
NESL Specification:
16-Bit DOS Client
Programmer’s Interface

NESL Specification Version 1
Document Version 1.04
Part Number: 107–000066–001

6 May 1994

NESL Specification

1 Version 1.04

Disclaimer
Novell, Inc. makes no representations or warranties with
respect to the contents or use of this manual, and specifically
disclaims any express or implied warranties of merchantability
or fitness for any particular purpose. Further, Novell, Inc.
reserves the right to revise this publication and to make
changes to its content, at any time, without obligation to notify
any person or entity of such revisions or changes.

� Copyright August 1993 by Novell, Inc. All rights reserved.
This document may be freely copied and distributed as long as
it is reproduced in its entirety and for the benefit of network
product developers. Portions of this document may be included
with other material as long as authorship is attributed to
Novell, Inc. and appropriate copyright notices are included.

Novell, Inc.
122 East 1700 South
Provo, Utah 84606

Trademarks
Novell has made every effort to supply trademark information
about company names, products, and services mentioned in
this document. Trademarks indicated below were derived from
various sources.

Novell and NetWare are registered trademarks of Novell, Inc.

MLID and Multiple Link Interface Driver are trademarks of Novell, Inc.

Specification Changes
The following change has been made to this specification since
document version 1.03 (2 March 1994):

The ASCIIZ string ‘‘EVENTS” has been changed to
‘‘NESL_EVENTS”.

Version 1.04 2

Table Of Contents
Introduction 3.
The NetWare Event Service Layer 5.

Registering and Deregistering Event Producers 5.
Registering and Deregistering Event Consumers 5.
Signaling Events 5.

The NESL Programmer’s Interface 6.
Locating the NESL 6.
Sample Code for Locating the NESL 7.
NESL Services 8.

GetNESLConfigPointer 9.
RegisterEventProducer 10.
DeRegisterEventProducer 12.
EventNotification 13.
RegisterEventConsumer 15.
DeRegisterEventConsumer 17.
Consumer Notification Procedure 18.
Data Definitions 19.

Signatures 19.
NESLSignature 19.

Tables 19.
Configuration Table 19.

Structures 20.
Producer Event Control Block (PECB) 20.
Consumer Event Control Block (CECB) 22.
Event Parameter Block (EPB) 24.

Classes and Events 25.
Defining Classes and Events 25.
Defined Classes and Events 25.

Service Suspend 26.
Service Resume 27.
Service/Status Change 28.
Suspend Request 29.

List of Figures
Figure 1 The OSI Model 6.

List of Tables
Table 1 The Configuration Table Fields 19.
Table 2 The PECB Fields 21.
Table 3 The CECB Fields 23.
Table 4 The EPB Fields 24.
Table 5 Events in the Service Suspend Class 26.
Table 6 Events in the Service Resume Class 27.
Table 7 Events in the Service/ Status Class 28.

NESL Specification

3 Version 1.04

Introduction
The NetWare Event Service Layer (NESL) for 16-Bit DOS
allows modules in a system to receive notification about certain
events that can occur in the other modules, such as events
generated by PCMCIA or APM. However, the NESL is intended
to be generic and is not limited to these events.

The NESL works as a DOS TSR (terminate and stay resident)
program that provides a set of services any module in the
system can use. These services provide a mechanism for
generating an event and/or receiving notification when an
event occurs. Modules that generate events are referred to as
producers; those that receive notification of events are
consumers. A module can be both a producer and a consumer.

The event notification is based on event classes. Event classes
are defined for a specific group or category of events. A module
that produces an event registers as a producer of the event
class that the event belongs to. There can be more than one
producer of an event class. The NESL keeps track of producers
of event classes and maintains a list of consumers for each
event class.

When an event occurs, consumers of the event class that the
event occurred within are notified. The NESL is not aware of
individual events and does not attempt to keep track of them.
However, the module that generated the event passes detailed
information about the particular event to consumers at
notification time. This allows modules to control the level of
sensitivity they have to an event notification. For example, if a
particular module is only interested in knowing that service
has been suspended and does not care about the cause, it can
take action every time it receives notification for the ‘‘Service
Suspend” event class. On the other hand, if a module is only
interested in ‘‘MLID Card Removal” events within the ‘‘Service
Suspend” event class, it can filter on the information provided
with the notification for the ‘‘Service Suspend” event class and
take action only if the notification is a result of an ‘‘MLID Card
Removal” event.

