures and tables contains the field names,
descriptions, and other necessary information about the
configuration table. This structure is defined in the ODI.INC
file.

HSM Data Structures and Variables

Version 4.03 (February 2, 1996) 4-11

MLIDConfigurationStructure struc

MSignature db ‘HardwareDriverMLID’,8 dup (‘ ’)
MConfigTableMajorVer db 01
MConfigTableMinorVer db 13 ;v1.13 for this version
MNodeAddress db 6 dup (?)
MModeFlags dw 0 ;Unused bits set to 0
MBoardNumber dw ? ;Assigned by the LSL
MBoardInstance dw ? ;Determined by the MSM
MMaxPacketSize dw 0
MBestDataSize dw 0
MWorstDataSize dw 0
MCardLongName dd 0
MCardShortName dd 0
MFrameString dd 0
MReserved0 dw 0 ;Must be set to 0
MFrameID dw 0
MTransportTime dw 1 ;Nominally set to 1
MRouteHandler dd 0 ;Only for source routing

;support
MLookAheadSize dw 18 ;Default
MLineSpeed dw 0
MReserved1 db 6 dup (0)
MPrioritySup db 0 ;Number of Priorities

;(Max=7)
MBusID db –1 ;Indicates the adapter’s bus

;type.
MMLIDMajorVer db 0
MMLIDMinorVer db 0
MFlags dw 0 ;Unused bits set to 0
MSendRetries dw 0
MLink dd 0 ;HSM must not modify
MSharingFlags dw 1 ;Initially a driver is shut

;down
MSlot dw 0 ;Default: HSM scans slots
MIOAddress1 dw 0 ;If not used, set to 0
MIORange1 dw 0
MIOAddress2 dw 0
MIORange2 dw 0
MMemoryAddress1 dd 0
MMemorySize1 dw 0
MMemoryAddress2 dd 0
MMemorySize2 dw 0
MIRQLine1 db 0FFh ;if not used, set to 0FFh
MIRQLine2 db 0FFh
MDMALine1 db 0FFh
MDMALine2 db 0FFh

MLIDConfigurationStructure ends

Figure 4.1
Configuration Table
Sample Source Code

16-Bit DOS Client HSM

4-12 Version 4.03 (February 2, 1996)

MSignature
MConfigTableMajorVer
MConfigTableMinorVer

MNodeAddress
MModeFlags

MBoardNumber
MBoardInstance

MMaxPacketSize
MBestDataSize

MWorstDataSize
MCardLongName
MCardShortName

MFrameString
MReserved0

MFrameID
MTransportTime
MRouteHandler

MLineSpeed
MReserved1

MBusID

MMLIDMinorVer
MFlags

MSendRetries
MLink

MSharingFlags
MSlot

MIOAddress1
MIORange1

MIOAddress2

MMemoryAddress1
MMemorySize1

MMemoryAddress2
MMemorySize2

MIRQLine1
MIRQLine2

MDMALine1
MDMALine2

MIORange2

MLookAheadSize

MPrioritySup

. . .

MMLIDMajorVer

Figure 4.2
Graphic Representation
of the Configuration Table

HSM Data Structures and Variables

Version 4.03 (February 2, 1996) 4-13

Description of HSM Configuration Table Fields

The following table describes the MLID configuration table
fields and how they are initialized.

HSM Configuration Table

Offset Name Size
(in bytes)

Description

0h MSignature 26 This field contains the string
‘HardwareDriverMLID’ with eight spaces
appended.

1Ah MConfigTableMajorVer 1 This field defines the current major version of
the configuration table structure. As changes
are made to this structure, the revision level
will be altered. For this specification, set this
field to 01.

1Bh MConfigTableMinorVer 1 This field defines the current minor version of
the configuration table structure. For this
specification, set this field to 13 (v1.13).

1Ch MNodeAddress 6 This field holds the card’s node address. The
HSM sets this field during the initialization
routine. (See the ODI Specification
Supplement: Canonical and Noncanonical
Addressing.)

22h MModeFlags 2 This field contains flags the HSM sets by using
the definitions which follow this table.

24h MBoardNumber 2 During initialization, the MSM sets this field to
the board number returned by
LSLRegisterMLID.

26h MBoardInstance 2 The MSM sets this field to the relative board
number for this driver. A value of 0 indicates
the initial frame type for this MLID—for
example, if the MLID loads three frame types,
the third frame type will have its configuration
table MBoardInstance field set to 2 (zero based
count).

Table 4.1
HSM Configuration Table

16-Bit DOS Client HSM

4-14 Version 4.03 (February 2, 1996)

HSM Configuration Table (continued)

Offset DescriptionSize
(in bytes)

Name

28h MMaxPacketSize 2 This field defines the largest possible packet
size that the driver/LAN adapter combination
can transmit and/or receive. This value
includes all headers. Typically, Ethernet HSMs
set this field to 1514 decimal.
For example, because token-ring drivers can
send and receive a number of different packet
sizes, a token-ring driver must determine the
appropriate packet size during DriverInit and
place that value in this field.
Token-ring HSMs should support 4KB (4096
[data] + 30 [source routing] + 22 [MAC] + 74
[protocol header] = 4222) packet sizes
whenever possible and practical. The value in
this field cannot be less than 638 decimal (512
+ 30 [source routing] + 22 [MAC] + 74 [protocol
header] = 638).

2Ah MBestDataSize 2 The MSM sets this field during
MSMMediaConfigUpdate. The MSM subtracts
the length of the smallest media header(s) from
the value in the MMaxPacketSize field.
For example, the Ethernet MSM sets this field
to 1500 decimal (1514 – 14 [MAC] = 1500) if
the HSM runs the Ethernet_II packet type.
The token-ring MSM sets this field to
MMaxPacketSize – 14 [MAC] – 3 [802.2 UI] if
the HSM’s packet type is token-ring.

2Ch MWorstDataSize 2 The MSM sets this field during
MSMMediaConfigUpdate. The MSM subtracts
the length of the largest media headers(s) from
the MMaxPacketSize field.
For example, the token-ring MSM sets this
field to MMaxPacketSize – 14 [MAC] – 3 [802.2
UI] – 30 [source routing] – 5 [SNAP] if the
HSM’s packet type is token-ring SNAP. An
Ethernet_II driver sets this field to 1500.
(MMax–14MAC=1500.)
Note: Protocol stacks use the value in this
field to determine the largest packet size this
driver can send or receive.

2Eh MCardLongName 4 This field holds a far pointer to a
length-preceded, zero-terminated string that
contains a full description of the LAN adapter.

HSM Data Structures and Variables

Version 4.03 (February 2, 1996) 4-15

HSM Configuration Table (continued)

Offset DescriptionSize
(in bytes)

Name

32h MCardShortName 4 This field holds a far pointer to a
length-preceded, zero-terminated string that
holds a single descriptive name. The maximum
length of this string is 8 characters, not
including the length byte or zero terminator.
The legal characters are 0–9 and upper- and
lower-case A–Z.
We recommend that this string contains the
HSM’s filename.

36h MFrameString 4 This field holds a far pointer to a
length-preceded, zero-terminated string
describing the frame and media type being
used by this logical board. (See the ODI
Specification Supplement: Frame Types and
Protocol IDs.)

3Ah MReserved0 2 Set this field to 0.

3Ch MFrameID 2 This field describes the frame and media type
the logical board is using. (See the ODI
Specification Supplement: Frame Types and
Protocol IDs.)

3Eh MTransportTime 2 The HSM sets this field to define the number of
milliseconds it takes the HSM and LAN
adapter to transmit a 512 byte data packet.
The HSM cannot set this field to 0. Most HSMs
set this field to a value of 1.
If the HSM drives a board on a slow
asynchronous line, it sets this field according to
a representative value.

40h MRouteHandler 4 MLIDs that support source routing use this
field in conjunction with ROUTE.COM. HSMs
initialize this field to 0 and then do not modify
it. (See the ODI Specification Supplement:
Source Routing for a discussion of source
routing.)

16-Bit DOS Client HSM

4-16 Version 4.03 (February 2, 1996)

HSM Configuration Table (continued)

Offset DescriptionSize
(in bytes)

Name

44h MLookAheadSize 2 This field holds the configured look ahead size
as set by protocol stacks. The HSM initializes
this field to a default value of 18 bytes.
When it receives a packet, the HSM uses this
value and the maximum possible media header
to determine the amount of look ahead data it
must pass to the MSMGetRCB routine. The
value in this field can be changed at any time.
Therefore, the HSM must refer to this field for
every packet it receives.
The MLID can implement
DriverChangeLookAheadSize to avoid checking
on each packet.
The maximum value this field can be set to is
128 bytes.

46h MLineSpeed 2 This field holds the data rate used by the LAN
adapter’s medium (usually specified in
megabits per second). The HSM sets this field
to an appropriate value.

This value is normally specified in megabits
per second (Mbps). If the line speed is less than
1 Mbps or if it is a fractional number, the value
of this field can be defined in kilobits per
second (Kbps) by setting the most significant
bit (bit 15) to 1. This field is undefined if it is
set to 0.

For example:
If the speed of the line driver is 10 Mbps, put
10 (decimal) in this field.

If the speed is 2.5 Mbps, then the value of this
field is 2500 (decimal) logically ORed with
8000h (most significant bit is 1 for Kbps).

If the line speed can be selected, as with
token-ring, the HSM determines the selected
line speed and places that value in this field.
Some common values are listed below:

Ethernet 10Mbps 000Ah
Token-Ring 4Mbps 0004h
Token-Ring 16Mbps 0010h
FDDI 100 Mbps 0064h
ISDN 64 Kbps 8040h

48h MReserved1 6 This field is reserved. Set this field to 0.

HSM Data Structures and Variables

Version 4.03 (February 2, 1996) 4-17

HSM Configuration Table (continued)

Offset DescriptionSize
(in bytes)

Name

4Eh MPrioritySup 1 This field contains the number of priority levels
that the HSM can handle. This field has a
maximum of 7 priorities (1–7). Zero indicates
no priority packet support. Therefore, the HSM
can set this field to a value of 0 through 7.

4Fh MBusID 1 If the HSM supports multiple bus types, it
checks this field during initialization to
determine which bus it should be initialized
for.
This field is defined as follows:
BUS_ID_ISA equ 0
BUS_ID_MCA equ 1
BUS_ID_EISA equ 2
BUS_ID_PCMCIA equ 3
BUS_ID_PCI equ 4
BUS_ID_VESA equ 5
BUS_ID_HSM_DEFAULT equ –1
If MBusID is set to –1, the HSM searches each
of the machine’s busses for a supported LAN
adapter and initializes the first LAN adapter it
finds. The HSM determines the order to search
the busses in.
If MBusID is initially set to default, the HSM
sets it to the appropriate Bus ID.
Note: If the user has set the BUS ID keyword
for an unsupported bus, the HSM should exit
DriverInit and return an error. (For
information about the Bus ID keyword, see
Appendix B.) ▲

50h MMLIDMajorVer 1 This field defines the current major revision
level of the driver. This field must match the
revision level displayed in the
DriverSignOnMessage string. For example, if
the MLID’s current major version is 2, this
field would also be 2.

51h MMLIDMinorVer 1 This field defines the current minor revision
level of the driver. This field must match the
revision level displayed by the
DriverSignOnMessage string. For example, if
the MLID’s current minor version were .02,
this field would also be .02. (If the current
major and minor version level displayed by the
MLID is 2.02, these fields should reflect that
version of 2.02.)

52h MFlags 2 This field contains flags the HSM sets by using
the definitions which follow this table.

16-Bit DOS Client HSM

4-18 Version 4.03 (February 2, 1996)

HSM Configuration Table (continued)

Offset DescriptionSize
(in bytes)

Name

54h MSendRetries 2 The HSM initializes this field to an appropriate
value that represents the number of times the
HSM will retry an errored transmission
operation before giving up.
Note: 10 is a nominal default.

56h MLink 4 The HSM sets this field to 0 and does not
modify it.

5Ah MSharingFlags 2 This field contains flags the HSM sets by using
the definitions which follow this table.

5Ch MSlot 2 The HSM initializes this field to 0.
HSMs that control slot-based LAN adapters
(for example, the Micro Channel Architecture
boards) use this field. If the HSM is for an ISA
board, it can ignore this field. If the HSM is for
a Micro Channel Architecture, PCI, or EISA
type board, it sets the slot number of the LAN
adapter it is driving.
Slot numbers are 1-based. An initial value of
zero implies that the HSM scans for the board.
The user can override this value with the
NET.CFG file.

5Eh IOAddress1 2 The HSM initializes this field to the default I/O
port base address.
If the HSM is self-configurable, it determines
the appropriate value for the LAN adapter and
places that value in this field before it returns
from initialization. If the HSM does not use I/O
ports, it sets this field to 0.
The user can override this value with the
NET.CFG file.

60h IORange1 2 This field defines the number of I/O ports
decoded by the LAN adapter at MIOAddress1.
Set this field to 0 if the LAN adapter does not
use I/O ports.

62h IOAddress2 2 This field allows the HSM to define two I/O
port base addresses. The definition is the same
as MIOAddress1. Set this to 0 if the LAN
adapter does not have a second range of I/O
ports.
The user can override this value with the
NET.CFG file.

64h IORange2 2 This field defines the number of I/O ports
decoded by the LAN adapter at MIOAddress2.
Set this field to 0 if the LAN adapter does not
use I/O ports.

HSM Data Structures and Variables

Version 4.03 (February 2, 1996) 4-19

HSM Configuration Table (continued)

Offset DescriptionSize
(in bytes)

Name

66h MMemoryAddress1 4 The HSM initializes this field to the LAN
adapter’s default base memory address.
If the HSM is self-configurable, it determines
the appropriate value for the LAN adapter and
places that value in this field before returning
from initialization.
If the LAN adapter does not use or define
shared RAM or ROM, the HSM sets this field
to 0.
This value is an absolute physical address. For
example, if a LAN adapter’s RAM were located
at C000:0, the value in this field would be
C0000.
The user can override this value with the
NET.CFG file.

6Ah MMemorySize1 2 This field defines the number of paragraphs
(16 bytes) decoded at MMemoryAddress1. If
MMemoryAddress1 is not defined, the HSM
sets this field to 0.

6Ch MMemoryAddress2 4 This field allows the HSM to define a second
memory address range for the HSM’s LAN
adapter to use.
For example, MemoryAddress1 could define the
starting address of the LAN adapter’s RAM,
and this field could define the starting address
of the LAN adapter’s ROM. Set this field to 0 if
the LAN adapter does not define a second
memory range.
If the HSM is self-configurable, it determines
the appropriate value for the LAN adapter and
places that value into this field before
returning from initialization.
The user can override this value with the
NET.CFG file.

70h MMemorySize2 2 This field defines the number of paragraphs
(16 bytes) decoded at MemoryAddress2. If
MemoryAddress2 is not defined, the HSM sets
this field to 0.

16-Bit DOS Client HSM

4-20 Version 4.03 (February 2, 1996)

HSM Configuration Table (continued)

Offset DescriptionSize
(in bytes)

Name

72h MIRQLine1 1 The HSM initializes this field to the LAN
adapter’s default interrupt request line (IRQ).
If the HSM is self-configurable, it determines
the appropriate value for the LAN adapter and
places that value into this field before
returning from initialization.
If the LAN adapter does not use an interrupt
line, the HSM sets this field to 0FFh (unused).
If the HSM’s LAN adapter supports IRQ 2 or 9,
the HSM sets the value to be consistent with
the LAN adapter’s documentation.
For example, if the LAN adapter’s
documentation specifies the default jumper
setting as IRQ 2, the HSM places a value of 2
in this field. If the LAN adapter’s
documentation specifies a default jumper
setting as IRQ 9, the HSM places a value of 9
in this field.
The HSM sets this field to 0FFh if the field is
not needed.
The user can override this value with the
NET.CFG file.

73h MIRQLine2 1 The HSM uses this field if the HSM’s LAN
adapter uses a second IRQ line. Set this field to
0FFh if it is not needed.
The user can override this value with the
NET.CFG file.

74h MDMALine1 1 The HSM initializes this field to the LAN
adapter’s default DMA channel number.
If the HSM is self-configurable, it determines
the appropriate value for the LAN adapter and
places that value in this field before returning
from initialization.
If the LAN adapter does not use DMA, the
HSM sets this field to 0FFh (unused).
The user can override this value with the
NET.CFG file.

75h MDMALine2 1 The HSM uses this field if the HSM’s LAN
adapter uses a second DMA channel. Set this
field to 0FFh if the field is not needed.
The user can override this value with the
NET.CFG file.

HSM Data Structures and Variables

Version 4.03 (February 2, 1996) 4-21

Configuration Table Flags
This section contains bit maps that describe the bits in each of
the configuration table flags.

MModeFlags

15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0
0 0 0 0 0 1 0 1

Default Values

MModeFlags Bit Map

Bit # Description

0 Reserved. Set this bit to 1 for backward compatibility.

1 UsesDMABit. The HSM sets this bit if it uses DMA or bus-mastering.

2 Reserved. Set to 0.

3 MulticastBit. The HSM sets this bit if it supports multicast addressing. The HSM must
support multicast addressing, if the hardware supports it.

4 PointToPointBit. Set this bit to allow the HSM to bind with a protocol stack without
providing a network number. No network number exists in point-to-point connections.
The HSM must set this bit if the HSM supports dynamic call setup or teardown.
Typically, asynchronous or X.25 HSMs set this bit.

5 NeedsPollingBit. Setting this bit causes the system to call the HSM every timer tick (55
ms) and whenever a protocol stack relinquishes control. Only HSMs that do not have
interrupt capabilities use this bit. Do not use this feature to implement a watchdog
function; instead, use the ScheduleAESEvent function available through the LSL. (See
Chapter 7).

6 RawSend. The HSM sets this bit to 1 if it supports raw sends.

7 Reserved. Set to 1 for backward compatibility.

8 Reserved. Set to 0.

9 Reserved. Set to 0.

10 Reserved. Set to 0.

11 Reserved. Set to 0.

12 Reserved. Set to 0.

13 PromiscuousModeBit. The HSM sets this bit if it supports promiscuous mode.

Table 4.2
MModeFlags Bit Map
Offset 22h

16-Bit DOS Client HSM

4-22 Version 4.03 (February 2, 1996)

MModeFlags Bit Map (continued)

Bit # Description

15, 14 The MLID sets these bits to indicate whether the MNodeAddress field of the
configuration table contains a canonical or a noncanonical address.

Bit 15 This bit indicates whether the node address format is configurable.

Bit 14 indicates whether the configuration table MNodeAddress field contains the node
address in canonical or noncanonical form. The state of bit 14 is only defined when bit 15
is set.

The bit 15/bit 14 combinations are:

00 = MNodeAddress format is unspecified. The node address is assumed to be in
the physical layer’s native format.

01 = This is an illegal value and must not occur.

10 = MNodeAddress is canonical.

11 = MNodeAddress is noncanonical.

(See the ODI Specification Supplement: Canonical and Noncanonical Addressing.)

HSM Data Structures and Variables

Version 4.03 (February 2, 1996) 4-23

MFlags

The HSM sets the bits in this field to indicate different support
mechanisms, such as multicast filtering and multicast address
format.