Example: An MLID for a PCMICA card registers as a client of
Card Services during load time. It also registers with the NESL
as a producer of the ‘‘Service Suspend” and ‘‘Service Resume”
event classes. When the MLID receives and successfully
processes a card insertion event, it calls the NESL’s Service
Entry Point to generate an ‘‘MLID Card Insertion Complete”
event. After the MLID receives and processes a card removal

Version 1.04 4

event from Card Services, it calls the NESL’s Service Entry
Point to generate an ‘‘MLID Card Removal” event. Protocol
stacks or other modules that registered with the NESL as
consumers of the ‘‘Service Suspend” and ‘‘Service Resume”
event classes receive notification when the events takes place.

NESL Specification

5 Version 1.04

The NetWare Event Service Layer
The NetWare Event Service Layer’s (NESL) links producers of
events with the consumers of those events. The NESL provides
the following services:

� Get NESL Config Pointer
� Register Event Producer
� Deregister Event Producer
� Event Notification
� Register Event Consumer
� Deregister Event Consumer

Registering and Deregistering Event Producers

Event producers use RegisterEventProducer to register with the
NESL as a producer of an event class. Once it registers, the
event producer calls EventNotification to notify event
consumers when an event takes place.

Note Event producers can also register as event consumers.

When an event producer no longer provides events within an
event class, it calls DeRegisterEventProducer for that class. For
example, an event-providing module that is unloading its
clean-up function must first call DeRegisterEventProducer for
each event class it has added. The module could then complete
its unloading process.

Registering and Deregistering Event Consumers

Event consumers must register with the NESL in order to
receive notification when an event occurs. These modules call
RegisterEventConsumer for each event class they wish to be
notified of.

When an event consumer no longer requires event notification,
or before it unloads, it must deregister by calling
DeRegisterEventConsumer for each class it registered for.

Signaling Events

The NESL maintains a consumer list for each event class.
When an event producer calls the NESL to signal that an event
has occurred within a class, the NESL notifies all modules on
the consumer list. The order in which the NESL calls the
consumers depends upon the OSI layer to which the consumer
belongs and upon the direction in which the event notification
must take place in the OSI model. (Figure 1 illustrates the OSI
model.) The NESL tracks the responses from each module in

Version 1.04 6

the list and returns a collective response back to the event
producer.

Application

Presentation

Session

Transport

Network

Data Link

Physical

Logical Link Control (LLC)

Media Access Control (MAC)

The NESL Programmer’s Interface
This section describes the interface that allows other modules
to access NESL services.

Locating the NESL

To locate the NESL, a module must scan the DOS interrupt 2F
multiplex IDs between C0h and FFh for the NESL signature
string. The module must scan because the NESL uses the
interrupt 2F ID dynamically. When the module calls interrupt
2F with the ID of the NESL’s location, the interrupt returns
with DX:BX containing the address of the NESL’s Service
Entry Point and with ES:SI pointing to the NESL’s signature.
This signature is defined as the ASCIIZ string
‘NESL_EVENTS’. To use the NESL’s services, the module must
call the service entry point with registers set as outlined by the
particular function.

Figure 1
The OSI Model

NESL Specification

7 Version 1.04

Sample Code for Locating the NESL
The following is sample code for finding the Event Service
Layer:

NESLSignature db ’NESL_EVENTS’, 0 ; NESL Signature

MULTIPLEX_INT equ 2Fh ; Multiplex Interrupt.
MUL_CHCKSLT_AVAIL equ 0C000h ; User defined slot 0 and

; Function 0
SLOT_IN_USE equ 0FFh ; Slot is in use.
ENTER_DOS equ 21h ; DOS Interrupt.
GET_INT_VEC equ 35h ; Get Interrupt Vector.
FAILED equ 8005h ; Failed error code.

NESL proc near
push si
push di
push bp
push ds
push es
mov ax, (GET_INT_VEC SHL 8) OR MULTIPLEX_INT
int ENTER_DOS ; Let DOS Get vector for us.

cmp word ptr es:[bx], 0 ; Check current Vector.
je NESLNotPresentExit ; Has it been hooked?

;–––
; Scan through the 2Fh slots and look for loaded NESL.
;–––

cld
mov ax, MUL_CHCKSLT_AVAIL ; Start after DOS reserved

LookForNESLLoop:
push ax ; AH = Slot # and

; AL= Function 0
push ds ; DS = CGroup
int MULTIPLEX_INT ; Hit the Multiplex Int functions
cmp al, SLOT_IN_USE ; Slot used?
pop ds ; DS = CGroup
pop ax ; AH = Slot # and

; AL = Function 0
je Int2FSlotUsed ; Was slot in use?

;–––
; Next Slot Please
;–––

GetNextSlot:
inc ah ; AH = Slot # to check next
jnz LookForNESLLoop ; if we wrap after FF then we

; are done.
jmp short NESLNotPresent Exit ; NESL not present.

;–––
; If the slot is used, is it the NESL?
;–––

Version 1.04 8

Int2FSlotUsed:
mov di, si ; ES:DI –> signature string
mov si, offset DGROUP:NESLSignature
mov cx, 3 ; Check 6 bytes.

rep cmpsw
 jnz GetNextSlot ; Not it, keep looking

;–––
; Found the NESL. DX:BX contains address of the NESL’s Entry Point.
;–––

xor ax, ax ; Successful return code.

FindNESLExit:
pop es
pop ds
pop bp
pop di
pop si
ret

NESLNotPresentExit:
mov ax, FAILED ; Error return code.
or ax, ax
jmp FindNESLExit

FindNESL endp

NESL Services

This section describes the services provided by the NESL.

NESL Specification

9 Version 1.04

GetNESLConfigPointer
Description Returns a pointer to the NESL’s configuration table.

Entry State BX
0000h

Return State AX
Set to a completion code.

ES:SI
Pointer to the NESL’s configuration table if call is successful.

Preserved
DS, BP, SS, SP.

Completion Codes (AX) 0000h Successful
The service is available and ES:SI contains a valid pointer to the
NESL’s configuration table.

8008h Bad Command
The service is not available.

Version 1.04 10

RegisterEventProducer
Description Allows a module to register as a producer of a particular event

class.

Entry State BX
0001h

ES:SI
Pointer to a Producer Event Control Block (PECB) with the
following fields set to:

PECB_ClassName Pointer to the ASCIIZ string which identifies
the class of events.

PECB_Flags bit 0
Set to 0 if consumers are to be called
top\down. (This is based on the value in the
Consumer Event Control Block’s [CECB]
OSILevel field; consumers are called from 7
to 1).
Set to 1 if consumers are to be called
bottom\up. (This is based on the value in the
CECB’s OSILevel field; consumers are
called from 1 to 7).

bits 1–31
Reserved. Set to zero.

Return State AX
Set to a completion code.

ES:SI
Pointer to the PECB that was passed into the function.

Preserved
DS, BP, SS, SP.

Completion Codes (AX) 0000h Successful
The calling module was successfully registered as a producer of
the given event class.

8005h Fail
The calling module is already registered as a producer of the
given event class.

8008h Bad Command
The service is not available.

Remarks RegisterEventProducer registers a module as a producer of a
particular event class. This routine contains, and returns, a
pointer to a Producer Event Control Block (PECB). Although
the event producer provides the memory for the PECB, the
NESL owns this memory until the event producer deregisters
by calling DeRegisterEventProducer.

NESL Specification

11 Version 1.04

RegisterEventProducer continued

Once the application registers, the only PECB field it can
change is the PECB_DataPtr field. The application might need
to modify this field when it calls EventNotification. Until it
deregisters, the application must not change any other PECB
field.

The calling module sets the PECB EventClassName field to
point to an ASCIIZ string identifying the event class. Refer to
the ‘‘Defined Classes and Events’’ section for a list of class
names Novell has defined. The NESL initializes all other fields.

See Also DeRegisterEventProducer
EventNotification

Version 1.04 12

DeRegisterEventProducer
Description Allows a module to deregister as a producer of an event class

that it previously registered.

Entry State BX
0002h

ES:SI
Pointer to the Producer Event Control Block (PECB) that was
passed into RegisterEventProducer for a given event class.

Return State AX
Set to a completion code.

ES:SI
Pointer to the PECB was passed into the function.

Preserved
DS, BP, SS, SP.

Completion Codes (AX) 0000h Successful
The caller was successfully deregistered as a producer of the
given event class.

8002h Bad Parameter
The caller was not registered with the NESL as a producer of the
given event class.

8008h Bad Command
The service is not available.

See Also RegisterEventProducer

NESL Specification

13 Version 1.04

EventNotification
Description Allows a module to signal that an event has just occurred in a

given class.