Table 4.3
MFlags Bit Map
Offset 52h

15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0
0 0 0 0 0 0 0 0 0 0 0 0

Default Values

MFlags Bit Map

Bit # Description

0 Reserved. Set to 0.

1 Reserved. Set to 0.

2 Reserved. Set to 0.

3 Reserved. Set to 0.

4 Reserved. Set to 0.

5 Reserved. Set to 0.

6 Reserved. Set to 0.

7 Reserved. Set to 0.

8 Reserved. Set to 0.

16-Bit DOS Client HSM

4-24 Version 4.03 (February 2, 1996)

MFlags Bit Map (continued)

Bit # Description

10,9 These bits indicate different support mechanisms for multicast filtering. These bits are
only valid if bit 3 of the MModeFlags is set, indicating that the HSM supports multicast
addressing.
The HSM sets bit 10 if it has specialized adapter hardware (such as hardware that
utilizes CAM memory).
Note: If an HSM that usually defaults to using functional addresses also supports group
addressing and sets bit 10, it receives both functional and group addresses.
The state of bit 9 is defined only if bit 10 is set. Bit 9 is set if the adapter completely
filters group addresses and the TSM does not need to perform any checking. The HSM
can dynamically set and clear bit 9. For example, if the adapter utilizes CAM memory,
but has temporarily run out of memory, the TSM must temporarily filter the group
addresses. In this case, the HSM would reset bit 9.
The bit 10/bit 9 combinations are:

00 = The format of the multicast address defaults to that of the topology:
Ethernet => Multicast addressing, in other words, Group addressing
Token-Ring=> Functional addressing/Group addressing
FDDI => Group addressing

01 = Illegal value and must not occur.
10 = A specialized adapter supports group addressing, but the TSM filters

the addresses.
11 = A specialized adapter supports group addressing, and the TSM is not

required to filter the addresses .
(See the ODI Specification Supplement: Canonical and Noncanonical Addressing.)

11 NESL_REQUIRED_BIT. If this bit is set, the LAN driver requires the NetWare Event
Service Layer. For more information about the NetWare Event Service Layer (NESL),
see the NESL Specification: 16-Bit DOS Client Programmer’s Interface.

12 PrioritySupportBit. The MSM sets this bit during the MSMMediaConfigUpdate routine,
if the following conditions are met:
� The HSM has provided a pointer to the DriverPriorityQSupport routine.
� The HSM has set MPrioritySup to something other than zero.
Note: The HSM may temporarily clear this bit to disable priority support.

13 Reserved. Set to 0.

14 Reserved. Set to 0.

15 Reserved. Set to 0.

HSM Data Structures and Variables

Version 4.03 (February 2, 1996) 4-25

MSharingFlags

This field informs the system which hardware resources a
driver/LAN adapter can share with other driver/LAN adapters.
The first bit indicates when the HSM is shutdown. The MSM
sets and clears this bit. If the HSM supports shareable
interrupts, it must set the CanShareIRQ bit.

Note The HSM initially sets the shutdown bit to 1, as the driver is
shut down. ▲

15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0
0 0 0 0 0 0 0 1

Default Values

MSharingFlags Bit Map

Bit # Description

0 ShutDownBit. Set to 1 if the LAN adapter is currently shut down.

1 CanShareIO1. Set to 1 if the LAN adapter can share I/O port 1.

2 CanShareIO2. Set to 1 if the LAN adapter can share I/O port 2.

3 CanShareMemory1. Set to 1 if the LAN adapter can share memory range 1.

4 CanShareMemory2. Set to 1 if the LAN adapter can share memory range 2.

5 CanShareIRQ1. Set to 1 if the LAN adapter can share interrupt 1.

6 CanShareIRQ2. Set to 1 if the LAN adapter can share interrupt 2.

7 CanShareDMA1. Set to 1 if the LAN adapter can share DMA channel 1.

8 CanShareDMA2. Set to 1 if the LAN adapter can share DMA channel 2.

9 Reserved. Set to 0.

10 Reserved. Set to 0.

11 Reserved. Set to 0.

12 Reserved. Set to 0.

13 Reserved. Set to 0.

14 Reserved. Set to 0.

15 Reserved. Set to 0.

Table 4.4
MSharingFlags Bit Map
Offset 5Ah

16-Bit DOS Client HSM

4-26 Version 4.03 (February 2, 1996)

Adapter Data Space

The adapter data space contains data specific to a particular
LAN adapter. This space contains the statistics table and other
internal hardware-specific variables.

Statistics Table
Code segment

The ODI specification requires the HSM to define one statistics
table that contains network management information. The
table must be defined by the fields shown below with each
entry filled accordingly.

The following figures and tables contains the field names,
descriptions, and other necessary information about the
statistics table.

MLIDStatStructure struc

MStatTableMajorVer db 01
MStatTableMinorVer db 01 ;1.01
MNumGenericCounters dw 14
MValidCounterMask dd ? ;0 = used, 1 = not used
MTotalTxPackets dw 2 dup (0)
MTotalRxPackets dw 2 dup (0)
MNoECBsAvailable dw 2 dup (0)
MTxTooBig dw 2 dup (0)
MTxTooSmall dw 2 dup (0)
MRxOverflow dw 2 dup (0)
MRxTooBig dw 2 dup (0)
MRxTooSmall dw 2 dup (0)
MTxMiscError dw 2 dup (0)
MRxMiscError dw 2 dup (0)
MTxRetryCount dw 2 dup (0)
MRxChecksumError dw 2 dup (0)
MRxMismatchError dw 2 dup (0)
MQueueDepth dw 2 dup (0)
MNumCustomCounters dw ?
CustomCounter0 dd 0

.

.
CustomCounter? dd 0

dw offset CGroup:CustomCounterStr0
dw segment CGroup:CustomCounterStr0
 .
 .
dw offset CGroup:CustomCounterStr?
dw segment CGroup:CustomCounterStr?

MLIDStatStructure ends
Message CustomCounterStr0 ‘Custom Counter Text for Counter 0’

.

.
Message CustomCounterStr? ‘Custom Counter Text for Counter ?’

Figure 4.3
MLID Statistics Table
Sample Source Code

HSM Data Structures and Variables

Version 4.03 (February 2, 1996) 4-27

Note Message is a macro that length-prepends and zero-terminates a
text string. ▲

MStatTableMajorVer
MStatTableMinorVer

MNumGenericCounters
MValidCounterMask

MTotalTxPackets
MTotalRxPackets

MNoECBsAvailable
MTxTooBig

MTxTooSmall
MRxOverflow

MRxTooBig
MRxTooSmall
MTxMiscError
MRxMiscError

MTxRetryCount
MRxRetryCount

MRxChecksumCount

MQueueDepth
MNumCustomCounters

CustomCounter0

MRxMismatchLow

.

.

.

.

.

.

CustomCounter?

Figure 4.4
Graphic Representation
of the MLID Statistics Table

16-Bit DOS Client HSM

4-28 Version 4.03 (February 2, 1996)

Description of HSM Statistics Table Fields

The following table describes the fields of the HSM statistics
table.

HSM Statistics Table

Offset Name Size
 (in bytes)

Description

00h MStatTableMajorVer 1 This field defines the current major version of
the statistics table. For this specification, set
this field to 1.

01h MStatTableMinorVer 1 This field defines the current minor version of
the statistics table. For this specification, set
this field to 01. (The current version of the
statistics table is 1.01; MDriverStatMajorVer
= 1, MDriverStatMinorVer = 01.)

02h MNumGenericCounters 2 This field defines the number of generic
counters defined in the statistics table.
Currently this number is 14.

04h MValidCounterMask 4 This bit field is used to signal which generic
counters the HSM is actually using. The bit
field is 32 bits long and the most significant
bit corresponds to the first generic counter,
MTotalTxCount. A bit value of 1 disables the
counter; a bit value of 0 enables the counter.

08h MTotalTxPackets 4 This field contains the total number of
packets that the HSM requested to transmit.
Whether or not they were actually
transmitted depends upon the HSM.
The MSM increments this field.

0Eh MTotalRxPackets 4 This field contains the total number of
incoming packets for which the HSM received
an RCB.
The MSM increments this field.

10h MNoECBsAvailable 4 This field is used to count the number of
incoming packets that were not received or
wanted either because no RCBs were
available, or because the protocol stack did
not want the packets.
The MSM increments this field.

14h MTxTooBig 4 This field has the number of requested
packets for transmission that were too big to
send. Normally, the HSM does not use this
field.
The MSM increments this field.

Table 4.5
Statistics Table Field Descriptions

HSM Data Structures and Variables

Version 4.03 (February 2, 1996) 4-29

HSM Statistics Table (continued)

Offset DescriptionSize
 (in bytes)

Name

18h MTxTooSmall 4 This field contains the number of requested
packets for transmission that were normally
too small to be transmitted. The packets
might still have been sent if the HSM does
padding. Normally, the HSM does not use
this field.

1Ch MRxOverflow 4 The HSM increments this field when the
LAN adapter runs out of internal receive
buffers.

20h MRxTooBig 4 This field has the number of incoming
packets that were bigger than the value in
MMaxPacketSize.
The MSM increments this field.

24h MRxTooSmall 4 This field contains the number of incoming
packets that were smaller than the minimum
legal size for the media.
The MSM increments this field.

28h MTxMiscError 4 This field contains the number of
transmission requests that were not sent
because of errors other than those explicitly
listed in this table.

2Ch MRxMiscError 4 This field has the number of incoming
packets that were lost because of errors other
than those explicitly listed in this table.

30h MTxRetryCount 4 The HSM increments this field when the
HSM must retransmit because of a hardware
failure (for example, too many collisions).

34h MRxChecksumError 4 This field has the total number of incoming
packets which were lost due to
checksum/CRC errors.

38h MRxMismatchError 4 This field contains the total number of
incoming packets which were lost due to
conflicting information given by the hardware
and the media-specific header.

3Ch MQueueDepth 4 The MSM increments this field whenever it
queues a packet. It decrements this field
whenever it removes a transmit packet from
the transmit queue.

16-Bit DOS Client HSM

4-30 Version 4.03 (February 2, 1996)

HSM Statistics Table (continued)

Offset DescriptionSize
 (in bytes)

Name

41h MNumCustomCounters 2 This field has the total number of custom
variables which follow this WORD. The
statistics table allows the HSM to define a
number of custom counters. These counters
are HSM specific and can count any
interesting event which you think would be
useful for a system administrator. Each
custom counter allows you to define a
corresponding descriptive text string that is
length-preceded and zero-terminated. Keep
the number of custom counters to a minimum
to conserve DOS memory.
When a custom counter corresponding to a
receive or transmit error event is
incremented, the HSM also increments the
appropriate MiscCount counter (for example,
TxMiscCount). The miscellaneous counters
total all custom defined error events. We
recommend that counter increments be done
as follows:
addRxOverflowCount+0, 1
adc RxOverflowCount+2, 0
Note: You can define other counters for
debugging purposes, but remove them when
the driver is shipped to an end user.

HSM Data Structures and Variables

Version 4.03 (February 2, 1996) 4-31

Structures Provided by the MSM

AES Event Control Block (AES ECB)
Structure

The LSL support call ScheduleAESEvent uses AES Event
Control Blocks (AES ECBs) to schedule a driver-defined event
to occur at the end of a specified time interval. Below is a
description of each field in the AES ECB.

AESECBStruc struc
AESLink dd 0
MSecondValue dd 0
AESStatus dw 0
AESESR dd 0

AESECBStruc ends

AES ECB

Offset Name Size
 (in bytes)

Description

00h AESLink 4 The LSL uses this field to
manage a linked list of AES
ECBs. The HSM cannot modify
this field while the LSL controls
the AES ECB.

04h MSecondValue 4 The HSM sets this field when
calling ScheduleAESEvent. This
field defines the number of
milliseconds the LSL will wait
before calling the event service
routine defined in the AESESR
field. The value in this field will
be invalid upon event
completion or cancellation.

08h AESStatus 2 The HSM cannot modify this
field while the LSL controls the
AES ECB. This field is set to 0
when the specified timeout has
expired and the AES (Event
Service Routine) ESR is called.

0Ah AESESR 4 This field contains a far pointer
to an HSM routine that will be
called at the end of the specified
time interval. This field must
contain the address of a valid
routine. The LSL does not
modify this field.

Table 4.6
AES ECB Field
Descriptions

16-Bit DOS Client HSM

4-32 Version 4.03 (February 2, 1996)

Receive Control Block (RCB)
Structure

The HSM uses Receive Control Blocks (RCBs) to transfer data
to the upper layers of the ODI model. Each RCB can contain
pointers to multiple fragments. Once notified of a received
packet, the HSM obtains an RCB from the MSM and fills in the
fragmented buffers. The RCB is passed back to the MSM to be
processed. Below is a description of each field in the RCB.

RCBStructure struc
RCBDriverWS db 8 dup (0)
RCBReserved db 36 dup (0)
RCBFragCount dw 0
RCBFrag0Addr dd 0
RCBFrag0Len dw 0

RCBStructure ends

;Additional fragments for an RCBFragCount > 1
RCBFrag?Addr dd 0
RCBFrag?LEN dw 0

Receive Control Block (RCB)

Offset Name Size
(in bytes)

Description

00h RCBDriverWS 8 The HSM can use this field
for any purpose.

08h RCBReserved 36 The HSM must not modify
this field.

2Ch RCBFragCount 2 This field has the number
of fragment descriptors
that follow; this number
cannot be 0.

30h RCBFrag0Addr 4 This field contains a far
pointer to a receive buffer
fragment.

32h RCBFrag0Len 2 This field contains the
length of the receive buffer
pointed to by the previous
field. This field can be 0.

? RCBFrag?Addr
RCBFrag?Len

4
2

The fragment structure
(address and length) is
repeated for additional
fragments if
RCBFragCount > 1.

Table 4.7
Receive Control Block
Field Descriptions

HSM Data Structures and Variables

Version 4.03 (February 2, 1996) 4-33

Transmit Control Block (TCB)
Structure

The MSM constructs a TCB to describe the data it receives
from a protocol stack. The TCB structure includes a pointer to
a separate FragmentStructure as well as the entire media
header. The MSM gives the TCB to the HSM, which collects the
header and packet fragments and transmits the packet. Below
are descriptions of the fields in the TCB and
FragmentStructure.

TCBStructure struc
TCBDriverWS db 6 dup (0)
TCBDataLength dw 0
TCBFragStrucPtr dd 0
TCBMediaHeaderLen dw 0
TCBMediaHeader db 0?

Transmit Control Block (TCB)

Offset Name Size
 (in bytes)

Description

00h TCBDriverWS 6 The HSM can use this
field for any purpose.

06h TCBDataLength 2 This field contains the
length of the frame, as
described by the data
fragments, plus the
media header. This value
will never be 0.

08h TCBFragStrucPtr 4 This field contains a far
pointer to a list of
fragments as defined by
the FragmentStructure
below.

0Ch TCBMediaHeaderLen 2 This field is the length of
the media header which
follows this field in
memory. This value can
have a value of 0.

0Eh TCBMediaHeader 1 This is the start of the
media header (the media
header buffer is part of
the TCB).

Table 4.8
Transmit Control Block
Field Descriptions

16-Bit DOS Client HSM

4-34 Version 4.03 (February 2, 1996)

The FragmentStructure is defined as follows:

FragmentStructure struc
FFragmentCount dw 0 ;number of fragment descriptors
FFrag0Address dd 0 ;1st fragment buffer
FFrag0Length dw 0 ;1st fragment buffer length

FragmentStructure ends

;Additional fragments for FFragment Count > 1
FFrag?Address dd 0
FFrag?Length dw 0

Fragment Structure

Offset Name Size
 (in bytes)

Description

00h FFragmentCount 2 This field contains the
number of fragment
descriptors following this
field. This field cannot be set
to 0.

02h FFrag0Address 4 This field contains a far
pointer to a buffer that
contains part of the frame
data.

06h FFrag0Length 2 This field contains the length
of the buffer that was pointed
to by the previous field. This
can be set to 0.

08h FFrag?Address
FFrag?Len

4
2

The fragment structure
(address and length) is
repeated for additional
fragments if FFragmentCount
> 1.

�

Table 4.9
Fragment Structure
Field Descriptions

Version 4.03 (February 2, 1996) 5-1

Chapter 5 Developer-Written HSM Routines

Chapter Overview 5-2.
DriverChangeLookAheadSize 5-3.
DriverInit 5-4.

Setting the Variables 5-5.
Initializing the HSM Configuration Table Hardware Options 5-5. . .
Completing Initializing 5-9.
Providing Netware Event Service Layer (NESL) Events 5-9.

DriverInit: An Outline 5-10.
DriverISR 5-11.

Entering DriverISR 5-11.
Leaving DriverISR 5-12.
Disabling the Interrupt 5-12.
Enabling the Interrupt 5-12.
Processing the Completed Event 5-13.
Transmission Complete Event 5-13.
Reception Complete Event 5-14.
Determining the Amount of Look-Ahead Data 5-15.
Methods of Providing Look-Ahead Data 5-15.
Packet Reception for Pipelined Adapters 5-16.

DriverISR: An Outline 5-17.
DriverManagement 5-18.
DriverMulticastChange 5-19.
DriverPoll 5-21.
DriverPriorityQSupport 5-22.
DriverPromiscuousChange 5-23.
DriverReset 5-24.
DriverSend 5-25.
DriverSend: An Outline 5-27.
DriverShutdown 5-28.

Permanent Shut Down 5-28.
Temporary Shut Down 5-28.
Permanent and Temporary Shut Down 5-29.

5.

5

5

16-Bit DOS Client HSM

5-2 Version 4.03 (February 2, 1996)

Chapter Overview
This chapter describes the routines you must write for your
HSM. The following table lists the routines described in this
chapter.

Summary of HSM Routines

Summary Function Name

Routines that must be fully written.

Initializing the HSM. DriverInit

Resetting the hardware. DriverReset

Sending packets. DriverSend

Servicing interrupts and
receiving packets.

DriverISR

Shutting down the hardware. DriverShutdown

Updating the multicast table
(Can be stubbed with a near
ret if the hardware does not
support it).

DriverMulticastChange

Routines that can be stubbed.
 (These routines must exist so that the HSM will link properly with the MSM.)

Changing promiscuous mode. DriverPromiscuousChange

Changing the look-ahead size. DriverChangeLookAheadSize

Allows other modules to man-
age the HSM and/or hard-
ware.

DriverManagement

Polling the driver. DriverPoll

You should review this chapter before writing these HSM
routines.

Table 5.1
Summary of
HSM Routines

Developer-Written HSM Routines

Version 4.03 (February 2, 1996) 5-3

DriverChangeLookAheadSize
Located in the Code segment
Can be stubbed with a near ret

Description Informs the HSM of an increase to the look-ahead size.

Entry State DS
CGroup

CX
NewLookAheadSize

Interrupts
are disabled.

Return State Preserved
DX, SI, ES, SS, SP.

Interrupts
are disabled.

Remarks The MSM calls DriverChangeLookAheadSize to inform the
HSM that the look-ahead size has increased. HSMs that can
program the LAN adapter to have the LookAheadSize plus
MaxHeaderSize number of bytes to be available prior to the
ISR can utilize this function to adjust the hardware setting.
Pipelined LAN adapters are good examples of HSMs that
would call this routine.

16-Bit DOS Client HSM

5-4 Version 4.03 (February 2, 1996)

DriverInit
Located in the Init segment
Must be fully written

Description Initializes the LAN adapter.

Entry State DS
CGroup.

ES
CGroup.

Interrupts
are enabled.

Note
CLD is in effect.

Return State AX
completion code.

DX
pointer to a zero-terminated error message, if AX is nonzero.

Interrupts
are disabled.

Flags
set according to AX.

Preserved
no other flags or registers.

Completion Codes (AX) 0000h MSM_SUCCESSFUL
The hardware and HSM are operational.

Completion codes 0001 – 0004 are accompanied by the offset of a
zero-terminated error message that describes the problem in DX.

0001h MSMERR_HSM_FAILED
One of the following conditions exist:
� The hardware is present, but it failed to initialize
� The HSM experienced a fatal error.

0002h MSMERR_TSM_FAILED
The TSM found a problem and didn’t load.

0003h MSMERR_MSM_FAILED
The MSM found a problem and didn’t load.

0004h MSMERR_CARD_NOT_PRESENT
The HSM initialized, but the LAN adapter is missing. PCMCIA
drivers are the most likely to use this completion code.