Entry State BX
0003h

ES:SI
Pointer to the Producer Event Control Block (PECB) that was
passed into the RegisterEventProducer for the given event class.
The following PECB field must be set to:
PECB_DataPtr Pointer to an Event Parameter Block (EPB)

filled out as shown below.
Note: The calling module must not modify
any of the other fields in the PECB until the
module calls DeRegisterEventProducer for
the given event class.

The fields of the EPB are set to the following:
EPB_ClassName Pointer to an ASCIIZ string that identifies the

event class.
EPB_EventName Pointer to an ASCIIZ string that identifies the

event within the class.
EPB_ModuleName Pointer to an ASCIIZ string that identifies the

module that generated the event.
EPB_DataPtr0 Pointer to a block of information about the

event. This field is event dependent and is
defined by the event. If the event has no
additional information to pass, this field will
be NULL.

EPB_DataPtr1 Pointer to a block of information about the
event. This field is event dependent and is
defined by the event. If the event has no
additional information to pass, this field will
be NULL.

Return State AX
Set to a completion code.

ES:SI
Pointer to the PECB that was passed into the function.

Preserved
DS, BP, SS, SP.

Completion Codes (AX) 0000h Successful
The notification was successful.

8005h Fail
The notification was generated by a request that was denied by
one or more consumers.

8008h Bad Command
The service is not available.

Version 1.04 14

EventNotification continued

Remarks Refer to the ‘‘Defined Classes and Events’’ section for a list of
class and event names that Novell has defined.

When a module calls the notification procedure for each event
consumer of the class, it passes a pointer to an EPB as a
parameter. This block is considered to be read-only and the
event consumer must not modify it.

See Also Consumer Notification Procedure
DeRegisterEventProducer
RegisterEventProducer

NESL Specification

15 Version 1.04

RegisterEventConsumer
Description Allows a module to register as a consumer of a particular event

class.

Entry State BX
0004h

ES:SI
Pointer to a Consumer Event Control Block (CECB) with the
following fields set to:

CECB_ClassName Pointer to an ASCIIZ string which identifies
the event class.

CECB_NotifProc The address of a procedure to call when an
event in the given class occurs.

CECB_OSILevel The level of the OSI layer which the
consumer is located in. This value takes the
form of 0xLX, where L is the number (1–7)
corresponding to the application’s OSI layer
and X is the order relative to other modules
also registered on that layer. The relative
ordering is useful when several system
components on the same layer require a
certain processing order during the event.

Return State AX
Set to a completion code.

ES:SI
Pointer to the CECB that was passed into the function.

Preserved
DS, BP, SS, and SP.

Completion Codes (AX) 0000h Successful
The caller was registered successfully as a consumer of the
given event class.

8005h Fail
The caller has already registered as a consumer of this event
class.

8008h Bad Command
The service is not available.

Remarks RegisterEventConsumer registers a module as a consumer of a
particular event class. This routine contains, and returns, a
pointer to a Consumer Event Control Block (CECB). Although
the event producer provides the memory for the CECB, the
NESL owns this memory until the event consumer deregisters

Version 1.04 16

RegisterEventConsumer continued

by calling DeRegisterEventConsumer. Once the application
registers, and until it deregisters, it must not change any of the
CECB fields.

See Also DeRegisterEventConsumer

NESL Specification

17 Version 1.04

DeRegisterEventConsumer
Description Allows a module to deregister as a consumer of an event class.

Entry State BX
0005h

ES:SI
Points to the Consumer Event Control Block (CECB) that was
passed into RegisterEventConsumer for the given event class.

Return State AX
Set to a completion code.

ES:SI
Pointer to the CECB that was passed into the function.

Preserved
DS, BP, SS, SP.

Completion Codes (AX) 0000h Successful
The caller has been deregistered as a consumer of the given
event class.

8002h Bad Parameter
The caller was not registered with the NESL as a consumer of
the given event class.

8008h Bad Command
The service is not available.

See Also DeRegisterEventConsumer

Version 1.04 18

Consumer Notification Procedure
Description Called by the NESL to notify the consumer when an event has

occurred with an event class for which it has registered.

Entry State ES:SI
Pointer to an Event Parameter Block.

Return State AX
Set to a completion code.

ES:SI
Pointer to the Event Parameter Block (EPB) passed into the
notification procedure.

Preserved
DS, BP, SS, SP, DI.

Completion Codes (AX) Request type events
0000h Successful

Request granted.

8005h Fail
Request denied.

All Other types of events

0000h Successful

Remarks When the NESL calls the notification procedure for each
consumer of a particular event class, it passes the consumer a
pointer to the EPB. This block is considered to be read-only,
and the event consumer must not modify it.

The NESL obtains the address of the notification procedure
from the CECB CECB_NotifiProc field that was passed to
RegisterEventConsumer.

See Also EventNotification
RegisterEventConsumer

NESL Specification

19 Version 1.04

Data Definitions
Signatures

NESLSignature

NESLSignature is defined as the ASCIIZ string
‘NESL_EVENTS’

Tables
Configuration Table

The configuration table is defined below.

NESLConfigTable label byte
NESL_Cfg_MajVer dw 1
NESL_Cfg_MinVer dw 0
NESL_Cfg_ModLName dd ?
NESL_Cfg_ModSName dd ?
NESL_Cfg_ModMajVer dw 1
NESL_Cfg_ModMinVer dw 0

The Configuration Table Fields

Field Name Description

NESL_Cfg_MajVer This field contains the major version
number of the configuration table. The
current major version is 1.
This field will change whenever major
changes have been made to the format of
the configuration table or field definitions.
The field will also change whenever the
NESL_CFG_MinVer field exceeds its
maximum value.
Novell controls this field.

NESL_Cfg_MinVer This field contains the minor version
number of the configuration table. The
current minor version is 0.
This field will change whenever minor
changes are made to the format of the
configuration table or field definitions. It
will also be reset to zero whenever the
NESL_CFG_MajVer changes.
The maximum value for this field is 99.
Novell controls this field.

NESL_Cfg_ModLName This field contains a pointer to the NESL’s
long name. The name is defined as the
ASCIIZ string ‘NetWare Event Service
Layer for 16-Bit DOS’.

NESL_Cfg_ModSName This field has a pointer to the NESL’s
short name. The name is defined as the
ASCIIZ string ‘NESL’.

Table 1
The Configuration
Table Fields

Version 1.04 20

The Configuration Table Fields (continued)

Field Name Description

NESL_Cfg_ModMajVer This field contains the major version
number of the NESL. The initial major
version is 1.
This field will change whenever major
changes have been made to the NESL or
whenever the NESL_CFG_ModMinVer
field exceeds its maximum value.
Novell controls this field.

NESL_Cfg_ModMinVer This field contains the minor version
number of the NESL. The current minor
version is 0.
This field will change whenever minor
changes are made to the NESL. It will also
be reset to zero whenever the
NESL_CFG_ModMajVer changes.
The maximum value for this field is 99.
Novell controls this field.

Structures

Producer Event Control Block (PECB)

PECB struc
PECB_MajVer dw 1
PECB_MinVer dw 0
PECB_NextProducer dd 0
PECB_ClassName dd 0
PECB_ConsumerList dd 0
PECB_DataPtr dd 0
PECB_Flags dd 0
PECB_Reserved db 8 dup (0)

PECB ends

NESL Specification

21 Version 1.04

The PECB Fields

Field Name Description

PECB_MajVer This field contains the major version
number of the PECB. The current major
version is 1.
This field will change whenever major
changes have been made to the format of
the configuration table or field definitions.
This field will also change whenever the
PECB_MinVer field exceeds its maximum
value.
Novell controls this field.

PECB_MinVer This field contains the minor version
number of the PECB. The current minor
version is 0.
This field will change whenever minor
changes are made to the format of the
configuration table or field definitions. It
will also be reset to zero whenever the
PECB_MajVer changes.
The maximum value for this field is 99.
Novell controls this field.

PECB_NextProducer This field contains a pointer to the next
Producer Event Control Block in the list.
This field will be a NULL if it is the last
PECB in the list.

PECB_ClassName This field contains a pointer to an ASCIIZ
string which identifies the event class.

PECB_ConsumerList This field contains a pointer to a list of
consumers for the event class. This field
will be NULL if there are no consumers of
the event class.

PECB_DataPtr This field contains a pointer used to pass
in additional information. This field is
generally used during event notification.