Developer-Written HSM Routines

Version 4.03 (February 2, 1996) 5-5

DriverInit continued

Remarks The MSM calls DriverInit during system initialization.

Important If your HSM supports PCMCIA adapters, refer to Appendix C
for information about DriverInit. ▲

The HSM must initialize the hardware before it can send and
receive packets on the network. It is during initialization, that
the HSM brings the hardware into operation. If a nonfatal
error occurs, the HSM can use the MSMPrintStringZero
routine (see Chapter 6) to display an appropriate warning
message to the user.

Note The HSM can check MSMSystemFlags to find information
regarding the environment it is initializing in. ▲

Setting the Variables

The HSM sets the MSMTxFreeCount variable to the maximum
number of transmits the HSM can process at one time (see
Chapter 4). The HSM also sets the MSMLookAheadSegment
word variable to the value of the segment the receive
look-ahead data is provided in. Shared memory LAN adapters
set this variable to the LAN adapter’s shared memory segment
address. If the LAN adapter does not use shared memory, this
value is usually the driver’s CS value.

The HSM sets MSMPriorityQueueSupport with a near pointer
to an HSM priority queue support function. (See Appendix D.)
If the MSMPhysNodeAddress variable was previously set to
FFFFFFFFFFFFh, the HSM sets it to the default hardware
address. Otherwise, the HSM programs the LAN adapter to the
node address override.

Initializing the HSM Configuration Table Hardware
Options

The HSM initializes the hardware to the values in the
configuration table, unless the hardware is capable of
communicating different values to the HSM. HSMs that drive
ISA-type LAN adapters should validate the configuration table
values, if they can.

If the user desires settings other than the default, he/she
should specify those settings in the NET.CFG file. The MSM
reads the new settings from the NET.CFG file and then sets
those values into the HSM’s configuration table before the
MSM calls DriverInit.

If the hardware or system is capable of communicating
parameters to the HSM, the HSM should write those values to

16-Bit DOS Client HSM

5-6 Version 4.03 (February 2, 1996)

DriverInit continued

the HSM configuration table. In all cases, the HSM ensures
that the settings in the configuration table mirror the settings
that the LAN adapter is initialized to.

Important After the HSM has initialized the variables and the
configuration table, it must call MSMMediaConfigUpdate to
inform the MSM. ▲

Scanning the Slots. If the HSM drives a Micro Channel, PCI,
or EISA type LAN adapter, it can read the configuration
information from the system. Usually, the HSM scans the slots
and uses the first LAN adapter of the correct type it finds.

If the user fills in the NET.CFG Slot keyword (see Appendix B)
to specify which machine slot the LAN driver is to use.

The HSM checks the value in the Slot field and responds as
follows:

0 the HSM scans the slots to find a LAN adapter

Nonzero the HSM uses the number it finds in the Slot field as
the LAN adapter’s slot number. The HSM checks
this slot for a LAN adapter and does not scan.

If the HSM does not find a LAN adapter in the specified slot, it
aborts the initialization process and returns an appropriate
error message. If the HSM finds a LAN adapter, it reads the
hardware configuration and places the values in the HSM
configuration table.

Supporting Multiple Bus Types. If the HSM supports
multiple bus types, it checks the driver configuration table’s
MBusID field to determine whether the user specified in the
NET.CFG file which bus the adapter is located in.

If MBusID is set to –1, the HSM searches each of the machine’s
busses for a supported LAN adapter and initializes the first
LAN adapter it finds. The HSM determines the order to search
the busses in.

If MBusID is initially set to default, the HSM sets it to the
appropriate Bus ID.

Note If the user has set the BUS ID keyword for an unsupported
bus, the HSM should exit DriverInit and return an error. (For
information about the Bus ID keyword, see Appendix B.) ▲

Developer-Written HSM Routines

Version 4.03 (February 2, 1996) 5-7

DriverInit continued

Overriding the Node Address. The user can also override
the node address and assign a locally administered node
address for the LAN adapter to replace its hard-coded node
address. The following table outlines this procedure.

 Specifying an Alternate Node Address

Module Action

NET.CFG 1. Specifies a locally administered address with
the Node Address keyword (see Appendix B).

MSM 2. Adjusts the address specified in step 1 for
LSB or MSB format.

3. Changes the MSMPhysNodeAddress
variable’s default value, FFFFFFFFFFFFh,
to the address specified in step 1. (For the
node address 02008C001600L in an Ethernet
environment, MSMPhysNodeAddress is set
to 02008C001600h; in a token-ring MSB
environment MSMPhysNodeAddress is set to
400031006800h.)

4. Calls DriverInit.

HSM 5. Checks the value of the
MSMPhysNodeAddress variable.

6. Executes one of the following steps,
depending on the value found in step 5.

a) If the MSMPhysNodeAddress is equal to
FFFFFFFFFFFFh, sets
MSMPhysNodeAddress to the LAN
adapter’s hard-coded address. The HSM
now uses the LAN adapter’s hard-coded
address as the node address.

b) If MSMPhysNodeAddress is not equal to
FFFFFFFFFFFFh, sets the LAN
adapter’s node address to the address
provided in MSMPhysNodeAddress.

MSM 7. Sets the HSM configuration table
NodeAddress field to the LSB/MSB adjusted
value found in MSMPhysNodeAddress.

If the HSM does not allow the user to override the node
address, it ignores the value already in MSMPhysNodeAddress
and sets it to the LAN adapter’s hard-coded address. The HSM
then notifies the user that it has ignored the node address
override. If the user has not specified a locally administered
address, the HSM sets the MSMPhysNodeAddress variable to
the LAN adapter’s hard-coded address before it returns from
the initialization routine.

Table 5.2
Specifying an Alternate
Node Address

16-Bit DOS Client HSM

5-8 Version 4.03 (February 2, 1996)

DriverInit continued

Setting the Interrupt Vector. Once the HSM and adapter
are ready to service interrupts, the HSM can use the MSM
support routine MSMSetIRQ to set up the HSM interrupt

vector specified in the configuration table IRQLine1 field. If the
HSM sets the vector and then fails to initialize the LAN
adapter, the HSM removes the vector by using MSMUnSetIRQ
(see Chapter 6).

Interrupts in Timing Loops. Remember to enable the
interrupts when using the LSL GetIntervalMarker routine for
timing loops. This routine’s return value will never change if
interrupts are disabled (see Chapter 7).

Completing Initializing

After the LAN adapter successfully initializes, DriverInit either
calls or jumps to the MSMMediaConfigUpdate routine.

All memory containing code and data in the Init portion of the
segment is freed after returning from DriverInit. If the HSM
returns successfully, the MSM installs the driver as a DOS
terminate and stay resident (TSR) program.

Providing Netware Event Service Layer (NESL) Events

If the HSM provides NetWare Event Service Layer (NESL)
events, it must register with the NESL any event classes that
the MSM does not provide. The MSM registers the following
event classes with the NESL:

� Suspend Notification
� Resume Notification
� Service/Status Change

See Also Configuration Table (Chapter 4)
MSMCallNESL (Chapter 6)
MSMLookAheadSegment (Chapter 6)
MSMMediaConfigUpdate (Chapter 6)
MSMPhysNodeAddress (Chapter 4)
MSMPrintStringZero (Chapter 6)
MSMPriorityQSupport (Chapter 4)
MSMSetIRQ (Chapter 6)
MSMSystemFlags (Chapter 4)
MSMTxFreeCount (Chapter 4)
MSMUnSetIRQ (Chapter 6)
Appendix C (for information on PCMCIA support)
Appendix D (for information on priority queues)

Developer-Written HSM Routines

Version 4.03 (February 2, 1996) 5-9

DriverInit: An Outline
This pseudocode is intended to illustrate a flow of events and
does not necessarily describe complete or optimized code.

Disable system interrupts (CLI).

Set the MSMLookAheadSegment variable to the appropriate segment value.
Set the MSMTxFreeCount variable to the appropriate value. (determined by the hardware)

IF using a LAN adapter in a slot aware bus,
IF the LAN adapter is present in one of the slots,

get the slot number,
interpret the bus configuration table.

ELSE
set DX to point to error string & AX = MSMERR_HSM_FAILED,
return

ENDIF
ENDIF

IF there is not a node address override,
read in the node address from the LAN adapter,
copy the node address to the MSMPhysNodeAddress variable.

ELSE
use the node address already present in the MSMPhysNodeAddress variable to program the adapter

ENDIF

Initialize the LAN adapter. (this is the bulk of the INIT)

IF there was an error initializing the LAN adapter,
set DX to point to error string & AX = MSMERR_HSM_FAILED
return

ENDIF

IF necessary,
setup DMA channels

ENDIF

IF the driver is interrupt driven, install interrupt vector,
CALL MSMSetIRQ

ENDIF

IF the driver has need of starting an AES event, (typically used to timeout transmits)
set up the AES block,
move MLIDSUP_SCHEDULE_AES_EVENT into BX,
CALL LSLSupport.

ENDIF

CALL MSMMediaConfigUpdate

Return (return code from MSMMediaConfigUpdate)

16-Bit DOS Client HSM

5-10 Version 4.03 (February 2, 1996)

DriverISR
Located in the Code segment
Must be fully written

Description Handles transmission and reception interrupts.

Entry State DS
CGroup.

Interrupts
are disabled, but might be enabled by HSM.

Note
CLD is in effect.

Note
A critical section has been started.

Return State DS
CGroup

Interrupts
are disabled.

Preserved
SS, SP.

Remarks The MSM gains control and calls DriverISR whenever the LAN
adapter interrupts the system. The MSM preserves all 16-bit
processor registers, sets DS equal to CGroup, enters a critical
section, and then calls DriverISR.

Important The system interrupts are enabled for the majority of
DriverISR. ▲

Note Pipelined adapters use a slightly different reception process.
The specifics of this process are described later in this section.
▲

Entering DriverISR

When the HSM enters DriverISR, it must do the following:

1. Disable the LAN adapter’s interrupt line;

2. Use the MSMEOIFlag global variable to determine whether
to issue an EOI to the slave PIC;

3. Issue an EOI to the slave PIC (I/O Port 0A0h), if the HSM
determined in step 2 that it should;

4. Issued an EOI to the master PIC (I/O Port 20h);

Developer-Written HSM Routines

Version 4.03 (February 2, 1996) 5-11

DriverISR continued

5. Enable system interrupts (STI);

6. Determine why the interrupt occurred;

7. Service the interrupt.

Leaving DriverISR

Before leaving DriverISR, the HSM must do the following:

1. Disables system interrupts (CLI);

2. Enables the LAN adapter’s interrupt line.

Disabling the Interrupt

The HSM disables the LAN adapter’s interrupt line using one
of the methods described below.

Preferred Method. Disable the LAN adapter’s interrupt line
by using the interrupt mask port.

Alternate Method. Mask the LAN adapter’s interrupt line by
using the PIC mask register, if the LAN adapter does not have
an interrupt mask register. For example, the HSM can execute
the following code to disable the adapter’s interrupt at the PIC:

;Disable LAN adapter’s interrupt line
mov dx, MSMIntMaskPort
in al, dx ;Read current mask value
slow ;Add at least 500ns delay
or al, MSMIntMaskOff
out dx, al ;Output new mask value

Enabling the Interrupt

To enable interrupts, the HSM reverses the process it used to
disable them. In other words, if the HSM disabled the
interrupts with the interrupt mask port, it enables interrupts
with the interrupt mask port. And, if the HSM disabled
interrupts with the PIC mask register, it enables interrupts
with the PIC mask register.

The HSM can execute the following code to enable the
adapter’s interrupt at the PIC:

;Enable LAN adapter’s interrupt line
mov dx, MSMIntMaskPort
in al, dx ;Read current mask value
slow ;Add at least 500ns delay
and al, MSMIntMaskOn
out dx, al ;Output new mask value

The slow macro is defined as follows:

16-Bit DOS Client HSM

5-12 Version 4.03 (February 2, 1996)

DriverISR continued

slow macro
push ax
in al, 61h
in al, 61h
in al, 61h
popax
endm

Note The MSM has simplified PIC interrupt disabling/enabling by
providing the developer with the following 3 variables:

� MSMIntMaskOff
� MSMIntMaskOn
� MSMIntMaskPort

(See Chapter 4 for instructions on using these variables.) ▲

Processing the Completed Event

The LAN adapter’s interrupt request invokes the DriverISR
whenever the LAN adapter has finished processing event(s).
Transmission and Reception Complete are examples of events
that require the DriverISR routine..

Transmission Complete Event

A transmission complete event occurs whenever the LAN
adapter finishes executing a transmission event started by the
HSM’s DriverSend routine. To handle a transmission complete,
the HSM

1. Checks for transmission errors and handles accordingly;

2. Calls MSMSendComplete to return any TCBs not
previously returned during DriverSend (see Chapter 6);

3. Increments the value in the MSMTxFreeCount variable;

4. Calls MSMGetNextSend to check for pending TCBs (see
Chapter 6);

5. Calls DriverSend to send the frame, if pending TCBs exist.

The MSM internally uses the MSMTxFreeCount variable to
determine whether the HSM can handle another transmission
request. The MSM decrements this variable every time it gives
a Transmit Control Block (TCB) to the HSM. Because the MSM
cannot tell when a hardware transmit resource is freed, the
HSM increments the MSMTxFreeCount variable whenever a
transmit resource becomes available. When the HSM receives
an unrecoverable error, it resets the internal hardware and
then sets the MSMTxFreeCount variable back to the initial
value.

Developer-Written HSM Routines

Version 4.03 (February 2, 1996) 5-13

DriverISR continued

Reception Complete Event

A reception complete event occurs whenever the LAN adapter
accepts a packet from the LAN medium. The HSM uses receive
look-ahead data in order to receive a packet. When the HSM
receives a packet, it

1. Uses the value in the configuration table LookAheadSize
field (plus the MaxMediaHeaderSize) to determine how
much look-ahead data to provide when it asks the MSM for
a receive buffer;

2. Calls MSMGetRCB (see Chapter 6) with a pointer to a
look-ahead buffer holding the first n bytes of the packet (see
note below);

3. Chooses one of the following actions:
a. If an RCB is returned, copies the received packet from

the LAN adapter into the RCB,
b. If an RCB is not returned, discards the packet,
c. If it cannot fill in the RCB, calls MSMReturnRCB;

4. Calls either MSMRcvComplete or MSMRcvCompleteStatus
to hand the RCB to the MSM (see Chapter 6). The MSM
then completes the receive operation.

Note n in step 2 represents the amount of look-ahead data plus the
maximum media header size. The amount of look-ahead data
can be configured and can be any value between 18 and 128
bytes. The HSM always uses the current look-ahead size. ▲

The following table outlines the steps accomplished by the call
to MSMGetRCB.

Actions Accomplished by MSMGetRCB

Module Method

MSM 1. Builds a LookAhead structure which points to
the LookAhead buffer.

2. Passes the LookAhead structure to the LSL.

LSL 3. Passes the LookAhead structure to the
appropriate prescan, bound, or default stack
for the LAN adapter.

Table 5.3
Actions Accomplished
by MSMGetRCB

16-Bit DOS Client HSM

5-14 Version 4.03 (February 2, 1996)

Actions Accomplished by MSMGetRCB (continued)

Module Method

Protocol Stack 4. Interrogates the LookAhead structure to
determine if the protocol stack should accept
the packet.

If the protocol stack decides to receive the
packet:

5. Determines which receive buffer to move the
packet into.

6. Returns to the MSM an event control block
defining which buffers to move the packet
into.

MSM 7. Gives the HSM an RCB to fill in, if one is
available.

Determining the Amount of Look-Ahead Data

The HSM’s configuration table LookAheadSize field has a
default value of 18. However, this value can change at any
time. Therefore, the HSM must either reference this value for
every frame it receives or implement
DriverChangeLookAheadSize to ensure that LookAheadSize
number of bytes + max headers are available for every frame.
(DriverChangeLookAheadSize is documented earlier in this
chapter.)

MaxMediaHeaderSize for Ethernet = (14 [MAC] + 3 [802.2 UI] +
5 [SNAP] = 22 bytes)

MaxMediaHeaderSize for Token-Ring = (14 [MAC] + 30 [Source
Routing] + 3 [802.2 UI] + 5 [SNAP] = 52 bytes).

MaxMediaHeaderSize for FDDI = (13 [MAC] + 30 [Source
Routing] + 3 [802.2 UI] + 5 [SNAP] = 51 bytes).

Methods of Providing Look-Ahead Data

The HSM must provide the look ahead data before the MSM
can obtain a receive buffer. Several methods exist for moving
receive data from the LAN adapter to host memory. This
document describes the following three methods.:

� Shared Memory
� Programmed I/O
� DMA

The process of providing look ahead data differs with each
method.

Shared Memory. This is the simplest method of providing
look ahead data. The HSM provides a pointer to the start of the
received packet in shared memory.

DriverISR (continued)

Developer-Written HSM Routines

Version 4.03 (February 2, 1996) 5-15

DriverISR continued

Programmed I/O. To provide look ahead data, the HSM copies
the first portion of packet data into an internal buffer and then
points to this buffer. If the MSM returns a receive buffer to the
HSM, the HSM resets the LAN adapter’s internal RAM pointer
to the start of the packet plus the offset value returned by the
MSM. The HSM then copies the data from the data port into
the receive buffers.

DMA. For this method to work, the HSM must have an
internal receive buffer large enough to hold the largest possible
packet to be received. After the HSM has placed the data into
the internal buffer, the HSM simply points to that buffer.

Packet Reception for Pipelined Adapters

Pipelined adapters can be configured to interrupt prior to
receiving a complete packet. In this case, the adapter must be
able to be configured to wait until it has received at least the
LookAheadSize and the MaxHeaderSize before it interrupts.
These HSMs call MSMGetRCB with BP=–1 before they have
received the entire packet. Therefore, the MSM cannot fill in
all the LookAhead fields with definitive values. The error bits
and length fields are set at an initial best guess until the
packet has been completely received. After the RCB is
completely filled in, pipelined adapters return it by calling
MSMRcvCompleteStatus.

See Also Configuration Table (Chapter 4)
MSMEOIFlag (Chapter 4)
MSMGetRCB (Chapter 6)
MSMIntMaskOff (Chapter 4)
MSMIntMaskOn (Chapter 4)
MSMIntMaskPort (Chapter 4)
MSMRcvComplete (Chapter 6)
MSMRcvCompleteStatus (Chapter 6)
MSMTxFreeCount (Chapter 4)

16-Bit DOS Client HSM

5-16 Version 4.03 (February 2, 1996)

DriverISR: An Outline

This pseudocode is intended to illustrate a flow of events and
does not necessarily describe complete or optimized code.

Make sure that all necessary actions are taken to service the LAN adapter hardware, reset its IRQ line,
and
prepare it to generate further interrupts. Program carefully so that no hardware events are overlooked.

Disable LAN adapter’s interrupts.
Issue EOI to interrupt controller(s). use the MSMEOIFlag variable
Enable system interrupts (STI). run with interrupts enabled

LoopOnReceive:

Get the LAN adapter Status.

IF receive event,
check for receive errors if necessary.
put pointer to LookAhead frame area in ES:SI,
get the hardware reported frame length and put in BP,
CALL MSMGetRCB

IF RCB is NOT available.
goto TransmitEvent.

ENDIF

copy data into the RCB.
CALL MSMRcvComplete

goto LoopOnReceive.

TransmitEvent:
ELSE IF transmit event,

IF transmit error,
decrement retry counter

IF retry count = 0,
quit trying to send the packet and continue.

ELSE increment error counter,
mark start time of current send,
attempt to send the packet again,
goto ExitDriverISR.

ENDIF
ENDIF

reset retry counter to Maximum value.
increment MSMTxFreeCount.
return TCB if it has not already been returned.
disable system interrupts (CLI),
CALL MSMGetNextSend
enable system interrupts (STI),

IF TCB was available,
CALL to InternalDriverSend procedure.