Table 2
The PECB Fields

Version 1.04 22

The PECB Fields (continued)

Field Name Description

PECB_Flags bit 0
Set to 0 if consumers are to be called
top\down. Based on the value in the
CECB’s OSILevel field, they are called
from 7 to 1.
Set to 1 if consumers are to be called b
ottom\up. Based on the value in the
CECB’s OSILevel field, consumers are
called from 1 to 7).

bits 1–31
Reserved. Set to zero.

PECB_Reserved Reserved. Set to zero.

Although the event producer provides the memory for the
PECB, the NESL owns this memory until the event producer
deregisters by calling DeRegisterEventProducer. Once the
application registers, the only PECB field it can change is the
PECB_DataPtr field. The application might need to modify this
field when it calls EventNotification. Until it deregisters, the
application must not change any other PECB field.

Consumer Event Control Block (CECB)

CECB Struc
CECB_MajVer dw 1
CECB_MinVer dw 0
CECB_NextConsumer dd 0
CECB_ClassName dd 0
CECB_NotifiProc dd 0
CECB_OSILevel dw 0
CECB_Reserved db 14 dup (0)

CECB ends

NESL Specification

23 Version 1.04

The CECB Fields

Field Name Description

CECB_MajVer This field has the major version number
of the CECB. The current major version is
1.
This field will change whenever major
changes have been made to the format of
the configuration table or field
definitions. The field will also change
whenever the CECB_MinVer field
exceeds its maximum value.
Novell controls this field.

CECB_MinVer This field has the minor version number
of the CECB. The current minor version
is 0.
This field will change whenever minor
changes are made to the format of the
configuration table or field definitions. It
will also be reset to zero whenever the
CECB_MajVer changes.
The maximum value for this field is 99.
Novell controls this field.

CECB_NextConsumer This field contains a pointer to the next
consumer. This field will be a NULL if it
is the last CECB in the list.

CECB_ClassName This field contains a pointer to an ASCIIZ
string which identifies the event class.

CECB_NotifiProc This field contains the address of a
procedure to call when an event occurs.

CECB_OSILevel The application uses this field at
registration time to specify which order
the consumers are to be called in when an
event occurs. This field’s value takes the
form of 0xLX, where L is the number
(1–7) corresponding to the applications
OSI Layer and X is the relative order
with other modules also registered on
that layer. The relative ordering is useful
when several system components on the
same level require a certain processing
order for the event.

CECB_Reserved Reserved. Set to zero.

Although the event consumer provides the memory for the
CECB, the NESL owns this memory until the event consumer
deregisters by calling DeRegisterEventConsumer. Once the

Table 3
The CECB Fields

Version 1.04 24

application registers. and until it deregisters, it must not
modify any CECB field.

Event Parameter Block (EPB)

EPB struc
EPB_MajVer dw 1
EPB_MinVer dw 0
EPB_ClassName dd ?
EPB_EventName dd ?
EPB_ModuleName dd ?
EPB_DataPtr0 dd ?
EPB_DataPtr1 dd ?
EPB_Reserved db 8 dup (0)

EPB ends

The EPB Fields

Field Name Description

EPB_MajVer This field has the major version number of
the EPB. The current major version is 1.
This field will change whenever major
changes have been made to the format of
the configuration table or field definitions.
This field will also change whenever the
EPB_MinVer field exceeds its maximum
value.
Novell controls this field.

EPB_MinVer This field contains the minor version
number of the EPB. The current minor
version is 0.
This field will change whenever minor
changes are made to the format of the
configuration table or field definitions. It
will also be reset to zero whenever the
EPB_MajVer changes.
The maximum value for this field is 99.
Novell controls this field.

EPB_ClassName This field has a pointer to ASCIIZ string
that identifies the event class.

EPB_EventName This field has a pointer to an ASCIIZ
string that identifies the event within the
class.

EPB_ModuleName This field has a pointer to an ASCIIZ
string that identifies the module that
produced the event.

Table 4
The EPB Fields

NESL Specification

25 Version 1.04

The EPB Fields (continued)

Field Name Description

EPB_DataPtr0 This field has a pointer to a block of
information about the event. This field is
event dependent and will be defined by the
event. If the event has no additional
information to pass, this field will be
NULL.

EPB_DataPtr1 This field has a pointer to a block of
information about the event. This field is
event dependent and will be defined by the
event. If the event has no additional
information to pass, this field will be
NULL.

EPB_Reserved Reserved. Set to zero.

The event producer provides the memory for the EPB.