ENDIF
ENDIF

ExitDriverISR:
Disable system interrupts (CLI).
Enable LAN adapter’s interrupts.

Return. Don’t IRET

Developer-Written HSM Routines

Version 4.03 (February 2, 1996) 5-17

DriverManagement
Located in the Code segment
Can be stubbed with a near ret.

Description Allows other modules to manage the HSM and or LAN adapter.

Entry State AX
LSLERR_BadCommand

ES:SI
pointer to a management ECB.

Interrupts
are disabled.

Return State AX
has a completion code.

ES:SI
pointer to a management ECB.

Interrupts
state is disabled. (The HSM could temporarily enable the
interrupts.)

Completion Codes (AX) 0000h MSM_SUCCESSFUL
0001h MSM_PENDING_SUCCESS

The routine was successful, but is holding onto the ECB.

8002h LSLERR_BAD_PARAMETER
The value in the first byte of the ECB’s ProtID field is not higher
than 40h.

8008h LSLERR_BAD_COMMAND
The HSM does not support driver management.

800Ah LSLERR_NO_SUCH_HANDLER
The Protocol ID is not supported.

Remarks On entry to this routine, the HSM checks the ECB ProtID field
to verify that the value is his identifier. The valid values in the
ProtID field are defined by the HSM.

If the HSM must respond asynchronously to this call, it queues
the ECB and returns the value MSM_PENDING_SUCCESS
(01) in the AX register. When the ECB is complete, the HSM
calls the ESR address in the ECB.

The MSM places the LSLERR_BAD_COMMAND return code
in AX before it calls this routine. This enables the HSMs that
do not support driver manager to stub this routine with a ret
instruction.

16-Bit DOS Client HSM

5-18 Version 4.03 (February 2, 1996)

DriverMulticastChange
Located in the Code segment
Must be fully written
(if the hardware supports it)

Description Updates the multicast address table.

Entry State DS
CGroup.

DS:SI
pointer to the multicast address table.

DS:DI
pointer to the address that was added or deleted.

BX
has the state of the address at DS:DI as follows:
zero the address at DS:DI is invalid; flush the LAN

adapters internal multicast address table and reset
the LAN adapter to use the active addresses in the
multicast table.

nonzero DS:DI contains a pointer to the address that caused
this function to be called. BX equals either
ADD_MULTICAST_ADDRESS (2) or
DEL_MULTICAST_ADDRESS (3).

CX
maximum number of entries in the multicast table.

DX:AX
used only with token-ring HSMs. This register pair has the new
token-ring functional address (double word variable).

Interrupts
are disabled, but might be enabled by the driver.

Note
CLD is in effect

Call
at process time only.

Return State Preserved
DS.

Remarks DriverMulticastChange updates the LAN adapter’s list of
enabled multicast/group or functional addresses.

The MSM calls this routine whenever its list of enabled
multicast/group or functional addresses has changed. DS:SI
points to the table of multicast/group addresses which contains
8-byte entries. The first 6 bytes are the address, and the last 2

Developer-Written HSM Routines

Version 4.03 (February 2, 1996) 5-19

DriverMulticastChange continued

bytes are a use flag. If the use flag is nonzero, the entry
contains a valid multicast/group address. In token-ring
topologies, DX:AX contains the current enabled functional
address.

On entry to this routine, CX contains the maximum number of
entries in the multicast table. The HSM cycles through the
entire table and outputs each used entry to the LAN adapter.

The HSM can assume that all addresses passed to this routine
are valid multicast/group addresses. In token-ring topologies,
DX:AX contains the lower two words of a valid functional
address. The HSM must provide the upper word of C000h. An
empty multicast address table implies that multicast/group
reception is disabled in all cases.

The MSM does the multicast filtering on received packets for
LAN adapters that cannot guarantee 100% multicast filtering
on received packets.

Note If the hardware does not support multicast/group or functional
addresses, you can stub this function with a near ret.
Otherwise, this routine must be fully written. ▲

See Also DriverPromiscuousChange
MSMUpdateMulticast (Chapter 6)
MFlags configuration table bit map (Chapter 4)

16-Bit DOS Client HSM

5-20 Version 4.03 (February 2, 1996)

DriverPoll
Located in the Code segment
Can be stubbed with a near ret

Description Assists polled drivers.

Entry State DS
CGroup.

Interrupts
interrupts are disabled, but might be enabled by the driver.

Note
CLD is in effect.

Return State Preserved
No registers or flags.

Remarks DriverPoll is an optional routine the LSL calls periodically to
assist polled drivers every timer tick (55 ms). The LSL also
calls DriverPoll every time a protocol stack relinquishes control
to the LSL. The HSM written for LAN adapters that do not
have interrupt capabilities use this call; therefore, most HSMs
will not use it. If an HSM does need polling, it sets the
NeedsPolling bit inside the HSM configuration table
ModeFlags field (bit 5).

Important DriverPoll should not be used for watchdog or timeout
functions; instead, the HSM should schedule a reoccurring AES
event that has a relatively long timeout (for example, 1 second)
for this purpose. ▲

DriverPoll generally behaves in the same manner as an
interrupt service routine. However, a critical section is not set
up before the MSM invokes DriverPoll. Therefore, if this
routine runs with its interrupts enabled, the HSM must
explicitly enter and exit a critical section using the same
routines the MSM uses for its interrupt service routine.

Note This routine must complete quickly because it is usually called
from a timer interrupt. ▲

Developer-Written HSM Routines

Version 4.03 (February 2, 1996) 5-21

DriverPriorityQSupport
Located in the Code Segment

Description Called by the MSM when it is about to queue a priority packet.

Entry State AL
the priority number.

DS:SI
pointer to a Transmit ECB.

Interrupts
are disabled.

Return State Interrupts
are disabled.

Preserved
DS, BP, SS, SP.

This routine should either transmit the packet immediately or
queue the ECB. The HSM must be able to service the Priority
Queue and handle priority level detection issues. Because this
routine is called with interrupts disabled, it should process only
essential items and return as quickly as possible.

The HSM must set MSMPriorityQSupportPtr with a word
(near) pointer to this routine during DriverInit. The HSM can
set or reset PrioritySupportBit as the HSM changes from
supporting to not supporting priority packet states.
PrioritySupportBit is checked on a per packet basis.

The AL value is the actual priority of the packet. The HSM is
not concerned at this point with whether the ECB has a raw
send packet or not. The value in AL will never be larger than
the value in the MPrioritySup field of DriverConfigTable.

Note This routine is only used by HSM’s that have transmit priority
support. (See Appendix D for more details.) ▲

16-Bit DOS Client HSM

5-22 Version 4.03 (February 2, 1996)

DriverPromiscuousChange
Located in the Code Segment
Can be stubbed with a near ret

Description Enables and disables promiscuous mode on the LAN adapter.

Entry State CX
Nonzero turns on promiscuous mode
Zero turns off promiscuous mode
Bit mask for promiscuous frame reception:

Bit 0 MAC frames
Bit 1 Data frames
Bit 2 SMT Frames

Interrupts
are disabled.

Note
CLD is in effect.

Call
only at process time.

Return State Preserved
DS, BP, SS. SP.

Interrupts
are disabled.

Remarks DriverPromiscuousChange enables or disables promiscuous
mode on the HSM’s adapter. The value of the CX register
determines whether promiscuous mode is enabled or disabled.
If the LAN topology or adapter does not distinguish between
MAC and non-MAC frames (for example, Ethernet does not),
any nonzero value in the CX register enables promiscuous
mode.

The MSM calls MSMUpdateMulticast after
DriverPromiscuousChange returns. This guarantees that active
multicast addresses are enabled on the LAN adapter after
promiscuous mode is turned off.

All adapters that have promiscuous mode enabled should be
able to pass up bad packets, if possible.

Important We strongly recommend that your HSM support promiscuous
mode, because various monitoring functions operate in
promiscuous mode. However, if you choose not to support
promiscuous mode or your hardware does not support it, this
routine can be stubbed with a near ret.. ▲

Developer-Written HSM Routines

Version 4.03 (February 2, 1996) 5-23

DriverReset
Located in the Code segment
Must be fully written

Description Resets the LAN adapter.

Entry State DS
CGroup.

Interrupts
are disabled, but might be enabled by the driver.

Note
CLD is in effect.

Call
only at process time.

Return State Preserved
No registers or flags.

Remarks DriverReset issues a hardware reset to the LAN adapter and
returns. If the HSM was temporarily shut down with the
DriverShutdown routine, an application can call this routine to
bring the LAN adapter out of the shutdown condition and back
into full operation.

After returning from this routine, the MSM calls
MSMUpdateMulticast, which then calls
DriverMulticastChange (or DriverPromiscuousChange, if the
HSM is in promiscuous mode). This ensures that the proper
multicast addresses are enabled after the hardware reset.

The HSM then resets the MSMTxFreeCount variable to the
initial value set by the HSM during DriverInit. After returning
from this routine, the MSM assumes that all hardware
transmit resources are available.

The MSM generates a NESL_MLID_Reset after DriverReset
returns.

See Also DriverMulticastChange
DriverPromiscuousChange
MSMUpdateMulticast (Chapter 6)
NESL Specification: 16-Bit DOS Programmer’s Interface

16-Bit DOS Client HSM

5-24 Version 4.03 (February 2, 1996)

DriverSend
Located in the Code segment
Must be fully written

Description Sends a packet.

Entry State DS
CGroup.

DS:SI
pointer to the Transmit Control Block (TCB).

CX
hardware frame length (Ethernet only; otherwise it is undefined).

Interrupts
are disabled.

Note
CLD is in effect.

Note
A critical section has been started.

Return State DS
CGroup

Interrupts
must be disabled.

Preserved
no other flags or registers.

Remarks The MSM calls DriverSend to transmit a frame onto the LAN
medium. The MSM passes DriverSend a pointer to a TCB.

The TCB contains a FragmentStructure that controls the
transmitted packet fragments by providing addresses and other
information which pertain to the frame data.

The HSM assumes that it has the resources necessary to
handle the transmit operation; it does not need to check for an
available transmit hardware resource because the MSM
handles the flow control for the HSM. The MSM uses the value
set in the MSMTxFreeCount variable during DriverInit to
determine how many outstanding transmits the HSM can
manage.

DriverSend executes with the system interrupts enabled. To
purge reentrancy problems, the HSM disables the LAN
adapter’s interrupt line when DriverSend is first called. This

Developer-Written HSM Routines

Version 4.03 (February 2, 1996) 5-25

DriverSend continued

keeps the driver from being interrupted by the LAN adapter.
After the driver has disabled the LAN adapter’s interrupt line,
it enables system interrupts (STI).

Note The HSM assumes that the TCB is valid for its LAN medium.
The HSM should not do consistency checking on the TCB fields.
▲

The HSM uses MSMSendComplete to return the TCB to the
MSM when the transmission operation is complete (see
Chapter 6). Some HSMs can return the TCB before they exit
the DriverSend routine. Other HSMs must wait for a
transmission complete confirmation from the driver’s LAN
adapter before they can return the TCB.

Note In the event of a hardware failure (for example, too many
collisions), the HSM tries to retransmit the packet for the
configured number of times set in the configuration table
SendRetries field. ▲

After processing the TCB and before returning, the HSM must
disable interrupts (CLI) and enable the LAN adapter’s
interrupt line.

Ethernet Drivers. The MSM calls the DriverSend routine
with an additional parameter in the CX register. This
parameter contains the length of the entire frame as it appears
on the LAN medium. Ethernet HSMs gives this value to the
LAN adapter which defines the number of bytes to transmit.
The TCBDataLength field only describes the amount of data
being passed in the TCB. In the case of Ethernet, the frame
might have been padded or evenized. For example, if the HSM
uses DMA to transfer the TCB data to the LAN adapter’s
memory, the TCBDataLength field would tell the LAN adapter
how many bytes to transfer.

Note If you would like to implement priority packet transmission,
please refer to Appendix D. ▲

See Also DriverISR
MSMSendComplete (Chapter 6)
MSMTxFreeCount (Chapter 4)
TCB discussion (Chapter 4)
Priority packet discussion (Appendix D)

16-Bit DOS Client HSM

5-26 Version 4.03 (February 2, 1996)

DriverSend: An Outline
This pseudocode is intended to illustrate a flow of events and
does not necessarily describe optimized code.

Disable LAN adapter interrupts.
Enable system interrupts (STI). (run with interrupts enabled)

InternalDriverSend:

Copy the MediaHeader from the TCB into a transmit buffer.
Copy the fragmented data from the TCB fragment structure into a transmit buffer.

Give the command to send the packet.

CALL MSMSendComplete
IF entered through InternalDriverSend

Return.
ELSE

Disable system interrupts (CLI).
Enable LAN adapter’s interrupts.
Return.

Developer-Written HSM Routines

Version 4.03 (February 2, 1996) 5-27

DriverShutdown
Located in the Code segment
Must be fully written

Description Shuts down LAN adapter hardware

Entry State DS
CGroup.

CX
Zero if permanent shutdown
Nonzero if temporary shutdown

Interrupts
are disabled, but might be reenabled by the driver.

Note
CLD is in effect.

Call
only at process time.

Return State Preserved
No registers or flags.

Remarks DriverShutdown places the LAN adapter into a safe, nonactive
state.

The MSM does not call DriverSend when the MLID is
temporarily shut down.

The MSM generates a NESL_MLID_ShutDown after
DriverShutdown returns.

Permanent Shut Down

If CX=0, the MLID is about to be removed from memory, and
the memory returned to DOS. Therefore, the HSM must cancel
or return all outstanding AES events and system resources,
including any hooked interrupt vectors) before returning from
this routine.

The HSM must remove and disable the LAN adapter’s
interrupt prior to returning.

Temporary Shut Down

If this is a temporary shut down (CX<>0), the HSM places the
LAN adapter into a nonactive state so that it is not sending or
receiving packets. However, the HSM does not need to cancel
outstanding AES events or to return system resources. A call to

16-Bit DOS Client HSM

5-28 Version 4.03 (February 2, 1996)

DriverShutdown continued

DriverReset by an application must be capable of bringing the
HSM/LAN adapter back into full operation. If the hardware
configuration has been changed in the meantime, the HSM
must update the configuration table by calling
MSMMediaConfigUpdate.

When the driver has been temporarily shut down, the only
valid configuration table fields are:

� MSignature
� MConfigTableMajorVer
� MConfigTableMinorVer
� MBoardNumber
� MBoardInstance
� MFrameString
� MFrameID
� MRouteHandler
� MLookAheadSize
� MBusID
� MMLIDMajorVer
� MMLIDMinorVer
� MSharingFlags (bit 0 only)

Note The Canonical Settings bits in the ModeFlags field are valid
only after the Temporary Shutdown function has been called.
The Canonical Settings bits are not changed by a call to
MSMMediaConfigUpdate.

Permanent and Temporary Shut Down

The HSM returns all TCBs and RCBs it has in its control
before it returns.

See Also DriverReset
MSMMediaConfigUpdate (Chapter 6)
MSharingFlags bit map (Chapter 4)
NESL Specification: 16-Bit DOS Programmer’s Interface

�

Version 4.03 (February 2, 1996) 6-1

Chapter 6 Support Routines Provided by the MSM

Chapter Overview 6-2.
Summary of Support Routines 6-2.
Completion Codes 6-3.

HSMProvideTCB 6-5.
HSMShutDownMSM 6-6.
MSMBuildTransmitControlBlock 6-7.
MSMCallNESL 6-8.
MSMClearSendQueue 6-9.
MSMGenerateNESLChangeEvent 6-10.
MSMGenerateNESLEvent 6-11.
MSMGenerateNESLResumeEvent 6-12.
MSMGenerateNESLSuspendEvent 6-13.
MSMGetNextSend 6-14.
MSMGetRCB 6-15.
MSMMediaConfigUpdate 6-19.
MSMPrintStringZero 6-20.

NumberMessage Macro 6-20.
MSMRcvComplete 6-22.
MSMRcvCompleteStatus 6-23.
MSMReturnRCB 6-24.
MSMSendComplete 6-25.
MSMSetIRQ 6-26.
MSMUnSetIRQ 6-28.
MSMUpdateMulticast 6-29.

6.

6

6

16-Bit DOS Client HSM

6-2 Version 4.03 (February 2, 1996)

Chapter Overview
The MSM contains routines for the HSM’s use at initialization
and run time. This chapter provides useful reference material.

All routines documented in this chapter have been defined as
external inside the DRIVER.INC file.

This chapter discusses the following routines:

� HSMProvideTCB
� HSMShutDownMSM
� MSMBuildTransmitControlBlock
� MSMCallNESL
� MSMClearSendQueue
� MSMGenerateNESLChangeEvent
� MSMGenerateNESLEvent
� MSMGenerateNESLResumeEvent
� MSMGenerateNESLSuspendEvent
� MSMGetNextSend
� MSMGetRCB
� MSMMediaConfigUpdate
� MSMPrintStringZero
� MSMRcvComplete
� MSMRcvCompleteStatus
� MSMReturnRCB
� MSMSendComplete
� MSMSetIRQ
� MSMUnSetIRQ
� MSMUpdateMulticast

Summary of Support Routines
The following table summarizes the support routines available
in the MSM.

Summary of MSM Support Routines

Summary Function Name

Interrupt Management Routines

Unhook the interrupt vector. MSMUnsetIRQ

Hook the specified interrupt
vector.

MSMSetIRQ

Multicast Routines

Refresh enabled addresses. MSMUpdateMulticast

NetWare Event Service Layer (NESL) Routines

Generate a NESL event. MSMGenerateNESLEvent

Table 6.1
Summary of
MSM Support Routines

Version 4.03 (February 2, 1996) 6-3

Summary of MSM Support Routines (continued)

Summary Function Name

Generate a NESL Service
Resume Class event.

MSMGenerateNESLResumeEvent

Generate a NESL
Service/Status Change Class
event.

MSMGenerateNESLChangeEvent

Generate a NESL Service
Suspend Class event.

MSMGenerateNESLSuspendEvent

Provide a generic front end to
NESL.

MSMCallNESL

Output Routines

Output a zero-terminated
string.

MSMPrintStringZero

Packet Reception Routines

Obtain an RCB for a received
packet.

MSMGetRCB

Return the RCB to the MSM
to complete the packet
reception.

MSMRcvComplete

Return the RCB to the MSM
and cancel packet reception.

MSMReturnRCB

Return the RCB to the MSM
to complete packet reception
(pipelined adapters).

MSMRcvCompleteStatus

Packet Transmission Routines

Cancel queued transmit
events.

MSMClearSendQueue

Convert ECB to TCB (priority
transmission only).

MSMBuildTransmitControlBlock

Determine if a
TCB is in the transmit queue
and unqueue it.

MSMGetNextSend

Return the TCB to the MSM. MSMSendComplete

Update Routines

Update the MLID tables,
structures, and variables.

MSMMediaConfigUpdate

16-Bit DOS Client HSM

6-4 Version 4.03 (February 2, 1996)

Completion Codes

These MSM routines return the following completion codes:

� 0000h SUCCESSFUL
� 0002h MSMERR_TSM_FAILED
� 0003h MSMERR_MSM_FAILED
� 8002h LSLERR_BAD_PARAMETER
� 8005h LSLERR_FAIL
� 8008h LSLERR_BAD_COMMAND

Support Routines Provided by the MSM

Version 4.03 (February 2, 1996) 6-5

HSMProvideTCB
Located in the Code Segment

Description Called by the HSM to increase the number of TCB’s that the
MSM has available.

Entry State DS
CGroup.

DS:SI
TCB buffer.

Interrupts
are disabled.

Return State CX
is destroyed.

Interrupts
are disabled.

Preserved
DS, BP, SS, SP.

The HSM can provide extra TCBs by linking extra TCBs into
the TCB’s free list during DriverInit, prior to calling
MSMMediaConfigUpdate, by calling HSMProvideTCB. The
allocated memory for each TCB must be included with the TCB
size in MaxFrameHeaderLen and must reside within CGroup.
Because TCBs must be allocated from within the CGroup
segment, HSMProvideTCB can only be called during
initialization and from within DriverInit.

Note This routine is only used by HSM’s that have transmit priority
support. (See Appendix D for more details.) ▲

16-Bit DOS Client HSM

6-6 Version 4.03 (February 2, 1996)

HSMShutDownMSM
Located in the Code Segment

Description Called by an HSM to shut down the MSM.

Entry State DS
CGroup.

Interrupts
are disabled.

Note
CLD is in effect.

Return State AX
zero.

Interrupts
are disabled.

Preserved
DS, BP, SS, SP.

Remarks This routine is used by the HSM to shut down the MSM (for
example, PCMCIA card removal). It is the HSM’s responsibility
to place itself in a safe state before making this call. To bring
the MSM back into operation, the HSM must call
MSMMediaConfigUpdate.

See Also MSMMediaConfigUpdate.

Support Routines Provided by the MSM

Version 4.03 (February 2, 1996) 6-7

MSMBuildTransmitControlBlock
Located in the Code Segment

Description Converts a Transmit ECB to a TCB.

Entry State ES:DI
pointer to a Transmit ECB.

DS
CGroup.

Interrupts
are disabled.

Return State SI
equal to zero if no TCB is available.

DS:SI
pointer to a TCB if SI is not equal to zero.

CX
hardware frame length (Ethernet only).

Interrupts
are disabled.

Preserved
DS, SS, SP.

Remarks HSMs that support priority queues call
MSMBuildTransmitControlBlock to convert an ECB to a TCB.

The HSM should be aware of the number of TCBs in the MLID.
The TSM will allocate MAX_TCB_ALLOCATED number of
TCBs. If the HSM makes this call when there are no TCB’s
available, the SI register will be set to zero.

Note This routine is only used by HSM’s that have transmit priority
support. (See Appendix D for more details.) ▲

16-Bit DOS Client HSM

6-8 Version 4.03 (February 2, 1996)

MSMCallNESL
Located in the Code Segment

Description Provides an interface to the NetWare Event Service Layer
(NESL).

Entry State DS
CGroup

BX
NESL function number.

ES:SI
pointer to NESL control block.

Interrupts
unspecified.

Return State AX
completion code.

Flags
set according to AX.

Interrupts
state is preserved, but were disabled during call.

Preserved
DS, BP, SS, SP.

Completion Codes (AX) 0000h SUCCESSFUL
8002h LSLERR_BAD_PARAMETER
8005h LSLERR_FAIL
8008h LSLERR_BAD_COMMAND

Remarks MSMCallNESL provides a generic front end to the NetWare
Event Service Layer (NESL).

The MSM maintains the NESL entry point. This routine
simply passes the register parameters to the NESL.

See Also NESL Specification: 16-Bit DOS Client Programmer’s Interface.

Support Routines Provided by the MSM

Version 4.03 (February 2, 1996) 6-9

MSMClearSendQueue
Located in the Code segment

Description Cancels queued transmit events.

Entry State DS
CGroup.

Interrupts
are disabled and remain disabled.

Return State Interrupts
are disabled.

Preserved
Direction flag, BP, DS, SS, SP.

Remarks MSMClearSendQueue cancels any transmit events that the
MSM queues.

After the HSM calls this routine, all send events queued inside
the MSM are passed back to the LSL and placed on the LSL’s
internal queue. After making this call, the HSM must call
LSLServiceEvents (see Chapter 7) in order to properly process
the canceled transmit events. The HSM also sets the
MSMTxFreeCount variable back to its default value.

16-Bit DOS Client HSM

6-10 Version 4.03 (February 2, 1996)

MSMGenerateNESLChangeEvent
Located in the Code Segment

Description Generates a NESL Service/Status Change Class event for each
logical board.

Entry State DS
CGroup

ES:SI
pointer to a NESL Event Parameter Block (EPB).

Interrupts
unspecified.

Return State AX
completion code.

Flags
set according to AX.

Interrupts
state is preserved, but were disabled during call.

Preserved
DS, BP, SS, SP.

Completion Codes (AX) 0000h SUCCESSFUL
8002h LSLERR_BAD_PARAMETER
8005h LSLERR_FAIL
8008h LSLERR_BAD_COMMAND

Remarks MSMGenerateChangeEvent generates a NESL Service/Status
Change Class event for each logical board. The MSM places a
pointer to the correct configuration table into the Event
Parameter Block EPB_DataPtr0 field prior to calling the NESL

See Also NESL Specification: 16-Bit DOS Client Programmer’s Interface.

Support Routines Provided by the MSM

Version 4.03 (February 2, 1996) 6-11

MSMGenerateNESLEvent
Located in the Code Segment

Description Generates a NESL event for each logical board.

Entry State DS
CGroup

ES:SI
pointer to a NESL Producer Event Control Block (PECB).

Interrupts
unspecified.

Return State AX
completion code.

Flags
set according to AX.

Interrupts
state is preserved, but were disabled during call.

Preserved
DS, BP, SS, SP.

Completion Codes (AX) 0000h SUCCESSFUL
8002h LSLERR_BAD_PARAMETER
8005h LSLERR_FAIL
8008h LSLERR_BAD_COMMAND

Remarks MSMGenerateNESLEvent provides a generic front end to the
NetWork Event Service Layer (NESL). This routine generates
an event for each logical board.

The HSM calls MSMGenerateNESLEvent if the following two
criteria are met:

1. The MSM did not register as a producer for a particular
event class.

2. The HSM called MSMCallNESL, which allowed the HSM
to register directly for the particular event class as an event
producer.

The MSM places a pointer to the correct configuration table
into the Event Parameter Block EPB_DataPtr0 field, pointed to
by the PECB_DataPtr pointer prior to calling the NESL.

See Also NESL Specification: 16-Bit DOS Client Programmer’s Interface.

16-Bit DOS Client HSM

6-12 Version 4.03 (February 2, 1996)

MSMGenerateNESLResumeEvent
Located in the Code Segment

Description Generates a NESL Service Resume Class event for each logical
board.

Entry State DS
CGroup

ES:SI
pointer to a NESL Event Parameter Block (EPB).

Interrupts
unspecified.

Return State AX
completion code.

Flags
set according to AX.

Interrupts
state is preserved, but were disabled during call.

Preserved
DS, BP, SS, SP.

Completion Codes (AX) 0000h SUCCESSFUL
8002h LSLERR_BAD_PARAMETER
8005h LSLERR_FAIL
8008h LSLERR_BAD_COMMAND

Remarks MSMGenerateNESLResumeEvent generates a NESL Service
Resume Class event for each logical board. The MSM places a
pointer to the correct configuration table into the Event
Parameter Block EPB_DataPtr0 field prior to calling the
NESL.

See Also NESL Specification: 16-Bit DOS Client Programmer’s Interface.

Support Routines Provided by the MSM

Version 4.03 (February 2, 1996) 6-13

MSMGenerateNESLSuspendEvent
Located in the Code Segment

Description Generates a NESL Service Suspend Class event for each logical
board.

Entry State DS
CGroup

ES:SI
pointer to NESL Event Parameter Block (EPB).

Interrupts
unspecified.

Return State AX
completion code.

Flags
set according to AX.

Interrupts
state is preserved, but were disabled during call.

Preserved
DS, BP, SS, SP.

Completion Codes (AX) 0000h SUCCESSFUL
8002h LSLERR_BAD_PARAMETER
8005h LSLERR_FAIL
8008h LSLERR_BAD_COMMAND

Remarks MSMGenerateNESLSuspendEvent generates a NESL Service
Suspend Class event for each logical board. The MSM places a
pointer to the correct configuration table into the Event
Parameter Block EPB_DataPtr0 field prior to calling the
NESL.

See Also NESL Specification: 16-Bit DOS Client Programmer’s Interface.

16-Bit DOS Client HSM

6-14 Version 4.03 (February 2, 1996)

MSMGetNextSend

Located in the Code segment

Description Returns a TCB if a transmit request is in the queue.

Entry State DS
CGroup.

Interrupts
are disabled and remain disabled.

Note
CLD is in effect.

Return State DS:SI
pointer to a Transmit Control Block (TCB), if the z flag is set.

CX
hardware packet length (Ethernet only).

Interrupts
state is preserved.

Flags
Z flag set if a TCB is available.

Preserved
Direction flag, DS, SS, SP.

Remarks MSMGetNextSend returns a Transmit Control Block (TCB) if a
transmit request is available.

The HSM calls this routine whenever a hardware transmit
resource is available. This routine checks the MSM’s internal
send queue and returns a TCB if another send event is
available. If a TCB is returned, the HSM initiates the
transmission. After the HSM is finished with the TCB, it calls
MSMSendComplete to return the TCB to the MSM.

If MSMGetNextSend returns a TCB, the MSM decrements the
MSMTxFreeCount variable before returning a TCB in
MSMGetNextSend.

See Also DriverISR (Chapter 5)
DriverSend (Chapter 5)
MSMSendComplete

Support Routines Provided by the MSM

Version 4.03 (February 2, 1996) 6-15

MSMGetRCB

Located in the Code segment

Description Returns an RCB for a received packet if available.

Entry State AX
the known status of the received packet:
Zero packet is good
Nonzero packet is bad, AX contains the bits as described in

the bit map below.

DS
CGroup.

BP
either the packet length reported from the hardware,
or –1 if the packet length is unknown (pipelining adapters).

ES:SI
pointer to the look-ahead buffer.

Interrupts
are enabled.

Note
CLD is in effect.

Return State AX
number of bytes to skip from the start of the frame.

BP
either the number of bytes of the frame to move into the receive
buffers starting from offset AX, or –1 if the packet length is
unknown.

ES:SI
pointer to a Receive Control Block (RCB).

Interrupts
are enabled, but will be disabled for a period of time by the MSM
during the call.

Flags
Z flag set if RCB is available.

Note
CLD is in effect.

Preserved
DS, SS, SP.

16-Bit DOS Client HSM

6-16 Version 4.03 (February 2, 1996)

MSMGetRCB continued

Remarks MSMGetRCB supports standard and pipelined adapters. Under
normal conditions MSMGetRCB is handled as described in the
section ‘‘Stand Adapters.” MSMGetRCB can also implement
pipelined adapter support as described in the ‘‘Pipelined
Adapters’’ section.

Standard Adapters. Usually an HSM calls MSMGetRCB
when the hardware has received an entire packet.
MSMGetRCB obtains receive buffers (Receive Control Blocks
[RCBs]) for a waiting packet.

On entry ES:SI points to a LookAheadBuffer. The MSM uses
this buffer to determine if the HSM should process this frame.
If the HSM is to process this packet, and an RCB is available,
MSMGetRCB returns a pointer to an RCB.

If MSMGetRCB does not return an RCB, the HSM discards the
frame. If MSMGetRCB returns an RCB for the frame, the HSM
moves the frame into the waiting fragment buffers described by
the RCBs. The HSM starts copying the frame data AX bytes
from the start of the frame (in other words, AX bytes from the
start of the MAC layer header). The MSM determines the
number of frame bytes the HSM can copy without overflowing
the receive buffer(s) and puts that number into the BP register
for the HSM’s use.

Note The HSM need not worry about overflowing the receive
buffer(s) if it only copies the number of bytes specified in
register BP. ▲

After the HSM has moved the frame data into the receive
fragment buffers, it calls MSMRcvComplete to return the RCB
to the MSM.

If the HSM could not complete the receive operation, it calls
MSMReturnRCB to return the RCB.

The ‘‘on entry’’ AX bit map is illustrated below.

Support Routines Provided by the MSM

Version 4.03 (February 2, 1996) 6-17

MSMGetRCB continued

15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0
0 0 0 0 0 0 0 0 0 0 0 0 0 0

Default Values

AX Bit Map

Bit # Description

0 CRC error, if set to 1.

1 CRC alignment error, if set to 1.

2 Reserved. Set to 0.

3 Reserved. Set to 0.

4 Reserved. Set to 0.

5 Reserved. Set to 0.

6 Reserved. Set to 0.

7 Reserved. Set to 0.

8 Reserved. Set to 0.

9 Reserved. Set to 0.

10 Reserved. Set to 0.

11 Reserved. Set to 0.

12 Reserved. Set to 0.

13 Reserved. Set to 0.

14 Reserved. Set to 0.

15 Reserved. Set to 0.

Pipelined Adapters. Pipelined adapters can be configured to
interrupt prior to receiving a complete packet. In this case, the
adapter must be able to be configured to wait until it has
received at least the LookAheadSize plus MaxHeaderSize bytes
before it interrupts. These HSMs call MSMGetRCB before they
have received the entire packet. Therefore, the MSM cannot fill
in all the LookAhead fields with definitive values. The error
bits and length fields are set at an initial best guess until the
packet has been completely received. After the RCB is
completely filled in, the HSM calls MSMRcvCompleteStatus.

In the case of a pipelined adapter, the MSMGetRCB entry state
is similar to the entry state document on the previous pages,
except that BP contains a –1 and not the hardware-reported
data length.

Table 6.2
MSMGetRCB
AX Bit Map

16-Bit DOS Client HSM

6-18 Version 4.03 (February 2, 1996)

MSMGetRCB continued

The MSMGetRCB return state is similar to the return state
document on the previous pages, except for the following:

� BP equals –1 and not the number of data bytes to copy.

� The HSM fills in the RCB buffers and must not overflow
the buffers.

� The HSM must call MSMRcvCompleteStatus to complete
the receive process.

See Also DriverISR (Chapter 5)
MSMRcvCompleteStatus
MSMReturnRCB
MSMRcvComplete

Support Routines Provided by the MSM

Version 4.03 (February 2, 1996) 6-19

MSMMediaConfigUpdate
Located in the Code Segment

Description Updates the MLID’s configuration.

Entry State DS
pointer to CGroup.

Interrupts
are disabled.

Return State AX
completion code.

DX
offset of an error message, if AX is not equal to 0. This offset is
only valid during Init time.

Interrupts
are disabled.

Preserved
DS, BP, SS, SP.

Completion Codes (AX) 0000h Successful
0002h MSMERR_TSM_FAILED
0003h MSMERR_MSM_FAILED

Remarks The HSM calls MSMMediaConfigUpdate after the hardware is
fully functional and the configuration variables are filled in.

The following variables must be initialized before the HSM can
call this routine:

� DriverConfigTable
� MSMTxFreeCount
� MSMLookAheadSegment
� MSMPhysNodeAddress
� MSMPriorityQSupportPtr

16-Bit DOS Client HSM

6-20 Version 4.03 (February 2, 1996)

MSMPrintStringZero
Located in the Init segment

Description Outputs an ASCIIZ string.

Entry State DS
CGroup.

DX
the offset to a zero-terminated string to print.

Interrupts
are unspecified.

Return State Interrupts
state is preserved.

Preserved
Direction flag and all registers.

Remarks MSMPrintStringZero outputs the ASCIIZ string specified in
DS:DX to the standard I/O (STDIO).

If the first word of the string is less than 1000, a prefix is
prepended to the string. The general format of the string looks
like: CardName-DOS-MessageNumber.

Important Because this procedure is located in the Init segment, the HSM
can only use this procedure during initialization. After
initialization, the Init segment is discarded. ▲

NumberMessage Macro

The NumberMessage macro is used to generate message
numbers, which precede each message printed by
MSMPrintStringZero.

NumberMessage name,num,stringgg,parm1,parm2,parm3

name
the name of the Label used in declaring the string.

num
the message number that precedes the message. The minimum
value for this parameter is 100. If parameter is left blank, the
macro will automatically assign numbers starting at 100.

stringgg
an ASCII string.

parm1, parm2, parm3
up to three parameters can be on this line (for example, 0Ah,
0Dh, 0). The macro places the parameters at the end of the

Support Routines Provided by the MSM

Version 4.03 (February 2, 1996) 6-21

message. If there are no parameters, the macro zero terminates
the message.

Example:

NumberMessageFirmWareStartErrMsg, 237,
‘The FirmWare cannot be initialized.’,0Ah,0Dh,0

Example NoNE2000InMachine db 50,0,‘The board cannot be found.’,0Dh,0Ah,0

mov dx, offset CGroup:NoNe2000InMachine
call MSMPrintStringZero

The following error message is output to the monitor as the
result of executing the above code:

NE2000-DOS-050: The board cannot be found.

16-Bit DOS Client HSM

6-22 Version 4.03 (February 2, 1996)

MSMRcvComplete
Located in the Code segment

Description Passes control of a filled in RCB to the MSM.

Entry State DS
CGroup.

ES:SI
pointer to a Receive Control Block (RCB)

Interrupts
are disabled and remain disabled.

Return State Interrupts
are disabled.

Preserved
Direction flag, DS, BP, SS, SP.

Remarks MSMRcvComplete returns the RCB to the MSM. The HSM
calls MSMRcvComplete when it has completed moving frame
data into an RCB receive buffer.

MSMSendComplete queues the event on the LSL’s
EventHoldQueue. If the HSM calls this routine outside of
DriverSend or DriverISR, the HSM must also call the
LSLServiceEvents routine to process the queued event. If the
HSM calls this routine inside of its DriverSend or DriverISR
routines, the MSM will call the LSLServiceEvents routines,
saving the HSM this step.

Important The HSM must not modify the RCB in any way after it calls
this routine. ▲

See Also EventHoldQueue
LSLServiceEvents
MSMGetRCB
MSMRcvCompleteStatus
MSMReturnRCB

Support Routines Provided by the MSM

Version 4.03 (February 2, 1996) 6-23

MSMRcvCompleteStatus
Description Passes control of a filled in RCB to the MSM.

Entry State AX
has the status of the received packet:
Zero packet is good
Nonzero packet is bad, AX contains the bits as described in

the bit map in Table 6.2.

DS
CGroup.

BP
has the packet length reported from the hardware.

ES:SI
pointer to the RCB.

Interrupts
are disabled, but might be re-enabled.

Return State Interrupts
are disabled.

Preserved
Direction flag, DS, BP, SS, SP.

Remarks If BP = –1 when the HSM called MSMGetRCB, the HSM calls
MSMRcvCompleteStatus when it has finished placing the
frame data into the RCB fragment buffers.
MSMRcvCompleteStatus passes control of the RCB to the
MSM. The HSM must not modify any values in the RCB after
it has called this routine.

16-Bit DOS Client HSM

6-24 Version 4.03 (February 2, 1996)

MSMReturnRCB
Located in the Code segment

Description Passes control of the RCB to the MSM.

Entry State DS
CGroup.

ES:SI
pointer to a Receive Control Block (RCB).

Interrupts
are disabled and remain disabled.

Return State Interrupts
are disabled.

Preserved
Direction flag, BP, DS, SS, SP.

Remarks If the HSM cannot complete the receive operation,
MSMReturnRCB returns the Receive Control Block (RCB) to
the MSM. This routine cancels the RCB.

See Also MSMGetRCB
MSMRcvComplete
MSMRcvCompleteStatus

Support Routines Provided by the MSM

Version 4.03 (February 2, 1996) 6-25

MSMSendComplete
Located in the Code segment

Description Passes control of the TCB to the MSM.

Entry State DS
CGroup.

DS:SI
pointer to a Transmit Control Block (TCB).

Interrupts
are disabled and remain disabled.

Return State Interrupts
are disabled.

Preserved
Direction flag, DS, BP, SS, Sp.

Remarks MSMSendComplete returns control of a TCB to the MSM.

The HSM calls MSMSendComplete when it is finished with a
Transmit Control Block (TCB).

MSMSendComplete queues the event on the LSL’s
EventHoldQueue. If the HSM calls this routine outside of
DriverSend or DriverISR, the HSM must also call the
LSLServiceEvents routine to process the queued event. If the
HSM calls this routine inside of its DriverSend or DriverISR
routines, the MSM will call the LSLServiceEvents routines,
saving the HSM this step.

Important The MLID should not be in a critical section when the HSM
calls LSLServiceEvents.

After calling MSMSendComplete, the HSM must not reference
or modify any values in the TCB. ▲

See Also LSLServiceEvents (Chapter 7)

16-Bit DOS Client HSM

6-26 Version 4.03 (February 2, 1996)

MSMSetIRQ
Located in the Code segment

Description Installs the interrupt vector and enables the IRQ specified in
the driver configuration table MIRQLine1 field.

Entry State DS
CGroup.

Interrupts
are disabled and remain disabled.

Return State Interrupts
are disabled.

Preserved
Direction flag, BP, BX, DS, SS, SP.

Remarks MSMSetIRQ installs and enables the IRQ specified in the HSM
configuration table MIRQLine1 field. The HSM calls this
routine during DriverInit to install the HSM’s hardware
interrupt vector. This routine also properly enables the IRQ
line and sets up the proper interrupt vector on any machine
type (for example, IRQ 2 or 9 will set up for the proper vector.).

During this call, the MSM initializes the MSMEOIFlag
variable to the appropriate value, depending upon the value of
MIRQLine1 and the machine type.

The MSM front ends all hardware interrupts from the LAN
adapter. After the MSM has entered a critical section, it calls
the DriverISR routine. After the HSM has returned from
DriverISR, the MSM checks for queued transmits, starts one, if
possible, and then exits the critical section. However, the HSM
must still issue the End Of Interrupt (EOI) commands to the
programmable interrupt controllers.

The MSM does not support shareable interrupts. However, if
you want your driver to support shareable interrupts, you can
configure the HSM to do so, keeping the following points in
mind:

� You must write all routines dealing with interrupts.

Support Routines Provided by the MSM

Version 4.03 (February 2, 1996) 6-27

MSMSetIRQ continued

� You will not be able to use internal interrupt routines (for
example, MSMSetIRQ and MSMUnSetIRQ).

� Your HSM must set the appropriate bit in the
MSharingFlags field of the HSM configuration table.

� We recommend that your HSM follow the IBM specification
for shareable interrupts (see the IBM AT Technical
Reference Manual and/or the IBM PS/2 Technical Reference
Manual).

Note The MSM routines do not support a second interrupt. If you
wish to use more than one interrupt, you must write a complete
ISR and the corresponding routines to MSMSetIRQ and
MSMUnSetIRQ for the second interrupt. You are welcome to
copy these routines from the MSM source code, rename them,
and modify them for the additional interrupts. ▲

See Also MSMEOIFlag (Chapter 4)
MSMIntMaskPort (Chapter 4)
MSMMaskBitOn (Chapter 4)
MSMMaskBitOff (Chapter 4)
MSMUnSetIRQ

16-Bit DOS Client HSM

6-28 Version 4.03 (February 2, 1996)

MSMUnSetIRQ
Located in the Code segment

Description Removes the interrupt vector and disables the IRQ that
MSMSetIRQ installed.

Entry State DS
CGroup.

Interrupts
are disabled.

Note
CLD is in effect.

Return State Interrupts
are disabled.

Preserved
Direction flag, BP, BX, DS SS, SP.

Remarks MSMUnsetIRQ disables and removes the specified interrupt
and interrupt vector, set up by MSMSetIRQ.

Note The MSM routines do not support a second interrupt. If you
wish to use more than one interrupt, you must write the
complete ISR and the corresponding routines to MSMSetIRQ
and MSMUnSetIRQ for the second interrupt. You are welcome
to copy these routines from the MSM source code, rename
them, and modify them for the additional interrupts. ▲

See Also MSMSetIRQ
MSMEOIFlag (Chapter 4)
MSMIntMaskPort (Chapter 4)
MSMIntMaskOn (Chapter 4)
MSMIntMaskOff (Chapter 4)

Support Routines Provided by the MSM

Version 4.03 (February 2, 1996) 6-29

MSMUpdateMulticast
Located in the Code segment

Description References the list of enabled multicast addresses.

Entry State DS
CGroup.

Interrupts
are disabled.

Note
CLD is in effect.

Return State Preserved
DS, SS, SP

Remarks MSMUpdateMulticast refreshes the MSM’s list of enabled
multicast addresses by calling DriverMulticastChange.

The HSM calls this routine after executing an internal
hardware reset. Sometimes resetting the hardware disables all
previously enabled multicast addresses. In these cases, after
the HSM issues a hardware reset, it calls
MSMUpdateMulticast to enable the proper multicast
addresses. Some HSMs do not call this routine because a
hardware reset does not disable multicast addresses.

The MSM calls this routine after DriverReset is called.

Important We recommend that the HSM call this routine after it resets all
internal hardware. If the HSM was in promiscuous mode,
MSMUpdateMulticast will refresh promiscuous mode by calling
DriverPromiscuousChange instead of calling
DriverMulticastChange.▲

See Also DriverMulticastChange (Chapter 5)
DriverPromiscuousChange (Chapter 5)
DriverReset (Chapter 5)

�

Version 4.03 (February 2, 1996) 7-1

Chapter 7 Support Routines Provided by the LSL

Chapter Overview 7-2.
Calling the LSL Support Routines 7-2.
Completion Codes 7-2.

CancelAESEvent 7-4.
GetIntervalMarker 7-5.
ScheduleAESEvent 7-6.

Example: DriverTimeOut 7-7.
DriverTimeOut: An Outline 7-7.

ServiceEvents 7-8.

7.

7

7

16-Bit DOS Client HSM

7-2 Version 4.03 (February 2, 1996)

Chapter Overview
The MSM handles most of the HSM’s interactions with the
Link Support Layer (LSL). The LSL provides the Multiple Link
Interface (MLI). Writing HSMs enables you to write a simpler
driver because the HSM utilizes the MSM, masking much of
the LSL’s complexity. However, in some cases, you might need
a function directly from the LSL because some LSL support
services do not exist in the MSM.

Calling the LSL Support Routines
The HSM invokes LSL services by loading the specified
registers as defined and making a far indirect call through the
LSLSupport variable. For example, to invoke the
GetIntervalMarker function, the HSM executes the following
code:

mov bx, MLIDSUP_GET_INTERVAL_MARKER ;Equate defined in
;ODI.INC

call LSLSupport

When the function returns a completion code, the Z flag is set
according to the value in register AX.

Use the following equates in the BX register to call the
appropriate LSL support routine:

MLIDSUP_CANCEL_AES_EVENT equ 4
MLIDSUP_GET_INTERVAL_MARKER equ 5
MLIDSUP_SCHEDULE_AES_EVENT equ 3
MLIDSUP_SERVICE_EVENTS equ 11

The HSM can freely use any of the LSL services listed below.

� CancelAESEvent
� GetIntervalMarker
� ScheduleAESEvent
� ServiceEvents

Completion Codes
The LSL returns the following completion codes:

� 0000h LSLERR_SUCCESSFUL
� 8001h LSLERR_OUT_OF_RESOURCES
� 8002h LSLERR_BAD_PARAMETER
� 8003h LSLERR_NO_MORE_ITEMS
� 8004h LSLERR_ITEM_NOT_PRESENT
� 8005h LSLERR_FAIL
� 8006h LSLERR_RX_OVERFLOW
� 8007h LSLERR_CANCELLED

Support Routines Provided by the LSL

Version 4.03 (February 2, 1996) 7-3

� 8008h LSLERR_BAD_COMMAND
� 8009h LSLERR_DUPLICATE_ENTRY
� 800Ah LSLERR_NO_SUCH_HANDLER
� 800Bh LSLERR_NO_SUCH_DRIVER
� 800Ch LSLERR_PACKET_ERRORED

This chapter contains useful reference material.

16-Bit DOS Client HSM

7-4 Version 4.03 (February 2, 1996)

CancelAESEvent
Description Cancels AES event.

Entry State BX
is equal to MLIDSUP_CANCEL_AES_EVENT.

ES:SI
pointer to the AES ECB to be cancelled.

Interrupts
are disabled and remain disabled.

Return State AX
completion code.

Interrupts
are disabled.

Preserved
BP, ES, DS, SI, SS, SP.

Note
CLD is in effect.

Completion Codes (AX) 0000h SUCCESSFUL
The cancel command was successfully completed.

8004h LSLERR_ITEM_NOT_PRESENT
The AES ECB was not found.

Remarks CancelAESEvent attempts to cancel the AES event to which
ES:SI is pointing. The AES ECB AESStatus field will be set to
LSLERR_CANCELLED (ODI.INC). This routine will not call
the LSL Event Service Routine.

The AES ECB is defined below:

AESECBStruc struc
AESLink dd 0
MSecondValue dd 0
AESStatus dw 0
AESESR dd 0

AESECBStruc ends

See Also ScheduleAESEvent

Support Routines Provided by the LSL

Version 4.03 (February 2, 1996) 7-5

GetIntervalMarker
Description Returns a timing marker.

Entry State BX
is equal to MLIDSUP_GET_INTERVAL_MARKER.

Interrupts
are unspecified.

Return State DX:AX
has the current interval marker value.

Interrupts
state is preserved.

Preserved
all other registers.

Note
CLD is in effect.

Remarks GetIntervalMarker returns a timing marker in milliseconds
that could be used for timing retry events, for example. The
value of this marker has no relation to any real-world, absolute
time. When time marker values are compared with each other,
the difference is elapsed time in milliseconds.

If the HSM is using the interval marker for time measurement,
the interrupts must be enabled. The interval marker is
updated using the PC’s timer interrupt approximately every 55
milliseconds.

16-Bit DOS Client HSM

7-6 Version 4.03 (February 2, 1996)

ScheduleAESEvent
Description Schedules driver-defined events.

Entry State BX
is equal to MLIDSUP_SCHEDULE_AES_EVENT.

ES:SI
pointer to an AES Event Control Block (AES ECB).

Interrupts
are unspecified.

Return State Interrupt
state is preserved.

Preserved
BP, DS, ES, SI, SS, SP.

Note
CLD is in effect.

Remarks ScheduleAESEvent schedules a driver-defined event to occur at
the end of a specified time interval.

Before scheduling an AES event, the HSM sets the AES ECB
MSecondValue field to the desired timeout value in
milliseconds. The HSM also sets the AES ECB AESESR field
to an internal routine to handle the completed event. (The AES
ECB is defined below.)

Event service routines are invoked with the following
parameters:

Entry State

ES:SI pointer to an AES ECB.

Interrupts are disabled.

Return State

Interrupts are disabled.

Preserved BP, DS, SS, SP.

Definition of the AES ECB Structure

AESECBStruc struc
AESLink dd 0
MSecondValue dd 0
AESStatus dw 0
AESESR dd 0

AESECBStruc ends

Support Routines Provided by the LSL

Version 4.03 (February 2, 1996) 7-7

ScheduleAESEvent continued

Example: DriverTimeOut

The HSM could use a DriverTimeOut routine to detect any
send-failure timeouts. This procedure is usually set up as an
AES event that periodically reschedules itself at defined
intervals to check for transmit failures.

DriverTimeOut regularly inspects the LAN adapter to
determine if the board has failed to complete a send. If the
timeout check routine encounters a send timeout, it discards
the packet being sent, resets the board, and sends the next
packet (if one is waiting on the send queue).

DriverTimeOut: An Outline

This pseudocode is intended to illustrate a flow of events and
does not necessarily describe complete or optimized code.

Push DS, BP.
Set DS to CGroup.

IF transmit is in progress,
IF transmit has timed out,

increment appropriate error counter,
return timed out TCB,
reset the LAN adapter/controller.
move MLIDSUP_SERVICE_EVENTS into BX,; (process queued

; receives)
CALL LSLSupport,
CALL MSMGetNextSend. ;(check the send

; queue)
IF TCB was available,

call DriverSend procedure.
ENDIF

ENDIF
ENDIF

reset the MSecondValue field in the AES ECB, ; (reschedule AES
; event)

move MLIDSUP_SCHEDULE_AES_EVENT into BX,
CALL LSLSupport.

Pop BP, DS.
Return.

See Also CancelAESEvent

16-Bit DOS Client HSM

7-8 Version 4.03 (February 2, 1996)

ServiceEvents
Description Completes the processing of queued send and receive events.

Entry State BX
is equal to MLIDSUP_SERVICE_EVENTS.

Interrupts
are disabled, but could be enabled inside the routine.

Return State Interrupts
are disabled.

Preserved
BP, DS.

Remarks The HSM invokes ServiceEvents to complete the processing of
send and receive events only if the HSM called
MSMSendComplete, MSMRcvComplete, or
MSMRcvCompleteStatus outside of DriverSend or DriverISR.

During this routine, protocol stacks can enable interrupts and
call the DriverSend routine.

Caution If the HSM does not call ServiceEvents when queued events are
outstanding, the system may halt. ▲

See Also LSLSendComplete
LSLRcvComplete
LSLRcvCompleteStatus

�

Version 4.03 (February 2, 1996) A-1

Appendix A Creating the DOS ODI LAN Driver

Appendix Overview A-2.
Required Software Tools A-3.

Assembler Package A-3.
Operating Environment A-3.
Debugging Software (Optional) A-3.

Required Files A-3.
Source files A-3.
Include files A-3.

Assembling and Linking the Driver A-3.
Using MASM A-4.
Using TASM A-4.

Other Files A-4.

A.

A

A

16-Bit DOS Client HSM

A-2 Version 4.03 (February 2, 1996)

Appendix Overview
This appendix explains the details involved in creating the
DOS ODI LAN driver with the MSM and TSM modules. This
includes an explanation of the files and tools needed to
accomplish this task.

Read this appendix if you have never used the MSM and TSM
modules to create a LAN driver.

Creating the DOS ODI LAN Driver

Version 4.03 (February 2, 1996) A-3

Required Software Tools
Assembler Package

Supported assemblers and their corresponding linkers are:

� Microsoft Assembler (MASM) v5.1 or above
� Borland’s Turbo Assembler (TASM)

MASM has an additional utility which converts an .EXE file
into a .COM file.

Operating Environment
You must be running DOS version 3.x or above at the
workstation. You must also be running NetWare version 2.x or
above at the file server.

Debugging Software (Optional)
Make sure that your debugging software is compatible with the
assembler you choose.

Required Files
So that you can create a working DOS ODI LAN driver, the
developer’s kit includes the following files:

Source files
<TSM>.ASM ;Provided by Novell
MSM.ASM ;Provided by Novell

Include files
DRIVER.INC ;Provided by Novell
MSM.INC ;Provided by Novell
ODI.INC ;Provided by Novell
MSMTXT.INC ;Provided by Novell
NESLNAME.INC ;Provided by Novell
NESL.INC ;Provided by Novell

The <TSM>.ASM file you use with your MLID depends upon
which topology the MLID is using (for example, Ethernet,
token-ring, FDDI).

You must also have the following .COM files in order to bring
up a functional workstation.

LSL.COM ;v2.11 or above
IPXODI.COM ;v2.20 or above
NETX.COM or VLM.EXE ;v1.11 or above

Assembling and Linking the Driver
A sample batch file that illustrates the process of assembling
and linking the MLID with the appropriate files is shown
below:

16-Bit DOS Client HSM

A-4 Version 4.03 (February 2, 1996)

Using MASM
masm msm;
masm ethernet;
masm ne2.asm,ne2.obj,ne2.lst;
link /m msm+ethernet+ne2,ne2;
exe2binne2.exe ne2.com

Using TASM
tasm msm;
tasm ethernet;
tasm ne2;
tlink /t msm+ethernet+ne2, ne2,;

The above examples assume that all source modules and
include files are located in the current directory. You must link
the MSM, <TSM>, and <HSM> modules in the order shown
above.

Other Files
The NET.CFG file is used to specify hardware and system
configuration information. If you use it, you must generate this
ASCII file.

The following steps are involved in creating a DOS ODI LAN
driver:

1. Edit the <HSM> portion of the MLID.

2. Edit the necessary parts of the MSM and/or <TSM> module
if necessary.

3. Assemble the source code and appropriate include files.

4. Link the modules in the following order: MSM, <TSM>, and
HSM.

5. If you are using the MASM assembler, convert the .EXE file
into a .COM file.

6. Using the other .COM files supplied with NetWare, load the
workstation as follows:

LSL.COM
<driver>.COM
IPXODI.COM
VLM.COM

�

Version 4.03 (February 2, 1996) B-1

Appendix B The NET.CFG Configuration File

Appendix Overview B-2.
The NET.CFG Configuration File B-3.
NET.CFG File Main Section Headings B-3.
MLID Main Section Headings and Keywords B-3.

MLID Main Section Headings B-3.
MLID Subsidiary Keywords and Parameters B-3.

Bus ID <number> B-3.
DMA [#n] channel B-4.
Frame <name> [Addressing Mode.] B-4.
IRQ [#n] line B-5.
MEM [#n] address [length] B-5.
Node address h [format] B-5.
Port[#n] address [length] B-6.
Protocol <name> h <frame> B-6.
Slot n and Slot ? B-7.

B.

B

B

16-Bit DOS Client HSM

B-2 Version 4.03 (February 2, 1996)

Appendix Overview
ODI modules (including the LAN driver) use the NET.CFG file
to obtain the network system configuration information at
initialization time. The MSM parses the NET.CFG, evaluates
the driver parameters, and then sets those parameters in the
HSM driver configuration table.

Each node (workstation) in a network system contains at least
one network LAN adapter, the LAN adapter’s MLID, the Link
Support Layer, and the protocol stacks.

As each module of the network system loads into the computer
system, that module reads the NET.CFG file to find
configuration information concerning its operation.

The NET.CFG Configuration File

Version 4.03 (February 2, 1996) B-3

The NET.CFG Configuration File
The NET.CFG configuration file consists of main section
headings and keywords for ODI modules.

NET.CFG File Main Section Headings
Main section headings must be flush left and typically begin
with one of the following labels: Link Driver, Protocol, or Link
Support. The main section heading enables an ODI module to
locate its configuration section. During initialization, the ODI
module parses the NET.CFG for its main section header. The
module then parses and interprets the configuration entries
until the parser reaches the end of the file or until another
main section header is encountered.

All configuration entries following the main section heading
must be preceded with one or more white spaces. The end of
the configuration information for a specific module is signaled
by the occurrence of another main section heading or the end of
the file. The text in the NET.CFG is not case sensitive, and the
text parameters are delimited by white space. Any comments
should be preceded by a semicolon (;).

MLID Main Section Headings and Keywords

MLID Main Section Headings

MLIDs use the main section heading defined by the
DriverMainSectionText variable. Typically, this is ‘‘Link
Driver” followed by the name of the MLID to which the
information in the section following the heading refers. The
following example illustrates a sample NET.CFG file entry for
an MLID:

Example

link driver NTR2000 ;Main section header for
;Novell token-ring MLID

Node address 400000001234M ;Node address of the MLID

An MLID’s main section header should use an intuitive name
such as the MLID’s executable filename (for example,
NTR2000).

MLID Subsidiary Keywords and Parameters

Bus ID <name> <ID>

Bus ID allows the user to specify the bus to look for the adapter
on, if the MLID supports multiple bus types.

16-Bit DOS Client HSM

B-4 Version 4.03 (February 2, 1996)

The currently defined bus IDs are defined below.

name ID
ISA 0
MCA 1
EISA 2
PCMCIA 3
PCI 4
VL 5
Default –1 (0FFh)

Note This list is not inclusive. You can obtain an updated list of
identifiers from Novell Labs. ▲

The default value indicates that the MLID should search each
of the machine’s busses for a supported card. It should then
initialize the first supported card it finds and update the
MBusID field in the MLID’s configuration table. The MLID
determines the order in which the busses will be searched.

DMA [#n] channel

If the MLID uses multiple DMA channels, DMA configures
DMA #n to be channel. #n can be #1 or #2 (it is assumed to be
#1 if this parameter is absent). You might need multiple DMA
entries.

Example

; Example NET.CFG file
; Configure DMA 1 to be channel 7
Link driver NE2100

DMA #1 7

Frame <name> [Addressing Mode.]

At initialization time, the MLID uses this keyword to create a
logical board for ‘‘<name>” frame type. You can load multiple
frame types concurrently

You can configure the addressing mode on some MLIDs on the
basis of frame type. The following keywords determine the
address mode:

� LSB Canonical addressing mode
� MSB Noncanonical addressing mode

In the following example, token-ring is in MSB mode, and
token-ring SNAP is in LSB mode. The configuration table
ModeFlags field indicates the mode the logical board is
operating in. See the ODI Specification Supplement: Canonical
and Noncanonical Addressing for more details regarding
canonical and noncanonical addressing.

The NET.CFG Configuration File

Version 4.03 (February 2, 1996) B-5

Example

; Example NET.CFG file
; Configure the MLID to support 4 frame types
Link driver NE2000

Frame ETHERNET_802.2
Frame ETHERNET_802.3
Frame ETHERNET_II
Frame ETHERNET_SNAP

Link driver NTR2000
Node address 020012345678L
Frame Token-Ring MSB ;noncanonical addressing
Frame Token-Ring_SNAP LSB ;canonical addressing

IRQ [#n] line

IRQ configures the interrupt #n to be the interrupt line. #n can
be #1 or #2 (it is assumed to be #1 if this parameter is absent.
If the MLID uses multiple interrupt lines, you can have
multiple IRQ entries.

Example

; Example NET.CFG file
; Configure first interrupt to be interrupt 9
link driver NE2100

Int #1 9

MEM [#n] address [length]

MEM configures the #nth memory address and range at
address for length paragraphs. Address must be an absolute
physical address. #n can be #1 or #2 (it is assumed to be #1 if
this parameter is absent). You can have multiple MEM entries.

Example

; Example NET.CFG file
; Configure memory address and range
link driver NE2000

MEM #1 C0000 80

Node address h [format]

Node address overrides any hard-coded node address in the
MLID’s hardware, if the hardware allows it. The new address h
is used to program the LAN adapter.

You can use either canonical or noncanonical format.

Example

Node address 0800005A656BL ;Node address in canonical
;form

Node address 1000005AA6D6M ;Node address in
 ;noncanonical form

If M or L is not specified, the default for the node address is the
Physical Layer form of the address.

16-Bit DOS Client HSM

B-6 Version 4.03 (February 2, 1996)

Note Even though FDDI is a noncanonical topology at the physical
layer, all addresses are passed in canonical (LSB) format. ▲

Note A node address labeled with an ‘‘M”, which indicates a
noncanonical (MSB) address, is legal even when the media is
canonical; the MLID simply bit-swaps the provided address to
obtain the appropriate canonical (LSB) address. ▲

Example

; Example NET.CFG file
; Set up the NTR2000 card for noncanonical form address.
Link driver NTR2000

Node address 1000005AA6D6
; Set up the NTR2000 card for address in canonical form.
Link driver NTR2000

Node address 0800005A656BL
; Set up the NTR2000 card for address in noncanonical form.
Link driver NTR2000

Node address 1000005AA6D6M

Port[#n] address [length]

Port configures the #nth I/O port address and length at address
for length ports. #n can be #1 or #2 (it is assumed to be #1 if
this parameter is absent). You could need multiple Port entries.

Example

; Example NET.CFG file
; Configure the I/O port
link driver NE1000

port 320

Protocol <name> h <frame>

Protocol tells the MLID that the named protocol has a protocol
IO of h, for frame type frame. This enables new protocols (or
overrides the default protocol ID) to be handled by existing
MLIDs. The MLID uses this information to call the LSL
AddProtocolID routine during initialization. The LSL
maintains a table containing protocol IDs, protocol names, and
frame types for the protocols to use.

Example

; Example NET.CFG file
; Identify IPX as E0 on Ethernet_802.2, identify IP as 800h,
; and ARP as 806h on Ethernet_II
Link driver NE1000

Frame Ethernet_II
Frame Ethernet_802.2
Protocol IPX E0 Ethernet_802.2
Protocol IP 800 Ethernet_II
Protocol ARP 806 Ethernet_II

The NET.CFG Configuration File

Version 4.03 (February 2, 1996) B-7

Note While the protocol keyword provides the LSL with information
that protocol stacks can use, it does not imply an implicit
binding. ▲

Slot n and Slot ?

Slot n indicates which slot contains the card for the MLID. n is
1 based; that is, the first slot is one (1).

Slot ? indicates that the MLID is to scan the slots for the
adapter. This is the default mode if this keyword is not present.

Example

; Example NET.CFG file
Link driver NE2

slot 3

�

Version 4.03 (February 2, 1996) C-1

Appendix C Supporting PCMCIA Boards

Appendix Overview C-2.
Supporting HSM PCMCIA Card Services C-3.

During DriverInit C-3.
The Callback Handler and Callback Handler Subroutines C-3.

Card Insertion Subroutine C-4.
Card Removal Subroutine C-4.

C.

C

C

16-Bit DOS Client HSM

C-2 Version 4.03 (February 2, 1996)

Appendix Overview
PCMCIA adapters present new challenges to HSM developers.
This appendix describes some suggestions for implementing
PCMCIA support into the HSM.

This information is useful if you are developing HSMs that
support PCMCIA LAN adapters. However, as this appendix
only describes changes required by ODI and does not cover
everything that Card Services required, you will also need to
refer to the PCMCIA Card Services Specification Release 2.1.

Supporting PCMCIA Boards

Version 4.03 (February 2, 1996) C-3

Supporting PCMCIA Card Services
Existing HSMs can support PCMCIA LAN adapters with the
following changes.

During DriverInit
The DriverInit routine should perform the following.

1. Check the value of the configuration table MBusID field for
either BUS_ID_PCMCIA or BUS_ID_DEFAULT.

2. Check the MSMSystemFlags for a set CSFlag.

3. Return with DX pointing to an error message and AX equal
to MSMERR_HSM_FAILED, if Card Services are not
loaded.

4. Register any classes that the HSM generates events for and
that are not provided by the MSM with the NetWare Event
Service Layer (NESL). (For more information about the
NESL, see NESL Specification: 16-Bit DOS Client
Programmer’s Reference.) The MSM registers the following
event classes with NESL:

� NESL_Service_Suspend
� NESL_Service_Resume
� NESL_ServiceStatus_Change

(These class names are defined in NESLNAME.INC.)

5. Register with Card Services. The HSM provides the call
back handler required by Card Services.

6. If a card is present and successfully initialized, DriverInit
returns with AX equal to MSM_SUCCESSFUL. If a card is
not present, the registration routine returns with AX equal
to MSMERR_CARD_NOT_PRESENT and DX pointing to a
message indicating that the driver loaded, but the Network
Interface Controller (NIC) was not present. If an error
occurred during the initialization of the card, the
registration routine returns with DX pointing to the offset
of an error message and AX equal
MSMERR_HSM_FAILED.

The Callback Handler and Callback Handler Subroutines
Card Services requires the HSM to provide a callback handler
to support a PCMCIA card. (See the PCMCIA Card Services
Specification Release 2.1 for details.)

The following section briefly outlines the logic for the card
insertion and removal subroutines.

16-Bit DOS Client HSM

C-4 Version 4.03 (February 2, 1996)

Card Insertion Subroutine

This subroutine performs the following:

1. If the PCMCIA card that the driver is loaded for is inserted:

� Negotiates hardware resources with Card Services.

� Activates the card.

� Calls CardInit to initialize hardware and driver
software.

CardInit is HSM-implementation specific. It is
identified here to point out that the code dealing with
the hardware initialization must be relocated to the
Code segment (runtime segment). This code was once
included in DriverInit in the Init segment of code.

Note Code dealing with initialization will be called
every time the desired PCMCIA Card is inserted.

Once everything at the HSM level has been initialized
successfully MSMMediaConfigUpdate must be called.

� If CardInit is successful, generate the
NESL_Card_Insertion event.

� Return to Card Services.

2. If this card insertion event is not from the desired card,
return to Card Services

Card Removal Subroutine

This subroutine performs the following:

If the PCMCIA Card that the driver initialized for is removed,
the HSM should take the following steps before returning to
Card Services:

� Call HSMShutDownMSM.

� Release the interrupt vector by calling MSMUnSetIRQ.

� Return the Hardware resources through the Card
Services.

� Generate a NESL_Card_Removal event.

�

Version 4.03 (February 2, 1996) D-1

Appendix D Transmitting Priority Packets

Appendix Overview D-2.
Priority Support Algorithm D-3.

D.

D

D

16-Bit DOS Client HSM

D-2 Version 4.03 (February 2, 1996)

Appendix Overview
Priority packet transmission is a new capability in the DOS
ODI specification. The new toolkit provides an interface that
allows the HSM to support priority packet transmission. This
appendix describes this procedure. (The functions used in
priority packet transmission are documented in Chapter 5 and
6.)

Transmitting Priority Packets

Version 4.03 (February 2, 1996) D-3

Priority Support Algorithm
The following is the algorithm used for priority support.

1) During DriverInit, the HSM sets the following:

� The MSMPriorityQSupportPtr variable with a word
pointer (near) to the DriverPriorityQSupport
routine(Chapter 5).

� PrioritySupportBit in the MFlags field of
DriverConfigTable.

� The MPrioritySup field in DriverConfigTable to indicate
the number of levels available.

The HSM can set or reset the PrioritySupportBit as the
HSM changes from Priority Queue Support Enabled to
Disabled state. The PrioritySupportBit is checked on a per
queued packet basis.

2) The protocol sets the ProtoNum (StackID) field to a value
greater than or equal to 0FFF0h. The following are the
valid ProtoNum values:

0FFFFh Raw Send packets (no priority).

0FFFEh – 0FFF8h Raw Send packets (priority levels 1–7;
7 is the highest priority).

0FFF7h Non-Raw Send packets (no priority).

0FFF6h – 0FFF0h Non-Raw Send packets (priority levels
1–7; 7 is the highest priority).

Priority levels are defined as 0 for no priority, 1 for low
priority, and 7 for high priority. To extract the priority level,
NEG (2’s complement) the ProtoNum (StackID) field and
AND it with 07h. The result is a number from 0 to 7.

3) The MSM normally gives the packet to the HSM directly
through DriverSend as a TCB. If MSMTxFreeCount is zero
and the transmit ECB is a priority transmit ECB, the MSM
calls DriverPriorityQSupport, which gives the HSM to the
transmit ECB. This HSM provided routine will either
queue it in the HSM for transmission soon, or transmit the
packet out a priority channel by first calling
MSMBuildTransmitControlBlock (Chapter 6) to build a
TCB.

4) The HSM calls MSMBuildTransmitControlBlock to build a
TCB whenever a priority transmit resource becomes

16-Bit DOS Client HSM

D-4 Version 4.03 (February 2, 1996)

available and there is a Transmit ECB queued in the HSM’s
priority queue. The MSM checks if a TCB is available
during MSMBuildTransmitControlBlock. The HSM may
only use MAX_TCB_ALLOCATED minus the maximum
value of MSMTxFreeCount number of TCBs. Non-priority
packets have the original MSMTxFreeCount number of
TCB’s reserved exclusively for their use.

5) The HSM can provide extra TCBs by increasing the
MAX_TCB_ALLOCATED equate and reassembling the
TSM module. The HSM can also provide extra TCBs by
linking extra TCBs into the TCB’s free list during
DriverInit, prior to calling MSMMediaConfigUpdate, by
calling HSMProvideTCB (Chapter6). The allocated memory
for each TCB must be included with the TCB size in
MaxFrameHeaderLen and must reside within CGroup.
Because TCBs must be allocated from within the CGroup
segment, HSMProvideTCB can only be called during
initialization and from within DriverInit.

6) After the HSM has transmitted the TCB returned from
MSMBuildTransmitControlBlock, the HSM calls
MSMSendComplete. This takes care of incrementing the
counters, calling the TxMonitor, placing the TCB back on
the free list, and returning the ECB to its original owner.

�

Version 4.03 (February 2, 1996) Glossary-1

Glossary

8

8.

8

16-Bit DOS Client HSM

Glossary-2 Version 4.03 (February 2, 1996)

Abort
To execute an orderly termination of a
process whenever the process cannot or
should not complete.

Adapter
A circuit board driven by software. In
the context of this document an adapter
refers to a physical board. See also NIC,
MLID, Driver.

Address
A unique group of characters that
correspond either to a selected memory
location, an input/output port, or a
device on the network. See also Node
address.

AES––Asynchronous Event Scheduler
An auxiliary service that measures
elapsed time and triggers events at the
conclusion of measured time intervals.

API––Application Programming
Interface

A defined set of routines that enables
two software modules to pass
information between them.

ARP––Address Resolution Protocol
The protocol used by TCP/IP to locate
nodes on a network.

Asynchronous process
A process that does not depend upon
occurrence of a timing signal.

Bit
A binary digit that can only be 0 or 1.

Broadcast
A simultaneous transmission of data
from a single source to all destinations.

Buffer
A data area used for the temporary
storage of data being moved between
processes.

Bus
The hardware interface upon which
data is transferred.

Byte
A sequence of 8 bits.

CAM––Content Addressable Memory
Memory that resides on the adapter. In
the context of this specification, this
memory is used to hold the group
addresses that the adapter is to filter.

Completion code
A code returned by a routine to indicate
that the routine has completed either
successfully or unsuccessfully.

Control Block
A data structure that is used by a
process to store control information. See
also ECB.

Destination Address
A field that identifies the physical
location to which data is to be sent.

Driver
The software module that operates a
circuit board. In the context of this
document, driver refers to a software
module that drives a network board (or
adapter) and enables a device to
communicate over a LAN. See also
Adapter, NIC, MLID.

ECB––Event Control Block
A data structure that contains the
information required to coordinate the
scheduling and activation of certain
operations. All ODI layers and AES
functions act upon ECBs.

EISA––Extended Industry Standard
Architecture

A 32-bit bus standard, a superset of the
ISA standard.

EOI––End of Interrupt
A command issued to the interrupt
controller (PIC) indicating an end of
interrupt.

Glossary

Version 4.03 (February 2, 1996) Glossary-3

ESR––Event Service Routine

An application-defined procedure that
is called after an event occurs. An event
can be the completion of a send request,
the completion of a listen request, or
the recurrence of an event that
rescheduled itself with the AES.

Ethernet

A wire medium usually used in a bus
topology.

FDDI––Fiber Distributed Data
Interface

A dual ring topology.

Frame

The unit of transmission on the
network. The frame includes the
associated addresses and control
information in the Media Access
Control (MAC) Layer and the
transmitted data.

HSM––Hardware Specific Module

One of three modules comprising the
LAN driver toolkit. The developer
writes the HSM to handle all hardware
interactions for a specific physical
board.

Interrupt

A hardware signal that causes the
orderly suspension of the currently
executing process in order to execute a
special program (or interrupt handler).

IOCTL––I/O Control

MLID procedures that perform specific
actions (for example, add multicast
address, reset, shut down, etc.).

IP––Internet Protocol

The protocol used by TCP/IP. IP is
connectionless and was designed to
handle a large number of WANs and
LANs on an internetwork.

IPX––Internet Packet eXchange
An implementation of the Internetwork
Datagram Packet (IDP) protocol from
Xerox. It allows applications running on
NetWare workstations to take
advantage of NetWare communications
drivers to communicate directly with
other workstations, servers, or devices
on the internetwork.

ISA––Industry Standard Architecture
An 8/16-bit bus standard used with
Intel’s microprocessors.

ISR––Interrupt Service Routine
Routine that is executed to handle a
hardware or software interrupt request.

LAN––Local Area Network
At least two computers (usually located
in the same building) connected
together in such a way as to allow them
to communicate and share resources.

LSL––Link Support Layer
An ODI layer through which multiple
protocol packets are directed from the
MLID to a designated protocol stack,
and vice versa. The LSL directs
incoming and outgoing packets.

MAC Header––Media Access Control
Header

Controls the transmission of packets
through a network. The MAC header
includes source and destination data.

Medium
The physical carrier of a signal.

Micro Channel Architecture
A bus standard defined by IBM.

MLI––Multiple Link Interface
The interface between the MLID and
the LSL that allows multiple MLIDs to
exist concurrently.

MLID––Multiple Link Interface Driver
The ODI layer that receives and
transmits packets to a hardware device.
This acronym refers to ODI LAN
drivers.

16-Bit DOS Client HSM

Glossary-4 Version 4.03 (February 2, 1996)

MMIO––Memory Mapped I/O

An architecture for input and output
that allows I/O ports to be accessed as
though they were memory locations.

MPI�––Multiple Protocol Interface

The interface between the LSL and a
Network Layer protocol stack that
allows different communication
protocols to operate concurrently.

MSM––Media Support Module

One of three modules comprising the
LAN driver toolkit. The MSM
standardizes and manages the generic
details of interfacing ODI MLIDs to the
LSL and the operating system.

Multicast

The simultaneous transmission of data
from a single source to a selected group
of destination addresses on the
network.

NIC––Network Interface
Controller/Card

The physical network board installed in
workstations and file servers.

NLM––NetWare Loadable Module

Applications that are loaded
dynamically and integrated with all the
NetWare server operating systems
starting with NetWare 3.

Node

Any network device that transmits
and/or receives data. The device must
have a physical board and a unique
address. See also Node Address.

Node Address

A unique combination of characters
that corresponds to a physical board on
the network. Each adapter must have a
unique node address.

ODI––Open Data–Link Interface
The model that allows multiple network
protocols, physical boards, and frame
types to coexist on a single workstation
or server.

OSI––Open Systems Interconnection
A standard communications model that
defines communications between
computer systems.

Packet
The unit of transmission on the
network. The packet includes the
associated addresses and control
information.

PID––Protocol Identification
A stamp containing a globally
administered value (1 to 6 bytes in
length) that reflects the protocol stack
in use (for example, E0h=IPX 802.2).
The PID located in every packet is a
stamp that uniquely identifies the
packet as belonging to a specific
protocol.

Protocol
The set of rules and conventions that
determines how data is to be
transmitted and received on the
network.

Pseudocode
Describes computer program
algorithms generically without using
the specific syntax of any programming
language.

RAM––Random Access Memory
The computer’s (or physical board’s)
storage area into which data can be
entered and retrieved nonsequentially.

RCB––Receive Control Block
A data structure used by the MLID to
receive data.

ROM––Read Only Memory
The portion of the computer’s (or
physical board’s) storage area that can
be read only (write operations are
ignored).

Glossary

Version 4.03 (February 2, 1996) Glossary-5

Shared RAM
The RAM on some physical boards that
can be accessed by either the computer
or the physical board on which the
RAM is installed.

Source Address
A field that identifies the physical
location that is sending the data.

SPX––Sequenced Packet Exchange
A Session Layer protocol that uses IPX.
SPX provides connection oriented
services and guarantees packet
delivery.

Stubbed Routine
A routine that contains only a return
(ret) instruction.

Synchronous Process
A process that depends upon the
occurrence of another event such as a
timing signal.

TCB––Transmit Control Block
The data structure used by the MLID to
transmit data.

TCP––Transmission Control Protocol
Allows a process on one machine to
send a stream of data to a process on
another machine.

Token–Ring
A network that utilizes a ring topology
and passes a token from one device to
another. A node that is ready to send
data can capture the token and send
the data for as long as it holds the
token.

TSM––Topology Specific Module

One of three modules comprising the
LAN driver toolkit. The <TSM>.OBJ
manages the operations unique to a
specific media type.

TSR––Terminate-and-Stay-Resident

A DOS program or routine that remains
in memory after being loaded and
subsequently exited.

VAP––Value Added Process

A process that runs ‘‘on top” of the
NetWare 2 network operating system
(in much the same way a word
processing or spreadsheet application
runs on top of DOS). VAPs tie in with
the network operating system so that
additional enhancements can provide
services without interfering with the
network’s normal operation.

Virtual Machine

An illusion of multiple processes, each
executing on its own processor with its
own memory. The resources of the
physical computer can be used to share
the CPU and make it appear that each
process has its own processor. The
virtual machine is created with an
interface that appears to be identical to
the underlying hardware.

WAN––Wide Area Network

At least two computers remotely
connected together in such a way as to
allow them to communicate over wide
distances and to share resources.

16-Bit DOS Client HSM

Glossary-6 Version 4.03 (February 2, 1996)

Version 4.03 (February 2, 1996) Index-1

Index

9.

9

9

16-Bit DOS Client HSM

Index-2 Version 4.03 (February 2, 1996)

A
adapter data space, defined, 4-26

adding multicast addresses, 5-18

AES ECB. See ECB

AES Event
canceling, 7-4
scheduling, 7-6

AESESR, AES ECB field, defined, 4-31

AESLink, AES ECB field, defined, 4-31

AESStatus, AES ECB field, defined, 4-31

ascii strings, printing, 6-20

assemblers, supported, A-3

B
BestDataSize, HSM configuration table field,

defined, 4-14

bit maps
AX register, MSMGetRCB, 6-17
MFlags, 4-23
MModeFlags, 4-21
MSharingFlags, 4-25

BoardInstance, HSM configuration table field,
defined, 4-13

BoardNumber, HSM configuration table field,
defined, 4-13

bus types, 2-5
supporting multiple, 5-6

C
callback handler, card services, C-3

CancelAESEvent, LSL support routine, de-
fined, 7-4

canceling
AES event, 7-4
queued transmit events, 6-9

canonical node address format, B-5

card services, callback handler, C-3

CGroup, defined, 2-4

changing look-ahead size, 5-3

changing the multicast table, 5-18

code segment, 2-4

completion codes, LSL, 7-2

ConfigTableLink, HSM configuration table
field, defined, 4-18

ConfigTableMajorVer, HSM configuration table
field, defined, 4-13

ConfigTableMinorVer, HSM configuration table
field, defined, 4-13

configuration table, HSM
field descriptions, 4-13
illustration, 4-13
sample code, 4-13
structures required by MSM, 4-10
updating, 6-19

constants provided by MSM. See variables and
constants provided by MSM

constants required by MSM. See variables and
constants required by MSM

converting TCBs to ECBs, 6-7

creating MLID
files required, A-3
process of, A-4

custom keywords, defining, sample code, 4-5

D
data flow

receive, 1-9
send, 1-8

data transfer, modes of, 2-5

default, frame type, 3-5, 3-7

defining custom keywords, sample code, 4-5

deleting multicast addresses, 5-18

determining
if transmit events are queued, 6-14
packet destination, 1-5

disabling
interrupts, 5-11
IRQ, 6-28
promiscuous mode, 5-22

DMA
keyword in NET.CFG file, B-4
role in receive look ahead method, 5-15

DMALine, HSM configuration table field, de-
fined, 4-20

DOS environment, 2-3

driver
keywords, using, 4-5

Index

Version 4.03 (February 2, 1996) Index-3

managing others, 5-17
polling, 5-20
resetting, 5-23
shutting down, 5-27

DriverChangeLookAheadSize, defined, 5-3

DriverConfigTable, label required by MSM, de-
fined, 4-3

DriverInit, defined, 5-4

DriverISR
completing, 5-11, 5-12
process, 5-10
pseudocode, 5-16

DriverKeywordText, table required by MSM,
defined, 4-4

DriverKeywordTextLen, table required by
MSM, defined, 4-4

DriverMainSectionText, variable required by
MSM, defined, 4-3

DriverMajorVer, HSM configuration table field,
defined, 4-17

DriverMinorVer, HSM configuration table field,
defined, 4-17

DriverMulticastChange, defined, 5-18

DriverNumKeywords, constant required by
MSM, defined, 4-5

DriverPoll, defined, 5-20

DriverPriorityQSupport, 5-21

DriverProcessKeywordTab, table required by
MSM, defined, 4-5

DriverPromiscuousChange, 5-22

DriverReset, defined, 5-23

DriverSend
defined, 5-24
Ethernet drivers, 5-25
process, 5-24
pseudocode, 5-26
returning the TCB, 5-25

DriverShutdown, defined, 5-27

DriverSignOnMessage, variable required by
MSM, defined, 4-4

DriverStatTable, label required by MSM, de-
fined, 4-3

DriverTimeOut, pseudocode, 7-7

E
ECB (Event Control Block)

AES ECB, structure provided by MSM, de-
fined, 4-31

converting from TCB, 6-7

enabling
IRQ, 6-26
multicast addresses, 6-29
promiscuous mode, 5-22

environment
minimum for file server, A-3
minimum for workstation, A-3

Event Control Block (ECB). See ECB (Event
Control Block)

Event Service Routines, entry and return pa-
rameters, 7-6

events
canceling AES, 7-4
canceling queued transmit, 6-9
generating NESL, 6-11
generating NESL Resume Class, 6-12
generating NESL Service/Status Change

class, 6-10
generating NESL Suspend Class, 6-13
processing queued, 7-8
scheduling AES, 7-6

F
FFrag?Address, FragmentStructure field, de-

fined, 4-34

FFrag?Len, FragmentStructure field, defined,
4-34

FFrag0Address, FragmentStructure field, de-
fined, 4-34

FFrag0Length, FragmentStructure field, de-
fined, 4-34

FFragmentCount, FragmentStructure field,
defined, 4-34

files, required for creating MLID, A-3

Flags, HSM configuration table field, defined,
4-17

flags
MFlags, bit map, 4-23
MLIDModeFlags, OBR support, bits 14 and

15, 4-22
MModeFlags, bit map, 4-21
MSharingFlags, bit map, 4-25

flow of data
receive, 1-9

16-Bit DOS Client HSM

Index-4 Version 4.03 (February 2, 1996)

send, 1-8

FragmentStructure, structure provided by
MSM, defined, 4-34

Frame, keyword in NET.CFG file, B-4

frame data space, defined, 4-9

frame type, default, 3-5, 3-7

FrameTypeID, HSM configuration table field,
defined, 4-15

FrameTypeString, HSM configuration table
field, defined, 4-15

G
generating

NELS Service/Status Change class event,
6-10

NESL event, 6-11
NESL Resume Class event, 6-12
NESL Suspend Class event, 6-13

GetIntervalMarker, LSL support routine, de-
fined, 7-5

H
hardware issues, HSM, overview, 2-5

Hardware Specific Module (HSM). See HSM
(Hardware Specific Module)

HSM (Hardware Specific Module)
code segment, attributes, 2-4
configuration table, overview, 3-4
defined, 1-7
disabling promiscuous mode, 5-22
driver module described, 3-4
enabling promiscuous mode, 5-22
hardware issues, 2-5
initialization, 5-4
interrupt vector, setting, 5-8
statistics table, overview, 3-4

HSMProvideTCB, 6-5

HSMShutDownMSM function, 6-6

I
initialization, HSM

hardware options set, 5-4, 5-5
process, 5-5
pseudocode, 5-9

segments for code, 2-4
variables set, 5-5

installing and enabling IRQ, 6-26

Int, keyword in NET.CFG file, B-5

interrupt vector, setting, overview, 5-8

interrupts
disabling, 5-11
process when receiving, 5-10

IntLine, HSM configuration table field, de-
fined, 4-20

IOAddress, HSM configuration table field, de-
fined, 4-18

IORange, HSM configuration table field, de-
fined, 4-18

IRQ
disabling and removing, 6-28
installing and enabling, 6-26

K
keywords

MLID keywords and parameters
DMA, B-4
Frame, B-4
Int, B-5
MEM, B-5
Node address, B-5
Port, B-6
Protocol, B-6
Slot, B-7

using driver, 4-5

L
LineSpeed, HSM configuration table field, de-

fined, 4-16

linking, MLID modules, A-4

linking and assembling the driver, sample
batch file, A-3

logical board, defined, 3-6

look-ahead size, changing, 5-3

LookAheadSize
default value, 5-14
HSM configuration table field, defined, 4-16

LSL (Link Support Layer)
completion codes, list of, 7-2
defined, 1-5

Index

Version 4.03 (February 2, 1996) Index-5

LSL support routines
CancelAESEvent, 7-4
GetIntervalMarker, 7-5
overview, 7-2
ScheduleAESEvent, 7-6
ServiceEvents, 7-8

LSLSupport, variable provided by MSM, de-
fined, 4-6

M
managing other drivers, 5-17

MaxPacketSize, HSM configuration table field,
defined, 4-14

MBusID, HSM configuration table field, de-
fined, 4-17

Media Specific Module (MSM), shut down, 6-6

MEM, keyword in NET.CFG file, B-5

MemoryAddress, HSM configuration table
field, defined, 4-19

MemorySize, HSM configuration table field,
defined, 4-19

MFlags, bit map, 4-23

minimum environment
for file server, A-3
for workstation, A-3

MLI (Multiple Link Interface), defined, 1-6

MLID (Multiple Link Interface Driver)
com file segments, 2-3
creating, process of, A-4
defined, 1-6
linking, A-4
modules comprising, 3-3
NET.CFG file main section headings, B-3

MModeFlags, bit map, 4-21

MNoECBsAvailable, HSM statistics table field,
defined, 4-28

MNumCustomCounters, HSM statistics table
field, defined, 4-30

MNumGenericCounters, HSM statistics table
field, defined, 4-28

ModeFlags, HSM configuration table field, de-
fined, 4-13

modules, support
defined, 1-7
HSM (Hardware Specific Module) defined,

1-8

MSM (Media Support Module) defined, 1-7
TSM (Topology Specific Module) defined, 1-7

MPI (Multiple Protocol Interface), defined, 1-4

MPrioritySup, HSM configuration table field,
defined, 4-17

MQueueDepth, HSM statistics table field, de-
fined, 4-29

MRxChecksumError, HSM statistics table
field, defined, 4-29

MRxMiscCount, HSM statistics table field, de-
fined, 4-29

MRxMismatchError, HSM statistics table field,
defined, 4-29

MRxOverflow, HSM statistics table field, de-
fined, 4-29

MRxTooSmall, HSM statistics table field, de-
fined, 4-29

MSecondValue, AES ECB field, defined, 4-31

MSharingFlags, bit map, 4-25

MSM (Media Support Module), modifying, 3-3

MSM constants. See variables and constants
provided by MSM; variables and constants
required by MSM

MSM structures. See structures provided by
MSM

MSM support routines
MSMCallNESL, 6-8
MSMClearSendQueue, 6-9
MSMGenerateNESLChangeEvent, 6-10
MSMGenerateNESLEvent, 6-11
MSMGenerateNESLResumeEvent, 6-12
MSMGenerateNESLSuspendEvent, 6-13
MSMGetNextSend, 6-14
MSMGetRCB, 6-15
MSMMediaConfigUpdate, 6-19
MSMPrintStringZero, 6-20
MSMRcvComplete, 6-22
MSMRcvCompleteStatus, 6-23
MSMReturnRCB, 6-24
MSMSendComplete, 6-25
MSMSetIRQ, 6-26
MSMUnSetIRQ, 6-28
MSMUpdateMulticast, 6-29
overview, 6-2

MSM variables. See variables and constants
required by MSM

MSMBuildTransmitControlBlock, 6-7

MSMDriverManagement, defined, 5-17

MSMEOIFlag, variable provided by MSM, de-
fined, 4-6

16-Bit DOS Client HSM

Index-6 Version 4.03 (February 2, 1996)

MSMIntMaskOff, variable provided by MSM,
defined, 4-7

MSMIntMaskOn, variable provided by MSM,
defined, 4-7

MSMIntMaskPort, variable provided by MSM,
defined, 4-7

MSMLookAheadSegment, variable provided by
MSM, defined, 4-8

MSMMaxMulticastAddr, variable provided by
MSM, defined, 4-8

MSMPhysNodeAddress, variable provided by
MSM, defined, 4-8

MSMPriorityQSupportPtr, variable provided
by MSM, defined, 4-8

MSMSystemFlags, variable provided by MSM,
defined, 4-8

MSMTxFreeCount
role in DriverISR, 5-12
variable provided by MSM, defined, 4-9

MSMTxMonPtr, variable provided by MSM,
defined, 4-9

MStatTableMajorVer, HSM statistics table
field, defined, 4-28

MStatTableMinorVer, HSM statistics table
field, defined, 4-28

MTotalRxPackets, HSM statistics table field,
defined, 4-28

MTotalTxPackets, HSM statistics table field,
defined, 4-28

MTxMiscError, HSM statistics table field, de-
fined, 4-29

MTxRetry, HSM statistics table field, defined,
4-29

MTxTooBig, HSM statistics table field, defined,
4-28

MTxTooSmall, HSM statistics table field, de-
fined, 4-29

multicast, supporting addresses, 3-7

multicast table, updating, 5-18, 6-29

multiple bus types, supporting, 5-6

multiple frame support, overview, 3-5, 3-7

MValidCounterMask, HSM statistics table
field, defined, 4-28

N
NESL

generating events, 6-11
generating Resume Class events, 6-12
generating Service/Status Change class

event, 6-10
generating Suspend Class events, 6-13

NET.CFG file
location of, A-4
main section headings, B-3

MLID, B-3
MLID subsidiary keywords

DMA, B-4
Frame, B-4
Int, B-5
MEM, B-5
Node address, B-5
Port, B-6
Protocol, B-6
Slot, B-7

parsing, B-3
text in, B-3
use of by MLID, B-2

NICLongName, HSM configuration table field,
defined, 4-14

NICShortName, HSM configuration table field,
defined, 4-15

Node Address, keyword in NET.CFG file, B-5

node address
canonical and noncanonical format of, B-5
overriding, 5-7

NodeAddress, HSM configuration table field,
defined, 4-13

noncanonical node address format, B-5

O
obtaining RCBs for received packets, 6-15

ODI (Open Data-Link Interface) specification
defined, 1-3
illustrated, 1-3
OSI, correspondence to, 1-4

overriding node address, process, 5-7

P
packet

destination, determining, 1-5

Index

Version 4.03 (February 2, 1996) Index-7

flow, 1-8

packet reception
obtaining RCBs, 6-15
passing RCB to LSL, 6-23
process of, 5-10
queuing RCBs, 6-22
returning RCB to MSM, 6-24

packet transmission, 5-24
canceling queued events, 6-9
determining if transmit events are in queue,

6-14
returning tCB to MSM, 6-25

parsing, NET.CFG file, B-3

PCMCIA, supporting, C-3

polling the driver, 5-20

Port, keyword in NET.CFG file, B-6

printing ascii strings, 6-20

processing queued events, 7-8

programmed I/O, role in receive look ahead
method, 5-15

promiscuous mode
defined, 3-8
enabling or disabling of, 5-22
supporting, 3-8

Protocol, keyword in NET.CFG file, B-6

protocol stack, defined, 1-3

pseudocode
DriverInit, 5-9
DriverISR, 5-16
DriverSend, 5-26
DriverTimeOut, 7-7

Q
queue

canceling transmit events, 6-9
determining if transmit events are in, 6-14
placing RCBs in, 6-22
processing events in queue, 7-8

QueueDepth, HSM configuration table field,
defined, 4-16

R
RCB (Receive Control Block)

defined, 4-32

obtaining for received packet, 6-15
passing to LSL, 6-23
queuing, 6-22
returning to MSM, 6-24

RCBDriverWS, RCB field, defined, 4-32

RCBFrag?Addr, RCB field, defined, 4-32

RCBFrag?Len, RCB field, defined, 4-32

RCBFrag0Addr, RCB field, defined, 4-32

RCBFrag0Len, RCB field, defined, 4-32

RCBFragCount, RCB field, defined, 4-32

RCBReserved, RCB field, defined, 4-32

Receive Complete Event, process, 5-13

Receive Look Ahead Buffer, process for obtain-
ing, 5-14

receiving packets, 5-10
obtaining RCBs, 6-15
passing RCB to LSL, 6-23
queuing RCBs, 6-22
returning RCB to MSM, 6-24

removing IRQ, 6-28

required files for creating MLID, A-3

resetting the driver, 5-23

returning
RCB to MSM, 6-24
TCB to MSM, 6-25
timing marker, 7-5

RxTooBigCount, HSM statistics table field, de-
fined, 4-29

S
scanning the slots, process, 5-6

ScheduleAESEvent, LSL support routine, de-
fined, 7-6

scheduling AES event, 7-6

segments for initialization code, 2-4

sending packets, 5-24

SendRetries, HSM configuration table field,
defined, 4-18

ServiceEvents, LSL support routine, defined,
7-8

Shared Memory, role in receive look ahead
method, 5-14

SharingFlags, HSM configuration table field,
defined, 4-18

16-Bit DOS Client HSM

Index-8 Version 4.03 (February 2, 1996)

shutting down, driver, 5-27

Signature, HSM configuration table field, de-
fined, 4-13

Slot
HSM configuration table field, defined, 4-18
keyword in NET.CFG file, B-7

slot, scanning for, 5-6

SourceRouteHandler, HSM configuration table
field, defined, 4-15

specification version number, 4-4

specification version string, 4-4

specifying custom configuration options, 5-5

statistics table, HSM
field descriptions, 4-28
illustration, 4-28
sample code, 4-27
structures required by MSM, 4-26

strings, printing ascii, 6-20

structures provided by MSM
AES ECB, 4-31
FragmentStructure, 4-34
RCB, 4-32
TCB, 4-33

structures required by MSM
HSM configuration table, 4-10
HSM statistics table, 4-26

support modules
defined, 1-7
HSM (Hardware Specific Module) defined,

1-8
MSM (Media Support Module) defined, 1-7
TSM (Topology Specific Module) defined, 1-7

support routines, LSL. See LSL support rou-
tines

supporting
multicast address, 3-7
PCMCIA LAN adapters, C-3
promiscuous mode, 3-8

T
TCB (Transmit Control Block)

converting to ECB, 6-7
defined, 4-33
returning to MSM, 6-25

TCBDataLength, TCB field, defined, 4-33

TCBDriverWS, TCB field, defined, 4-33

TCBFragStrucPtr, TCB field, defined, 4-33

TCBMediaHeader, TCB field, defined, 4-33

TCBMediaHeaderLen, TCB field, defined, 4-33

timing marker, returning, 7-5

transmitting packets, 5-24
canceling queued events, 6-9
determining if a transmit request is in the

queue, 6-14
returning TCB to MSM, 6-25

TransportTime, HSM configuration table field,
defined, 4-15

TSM (Topology Specific Module)
defined, 3-3
modifying, 3-3
types suppled by Novell, 3-3

U
updating

configuration table, 6-19
multicast table, 5-18, 6-29

V
variables and constants provided by MSM

DriverProcessKeywordTab, 4-5
LSLSupport, 4-6
MSMEOIFlag, 4-6
MSMIntMaskOff, 4-7
MSMIntMaskOn, 4-7
MSMIntMaskPort, 4-7
MSMLookAheadSegment, 4-8
MSMMaxMulticastAddr, 4-8
MSMPhysNodeAddress, 4-8
MSMPriorityQSupportPtr, 4-8
MSMSystemFlags, 4-8
MSMTxFreeCount, 4-9
MSMTxMonPtr, 4-9

variables and constants required by MSM
DriverConfigTable, label defined, 4-3
DriverKeywordText, 4-4
DriverKeywordTextLen, 4-4
DriverMainSectionText, 4-3
DriverNumKeywords, 4-5
DriverSignOnMessage, 4-4

Index

Version 4.03 (February 2, 1996) Index-9

DriverStatTable, 4-3

W
WorstDataSize, HSM configuration table field,

defined, 4-14