Classes and Events
Defining Classes and Events

Anyone can define an event class as well as the events within
any class by defining unique names for them. These names
must be ASCIIZ strings. The class definition must include a
description of the class and the direction in which the event
consumers will be called: an event consumer can be called
either from the top of the OSI model down or from the bottom
of the OSI model up (See Figure 1).

Events that are added to existing classes must fall within the
definition of that class.

Note Contact Novell Labs to register new event classes and event
names.

Defined Classes and Events
Event classes and specific events within the class are identified
with ASCIIZ strings. We have defined four classes of events
along with some specific events within each class.

We have defined the following list of event classes.

� Service Suspend
� Service Resume
� Service/Status Change
� Suspend Request

These classes and their events are described on the following
pages.

Version 1.04 26

Service Suspend

The Service Suspend event class contains events that suspends
a service. This class is called from the top of the OSI model
down.

Events in the Service Suspend Class

Event Name Description

MLID Cable Disconnect This event indicates that the cable
has been disconnected from a given
NIC. A pointer to the MLID’s
configuration table is passed in the
EPB_DataPtr0 field of the Event
Parameter Block.

MLID Card Removal This event is triggered by the
hardware and indicates that the
PC Card has been removed. A
pointer to the MLID’s
configuration table is passed in the
EPB_DataPtr0 field of the Event
Parameter Block. Even though this
event puts the MLID into
shutdown mode, it does not
generate a shutdown event.

MLID Hardware Failure This event indicates that a serious
hardware failure has occurred with
the NIC. A pointer to the MLID’s
configuration table is passed in the
EPB_DataPtr0 field of the Event
Parameter Block.

MLID Not In Range This wireless event indicates that
there is no access point in range. A
pointer to the MLID’s
configuration table is passed in the
EPB_DataPtr0 field of the Event
Parameter Block.

MLID Shutdown This event is triggered through the
MLID control services and
indicates that the MLID was
shutdown. A pointer to the MLID’s
configuration table is passed in the
EPB_DataPtr0 field of the Event
Parameter Block.

MLID Media Access Denied This event indicates that access to
the physical medium was either
denied or unsuccessful. A pointer
to the MLID’s configuration table
is passed in the Event Parameter
Block EPB_DataPrt0 field.

Table 5
Events in the Service
Suspend Class

NESL Specification

27 Version 1.04

Service Resume

The Service Resume event class contains events that indicate
either the availability of a new service or the restoration of a
previously available service. This class is called from the
bottom of the OSI model up.

Events in the Service Resume Class

Event Name Description

MLID Cable Reconnect This event indicates that the cable
has been reconnected to a given
NIC. A pointer to the MLID’s
configuration table is passed in the
EPB_DataPtr0 field of the Event
Parameter Block.

MLID Card Insertion Complete This event is triggered by the
hardware and indicates that a PC
card has been inserted in a socket
and that the MLID and LAN
adapter are fully functional. A
pointer to the MLID’s
configuration table is passed in the
EPB_DataPtr0 field of the Event
Parameter Block. This event does
not trigger a reset event.

MLID In Range This wireless event indicates that
an access point is in range again. A
pointer to the MLID’s
configuration table is passed in the
EPB_DataPtr0 field of the Event
Parameter Block.

MLID Reset This event is triggered by the
MLID control services and
indicates that an MLID was just
reset. A pointer to the MLID’s
configuration table is passed in the
EPB_DataPtr0 field of the Event
Parameter Block.

Table 6
Events in the Service
Resume Class

Version 1.04 28

Service/Status Change

The Service/Status event class contains events that signal a
change in either the status or the current level of service. This
class is called from the top of the OSI model down.

Events in the Service/Status Class

Event Name Description

MLID Access Point Change This event indicates that a station has
moved from one access point’s range to
another and that the new access point
will start serving the station. A pointer
to the MLID’s configuration table is
passed in the EPB_DataPtr0 field of
the Event Parameter Block.

MLID Speed Change This event indicates that there has
been a change in the communication
speed. For example, in the wireless
environment this could be caused by
the radio link due to a change in the
quality of the signal.
A pointer to the MLID’s configuration
table is passed in the EPB_DataPtr0
field of the Event Parameter Block.

Table 7
Events in the Service/
Status Class

NESL Specification

29 Version 1.04

Suspend Request

The Suspend Request class contains events that request
permission to suspend the services. This class is called from the
bottom of the OSI model up.

Currently no events have been defined for this class.

�

