
DRAFT Version 1.2 - Jan. 2, 1998

The OpenGL
R

Graphics System:

A Speci�cation
(Version 1.2b2 { DRAFT (January 2, 1998))

Mark Segal

Kurt Akeley

Editor (version 1.2): Jon Leech
Editor (version 1.1): Chris Frazier

DRAFT Version 1.2 - Jan. 2, 1998

Copyright c 1992-1998 Silicon Graphics, Inc.

This document contains unpublished information of
Silicon Graphics, Inc.

This document is protected by copyright, and contains information propri-
etary to Silicon Graphics, Inc. Any copying, adaptation, distribution, public

performance, or public display of this document without the express written
consent of Silicon Graphics, Inc. is strictly prohibited. The receipt or pos-

session of this document does not convey any rights to reproduce, disclose,
or distribute its contents, or to manufacture, use, or sell anything that it

may describe, in whole or in part.

U.S. Government Restricted Rights Legend

Use, duplication, or disclosure by the Government is subject to restrictions

set forth in FAR 52.227.19(c)(2) or subparagraph (c)(1)(ii) of the Rights
in Technical Data and Computer Software clause at DFARS 252.227-7013

and/or in similar or successor clauses in the FAR or the DOD or NASA FAR
Supplement. Unpublished rights reserved under the copyright laws of the
United States. Contractor/manufacturer is Silicon Graphics, Inc., 2011 N.

Shoreline Blvd., Mountain View, CA 94039-7311.

OpenGL is a trademark of Silicon Graphics, Inc.

DRAFT Version 1.2 - Jan. 2, 1998

Contents

1 Introduction 1

1.1 Comments on the OpenGL 1.2 Draft Speci�cation : : : : : : 1
1.2 What is the OpenGL Graphics System? : : : : : : : : : : : : 2

1.3 Programmer's View of OpenGL : : : : : : : : : : : : : : : : : 2
1.4 Implementor's View of OpenGL : : : : : : : : : : : : : : : : : 2

1.5 Our View : 3

2 OpenGL Operation 4

2.1 OpenGL Fundamentals : 4

2.2 GL State : 6
2.3 GL Command Syntax : 7
2.4 Basic GL Operation : 9

2.5 GL Errors : 11
2.6 Begin/End Paradigm : 12

2.6.1 Begin and End Objects : : : : : : : : : : : : : : : : : 15
2.6.2 Polygon Edges : 18

2.6.3 GL Commands within Begin/End : : : : : : : : : : : 19
2.7 Vertex Speci�cation : 19

2.8 Vertex Arrays : 21
2.9 Rectangles : 28

2.10 Coordinate Transformations : : : : : : : : : : : : : : : : : : : 28
2.10.1 Controlling the Viewport : : : : : : : : : : : : : : : : 30
2.10.2 Matrices : 31

2.10.3 Normal Transformation : : : : : : : : : : : : : : : : : 34
2.10.4 Generating Texture Coordinates : : : : : : : : : : : : 36

2.11 Clipping : 38
2.12 Current Raster Position : 40

2.13 Colors and Coloring : 41
2.13.1 Lighting : 44

i

DRAFT Version 1.2 - Jan. 2, 1998

CONTENTS ii

2.13.2 Lighting Parameter Speci�cation : : : : : : : : : : : : 48

2.13.3 ColorMaterial : 51
2.13.4 Lighting State : 52

2.13.5 Color Index Lighting : : : : : : : : : : : : : : : : : : : 52
2.13.6 Clamping or Masking : : : : : : : : : : : : : : : : : : 53

2.13.7 Flatshading : 54
2.13.8 Color and Texture Coordinate Clipping : : : : : : : : 55

2.13.9 Final Color Processing : : : : : : : : : : : : : : : : : : 55

3 Rasterization 57

3.1 Invariance : 59
3.2 Antialiasing : 59

3.3 Points : 60
3.3.1 Point Rasterization State : : : : : : : : : : : : : : : : 62

3.4 Line Segments : 62
3.4.1 Basic Line Segment Rasterization : : : : : : : : : : : : 64

3.4.2 Other Line Segment Features : : : : : : : : : : : : : : 66
3.4.3 Line Rasterization State : : : : : : : : : : : : : : : : : 69

3.5 Polygons : 70
3.5.1 Basic Polygon Rasterization : : : : : : : : : : : : : : : 70

3.5.2 Stippling : 72
3.5.3 Antialiasing : 73
3.5.4 Options Controlling Polygon Rasterization : : : : : : 73

3.5.5 Depth O�set : 74
3.5.6 Polygon Rasterization State : : : : : : : : : : : : : : : 75

3.6 Pixel Rectangles : 75
3.6.1 Pixel Storage Modes : : : : : : : : : : : : : : : : : : : 76

3.6.2 The Imaging Subset : : : : : : : : : : : : : : : : : : : 76
3.6.3 Pixel Transfer Modes : : : : : : : : : : : : : : : : : : 78

3.6.4 Rasterization of Pixel Rectangles : : : : : : : : : : : : 89
3.6.5 Pixel Transfer Operations : : : : : : : : : : : : : : : : 100

3.7 Bitmaps : 111
3.8 Texturing : 112

3.8.1 Texture Image Speci�cation : : : : : : : : : : : : : : : 113

3.8.2 Alternate Texture Image Speci�cation Commands : : 119
3.8.3 Texture Parameters : : : : : : : : : : : : : : : : : : : 124

3.8.4 Texture Wrap Modes : : : : : : : : : : : : : : : : : : : 125
3.8.5 Texture Mini�cation : : : : : : : : : : : : : : : : : : : 126

3.8.6 Texture Magni�cation : : : : : : : : : : : : : : : : : : 132
3.8.7 Texture State and Proxy State : : : : : : : : : : : : : 132

DRAFT Version 1.2 - Jan. 2, 1998

CONTENTS iii

3.8.8 Texture Objects : 133

3.8.9 Texture Environments and Texture Functions : : : : : 136
3.8.10 Texture Application : : : : : : : : : : : : : : : : : : : 136

3.9 Color Sum : 139
3.10 Fog : 139

3.11 Antialiasing Application : 141

4 Per-Fragment Operations and the Framebu�er 142

4.1 Per-Fragment Operations : 143

4.1.1 Pixel Ownership Test : : : : : : : : : : : : : : : : : : 143
4.1.2 Scissor test : 144
4.1.3 Alpha test : 144

4.1.4 Stencil test : 145
4.1.5 Depth bu�er test : 146

4.1.6 Blending : 147
4.1.7 Dithering : 150

4.1.8 Logical Operation : 151
4.2 Whole Framebu�er Operations : : : : : : : : : : : : : : : : : 151

4.2.1 Selecting a Bu�er for Writing : : : : : : : : : : : : : : 152
4.2.2 Fine Control of Bu�er Updates : : : : : : : : : : : : : 153

4.2.3 Clearing the Bu�ers : : : : : : : : : : : : : : : : : : : 154
4.2.4 The Accumulation Bu�er : : : : : : : : : : : : : : : : 156

4.3 Drawing, Reading, and Copying Pixels : : : : : : : : : : : : : 157

4.3.1 Writing to the Stencil Bu�er : : : : : : : : : : : : : : 157
4.3.2 Reading Pixels : 157

4.3.3 Copying Pixels : 163
4.3.4 Pixel Draw/Read state : : : : : : : : : : : : : : : : : : 163

5 Special Functions 165

5.1 Evaluators : 165
5.2 Selection : 171

5.3 Feedback : 173
5.4 Display Lists : 176
5.5 Flush and Finish : 180

5.6 Hints : 180

6 State and State Requests 182

6.1 Querying GL State : 182

6.1.1 Simple Queries : 182
6.1.2 Data Conversions : 183

DRAFT Version 1.2 - Jan. 2, 1998

CONTENTS iv

6.1.3 Enumerated Queries : : : : : : : : : : : : : : : : : : : 183

6.1.4 Texture Queries : 185
6.1.5 Stipple Query : 186

6.1.6 Color Matrix Query : : : : : : : : : : : : : : : : : : : 186
6.1.7 Color Table Query : 187

6.1.8 Convolution Query : 187
6.1.9 Histogram Query : 188

6.1.10 Minmax Query : 189
6.1.11 Pointer and String Queries : : : : : : : : : : : : : : : 190

6.1.12 Saving and Restoring State : : : : : : : : : : : : : : : 191
6.2 State Tables : 193

6.2.1 Imaging Subset State - To Be Completed : : : : : : : 193

A Invariance 219

A.1 Repeatability : 219
A.2 Multi-pass Algorithms : 220

A.3 Invariance Rules : 220
A.4 What All This Means : 222

B Corollaries 223

C Version 1.1 226

C.1 Vertex Array : 226

C.2 Polygon O�set : 227
C.3 Logical Operation : 227

C.4 Texture Image Formats : 227
C.5 Texture Replace Environment : : : : : : : : : : : : : : : : : : 227

C.6 Texture Proxies : 228
C.7 Copy Texture and Subtexture : : : : : : : : : : : : : : : : : : 228

C.8 Texture Objects : 228
C.9 Other Changes : 228

C.10 Acknowledgements : 229

D Version 1.2 231

D.1 Three-Dimensional Texturing : : : : : : : : : : : : : : : : : : 231
D.2 BGRA Pixel Formats : 231

D.3 Packed Pixel Formats : 231
D.4 Normal Rescaling : 232

D.5 Separate Specular Color : 232
D.6 Texture Coordinate Edge Clamping : : : : : : : : : : : : : : 232

DRAFT Version 1.2 - Jan. 2, 1998

CONTENTS v

D.7 Texture Level of Detail Control : : : : : : : : : : : : : : : : : 233

D.8 Vertex Array Draw Element Range : : : : : : : : : : : : : : : 233
D.9 Imaging Subset : 233

D.9.1 Color Tables : 233
D.9.2 Convolution : 234

D.9.3 Color Matrix : 234
D.9.4 Pixel Pipeline Statistics : : : : : : : : : : : : : : : : : 235

D.9.5 Constant Blend Color : : : : : : : : : : : : : : : : : : 235
D.9.6 New Blending Equations : : : : : : : : : : : : : : : : : 235

D.10 Acknowledgements : 235

Index of OpenGL Commands 236

DRAFT Version 1.2 - Jan. 2, 1998

List of Figures

2.1 Block diagram of the GL. : 9
2.2 Creation of a processed vertex from a transformed vertex and

current values. : 13
2.3 Primitive assembly and processing. : : : : : : : : : : : : : : : 13

2.4 Triangle strips, fans, and independent triangles. : : : : : : : : 16
2.5 Quadrilateral strips and independent quadrilaterals. : : : : : 17

2.6 Vertex transformation sequence. : : : : : : : : : : : : : : : : 28
2.7 Current raster position. : 41

2.8 Processing of colors. : 41
2.9 ColorMaterial operation. : 51

3.1 Rasterization. : 57

3.2 Rasterization of non-antialiased wide points. : : : : : : : : : : 61
3.3 Rasterization of antialiased wide points. : : : : : : : : : : : : 61
3.4 Visualization of Bresenham's algorithm. : : : : : : : : : : : : 64

3.5 Rasterization of non-antialiased wide lines. : : : : : : : : : : 67
3.6 The region used in rasterizing an antialiased line segment. : : 69

3.7 Operation of DrawPixels. : : : : : : : : : : : : : : : : : : : 89
3.8 Selecting a subimage from an image : : : : : : : : : : : : : : 93

3.9 A bitmap and its associated parameters. : : : : : : : : : : : : 111
3.10 A texture image and the coordinates used to access it. : : : : 119

4.1 Per-fragment operations. : 143

4.2 Operation of ReadPixels. : : : : : : : : : : : : : : : : : : : 157
4.3 Operation of CopyPixels. : : : : : : : : : : : : : : : : : : : 163

5.1 Map Evaluation. : 167
5.2 Feedback syntax. : 177

vi

DRAFT Version 1.2 - Jan. 2, 1998

List of Tables

2.1 GL command su�xes : 8
2.2 GL data types : 10

2.3 Summary of GL errors : 13
2.4 Vertex array sizes (values per vertex) and data types : : : : : 22

2.5 Variables that direct the execution of InterleavedArrays. : 26
2.6 Component conversions : 44

2.7 Summary of lighting parameters. : : : : : : : : : : : : : : : : 46
2.8 Correspondence of lighting parameter symbols to names. : : : 50

2.9 Polygon atshading color selection. : : : : : : : : : : : : : : : 54

3.1 PixelStore parameters pertaining to one or more of Draw-
Pixels, TexImage1D, TexImage2D, and TexImage3D. : 76

3.2 PixelTransfer parameters. : : : : : : : : : : : : : : : : : : : 78
3.3 PixelMap parameters. : 79
3.4 Color table names. : 80

3.5 DrawPixels and ReadPixels types : : : : : : : : : : : : : : 91
3.6 DrawPixels and ReadPixels formats. : : : : : : : : : : : : 92

3.7 Swap Bytes Bit ordering. : 92
3.8 Packed pixel formats. : 94

3.9 UNSIGNED BYTE formats. Bit numbers are indicated for each
component. : 95

3.10 UNSIGNED SHORT formats : 96
3.11 UNSIGNED INT formats : 97

3.12 Packed pixel �eld assignments : : : : : : : : : : : : : : : : : : 98
3.13 Color table lookup. : 103
3.14 Computation of �ltered color components. : : : : : : : : : : : 104

3.15 Conversion from RGBA pixel components to internal texture,
table, or �lter components. : : : : : : : : : : : : : : : : : : : 115

3.16 Correspondence of sized internal formats to base internal for-
mats. : 116

vii

DRAFT Version 1.2 - Jan. 2, 1998

LIST OF TABLES viii

3.17 Texture parameters and their values. : : : : : : : : : : : : : : 125

3.18 Replace and modulate texture functions. : : : : : : : : : : : : 137
3.19 Decal and blend texture functions. : : : : : : : : : : : : : : : 138

4.1 Values controlling the source blending function and the source

blending values they compute. f = min(As; 1�Ad). : : : : : 149
4.2 Values controlling the destination blending function and the

destination blending values they compute. : : : : : : : : : : 149
4.3 Arguments to LogicOp and their corresponding operations. : 152

4.4 Arguments to DrawBu�er and the bu�ers that they indicate.153
4.5 PixelStore parameters pertaining toReadPixels,GetTex-

Image1D,GetTexImage2D,GetTexImage3D,GetCol-

orTable,GetConvolutionFilter,GetSeparableFilter, GetH-
istogram, and GetMinmax. : : : : : : : : : : : : : : : : : : 159

4.6 ReadPixels index masks. : 161
4.7 ReadPixels GL Data Types and Reversed component con-

version formulas. : 162

5.1 Values speci�ed by the target to Map1. : : : : : : : : : : : : 166
5.2 Correspondence of feedback type to number of values per vertex.175

6.1 Texture, table, and �lter return values. : : : : : : : : : : : : : 186

6.2 Attribute groups : 192
6.3 State variable types : 194

6.4 GL Internal begin-end state variables (inaccessible) : : : : : : 195
6.5 Current Values and Associated Data : : : : : : : : : : : : : : 196
6.6 Vertex Array Data : 197

6.7 Transformation state : 198
6.8 Coloring : 199

6.9 Lighting (see also Table 2.7 for defaults) : : : : : : : : : : : : 200
6.10 Lighting (cont.) : 201

6.11 Rasterization : 202
6.12 Texture Objects : 203

6.13 Texture Objects (cont.) : 204
6.14 Texture Environment and Generation : : : : : : : : : : : : : 205

6.15 Pixel Operations : 206
6.16 Framebu�er Control : 207
6.17 Pixels : 208

6.18 Pixels (cont.) : 209
6.19 Pixels (cont.) : 210

DRAFT Version 1.2 - Jan. 2, 1998

LIST OF TABLES ix

6.20 Pixels (cont.) : 211

6.21 Pixels (cont.) : 212
6.22 Evaluators (GetMap takes a map name) : : : : : : : : : : : 213

6.23 Hints : 214
6.24 Implementation Dependent Values : : : : : : : : : : : : : : : 215

6.25 More Implementation Dependent Values : : : : : : : : : : : : 216
6.26 Implementation Dependent Pixel Depths : : : : : : : : : : : : 217

6.27 Miscellaneous : 218

DRAFT Version 1.2 - Jan. 2, 1998

Chapter 1

Introduction

This document describes the OpenGL graphics system: what it is, how it
acts, and what is required to implement it. We assume that the reader has

at least a rudimentary understanding of computer graphics. This means
familiarity with the essentials of computer graphics algorithms as well as

familiarity with basic graphics hardware and associated terms.

1.1 Comments on the OpenGL 1.2 Draft Speci�-

cation

This document is a draft of the OpenGL 1.2 speci�cation. E�ort has been
made to mark changes relative to the OpenGL 1.1 speci�cation. New or

modi�ed text is usually indicated by change bars in the margin. New or
modi�ed table entries are usually indicated by the symbol |. However, this
is only a rough guide. Some changes remain unmarked by bars, and some
bars are present in places where no changes have been made since the 1.1

speci�cation - particularly imbedded �gures.
Changes in the �rst draft (November, 1997) of the spec are indicated

by light gray change bars such as seen in the previous paragraph. Changes
between the �rst and second draft (January, 1998) are indicated by black

change bars. This draft is released for public comment; it will become
obsolete in February, 1998. Please direct comments by email to

oglspec@oddhack.engr.sgi.com

Include the version number (1.2b2) as well as the section and page number
your comment applies to.

1

DRAFT Version 1.2 - Jan. 2, 1998

CHAPTER 1. INTRODUCTION 2

1.2 What is the OpenGL Graphics System?

OpenGL (for \Open Graphics Library") is a software interface to graphics
hardware. The interface consists of a set of several hundred procedures and

functions that allow a programmer to specify the objects and operations
involved in producing high-quality graphical images, speci�cally color images

of three-dimensional objects.
Most of OpenGL requires that the graphics hardware contain a frame-

bu�er. Many OpenGL calls pertain to drawing objects such as points, lines,
polygons, and bitmaps, but the way that some of this drawing occurs (such

as when antialiasing or texturing is enabled) relies on the existence of a
framebu�er. Further, some of OpenGL is speci�cally concerned with frame-
bu�er manipulation.

1.3 Programmer's View of OpenGL

To the programmer, OpenGL is a set of commands that allow the speci�-

cation of geometric objects in two or three dimensions, together with com-
mands that control how these objects are rendered into the framebu�er.
For the most part, OpenGL provides an immediate-mode interface, mean-

ing that specifying an object causes it to be drawn.
A typical program that uses OpenGL begins with calls to open a window

into the framebu�er into which the program will draw. Then, calls are made
to allocate a GL context and associate it with the window. Once a GL con-

text is allocated, the programmer is free to issue OpenGL commands. Some
calls are used to draw simple geometric objects (i.e. points, line segments,

and polygons), while others a�ect the rendering of these primitives includ-
ing how they are lit or colored and how they are mapped from the user's

two- or three-dimensional model space to the two-dimensional screen. There
are also calls to e�ect direct control of the framebu�er, such as reading and
writing pixels.

1.4 Implementor's View of OpenGL

To the implementor, OpenGL is a set of commands that a�ect the opera-

tion of graphics hardware. If the hardware consists only of an addressable
framebu�er, then OpenGL must be implemented almost entirely on the host

CPU. More typically, the graphics hardware may comprise varying degrees
of graphics acceleration, from a raster subsystem capable of rendering two-

DRAFT Version 1.2 - Jan. 2, 1998

CHAPTER 1. INTRODUCTION 3

dimensional lines and polygons to sophisticated oating-point processors

capable of transforming and computing on geometric data. The OpenGL
implementor's task is to provide the CPU software interface while dividing

the work for each OpenGL command between the CPU and the graphics
hardware. This division must be tailored to the available graphics hardware

to obtain optimum performance in carrying out OpenGL calls.
OpenGL maintains a considerable amount of state information. This

state controls how objects are drawn into the framebu�er. Some of this
state is directly available to the user: he or she can make calls to obtain its

value. Some of it, however, is visible only by the e�ect it has on what is
drawn. One of the main goals of this speci�cation is to make OpenGL state
information explicit, to elucidate how it changes, and to indicate what its

e�ects are.

1.5 Our View

We view OpenGL as a state machine that controls a set of speci�c draw-
ing operations. This model should engender a speci�cation that satis�es
the needs of both programmers and implementors. It does not, however,

necessarily provide a model for implementation. An implementation must
produce results conforming to those produced by the speci�ed methods, but

there may be ways to carry out a particular computation that are more
e�cient than the one speci�ed.

DRAFT Version 1.2 - Jan. 2, 1998

Chapter 2

OpenGL Operation

2.1 OpenGL Fundamentals

OpenGL (henceforth, the \GL") is concerned only with rendering into a
framebu�er (and reading values stored in that framebu�er). There is no
support for other peripherals sometimes associated with graphics hardware,

such as mice and keyboards. Programmers must rely on other mechanisms
to obtain user input.

The GL draws primitives subject to a number of selectable modes. Each
primitive is a point, line segment, polygon, or pixel rectangle. Each mode

may be changed independently; the setting of one does not a�ect the settings
of others (although many modes may interact to determine what eventually

ends up in the framebu�er). Modes are set, primitives speci�ed, and other
GL operations described by sending commands in the form of function or

procedure calls.
Primitives are de�ned by a group of one or more vertices. A vertex

de�nes a point, an endpoint of an edge, or a corner of a polygon where

two edges meet. Data (consisting of positional coordinates, colors, normals,
and texture coordinates) are associated with a vertex and each vertex is

processed independently, in order, and in the same way. The only exception
to this rule is if the group of vertices must be clipped so that the indicated

primitive �ts within a speci�ed region; in this case vertex data may be
modi�ed and new vertices created. The type of clipping depends on which

primitive the group of vertices represents.
Commands are always processed in the order in which they are received,

although there may be an indeterminate delay before the e�ects of a com-
mand are realized. This means, for example, that one primitive must be

4

DRAFT Version 1.2 - Jan. 2, 1998

CHAPTER 2. OPENGL OPERATION 5

drawn completely before any subsequent one can a�ect the framebu�er. It

also means that queries and pixel read operations return state consistent
with complete execution of all previously invoked GL commands. In gen-

eral, the e�ects of a GL command on either GL modes or the framebu�er
must be complete before any subsequent command can have any such e�ects.

In the GL, data binding occurs on call. This means that data passed
to a command are interpreted when that command is received. Even if the

command requires a pointer to data, those data are interpreted when the
call is made, and any subsequent changes to the data have no e�ect on the

GL (unless the same pointer is used in a subsequent command).
The GL provides direct control over the fundamental operations of 3D

and 2D graphics. This includes speci�cation of such parameters as trans-

formation matrices, lighting equation coe�cients, antialiasing methods, and
pixel update operators. It does not provide a means for describing or mod-

eling complex geometric objects. Another way to describe this situation is
to say that the GL provides mechanisms to describe how complex geometric

objects are to be rendered rather than mechanisms to describe the complex
objects themselves.

The model for interpretation of GL commands is client-server. That is, a
program (the client) issues commands, and these commands are interpreted

and processed by the GL (the server). The server may or may not operate
on the same computer as the client. In this sense, the GL is \network-
transparent." A server may maintain a number of GL contexts, each of which

is an encapsulation of current GL state. A client may choose to connect to
any one of these contexts. Issuing GL commands when the program is not

connected to a context results in unde�ned behavior.
The e�ects of GL commands on the framebu�er are ultimately controlled

by the window system that allocates framebu�er resources. It is the window
system that determines which portions of the framebu�er the GL may access

at any given time and that communicates to the GL how those portions
are structured. Therefore, there are no GL commands to con�gure the

framebu�er or initialize the GL. Similarly, display of framebu�er contents
on a CRT monitor (including the transformation of individual framebu�er
values by such techniques as gamma correction) is not addressed by the GL.

Framebu�er con�guration occurs outside of the GL in conjunction with the
window system; the initialization of a GL context occurs when the window

system allocates a window for GL rendering.
The GL is designed to be run on a range of graphics platforms with vary-

ing graphics capabilities and performance. To accommodate this variety, we
specify ideal behavior instead of actual behavior for certain GL operations.

DRAFT Version 1.2 - Jan. 2, 1998

CHAPTER 2. OPENGL OPERATION 6

In cases where deviation from the ideal is allowed, we also specify the rules

that an implementation must obey if it is to approximate the ideal behavior
usefully. This allowed variation in GL behavior implies that two distinct

GL implementations may not agree pixel for pixel when presented with the
same input even when run on identical framebu�er con�gurations.

Finally, command names, constants, and types are pre�xed in the GL
(by gl, GL , and GL, respectively in C) to reduce name clashes with other

packages. The pre�xes are omitted in this document for clarity.

Floating-Point Computation

The GL must perform a number of oating-point operations during the

course of its operation. We do not specify how oating-point numbers are
to be represented or how operations on them are to be performed. We require

simply that numbers' oating-point parts contain enough bits and that their
exponent �elds are large enough so that individual results of oating-point

operations are accurate to about 1 part in 105. The maximum representable
magnitude of a oating-point number used to represent positional or normal

coordinates must be at least 232; the maximum representable magnitude for
colors or texture coordinates must be at least 210. The maximum repre-

sentable magnitude for all other oating-point values must be at least 232.
x � 0 = 0 � x = 0 for any non-in�nite and non-NaN x. 1 � x = x � 1 = x.
x+0 = 0+x = x. 00 = 1. (Occasionally further requirements will be speci-

�ed.) Most single-precision oating-point formats meet these requirements.
Any representable oating-point value is legal as input to a GL command

that requires oating-point data. The result of providing a value that is not
a oating-point number to such a command is unspeci�ed, but must not

lead to GL interruption or termination. In IEEE arithmetic, for example,
providing a negative zero or a denormalized number to a GL command yields

predictable results, while providing a NaN or an in�nity yields unspeci�ed
results.

Some calculations require division. In such cases (including implied di-
visions required by vector normalizations), a division by zero produces an
unspeci�ed result but must not lead to GL interruption or termination.

2.2 GL State

The GL maintains considerable state. This document enumerates each state

variable and describes how each variable can be changed. For purposes
of discussion, state variables are categorized somewhat arbitrarily by their

DRAFT Version 1.2 - Jan. 2, 1998

CHAPTER 2. OPENGL OPERATION 7

function. Although we describe the operations that the GL performs on the

framebu�er, the framebu�er is not a part of GL state.
We distinguish two types of state. The �rst type of state, called GL

server state, resides in the GL server. The majority of GL state falls into
this category. The second type of state, called GL client state, resides in the

GL client. Unless otherwise speci�ed, all state referred to in this document
is GL server state; GL client state is speci�cally identi�ed. Each instance of

a GL context implies one complete set of GL server state; each connection
from a client to a server implies a set of both GL client state and GL server

state.
While an implementation of the GL may be hardware dependent, this

discussion is independent of the speci�c hardware on which a GL is imple-

mented. We are therefore concerned with the state of graphics hardware
only when it corresponds precisely to GL state.

2.3 GL Command Syntax

GL commands are functions or procedures. Various groups of commands

perform the same operation but di�er in how arguments are supplied to
them. To conveniently accommodate this variation, we adopt a notation for

describing commands and their arguments.
GL commands are formed from a name followed, depending on the par-

ticular command, by up to 4 characters. The �rst character indicates the
number of values of the indicated type that must be presented to the com-

mand. The second character or character pair indicates the speci�c type of
the arguments: 8-bit integer, 16-bit integer, 32-bit integer, single-precision
oating-point, or double-precision oating-point. The �nal character, if

present, is v, indicating that the command takes a pointer to an array (a
vector) of values rather than a series of individual arguments. Two speci�c

examples come from the Vertex command:

void Vertex3f(float x, float y, float z) ;

and

void Vertex2sv(short v[2]) ;

These examples show the ANSI C declarations for these commands. In
general, a command declaration has the form1

1The declarations shown in this document apply to ANSI C. Languages such as C++

DRAFT Version 1.2 - Jan. 2, 1998

CHAPTER 2. OPENGL OPERATION 8

Letter Corresponding GL Type

b byte

s short

i int

f float

d double

ub ubyte

us ushort

ui uint

Table 2.1: Correspondence of command su�x letters to GL argument types.
Refer to Table 2.2 for de�nitions of the GL types.

rtype Namef�1234gf� b s i f d ub us uigf�vg
([args ,] T arg1 , : : : , T argN [, args]);

rtype is the return type of the function. The braces (fg) enclose a series

of characters (or character pairs) of which one is selected. � indicates no
character. The arguments enclosed in brackets ([args ,] and [, args]) may
or may not be present. The N arguments arg1 through argN have type T,

which corresponds to one of the type letters or letter pairs as indicated in
Table 2.1 (if there are no letters, then the arguments' type is given explic-

itly). If the �nal character is not v, then N is given by the digit 1, 2, 3, or
4 (if there is no digit, then the number of arguments is �xed). If the �nal

character is v, then only arg1 is present and it is an array of N values of
the indicated type. Finally, we indicate an unsigned type by the shorthand

of prepending a u to the beginning of the type name (so that, for instance,
unsigned char is abbreviated uchar).

For example,

void Normal3ffdg(T arg) ;

indicates the two declarations

void Normal3f(float arg1, float arg2, float arg3) ;

void Normal3d(double arg1, double arg2, double arg3) ;

while

and Ada that allow passing of argument type information admit simpler declarations and
fewer entry points.

DRAFT Version 1.2 - Jan. 2, 1998

CHAPTER 2. OPENGL OPERATION 9

void Normal3ffdgv(T arg) ;

means the two declarations

void Normal3fv(float arg[3]) ;
void Normal3dv(double arg[3]) ;

Arguments whose type is �xed (i.e. not indicated by a su�x on the
command) are of one of 14 types (or pointers to one of these). These types

are summarized in Table 2.2.

2.4 Basic GL Operation

Figure 2.1 shows a schematic diagram of the GL. Commands enter the GL

on the left. Some commands specify geometric objects to be drawn while
others control how the objects are handled by the various stages. Most

commands may be accumulated in a display list for processing by the GL at
a later time. Otherwise, commands are e�ectively sent through a processing

pipeline.
The �rst stage provides an e�cient means for approximating curve and

surface geometry by evaluating polynomial functions of input values. The

next stage operates on geometric primitives described by vertices: points,
line segments, and polygons. In this stage vertices are transformed and lit,

and primitives are clipped to a viewing volume in preparation for the next
stage, rasterization. The rasterizer produces a series of framebu�er addresses

and values using a two-dimensional description of a point, line segment, or
polygon. Each fragment so produced is fed to the next stage that performs

operations on individual fragments before they �nally alter the framebu�er.
These operations include conditional updates into the framebu�er based

on incoming and previously stored depth values (to e�ect depth bu�ering),
blending of incoming fragment colors with stored colors, as well as masking
and other logical operations on fragment values.

Finally, there is a way to bypass the vertex processing portion of the
pipeline to send a block of fragments directly to the individual fragment

operations, eventually causing a block of pixels to be written to the frame-
bu�er; values may also be read back from the framebu�er or copied from

one portion of the framebu�er to another. These transfers may include some
type of decoding or encoding.

This ordering is meant only as a tool for describing the GL, not as a strict
rule of how the GL is implemented, and we present it only as a means to

DRAFT Version 1.2 - Jan. 2, 1998

CHAPTER 2. OPENGL OPERATION 10

GL Type Minimum Number of Bits Description

boolean 1 Boolean

byte 8 signed 2's complement binary
integer

ubyte 8 unsigned binary integer

short 16 signed 2's complement binary

integer

ushort 16 unsigned binary integer

int 32 signed 2's complement binary
integer

uint 32 unsigned binary integer

sizei 32 Non-negative binary integer size

enum 32 Enumerated binary integer value

bitfield 32 Bit �eld

float 32 Floating-point value

clampf 32 Floating-point value clamped to

[0; 1]

double 64 Floating-point value

clampd 64 Floating-point value clamped to
[0; 1]

Table 2.2: GL data types. GL types are not C types. Thus, for example,

GL type int is referred to as GLint outside this document, and is not
necessarily equivalent to the C type int. An implementation may use more
bits than the number indicated in the table to represent a GL type. Correct

interpretation of integer values outside the minimum range is not required,
however.

DRAFT Version 1.2 - Jan. 2, 1998

CHAPTER 2. OPENGL OPERATION 11

Display
 List

Evaluator

Per−Vertex
Operations Rasteriz−

ation

Per−
Fragment
Operations

Framebuffer

Pixel
Operations

Primitive
Assembly

Texture
Memory

Figure 2.1. Block diagram of the GL.

organize the various operations of the GL. Objects such as curved surfaces,

for instance, may be transformed before they are converted to polygons.

2.5 GL Errors

The GL detects only a subset of those conditions that could be considered

errors. This is because in many cases error checking would adversely impact
the performance of an error-free program.

The command

enum GetError(void) ;

is used to obtain error information. Each detectable error is assigned a

numeric code. When an error is detected, a ag is set and the code is
recorded. Further errors, if they occur, do not a�ect this recorded code.

When GetError is called, the code is returned and the ag is cleared,
so that a further error will again record its code. If a call to GetError

returns NO ERROR, then there has been no detectable error since the last call
to GetError (or since the GL was initialized).

To allow for distributed implementations, there may be several ag-

code pairs. In this case, after a call to GetError returns a value other
than NO ERROR each subsequent call returns the non-zero code of a distinct

ag-code pair (in unspeci�ed order), until all non-NO ERROR codes have been

DRAFT Version 1.2 - Jan. 2, 1998

CHAPTER 2. OPENGL OPERATION 12

returned. When there are no more non-NO ERROR error codes, all ags are

reset. This scheme requires some positive number of pairs of a ag bit and
an integer. The initial state of all ags is cleared and the initial value of all

codes is NO ERROR.
Table 2.3 summarizes GL errors. Currently, when an error ag is set,

results of GL operation are unde�ned only if OUT OF MEMORY has occurred.
In other cases, the command generating the error is ignored so that it has

no e�ect on GL state or framebu�er contents. If the generating command
returns a value, it returns zero. If the generating command modi�es values

through a pointer argument, no change is made to these values. These error
semantics apply only to GL errors, not to system errors such as memory
access errors. This behavior is the current behavior; the action of the GL in

the presence of errors is subject to change.
Three error generation conditions are implicit in the description of every

GL command. First, if a command that requires an enumerated value is
passed a symbolic constant that is not one of those speci�ed as allowable for

that command, the error INVALID ENUM results. This is the case even if the
argument is a pointer to a symbolic constant if that value is not allowable

for the given command. Second, if a negative number is provided where an
argument of type sizei is speci�ed, the error INVALID VALUE results. Finally,

if memory is exhausted as a side e�ect of the execution of a command, the
error OUT OF MEMORY may be generated. Otherwise errors are generated only
for conditions that are explicitly described in this speci�cation.

2.6 Begin/End Paradigm

In the GL, most geometric objects are drawn by enclosing a series of coordi-

nate sets that specify vertices and optionally normals, texture coordinates,
and colors between Begin/End pairs. There are ten geometric objects that
are drawn this way: points, line segments, line segment loops, separated

line segments, polygons, triangle strips, triangle fans, separated triangles,
quadrilateral strips, and separated quadrilaterals.

Each vertex is speci�ed with two, three, or four coordinates. In addi-
tion, a current normal, current texture coordinates, and current color may

be used in processing each vertex. Normals are used by the GL in light-
ing calculations; the current normal is a three-dimensional vector that may

be set by sending three coordinates that specify it. Texture coordinates
determine how a texture image is mapped onto a primitive.

Primary and secondary colors are associated with each vertex (see sec-

DRAFT Version 1.2 - Jan. 2, 1998

CHAPTER 2. OPENGL OPERATION 13

Error Description O�ending com-
mand ignored?

INVALID ENUM enum argument out of range Yes

INVALID VALUE Numeric argument out of
range

Yes

INVALID OPERATION Operation illegal in current
state

Yes

STACK OVERFLOW Command would cause a stack

overow

Yes

STACK UNDERFLOW Command would cause a stack
underow

Yes

OUT OF MEMORY Not enough memory left to ex-

ecute command

Unknown

|TABLE TOO LARGE The speci�ed table is too large Yes

Table 2.3: Summary of GL errors

tion 3.9). These associated colors are either based on the current color
or produced by lighting, depending on whether or not lighting is enabled.

Texture coordinates are similarly associated with each vertex. Figure 2.2
summarizes the association of auxiliary data with a transformed vertex to

produce a processed vertex.
The current values are part of GL state. Vertices and normals are trans-

formed, colors may be a�ected or replaced by lighting, and texture coordi-
nates are transformed and possibly a�ected by a texture coordinate genera-

tion function. The processing indicated for each current value is applied for
each vertex that is sent to the GL.

The methods by which vertices, normals, texture coordinates, and colors

are sent to the GL, as well as how normals are transformed and how vertices
are mapped to the two-dimensional screen, are discussed later.

Before colors have been assigned to a vertex, the state required by a
vertex is the vertex's coordinates, the current normal, the current edge

ag, and the current texture coordinates. Because color assignment is done
vertex-by-vertex, a processed vertex comprises the vertex's coordinates, its

assigned colors, and its texture coordinates.
Figure 2.3 shows the sequence of operations that builds a primitive

(point, line segment, or polygon) from a sequence of vertices. After a primi-
tive is formed, it is clipped to a viewing volume. This may alter the primitive

DRAFT Version 1.2 - Jan. 2, 1998

CHAPTER 2. OPENGL OPERATION 14

lighting

vertex / normal
transformation

Current
Normal

Current
Color

Current
Texture
Coords

texgen texture
matrix

Associated
Data

Transformed
Coordinates

Processed
Vertex

Out

(Colors & Texture
Coordinates)

Vertex
Coordinates In

Figure 2.2. Association of current values with a vertex. The heavy lined
boxes represent GL state.

Processed
Vertices

Point,
Line Segment, or

Polygon
(Primitive)
Assembly

Begin/End
State

Point culling;
Line Segment
 or Polygon

Clipping

Color
Processing

Rasterization

Coordinates

Associated
Data

Figure 2.3. Primitive assembly and processing.

DRAFT Version 1.2 - Jan. 2, 1998

CHAPTER 2. OPENGL OPERATION 15

by altering vertex coordinates, texture coordinates, and colors. In the case

of a polygon primitive, clipping may insert new vertices into the primitive.
The vertices de�ning a primitive to be rasterized have texture coordinates

and colors associated with them.

2.6.1 Begin and End Objects

Begin and End require one state variable with eleven values: one value for

each of the ten possible Begin/End objects, and one other value indicating
that no Begin/End object is being processed. The two relevant commands

are

void Begin(enum mode) ;
void End(void) ;

There is no limit on the number of vertices that may be speci�ed between
a Begin and an End.

Points. A series of individual points may be speci�ed by calling Begin
with an argument value of POINTS. No special state need be kept between
Begin and End in this case, since each point is independent of previous

and following points.
Line Strips. A series of one or more connected line segments is speci�ed

by enclosing a series of two or more endpoints within a Begin/End pair
when Begin is called with LINE STRIP. In this case, the �rst vertex speci�es

the �rst segment's start point while the second vertex speci�es the �rst
segment's endpoint and the second segment's start point. In general, the

ith vertex (for i > 1) speci�es the beginning of the ith segment and the end
of the i� 1st. The last vertex speci�es the end of the last segment. If only

one vertex is speci�ed between the Begin/End pair, then no primitive is
generated.

The required state consists of the processed vertex produced from the
last vertex that was sent (so that a line segment can be generated from it
to the current vertex), and a boolean ag indicating if the current vertex is

the �rst vertex.
Line Loops. Line loops, speci�ed with the LINE LOOP argument value to

Begin, are the same as line strips except that a �nal segment is added from
the �nal speci�ed vertex to the �rst vertex. The additional state consists of

the processed �rst vertex.
Separate Lines. Individual line segments, each speci�ed by a pair of

vertices, are generated by surrounding vertex pairs with Begin and End

DRAFT Version 1.2 - Jan. 2, 1998

CHAPTER 2. OPENGL OPERATION 16

when the value of the argument to Begin is LINES. In this case, the �rst

two vertices between a Begin and End pair de�ne the �rst segment, with
subsequent pairs of vertices each de�ning one more segment. If the number

of speci�ed vertices is odd, then the last one is ignored. The state required
is the same as for lines but it is used di�erently: a vertex holding the �rst

vertex of the current segment, and a boolean ag indicating whether the
current vertex is odd or even (a segment start or end).

Polygons. A polygon is described by specifying its boundary as a series
of line segments. When Begin is called with POLYGON, the bounding line

segments are speci�ed in the same way as line loops. Depending on the
current state of the GL, a polygon may be rendered in one of several ways
such as outlining its border or �lling its interior. A polygon described with

fewer than three vertices does not generate a primitive.
Only convex polygons are guaranteed to be drawn correctly by the GL.

If a speci�ed polygon is nonconvex when projected onto the window, then
the rendered polygon need only lie within the convex hull of the projected

vertices de�ning its boundary.
The state required to support polygons consists of at least two processed

vertices (more than two are never required, although an implementation may
use more); this is because a convex polygon can be rasterized as its vertices

arrive, before all of them have been speci�ed. The order of the vertices is sig-
ni�cant in lighting and polygon rasterization (see sections 2.13.1 and 3.5.1).

Triangle strips. A triangle strip is a series of triangles connected along

shared edges. A triangle strip is speci�ed by giving a series of de�ning ver-
tices between a Begin/End pair when Begin is called with TRIANGLE STRIP.

In this case, the �rst three vertices de�ne the �rst triangle (and their order is
signi�cant, just as for polygons). Each subsequent vertex de�nes a new tri-

angle using that point along with two vertices from the previous triangle. A
Begin/End pair enclosing fewer than three vertices, when TRIANGLE STRIP

has been supplied to Begin, produces no primitive. See Figure 2.4.
The state required to support triangle strips consists of a ag indicating

if the �rst triangle has been completed, two stored processed vertices, (called
vertex A and vertex B), and a one bit pointer indicating which stored vertex
will be replaced with the next vertex. After a Begin(TRIANGLE STRIP),

the pointer is initialized to point to vertex A. Each vertex sent between a
Begin/End pair toggles the pointer. Therefore, the �rst vertex is stored as

vertex A, the second stored as vertex B, the third stored as vertex A, and
so on. Any vertex after the second one sent forms a triangle from vertex A,

vertex B, and the current vertex (in that order).
Triangle fans. A triangle fan is the same as a triangle strip with one

DRAFT Version 1.2 - Jan. 2, 1998

CHAPTER 2. OPENGL OPERATION 17

(a) (b) (c)

1

2

3

4

5 1

2
3

4

5
1

2

3

4

5

6

Figure 2.4. (a) A triangle strip. (b) A triangle fan. (c) Independent triangles.
The numbers give the sequencing of the vertices between Begin and End.
Note that in (a) and (b) triangle edge ordering is determined by the �rst
triangle, while in (c) the order of each triangle's edges is independent of the
other triangles.

exception: each vertex after the �rst always replaces vertex B of the two
stored vertices. The vertices of a triangle fan are enclosed between Begin

and End when the value of the argument to Begin is TRIANGLE FAN.

Separate Triangles. Separate triangles are speci�ed by placing ver-
tices between Begin and End when the value of the argument to Begin

is TRIANGLES. In this case, The 3i+ 1st, 3i+ 2nd, and 3i+ 3rd vertices (in
that order) determine a triangle for each i = 0; 1; : : : ; n� 1, where there are
3n+k vertices between the Begin and End. k is either 0, 1, or 2; if k is not
zero, the �nal k vertices are ignored. For each triangle, vertex A is vertex

3i and vertex B is vertex 3i+ 1. Otherwise, separate triangles are the same
as a triangle strip.

The rules given for polygons also apply to each triangle generated from
a triangle strip, triangle fan or from separate triangles.

Quadrilateral (quad) strips. Quad strips generate a series of edge-

sharing quadrilaterals from vertices appearing between Begin and End,
when Begin is called with QUAD STRIP. If the m vertices between the Begin

and End are v1; : : : ; vm, where vj is the jth speci�ed vertex, then quad i has
vertices (in order) v2i, v2i+1, v2i+3, and v2i+2 with i = 0; : : : ; bm=2c. The

state required is thus three processed vertices, to store the last two vertices
of the previous quad along with the third vertex (the �rst new vertex) of

the current quad, a ag to indicate when the �rst quad has been completed,
and a one-bit counter to count members of a vertex pair. See Figure 2.5.

DRAFT Version 1.2 - Jan. 2, 1998

CHAPTER 2. OPENGL OPERATION 18

1

2

3

4

5

6

1

2 3

4 5

6 7

8

(a) (b)

Figure 2.5. (a) A quad strip. (b) Independent quads. The numbers give the
sequencing of the vertices between Begin and End.

A quad strip with fewer than four vertices generates no primitive. If
the number of vertices speci�ed for a quadrilateral strip between Begin and

End is odd, the �nal vertex is ignored.
Separate Quadrilaterals Separate quads are just like quad strips ex-

cept that each group of four vertices, the 4j+1st, the 4j+2nd, the 4j+3rd,
and the 4j + 4th, generate a single quad, for j = 0; 1; : : : ; n � 1. The total
number of vertices between Begin and End is 4n+ k, where 0 � k � 3; if

k is not zero, the �nal k vertices are ignored. Separate quads are generated
by calling Begin with the argument value QUADS.

The rules given for polygons also apply to each quad generated in a quad
strip or from separate quads.

2.6.2 Polygon Edges

Each edge of each primitive generated from a polygon, triangle strip, trian-
gle fan, separate triangle set, quadrilateral strip, or separate quadrilateral

set, is agged as either boundary or non-boundary. These classi�cations
are used during polygon rasterization; some modes a�ect the interpreta-

tion of polygon boundary edges (see section 3.5.4). By default, all edges are
boundary edges, but the agging of polygons, separate triangles, or separate

quadrilaterals may be altered by calling

void EdgeFlag(boolean ag) ;

void EdgeFlagv(boolean *ag) ;

to change the value of a ag bit. If ag is zero, then the ag bit is set to
FALSE; if ag is non-zero, then the ag bit is set to TRUE.

DRAFT Version 1.2 - Jan. 2, 1998

CHAPTER 2. OPENGL OPERATION 19

When Begin is supplied with one of the argument values POLYGON,

TRIANGLES, or QUADS, each vertex speci�ed within a Begin and End pair
begins an edge. If the edge ag bit is TRUE, then each speci�ed vertex begins

an edge that is agged as boundary. If the bit is FALSE, then induced edges
are agged as non-boundary.

The state required for edge agging consists of one current ag bit. Ini-
tially, the bit is TRUE. In addition, each processed vertex of an assembled

polygonal primitive must be augmented with a bit indicating whether or
not the edge beginning on that vertex is boundary or non-boundary.

2.6.3 GL Commands within Begin/End

The only GL commands that are allowed within any Begin/End pairs are
the commands for specifying vertex coordinates, vertex color, normal coor-

dinates, and texture coordinates (Vertex, Color, Index, Normal, Tex-

Coord), the ArrayElement command (see section 2.8), the EvalCoord
and EvalPoint commands (see section 5.1), commands for specifying light-

ing material parameters (Material commands; see section 2.13.2), display
list invocation commands (CallList and CallLists; see section 5.4), and

the EdgeFlag command. Executing any other GL command between the
execution of Begin and the corresponding execution of End results in the

error INVALID OPERATION. Executing Begin after Begin has already been
executed but before an End is executed generates the INVALID OPERATION

error, as does executing End without a previous corresponding Begin.
Execution of the commands En-

ableClientState, DisableClientState, PushClientAttrib, PopClien-
tAttrib, EdgeFlagPointer, TexCoordPointer, ColorPointer, Ind-
exPointer, NormalPointer, VertexPointer, InterleavedArrays, and

PixelStore, is not allowed within any Begin/End pair, but an error may
or may not be generated if such execution occurs. If an error is not gener-

ated, GL operation is unde�ned. (These commands are described in sections
2.8, 3.6.1, and Chapter 6.)

2.7 Vertex Speci�cation

Vertices are speci�ed by giving their coordinates in two, three, or four dimen-
sions. This is done using one of several versions of the Vertex command:

void Vertexf234gfsifdg(T coords) ;
void Vertexf234gfsifdgv(T coords) ;

DRAFT Version 1.2 - Jan. 2, 1998

CHAPTER 2. OPENGL OPERATION 20

A call to any Vertex command speci�es four coordinates: x, y, z, and w.

The x coordinate is the �rst coordinate, y is second, z is third, and w is
fourth. A call to Vertex2 sets the x and y coordinates; the z coordinate is

implicitly set to zero and the w coordinate to one. Vertex3 sets x, y, and
z to the provided values and w to one. Vertex4 sets all four coordinates,

allowing the speci�cation of an arbitrary point in projective three-space.
Invoking a Vertex command outside of a Begin/End pair results in unde-

�ned behavior.
Current values are used in associating auxiliary data with a vertex as

described in section 2.6. A current value may be changed at any time by
issuing an appropriate command. The commands

void TexCoordf1234gfsifdg(T coords) ;
void TexCoordf1234gfsifdgv(T coords) ;

specify the current homogeneous texture coordinates, named s, t, r, and q.
The TexCoord1 family of commands set the s coordinate to the provided

single argument while setting t and r to 0 and q to 1. Similarly, TexCoord2
sets s and t to the speci�ed values, r to 0 and q to 1; TexCoord3 sets s, t,

and r, with q set to 1, and TexCoord4 sets all four texture coordinates.
The current normal is set using

void Normal3fbsifdg(T coords) ;
void Normal3fbsifdgv(T coords) ;

Byte, short, or integer values passed to Normal are converted to oating-

point values as indicated for the corresponding (signed) type in Table 2.6.
Finally, there are several ways to set the current color. The GL stores

both a current single-valued color index, and a current four-valued RGBA
color. One or the other of these is signi�cant depending as the GL is in color

index mode or RGBA mode. The mode selection is made when the GL is

initialized.
The command to set RGBA colors is

void Colorf34gfbsifd ubusuig(T components) ;

void Colorf34gfbsifd ubusuigv(T components) ;

The Color command has two major variants: Color3 and Color4. The

four value versions set all four values. The three value versions set R, G,
and B to the provided values; A is set to 1.0. (The conversion of integer

color components (R, G, B, and A) to oating-point values is discussed in
section 2.13.)

DRAFT Version 1.2 - Jan. 2, 1998

CHAPTER 2. OPENGL OPERATION 21

Versions of the Color command that take oating-point values accept

values nominally between 0.0 and 1.0. 0.0 corresponds to the minimum
while 1.0 corresponds to the maximum (machine dependent) value that a

component may take on in the framebu�er (see section 2.13 on colors and
coloring). Values outside [0; 1] are not clamped.

The command

void Indexfsifd ubg(T index) ;
void Indexfsifd ubgv(T index) ;

updates the current (single-valued) color index. It takes one argument, the

value to which the current color index should be set. Values outside the
(machine-dependent) representable range of color indices are not clamped.

The state required to support vertex speci�cation consists of four
oating-point numbers to store the current texture coordinates s, t, r, and

q, three oating-point numbers to store the three coordinates of the current
normal, four oating-point values to store the current RGBA color, and

one oating-point value to store the current color index. There is no notion
of a current vertex, so no state is devoted to vertex coordinates. The initial
values of s, t, and r of the current texture coordinates are zero; the initial

value of q is one. The initial current normal has coordinates (0; 0; 1). The
initial RGBA color is (R;G;B;A) = (1; 1; 1; 1). The initial color index is 1.

2.8 Vertex Arrays

The vertex speci�cation commands described in section 2.7 accept data in
almost any format, but their use requires many command executions to spec-

ify even simple geometry. Vertex data may also be placed into arrays that
are stored in the client's address space. Blocks of data in these arrays may

then be used to specify multiple geometric primitives through the execution
of a single GL command. The client may specify up to six arrays: one each
to store edge ags, texture coordinates, colors, color indices, normals, and

vertices. The commands

void EdgeFlagPointer(sizei stride, void *pointer) ;

void TexCoordPointer(int size, enum type, sizei stride,

void *pointer) ;

void ColorPointer(int size, enum type, sizei stride,

void *pointer) ;

DRAFT Version 1.2 - Jan. 2, 1998

CHAPTER 2. OPENGL OPERATION 22

Command Sizes Types

VertexPointer 2,3,4 short, int, float, double

NormalPointer 3 byte, short, int, float, double

ColorPointer 3,4 byte, ubyte, short, ushort, int,
uint, float, double

IndexPointer 1 ubyte, short, int, float, double

TexCoordPointer 1,2,3,4 short, int, float, double

EdgeFlagPointer 1 boolean

Table 2.4: Vertex array sizes (values per vertex) and data types.

void IndexPointer(enum type, sizei stride,

void *pointer) ;

void NormalPointer(enum type, sizei stride,

void *pointer) ;

void VertexPointer(int size, enum type, sizei stride,

void *pointer) ;

describe the locations and organizations of these arrays. For each com-
mand, type speci�es the data type of the values stored in the array. Because

edge ags are always type boolean, EdgeFlagPointer has no type argu-
ment. size, when present, indicates the number of values per vertex that

are stored in the array. Because normals are always speci�ed with three
values, NormalPointer has no size argument. Likewise, because color in-

dices and edge ags are always speci�ed with a single value, IndexPointer
and EdgeFlagPointer also have no size argument. Table 2.4 indicates
the allowable values for size and type (when present). For type the values

BYTE, SHORT, INT, FLOAT, and DOUBLE indicate types byte, short, int, float,
and double, respectively; and the values UNSIGNED BYTE, UNSIGNED SHORT, and

UNSIGNED INT indicate types ubyte, ushort, and uint, respectively. The er-
ror INVALID VALUE is generated if size is speci�ed with a value other than

that indicated in the table.
The one, two, three, or four values in an array that correspond to a single

vertex comprise an array element. The values within each array element are
stored sequentially in memory. If stride is speci�ed as zero, then array

elements are stored sequentially as well. Otherwise pointers to the ith and
(i+ 1)st elements of an array di�er by stride basic machine units (typically

DRAFT Version 1.2 - Jan. 2, 1998

CHAPTER 2. OPENGL OPERATION 23

unsigned bytes), the pointer to the (i+1)st element being greater. For each

command, pointer speci�es the location in memory of the �rst value of the
�rst element of the array being speci�ed.

An individual array is enabled or disabled by calling one of

void EnableClientState(enum array) ;
void DisableClientState(enum array) ;

with array set to EDGE FLAG ARRAY, TEXTURE COORD ARRAY, COLOR ARRAY,
INDEX ARRAY, NORMAL ARRAY, or VERTEX ARRAY, for the edge ag, texture coor-

dinate, color, color index, normal, or vertex array, respectively.
The ith element of every enabled array is transferred to the GL by calling

void ArrayElement(int i) ;

For each enabled array, it is as though the corresponding command from sec-
tion 2.7 or section 2.6.2 were called with a pointer to element i. For the ver-

tex array, the corresponding command isVertex[size][type]v, where size is
one of [2,3,4], and type is one of [s,i,f,d], corresponding to array types short,

int, float, and double respectively. The corresponding commands for
the edge ag, texture coordinate, color, color index, and normal arrays are

EdgeFlagv, TexCoord[size][type]v, Color[size][type]v, Index[type]v,
and Normal[type]v, respectively. If the vertex array is enabled, it is as
though Vertex[size][type]v is executed last, after the executions of the

other corresponding commands.
Changes made to array data between the execution of Begin and the

corresponding execution of End may a�ect calls toArrayElement that are
made within the same Begin/End period in non-sequential ways. That is,

a call to ArrayElement that precedes a change to array data may access
the changed data, and a call that follows a change to array data may access

original data.
The command

void DrawArrays(enum mode, int �rst, sizei count) ;

constructs a sequence of geometric primitives using elements first through
first+count�1 of each enabled array. mode speci�es what kind of primitives

are constructed; it accepts the same token values as the mode parameter of
the Begin command. The e�ect of

DrawArrays (mode; first; count);

DRAFT Version 1.2 - Jan. 2, 1998

CHAPTER 2. OPENGL OPERATION 24

is the same as the e�ect of the command sequence

if (mode or count is invalid)

generate appropriate error
else f

int i;

Begin(mode);

for (i=0; i < count ; i++)

ArrayElement(first+ i);

End();

g

with one exception: the current edge ag, texture coordinates, color, color

index, and normal coordinates are each indeterminate after the execution of
DrawArrays, if the corresponding array is enabled. Current values corre-

sponding to disabled arrays are not modi�ed by the execution of DrawAr-
rays.

The command

void DrawElements(enum mode, sizei count, enum type,

void *indices) ;

constructs a sequence of geometric primitives using the count elements

whose indices are stored in indices. type must be one of UNSIGNED BYTE,
UNSIGNED SHORT, or UNSIGNED INT, indicating that the values in indices are
indices of GL type ubyte, ushort, or uint respectively. mode speci�es

what kind of primitives are constructed; it accepts the same token values as
the mode parameter of the Begin command. The e�ect of

DrawElements (mode; count; type; indices);

is the same as the e�ect of the command sequence

if (mode; count; or type is invalid)

generate appropriate error
else f

int i;

Begin(mode);

for (i=0; i < count ; i++)

ArrayElement(indices[i]);

End();

g

DRAFT Version 1.2 - Jan. 2, 1998

CHAPTER 2. OPENGL OPERATION 25

with one exception: the current edge ag, texture coordinates, color, color

index, and normal coordinates are each indeterminate after the execution
of DrawElements, if the corresponding array is enabled. Current val-

ues corresponding to disabled arrays are not modi�ed by the execution of
DrawElements.

The command

void DrawRangeElements(enum mode, uint start,

uint end, sizei count, enum type, void *indices) ;

is a restricted form of DrawElements. mode, count, type, and indices

match the corresponding arguments toDrawElements, with the additional

constraint that all values in the array indices must lie between start and end

inclusive.

Implementations denote recommended maximum amounts of vertex and
index data, which may be queried by calling GetIntegerv with the symbolic
constants MAX ELEMENTS VERTICES and MAX ELEMENTS INDICES. If end�start+1
is greater than the value of MAX ELEMENTS VERTICES, or if count is greater than
the value of MAX ELEMENTS INDICES, then the call may operate at reduced per-

formance. There is no requirement that all vertices in the range [start; end]
be referenced. However, the implementation may partially process unused

vertices, reducing performance from what could be achieved with an optimal
index set.

The error INVALID VALUE is generated if end < start. Invalid mode, count,
or type parameters generate the same errors as would the corresponding

call to DrawElements. It is an error for indices to lie outside the range
[start; end], but implementations may not check for this. Such indices will
cause implementation-dependent behavior.

The command

void InterleavedArrays(enum format, sizei stride,

void *pointer) ;

e�ciently initializes the six arrays and their enables to one of 14 con�gura-
tions. format must be one of 14 symbolic constants: V2F, V3F, C4UB V2F,

C4UB V3F, C3F V3F, N3F V3F, C4F N3F V3F, T2F V3F, T4F V4F, T2F C4UB V3F,
T2F C3F V3F, T2F N3F V3F, T2F C4F N3F V3F, or T4F C4F N3F V4F.

The e�ect of

InterleavedArrays(format; stride; pointer);

is the same as the e�ect of the command sequence

DRAFT Version 1.2 - Jan. 2, 1998

CHAPTER 2. OPENGL OPERATION 26

format et ec en st sc sv tc pc pn pv s

V2F False False False 2 0 2f

V3F False False False 3 0 3f
C4UB V2F False True False 4 2 UNSIGNED BYTE 0 c c+ 2f

C4UB V3F False True False 4 3 UNSIGNED BYTE 0 c c+ 3f

C3F V3F False True False 3 3 FLOAT 0 3f 6f
N3F V3F False False True 3 0 3f 6f

C4F N3F V3F False True True 4 3 FLOAT 0 4f 7f 10f
T2F V3F True False False 2 3 2f 5f

T4F V4F True False False 4 4 4f 8f

T2F C4UB V3F True True False 2 4 3 UNSIGNED BYTE 2f c+ 2f c+ 5f
T2F C3F V3F True True False 2 3 3 FLOAT 2f 5f 8f

T2F N3F V3F True False True 2 3 2f 5f 8f

T2F C4F N3F V3F True True True 2 4 3 FLOAT 2f 6f 9f 12f
T4F C4F N3F V4F True True True 4 4 4 FLOAT 4f 8f 11f 15f

Table 2.5: Variables that direct the execution of InterleavedArrays. f

is sizeof(FLOAT). c is 4 times sizeof(UNSIGNED BYTE), rounded up to
the nearest multiple of f . All pointer arithmetic is performed in units of

sizeof(UNSIGNED BYTE).

DRAFT Version 1.2 - Jan. 2, 1998

CHAPTER 2. OPENGL OPERATION 27

if (format or stride is invalid)

generate appropriate error
else f

int str;

set et; ec; en; st; sc; sv; tc; pc; pn; pv; and s as a function

of Table 2.5 and the value of format.
str = stride;

if (str is zero)
str = s;

DisableClientState(EDGE FLAG ARRAY);
DisableClientState(INDEX ARRAY);
if (et) f

EnableClientState(TEXTURE COORD ARRAY);
TexCoordPointer(st, FLOAT, str, pointer);

g else f
DisableClientState(TEXTURE COORD ARRAY);

g
if (ec) f

EnableClientState(COLOR ARRAY);
ColorPointer(sc, tc, str, pointer + pc);

g else f
DisableClientState(COLOR ARRAY);

g
if (en) f

EnableClientState(NORMAL ARRAY);

NormalPointer(FLOAT, str, pointer + pn);
g else f

DisableClientState(NORMAL ARRAY);
g
EnableClientState(VERTEX ARRAY);
VertexPointer(sv, FLOAT, str, pointer + pv);

g

The client state required to implement vertex arrays consists of six
boolean values, six memory pointers, six integer stride values, �ve symbolic

constants representing array types, and three integers representing values
per element. In the initial state the boolean values are each disabled, the

memory pointers are each null, the strides are each zero, the array types are
each FLOAT, and the integers representing values per element are each four.

DRAFT Version 1.2 - Jan. 2, 1998

CHAPTER 2. OPENGL OPERATION 28

2.9 Rectangles

There is a set of GL commands to support e�cient speci�cation of rectangles
as two corner vertices.

void Rectfsifdg(T x1, T y1, T x2, T y2) ;
void Rectfsifdgv(T v1[2], T v2[2]) ;

Each command takes either four arguments organized as two consecutive

pairs of (x; y) coordinates, or two pointers to arrays each of which contains
an x value followed by a y value. The e�ect of the Rect command

Rect (x1; y1; x2; y2);

is exactly the same as the following sequence of commands:

Begin(POLYGON);

Vertex2(x1; y1);

Vertex2(x2; y1);

Vertex2(x2; y2);

Vertex2(x1; y2);

End();

The appropriate Vertex2 command would be invoked depending on which
of the Rect commands is issued.

2.10 Coordinate Transformations

Vertices, normals, and texture coordinates are transformed before their
coordinates are used to produce an image in the framebu�er. We begin

with a description of how vertex coordinates are transformed and how this
transformation is controlled.

Figure 2.6 diagrams the sequence of transformations that are applied to
vertices. The vertex coordinates that are presented to the GL are termed

object coordinates. The model-view matrix is applied to these coordinates to
yield eye coordinates. Then another matrix, called the projection matrix, is

applied to eye coordinates to yield clip coordinates. A perspective division
is carried out on clip coordinates to yield normalized device coordinates. A
�nal viewport transformation is applied to convert these coordinates into

window coordinates.

DRAFT Version 1.2 - Jan. 2, 1998

CHAPTER 2. OPENGL OPERATION 29

Object

Coordinates Coordinates

Eye

Coordinates

Window

Coordinates

Normalized
DeviceModel−View

Matrix

Perspective
Division

Viewport
Transformation

Coordinates

ClipProjection

Matrix

Figure 2.6. Vertex transformation sequence.

Object coordinates, eye coordinates, and clip coordinates are four-
dimensional, consisting of x, y, z, and w coordinates (in that order). The
model-view and perspective matrices are thus 4� 4.

If a vertex in object coordinates is given by

0
BB@
xo
yo
zo
wo

1
CCA and the model-view

matrix is M , then the vertex's eye coordinates are found as

0
BB@
xe
ye
ze
we

1
CCA = M

0
BB@
xo
yo
zo
wo

1
CCA :

Similarly, if P is the projection matrix, then the vertex's clip coordinates

are 0
BB@
xc
yc
zc
wc

1
CCA = P

0
BB@
xe
ye
ze
we

1
CCA :

The vertex's normalized device coordinates are then0
@ xd
yd
zd

1
A =

0
@ xc=wc

yc=wc

zc=wc

1
A :

DRAFT Version 1.2 - Jan. 2, 1998

CHAPTER 2. OPENGL OPERATION 30

2.10.1 Controlling the Viewport

The viewport transformation is determined by the viewport's width and

height in pixels, px and py , respectively, and its center (ox; oy) (also in

pixels). The vertex's window coordinates,

0
@ xw
yw
zw

1
A, are given by

0
@ xw
yw
zw

1
A =

0
@ (px=2)xd + ox

(py=2)yd + oy
[(f � n)=2]zd + (n+ f)=2

1
A :

The factor and o�set applied to zd encoded by n and f are set using

void DepthRange(clampd n, clampd f) ;

Each of n and f are clamped to lie within [0; 1], as are all arguments of type
clampd or clampf. zw is taken to be represented in �xed-point with at least
as many bits as there are in the depth bu�er of the framebu�er. We assume

that the �xed-point representation used represents each value k=(2m � 1),
where k 2 f0; 1; : : : ; 2m � 1g, as k (e.g. 1.0 is represented in binary as a

string of all ones).
Viewport transformation parameters are speci�ed using

void Viewport(int x, int y, sizei w, sizei h) ;

where x and y give the x and y window coordinates of the viewport's lower-
left corner and w and h give the viewport's width and height, respectively.

The viewport parameters shown in the above equations are found from these
values as ox = x+ w=2 and oy = y + h=2; px = w, py = h.

Viewport width and height are clamped to implementation-dependent
maximums when speci�ed. The maximum width and height may be found

by issuing an appropriate Get command (see Chapter 6). The maximum
viewport dimensions must be greater than or equal to the visible dimensions
of the display being rendered to. INVALID VALUE is generated if either w or h

is negative.
The state required to implement the viewport transformation is 6 inte-

gers. In the initial state, w and h are set to the width and height, respectively,
of the window into which the GL is to do its rendering. ox and oy are set to

w=2 and h=2, respectively. n and f are set to 0:0 and 1:0, respectively.

DRAFT Version 1.2 - Jan. 2, 1998

CHAPTER 2. OPENGL OPERATION 31

2.10.2 Matrices

The projection matrix and model-view matrix are set and modi�ed with

a variety of commands. The a�ected matrix is determined by the current
matrix mode. The current matrix mode is set with

void MatrixMode(enum mode) ;

which takes one of the pre-de�ned constants TEXTURE, MODELVIEW,
COLOR MATRIX, or PROJECTION as the argument value. TEXTURE is described

later in section 2.10.2, and COLOR MATRIX is described in section 3.6.3. If
the current matrix mode is MODELVIEW, then matrix operations apply to the

model-view matrix; if PROJECTION, then they apply to the projection matrix.
The two basic commands for a�ecting the current matrix are

void LoadMatrixffdg(T m[16]) ;

void MultMatrixffdg(T m[16]) ;

LoadMatrix takes a pointer to a 4�4 matrix stored in column-major order
as 16 consecutive oating-point values, i.e. as

0
BB@
a1 a5 a9 a13
a2 a6 a10 a14
a3 a7 a11 a15
a4 a8 a12 a16

1
CCA :

(This di�ers from the standard row-major C ordering for matrix elements. If

the standard ordering is used, all of the subsequent transformation equations
are transposed, and the columns representing vectors become rows.)

The speci�ed matrix replaces the current matrix with the one pointed to.

MultMatrix takes the same type argument as LoadMatrix, but multiplies
the current matrix by the one pointed to and replaces the current matrix

with the product. If C is the current matrix and M is the matrix pointed
to by MultMatrix's argument, then the resulting current matrix, C0, is

C0 = C �M:

The command

void LoadIdentity(void) ;

e�ectively calls LoadMatrix with the identity matrix:

DRAFT Version 1.2 - Jan. 2, 1998

CHAPTER 2. OPENGL OPERATION 32

0
BB@
1 0 0 0
0 1 0 0

0 0 1 0
0 0 0 1

1
CCA :

There are a variety of other commands that manipulate matrices. Ro-
tate, Translate, Scale, Frustum, and Ortho manipulate the current ma-

trix. Each computes a matrix and then invokes MultMatrix with this
matrix. In the case of

void Rotateffdg(T �, T x, T y, T z) ;

� gives an angle of rotation in degrees; the coordinates of a vector v are given
by v = (x y z)T . The computed matrix is a counter-clockwise rotation about

the line through the origin with the speci�ed axis when that axis is pointing
up (i.e. the right-hand rule determines the sense of the rotation angle). The

matrix is thus

0
BB@

0

R 0
0

0 0 0 1

1
CCA :

Let u = v=jjvjj= (x0 y0 z0)T . If

S =

0
@ 0 �z0 y0

z0 0 �x0
�y0 x0 0

1
A

then
R = uuT + cos �(I � uuT) + sin �S:

The arguments to

void Translateffdg(T x, T y, T z) ;

give the coordinates of a translation vector as (x y z)T . The resulting matrix
is a translation by the speci�ed vector:

0
BB@
1 0 0 x

0 1 0 y

0 0 1 z

0 0 0 1

1
CCA :

DRAFT Version 1.2 - Jan. 2, 1998

CHAPTER 2. OPENGL OPERATION 33

void Scaleffdg(T x, T y, T z) ;

produces a general scaling along the x-, y-, and z- axes. The corresponding
matrix is 0

BB@
x 0 0 0

0 y 0 0
0 0 z 0

0 0 0 1

1
CCA :

For

void Frustum(double l, double r, double b, double t,

double n, double f) ;

the coordinates (l b � n)T and (r t � n)T specify the points on the near

clipping plane that are mapped to the lower-left and upper-right corners of
the window, respectively (assuming that the eye is located at (0 0 0)T). f

gives the distance from the eye to the far clipping plane. If either n or f is
less than or equal to zero, l is equal to r, b is equal to t, or n is equal to f ,

the error INVALID VALUE results. The corresponding matrix is

0
BBB@

2n
r�l

0 r+l
r�l

0

0 2n
t�b

t+b
t�b

0

0 0 �f+n
f�n

� 2fn
f�n

0 0 �1 0

1
CCCA :

void Ortho(double l, double r, double b, double t,

double n, double f) ;

describes a matrix that produces parallel projection. (l b�n)T and (r t �n)T
specify the points on the near clipping plane that are mapped to the lower-

left and upper-right corners of the window, respectively. f gives the distance
from the eye to the far clipping plane. If l is equal to r, b is equal to t, or n

is equal to f , the error INVALID VALUE results. The corresponding matrix is

0
BBB@

2

r�l
0 0 � r+l

r�l

0 2

t�b
0 � t+b

t�b

0 0 � 2

f�n
�f+n

f�n

0 0 0 1

1
CCCA :

There is another 4�4 matrix that is applied to texture coordinates. This

matrix is applied as

DRAFT Version 1.2 - Jan. 2, 1998

CHAPTER 2. OPENGL OPERATION 34

0
BB@
m1 m5 m9 m13

m2 m6 m10 m14

m3 m7 m11 m15

m4 m8 m12 m16

1
CCA
0
BB@
s

t

r

q

1
CCA ;

where the left matrix is the current texture matrix. The matrix is applied
to the coordinates resulting from texture coordinate generation (which may

simply be the current texture coordinates), and the resulting transformed co-
ordinates become the texture coordinates associated with a vertex. Setting

the matrix mode to TEXTURE causes the already described matrix operations
to apply to the texture matrix.

There is a stack of matrices for each of the matrix modes. For MODELVIEW
mode, the stack depth is at least 32 (that is, there is a stack of at least 32

model-view matrices). For the other modes, the depth is at least 2. The
current matrix in any mode is the matrix on the top of the stack for that
mode.

void PushMatrix(void) ;

pushes the stack down by one, duplicating the current matrix in both the
top of the stack and the entry below it.

void PopMatrix(void) ;

pops the top entry o� of the stack, replacing the current matrix with the

matrix that was the second entry in the stack. The pushing or popping takes
place on the stack corresponding to the current matrix mode. Popping a

matrix o� a stack with only one entry generates the error STACK UNDERFLOW;
pushing a matrix onto a full stack generates STACK OVERFLOW.

The state required to implement transformations consists of a four-
valued integer indicating the current matrix mode, a stack of at least two

4 � 4 matrices for each of COLOR MATRIX, PROJECTION, and TEXTURE with as-
sociated stack pointers, and a stack of at least 32 4 � 4 matrices with an

associated stack pointer for MODELVIEW. Initially, there is only one matrix on
each stack, and all matrices are set to the identity. The initial matrix mode
is MODELVIEW.

2.10.3 Normal Transformation

Finally, we consider how the model-view matrix and transformation state

a�ect normals. Before use in lighting, normals are transformed to eye co-
ordinates by a matrix derived from the model-view matrix. Rescaling and

DRAFT Version 1.2 - Jan. 2, 1998

CHAPTER 2. OPENGL OPERATION 35

normalization operations are performed on the transformed normals to make

them unit length prior to use in lighting. Rescaling and normalization are
controlled by

void Enable(enum target) ;

and

void Disable(enum target) ;

with target equal to RESCALE NORMAL or NORMALIZE. This requires two bits of

state. The initial state is for normals not to be rescaled or normalized.
If the model-view matrix is M , then the normal is transformed to eye

coordinates by:

(nx
0 ny

0 nz
0 q0) = (nx ny nz q) �M�1

where, if

0
BB@
x

y

z

w

1
CCA are the associated vertex coordinates, then

q =

8>>>><
>>>>:

0; w = 0;

�(nx ny nz)

0
@x

y

z

1
A

w
; w 6= 0

(2.1)

Implementations may choose instead to transform

0
@ x

y

z

1
A to eye coordi-

nates using

(nx
0 ny

0 nz
0) = (nx ny nz) �Mu

�1

where Mu is the upper leftmost 3x3 matrix taken from M .
Rescale multiplies the transformed normals by a scale factor

(nx
00 ny

00 nz
00) = f (nx

0 ny
0 nz

0)

If rescaling is disabled, then f = 1. If rescaling is enabled, then f is com-
puted as (mij denotes the matrix element in row i and column j of M�1,
numbering the topmost row of the matrix as row 1 and the leftmost column

as column 1)

DRAFT Version 1.2 - Jan. 2, 1998

CHAPTER 2. OPENGL OPERATION 36

f =
1p

m31
2 +m32

2 +m33
2

Note that if the normals sent to GL were unit length and the model-view
matrix uniformly scales space, then rescale makes the transformed normals

unit length.
Alternatively, an implementation may chose f as

f =
1q

nx0
2 + ny 0

2 + nz 0
2

recomputing f for each normal. This makes all non-zero length normals
unit length regardless of their input length and the nature of the model-
view matrix.

After rescaling, the �nal transformed normal used in lighting, nf , is
computed as

nf = m � (nx00 ny
00 nz

00)

If normalization is disabled, then m = 1. Otherwise

m =
1q

nx00
2 + ny 00

2 + nz 00
2

Because we specify neither the oating-point format nor the means
for matrix inversion, we cannot specify behavior in the case of a poorly-

conditioned (nearly singular) model-view matrix M . In case of an exactly
singular matrix, the transformed normal is unde�ned. If the GL implementa-

tion determines that the model-view matrix is uninvertible, then the entries
in the inverted matrix are arbitrary. In any case, neither normal transfor-

mation nor use of the transformed normal may lead to GL interruption or
termination.

2.10.4 Generating Texture Coordinates

Texture coordinates associated with a vertex may either be taken from the
current texture coordinates or generated according to a function dependent

on vertex coordinates. The command

void TexGenfifdg(enum coord, enum pname, T param) ;
void TexGenfifdgv(enum coord, enum pname, T params) ;

DRAFT Version 1.2 - Jan. 2, 1998

CHAPTER 2. OPENGL OPERATION 37

controls texture coordinate generation. coord must be one of the constants

S, T, R, or Q, indicating that the pertinent coordinate is the s, t, r, or q
coordinate, respectively. In the �rst form of the command, param is a sym-

bolic constant specifying a single-valued texture generation parameter; in the
second form, params is a pointer to an array of values that specify texture

generation parameters. pname must be one of the three symbolic constants
TEXTURE GEN MODE, OBJECT PLANE, or EYE PLANE. If pname is TEXTURE GEN MODE,

then either params points to or param is an integer that is one of the symbolic
constants OBJECT LINEAR, EYE LINEAR, or SPHERE MAP.

If TEXTURE GEN MODE indicates OBJECT LINEAR, then the generation function
for the coordinate indicated by coord is

g = p1xo + p2yo + p3zo + p4wo:

xo, yo, zo, and wo are the object coordinates of the vertex. p1; : : : ; p4 are
speci�ed by calling TexGen with pname set to OBJECT PLANE in which case

params points to an array containing p1; : : : ; p4. There is a distinct group of
plane equation coe�cients for each texture coordinate; coord indicates the

coordinate to which the speci�ed coe�cients pertain.
If TEXTURE GEN MODE indicates EYE LINEAR, then the function is

g = p0
1
xe + p0

2
ye + p0

3
ze + p0

4
we

where

(p0
1

p0
2

p0
3

p0
4
) = (p1 p2 p3 p4)M

�1

xe, ye, ze, and we are the eye coordinates of the vertex. p1; : : : ; p4 are
set by calling TexGen with pname set to EYE PLANE in correspondence with

setting the coe�cients in the OBJECT PLANE case. M is the model-view matrix
in e�ect when p1; : : : ; p4 are speci�ed. Computed texture coordinates may

be inaccurate or unde�ned if M is poorly conditioned or singular.
When used with a suitably constructed texture image, calling TexGen

with TEXTURE GEN MODE indicating SPHERE MAP can simulate the reected im-
age of a spherical environment on a polygon. SPHERE MAP texture coordinates

are generated as follows. Denote the unit vector pointing from the origin to
the vertex (in eye coordinates) by u. Denote the current normal, after trans-

formation to eye coordinates, by n0. Let r = (rx ry rz)
T , the reection

vector, be given by
r = u � 2n0n0Tu;

and let m = 2
q
r2x + r2y + (rz + 1)2. Then the value assigned to an s coor-

dinate (the �rst TexGen argument value is S) is s = rx=m + 1

2
; the value

DRAFT Version 1.2 - Jan. 2, 1998

CHAPTER 2. OPENGL OPERATION 38

assigned to a t coordinate is t = ry=m + 1

2
. Calling TexGen with a co-

ord of either R or Q when pname indicates SPHERE MAP generates the error
INVALID ENUM.

A texture coordinate generation function is enabled or disabled using
Enable and Disable with an argument of TEXTURE GEN S, TEXTURE GEN T,

TEXTURE GEN R, or TEXTURE GEN Q (each indicates the corresponding texture
coordinate). When enabled, the speci�ed texture coordinate is computed

according to the current EYE LINEAR, OBJECT LINEAR or SPHERE MAP speci�ca-
tion, depending on the current setting of TEXTURE GEN MODE for that coordi-

nate. When disabled, subsequent vertices will take the indicated texture
coordinate from the current texture coordinates.

The state required for texture coordinate generation comprises a three-

valued integer for each coordinate indicating coordinate generation mode,
and a bit for each coordinate to indicate whether texture coordinate genera-

tion is enabled or disabled. In addition, four coe�cients are required for the
four coordinates for each of EYE LINEAR and OBJECT LINEAR. The initial state

has the texture generation function disabled for all texture coordinates. The
initial values of pi for s are all 0 except p1 which is one; for t all the pi are

zero except p2, which is 1. The values of pi for r and q are all 0. These values
of pi apply for both the EYE LINEAR and OBJECT LINEAR versions. Initially all

texture generation modes are EYE LINEAR.

2.11 Clipping

Primitives are clipped to the clip volume. In clip coordinates, the view

volume is de�ned by
�wc � xc � wc

�wc � yc � wc

�wc � zc � wc

:

This view volume may be further restricted by as many as n client-de�ned
clip planes to generate the clip volume. (n is an implementation dependent

maximum that must be at least 6.) Each client-de�ned plane speci�es a
half-space. The clip volume is the intersection of all such half-spaces with

the view volume (if there no client-de�ned clip planes are enabled, the clip
volume is the view volume).

A client-de�ned clip plane is speci�ed with

void ClipPlane(enum p, double eqn[4]) ;

DRAFT Version 1.2 - Jan. 2, 1998

CHAPTER 2. OPENGL OPERATION 39

The value of the �rst argument, p, is a symbolic constant, CLIP PLANEi, where

i is an integer between 0 and n � 1, indicating one of n client-de�ned clip
planes. eqn is an array of four double-precision oating-point values. These

are the coe�cients of a plane equation in object coordinates: p1, p2, p3, and
p4 (in that order). The inverse of the current model-view matrix is applied

to these coe�cients, at the time they are speci�ed, yielding

(p0
1

p0
2

p0
3

p0
4
) = (p1 p2 p3 p4)M

�1

(where M is the current model-view matrix; the resulting plane equation is

unde�ned ifM is singular and may be inaccurate ifM is poorly-conditioned)
to obtain the plane equation coe�cients in eye coordinates. All points with

eye coordinates (xe ye ze we)
T that satisfy

(p0
1

p0
2

p0
3

p0
4
)

0
BB@
xe
ye
ze
we

1
CCA � 0

lie in the half-space de�ned by the plane; points that do not satisfy this

condition do not lie in the half-space.
Client-de�ned clip planes are enabled with the generic Enable com-

mand and disabled with the Disable command. The value of the argument
to either command is CLIP PLANEi where i is an integer between 0 and n;

specifying a value of i enables or disables the plane equation with index i.
The constants obey CLIP PLANEi = CLIP PLANE0+ i.

If the primitive under consideration is a point, then clipping passes it
unchanged if it lies within the clip volume; otherwise, it is discarded. If the
primitive is a line segment, then clipping does nothing to it if it lies entirely

within the clip volume and discards it if it lies entirely outside the volume.
If part of the line segment lies in the volume and part lies outside, then the

line segment is clipped and new vertex coordinates are computed for one or
both vertices. A clipped line segment endpoint lies on both the original line

segment and the boundary of the clip volume.
This clipping produces a value, 0 � t � 1, for each clipped vertex. If the

coordinates of a clipped vertex are P and the original vertices' coordinates
are P1 and P2, then t is given by

P = tP1 + (1� t)P2:

The value of t is used in color and texture coordinate clipping (sec-
tion 2.13.8).

DRAFT Version 1.2 - Jan. 2, 1998

CHAPTER 2. OPENGL OPERATION 40

If the primitive is a polygon, then it is passed if every one of its edges

lies entirely inside the clip volume and either clipped or discarded otherwise.
Polygon clipping may cause polygon edges to be clipped, but because poly-

gon connectivity must be maintained, these clipped edges are connected by
new edges that lie along the clip volume's boundary. Thus, clipping may

require the introduction of new vertices into a polygon. Edge ags are asso-
ciated with these vertices so that edges introduced by clipping are agged

as boundary (edge ag TRUE), and so that original edges of the polygon that
become cut o� at these vertices retain their original ags.

If it happens that a polygon intersects an edge of the clip volume's
boundary, then the clipped polygon must include a point on this boundary
edge. This point must lie in the intersection of the boundary edge and

the convex hull of the vertices of the original polygon. We impose this
requirement because the polygon may not be exactly planar.

A line segment or polygon whose vertices have wc values of di�ering signs
may generate multiple connected components after clipping. GL implemen-

tations are not required to handle this situation. That is, only the portion of
the primitive that lies in the region of wc > 0 need be produced by clipping.

Primitives rendered with clip planes must satisfy a complementarity cri-
terion. Suppose a single clip plane with coe�cients (p0

1
p0
2

p0
3

p0
4
) (or a

number of similarly speci�ed clip planes) is enabled and a series of primitives
are drawn. Next, suppose that the original clip plane is respeci�ed with co-
e�cients (�p0

1
�p0

2
�p0

3
�p0

4
) (and correspondingly for any other clip

planes) and the primitives are drawn again (and the GL is otherwise in the
same state). In this case, primitives must not be missing any pixels, nor

may any pixels be drawn twice in regions where those primitives are cut by
the clip planes.

The state required for clipping is at least 6 sets of plane equations (each
consisting of four double-precision oating-point coe�cients) and at least 6

corresponding bits indicating which of these client-de�ned plane equations
are enabled. In the initial state, all client-de�ned plane equation coe�cients

are zero and all planes are disabled.

2.12 Current Raster Position

The current raster position is used by commands that directly a�ect pixels in

the framebu�er. These commands, which bypass vertex transformation and
primitive assembly, are described in the next chapter. The current raster

position, however, shares some of the characteristics of a vertex.

DRAFT Version 1.2 - Jan. 2, 1998

CHAPTER 2. OPENGL OPERATION 41

The state required for the current raster position consists of three window

coordinates xw , yw, and zw , a clip coordinate wc value, an eye coordinate
distance, a valid bit, and associated data consisting of a color and texture

coordinates. It is set using one of the RasterPos commands:

void RasterPosf234gfsifdg(T coords) ;

void RasterPosf234gfsifdgv(T coords) ;

RasterPos4 takes four values indicating x, y, z, and w. RasterPos3 (or
RasterPos2) is analogous, but sets only x, y, and z with w implicitly set

to 1 (or only x and y with z implicitly set to 0 and w implicitly set to 1).
The coordinates are treated as if they were speci�ed in a Vertex com-

mand. The x, y, z, and w coordinates are transformed by the current
model-view and perspective matrices. These coordinates, along with cur-

rent values, are used to generate a color and texture coordinates just as is
done for a vertex. The color and texture coordinates so produced replace
the color and texture coordinates stored in the current raster position's as-

sociated data. The distance from the origin of the eye coordinate system
to the vertex as transformed by only the current model-view matrix re-

places the current raster distance. This distance can be approximated (see
section 3.10).

The transformed coordinates are passed to clipping as if they represented
a point. If the \point" is not culled, then the projection to window coor-

dinates is computed (section 2.10) and saved as the current raster position,
and the valid bit is set. If the \point" is culled, the current raster position

and its associated data become indeterminate and the valid bit is cleared.
Figure 2.7 summarizes the behavior of the current raster position.

The current raster position requires �ve single-precision oating-point

values for its xw, yw, and zw window coordinates, its wc clip coordinate,
and its eye coordinate distance, a single valid bit, a color (RGBA and color

index), and texture coordinates for associated data. In the initial state, the
coordinates and texture coordinates are both (0; 0; 0; 1), the eye coordinate

distance is 0, the valid bit is set, the associated RGBA color is (1; 1; 1; 1)
and the associated color index color is 1. In RGBA mode, the associated

color index always has its initial value; in color index mode, the RGBA color
always maintains its initial value.

2.13 Colors and Coloring

DRAFT Version 1.2 - Jan. 2, 1998

CHAPTER 2. OPENGL OPERATION 42

Texture
Matrix

Rasterpos In

Current
Texture

Coordinates

Current
Normal

Current
Color

Lighting

Vertex/Normal
Transformation

Texgen

Clip Project

Current
Raster

Position

Valid

Raster
Position

Raster
Distance

Associated
Data

Figure 2.7. The current raster position and how it is set.

Figure 2.8 2 diagrams the processing of colors before rasterization. In-

coming colors arrive in one of several formats. Table 2.6 summarizes the
conversions that take place on R, G, B, and A components depending on

which version of the Color command was invoked to specify the compo-
nents. As a result of limited precision, some converted values will not be

represented exactly. In color index mode, a single-valued color index is not
mapped.

Next, lighting, if enabled, produces either a color index or primary and

secondary colors. If lighting is disabled, the current color index or color
is used in further processing (the current color is the primary color, and

the secondary color is (0; 0; 0; 0)). After lighting, RGBA colors are clamped
to the range [0; 1]. A color index is converted to �xed-point and then its

integer portion is masked (see section 2.13.6). After clamping or masking,
a primitive may be atshaded, indicating that all vertices of the primitive

are to have the same color. Finally, if a primitive is clipped, then colors
(and texture coordinates) must be computed at the vertices introduced or

2Split this �gure into RGBA and color index diagrams, and add a path for the secondary

color. We need to be clear that there's only one color in the current GL state, but two
colors associated with the vertex being processed (though this may change if explicit

speci�cation of the secondary color is later introduced as an extension).

DRAFT Version 1.2 - Jan. 2, 1998

CHAPTER 2. OPENGL OPERATION 43

Color

[0,2k−1]

[0.0,1.0]

RGBA

Lighting

Clamp to
[0.0, 1.0]

Flatshade?
Primitive
Clipping

Color
Clipping

Convert to
fixed−point

RGBA

Convert to
[0.0,1.0]

Convert to
float

[0,2n−1]

Index

[0.0,2n−1]

Mask to

[0.0, 2n−1]

Color

Index

Convert to
fixed−point

RGBA
Color
Index

Current
RGBA
Color

Current
Color
Index

[−2k−1,2k−1]
Convert to
[−1.0,1.0]

Figure 2.8. Processing of colors. When LIGHTING is enabled, RGBA refers
to both the primary and secondary RGBA colors generated by lighting. n is
the number of bits in a color index. See Table 2.6 for the interpretation of k.

DRAFT Version 1.2 - Jan. 2, 1998

CHAPTER 2. OPENGL OPERATION 44

GL Type Conversion

ubyte c=(28� 1)

byte (2c+ 1)=(28 � 1)

ushort c=(216� 1)

short (2c+ 1)=(216� 1)

uint c=(232� 1)

int (2c+ 1)=(232� 1)

oat c

double c

Table 2.6: Component conversions. Color, normal, and depth components,

(c), are converted to an internal oating-point representation, (f), using the
equations in this table. All arithmetic is done in the internal oating point

format. These conversions apply to components speci�ed as parameters to
GL commands and to components in pixel data. The equations remain the

same even if the implemented ranges of the GL data types are greater than
the minimum required ranges. (Refer to table 2.2)

modi�ed by clipping.

2.13.1 Lighting

GL lighting computes colors for each vertex sent to the GL. This is accom-

plished by applying an equation de�ned by a client-speci�ed lighting model
to a collection of parameters that can include the vertex coordinates, the

coordinates of one or more light sources, the current normal, and parameters
de�ning the characteristics of the light sources and a current material. The

following discussion assumes that the GL is in RGBA mode. (Color index
lighting is described in section 2.13.5.)

Lighting may be in one of two states:

1. Lighting O�. In this state, the current color is assigned to the vertex

primary color. The secondary color is (0; 0; 0; 0).

2. Lighting On. In this state, the vertex primary and secondary colors
are computed from the current lighting parameters.

Lighting is turned on or o� using the generic Enable orDisable commands
with the symbolic value LIGHTING.

DRAFT Version 1.2 - Jan. 2, 1998

CHAPTER 2. OPENGL OPERATION 45

Lighting Operation

A lighting parameter is of one of �ve types: color, position, direction, real,

or boolean. A color parameter consists of four oating-point values, one
for each of R, G, B, and A, in that order. There are no restrictions on the

allowable values for these parameters. A position parameter consists of four
oating-point coordinates (x, y, z, and w) that specify a position in object

coordinates (w may be zero, indicating a point at in�nity in the direction
given by x, y, and z). A direction parameter consists of three oating-point
coordinates (x, y, and z) that specify a direction in object coordinates. A

real parameter is one oating-point value. The various values and their
types are summarized in Table 2.7. The result of a lighting computation is

unde�ned if a value for a parameter is speci�ed that is outside the range
given for that parameter in the table.

There are n light sources, indexed by i = 0; : : : ; n�1. (n is an implemen-
tation dependent maximum that must be at least 8.) Note that the default

values for dcli and scli di�er for i = 0 and i > 0.
Before specifying the way that lighting computes colors, we introduce

operators and notation that simplify the expressions involved. If c1 and
c2 are colors without alpha where c1 = (r1; g1; b1) and c2 = (r2; g2; b2),
then de�ne c1 � c2 = (r1r2; g1g2; b1b2). Addition of colors is accomplished

by addition of the components. Multiplication of colors by a scalar means
multiplying each component by that scalar. If d1 and d2 are directions, then

de�ne
d1 � d2 = maxfd1 � d2; 0g:

(Directions are taken to have three coordinates.) If P1 and P2 are (homoge-

neous, with four coordinates) points then let
���!
P1P2 be the unit vector that

points from P1 to P2. Note that if P2 has a zero w coordinate and P1 has

non-zero w coordinate, then
���!
P1P2 is the unit vector corresponding to the

direction speci�ed by the x, y, and z coordinates of P2; if P1 has a zero w

coordinate and P2 has a non-zero w coordinate then
���!
P1P2 is the unit vector

that is the negative of that corresponding to the direction speci�ed by P1.

If both P1 and P2 have zero w coordinates, then
���!
P1P2 is the unit vector

obtained by normalizing the direction corresponding to P2 �P1.
If d is an arbitrary direction, then let d̂ be the unit vector in d's direction.

Let kP1P2k be the distance between P1 and P2. Finally, let V be the point
corresponding to the vertex being lit, and n be the corresponding normal.

Let Pe be the eyepoint ((0; 0; 0; 1) in eye coordinates).
Lighting produces two colors at a vertex: a primary color cpri and a

DRAFT Version 1.2 - Jan. 2, 1998

CHAPTER 2. OPENGL OPERATION 46

Parameter Type Default Value Description

Material Parameters

acm color (0:2; 0:2; 0:2; 1:0) ambient color of material

dcm color (0:8; 0:8; 0:8; 1:0) di�use color of material

scm color (0:0; 0:0; 0:0; 1:0) specular color of material

ecm color (0:0; 0:0; 0:0; 1:0) emissive color of material

srm real 0.0 specular exponent (range:
[0:0; 128:0])

am real 0:0 ambient color index

dm real 1:0 di�use color index

sm real 1:0 specular color index

Light Source Parameters

acli color (0:0; 0:0; 0:0; 1:0) ambient intensity of light i

dcli(i = 0) color (1:0; 1:0; 1:0; 1:0) di�use intensity of light 0
dcli(i > 0) color (0:0; 0:0; 0:0; 1:0) di�use intensity of light i

scli(i = 0) color (1:0; 1:0; 1:0; 1:0) specular intensity of light 0

scli(i > 0) color (0:0; 0:0; 0:0; 1:0) specular intensity of light i

Ppli position (0:0; 0:0; 1:0; 0:0) position of light i

sdli direction (0:0; 0:0;�1:0) direction of spotlight for light
i

srli real 0.0 spotlight exponent for light i
(range: [0:0; 128:0])

crli real 180.0 spotlight cuto� angle for

light i (range: [0:0; 90:0],
180:0)

k0i real 1.0 constant attenuation factor

for light i (range: [0:0;1))

k1i real 0.0 linear attenuation factor for
light i (range: [0:0;1))

k2i real 0.0 quadratic attenuation factor

for light i (range: [0:0;1))

Lighting Model Parameters

acs color (0:2; 0:2; 0:2; 1:0) ambient color of scene

vbs boolean FALSE viewer assumed to be at

(0; 0; 0) in eye coordinates
(TRUE) or (0; 0;1) (FALSE)

|ces enum SINGLE COLOR controls computation of

colors

tbs boolean FALSE use two-sided lighting mode

Table 2.7: Summary of lighting parameters. The range of individual color
components is (�1;+1).

DRAFT Version 1.2 - Jan. 2, 1998

CHAPTER 2. OPENGL OPERATION 47

secondary color csec. The values of cpri and csec depend on the light model

color control, ces. If ces = SINGLE COLOR, then the equations to compute cpri
and csec are

cpri = ecm

+ acm � acs

+
n�1X
i=0

(atti)(spoti) [acm � acli
+ (n��!VPpli)dcm � dcli
+ (fi)(n� ĥi)srmscm � scli]

csec = (0; 0; 0)

If ces = SEPARATE SPECULAR COLOR, then

cpri = ecm

+ acm � acs

+
n�1X
i=0

(atti)(spoti) [acm � acli
+ (n��!VPpli)dcm � dcli]

csec =
n�1X
i=0

(atti)(spoti)(fi)(n� ĥi)srmscm � scli

where

fi =

(
1; n� �!VPpli 6= 0;

0; otherwise,
(2.2)

hi =

8<
:
�!
VPpli +

�!
VPe; vbs = TRUE;

�!
VPpli + (0 0 1)T ; vbs = FALSE;

(2.3)

atti =

8><
>:

1
k0i + k1ikVPplik + k2ikVPplik2

; if Ppli's w 6= 0,

1:0; otherwise,

(2.4)

DRAFT Version 1.2 - Jan. 2, 1998

CHAPTER 2. OPENGL OPERATION 48

spoti =

8>><
>>:

(
���!
PpliV � ŝdli)srli ; crli 6= 180:0;

���!
PpliV � ŝdli � cos(crli);

0:0; crli 6= 180:0;
���!
PpliV � ŝdli < cos(crli);

1:0; crli = 180:0:

(2.5)

All computations are carried out in eye coordinates.
The value of A produced by lighting is the alpha value associated with

dcm. A is always associated with the primary color cpri; csec has no alpha
component. Results of lighting are unde�ned if the we coordinate (w in eye

coordinates) of V is zero.
Lighting may operate in two-sided mode (tbs = TRUE), in which a front

color is computed with one set of material parameters (the front material)
and a back color is computed with a second set of material parameters (the
back material). This second computation replaces n with �n. If tbs = FALSE,

then the back color and front color are both assigned the color computed
using the front material with n.

The selection between back color and front color depends on the primitive
of which the vertex being lit is a part. If the primitive is a point or a line

segment, the front color is always selected. If it is a polygon, then the
selection is based on the sign of the (clipped or unclipped) polygon's signed

area computed in window coordinates. One way to compute this area is

a =
1

2

n�1X
i=0

xiwy
i�1
w � xi�1w yiw (2.6)

where xiw and yiw are the x and y window coordinates of the ith vertex of

the n-vertex polygon (vertices are numbered starting at zero for purposes of
this computation) and i� 1 is (i+ 1) mod n. The interpretation of the sign
of this value is controlled with

void FrontFace(enum dir) ;

Setting dir to CCW (corresponding to counter-clockwise orientation of the

projected polygon in window coordinates) indicates that if a � 0, then the
color of each vertex of the polygon becomes the back color computed for

that vertex while if a > 0, then the front color is selected. If dir is CW, then
a is replaced by �a in the above inequalities. This requires one bit of state;
initially, it indicates CCW.

2.13.2 Lighting Parameter Speci�cation

Lighting parameters are divided into three categories: material parameters,
light source parameters, and lighting model parameters (see Table 2.7). Sets

DRAFT Version 1.2 - Jan. 2, 1998

CHAPTER 2. OPENGL OPERATION 49

of lighting parameters are speci�ed with

void Materialfifg(enum face, enum pname, T param) ;
void Materialfifgv(enum face, enum pname, T params) ;

void Lightfifg(enum light, enum pname, T param) ;
void Lightfifgv(enum light, enum pname, T params) ;

void LightModelfifg(enum pname, T param) ;
void LightModelfifgv(enum pname, T params) ;

pname is a symbolic constant indicating which parameter is to be set (see

Table 2.8). In the vector versions of the commands, params is a pointer to
a group of values to which to set the indicated parameter. The number of

values pointed to depends on the parameter being set. In the non-vector
versions, param is a value to which to set a single-valued parameter. (If

param corresponds to a multi-valued parameter, the error INVALID ENUM re-
sults.) For the Material command, face must be one of FRONT, BACK, or
FRONT AND BACK, indicating that the property name of the front or back ma-

terial, or both, respectively, should be set. In the case of Light, light is a
symbolic constant of the form LIGHTi, indicating that light i is to have the

speci�ed parameter set. The constants obey LIGHTi = LIGHT0+ i.
Table 2.8 gives, for each of the three parameter groups, the correspon-

dence between the pre-de�ned constant names and their names in the light-
ing equations, along with the number of values that must be speci�ed with

each. Color parameters speci�ed with Material and Light are converted
to oating-point values (if speci�ed as integers) as indicated in Table 2.6

for signed integers. The error INVALID VALUE occurs if a speci�ed lighting
parameter lies outside the allowable range given in Table 2.7. (The sym-
bol \1" indicates the maximum representable magnitude for the indicated

type.)
The current model-view matrix is applied to the position parameter indi-

cated with Light for a particular light source when that position is speci�ed.
These transformed values are the values used in the lighting equation.

The spotlight direction is transformed when it is speci�ed using only the
upper leftmost 3x3 portion of the model-view matrix. That is, if Mu is the

upper left 3x3 matrix taken from the current model-view matrix M , then
the spotlight direction 0

@ dx
dy
dz

1
A

DRAFT Version 1.2 - Jan. 2, 1998

CHAPTER 2. OPENGL OPERATION 50

Parameter Name Number of values

Material Parameters (Material)

acm AMBIENT 4

dcm DIFFUSE 4

acm;dcm AMBIENT AND DIFFUSE 4

scm SPECULAR 4

ecm EMISSION 4

srm SHININESS 1

am; dm; sm COLOR INDEXES 3

Light Source Parameters (Light)

acli AMBIENT 4

dcli DIFFUSE 4

scli SPECULAR 4

Ppli POSITION 4

sdli SPOT DIRECTION 3

srli SPOT EXPONENT 1

crli SPOT CUTOFF 1

k0 CONSTANT ATTENUATION 1

k1 LINEAR ATTENUATION 1

k2 QUADRATIC ATTENUATION 1

Lighting Model Parameters (LightModel)

acs LIGHT MODEL AMBIENT 4

vbs LIGHT MODEL LOCAL VIEWER 1

tbs LIGHT MODEL TWO SIDE 1

|ces LIGHT MODEL COLOR CONTROL 1

Table 2.8: Correspondence of lighting parameter symbols to names.
AMBIENT AND DIFFUSE is used to set acm and dcm to the same value.

DRAFT Version 1.2 - Jan. 2, 1998

CHAPTER 2. OPENGL OPERATION 51

Current
Color

Front Ambient
Color

Up while ColorMaterial face is FRONT or FRONT_AND_BACK,
and ColorMaterial mode is AMBIENT or AMBIENT_AND_DIFFUSE,
and ColorMaterial is enabled. Down otherwise.

Material*(FRONT,AMBIENT)
To lighting equations

Front Diffuse
Color

Up while ColorMaterial face is FRONT or FRONT_AND_BACK,
and ColorMaterial mode is DIFFUSE or AMBIENT_AND_DIFFUSE,
and ColorMaterial is enabled. Down otherwise.

Material*(FRONT,DIFFUSE)
To lighting equations

Up while ColorMaterial face is FRONT or FRONT_AND_BACK,
and ColorMaterial mode is SPECULAR, and ColorMaterial is
enabled. Down otherwise.

Material*(FRONT,SPECULAR)
To lighting equations

Front Emission
Color

Up while ColorMaterial face is FRONT or FRONT_AND_BACK,
and ColorMaterial mode is EMISSION, and ColorMaterial is
enabled. Down otherwise.

Material*(FRONT,EMISSION)
To lighting equations

Front Specular
Color

Color*() To subsequent vertex operations

State values flow continuously along this path

State values flow along this path only when a command is issued

Figure 2.9. ColorMaterial operation. Material properties are continuously
updated from the current color while ColorMaterial is enabled and has the
appropriate mode. Only the front material properties are included in this
�gure. The back material properties are treated identically.

is transformed to 0
@ d0x
d0y
d0z

1
A = Mu

0
@ dx
dy
dz

1
A :

An individual light is enabled or disabled by calling Enable or Disable

with the symbolic value LIGHTi (i is in the range 0 to n � 1, where n is the
implementation-dependent number of lights). If light i is disabled, the ith

term in the lighting equation is e�ectively removed from the summation.

2.13.3 ColorMaterial

DRAFT Version 1.2 - Jan. 2, 1998

CHAPTER 2. OPENGL OPERATION 52

It is possible to attach one or more material properties to the current

color, so that they continuously track its component values. This behavior
is enabled and disabled by calling Enable or Disable with the symbolic

value COLOR MATERIAL.
The command that controls which of these modes is selected is

void ColorMaterial(enum face, enum mode) ;

face is one of FRONT, BACK, or FRONT AND BACK, indicating whether the front

material, back material, or both are a�ected by the current color. mode

is one of EMISSION, AMBIENT, DIFFUSE, SPECULAR, or AMBIENT AND DIFFUSE and
speci�es which material property or properties track the current color. If

mode is EMISSION, AMBIENT, DIFFUSE, or SPECULAR, then the value of ecm,
acm, dcm or scm, respectively, will track the current color. If mode is

AMBIENT AND DIFFUSE, both acm and dcm track the current color. The re-
placements made to material properties are permanent; the replaced values

remain until changed by either sending a new color or by setting a new ma-
terial value when ColorMaterial is not currently enabled to override that

particular value. When COLOR MATERIAL is enabled, the indicated parameter
or parameters always track the current color. For instance, calling

ColorMaterial(FRONT, AMBIENT)

while COLOR MATERIAL is enabled sets the front material acm to the value of
the current color.

2.13.4 Lighting State

The state required for lighting consists of all of the lighting parameters (front
and back material parameters, lighting model parameters, and at least 8 sets
of light parameters), a bit indicating whether a back color distinct from the

front color should be computed, at least 8 bits to indicate which lights are
enabled, a �ve-valued variable indicating the current ColorMaterial mode,

a bit indicating whether or not COLOR MATERIAL is enabled, and a single bit
to indicate whether lighting is enabled or disabled. In the initial state, all

lighting parameters have their default values. Back color evaluation does
not take place, ColorMaterial is FRONT AND BACK and AMBIENT AND DIFFUSE,

and both lighting and COLOR MATERIAL are disabled.

2.13.5 Color Index Lighting

A simpli�ed lighting computation applies in color index mode that uses
many of the parameters controlling RGBA lighting, but none of the RGBA

DRAFT Version 1.2 - Jan. 2, 1998

CHAPTER 2. OPENGL OPERATION 53

material parameters. First, the RGBA di�use and specular intensities of

light i (dcli and scli, respectively) determine color index di�use and specular
light intensities, dli and sli from

dli = (:30)R(dcli) + (:59)G(dcli) + (:11)B(dcli)

and

sli = (:30)R(scli) + (:59)G(scli) + (:11)B(scli):

R(x) indicates the R component of the color x and similarly for G(x) and
B(x).

Next, let

s =
nX
i=0

(atti)(spoti)(sli)(fi)(n� ĥi)srm

where atti and spoti are given by equations 2.4 and 2.5, respectively, and fi
and ĥi are given by equations 2.2 and 2.3, respectively. Let s0 = minfs; 1g.
Finally, let

d =
nX
i=0

(atti)(spoti)(dli)(n�
�!
VPpli):

Then color index lighting produces a value c, given by

c = am + d(1� s0)(dm � am) + s0(sm � am):

The �nal color index is

c0 = minfc; smg:
The values am, dm and sm are material properties described in Tables 2.7

and 2.8. Any ambient light intensities are incorporated into am. As with
RGBA lighting, disabled lights cause the corresponding terms from the sum-
mations to be omitted. The interpretation of tbs and the calculation of front

and back colors is carried out as has already been described for RGBA
lighting.

The values am, dm, and sm are set with Material using a pname of
COLOR INDEXES. Their initial values are 0, 1, and 1, respectively. The ad-

ditional state consists of three oating-point values. These values have no
e�ect on RGBA lighting.

2.13.6 Clamping or Masking

After lighting (whether enabled or not), both primary and secondary colors
are clamped to the range [0; 1].

DRAFT Version 1.2 - Jan. 2, 1998

CHAPTER 2. OPENGL OPERATION 54

Primitive type of polygon i Vertex

single polygon (i � 1) 1

triangle strip i+ 2

triangle fan i+ 2

independent triangle 3i

quad strip 2i+ 2

independent quad 4i

Table 2.9: Polygon atshading color selection. The colors used for atshad-
ing the ith polygon generated by the indicated Begin/End type are derived
from the current color (if lighting is disabled) in e�ect when the indicated

vertex is speci�ed. If lighting is enabled, the colors are produced by lighting
the indicated vertex. Vertices are numbered 1 through n, where n is the

number of vertices between the Begin/End pair.

For a color index, the index is �rst converted to �xed-point with an
unspeci�ed number of bits to the right of the binary point; the nearest

�xed-point value is selected. Then, the bits to the right of the binary point
are left alone while the integer portion is masked (bitwise ANDed) with

2n � 1, where n is the number of bits in a color in the color index bu�er
(bu�ers are discussed in chapter 4).

2.13.7 Flatshading

A primitive may be atshaded, meaning that all vertices of the primitive are
assigned the same color index or the same primary and secondary colors.

These colors are the colors of the vertex that spawned the primitive. For a
point, these are the colors associated with the point. For a line segment, they

are the colors of the second (�nal) vertex of the segment. For a polygon, they
come from a selected vertex depending on how the polygon was generated.
Table 2.9 summarizes the possibilities.

Flatshading is controlled by

void ShadeModel(enum mode) ;

mode value must be either of the symbolic constants SMOOTH or FLAT. If mode

is SMOOTH (the initial state), vertex colors are treated individually. If mode is
FLAT, atshading is turned on. ShadeModel thus requires one bit of state.

DRAFT Version 1.2 - Jan. 2, 1998

CHAPTER 2. OPENGL OPERATION 55

2.13.8 Color and Texture Coordinate Clipping

After lighting, clamping or masking and possible atshading, colors are

clipped. Those colors associated with a vertex that lies within the clip
volume are una�ected by clipping. If a primitive is clipped, however, the

colors assigned to vertices produced by clipping are clipped colors.
Let the colors assigned to the two vertices P1 and P2 of an unclipped

edge be c1 and c2. The value of t (section 2.11) for a clipped point P is
used to obtain the color associated with P as

c = tc1 + (1� t)c2:

(For a color index color, multiplying a color by a scalar means multiplying

the index by the scalar. For an RGBA color, it means multiplying each of R,
G, B, and A by the scalar. Both primary and secondary colors are treated

in the same fashion.) Polygon clipping may create a clipped vertex along an
edge of the clip volume's boundary. This situation is handled by noting that

polygon clipping proceeds by clipping against one plane of the clip volume's
boundary at a time. Color clipping is done in the same way, so that clipped
points always occur at the intersection of polygon edges (possibly already

clipped) with the clip volume's boundary.
Texture coordinates must also be clipped when a primitive is clipped.

The method is exactly analogous to that used for color clipping.

2.13.9 Final Color Processing

For an RGBA color, each color component (which lies in [0; 1]) is converted

(by rounding to nearest) to a �xed-point value with m bits. We assume
that the �xed-point representation used represents each value k=(2m � 1),

where k 2 f0; 1; : : : ; 2m � 1g, as k (e.g. 1.0 is represented in binary as a
string of all ones). m must be at least as large as the number of bits in the

corresponding component of the framebu�er. If the framebu�er does not
contain an A component, then m must be at least 2 for A. A color index

is converted (by rounding to nearest) to a �xed-point value with at least as
many bits as there are in the color index portion of the framebu�er.

Because a number of the form k=(2m�1) may not be represented exactly
as a limited-precision oating-point quantity, we place a further requirement
on the �xed-point conversion of RGBA components. Suppose that lighting

is disabled, the color associated with a vertex has not been clipped, and one
of Colorub, Colorus, or Colorui was used to specify that color. When

these conditions are satis�ed, an RGBA component must convert to a value

DRAFT Version 1.2 - Jan. 2, 1998

CHAPTER 2. OPENGL OPERATION 56

that matches the component as speci�ed in the Color command: if m is less

than the number of bits b with which the component was speci�ed, then the
converted value must equal the most signi�cant m bits of the speci�ed value;

otherwise, the most signi�cant b bits of the converted value must equal the
speci�ed value.

DRAFT Version 1.2 - Jan. 2, 1998

Chapter 3

Rasterization

Rasterization is the process by which a primitive is converted to a two-
dimensional image. Each point of this image contains such information as

color and depth. Thus, rasterizing a primitive consists of two parts. The
�rst is to determine which squares of an integer grid in window coordinates

are occupied by the primitive. The second is assigning a color and a depth
value to each such square. The results of this process are passed on to the

next stage of the GL (per-fragment operations), which uses the information
to update the appropriate locations in the framebu�er. Figure 3.1 diagrams
the rasterization process.

A grid square along with its parameters of assigned color, z (depth),
and texture coordinates is called a fragment; the parameters are collectively

dubbed the fragment's associated data. A fragment is located by its lower-
left corner, which lies on integer grid coordinates. Rasterization operations

also refer to a fragment's center, which is o�set by (1=2; 1=2) from its lower-
left corner (and so lies on half-integer coordinates).

Grid squares need not actually be square in the GL. Rasterization rules
are not a�ected by the actual aspect ratio of the grid squares. Display of

non-square grids, however, will cause rasterized points and line segments to
appear fatter in one direction than the other. We assume that fragments
are square, since it simpli�es antialiasing and texturing.

Several factors a�ect rasterization. Lines and polygons may be stippled.
Points may be given di�ering diameters and line segments di�ering widths.

A point, line segment, or polygon may be antialiased.

57

DRAFT Version 1.2 - Jan. 2, 1998

CHAPTER 3. RASTERIZATION 58

Point
Rasterization

Line
Rasterization

Polygon
Rasterization

From
Primitive
Assembly

Pixel
Rectangle

Rasterization

Bitmap
RasterizationBitmap

DrawPixels

Texturing

Color Sum

Fog

Fragments

Figure 3.1. Rasterization.

DRAFT Version 1.2 - Jan. 2, 1998

CHAPTER 3. RASTERIZATION 59

3.1 Invariance

Consider a primitive p0 obtained by translating a primitive p through an
o�set (x; y) in window coordinates, where x and y are integers. As long

as neither p0 nor p is clipped, it must be the case that each fragment f 0

produced from p0 is identical to a corresponding fragment f from p except

that the center of f 0 is o�set by (x; y) from the center of f .

3.2 Antialiasing

Antialiasing of a point, line, or polygon is e�ected in one of two ways de-

pending on whether the GL is in RGBA or color index mode.
In RGBA mode, the R, G, and B values of the rasterized fragment are

left una�ected, but the A value is multiplied by a oating-point value in
the range [0; 1] that describes a fragment's screen pixel coverage. The

per-fragment stage of the GL can be set up to use the A value to blend
the incoming fragment with the corresponding pixel already present in the

framebu�er.
In color index mode, the least signi�cant b bits (to the left of the binary

point) of the color index are used for antialiasing; b = minf4; mg, where
m is the number of bits in the color index portion of the framebu�er. The
antialiasing process sets these b bits based on the fragment's coverage value:

the bits are set to zero for no coverage and to all ones for complete coverage.
The details of how antialiased fragment coverage values are computed

are di�cult to specify in general. The reason is that high-quality antialias-
ing may take into account perceptual issues as well as characteristics of the

monitor on which the contents of the framebu�er are displayed. Such de-
tails cannot be addressed within the scope of this document. Further, the

coverage value computed for a fragment of some primitive may depend on
the primitive's relationship to a number of grid squares neighboring the one
corresponding to the fragment, and not just on the fragment's grid square.

Another consideration is that accurate calculation of coverage values may
be computationally expensive; consequently we allow a given GL implemen-

tation to approximate true coverage values by using a fast but not entirely
accurate coverage computation.

In light of these considerations, we chose to specify the behavior of exact
antialiasing in the prototypical case that each displayed pixel is a perfect

square of uniform intensity. The square is called a fragment square and has
lower left corner (x; y) and upper right corner (x + 1; y + 1). We recognize

DRAFT Version 1.2 - Jan. 2, 1998

CHAPTER 3. RASTERIZATION 60

that this simple box �lter may not produce the most favorable antialiasing

results, but it provides a simple, well-de�ned model.
A GL implementation may use other methods to perform antialiasing,

subject to the following conditions:

1. If f1 and f2 are two fragments, and the portion of f1 covered by some
primitive is a subset of the corresponding portion of f2 covered by

the primitive, then the coverage computed for f1 must be less than or
equal to that computed for f2.

2. The coverage computation for a fragment f must be local: it may
depend only on f 's relationship to the boundary of the primitive being

rasterized. It may not depend on f 's x and y coordinates.

Another property that is desirable, but not required, is:

3. The sum of the coverage values for all fragments produced by rasteriz-

ing a particular primitive must be constant, independent of any rigid
motions in window coordinates, as long as none of those fragments lies

along window edges.

In some implementations, varying degrees of antialiasing quality may be
obtained by providing GL hints (section 5.6), allowing a user to make an
image quality versus speed tradeo�.

3.3 Points

The rasterization of points is controlled with

void PointSize(float size) ;

size speci�es the width or diameter of a point. The default value is 1.0. A
value less than or equal to zero results in the error INVALID VALUE.

Point antialiasing is enabled or disabled by calling Enable or Disable
with the symbolic constant POINT SMOOTH. The default state is for point an-
tialiasing to be disabled.

In the default state, a point is rasterized by truncating its xw and yw
coordinates (recall that the subscripts indicate that these are x and y window

coordinates) to integers. This (x; y) address, along with data derived from
the data associated with the vertex corresponding to the point, is sent as a

single fragment to the per-fragment stage of the GL.

DRAFT Version 1.2 - Jan. 2, 1998

CHAPTER 3. RASTERIZATION 61

The e�ect of a point width other than 1:0 depends on the state of

point antialiasing. If antialiasing is disabled, the actual width is deter-
mined by rounding the supplied width to the nearest integer, then clamping

it to the implementation-dependent maximum non-antialiased point width.
Though this implementation-dependent value cannot be queried, it must

be no less than the implementation-dependent maximum antialiased point
width, rounded to the nearest integer value, and in any event no less than

1. If rounding the speci�ed width results in the value 0, then it is as if the
value were 1. If the resulting width is odd, then the point

(x; y) = (bxwc+
1

2
; bywc+

1

2
)

is computed from the vertex's xw and yw , and a square grid of the odd width
centered at (x; y) de�nes the centers of the rasterized fragments (recall that

fragment centers lie at half-integer window coordinate values). If the width
is even, then the center point is

(x; y) = (bxw +
1

2
c; byw +

1

2
c);

the rasterized fragment centers are the half-integer window coordinate values

within the square of the even width centered on (x; y). See �gure 3.2.
All fragments produced in rasterizing a non-antialiased point are as-

signed the same associated data, which are those of the vertex corresponding

to the point, with texture coordinates s, t, and r replaced with s=q, t=q, and
r=q, respectively. If q is less than or equal to zero, the results are unde�ned.

If antialiasing is enabled, then point rasterization produces a fragment
for each fragment square that intersects the region lying within the circle

having diameter equal to the current point width and centered at the point's
(xw; yw) (�gure 3.3). The coverage value for each fragment is the window

coordinate area of the intersection of the circular region with the corre-
sponding fragment square (but see section 3.2). This value is saved and

used in the �nal step of rasterization (section 3.11). The data associated
with each fragment are otherwise the data associated with the point being
rasterized, with texture coordinates s, t, and r replaced with s=q, t=q, and

r=q, respectively. If q is less than or equal to zero, the results are unde�ned.

Not all widths need be supported when point antialiasing is on, but
the width 1:0 must be provided. If an unsupported width is requested, the

nearest supported width is used instead. The range of supported widths and
the width of evenly-spaced gradations within that range are implementation

DRAFT Version 1.2 - Jan. 2, 1998

CHAPTER 3. RASTERIZATION 62

000
000
000

000
000
000

Odd Width Even Width

3.5 4.5 5.52.51.5 3.5 4.5 5.52.51.5

1.5

2.5

3.5

4.5

0.50.5

0.5

5.5

Figure 3.2. Rasterization of non-antialiased wide points. The crosses show
fragment centers produced by rasterization for any point that lies within the
shaded region. The dotted grid lines lie on half-integer coordinates.

dependent. The range and gradations may be obtained using the query
mechanism described in Chapter 6. If, for instance, the width range is from

0.1 to 2.0 and the gradation width is 0.1, then the widths 0:1; 0:2; : : : ; 1:9; 2:0
are supported.

3.3.1 Point Rasterization State

The state required to control point rasterization consists of the oating-point
point width and a bit indicating whether or not antialiasing is enabled.

3.4 Line Segments

A line segment results from a line strip Begin/End object, a line loop, or
a series of separate line segments. Line segment rasterization is controlled

by several variables. Line width, which may be set by calling

void LineWidth(float width) ;

with an appropriate positive oating-point width, controls the width of ras-

terized line segments. The default width is 1:0. Values less than or equal

DRAFT Version 1.2 - Jan. 2, 1998

CHAPTER 3. RASTERIZATION 63

333333333333333
333333333333333
333333333333333
333333333333333
333333333333333
333333333333333
333333333333333
333333333333333
333333333333333
333333333333333
333333333333333
333333333333333
333333333333333
333333333333333
333333333333333
333333333333333

1.00.0 3.02.0 5.04.0 6.0
0.0

1.0

2.0

3.0

4.0

5.0

6.0

Figure 3.3. Rasterization of antialiased wide points. The black dot indi-
cates the point to be rasterized. The shaded region has the speci�ed width.
The X marks indicate those fragment centers produced by rasterization. A
fragment's computed coverage value is based on the portion of the shaded re-
gion that covers the corresponding fragment square. Solid lines lie on integer
coordinates.

DRAFT Version 1.2 - Jan. 2, 1998

CHAPTER 3. RASTERIZATION 64

to 0:0 generate the error INVALID VALUE. Antialiasing is controlled with En-

able and Disable using the symbolic constant LINE SMOOTH. Finally, line
segments may be stippled. Stippling is controlled by a GL command that

sets a stipple pattern (see below).

3.4.1 Basic Line Segment Rasterization

Line segment rasterization begins by characterizing the segment as either

x-major or y-major. x-major line segments have slope in the closed inter-
val [�1; 1]; all other line segments are y-major (slope is determined by the
segment's endpoints). We shall specify rasterization only for x-major seg-

ments except in cases where the modi�cations for y-major segments are not
self-evident.

Ideally, the GL uses a \diamond-exit" rule to determine those fragments
that are produced by rasterizing a line segment. For each fragment f with

center at window coordinates xf and yf , de�ne a diamond-shaped region
that is the intersection of four half planes:

Rf = f (x; y) j jx� xf j+ jy � yf j < 1=2:g

Essentially, a line segment starting at pa and ending at pb produces those

fragments f for which the segment intersects Rf , except if pb is contained
in Rf . See �gure 3.4.

To avoid di�culties when an endpoint lies on a boundary of Rf we (in

principle) perturb the supplied endpoints by a tiny amount. Let pa and
pb have window coordinates (xa; ya) and (xb; yb), respectively. Obtain the

perturbed endpoints p0a given by (xa; ya)� (�; �2) and p0b given by (xb; yb)�
(�; �2). Rasterizing the line segment starting at pa and ending at pb produces

those fragments f for which the segment starting at p0a and ending on p0b
intersects Rf , except if p

0
b is contained in Rf . � is chosen to be so small

that rasterizing the line segment produces the same fragments when � is
substituted for � for any 0 < � � �.

When pa and pb lie on fragment centers, this characterization of frag-
ments reduces to Bresenham's algorithm with one modi�cation: lines pro-
duced in this description are \half-open," meaning that the �nal fragment

(corresponding to pb) is not drawn. This means that when rasterizing a
series of connected line segments, shared endpoints will be produced only

once rather than twice (as would occur with Bresenham's algorithm).
Because the initial and �nal conditions of the diamond-exit rule may

be di�cult to implement, other line segment rasterization algorithms are
allowed, subject to the following rules:

DRAFT Version 1.2 - Jan. 2, 1998

CHAPTER 3. RASTERIZATION 65

00

00000
00000
00000
00000
0000000000

00000
00000
00000
00000

00000
00000
00000
00000
00000

00000
00000
00000
00000
00000

00000
00000
00000
00000
00000

00000
00000
00000
00000
0000000000
00000
00000
00000
0000000000
00000
00000
00000
0000000000
00000
00000
00000
0000000000
00000
00000
00000
00000

00000
00000
00000
00000
0000000000
00000
00000
00000
0000000000
00000
00000
00000
00000

00000
00000
00000
00000
0000000000
00000
00000
00000
00000

00000
00000
00000
00000
0000000000
00000
00000
00000
0000000000
00000
00000
00000
0000000000
00000
00000
00000
0000000000
00000
00000
00000
00000

00000
00000
00000
00000
0000000000
00000
00000
00000
0000000000
00000
00000
00000
0000000000
00000
00000
00000
0000000000
00000
00000
00000
00000

Figure 3.4. Visualization of Bresenham's algorithm. A portion of a line
segment is shown. A diamond shaped region of height 1 is placed around each
fragment center; those regions that the line segment exits cause rasterization
to produce corresponding fragments.

1. The coordinates of a fragment produced by the algorithm may not

deviate by more than one unit in either x or y window coordinates
from a corresponding fragment produced by the diamond-exit rule.

2. The total number of fragments produced by the algorithm may di�er
from that produced by the diamond-exit rule by no more than one.

3. For an x-major line, no two fragments may be produced that lie in the

same window-coordinate column (for a y-major line, no two fragments
may appear in the same row).

4. If two line segments share a common endpoint, and both segments
are either x-major (both left-to-right or both right-to-left) or y-major

(both bottom-to-top or both top-to-bottom), then rasterizing both
segments may not produce duplicate fragments, nor may any frag-

ments be omitted so as to interrupt continuity of the connected seg-
ments.

Next we must specify how the data associated with each rasterized frag-
ment are obtained. Let the window coordinates of a produced fragment

center be given by pr = (xd; yd) and let pa = (xa; ya) and pb = (xb; yb). Set

DRAFT Version 1.2 - Jan. 2, 1998

CHAPTER 3. RASTERIZATION 66

t =
(pr � pa) � (pb � pa)

kpb � pak2
: (3.1)

(Note that t = 0 at pa and t = 1 at pb.) The value of an associated datum

f for the fragment, whether it be R, G, B, or A (in RGBA mode) or a color
index (in color index mode), or the s, t, or r texture coordinate (the depth

value, window z, must be found using equation 3.3, below), is found as

f =
(1� t)fa=wa + tfb=wb

(1� t)�a=wa + t�b=wb

(3.2)

where fa and fb are the data associated with the starting and ending end-

points of the segment, respectively; wa and wb are the clip w coordinates of
the starting and ending endpoints of the segments, respectively. �a = �b = 1

for all data except texture coordinates, in which case �a = qa and �b = qb
(qa and qb are the homogeneous texture coordinates at the starting and end-

ing endpoints of the segment; results are unde�ned if either of these is less
than or equal to 0). Note that linear interpolation would use

f = (1� t)fa=�a + tfb=�b: (3.3)

The reason that this formula is incorrect (except for the depth value) is

that it interpolates a datum in window space, which may be distorted by
perspective. What is actually desired is to �nd the corresponding value when

interpolated in eye space, which equation 3.2 does. A GL implementation
may choose to approximate equation 3.2 with 3.3, but this will normally lead
to unacceptable distortion e�ects when interpolating texture coordinates.

3.4.2 Other Line Segment Features

We have just described the rasterization of non-antialiased line segments
of width one using the default line stipple of FFFF16. We now describe

the rasterization of line segments for general values of the line segment
rasterization parameters.

Line Stipple

The command

void LineStipple(int factor, ushort pattern) ;

DRAFT Version 1.2 - Jan. 2, 1998

CHAPTER 3. RASTERIZATION 67

de�nes a line stipple. pattern is an unsigned short integer. The line stipple is

taken from the lowest order 16 bits of pattern. It determines those fragments
that are to be drawn when the line is rasterized. factor is a count that is

used to modify the e�ective line stipple by causing each bit in line stipple to
be used factor times. factor is clamped to the range [1; 256]. Line stippling

may be enabled or disabled using Enable or Disable with the constant
LINE STIPPLE. When disabled, it is as if the line stipple has its default value.

Line stippling masks certain fragments that are produced by rasteriza-
tion so that they are not sent to the per-fragment stage of the GL. The

masking is achieved using three parameters: the 16-bit line stipple p, the
line repeat count r, and an integer stipple counter s. Let

b = bs=rc mod 16;

Then a fragment is produced if the bth bit of p is 1, and not produced

otherwise. The bits of p are numbered with 0 being the least signi�cant and
15 being the most signi�cant. The initial value of s is zero; s is incremented

after production of each fragment of a line segment (fragments are produced
in order, beginning at the starting point and working towards the ending

point). s is reset to 0 whenever a Begin occurs, and before every line
segment in a group of independent segments (as speci�ed when Begin is

invoked with LINES).
If the line segment has been clipped, then the value of s at the beginning

of the line segment is indeterminate.

Wide Lines

The actual width of non-antialiased lines is determined by rounding

the supplied width to the nearest integer, then clamping it to the
implementation-dependent maximum non-antialiased line width. Though

this implementation-dependent value cannot be queried, it must be no
less than the implementation-dependent maximum antialiased line width,

rounded to the nearest integer value, and in any event no less than 1. If
rounding the speci�ed width results in the value 0, then it is as if the value
were 1.

Non-antialiased line segments of width other than one are rasterized
by o�setting them in the minor direction (for an x-major line, the minor

direction is y, and for a y-major line, the minor direction is x) and replicating
fragments in the minor direction (see �gure 3.5). Let w be the width rounded

to the nearest integer (if w = 0, then it is as if w = 1). If the line segment has
endpoints given by (x0; y0) and (x1; y1) in window coordinates, the segment

DRAFT Version 1.2 - Jan. 2, 1998

CHAPTER 3. RASTERIZATION 68

width = 2 width = 3

Figure 3.5. Rasterization of non-antialiased wide lines. x-major line segments
are shown. The heavy line segment is the one speci�ed to be rasterized; the
light segment is the o�set segment used for rasterization. x marks indicate
the fragment centers produced by rasterization.

with endpoints (x0; y0�(w�1)=2) and (x1; y1�(w�1)=2) is rasterized, but
instead of a single fragment, a column of fragments of height w (a row of
fragments of length w for a y-major segment) is produced at each x (y for

y-major) location. The lowest fragment of this column is the fragment that
would be produced by rasterizing the segment of width 1 with the modi�ed
coordinates. The whole column is not produced if the stipple bit for the

column's x location is zero; otherwise, the whole column is produced.

Antialiasing

Rasterized antialiased line segments produce fragments whose fragment
squares intersect a rectangle centered on the line segment. Two of the edges

are parallel to the speci�ed line segment; each is at a distance of one-half the
current width from that segment: one above the segment and one below it.

The other two edges pass through the line endpoints and are perpendicular
to the direction of the speci�ed line segment. Coverage values are computed

for each fragment by computing the area of the intersection of the rectangle
with the fragment square (see �gure 3.6; see also section 3.2). Equation 3.2
is used to compute associated data values just as with non-antialiased lines;

equation 3.1 is used to �nd the value of t for each fragment whose square

DRAFT Version 1.2 - Jan. 2, 1998

CHAPTER 3. RASTERIZATION 69

00000000000000000000
00000000000000000000
00000000000000000000
00000000000000000000
00000000000000000000
00000000000000000000
00000000000000000000
00000000000000000000
00000000000000000000
00000000000000000000
00000000000000000000
00000000000000000000
00000000000000000000
00000000000000000000

Figure 3.6. The region used in rasterizing and �nding corresponding coverage
values for an antialiased line segment (an x-major line segment is shown).

is intersected by the line segment's rectangle. Not all widths need be sup-
ported for line segment antialiasing, but width 1:0 antialiased segments must
be provided. As with the point width, a GL implementation may be queried

for the range and number of gradations of available antialiased line widths.
For purposes of antialiasing, a stippled line is considered to be a sequence

of contiguous rectangles centered on the line segment. Each rectangle has
width equal to the current line width and length equal to 1 pixel (except the

last, which may be shorter). These rectangles are numbered from 0 to n,
starting with the rectangle incident on the starting endpoint of the segment.

Each of these rectangles is either eliminated or produced according to the
procedure given under Line Stipple, above, where \fragment" is replaced

with \rectangle." Each rectangle so produced is rasterized as if it were an
antialiased polygon, described below (but culling, non-default settings of
PolygonMode, and polygon stippling are not applied).

3.4.3 Line Rasterization State

The state required for line rasterization consists of the oating-point line
width, a 16-bit line stipple, the line stipple repeat count, a bit indicating

whether stippling is enabled or disabled, and a bit indicating whether line
antialiasing is on or o�. In addition, during rasterization, an integer stipple

counter must be maintained to implement line stippling. The initial value
of the line width is 1:0. The initial value of the line stipple is FFFF16 (a

DRAFT Version 1.2 - Jan. 2, 1998

CHAPTER 3. RASTERIZATION 70

stipple of all ones). The initial value of the line stipple repeat count is one.

The initial state of line stippling is disabled. The initial state of line segment
antialiasing is disabled.

3.5 Polygons

A polygon results from a polygon Begin/End object, a triangle resulting
from a triangle strip, triangle fan, or series of separate triangles, or a quadri-

lateral arising from a quadrilateral strip, series of separate quadrilaterals, or
a Rect command. Like points and line segments, polygon rasterization is

controlled by several variables. Polygon antialiasing is controlled with En-
able and Disable with the symbolic constant POLYGON SMOOTH. The analog

to line segment stippling for polygons is polygon stippling, described below.

3.5.1 Basic Polygon Rasterization

The �rst step of polygon rasterization is to determine if the polygon is

back facing or front facing. This determination is made by examining the
sign of the area computed by equation 2.6 of section 2.13.1 (including the

possible reversal of this sign as indicated by the last call to FrontFace). If
this sign is positive, the polygon is frontfacing; otherwise, it is back facing.

This determination is used in conjunction with the CullFace enable bit and
mode value to decide whether or not a particular polygon is rasterized. The
CullFace mode is set by calling

void CullFace(enum mode) ;

mode is a symbolic constant: one of FRONT, BACK or FRONT AND BACK. Culling
is enabled or disabled with Enable or Disable using the symbolic constant

CULL FACE. Front facing polygons are rasterized if either culling is disabled or
the CullFace mode is BACK while back facing polygons are rasterized only if

either culling is disabled or the CullFace mode is FRONT. The initial setting
of the CullFace mode is BACK. Initially, culling is disabled.

The rule for determining which fragments are produced by polygon ras-
terization is called point sampling. The two-dimensional projection obtained

by taking the x and y window coordinates of the polygon's vertices is formed.
Fragment centers that lie inside of this polygon are produced by rasteriza-

tion. Special treatment is given to a fragment whose center lies on a polygon
boundary edge. In such a case we require that if two polygons lie on either

DRAFT Version 1.2 - Jan. 2, 1998

CHAPTER 3. RASTERIZATION 71

side of a common edge (with identical endpoints) on which a fragment cen-

ter lies, then exactly one of the polygons results in the production of the
fragment during rasterization.

As for the data associated with each fragment produced by rasterizing a
polygon, we begin by specifying how these values are produced for fragments

in a triangle. De�ne barycentric coordinates for a triangle. Barycentric
coordinates are a set of three numbers, a, b, and c, each in the range [0; 1],

with a + b+ c = 1. These coordinates uniquely specify any point p within
the triangle or on the triangle's boundary as

p = apa + bpb + cpc;

where pa, pb, and pc are the vertices of the triangle. a, b, and c can be found

as

a =
A(ppbpc)

A(papbpc)
; b =

A(ppapc)

A(papbpc)
; c =

A(ppapb)

A(papbpc)
;

where A(lmn) denotes the area in window coordinates of the triangle with
vertices l, m, and n.

Denote a datum at pa, pb, or pc as fa, fb, or fc, respectively. Then the
value f of a datum at a fragment produced by rasterizing a triangle is given

by

f =
afa=wa + bfb=wb + cfc=wc

a�a=wa + b�b=wb + c�c=wc

(3.4)

where wa, wb and wc are the clip w coordinates of pa, pb, and pc, respectively.
a, b, and c are the barycentric coordinates of the fragment for which the data

are produced. �a = �b = �c = 1 except for texture s, t, and r coordinates,
for which �a = qa, �b = qb, and �c = qc (if any of qa, qb, or qc are less

than or equal to zero, results are unde�ned). a, b, and c must correspond
precisely to the exact coordinates of the center of the fragment. Another way

of saying this is that the data associated with a fragment must be sampled
at the fragment's center.

Just as with line segment rasterization, equation 3.4 may be approxi-
mated by

f = afa=�a + bfb=�b + cfc=�c;

this may yield acceptable results for color values (it must be used for depth

values), but will normally lead to unacceptable distortion e�ects if used for
texture coordinates.

For a polygon with more than three edges, we require only that a convex
combination of the values of the datum at the polygon's vertices can be used

DRAFT Version 1.2 - Jan. 2, 1998

CHAPTER 3. RASTERIZATION 72

to obtain the value assigned to each fragment produced by the rasterization

algorithm. That is, it must be the case that at every fragment

f =
nX
i=1

aifi

where n is the number of vertices in the polygon, fi is the value of the f at

vertex i; for each i 0 � ai � 1 and
Pn

i=1 ai = 1. The values of the ai may
di�er from fragment to fragment, but at vertex i, aj = 0; j 6= i and ai = 1.

One algorithm that achieves the required behavior is to triangulate a

polygon (without adding any vertices) and then treat each triangle individ-
ually as already discussed. A scan-line rasterizer that linearly interpolates

data along each edge and then linearly interpolates data across each hor-
izontal span from edge to edge also satis�es the restrictions (in this case,

the numerator and denominator of equation 3.4 should be iterated indepen-
dently and a division performed for each fragment).

3.5.2 Stippling

Polygon stippling works much the same way as line stippling, masking out
certain fragments produced by rasterization so that they are not sent to the

next stage of the GL. This is the case regardless of the state of polygon
antialiasing. Stippling is controlled with

void PolygonStipple(ubyte *pattern) ;

pattern is a pointer to memory into which a 32 � 32 pattern is packed.
The pattern is unpacked from memory according to the procedure given

in section 3.6.4 for DrawPixels; it is as if the height and width passed to
that command were both equal to 32, the type were BITMAP, and the format

were COLOR INDEX. The unpacked values (before any conversion or arithmetic

would have been performed) are bitwise ANDed with 1 to obtain a stipple
pattern of zeros and ones.

If xw and yw are the window coordinates of a rasterized polygon frag-
ment, then that fragment is sent to the next stage of the GL if and only if

the bit of the pattern (xw mod 32; yw mod 32) is 1.
Polygon stippling may be enabled or disabled with Enable or Disable

using the constant POLYGON STIPPLE. When disabled, it is as if the stipple
pattern were all ones.

DRAFT Version 1.2 - Jan. 2, 1998

CHAPTER 3. RASTERIZATION 73

3.5.3 Antialiasing

Polygon antialiasing rasterizes a polygon by producing a fragment wherever

the interior of the polygon intersects that fragment's square. A coverage
value is computed at each such fragment, and this value is saved to be applied

as described in section 3.11. An associated datum is assigned to a fragment
by integrating the datum's value over the region of the intersection of the

fragment square with the polygon's interior and dividing this integrated
value by the area of the intersection. For a fragment square lying entirely
within the polygon, the value of a datum at the fragment's center may be

used instead of integrating the value across the fragment.
Polygon stippling operates in the same way whether polygon antialiasing

is enabled or not. The polygon point sampling rule de�ned in section 3.5.1,
however, is not enforced for antialiased polygons.

3.5.4 Options Controlling Polygon Rasterization

The interpretation of polygons for rasterization is controlled using

void PolygonMode(enum face, enum mode) ;

face is one of FRONT, BACK, or FRONT AND BACK, indicating that the rasterizing

method described by mode replaces the rasterizing method for front facing
polygons, back facing polygons, or both front and back facing polygons,

respectively. mode is one of the symbolic constants POINT, LINE, or FILL.
Calling PolygonMode with POINT causes certain vertices of a polygon to

be treated, for rasterization purposes, just as if they were enclosed within
a Begin(POINT) and End pair. The vertices selected for this treatment are
those that have been tagged as having a polygon boundary edge beginning

on them (see section 2.6.2). LINE causes edges that are tagged as boundary
to be rasterized as line segments. (The line stipple counter is reset at the

beginning of the �rst rasterized edge of the polygon, but not for subsequent
edges.) FILL is the default mode of polygon rasterization, corresponding to

the description in sections 3.5.1, 3.5.2, and 3.5.3. Note that these modes
a�ect only the �nal rasterization of polygons: in particular, a polygon's

vertices are lit, and the polygon is clipped and possibly culled before these
modes are applied.

Polygon antialiasing applies only to the FILL state of PolygonMode.
For POINT or LINE, point antialiasing or line segment antialiasing, respec-
tively, apply.

DRAFT Version 1.2 - Jan. 2, 1998

CHAPTER 3. RASTERIZATION 74

3.5.5 Depth O�set

The depth values of all fragments generated by the rasterization of a polygon

may be o�set by a single value that is computed for that polygon. The
function that determines this value is speci�ed by calling

void PolygonO�set(float factor, float units) ;

factor scales the maximum depth slope of the polygon, and units scales an
implementation dependent constant that relates to the usable resolution of
the depth bu�er. The resulting values are summed to produce the polygon

o�set value. Both factor and units may be either positive or negative.
The maximum depth slope m of a triangle is

m =

s�
@zw

@xw

�2

+

�
@zw

@yw

�2
(3.5)

where (xw; yw; zw) is a point on the triangle. m may be approximated as

m = max

�����@zw@xw

���� ;
����@zw@yw

����
�
: (3.6)

If the polygon has more than three vertices, one or more values of m may be
used during rasterization. Each may take any value in the range [min,max],

where min andmax are the smallest and largest values obtained by evaluat-
ing Equation 3.5 or Equation 3.6 for the triangles formed by all three-vertex

combinations.
The minimum resolvable di�erence r is an implementation constant. It

is the smallest di�erence in window coordinate z values that is guaranteed
to remain distinct throughout polygon rasterization and in the depth bu�er.
All pairs of fragments generated by the rasterization of two polygons with

otherwise identical vertices, but zw values that di�er by r, will have distinct
depth values.

The o�set value o for a polygon is

o = m � factor + r � units: (3.7)

m is computed as described above, as a function of depth values in the range
[0,1], and o is applied to depth values in the same range.

Boolean state values POLYGON OFFSET POINT, POLYGON OFFSET LINE, and
POLYGON OFFSET FILL determine whether o is applied during the rasteriza-

tion of polygons in POINT, LINE, and FILL modes. These boolean state val-
ues are enabled and disabled as argument values to the commands Enable

DRAFT Version 1.2 - Jan. 2, 1998

CHAPTER 3. RASTERIZATION 75

and Disable. If POLYGON OFFSET POINT is enabled, o is added to the depth

value of each fragment produced by the rasterization of a polygon in POINT

mode. Likewise, if POLYGON OFFSET LINE or POLYGON OFFSET FILL is enabled, o

is added to the depth value of each fragment produced by the rasterization
of a polygon in LINE or FILL modes, respectively.

Fragment depth values are always limited to the range [0,1], either by
clamping after o�set addition is performed (preferred), or by clamping the

vertex values used in the rasterization of the polygon.

3.5.6 Polygon Rasterization State

The state required for polygon rasterization consists of a polygon stipple pat-

tern, whether stippling is enabled or disabled, the current state of polygon
antialiasing (enabled or disabled), the current values of the PolygonMode

setting for each of front and back facing polygons, whether point, line, and
�ll mode polygon o�sets are enabled or disabled, and the factor and bias
values of the polygon o�set equation. The initial stipple pattern is all ones;

initially stippling is disabled. The initial setting of polygon antialiasing is
disabled. The initial state for PolygonMode is FILL for both front and

back facing polygons. The initial polygon o�set factor and bias values are
both 0; initially polygon o�set is disabled for all modes.

3.6 Pixel Rectangles

Rectangles of color, depth, and certain other values may be converted to
fragments using the DrawPixels command (described in section 3.6.4).

Some of the parameters and operations governing the operation of Draw-
Pixels are shared by ReadPixels (used to obtain pixel values from the

framebu�er) and CopyPixels (used to copy pixels from one framebu�er
location to another); the discussion of ReadPixels and CopyPixels, how-

ever, is deferred until Chapter 4 after the framebu�er has been discussed
in detail. Nevertheless, we note in this section when parameters and state

pertaining to DrawPixels also pertain to ReadPixels or CopyPixels.
A number of parameters control the encoding of pixels in client mem-

ory (for reading and writing) and how pixels are processed before being

placed in or after being read from the framebu�er (for reading, writing, and
copying). These parameters are set with three commands: PixelStore,

PixelTransfer, and PixelMap.

DRAFT Version 1.2 - Jan. 2, 1998

CHAPTER 3. RASTERIZATION 76

Parameter Name Type Initial Value Valid Range

UNPACK SWAP BYTES boolean FALSE TRUE/FALSE

UNPACK LSB FIRST boolean FALSE TRUE/FALSE

UNPACK ROW LENGTH integer 0 [0;1)

UNPACK SKIP ROWS integer 0 [0;1)

UNPACK SKIP PIXELS integer 0 [0;1)

UNPACK ALIGNMENT integer 4 1,2,4,8

|UNPACK IMAGE HEIGHT integer 0 [0;1)

|UNPACK SKIP IMAGES integer 0 [0;1)

Table 3.1: PixelStore parameters pertaining to one or more of DrawPix-
els, TexImage1D, TexImage2D, and TexImage3D.

3.6.1 Pixel Storage Modes

Pixel storage modes a�ect the operation of DrawPixels and ReadPixels
(as well as other commands; see sections 3.5.2, 3.7, and 3.8) when one of

these commands is issued. This may di�er from the time that the command
is executed if the command is placed in a display list (see section 5.4). Pixel
storage modes are set with

void PixelStorefifg(enum pname, T param) ;

pname is a symbolic constant indicating a parameter to be set, and param

is the value to set it to. Table 3.1 summarizes the pixel storage parameters,

their types, their initial values, and their allowable ranges. Setting a param-
eter to a value outside the given range results in the error INVALID VALUE.

The version of PixelStore that takes a oating-point value may be

used to set any type of parameter; if the parameter is boolean, then it
is set to FALSE if the passed value is 0:0 and TRUE otherwise, while if the

parameter is an integer, then the passed value is rounded to the nearest
integer. The integer version of the command may also be used to set any
type of parameter; if the parameter is boolean, then it is set to FALSE if the

passed value is 0 and TRUE otherwise, while if the parameter is a oating-
point value, then the passed value is converted to oating-point.

3.6.2 The Imaging Subset

DRAFT Version 1.2 - Jan. 2, 1998

CHAPTER 3. RASTERIZATION 77

Some pixel transfer and per-fragment operations are only made available in

GL implementations which incorporate the optional imaging subset. The
imaging subset includes both new commands, and new enumerants allowed

as parameters to existing commands. If the subset is supported, all of these
calls and enumerants must be implemented as described later in the GL spec-

i�cation. If the subset is not supported, calling any of the new commands
generates the error INVALID OPERATION, and using any of the new enumer-

ants generates the error INVALID ENUM. The individual operations available
only in the imaging subset are described in section 3.6.3, except for blending

features, which are described in chapter 4. They include:

1. Color tables, including all commands and enumerants described in
subsections Color Table Speci�cation, Alternate Color Table

Speci�cation Commands, Color Table State and Proxy State,
Color Table Lookup, Post Convolution Color Table Lookup,

and Post Color Matrix Color Table Lookup, as well as the query
commands described in section 6.1.7.

2. Convolution, including all commands and enumerants described in
subsections Convolution Filter Speci�cation, Alternate Con-

volution Filter Speci�cation Commands, and Convolution, as
well as the query commands described in section 6.1.8.

3. Color matrix, including all commands and enumerants described in

subsectionsColor Matrix Speci�cation andColor Matrix Trans-

formation, as well as the simple query commands described in sec-

tion 6.1.6.

4. Histogram and minmax, including all commands and enumerants de-

scribed in subsectionsHistogram Table Speci�cation, Histogram
State and Proxy State, Histogram, Minmax Table Speci�ca-

tion, and Minmax, as well as the query commands described in sec-
tion 6.1.9 and section 6.1.10.

5. The sub-

set of blending features described by BlendEquation, BlendColor,
and theBlendFuncmodes CONSTANT COLOR, ONE MINUS CONSTANT COLOR,
CONSTANT ALPHA, and ONE MINUS CONSTANT ALPHA. These are described

separately in section 4.1.6.

The imaging subset is supported only if the GL EXTENSIONS string in-

cludes the substring "ARB imaging". Querying GL EXTENSIONS is described in
section 6.1.11.

DRAFT Version 1.2 - Jan. 2, 1998

CHAPTER 3. RASTERIZATION 78

Parameter Name Type Initial Value Valid Range

MAP COLOR boolean FALSE TRUE/FALSE

MAP STENCIL boolean FALSE TRUE/FALSE

INDEX SHIFT integer 0 (�1;1)

INDEX OFFSET integer 0 (�1;1)

x SCALE oat 1.0 (�1;1)

DEPTH SCALE oat 1.0 (�1;1)

x BIAS oat 0.0 (�1;1)

DEPTH BIAS oat 0.0 (�1;1)

|POST CONVOLUTION x SCALE oat 1.0 (�1;1)

|POST CONVOLUTION x BIAS oat 0.0 (�1;1)

|POST COLOR MATRIX x SCALE oat 1.0 (�1;1)

|POST COLOR MATRIX x BIAS oat 0.0 (�1;1)

Table 3.2: PixelTransfer parameters. x is RED, GREEN, BLUE, or ALPHA.

If the imaging subset is not supported, the related pixel transfer opera-
tions are not performed; pixels are passed unchanged to the next operation.

3.6.3 Pixel Transfer Modes

Pixel transfer modes a�ect the operation of DrawPixels (section 3.6.4),
ReadPixels (section 4.3.2), and CopyPixels (section 4.3.3) at the time

when one of these commands is executed (which may di�er from the time
the command is issued). Some pixel transfer modes are set with

void PixelTransferfifg(enum param, T value) ;

param is a symbolic constant indicating a parameter to be set, and value is
the value to set it to. Table 3.2 summarizes the pixel transfer parameters

that are set with PixelTransfer, their types, their initial values, and their
allowable ranges. Setting a parameter to a value outside the given range
results in the error INVALID VALUE. The same versions of the command exist

as for PixelStore, and the same rules apply to accepting and converting
passed values to set parameters.

The pixel map lookup tables are set with

void PixelMapfui us fgv(enummap, sizei size, T values) ;

DRAFT Version 1.2 - Jan. 2, 1998

CHAPTER 3. RASTERIZATION 79

Map Name Address Value Init. Size Init. Value

PIXEL MAP I TO I color idx color idx 1 0

PIXEL MAP S TO S stencil idx stencil idx 1 0

PIXEL MAP I TO R color idx R 1 0.0

PIXEL MAP I TO G color idx G 1 0.0

PIXEL MAP I TO B color idx B 1 0.0

PIXEL MAP I TO A color idx A 1 0.0

PIXEL MAP R TO R R R 1 0.0

PIXEL MAP G TO G G G 1 0.0

PIXEL MAP B TO B B B 1 0.0

PIXEL MAP A TO A A A 1 0.0

Table 3.3: PixelMap parameters.

map is a symbolic map name, indicating the map to set, size indicates the

size of the map, and values is a pointer to an array of size map values.
The entries of a table may be speci�ed using one of three types: single-

precision oating-point, unsigned short integer, or unsigned integer, depend-

ing on which of the three versions of PixelMap is called. A table entry is
converted to the appropriate type when it is speci�ed. An entry giving a

color component value is converted according to table 2.6. An entry giving
a color index value is converted from an unsigned short integer or unsigned

integer to oating-point. An entry giving a stencil index is converted from
single-precision oating-point to an integer by rounding to nearest. The

various tables and their initial sizes and entries are summarized in table 3.3.
A table that takes an index as an address must have size = 2n or the error

INVALID VALUE results. The maximum allowable size of each table is imple-
mentation dependent, but must be at least 32 (a single maximum applies
to all tables). The error INVALID VALUE is generated if a size larger than the

implemented maximum, or less than one, is given to PixelMap.

Color Table Speci�cation

Color lookup tables are speci�ed with

void ColorTable(enum target, enum internalformat,

sizei width, enum format, enum type, void *data) ;

target must be one of the regular color table names listed in table 3.4 to
de�ne the table. A proxy table name is a special case discussed later in

DRAFT Version 1.2 - Jan. 2, 1998

CHAPTER 3. RASTERIZATION 80

Table Name Type

COLOR TABLE regular

POST CONVOLUTION COLOR TABLE

POST COLOR MATRIX COLOR TABLE

PROXY COLOR TABLE proxy

PROXY POST CONVOLUTION COLOR TABLE

PROXY POST COLOR MATRIX COLOR TABLE

Table 3.4: Color table names. Regular tables have associated image data.

Proxy tables have no image data, and are used only to determine if an image
can be loaded into the corresponding regular table.

this section. width, format, type, and data specify an image in memory with

the same meaning and allowed values as the corresponding arguments to
DrawPixels (see section 3.6.4), with height taken to be 1. The formats

STENCIL INDEX and DEPTH COMPONENT are not allowed.
The speci�ed image is taken from memory and processed just as if

DrawPixels were called, stopping after the �nal expansion to RGBA.
The R, G, B, and A components of each pixel are then scaled by the

four COLOR TABLE SCALE parameters, biased by the four COLOR TABLE BIAS pa-
rameters, and clamped to [0; 1]. These parameters are set by calling Col-
orTableParameterfv as described below.

Components are then selected from the resulting R, G, B, and A values
to obtain a table with the base internal format speci�ed by (or derived

from) internalformat, in the same manner as for textures (section 3.8.1).
internalformat must be one of the formats in table 3.15 or table 3.16.

The color lookup table is rede�ned to have width entries, each with the
speci�ed internal format. The table is formed with indices 0 through width�
1. Table location i is speci�ed by the ith image pixel, counting from zero.

The error INVALID VALUE is generated if width is not zero or a non-negative

power of two. The error TABLE TOO LARGE is generated if the speci�ed color
lookup table is too large for the implementation.

The scale and bias parameters for a table are speci�ed by calling

void ColorTableParameterfifgv(enum target, enum pname,

T params) ;

targetmust be a regular color table name. pname is one of COLOR TABLE SCALE

or COLOR TABLE BIAS. params points to an array of four values: red, green,

DRAFT Version 1.2 - Jan. 2, 1998

CHAPTER 3. RASTERIZATION 81

blue, and alpha, in that order.

A GL implementation may vary its allocation of internal component
resolution based on any ColorTable parameter, but the allocation must

not be a function of any other factor, and cannot be changed once it is
established. Allocations must be invariant; the same allocation must be

made each time a color table is speci�ed with the same parameter values.
These allocation rules also apply to proxy color tables, which are described

later in this section.

Alternate Color Table Speci�cation Commands

Color tables may also be speci�ed using image data taken directly from the

framebu�er, and portions of existing tables may be respeci�ed.
The command

void CopyColorTable(enum target, enum internalformat,

int x, int y, sizei width) ;

de�nes a color table in exactly the manner of ColorTable, except that table

data are taken from the framebu�er, rather than from client memory. target
must be a regular color table name. x, y, and width correspond precisely to

the corresponding arguments of CopyPixels (refer to section 4.3.3); they
specify the image's width and the lower left (x; y) coordinates of the frame-

bu�er region to be copied. The image is taken from the framebu�er exactly
as if these arguments were passed to CopyPixels with argument type set to
COLOR and height set to 1, stopping after pixel transfer processing is complete.

Subsequent processing is identical to that described for ColorTable, be-
ginning with scaling by COLOR TABLE SCALE. Parameters target, internalfor-

mat and width are speci�ed using the same values, with the same meanings,
as the equivalent arguments of ColorTable. format is taken to be RGBA.

Two additional commands,

void ColorSubTable(enum target, sizei start, sizei count,

enum format, enum type, void *data) ;
void CopyColorSubTable(enum target, sizei start, int x,

int y, sizei count) ;

respecify only a portion of an existing color table. No change is made to the
internalformat or width parameters of the speci�ed color table, nor is any

change made to table entries outside the speci�ed portion. target must be a
regular color table name.

DRAFT Version 1.2 - Jan. 2, 1998

CHAPTER 3. RASTERIZATION 82

ColorSubTable arguments format, type, and data match the corre-

sponding arguments to ColorTable, meaning that they are speci�ed using
the same values, and have the same meanings. Likewise, CopyColorSub-

Table arguments x, y, and count match the x, y, and width arguments of
CopyColorTable. Both of the ColorSubTable commands interpret and

process pixel groups in exactly the manner of their ColorTable counter-
parts, except that the assignment of R, G, B, and A pixel group values to

the color table components is controlled by the internalformat of the table,
not by an argument to the command.

Arguments start and count of ColorSubTable and CopyColorSub-

Table specify a subregion of the color table starting at index start and
ending at index start+ count� 1. Counting from zero, the nth pixel group

is assigned to the table entry with index count+n. The error INVALID VALUE

is generated if start + count > width.

Color Table State and Proxy State

The state necessary for color tables can be divided into two categories. For

each of the three tables, there is an array of values. Each array has associated
with it a width, an integer describing the internal format of the table, six

integer values describing the resolutions of each of the red, green, blue, alpha,
luminance, and intensity components of the table, and two groups of four
oating-point numbers to store the table scale and bias. Each initial array

is null (zero width, internal format RGBA, with zero-sized components). The
initial value of the scale parameters is (1,1,1,1) and the initial value of the

bias parameters is (0,0,0,0).
In addition to the color lookup tables, partially instantiated proxy color

lookup tables are maintained. Each proxy table includes width and internal
format state values, as well as state for the red, green, blue, alpha, lumi-

nance, and intensity component resolutions. Proxy tables do not include
image data, nor do they include scale and bias parameters. When Col-

orTable is executed with target speci�ed as one of the proxy color table
names listed in table 3.4, the proxy state values of the table are recomputed
and updated. If the table is too large, no error is generated, but the proxy

format, width and component resolutions are set to zero. If the color table
would be accommodated by ColorTable called with target set to the corre-

sponding regular table name (COLOR TABLE is the regular name corresponding
to PROXY COLOR TABLE, for example), the proxy state values are set exactly as

though the regular table were being speci�ed. Calling ColorTable with a
proxy target has no e�ect on the image or state of any actual color table.

DRAFT Version 1.2 - Jan. 2, 1998

CHAPTER 3. RASTERIZATION 83

There is no image associated with any of the proxy targets. They can-

not be used as color tables, and they must never be queried using GetCol-
orTable. The error INVALID ENUM is generated if this is attempted.

Convolution Filter Speci�cation

A two-dimensional convolution �lter image is speci�ed by calling

void ConvolutionFilter2D(enum target, enum internalfor-

mat, sizei width, sizei height, enum format, enum type,

void *data) ;

target must be CONVOLUTION 2D. width, height, format, type, and data specify
an image in memory with the same meaning and allowed values as the

corresponding parameters to DrawPixels. The formats STENCIL INDEX and
DEPTH COMPONENT are not allowed.

The speci�ed image is extracted from memory and processed just as

if DrawPixels were called, stopping after the �nal expansion to RGBA.
The R, G, B, and A components of each pixel are then scaled by the four

two-dimensional CONVOLUTION FILTER SCALE parameters and biased by the
four two-dimensional CONVOLUTION FILTER BIAS parameters. These parame-

ters are set by calling ConvolutionParameterfv as described below. No
clamping takes place at any time during this process.

Components are then selected from the resulting R, G, B, and A values
to obtain a table with the base internal format speci�ed by (or derived from)

internalformat, in the same manner as for TexImage2D1.
The red, green, blue, alpha, luminance, and/or intensity components of

the pixels are stored in oating point, rather than integer format. They form

a two-dimensional image indexed with coordinates i; j such that i increases
from left to right, starting at zero, and j increases from bottom to top, also

starting at zero2. Image location i; j is speci�ed by the Nth pixel, counting
from zero, where

N = i+ j � width
The error INVALID VALUE is generated if width or height is greater than

the maximum supported value. These values are queried with GetCon-

volutionParameteriv, setting target to CONVOLUTION 2D and pname to

MAX CONVOLUTION WIDTH or MAX CONVOLUTION HEIGHT, respectively.

1This is identical to ColorTable language.
2Redo like the TexImage2D description?

DRAFT Version 1.2 - Jan. 2, 1998

CHAPTER 3. RASTERIZATION 84

The scale and bias parameters for a two-dimensional �lter are speci�ed

by calling

void ConvolutionParameterfifgv(enum target,

enum pname, T params) ;

with target CONVOLUTION 2D. pname is one of CONVOLUTION FILTER SCALE or
CONVOLUTION FILTER BIAS. params points to an array of four values: red,

green, blue, and alpha, in that order.

A one-dimensional convolution �lter is de�ned using

void ConvolutionFilter1D(enum target, enum internalfor-

mat, sizei width, enum format, enum type, void *data) ;

target must be CONVOLUTION 1D. internalformat, width, format, and type have
identical semantics and accept the same values as do their two-dimensional

counterparts. data must point to a one-dimensional image, however.
The image is extracted from memory and processed as if Con-

volutionFilter2D were called with a height of 1, except that it is
scaled and biased by the one-dimensional CONVOLUTION FILTER SCALE and
CONVOLUTION FILTER BIAS parameters. These parameters are speci�ed ex-

actly as the two-dimensional parameters, except that ConvolutionParam-

eterfv is called with target CONVOLUTION 1D.

The image is formed with coordinates i such that i increases from left to
right, starting at zero. Image location i is speci�ed by the ith pixel, counting

from zero.
The error INVALID VALUE is generated if width is greater than the

maximum supported value. This value is queried using GetConvo-

lutionParameteriv, setting target to CONVOLUTION 1D and pname to

MAX CONVOLUTION WIDTH.
Special facilities are provided for the de�nition of two-dimensional sep-

arable �lters { �lters whose image can be represented as the product of

two one-dimensional images, rather than as full two-dimensional images. A
two-dimensional separable convolution �lter is speci�ed with

void SeparableFilter2D(enum target, enum internalfor-

mat, sizei width, sizei height, enum format, enum type,

void *row, void *column) ;

DRAFT Version 1.2 - Jan. 2, 1998

CHAPTER 3. RASTERIZATION 85

targetmust be SEPARABLE 2D. internalformat speci�es the formats of the table

entries of the two one-dimensional images that will be retained. row points
to a width pixel wide image of the speci�ed format and type. column points

to a height pixel high image, also of the speci�ed format and type.
The two images are extracted from memory and processed as if Convo-

lutionFilter1D were called separately for each, with the resulting retained
images replacing the current two-dimensional separable �lter images3, ex-

cept that each image is scaled and biased by the two-dimensional separable
CONVOLUTION FILTER SCALE and CONVOLUTION FILTER BIAS parameters. These

parameters are speci�ed exactly as the one-dimensional and two-dimensional
parameters, except that ConvolutionParameteriv is called with target

SEPARABLE 2D.

Alternate Convolution Filter Speci�cation Commands

One and two-dimensional �lters may also be speci�ed using image data taken

directly from the framebu�er.
The command

void CopyConvolutionFilter2D(enum target, enum inter-

nalformat, int x, int y, sizei width, sizei height) ;

de�nes a two-dimensional �lter in exactly the manner of ConvolutionFil-

ter2D, except that image data are taken from the framebu�er, rather than
from client memory. target must be CONVOLUTION 2D. x, y, width, and height

correspond precisely to the corresponding arguments of CopyPixels (refer
to section 4.3.3); they specify the image's width and height, and the lower

left (x; y) coordinates of the framebu�er region to be copied. The image
is taken from the framebu�er exactly as if these arguments were passed to

CopyPixels with argument type set to COLOR, stopping after pixel transfer
processing is complete.

Subsequent processing is identical to that described for Convolution-
Filter2D, beginning with scaling by CONVOLUTION FILTER SCALE. Parameters
target, internalformat, width, and height are speci�ed using the same values,

with the same meanings, as the equivalent arguments of ConvolutionFil-
ter2D. format is taken to be RGBA.

The command

void CopyConvolutionFilter1D(enum target, enum inter-

nalformat, int x, int y, sizei width) ;

3Clause is not found for other �lter types.

DRAFT Version 1.2 - Jan. 2, 1998

CHAPTER 3. RASTERIZATION 86

de�nes a one-dimensional �lter in exactly the manner of ConvolutionFil-

ter1D, except that image data are taken from the framebu�er, rather than
from client memory. target must be CONVOLUTION 1D. x, y, and width cor-

respond precisely to the corresponding arguments of CopyPixels (refer to
section 4.3.3); they specify the image's width and the lower left (x; y) coor-

dinates of the framebu�er region to be copied. The image is taken from the
framebu�er exactly as if these arguments were passed to CopyPixels with

argument type set to COLOR and height set to 1, stopping after pixel transfer
processing is complete.

Subsequent processing is identical to that described for Convolution-
Filter1D, beginning with scaling by CONVOLUTION FILTER SCALE. Parameters
target, internalformat, and width are speci�ed using the same values, with

the same meanings, as the equivalent arguments of ConvolutionFilter2D.
format is taken to be RGBA.

Convolution Filter State

The required state for convolution �lters includes a one-dimensional image

array, two one-dimensional image arrays for the separable �lter, and a two-
dimensional image array. The two-dimensional array has associated with

it a height. Each array has associated with it a width, an integer describ-
ing the internal format of the table, and six integer values describing the
resolutions of each of the red, green, blue, alpha, luminance, and intensity

components of the table. Each �lter (one-dimensional, two-dimensional,
and two-dimensional separable) also has associated with it two groups of

four oating-point numbers to store the �lter scale and bias.
Each initial convolution �lter is null (zero width and height, internal

format RGBA, with zero-sized components). The initial value of all scale
parameters is (1,1,1,1) and the initial value of all bias parameters is (0,0,0,0).

Color Matrix Speci�cation

Setting the matrix mode to COLOR MATRIX causes the matrix operations de-

scribed in section 2.10.2 to apply to the top matrix on the color matrix stack.
All matrix operations have the same e�ect on the color matrix as they do
on the other matrices.

Histogram Table Speci�cation

The histogram table is speci�ed with

DRAFT Version 1.2 - Jan. 2, 1998

CHAPTER 3. RASTERIZATION 87

void Histogram(enum target, sizei width, enum internal-

format, boolean sink) ;

target must be HISTOGRAM if a histogram table is to be speci�ed. target

value PROXY HISTOGRAM is a special case discussed later in this section. width
speci�es the number of entries in the histogram table, and internalformat

speci�es the format of each table entry. sink speci�es whether pixel groups
will be consumed by the histogram operation (TRUE) or passed on to the
minmax operation (FALSE).

If no error results from the execution of Histogram, the speci�ed his-
togram table is rede�ned to have width entries, each with the speci�ed inter-

nal format. The entries are indexed 0 through width� 1. Each component
in each entry is set to zero. The values in the previous histogram table, if

any, are lost.
The error INVALID VALUE is generated if width is not zero or a non-negative

power of 2. The error TABLE TOO LARGE is generated if the speci�ed histogram
table is too large for the implementation. The error INVALID ENUM is gener-

ated if internalformat is not one of the values accepted by the correspond-
ing parameter of TexImage2D, or is 1, 2, 3, 4, INTENSITY, INTENSITY4,
INTENSITY8, INTENSITY12, or INTENSITY16.

A GL implementation may vary its allocation of internal component
resolution based on any Histogram parameter, but the allocation must

not be a function of any other factor, and cannot be changed once it is
established. In particular, allocations must be invariant; the same allocation

must be made each time a histogram is speci�ed with the same parameter
values. These allocation rules also apply to the proxy histogram, which is

described later in this section.

Histogram State and Proxy State

The state necessary for histogram operation is an array of values, with which

is associated a width, an integer describing the internal format of the his-
togram, �ve integer values describing the resolutions of each of the red,

green, blue, alpha, and luminance components of the table, and a ag in-
dicating whether or not pixel groups are consumed by the operation. The

initial array is null (zero width, internal format RGBA, with zero-sized com-
ponents). The initial value of the ag is false.

In addition to the histogram table, a partially instantiated proxy his-
togram table is maintained. It includes width, internal format, and red,

green, blue, alpha, and luminance component resolutions. The proxy table

DRAFT Version 1.2 - Jan. 2, 1998

CHAPTER 3. RASTERIZATION 88

does not include image data or the ag. When Histogram is executed

with target set to PROXY HISTOGRAM, the proxy state values are recomputed
and updated. If the histogram array is too large, no error is generated, but

the proxy format, width, and component resolutions are set to zero. If the
histogram table would be accomodated by Histogram called with target

set to HISTOGRAM, the proxy state values are set exactly as though the ac-
tual histogram table were being speci�ed. Calling Histogram with target

PROXY HISTOGRAM has no e�ect on the actual histogram table.
There is no image associated with PROXY HISTOGRAM. It cannot be used as

a histogram, and its image must never queried using GetHistogram. The
error INVALID ENUM results if this is attempted.

Minmax Table Speci�cation

The minmax table is speci�ed with

void Minmax(enum target, enum internalformat,

boolean sink) ;

target must be MINMAX. internalformat speci�es the format of the table en-
tries. sink speci�es whether pixel groups will be consumed by the minmax

operation (TRUE) or passed on to �nal conversion (FALSE).
The error INVALID ENUM is generated if internalformat is not one of the

values accepted by the corresponding parameter of TexImage2D, or is 1, 2,
3, 4, INTENSITY, INTENSITY4, INTENSITY8, INTENSITY12, or INTENSITY16.4 The

resulting table always has 2 entries, each with values corresponding only to
the components of the internal format.

The state necessary for minmax operation is a table containing two

elements5 (the �rst element stores the minimum values, the second stores
the maximum values), an integer describing the internal format of the ta-

ble, and a ag indicating whether or not pixel groups are consumed by the
operation. The initial state is a minimum table entry set to the maximum

representable value and a maximum table entry set to the minimum repre-
sentable value. Internal format is set to RGBA and the initial value of the ag

is false.

4Because the internal type is oating point, it's likely that internalformat should be

restricted to base internal formats, as de�ned in table 3.15.
5 Make sure these aren't confused with vertex array elements - need a glossary?

DRAFT Version 1.2 - Jan. 2, 1998

CHAPTER 3. RASTERIZATION 89

3.6.4 Rasterization of Pixel Rectangles

The process of drawing pixels encoded in host memory is diagrammed in

�gure 3.7. We describe the stages of this process in the order in which they
occur.

Pixels are drawn using

void DrawPixels(sizei width, sizei height, enum format,

enum type, void *data) ;

format is a symbolic constant indicating what the values in memory repre-
sent. width and height are the width and height, respectively, of the pixel

rectangle to be drawn. data is a pointer to the data to be drawn. These
data are represented with one of seven GL data types, speci�ed by type.
The correspondence between the twenty type token values and the GL data

types they indicate is given in table 3.5. If the GL is in color index mode
and format is not one of COLOR INDEX, STENCIL INDEX, or DEPTH COMPONENT,

then the error INVALID OPERATION occurs. If type is BITMAP and format is
not COLOR INDEX or STENCIL INDEX then the error INVALID ENUM occurs. Some

additional constraints on the combinations of format and type values that
are accepted is discussed below.

Unpacking

Data are taken from host memory as a sequence of signed or unsigned bytes
(GL data types byte and ubyte), signed or unsigned short integers (GL data

types short and ushort), signed or unsigned integers (GL data types int
and uint), or oating point values (GL data type float). These elements

are grouped into sets of one, two, three, or four values, depending on the
format, to form a group. Table 3.6 summarizes the format of groups obtained

from memory; it also indicates those formats that yield indices and those
that yield components.

By default the values of each GL data type are interpreted as they would
be speci�ed in the language of the client's GL binding. If UNPACK SWAP BYTES

is enabled, however, then the values are interpreted with the bit orderings
modi�ed as per table 3.7. The modi�ed bit orderings are de�ned only if the
GL data type ubyte has eight bits, and then for each speci�c GL data type

only if that type is represented with 8, 16, or 32 bits.
The groups in memory are treated as being arranged in a rectangle. This

rectangle consists of a series of rows, with the �rst element of the �rst group
of the �rst row pointed to by the pointer passed to DrawPixels. If the

DRAFT Version 1.2 - Jan. 2, 1998

CHAPTER 3. RASTERIZATION 90

color index pixel
data out

BBBBBBBBBBBBBBBBBBBBBBBBBBBBBBB
BBBBBBBBBBBBBBBBBBBBBBBBBBBBBBB
BBBBBBBBBBBBBBBBBBBBBBBBBBBBBBB
BBBBBBBBBBBBBBBBBBBBBBBBBBBBBBB
BBBBBBBBBBBBBBBBBBBBBBBBBBBBBBB
BBBBBBBBBBBBBBBBBBBBBBBBBBBBBBB
BBBBBBBBBBBBBBBBBBBBBBBBBBBBBBB
BBBBBBBBBBBBBBBBBBBBBBBBBBBBBBB
BBBBBBBBBBBBBBBBBBBBBBBBBBBBBBB
BBBBBBBBBBBBBBBBBBBBBBBBBBBBBBB
BBBBBBBBBBBBBBBBBBBBBBBBBBBBBBB
BBBBBBBBBBBBBBBBBBBBBBBBBBBBBBB
BBBBBBBBBBBBBBBBBBBBBBBBBBBBBBB

unpack

convert
to [0,1]

convert
L to RGB

RGBA, L

Pixel Storage
Operations

byte, short, int, or float pixel
data stream (index or component)

color
index

post
convolution

BBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBB
BBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBB
BBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBB
BBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBB
BBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBB
BBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBB
BBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBB
BBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBB
BBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBB
BBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBB
BBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBB
BBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBB
BBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBB
BBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBB
BBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBB
BBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBB
BBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBB
BBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBB
BBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBB
BBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBB
BBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBB
BBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBB
BBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBB
BBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBB
BBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBB
BBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBB
BBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBB
BBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBB
BBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBB

scale
and bias

Pixel Transfer
Operations

color table
lookup

convolution
scale and bias

histogram

minmax

color table
lookup

RGBA to RGBA
lookup

shift
and offset

index to index
lookup

index to RGBA
lookup

color table
lookup

color matrix
scale and bias

post
color matrix

RGBA pixel
data out

clamp
to [0,1]

mask to
(2n − 1)

Figure 3.7. Operation of DrawPixels. Output is RGBA pixels if the GL
is in RGBA mode, color index pixels otherwise. Operations in dashed boxes
may be enabled or disabled. RGBA and color index pixel paths are shown;
depth and stencil pixel paths are not shown.

DRAFT Version 1.2 - Jan. 2, 1998

CHAPTER 3. RASTERIZATION 91

type Parameter Corresponding |Special
Token Name GL Data Type Interpretation

UNSIGNED BYTE ubyte No

BITMAP ubyte Yes

BYTE byte No

UNSIGNED SHORT ushort No

SHORT short No

UNSIGNED INT uint No

INT int No

FLOAT float No

|UNSIGNED BYTE 3 3 2 ubyte Yes

|UNSIGNED BYTE 2 3 3 REV ubyte Yes

|UNSIGNED SHORT 5 6 5 ushort Yes

|UNSIGNED SHORT 5 6 5 REV ushort Yes

|UNSIGNED SHORT 4 4 4 4 ushort Yes

|UNSIGNED SHORT 4 4 4 4 REV ushort Yes

|UNSIGNED SHORT 5 5 5 1 ushort Yes

|UNSIGNED SHORT 1 5 5 5 REV ushort Yes

|UNSIGNED INT 8 8 8 8 uint Yes

|UNSIGNED INT 8 8 8 8 REV uint Yes

|UNSIGNED INT 10 10 10 2 uint Yes

|UNSIGNED INT 2 10 10 10 REV uint Yes

Table 3.5: DrawPixels and ReadPixels type parameter values and the
corresponding GL data types. Refer to table 2.2 for de�nitions of GL data

types. Special interpretations are described near the end of section 3.6.4.

DRAFT Version 1.2 - Jan. 2, 1998

CHAPTER 3. RASTERIZATION 92

Format Name Element Meaning and Order Target Bu�er

COLOR INDEX Color Index Color

STENCIL INDEX Stencil Index Stencil

DEPTH COMPONENT Depth Depth

RED R Color

GREEN G Color

BLUE B Color

ALPHA A Color

RGB R, G, B Color

RGBA R, G, B, A Color

|BGR B, G, R Color

|BGRA B, G, R, A Color

LUMINANCE Luminance Color

LUMINANCE ALPHA Luminance, A Color

Table 3.6: DrawPixels andReadPixels formats. The second column gives

a description of and the number and order of elements in a group. Unless
speci�ed as an index, formats yield components.

Element Size Default Bit Ordering Modi�ed Bit Ordering

8 bit [7::0] [7::0]

16 bit [15::0] [7::0][15::8]

32 bit [31::0] [7::0][15::8][23::16][31::24]

Table 3.7: Bit ordering modi�cation of elements when UNPACK SWAP BYTES is
enabled. These reorderings are de�ned only when GL data type ubyte has
8 bits, and then only for GL data types with 8, 16, or 32 bits. Bit 0 is the

least signi�cant.

DRAFT Version 1.2 - Jan. 2, 1998

CHAPTER 3. RASTERIZATION 93

value of UNPACK ROW LENGTH is not positive, then the number of groups in

a row is width; otherwise the number of groups is UNPACK ROW LENGTH. If p
indicates the location in memory of the �rst element of the �rst row, then

the �rst element of the Nth row is indicated by

p+Nk (3.8)

where N is the row number (counting from zero) and k is de�ned as

k =

(
nl s � a;

a=s dsnl=ae s < a
(3.9)

where n is the number of elements in a group, l is the number of groups
in the row, a is the value of UNPACK ALIGNMENT, and s is the size, in units of

GL ubytes, of an element. If the number of bits per element is not 1, 2, 4,
or 8 times the number of bits in a GL ubyte, then k = nl for all values of a.

There is a mechanism for selecting a sub-rectangle of groups from a
larger containing rectangle. This mechanism relies on three integer param-

eters: UNPACK ROW LENGTH, UNPACK SKIP ROWS, and UNPACK SKIP PIXELS. Before
obtaining the �rst group from memory, the pointer supplied toDrawPixels

is e�ectively advanced by (UNPACK SKIP PIXELS)n+ (UNPACK SKIP ROWS)k ele-
ments. Then width groups are obtained from contiguous elements in memory

(without advancing the pointer), after which the pointer is advanced by k

elements. height sets of width groups of values are obtained this way. See
�gure 3.8.

Calling DrawPixels with a type of UNSIGNED BYTE 3 3 2,
UNSIGNED BYTE 2 3 3 REV, UNSIGNED SHORT 5 6 5, UNSIGNED SHORT 5 6 5 REV,

UNSIGNED SHORT 4 4 4 4, UNSIGNED SHORT 4 4 4 4 REV, UNSIGNED SHORT 5 5 5 1,
UNSIGNED SHORT 1 5 5 5 REV, UNSIGNED INT 8 8 8 8, UNSIGNED INT 8 8 8 8 REV,

UNSIGNED INT 10 10 10 2, or UNSIGNED INT 2 10 10 10 REV is a special case in
which all the components of each group are packed into a single unsigned

byte, unsigned short, or unsigned int, depending on the type. The number of
components per packed pixel is �xed by the type, and must match the num-

ber of components per group indicated by the format parameter, as listed in
table 3.8. The error INVALID OPERATION is generated if a mismatch occurs.
This constraint also holds for all other functions that accept or return pixel

data using type and format parameters to de�ne the type and format of that
data.

Bit�eld locations of the �rst, second, third, and fourth components of
each packed pixel type are illustrated in tables 3.9, 3.10, and 3.11. Each

bit�eld is interpreted as an unsigned integer value. If the base GL type is

DRAFT Version 1.2 - Jan. 2, 1998

CHAPTER 3. RASTERIZATION 94

BBBBBBBBBBB
BBBBBBBBBBB
BBBBBBBBBBB
BBBBBBBBBBB
BBBBBBBBBBB
BBBBBBBBBBB
BBBBBBBBBBB
BBBBBBBBBBB

SKIP_ROWS

SKIP_PIXELS

ROW_LENGTH

subimage

Figure 3.8. Selecting a subimage from an image. The indicated param-
eter names are pre�xed by UNPACK for DrawPixels and by PACK for
ReadPixels.

type Parameter GL Data Number of Matching

Token Name Type Components Pixel Formats

UNSIGNED BYTE 3 3 2 ubyte 3 RGB

UNSIGNED BYTE 2 3 3 REV ubyte 3 RGB

UNSIGNED SHORT 5 6 5 ushort 3 RGB

UNSIGNED SHORT 5 6 5 REV ushort 3 RGB

UNSIGNED SHORT 4 4 4 4 ushort 4 RGBA,BGRA

UNSIGNED SHORT 4 4 4 4 REV ushort 4 RGBA,BGRA

UNSIGNED SHORT 5 5 5 1 ushort 4 RGBA,BGRA

UNSIGNED SHORT 1 5 5 5 REV ushort 4 RGBA,BGRA

UNSIGNED INT 8 8 8 8 uint 4 RGBA,BGRA

UNSIGNED INT 8 8 8 8 REV uint 4 RGBA,BGRA

UNSIGNED INT 10 10 10 2 uint 4 RGBA,BGRA

UNSIGNED INT 2 10 10 10 REV uint 4 RGBA,BGRA

Table 3.8: Packed pixel formats.

DRAFT Version 1.2 - Jan. 2, 1998

CHAPTER 3. RASTERIZATION 95

supported with more than the minimum precision (e.g. a 9-bit byte) the

packed components are right-justi�ed in the pixel.
Components are normally packed with the �rst component in the most

signi�cant bits of the bit�eld, and successive component occupying progres-
sively less signi�cant locations. Types whose token names end with REV

reverse the component packing order from least to most signi�cant loca-
tions. In all cases, the most signi�cant bit of each component is packed in

the most signi�cant bit location of its location in the bit�eld.

UNSIGNED BYTE 3 3 2:

7 6 5 4 3 2 1 0

1st Component 2nd 3rd

UNSIGNED BYTE 2 3 3 REV:

7 6 5 4 3 2 1 0

3rd 2nd 1st Component

Table 3.9: UNSIGNED BYTE formats. Bit numbers are indicated for each com-

ponent.

DRAFT Version 1.2 - Jan. 2, 1998

CHAPTER 3. RASTERIZATION 96

UNSIGNED SHORT 5 6 5:

15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0

1st Component 2nd 3rd

UNSIGNED SHORT 5 6 5 REV:

15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0

3rd 2nd 1st Component

UNSIGNED SHORT 4 4 4 4:

15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0

1st Component 2nd 3rd 4th

UNSIGNED SHORT 4 4 4 4 REV:

15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0

4th 3rd 2nd 1st Component

UNSIGNED SHORT 5 5 5 1:

15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0

1st Component 2nd 3rd 4th

UNSIGNED SHORT 1 5 5 5 REV:

15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0

4th 3rd 2nd 1st Component

Table 3.10: UNSIGNED SHORT formats

DRAFT Version 1.2 - Jan. 2, 1998

CHAPTER 3. RASTERIZATION 97

UNSIGNED INT 8 8 8 8:

31 30 29 28 27 26 25 24 23 22 21 20 19 18 17 16 15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0

1st Component 2nd 3rd 4th

UNSIGNED INT 8 8 8 8 REV:

31 30 29 28 27 26 25 24 23 22 21 20 19 18 17 16 15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0

4th 3rd 2nd 1st Component

UNSIGNED INT 10 10 10 2:

31 30 29 28 27 26 25 24 23 22 21 20 19 18 17 16 15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0

1st Component 2nd 3rd 4th

UNSIGNED INT 2 10 10 10 REV:

31 30 29 28 27 26 25 24 23 22 21 20 19 18 17 16 15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0

4th 3rd 2nd 1st Component

Table 3.11: UNSIGNED INT formats

DRAFT Version 1.2 - Jan. 2, 1998

CHAPTER 3. RASTERIZATION 98

Format First Second Third Fourth
Component Component Component Component

RGB red green blue

RGBA red green blue alpha

BGRA blue green red alpha

Table 3.12: Packed pixel �eld assignments

The assignment of component to �elds in the packed pixel is as described

in table 3.12
Byte swapping, if enabled, is performed before the component are ex-

tracted from each pixel. The above discussions of row length and image
extraction are valid for packed pixels, if \group" is substituted for \compo-
nent" and the number of components per group is understood to be one.

Calling DrawPixels with a type of BITMAP is a special case in which the
data are a series of GL ubyte values. Each ubyte value speci�es 8 1-bit ele-

ments with its 8 least-signi�cant bits. The 8 single-bit elements are ordered
from most signi�cant to least signi�cant if the value of UNPACK LSB FIRST is

FALSE; otherwise, the ordering is from least signi�cant to most signi�cant.
The values of bits other than the 8 least signi�cant in each ubyte are not

signi�cant.
The �rst element of the �rst row is the �rst bit (as de�ned above) of the

ubyte pointed to by the pointer passed to DrawPixels. The �rst element
of the second row is the �rst bit (again as de�ned above) of the ubyte at
location p+ k, where k is computed as

k = a

�
l

8a

�
(3.10)

There is a mechanism for selecting a sub-rectangle of elements from

a BITMAP image as well. Before obtaining the �rst element from mem-
ory, the pointer supplied to DrawPixels is e�ectively advanced by

UNPACK SKIP ROWS � k ubytes. Then UNPACK SKIP PIXELS 1-bit elements are
ignored, and the subsequent width 1-bit elements are obtained, without ad-

vancing the ubyte pointer, after which the pointer is advanced by k ubytes.
height sets of width elements are obtained this way.

DRAFT Version 1.2 - Jan. 2, 1998

CHAPTER 3. RASTERIZATION 99

Conversion to oating-point

This step applies only to groups of components. It is not performed on

indices. Each element in a group is converted to a oating-point value
according to the appropriate formula in table 2.6 (section 2.13).

Conversion to RGB

This step is applied only if the format is LUMINANCE or LUMINANCE ALPHA. If
the format is LUMINANCE, then each group of one element is converted to a

group of R, G, and B (three) elements by copying the original single element
into each of the three new elements. If the format is LUMINANCE ALPHA, then

each group of two elements is converted to a group of R, G, B, and A (four)
elements by copying the �rst original element into each of the �rst three

new elements and copying the second original element to the A (fourth)
new element.

Final Expansion to RGBA

This step is performed only for non-depth component groups. Each group

is converted to a group of 4 elements as follows: if a group does not contain
an A element, then A is added and set to 1.0. If any of R, G, or B is missing
from the group, each missing element is added and assigned a value of 0.0.

Pixel Transfer Operations

This step is actually a sequence of steps. Because the pixel transfer opera-

tions are performed equivalently during the drawing, copying, and reading of
pixels, and during the speci�cation of texture images (either from memory or

from the framebu�er), they are described separately in section 3.6.5. After
the processing described in that section is completed, groups are processed

as described in the following sections.

Final Conversion

For a color index, �nal conversion consists of masking the bits of the index

to the left of the binary point by 2n� 1, where n is the number of bits in an
index bu�er. For RGBA components, each element is clamped to [0; 1]. The

resulting values are converted to �xed-point according to the rules given in
section 2.13.9 (Final Color Processing).

DRAFT Version 1.2 - Jan. 2, 1998

CHAPTER 3. RASTERIZATION 100

For a depth component, an element is �rst clamped to [0; 1] and then

converted to �xed-point as if it were a window z value (see section 2.10.1,
Controlling the Viewport).

Stencil indices are masked by 2n � 1, where n is the number of bits in
the stencil bu�er.

Conversion to Fragments

The conversion of a group to fragments is controlled with

void PixelZoom(float zx, float zy) ;

Let (xrp; yrp) be the current raster position (section 2.12). (If the current
raster position is invalid, then DrawPixels is ignored6.) If a particular

group (index or components) is the nth in a row and belongs to the mth
row, consider the region in window coordinates bounded by the rectangle
with corners

(xrp + zxn; yrp + zym) and (xrp + zx(n+ 1); yrp + zy(m+ 1))

(either zx or zy may be negative). Any fragments whose centers lie inside
of this rectangle (or on its bottom or left boundaries) are produced in cor-

respondence with this particular group of elements.
A fragment arising from a group consisting of color data takes on the

color index or color components of the group; the depth and texture coordi-
nates are taken from the current raster position's associated data. A frag-
ment arising from a depth component takes the component's depth value;

the color and texture coordinates are given by those associated with the
current raster position. In both cases texture coordinates s, t, and r are re-

placed with s=q, t=q, and r=q, respectively. If q is less than or equal to zero,
the results are unde�ned. Groups arising from DrawPixels with a format

of STENCIL INDEX are treated specially and are described in section 4.3.1.

3.6.5 Pixel Transfer Operations

The GL de�nes four kinds of pixel groups:

1. RGBA component: Each group comprises four color components: red,

green, blue, and alpha.

6 The interaction with histogram and minmax needs to be thought through carefully -

do histogram and minmax take place anyway? How about for scissored pixels?

DRAFT Version 1.2 - Jan. 2, 1998

CHAPTER 3. RASTERIZATION 101

2. Depth component: Each group comprises a single depth component.

3. Color index: Each group comprises a single color index.

4. Stencil index: Each group comprises a single stencil index.

Each operation described in this section is applied sequentially to each pixel
group in an image. Many operations are applied only to pixel groups of

certain kinds; if an operation is not applicable to a given group, it is skipped.
Future versions of GL may de�ne additional pixel transfer operations.

Arithmetic on Components

This step applies only to RGBA component and depth component groups.

Each component is multiplied by an appropriate signed scale factor:
RED SCALE for an R component, GREEN SCALE for a G component, BLUE SCALE

for a B component, and ALPHA SCALE for an A component, or DEPTH SCALE

for a depth component. Then the result is added to the appropriate signed
bias: RED BIAS, GREEN BIAS, BLUE BIAS, ALPHA BIAS, or DEPTH BIAS.

Arithmetic on Indices

This step applies only to color index and stencil index groups. If the index

is a oating-point value, it is converted to �xed-point, with an unspeci�ed
number of bits to the right of the binary point. Indices that are already

integers remain so; any fraction bits in the resulting �xed-point value are
zero.

The �xed-point index is then shifted by jINDEX SHIFTj bits, left if
INDEX SHIFT > 0 and right otherwise. In either case the shift is zero-�lled.
Then, the signed integer o�set INDEX OFFSET is added to the index.

RGBA to RGBA Lookup

This step applies only to RGBA component groups, and is skipped if

MAP COLOR is FALSE. First, each component is clamped to the range [0; 1].
There is a table associated with each of the R, G, B, and A component

elements: PIXEL MAP R TO R for R, PIXEL MAP G TO G for G, PIXEL MAP B TO B

for B, and PIXEL MAP A TO A for A. Each element is multiplied by an integer

one less than the size of the corresponding table, and, for each element, an
address is found by rounding this value to the nearest integer. For each ele-
ment, the addressed value in the corresponding table replaces the element.

DRAFT Version 1.2 - Jan. 2, 1998

CHAPTER 3. RASTERIZATION 102

Color Index Lookup

This step applies only to color index groups. If the GL command that

invokes the pixel transfer operation requires that RGBA component pixel
groups be generated, then a conversion is performed at this step. RGBA

component pixel groups are required if

1. The groups will be rasterized, and the GL is in RGBA mode, or

2. The groups will be loaded as an image into texture memory, or

3. The groups will be returned to client memory with a format other than

COLOR INDEX.

If RGBA component groups are required, then the integer part of the in-

dex is used to reference 4 tables of color components: PIXEL MAP I TO R,
PIXEL MAP I TO G, PIXEL MAP I TO B, and PIXEL MAP I TO A. Each of these ta-

bles must have 2n entries for some integer value of n (n may be di�erent
for each table). For each table, the index is �rst rounded to the nearest

integer; the result is ANDed with 2n� 1, and the resulting value used as an
address into the table. The indexed value becomes an R, G, B, or A value,

as appropriate. The group of four elements so obtained replaces the index,
changing the group's type to RGBA component.

If RGBA component groups are not required, and if MAP COLOR is enabled,

then the index is looked up in the PIXEL MAP I TO I table (otherwise, the
index is not looked up). Again, the table must have 2n entries for some

integer n, and the integer part of the index is ANDed with 2n�1, producing
a value. This value addresses the table, and the value in the table replaces

the index. The oating-point table value is �rst rounded to a �xed-point
value with unspeci�ed precision. The group's type remains color index.

Stencil Index Lookup

This step applies only to stencil index groups. If MAP STENCIL is enabled,
then the index is looked up in the PIXEL MAP S TO S table (otherwise, the

index is not looked up). The table must have 2n entries for some integer n,
and the integer part of the index is ANDed with 2n � 1, producing a value.

This value addresses the table, and the value in the table replaces the index.
The oating-point table value is �rst rounded to a �xed-point value with

unspeci�ed precision.

DRAFT Version 1.2 - Jan. 2, 1998

CHAPTER 3. RASTERIZATION 103

Base Internal Format R G B A

ALPHA At

LUMINANCE Lt Lt Lt

LUMINANCE ALPHA Lt Lt Lt At

INTENSITY It It It It
RGB Rt Gt Bt

RGBA Rt Gt Bt At

Table 3.13: Color table lookup. Rt, Gt, Bt, At, Lt, and It are color table
values that are assigned to pixel components R, G, B, and A depending on

the table format. When there is no assignment, the component value is left
unchanged by lookup.

Color Table Lookup

This step applies only to RGBA component groups. Color table lookup is

only done if COLOR TABLE is enabled. If a zero-width table is enabled, no
lookup is performed.

The internal format of the table determines which components of the
group will be replaced (see table 3.13). The components to be replaced

are converted to indices by clamping to [0; 1], multiplying by an integer
one less than the width of the table, and rounding to the nearest integer.
Components are replaced by the table entry at the index.

The required state is one bit indicating whether color table lookup is
enabled or disabled. In the initial state, lookup is disabled.

Convolution

This step applies only to RGBA component groups. If CONVOLUTION 1D is

enabled, the one-dimensional convolution �lter is applied only to the im-
age passed to TexImage1D, CopyTexImage1D, and CopyTexSubIm-

age1D. If CONVOLUTION 2D is enabled, the two-dimensional convolution �l-
ter is applied only to the two-dimensional images passed to DrawPixels,

CopyPixels,ReadPixels, TexImage2D, TexSubImage2D, CopyTex-
Image2D, and7 CopyTexSubImage2D. If SEPARABLE 2D is enabled, and
CONVOLUTION 2D is disabled, the separable two-dimensional convolution �lter

is applied only to these same images.

7 This list is not yet complete.

DRAFT Version 1.2 - Jan. 2, 1998

CHAPTER 3. RASTERIZATION 104

Base Filter Format R G B A

ALPHA Rs Gs Bs As �Af

LUMINANCE Rs �Lf Gs �Lf Bs �Lf As

LUMINANCE ALPHA Rs �Lf Gs �Lf Bs �Lf As �Af

INTENSITY Rs � If Gs � If Bs � If As � If
RGB Rs �Rf Gs �Gf Bs �Bf As

RGBA Rs �Rf Gs �Gf Bs �Bf As �Af

Table 3.14: Computation of �ltered color components depending on �lter
image format. C � F indicates the convolution of image component C with

�lter F .

The convolution operation is a sum of products of source image pixels and

convolution �lter pixels. Source image pixels always have four components:
red, green, blue, and alpha, denoted in the equations below as Rs, Gs, Bs,

and As. Filter pixels may be stored in one of �ve formats, with 1, 2, 3, or
4 components. These components are denoted as Rf , Gf , Bf , Af , Lf , and

If in the equations below. The result of the convolution operation is the
4-tuple R,G,B,A. Depending on the internal format of the �lter, individual

color components of each source image pixel are convolved with one �lter
component, or are passed unmodi�ed. The rules for this are de�ned in
table 3.14.

The convolution operation is de�ned di�erently for each of the three
convolution �lters. The variables Wf and Hf refer to the dimensions of the

convolution �lter. The variables Ws and Hs refer to the dimensions of the
source pixel image.

The convolution equations are de�ned as follows, where C refers to the
�ltered result, Cf refers to the one- or two-dimensional convolution �lter,

and Crow and Ccolumn refer to the two one-dimensional �lters comprising
the two-dimensional separable �lter. C0

s depends on the source image color

Cs and the convolution border mode as described below. Cr, the �ltered
output image, depends on all of these variables and is described separately
for each border mode. The pixel indexing nomenclature is decribed in the

Convolution Filter Speci�cation subsection of section 3.6.3.
One-dimensional �lter:

C[i0] =

Wf�1X
n=0

C0
s[i

0 + n] �Cf [n]

Two-dimensional �lter:

DRAFT Version 1.2 - Jan. 2, 1998

CHAPTER 3. RASTERIZATION 105

C[i0; j 0] = (

Wf�1X
n=0

)(

Hf�1X
m=0

)C0
s[i

0 + n; j0 +m] � Cf [n;m]

Two-dimensional separable �lter:

C[i0; j0] = (

Wf�1X
n=0

)(

Hf�1X
m=0

)C0
s[i

0 + n; j0 +m] � Crow[n] � Ccolumn[m]

If Wf of a one-dimensional �lter is zero, then C[i] is always set to zero.
Likewise, if either Wf or Hf of a two-dimensional �lter is zero, then C[i; j]
is always set to zero.

The convolution border mode for a speci�c convolution �lter is speci�ed
by calling

void ConvolutionParameterfifg(enum target, enum pname,

T param) ;

where target is the name of the �lter, pname is CONVOLUTION BORDER MODE,

and param is one of REDUCE, IGNORE BORDER, CONSTANT BORDER8, or
REPLICATE BORDER.

Border Mode REDUCE

The width and height of source images convolved with border mode REDUCE

are reduced by Wf � 1 and Hf � 1, respectively. If this reduction would
generate a resulting image with zero or negative width and/or height, the
output is simply null, with no error generated. The coordinates of the

image that results from a convolution with border mode REDUCE are zero
through Ws �Wf in width, and zero through Hs �Hf in height. In cases

where errors can result from the speci�cation of invalid image dimensions,
it is these resulting dimensions that are tested, not the dimensions of the

source image. (A speci�c example is TexImage1D and TexImage2D,
which specify constraints for image dimensions. Even if TexImage1D or

TexImage2D is called with a null pixel pointer, the dimensions of the
resulting texture image are those that would result from the convolution of

the speci�ed image).

8 We haven't reached closure on the speci�cation of border modes IGNORE BORDER

and CONSTANT BORDER.

DRAFT Version 1.2 - Jan. 2, 1998

CHAPTER 3. RASTERIZATION 106

When the border mode is REDUCE, C0
s equals the source image color Cs

and Cr equals the �ltered result C.
For the remaining border modes, de�ne Cw = bWf=2c and Ch = bHf=2c.

The coordinates (Cw; Ch) de�ne the center of the convolution �lter.

Border Mode IGNORE BORDER

If the convolution border mode is IGNORE BORDER, the output image has the
same dimensions as the source image. The convolution �lter is moved around

the source image so that its center passes over every pixel in the source
image. At each location, the sum of products is computed and the result
is written in the destination image at the location that corresponds to the

pixel location where the convolution �lter is centered. However, the sum of
products is not computed for any pixel where the convolution �lter extends

beyond one of the edges of the source image. Instead, for these locations,
the pixel value from the source image is copied to the destination image.

For a one-dimensional �lter, the result color is de�ned by

Cr[i] =

(
C[i� Cw]; 0 � i� Cw < Ws � (Wf � 1)
Cs[i]; otherwise

For a two-dimensional or two-dimensional separable �lter, the result

color is de�ned by

Cr[i; j] =

8><
>:

C[i� Cw; j � Ch]; 0 � i� Cw < Ws � (Wf � 1);

0 � j � Ch < Hs � (Hf � 1)
Cs[i; j]; otherwise

Border Mode CONSTANT BORDER

If the convolution border mode is CONSTANT BORDER, the output image has

the same dimensions as the source image. The result of the convolution is
the same as if the source image were surrounded by pixels with the same

color as the current convolution border color. Whenever the convolution �l-
ter extends beyond one of the edges of the source image, the constant-color

border pixels are used as input to the �lter. The current convolution border
color is set by calling ConvolutionParameterfv or ConvolutionParam-

eteriv with pname set to CONVOLUTION BORDER COLOR and params containing
four values that comprise the RGBA color to be used as the image border.

Integer color components are interpreted linearly such that the most positive

DRAFT Version 1.2 - Jan. 2, 1998

CHAPTER 3. RASTERIZATION 107

integer maps to 1.0, and the most negative integer maps to -1.0. Floating

point color components are not clamped when they are speci�ed.
For a one-dimensional �lter, the result color is de�ned by

Cr[i] = C[i� Cw]

where C[i0] is de�ned as

C[i0] =

(
Cs[i

0]; 0 � i0 < Ws

Cc; otherwise

and Cc is the convolution border color.
For a two-dimensional or two-dimensional separable �lter, the result

color is de�ned by

Cr[i; j] = C[i� Cw; j � Ch]

where C[i0; j0] is de�ned as

C[i0; j0] =

(
Cs[i

0; j0]; 0 � i0 < Ws; 0 � j0 < Hs

Cc; otherwise

Border Mode REPLICATE BORDER

The convolution border mode REPLICATE BORDER also produces an output
image with the same dimensions as the source image. The behavior of this

mode is identical to that of the IGNORE BORDERmode except for the treatment
of pixel locations where the convolution �lter extends beyond the edge of

the source image. For these locations, it is as if the outermost one-pixel
border of the source image was replicated. Conceptually, each pixel in the

leftmost one-pixel column of the source image is replicated Cw times to
provide additional image data along the left edge, each pixel in the rightmost
one-pixel column is replicated Cw times to provide additional image data

along the right edge, and each pixel value in the top and bottom one-pixel
rows is replicated to create Ch rows of image data along the top and bottom

edges. The pixel value at each corner is also replicated in order to provide
data for the convolution operation at each corner of the source image.

For a one-dimensional �lter, the result color is de�ned by

Cr[i] = C[i� Cw]

DRAFT Version 1.2 - Jan. 2, 1998

CHAPTER 3. RASTERIZATION 108

where C[i0] is de�ned as

C[i0] = Cs[clamp(i0;Ws)

and the clamping function clamp(val;max) is de�ned as

clamp(val;max) =

8><
>:

0; val < 0
val; 0 � val < max

max� 1; val >= max

For a two-dimensional or two-dimensional separable �lter, the result
color is de�ned by

Cr[i; j] = C[i� Cw; j � Ch]

where C[i0; j0] is de�ned as

C[i0; j 0] = Cs[clamp(i0;Ws); clamp(j0; Hs)]

After convolution, each component of the resulting image is scaled by
the corresponding PixelTransfer parameters: POST CONVOLUTION RED SCALE

for an R component, POST CONVOLUTION GREEN SCALE

for a G component, POST CONVOLUTION BLUE SCALE for a B component, and

POST CONVOLUTION ALPHA SCALE for an A component. The result is added
to the cor-

responding bias: POST CONVOLUTION RED BIAS, POST CONVOLUTION GREEN BIAS,
POST CONVOLUTION BLUE BIAS, or POST CONVOLUTION ALPHA BIAS.

The required state is three bits indicating whether each of one-

dimensional, two-dimensional, or separable two-dimensional convolution is
enabled or disabled, an integer describing the current convolution border

mode, and four oating-point values specifying the convolution border color.
In the initial state, all convolution operations are disabled, the border mode

is REDUCE, and the border color is (0; 0; 0; 0).

Post Convolution Color Table Lookup

This step applies only to RGBA component groups. Post convolution
color table lookup is enabled or disabled by calling Enable or Disable

with the symbolic constant POST CONVOLUTION COLOR TABLE. The post convo-
lution table is de�ned by calling ColorTable with a target argument of
POST CONVOLUTION COLOR TABLE. In all other respects, operation is identical

to color table lookup, as de�ned earlier in section 3.6.5.

DRAFT Version 1.2 - Jan. 2, 1998

CHAPTER 3. RASTERIZATION 109

The required state is one bit indicating whether post convolution table

lookup is enabled or disabled. In the initial state, lookup is disabled.

Color Matrix Transformation

This step applies only to RGBA component groups. The components are
transformed by the color matrix. Each transformed component is multi-

plied by an appropriate signed scale factor: POST COLOR MATRIX RED SCALE

for an R component, POST COLOR MATRIX GREEN SCALE

for a G component, POST COLOR MATRIX BLUE SCALE for a B component, and
POST COLOR MATRIX ALPHA SCALE for an A component. The result is added to
a signed bias: POST COLOR MATRIX RED BIAS, POST COLOR MATRIX GREEN BIAS,

POST COLOR MATRIX BLUE BIAS, or POST COLOR MATRIX ALPHA BIAS. The result-
ing components replace each component of the original group.

That is, if Mc is the color matrix, a subscript of s represents the scale
term for a component, and a subscript of b represents the bias term, then

the components

0
BB@
R

G

B

A

1
CCA

are transformed to

0
BB@
R0

G0

B0

A0

1
CCA =

0
BB@
Rs 0 0 0
0 Gs 0 0
0 0 Bs 0

0 0 0 As

1
CCAMc

0
BB@
R

G

B

A

1
CCA+

0
BB@
Rb

Gb

Bb

Ab

1
CCA :

Post Color Matrix Color Table Lookup

This step applies only to RGBA component groups. Post color matrix

color table lookup is enabled or disabled by calling Enable or Disable
with the symbolic constant POST COLOR MATRIX COLOR TABLE. The post color

matrix table is de�ned by calling ColorTable with a target argument of
POST COLOR MATRIX COLOR TABLE. In all other respects, operation is identical

to color table lookup, as de�ned in section 3.6.5.
The required state is one bit indicating whether post color matrix lookup

is enabled or disabled. In the initial state, lookup is disabled.

DRAFT Version 1.2 - Jan. 2, 1998

CHAPTER 3. RASTERIZATION 110

Histogram

This step applies only to RGBA component groups. Histogram operation

is enabled or disabled by calling Enable or Disable with the symbolic
constant HISTOGRAM.

If the width of the table is non-zero, then indices Ri, Gi, Bi, and Ai

are derived from the red, green, blue, and alpha components of each pixel

group (without modifying these components) by clamping each component
to [0; 1] , multiplying by one less than the width of the histogram table, and
rounding to the nearest integer. If the format of the HISTOGRAM table includes

red or luminance, the red or luminance component of histogram entry Ri

is incremented by one. If the format of the HISTOGRAM table includes green,

the green component of histogram entry Gi is incremented by one. The blue
and alpha components of histogram entries Bi and Ai are incremented in

the same way. If a histogram entry component is incremented beyond its
maximum value, its value becomes unde�ned; this is not an error 9

If the Histogram sink parameter is FALSE, histogram operation has no
e�ect on the stream of pixel groups being processed. Otherwise, all RGBA

pixel groups are discarded immediately after the histogram operation is
completed. Because histogram precedes minmax, no minmax operation is
performed. No pixel fragments are generated, no change is made to texture

memory contents 10 and no pixel values are returned.

Minmax

This step applies only to RGBA component groups. Minmax operation
is enabled or disabled by calling Enable or Disable with the symbolic

constant MINMAX.
If the format of the minmax table includes red or luminance, the red

component value replaces the red or luminance value in the minimum table
element if and only if it is less than that component. Likewise, if the format

includes red or luminance and the red component of the group is greater
than the red or luminance value in the maximum element, the red group
component replaces the red or luminance maximum component. If the for-

mat of the table includes green, the green group component conditionally
replaces the green minimum and/or maximum if it is smaller or larger, re-

spectively. The blue and alpha group components are similarly tested and

9 However, we may want to de�ne 32-bit internal component formats, since there's no

way to detect if overow occurs.
10 We haven't de�ned whether or not texture state is a�ected, however. Can we vagueify

this section?

DRAFT Version 1.2 - Jan. 2, 1998

CHAPTER 3. RASTERIZATION 111

replaced, if the table format includes blue and/or alpha. The internal type

of the minimum and maximum component values is oating point { there
are no semantics de�ned for the treatment of group component values that

are outside the representable range of the minimum and maximum values.11

If theMinmax sink parameter is FALSE, minmax operation has no e�ect

on the stream of pixel groups being processed. Otherwise, all RGBA pixel
groups are discarded immediately after the minmax operation is completed.

No pixel fragments are generated, no change is made to texture memory
contents, and no pixel values are returned.

3.7 Bitmaps

Bitmaps are rectangles of zeros and ones specifying a particular pattern of
fragments to be produced. Each of these fragments has the same associated

data. These data are those associated with the current raster position.
Bitmaps are sent using

void Bitmap(sizei w, sizei h, float xbo, float ybo,

float xbi, float ybi, ubyte *data) ;

w and h comprise the integer width and height of the rectangular bitmap,

respectively. (xbo; ybo) gives the oating-point x and y values of the bitmap's
origin. (xbi; ybi) gives the oating-point x and y increments that are added
to the raster position after the bitmap is rasterized. data is a pointer to a

bitmap.
Like a polygon pattern, a bitmap is unpacked from memory according to

the procedure given in section 3.6.4 forDrawPixels; it is as if the width and
height passed to that command were equal to w and h, respectively, the type

were BITMAP, and the format were COLOR INDEX. The unpacked values (before
any conversion or arithmetic would have been performed) are bitwise ANDed

with 1 to obtain a stipple pattern of zeros and ones. See �gure 3.9.
A bitmap sent using Bitmap is rasterized as follows. First, if the cur-

rent raster position is invalid (the valid bit is reset), the bitmap is ignored.
Otherwise, a rectangular array of fragments is constructed, with lower left
corner at

(xll; yll) = (bxrp � xboc; byrp � yboc)
11This entire confusing paragraph could be replaced with a nice table. I also don't care

for the "no semantics de�ned" bit - why can't we de�ne clamping of component values to

the table range?

DRAFT Version 1.2 - Jan. 2, 1998

CHAPTER 3. RASTERIZATION 112

333
333
333

333
333
333333

333
333

333
333
333

333
333
333

333
333
333333

333
333

333
333
333333

333
333

333
333
333

333
333
333

333
333
333333

333
333

333
333
333

333
333
333

333
333
333333
333
333

333
333
333

333
333
333333
333
333

333
333
333333

333
333

333
333
333333
333
333

333
333
333

333
333
333

333
333
333

333
333
333

333
333
333 333

333
333

333
333
333

333
333
333

333
333
333

333
333
333

333
333
333

333
333
333

333
333
333

333
333
333

333
333
333

333
333
333

h = 12

w = 8

ybo = 1.0

xbo = 2.5

Figure 3.9. A bitmap and its associated parameters. xbi and ybi are not
shown.

and upper right corner at (xll+w; yll+h) where w and h are the width and
height of the bitmap, respectively. Fragments in the array are produced if

the corresponding bit in the bitmap is 1 and not produced otherwise. The
associated data for each fragment are those associated with the current raster

position, with texture coordinates s, t, and r replaced with s=q, t=q, and r=q,
respectively. If q is less than or equal to zero, the results are unde�ned. Once

the fragments have been produced, the current raster position is updated:

(xrp; yrp) (xrp + xbi; yrp + ybi):

The z and w values of the current raster position remain unchanged.

3.8 Texturing

Texturing maps a portion of a speci�ed image onto each primitive for which
texturing is enabled. This mapping is accomplished by using the color of
an image at the location indicated by a fragment's (s; t; r) coordinates to

modify the fragment's primary RGBA color. Texturing does not a�ect the
secondary color.

DRAFT Version 1.2 - Jan. 2, 1998

CHAPTER 3. RASTERIZATION 113

Texturing is speci�ed only for RGBA mode; its use in color index mode

is unde�ned.
The GL provides a means to specify the details of how texturing of a

primitive is e�ected. These details include speci�cation of the image to be
texture mapped, the means by which the image is �ltered when applied

to the primitive, and the function that determines what RGBA value is
produced given a fragment color and an image value.

3.8.1 Texture Image Speci�cation

The command

void TexImage3D(enum target, int level, enum internalfor-

mat, sizei width, sizei height, sizei depth, int border,

enum format, enum type, void *data) ;

is used to specify a three-dimensional texture image. target must be either

TEXTURE 3D, or PROXY TEXTURE 3D in the special case discussed in section 3.8.7.
format, type, and data match the corresponding arguments to DrawPixels
(refer to section 3.6.4); they specify the format of the image data, the type

of those data, and a pointer to the image data in host memory. The formats
STENCIL INDEX and DEPTH COMPONENT are not allowed12.

The groups in memory are treated as being arranged in a sequence of ad-
jacent rectangles 13. Each rectangle is a two-dimensional image, whose size

and organization are speci�ed by the width and height parameters toTexIm-

age3D. The values of UNPACK ROW LENGTH and UNPACK ALIGNMENT control the

row-to-row spacing in these images in the same manner as DrawPixels. If
the value of the integer parameter UNPACK IMAGE HEIGHT is not positive, then

the number of rows in each two-dimensional image is height; otherwise the
number of rows is UNPACK IMAGE HEIGHT. Each two-dimensional image com-

prises an integral number of rows, and is exactly adjacent to its neighbor
images.

The mechanism for selecting a sub-volume of a three-dimensional image

relies on the integer parameter UNPACK SKIP IMAGES. If UNPACK SKIP IMAGES is
positive, the pointer is advanced by UNPACK SKIP IMAGES times the number of

elements in one two-dimensional image before obtaining the �rst group from

12Need to add a note that convolution may a�ect the �nal size of texture images -

where?
13 Need to add a three-dimensional analog to �gure 3.8, showing how the three-

dimensional packing parameters a�ect the host memory layout.

DRAFT Version 1.2 - Jan. 2, 1998

CHAPTER 3. RASTERIZATION 114

memory. Then depth two-dimensional images are processed, each having a

subimage extracted in the same manner as DrawPixels.
The selected groups are processed exactly as for DrawPixels, stopping

just before �nal conversion. Each R, G, B, and A value so generated is
clamped to [0; 1].

Components are then selected from the resulting R, G, B, and A values
to obtain a texture with the base internal format speci�ed by (or derived

from) internalformat. Table 3.15 summarizes the mapping of R, G, B, and
A values to texture components, as a function of the base internal format

of the texture image. internalformat may be speci�ed as one of the six base
internal format symbolic constants listed in table 3.15, or as one of the sized
internal format symbolic constants listed in table 3.16. Specifying a value for

internalformat that is not a base internal format or a sized internal format
generates the error INVALID VALUE.

The internal component resolution is the number of bits allocated to
each value in a texture image. If internalformat is speci�ed as a base in-

ternal format, the GL stores the resulting texture with internal component
resolutions of its own choosing. If a sized internal format is speci�ed, the

mapping of the R, G, B, and A values to texture components is equivalent
to the mapping of the corresponding base internal format's components, as

speci�ed in table 3.15, and the memory allocation per texture component is
assigned by the GL to match the allocations listed in table 3.16 as closely
as possible. (The de�nition of closely is left up to the implementation. Im-

plementations are not required to support more than one resolution for each
base internal format.)

A GL implementation may vary its allocation of internal component res-
olution based on any TexImage3D, TexImage2D (see below), or TexIm-

age1D (see below) parameter (except target), but the allocation must not be
a function of any other state, and cannot be changed once it is established.

Allocations must be invariant; the same allocation must be made each time a
texture image is speci�ed with the same parameter values. These allocation

rules also apply to proxy textures, which are described in section 3.8.7.
The image itself (pointed to by data) is a sequence of groups of values.

The �rst group is the lower left back corner of the texture image. Subsequent

groups �ll out rows of width width from left to right; height rows are stacked
from bottom to top forming a single two-dimensional image slice; and depth

slices are stacked from back to front. When the �nal R, G, B, and A compo-
nents have been computed for a group, they are assigned to components of

a texel as described by table 3.15. Counting from zero, each resulting Nth
texel is assigned internal integer coordinates (i; j; k), where

DRAFT Version 1.2 - Jan. 2, 1998

CHAPTER 3. RASTERIZATION 115

Base Internal Format RGBA Values Internal Components

ALPHA A A

LUMINANCE R L

LUMINANCE ALPHA R,A L,A

INTENSITY R I

RGB R,G,B R,G,B

RGBA R,G,B,A R,G,B,A

Table 3.15: Conversion from RGBA pixel components to internal texture,
table, or �lter components. See section 3.8.9 for a description of the texture

components R, G, B, A, L, and I .

i = (N mod width)� bs

j = (b N

width
c mod height)� bs

k = (b N

width� height
c mod depth)� bs

and bs is the speci�ed border width. Thus the last two-dimensional image
slice of the three-dimensional image is indexed with the highest value of k.

Each color component is converted (by rounding to nearest) to a �xed-
point value with n bits, where n is the number of bits of storage allocated to
that component in the image array. We assume that the �xed-point repre-

sentation used represents each value k=(2n�1), where k 2 f0; 1; : : : ; 2n�1g,
as k (e.g. 1.0 is represented in binary as a string of all ones).

The level argument to TexImage3D is an integer level-of-detail number.
Levels of detail are discussed below, underMipmapping. The main texture

image has a level of detail number of 0. If a level-of-detail less than zero is
speci�ed, the error INVALID VALUE is generated.

The border argument to TexImage3D is a border width. The signi�-
cance of borders is described below. The border width a�ects the required

dimensions of the texture image: it must be the case that

ws = 2n + 2bs (3.11)

hs = 2m + 2bs (3.12)

DRAFT Version 1.2 - Jan. 2, 1998

CHAPTER 3. RASTERIZATION 116

Sized Base R G B A L I

Internal Format Internal Format bits bits bits bits bits bits

ALPHA4 ALPHA 4

ALPHA8 ALPHA 8

ALPHA12 ALPHA 12

ALPHA16 ALPHA 16

LUMINANCE4 LUMINANCE 4

LUMINANCE8 LUMINANCE 8

LUMINANCE12 LUMINANCE 12

LUMINANCE16 LUMINANCE 16

LUMINANCE4 ALPHA4 LUMINANCE ALPHA 4 4

LUMINANCE6 ALPHA2 LUMINANCE ALPHA 2 6

LUMINANCE8 ALPHA8 LUMINANCE ALPHA 8 8

LUMINANCE12 ALPHA4 LUMINANCE ALPHA 4 12

LUMINANCE12 ALPHA12 LUMINANCE ALPHA 12 12

LUMINANCE16 ALPHA16 LUMINANCE ALPHA 16 16

INTENSITY4 INTENSITY 4

INTENSITY8 INTENSITY 8

INTENSITY12 INTENSITY 12

INTENSITY16 INTENSITY 16

R3 G3 B2 RGB 3 3 2

RGB4 RGB 4 4 4

RGB5 RGB 5 5 5

RGB8 RGB 8 8 8

RGB10 RGB 10 10 10

RGB12 RGB 12 12 12

RGB16 RGB 16 16 16

RGBA2 RGBA 2 2 2 2

RGBA4 RGBA 4 4 4 4

RGB5 A1 RGBA 5 5 5 1

RGBA8 RGBA 8 8 8 8

RGB10 A2 RGBA 10 10 10 2

RGBA12 RGBA 12 12 12 12

RGBA16 RGBA 16 16 16 16

Table 3.16: Correspondence of sized internal formats to base internal for-
mats, and desired component resolutions for each sized internal format.

DRAFT Version 1.2 - Jan. 2, 1998

CHAPTER 3. RASTERIZATION 117

ds = 2l + 2bs (3.13)

for some integers n, m, and l, where ws, hs, and ds are the speci�ed image

width, height, and depth. If any one of these relationships cannot be satis�ed,
then the error INVALID VALUE is generated.

Currently, the maximum border width bt is 1. If bs is less than zero, or
greater than bt, then the error INVALID VALUE is generated.

The maximum allowable width or height14 of an image is an implemen-
tation dependent function of the level-of-detail and internal format of the

resulting image array. It must be at least 2k�lod + 2bt for image arrays of
level-of-detail 0 through k, where k is the log base 2 of MAX TEXTURE SIZE,
lod is the level-of-detail of the image array, and bt is the maximum border

width. It may be zero for image arrays of any level-of-detail greater than k.
The error INVALID VALUE is generated if the speci�ed image is too large to

be stored under any conditions.
Section 3.8.7 describes a query mechanism to determine the maximum

dimensions of a texture array of a speci�c level of detail and internal for-
mat. In order to allow the client to meaningfully query the maximum image

array sizes that are supported, an implementation must not allow an image
array of level 1 or greater to be created if a complete set of image arrays

consistent with the requested array could not be supported. The de�nition
of a complete set of image arrays is provided below, under Mipmapping.

The command

void TexImage2D(enum target, int level, int internalfor-

mat, sizei width, sizei height, int border, enum format,

enum type, void *data) ;

is used to specify a two-dimensional texture image. target must be ei-
ther TEXTURE 2D, or PROXY TEXTURE 2D in the special case discussed in sec-

tion 3.8.7. The other parameters match the corresponding parameters of
TexImage3D, except that internalformat may (for backwards compatibil-

ity with the 1.0 version of the GL) also take on the integer values 1, 2, 3, and
4, which are equivalent to symbolic constants LUMINANCE, LUMINANCE ALPHA,

RGB, and RGBA respectively15.

14 But not depth; MAX TEXTURE SIZE only applies to one- and two-dimensional texture

images.
15As a consequence, parameter internalformat of TexImage2D and TexImage1D is

of type int, not type enum.

DRAFT Version 1.2 - Jan. 2, 1998

CHAPTER 3. RASTERIZATION 118

For the purposes of decoding the texture image, TexImage2D is equiv-

alent to calling TexImage3D with corresponding arguments and depth of
1, except that

� The depth of the image is always 1 regardless of the value of border.

� Convolution will be performed on the image (possibly changing its

width and height) if SEPARABLE 2D or CONVOLUTION 2D is enabled.

� UNPACK SKIP IMAGES is ignored.

Finally, the command

void TexImage1D(enum target, int level, int internalfor-

mat, sizei width, int border, enum format, enum type,

void *data) ;

is used to specify a one-dimensional texture image. target must be ei-

ther TEXTURE 1D, or PROXY TEXTURE 1D in the special case discussed in sec-
tion 3.8.7.)

For the purposes of decoding the texture image, TexImage1D is equiv-
alent to calling TexImage2D with corresponding arguments and height of

1, except that

� The height of the image is always 1 regardless of the value of border.

� Convolution will be performed on the image (possibly changing its
width) only if CONVOLUTION 1D is enabled.

An image with zero width, height (TexImage2D and TexImage3D

only), or depth (TexImage3D only) indicates the null texture. If the null
texture is speci�ed for level-of-detail zero, it is as if texturing were disabled.

The image indicated to the GL by the image pointer is decoded and
copied into the GL's internal memory. This copying e�ectively places the

decoded image inside a border of the maximum allowable width bt whether
or not a border has been speci�ed (see �gure 3.10) 16. If no border or a

border smaller than the maximum allowable width has been speci�ed, then
the image is still stored as if it were surrounded by a border of the maximum

possible width. Any excess border (which surrounds the speci�ed image,
including any border) is assigned unspeci�ed values. A two-dimensional

16 Figure 3.10 needs to show a three-dimensional texture image.

DRAFT Version 1.2 - Jan. 2, 1998

CHAPTER 3. RASTERIZATION 119

texture has a border only at its left, right, top, and bottom ends, and a

one-dimensional texture has a border only at its left and right ends.
We shall refer to the (possibly border augmented) decoded image as the

texture array. A three-dimensional texture array has width, height, and
depth

wt = 2n + 2bt

ht = 2m + 2bt

dt = 2l + 2bt

where bt is the maximum allowable border width and n, m, and l are de�ned

in equations 3.11, 3.12, and 3.13. A two-dimensional texture array has depth
dt = 1, with height ht and width wt as above, and a one-dimensional texture

array has depth dt = 1, height ht = 1, and width wt as above.
An element (i; j; k) of the texture array is called a texel (for a two-

dimensional texture, k is irrelevant; for a one-dimensional texture, j and
k are both irrelevant). The texture value used in texturing a fragment is

determined by that fragment's associated (s; t; r) coordinates, but may not
correspond to any actual texel. See �gure 3.10.

If the data argument ofTexImage1D, TexImage2D, or TexImage3D

is a null pointer (a zero-valued pointer in the C implementation), a one-,
two-, or three-dimensional texture array is created with the speci�ed target,

level, internalformat, width, height, and depth, but with unspeci�ed image
contents. In this case no pixel values are accessed in client memory, and

no pixel processing is performed. Errors are generated, however, exactly as
though the data pointer were valid.

3.8.2 Alternate Texture Image Speci�cation Commands

Two-dimensional and one-dimensional texture images may also be speci-
�ed using image data taken directly from the framebu�er, and rectangular

subregions of existing texture images may be respeci�ed.
The command

void CopyTexImage2D(enum target, int level, enum in-

ternalformat, int x, int y, sizei width, sizei height,

int border) ;

de�nes a two-dimensional texture array in exactly the manner of TexIm-

age2D, except that the image data are taken from the framebu�er rather

DRAFT Version 1.2 - Jan. 2, 1998

CHAPTER 3. RASTERIZATION 120

i−1 0 1 2 3 4 5 6 7 8

u−1.0 9.0

0.0 1.0s

−1

0

2

1

3

4

j

−1.0

5.0

vt

0.0

1.0

α

β

Figure 3.10. A texture image and the coordinates used to access it. This is a
two-dimensional texture with n = 3 and m = 2. A one-dimensional texture
would consist of a single horizontal strip. � and �, values used in blending
adjacent texels to obtain a texture value, are also shown.

DRAFT Version 1.2 - Jan. 2, 1998

CHAPTER 3. RASTERIZATION 121

than from client memory. Currently, target must be TEXTURE 2D. x, y, width,

and height correspond precisely to the corresponding arguments to Copy-
Pixels (refer to section 4.3.3); they specify the image's width and height,

and the lower left (x; y) coordinates of the framebu�er region to be copied.
The image is taken from the framebu�er exactly as if these arguments were

passed toCopyPixels, with argument type set to COLOR, stopping after pixel
transfer processing is complete. Subsequent processing is identical to that

described for TexImage2D, beginning with clamping of the R, G, B, and
A values from the resulting pixel groups. Parameters level, internalformat,

and border are speci�ed using the same values, with the same meanings, as
the equivalent arguments of TexImage2D, except that internalformat may
not be speci�ed as 1, 2, 3, or 4. An invalid value speci�ed for internalfor-

mat generates the error INVALID ENUM. The constraints on width, height, and
border are exactly those for the equivalent arguments of TexImage2D.

The command

void CopyTexImage1D(enum target, int level, enum inter-

nalformat, int x, int y, sizei width, int border) ;

de�nes a one-dimensional texture array in exactly the manner of TexIm-

age1D, except that the image data are taken from the framebu�er, rather

than from client memory. Currently, target must be TEXTURE 1D. For the
purposes of decoding the texture image, CopyTexImage1D is equivalent

to calling CopyTexImage2D with corresponding arguments and height of
1, except that the height of the image is always 1, regardless of the value

of border. level, internalformat, and border are speci�ed using the same val-
ues, with the same meanings, as the equivalent arguments of TexImage1D,
except that internalformat may not be speci�ed as 1, 2, 3, or 4. The con-

straints on width and border are exactly those of the equivalent arguments
of TexImage1D.

Six additional commands,

void TexSubImage3D(enum target, int level, int xo�-

set, int yo�set, int zo�set, sizei width, sizei height,

sizei depth, enum format, enum type, void *data) ;
void TexSubImage2D(enum target, int level, int xo�-

set, int yo�set, sizei width, sizei height, enum format,

enum type, void *data) ;

void TexSubImage1D(enum target, int level, int xo�set,

sizei width, enum format, enum type, void *data) ;

DRAFT Version 1.2 - Jan. 2, 1998

CHAPTER 3. RASTERIZATION 122

void CopyTexSubImage3D(enum target, int level,

int xo�set, int yo�set, int zo�set, int x, int y,

sizei width, sizei height) ;

void CopyTexSubImage2D(enum target, int level,

int xo�set, int yo�set, int x, int y, sizei width,

sizei height) ;
void CopyTexSubImage1D(enum target, int level,

int xo�set, int x, int y, sizei width) ;

respecify only a rectangular subregion of an existing texture array. No
change is made to the internalformat, width, height, depth, or border pa-

rameters of the speci�ed texture array, nor is any change made to texel
values outside the speci�ed subregion. Currently the target arguments of

TexSubImage1D and CopyTexSubImage1D must be TEXTURE 1D, the
target arguments of TexSubImage2D and CopyTexSubImage2D must

be TEXTURE 2D, and the target arguments of TexSubImage3D and Copy-
TexSubImage3D must be TEXTURE 3D. The level parameter of each com-

mand speci�es the level of the texture array that is modi�ed. If level is
less than zero or greater than the base 2 logarithm of the maximum texture
width or height, the error INVALID VALUE is generated.

TexSubImage3D arguments width, height, depth, format, type, and
data match the corresponding arguments to TexImage3D, meaning that

they are speci�ed using the same values, and have the same meanings. Like-
wise, TexSubImage2D arguments width, height, format, type, and data

match the corresponding arguments to TexImage2D, and TexSubIm-

age1D arguments width, format, type, and data match the corresponding

arguments to TexImage1D.
CopyTexSubImage3D and CopyTexSubImage2D arguments x, y,

width, and height match the corresponding ar-
guments to CopyTexImage2D17. CopyTexSubImage1D arguments x,
y, and width match the corresponding arguments to CopyTexImage1D.

Each of the TexSubImage commands interprets and processes pixel groups
in exactly the manner of its TexImage counterpart, except that the assign-

ment of R, G, B, and A pixel group values to the texture components is
controlled by the internalformat of the texture array, not by an argument

to the command.
Arguments xo�set, yo�set, and zo�set of TexSubImage3D and Copy-

TexSubImage3D specify the lower left texel coordinates of a width-wide

17 There is no CopyTexImage3D command.

DRAFT Version 1.2 - Jan. 2, 1998

CHAPTER 3. RASTERIZATION 123

by height-high by depth-deep rectangular subregion of the texture array. The

height argument associated with CopyTexSubImage3D is always 1, be-
cause framebu�er memory is two-dimensional - only a portion of a single s; t

slice of a three-dimensional texture is replaced by CopyTexSubImage3D.
Negative values of xo�set, yo�set, and zo�set correspond to the coor-

dinates of border texels, addressed as in �gure 3.10. Taking ws, hs, ds,
and bs to be the speci�ed width, height, depth, and border width of the

texture array, (not the actual array dimensions wt, ht, dt, and bt), and tak-
ing x, y, z, w, h, and d to be the xo�set, yo�set, zo�set, width, height, and

depth argument values, any of the following relationships generates the error
INVALID VALUE:

x < �bs
x+ w > ws � bs

y < �bs
y + h > hs � bs

z < �bs
z + d > ds � bs

(Recall that ds, ws, and hs include twice the speci�ed border width bs.)
Counting from zero, the nth pixel group is assigned to the texel with internal
integer coordinates [i; j; k], where

i = x+ (n mod w)

j = y + (bn
w
c mod h)

k = z + (b n

width � heightc mod d

Arguments xo�set and yo�set of TexSubImage2D and CopyTex-

SubImage2D specify the lower left texel coordinates of a width-wide by

height-high rectangular subregion of the texture array. Negative values of
xo�set and yo�set correspond to the coordinates of border texels, addressed
as in �gure 3.10. Taking ws, hs, and bs to be the speci�ed width, height,

and border width of the texture array, (not the actual array dimensions wt,
ht, and bt), and taking x, y, w, and h to be the xo�set, yo�set, width, and

height argument values, any of the following relationships generates the error
INVALID VALUE:

DRAFT Version 1.2 - Jan. 2, 1998

CHAPTER 3. RASTERIZATION 124

x < �bs
x+ w > ws � bs

y < �bs
y + h > hs � bs

(Recall that ws and hs include twice the speci�ed border width bs.) Counting
from zero, the nth pixel group is assigned to the texel with internal integer

coordinates [i; j], where

i = x+ (n mod w)

j = y + (bn
w
c mod h)

The xo�set argument of TexSubImage1D and CopyTexSubIm-

age1D speci�es the left texel coordinate of a width-wide subregion of the
texture array. Negative values of xo�set correspond to the coordinates of

border texels. Taking ws and bs to be the speci�ed width and border width
of the texture array, and x and w to be the xo�set and width argument val-
ues, either of the following relationships generates the error INVALID VALUE:

x < �bs
x+ w > ws � bs

Counting from zero, the nth pixel group is assigned to the texel with internal

integer coordinates [i], where

i = x+ (n mod w)

3.8.3 Texture Parameters

Various parameters control how the texture array is treated when applied

to a fragment. Each parameter is set by calling

void TexParameterfifg(enum target, enum pname,

T param) ;

void TexParameterfifgv(enum target, enum pname,

T params) ;

DRAFT Version 1.2 - Jan. 2, 1998

CHAPTER 3. RASTERIZATION 125

Name Type Legal Values

TEXTURE WRAP S integer CLAMP, |CLAMP TO EDGE, REPEAT

TEXTURE WRAP T integer CLAMP, |CLAMP TO EDGE, REPEAT

|TEXTURE WRAP R integer CLAMP, CLAMP TO EDGE, REPEAT

TEXTURE MIN FILTER integer NEAREST,
LINEAR,

NEAREST MIPMAP NEAREST,
NEAREST MIPMAP LINEAR,

LINEAR MIPMAP NEAREST,
LINEAR MIPMAP LINEAR,

TEXTURE MAG FILTER integer NEAREST,

LINEAR

TEXTURE BORDER COLOR 4 oats any 4 values in [0; 1]

TEXTURE PRIORITY oat any value in [0; 1]

|TEXTURE MIN LOD oat any value

|TEXTURE MAX LOD oat any value

|TEXTURE BASE LEVEL integer any non-negative integer

|TEXTURE MAX LEVEL integer any non-negative integer

Table 3.17: Texture parameters and their values.

target is the target, either TEXTURE 1D, TEXTURE 2D, or TEXTURE 3D. pname is

a symbolic constant indicating the parameter to be set; the possible con-
stants and corresponding parameters are summarized in table 3.17. In the

�rst form of the command, param is a value to which to set a single-valued
parameter; in the second form of the command, params is an array of pa-

rameters whose type depends on the parameter being set. If the values for
TEXTURE BORDER COLOR are speci�ed as integers, the conversion for signed in-

tegers from table 2.6 is applied to convert the values to oating-point. Each
of the four values set by TEXTURE BORDER COLOR is clamped to lie in [0; 1].

3.8.4 Texture Wrap Modes

If TEXTURE WRAP S, TEXTURE WRAP T, or TEXTURE WRAP R is set to REPEAT, then
the GL ignores the integer part of s, t, or r coordinates, respectively, using
only the fractional part. (For a number f , the fractional part is f � bfc,
regardless of the sign of f ; recall that the oor function truncates towards
�1.) CLAMP causes s, t, or r coordinates to be clamped to the range [0; 1].

DRAFT Version 1.2 - Jan. 2, 1998

CHAPTER 3. RASTERIZATION 126

The initial state is for all of s, t, and r behavior to be that given by REPEAT.

CLAMP TO EDGE clamps texture coordinates at all mipmap levels such that
the texture �lter never samples a border texel. The color returned when

clamping is derived only from texels at the edge of the texture image.
When used with a NEAREST or a LINEAR �lter, texture coordinates are

clamped to the range [min;max]. The minimum value is de�ned as

min =
1

2N

where N is the size of the one-, two-, or three-dimensional texture image in

the direction of clamping. The maximum value is de�ned as

max = 1�min

so that clamping is always symmetric about the [0; 1] mapped range of a
texture coordinate.

CLAMP TO EDGE performs no clamping when �lters other than NEAREST or
LINEAR are used.

3.8.5 Texture Mini�cation

Applying a texture to a primitive implies a mapping from texture image
space to framebu�er image space. In general, this mapping involves a recon-

struction of the sampled texture image, followed by a homogeneous warping
implied by the mapping to framebu�er space, then a �ltering, followed �-

nally by a resampling of the �ltered, warped, reconstructed image before
applying it to a fragment. In the GL this mapping is approximated by one

of two simple �ltering schemes. One of these schemes is selected based on
whether the mapping from texture space to framebu�er space is deemed to

magnify or minify the texture image.

Scale Factor and Level of Detail

The choice is governed by a scale factor �(x; y) and the level of detail pa-

rameter �(x; y), de�ned as

�0(x; y) = log
2
[�(x; y)]

DRAFT Version 1.2 - Jan. 2, 1998

CHAPTER 3. RASTERIZATION 127

� =

8>>><
>>>:

TEXTURE MAX LOD �0 > TEXTURE MAX LOD

�0 TEXTURE MIN LOD � �0 � TEXTURE MAX LOD

TEXTURE MIN LOD �0 < TEXTURE MIN LOD

undefined TEXTURE MIN LOD > TEXTURE MAX LOD

(3.14)

If �(x; y) is less than or equal to the constant c (described below in
section 3.8.6) the texture is said to be magni�ed; if it is greater, the texture
is mini�ed.

The initial values of TEXTURE MIN LOD and TEXTURE MAX LOD are -1000 and
1000 respectively, so they do not interfere with the normal operation of

texture mapping. They may be respeci�ed for a speci�c texture by calling
TexParameter[if].

Let s(x; y) be the function that associates an s texture coordinate with
each set of window coordinates (x; y) that lie within a primitive; de�ne

t(x; y) and r(x; y) analogously. Let u(x; y) = 2ns(x; y), v(x; y) = 2mt(x; y),
and w(x; y) = 2lr(x; y), where n, m, and l are as de�ned by equations 3.11,

3.12, and 3.13 with ws, hs, and ds equal to the width, height, and depth
of the texture level speci�ed by TEXTURE BASE LEVEL. For a one-dimensional
texture, de�ne v(x; y) � 0 and w(x; y) � 0; for a two-dimensional texture,

de�ne w(x; y) � 0. For a polygon, � is given at a fragment with window
coordinates (x; y) by

� = max

8<
:
s�

@u

@x

�2

+

�
@v

@x

�2

+

�
@w

@x

�2

;

s�
@u

@y

�2

+

�
@v

@y

�2

+

�
@w

@y

�2

9=
;

(3.15)

where @u=@x indicates the derivative of u with respect to window x, and
similarly for the other derivatives.

For a line, the formula is

� =

s�
@u

@x
�x+

@u

@y
�y

�2
+

�
@v

@x
�x+

@v

@y
�y

�2
+

�
@w

@x
�x+

@w

@y
�y

�2�
l;

(3.16)

where �x = x2 � x1 and �y = y2 � y1 with (x1; y1) and (x2; y2) being the

segment's window coordinate endpoints and l =
p
�x2 +�y2. For a point,

pixel rectangle, or bitmap, � � 1.

DRAFT Version 1.2 - Jan. 2, 1998

CHAPTER 3. RASTERIZATION 128

While it is generally agreed that equations 3.15 and 3.16 give the best

results when texturing, they are often impractical to implement. Therefore,
an implementation may approximate the ideal � with a function f(x; y)

subject to these conditions:

1. f(x; y) is continuous and monotonically increasing in each of j@u=@xj,
j@u=@yj, j@v=@xj, j@v=@yj, j@w=@xj, and j@w=@yj

2. Let

mu = max

�����@u@x
���� ;
����@u@y

����
�

mv = max

�����@v@x
���� ;
����@v@y

����
�

mw = max

�����@w@x
���� ;
����@w@y

����
�
:

Then maxfmu; mv; mwg � f(x; y) � mu +mv +mw.

When � indicates mini�cation, the value assigned to TEXTURE MIN FILTER

is used to determine how the texture value for a fragment is selected. When
TEXTURE MIN FILTER is NEAREST, the texel nearest (in Manhattan distance)

to that speci�ed by (s; t; r) is obtained. This means the texel at location
(i; j; k) becomes the texture value, with i given by

i =

(
buc; s < 1;
2n � 1; s = 1:

(3.17)

(Recall that if TEXTURE WRAP S is REPEAT, then 0 � s < 1.) Similarly, j is

found as

j =

(
bvc; t < 1;
2m � 1; t = 1:

(3.18)

and k is found as

k =

(
bwc; r < 1;
2l � 1; r = 1:

(3.19)

For a one-dimensional texture, j and k are irrelevant; the texel at location

i becomes the texture value. For a two-dimensional texture, k is irrelevant;
the texel at location (i; j) becomes the texture value.

DRAFT Version 1.2 - Jan. 2, 1998

CHAPTER 3. RASTERIZATION 129

When TEXTURE MIN FILTER is LINEAR, a 2�2�2 cube of texels is selected.
This cube is obtained by �rst clamping texture coordinates as described
above under Texture Wrap Modes (if the wrap mode for a coordinate is

CLAMP or CLAMP TO EDGE) and computing

i0 =

(
bu� 1=2c mod 2n; TEXTURE WRAP S is REPEAT;

bu� 1=2c; otherwise

j0 =

(
bv � 1=2c mod 2m; TEXTURE WRAP T is REPEAT

bv � 1=2c; otherwise

and

k0 =

(
bw � 1=2c mod 2l; TEXTURE WRAP R is REPEAT

bw � 1=2c; otherwise

Then

i1 =

(
(i0 + 1) mod 2n; TEXTURE WRAP S is REPEAT;

i0 + 1; otherwise

j1 =

(
(j0 + 1) mod 2m; TEXTURE WRAP T is REPEAT;

j0 + 1; otherwise

and

k1 =

(
(k0 + 1) mod 2l; TEXTURE WRAP R is REPEAT;

k0 + 1; otherwise

Let
� = frac(u� 1=2)

� = frac(v � 1=2)

 = frac(w� 1=2)

where frac(x) denotes the fractional part of x.

For a three-dimensional texture, the texture value � is found as

� = (1� �)(1� �)(1�)�i0j0k0 + �(1� �)(1�)�i1j0k0

+ (1� �)�(1�)�i0j1k0 + ��(1�)�i1j1k0

+ (1� �)(1� �)�i0j0k1 + �(1� �)�i1j0k1

+ (1� �)��i0j1k1 + ���i1j1k1

DRAFT Version 1.2 - Jan. 2, 1998

CHAPTER 3. RASTERIZATION 130

where �ijk is the texel at location (i; j; k) in the three-dimensional texture

image.
For a two-dimensional texture,

� = (1� �)(1� �)�i0j0 + �(1� �)�i1j0 + (1� �)��i0j1 + ���i1j1 (3.20)

where �ij is the texel at location (i; j) in the two-dimensional texture image.
And for a one-dimensional texture,

� = (1� �)�i0 + ��i1

where �i is the texel at location i in the one-dimensional texture.
If any of the selected �ijk, �ij , or �i in the above equations refer to a

border texel with i < �bs, j < �bs, k < �bs, i � ws � bs, j � hs � bs,
or j � ds � bs, then the border color given by the current setting of

TEXTURE BORDER COLOR is used instead of the unspeci�ed value or values. The
RGBA values of the TEXTURE BORDER COLOR are interpreted to match the tex-
ture's internal format in a manner consistent with table 3.15.

Mipmapping

TEXTURE MIN FILTER values NEAREST MIPMAP NEAREST, NEAREST MIPMAP LINEAR,

LINEAR MIPMAP NEAREST, and LINEAR MIPMAP LINEAR each require the use of
a mipmap. A mipmap is an ordered set of arrays representing the same

image; each array has a resolution lower than the previous one. If the
texture, excluding its border has dimensions 2n � 2m � 2l, then there are

maxfn;m; lg+1mipmap arrays. The �rst array is the original texture with
dimensions 2n � 2m � 2l. Each subsequent array has dimensions

�(i� 1)� �(j � 1)� �(k � 1)

where the dimensions of the previous array are

�(i)� �(j)� �(k)

and

�(x) =

(
2x x > 0
1 x � 0

until the last array is reached with dimension 1� 1� 1.

DRAFT Version 1.2 - Jan. 2, 1998

CHAPTER 3. RASTERIZATION 131

Each array in a mipmap is de�ned using TexImage3D, TexIm-

age2D, CopyTexImage2D, TexImage1D, or CopyTexImage1D; the
array being set is indicated with the level-of-detail argument level. Level-

of-detail numbers proceed from 0 for the original texture array through
p = maxfn;m; lg with each unit increase indicating an array of half the

dimensions of the previous one as already described. If texturing is enabled
(and TEXTURE MIN FILTER is one that requires a mipmap) at the time a prim-

itive is rasterized and if the set of arrays 0 and TEXTURE BASE LEVEL through
q = minfp; TEXTURE MAX LEVELg is incomplete, based on the dimensions of

array 0, then it is as if texture mapping were disabled. The set of arrays
0 and TEXTURE BASE LEVEL through q is incomplete if the internal formats of
all the mipmap arrays were not speci�ed with the same symbolic constant,

if the border widths of the mipmap arrays are not the same, if the dimen-
sions of the mipmap arrays do not follow the sequence described above,

if TEXTURE MAX LEVEL < TEXTURE BASE LEVEL, or if TEXTURE BASE LEVEL > p.
Array levels k where 0 < k < TEXTURE BASE LEVEL or k > q are insigni�cant.

The initial values of TEXTURE BASE LEVEL and TEXTURE MAX LEVEL are 0
and 1000 respectively, so they do not interfere with the normal operation of

texture mapping. They may be respeci�ed for a speci�c texture by calling
TexParameter[if]. The error INVALID VALUE is generated if either value is

negative.
The mipmap is used in conjunction with the level of detail to approxi-

mate the application of an appropriately �ltered texture to a fragment. Let

c be the value of � at which the transition from mini�cation to magni�cation
occurs (since this discussion pertains to mini�cation, we are concerned only

with values of � where � > c). For NEAREST MIPMAP NEAREST, if c < � � 0:5
then the mipmap array with level-of-detail of TEXTURE BASE LEVEL is selected.

Otherwise, the dth mipmap array is selected when

d� 1

2
< TEXTURE BASE LEVEL+ � � d+

1

2

as long as

TEXTURE BASE LEVEL+ 1 � d � q

If TEXTURE BASE LEVEL+ � > q + 1

2
, then the qth mipmap array is selected.

The rules for NEAREST are then applied to the selected array.
The same mipmap array selection rules apply for LINEAR MIPMAP NEAREST

as for NEAREST MIPMAP NEAREST, but the rules for LINEAR are applied to the
selected array.

DRAFT Version 1.2 - Jan. 2, 1998

CHAPTER 3. RASTERIZATION 132

For NEAREST MIPMAP LINEAR, the level d � 1 and the level d mipmap

arrays are selected, where d � 1 � TEXTURE BASE LEVEL + � < d, unless
TEXTURE BASE LEVEL+� � q, in which case the qth mipmap array is used for

both arrays. The rules for NEAREST are then applied to each of these arrays,
yielding two corresponding texture values �d�1 and �d. The �nal texture

value is then found as

� = [1� frac(�)]�d�1+ frac(�)�d:

LINEAR MIPMAP LINEAR has the same e�ect as NEAREST MIPMAP LINEAR except
that the rules for LINEAR are applied for each of the two mipmap arrays to

generate �d�1 and �d.

3.8.6 Texture Magni�cation

When � indicates magni�cation, the value assigned to TEXTURE MAG FILTER

determines how the texture value is obtained. There are two possible val-
ues for TEXTURE MAG FILTER: NEAREST and LINEAR. NEAREST behaves exactly as

NEAREST for TEXTURE MIN FILTER (equations 3.17, 3.18, and 3.19 are used);
LINEAR behaves exactly as LINEAR for TEXTURE MIN FILTER (equation 3.20 is

used). The level-of-detail TEXTURE BASE LEVEL texture array is always used
for magni�cation.

Finally, there is the choice of c, the mini�cation vs. magni�cation switch-
over point. If the magni�cation �lter is given by LINEAR and the mini�cation
�lter is given by NEAREST MIPMAP NEAREST or NEAREST MIPMAP LINEAR, then c =

0:5. This is done to ensure that a mini�ed texture does not appear \sharper"
than a magni�ed texture. Otherwise c = 0.

3.8.7 Texture State and Proxy State

The state necessary for texture can be divided into two categories. First,
there are the three sets of mipmap arrays (one-, two-, and three-dimensional)

and their number. Each array has associated with it a width, height (two-
or three-dimensional only), and depth (three-dimensional only), a border

width, an integer describing the internal format of the image, and six inte-
ger values describing the resolutions of each of the red, green, blue, alpha,

luminance, and intensity components of the image. Each initial texture
array is null (zero width, height, and depth, zero border width, internal

format 1, with zero-sized components). Next, there are the two sets of tex-
ture properties; each consists of the selected mini�cation and magni�cation
�lters, the wrap modes for s, t (two- and three-dimensional only), and r

DRAFT Version 1.2 - Jan. 2, 1998

CHAPTER 3. RASTERIZATION 133

(three-dimensional only), the TEXTURE BORDER COLOR, and the priority associ-

ated with each set of properties. (See subsection 3.8.8.) In the initial state,
the value assigned to TEXTURE MIN FILTER is NEAREST MIPMAP LINEAR, and the

value for TEXTURE MAG FILTER is LINEAR. s, t, and r wrap modes are all set to
REPEAT. The priority is set to 1. TEXTURE BORDER COLOR is (0,0,0,0).

In addition to the one-, two-, and three-dimensional sets of image ar-
rays, partially instantiated one- two-, and three-dimensional sets of proxy

image arrays are maintained. Each proxy array includes width, height (two-
and three-dimensional arrays only), depth (three-dimensional arrays only),

border width, and internal format state values, as well as state for the red,
green, blue, alpha, luminance, and intensity component resolutions. Proxy
arrays do not include image data, nor do they include texture properties.

When TexImage3D is executed with target speci�ed as PROXY TEXTURE 3D,
the three-dimensional proxy state values of the speci�ed level-of-detail are

recomputed and updated. If the texture array is too large, no error is gen-
erated, but the proxy width, height, depth, border width, and component

resolutions are set to zero. If the texture array would be accommodated by
TexImage3D called with target set to TEXTURE 3D, the proxy state values

are set exactly as though the actual image array were being speci�ed. No
pixel data are transferred or processed in either case.

One- and two-dimensional proxy arrays are operated on in the same way
when TexImage1D is executed with target speci�ed as PROXY TEXTURE 1D,
or TexImage2D is executed with target speci�ed as PROXY TEXTURE 2D.

There is no image associated with any of the proxy textures. Therefore
PROXY TEXTURE 1D, PROXY TEXTURE 2D, and PROXY TEXTURE 3D cannot be used

as textures, and their images must never be queried using GetTexImage.
The error INVALID ENUM is generated if this is attempted. Likewise, there

is no nonlevel-related state associated with a proxy texture, and GetTex-
Parameteriv or GetTexParameterfv may not be called with a proxy

texture target. The error INVALID ENUM. is generated if this is attempted.

3.8.8 Texture Objects

In addition to the default textures TEXTURE 1D, TEXTURE 2D, and TEXTURE 3D

named one-, two-, and three-dimensional texture objects can be created and
operated upon. The name space for texture objects is the unsigned integers,

with zero reserved by the GL.
A texture object is created by binding an unused name to TEXTURE 1D,

TEXTURE 2D, or TEXTURE 3D. The binding is e�ected by calling

DRAFT Version 1.2 - Jan. 2, 1998

CHAPTER 3. RASTERIZATION 134

void BindTexture(enum target, uint texture) ;

with target set to the desired texture target and texture set to the unused
name. The resulting texture object is a new state vector, comprising all

the state values listed in subsection 3.8.7, set to the same initial values. If
the new texture object is bound to TEXTURE 1D, TEXTURE 2D, or TEXTURE 3D

respectively, it is and remains a one-, two-, or three-dimensional texture
until it is deleted.

BindTexture may also be used to bind an existing texture object to

either TEXTURE 1D, TEXTURE 2D, or TEXTURE 3D. The error INVALID OPERATION

is generated if an attempt is made to bind a texture object of di�erent

dimensionality than the speci�ed target. If the bind is successful no change
is made to the state of the bound texture object, and any previous binding

to target is broken.
While a texture object is bound, GL operations on the target to which

it is bound a�ect the bound object, and queries of the target to which it
is bound return state from the bound object. If texture mapping of the

dimensionality of the target to which a texture object is bound is enabled,
the state of the bound texture object directs the texturing operation.

In the initial state, TEXTURE 1D, TEXTURE 2D, and TEXTURE 3D have one-

, two-, and three-dimensional texture state vectors associated with them.
In order that access to these initial textures not be lost, they are treated

as texture objects all of whose names are 0. The initial one-, two-, or
three-dimensional texture is therefore operated upon, queried, and applied

as TEXTURE 1D, TEXTURE 2D, or TEXTURE 3D respectively while 0 is bound to the
corresponding targets.

Texture objects are deleted by calling

void DeleteTextures(sizei n, uint *textures) ;

textures contains n names of texture objects to be deleted. After a texture

object is deleted, it has no contents or dimensionality, and its name is again
unused. If a texture that is currently bound to one of the targets TEXTURE 1D,

TEXTURE 2D, or TEXTURE 3D is deleted, it is as though BindTexture had been
executed with the same target and texture zero. Unused names in textures

are silently ignored, as is the value zero.

The command

void GenTextures(sizei n, uint *textures) ;

DRAFT Version 1.2 - Jan. 2, 1998

CHAPTER 3. RASTERIZATION 135

returns n previously unused texture object names in textures. These names

are marked as used, but they acquire texture state and a dimensionality
only when they are �rst bound, just as if they were unused.

An implementation may choose to establish a working set of texture
objects on which binding operations are performed with higher performance.

A texture object that is currently part of the working set is said to be
resident. The command

boolean AreTexturesResident(sizei n, uint *textures,

boolean *residences) ;

returns TRUE if all of the n texture objects named in textures are resident, or
if the implementation does not distinguish a working set. If at least one of

the texture objects named in textures is not resident, then FALSE is returned,
and the residence of each texture object is returned in residences. Otherwise

the contents of residences are not changed. If any of the names in textures is
not the name of a texture object, FALSE is returned, the error INVALID VALUE

is generated, and the contents of residences are indeterminate. The residence
status of a single bound texture object can also be queried by calling Get-

TexParameteriv or GetTexParameterfv with target set to the target
to which the texture object is bound, and pname set to TEXTURE RESIDENT.

AreTexturesResident indicates only whether a texture object is cur-
rently resident, not whether it could not be made resident. An implemen-
tation may choose to make a texture object resident only on �rst use, for

example. The client may guide the GL implementation in determining which
texture objects should be resident by specifying a priority for each texture

object. The command

void PrioritizeTextures(sizei n, uint *textures,

clampf *priorities) ;

sets the priorities of the n texture objects named in textures to the values
in priorities. Each priority value is clamped to the range [0,1] before it is

assigned. Zero indicates the lowest priority, with the least likelihood of being
resident. One indicates the highest priority, with the greatest likelihood of
being resident. The priority of a single bound texture object may also be

changed by calling TexParameteri, TexParameterf, TexParameteriv,
or TexParameterfv with target set to the target to which the texture

object is bound, pname set to TEXTURE PRIORITY, and param or params

specifying the new priority value (which is clamped to the range [0,1] before

being assigned). PrioritizeTextures silently ignores attempts to prioritize
unused texture object names or default textures.

DRAFT Version 1.2 - Jan. 2, 1998

CHAPTER 3. RASTERIZATION 136

3.8.9 Texture Environments and Texture Functions

The command

void TexEnvfifg(enum target, enum pname, T param) ;
void TexEnvfifgv(enum target, enum pname, T params) ;

sets parameters of the texture environment that speci�es how texture values

are interpreted when texturing a fragment. target must currently be the
symbolic constant TEXTURE ENV. pname is a symbolic constant indicating the

parameter to be set. In the �rst form of the command, param is a value
to which to set a single-valued parameter; in the second form, params is a

pointer to an array of parameters: either a single symbolic constant or a
value or group of values to which the parameter should be set. The pos-
sible environment parameters are TEXTURE ENV MODE and TEXTURE ENV COLOR.

TEXTURE ENV MODE may be set to one of REPLACE, MODULATE, DECAL, or BLEND;
TEXTURE ENV COLOR is set to an RGBA color by providing four single-precision

oating-point values in the range [0; 1] (values outside this range are clamped
to it). If integers are provided for TEXTURE ENV COLOR, then they are converted

to oating-point as speci�ed in table 2.6 for signed integers.
The value of TEXTURE ENV MODE speci�es a texture function. The result

of this function depends on the fragment and the texture array value. The
precise form of the function depends on the base internal formats of the

texture arrays that were last speci�ed. In the following two tables, Rf , Gf ,
Bf , and Af are the primary color components of the incoming fragment;
Rt, Gt, Bt, At, Lt, and It are the �ltered texture values; Rc, Gc, Bc, and Ac

are the texture environment color values; and Rv, Gv , Bv , and Av are the
primary color components computed by the texture function. All of these

color values are in the range [0; 1]. The REPLACE and MODULATE texture func-
tions are speci�ed in table 3.18, and the DECAL and BLEND texture functions

are speci�ed in table 3.19.
The state required for the current texture environment consists of the

four-valued integer indicating the texture function and four oating-point
TEXTURE ENV COLOR values. In the initial state, the texture function is given

by MODULATE and TEXTURE ENV COLOR is (0; 0; 0; 0).

3.8.10 Texture Application

Texturing is enabled or disabled using the generic Enable andDisable com-
mands, respectively, with the symbolic constants TEXTURE 1D, TEXTURE 2D, or

DRAFT Version 1.2 - Jan. 2, 1998

CHAPTER 3. RASTERIZATION 137

Base REPLACE MODULATE

Internal Format Texture Function Texture Function

ALPHA Rv = Rf Rv = Rf

Gv = Gf Gv = Gf

Bv = Bf Bv = Bf

Av = At Av = AfAt

LUMINANCE Rv = Lt Rv = RfLt

(or 1) Gv = Lt Gv = GfLt

Bv = Lt Bv = BfLt

Av = Af Av = Af

LUMINANCE ALPHA Rv = Lt Rv = RfLt

(or 2) Gv = Lt Gv = GfLt

Bv = Lt Bv = BfLt

Av = At Av = AfAt

INTENSITY Rv = It Rv = RfIt
Gv = It Gv = GfIt
Bv = It Bv = Bf It
Av = It Av = AfIt

RGB Rv = Rt Rv = RfRt

(or 3) Gv = Gt Gv = GfGt

Bv = Bt Bv = BfBt

Av = Af Av = Af

RGBA Rv = Rt Rv = RfRt

(or 4) Gv = Gt Gv = GfGt

Bv = Bt Bv = BfBt

Av = At Av = AfAt

Table 3.18: Replace and modulate texture functions.

DRAFT Version 1.2 - Jan. 2, 1998

CHAPTER 3. RASTERIZATION 138

Base DECAL BLEND

Internal Format Texture Function Texture Function

ALPHA unde�ned Rv = Rf

Gv = Gf

Bv = Bf

Av = AfAt

LUMINANCE unde�ned Rv = Rf(1� Lt) +RcLt

(or 1) Gv = Gf (1� Lt) + GcLt

Bv = Bf (1� Lt) +BcLt

Av = Af

LUMINANCE ALPHA unde�ned Rv = Rf(1� Lt) +RcLt

(or 2) Gv = Gf (1� Lt) + GcLt

Bv = Bf (1� Lt) +BcLt

Av = AfAt

INTENSITY unde�ned Rv = Rf(1� It) +RcIt
Gv = Gf (1� It) + GcIt
Bv = Bf (1� It) +BcIt
Av = Af (1� It) + AcIt

RGB Rv = Rt Rv = Rf(1�Rt) +RcRt

(or 3) Gv = Gt Gv = Gf (1� Gt) + GcGt

Bv = Bt Bv = Bf (1�Bt) +BcBt

Av = Af Av = Af

RGBA Rv = Rf (1� At) + RtAt Rv = Rf(1�Rt) +RcRt

(or 4) Gv = Gf(1�At) +GtAt Gv = Gf (1� Gt) + GcGt

Bv = Bf (1� At) + BtAt Bv = Bf (1�Bt) +BcBt

Av = Af Av = AfAt

Table 3.19: Decal and blend texture functions.

DRAFT Version 1.2 - Jan. 2, 1998

CHAPTER 3. RASTERIZATION 139

TEXTURE 3D to enable the one-, two-, or three-dimensional texture, respec-

tively. If both two- and one-dimensional textures are enabled, the two-
dimensional texture is used. If the three-dimensional and either of the

two- or one-dimensional textures is enabled, the three-dimensional texture
is used. If all texturing is disabled, a rasterized fragment is passed on unal-

tered to the next stage of the GL (although its texture coordinates may be
discarded). Otherwise, a texture value is found according to the parameter

values of the currently bound texture image of the appropriate dimension-
ality using the rules given in sections 3.8.5 and 3.8.6. This texture value is

used along with the incoming fragment in computing the texture function
indicated by the currently bound texture environment. The result of this
function replaces the incoming fragment's primary R, G, B, and A values.

These are the color values passed to subsequent operations. Other data
associated with the incoming fragment remain unchanged, except that the

texture coordinates may be discarded.
The required state is three bits indicating whether each of one-, two-, or

three-dimensional texturing is enabled or disabled. In the initial state, all
texturing is disabled.

3.9 Color Sum

At the beginning of color sum, a fragment has two RGBA colors: a primary
color cpri (which texturing, if enabled, may have modi�ed) and a secondary

color csec . The components of these two colors are summed to produce a
single post-texturing RGBA color c. The components of c are then clamped

to the range [0; 1].
Color sum has no e�ect in color index mode.

3.10 Fog

If enabled, fog blends a fog color with a rasterized fragment's post-texturing

color using a blending factor f . Fog is enabled and disabled with the Enable
and Disable commands using the symbolic constant FOG.

This factor f is computed according to one of three equations:

f = exp(�d � z); (3.21)

f = exp(�(d � z)2); or (3.22)

f =
e � z

e� s
(3.23)

DRAFT Version 1.2 - Jan. 2, 1998

CHAPTER 3. RASTERIZATION 140

(z is the eye-coordinate distance from the eye, (0; 0; 0; 1) in eye coordinates,

to the fragment center). The equation, along with either d or e and s, is
speci�ed with

void Fogfifg(enum pname, T param) ;
void Fogfifgv(enum pname, T params) ;

If pname is FOG MODE, then parammust be, or paramsmust point to an integer

that is one of the symbolic constants EXP, EXP2, or LINEAR, in which case
equation 3.21, 3.22, or 3.23, respectively, is selected for the fog calculation (if,

when 3.23 is selected, e = s, results are unde�ned). If pname is FOG DENSITY,
FOG START, or FOG END, then param is or params points to a value that is d,

s, or e, respectively. If d is speci�ed less than zero, the error INVALID VALUE

results.

An implementation may choose to approximate the eye-coordinate dis-
tance from the eye to each fragment center by jzej. Further, f need not
be computed at each fragment, but may be computed at each vertex and

interpolated as other data are.
No matter which equation and approximation is used to compute f , the

result is clamped to [0; 1] to obtain the �nal f .
f is used di�erently depending on whether the GL is in RGBA or color

index mode. In RGBA mode, if Cr represents a rasterized fragment's R, G,
or B value, then the corresponding value produced by fog is

C = fCr + (1� f)Cf :

(The rasterized fragment's A value is not changed by fog blending.) The R,

G, B, and A values of Cf are speci�ed by calling Fog with pname equal to
FOG COLOR; in this case params points to four values comprising Cf . If these

are not oating-point values, then they are converted to oating-point using
the conversion given in table 2.6 for signed integers. Each component of Cf

is clamped to [0; 1] when speci�ed. If if is a color index, then a single value
speci�es if . Its integer part is masked with 2n � 1, where n is the number

of bits in a color index framebu�er.
In color index mode, the formula for fog blending is

I = ir + (1� f)if

where ir is the rasterized fragment's color index and if is a single-precision

oating-point value. (1 � f)if is rounded to the nearest �xed-point value
with the same number of bits to the right of the binary point as ir. In this

DRAFT Version 1.2 - Jan. 2, 1998

CHAPTER 3. RASTERIZATION 141

case, if is set by calling Fog with pname set to FOG INDEX and param being

or params pointing to the single oating-point value that is if . Finally, the
integer portion of I is masked (bitwise ANDed) with 2n � 1, where n is the

number of bits in a color in the color index bu�er (bu�ers are discussed in
chapter 4).

The state required for fog consists of a three valued integer to select the
fog equation, three oating-point values d, e, and s, an RGBA fog color and

a fog color index, and a single bit to indicate whether or not fog is enabled.
In the initial state, fog is disabled, FOG MODE is EXP, d = 1:0, e = 1:0, and

s = 0:0; Cf = (0; 0; 0; 0) and if = 0.

3.11 Antialiasing Application

Finally, if antialiasing is enabled for the primitive from which a rasterized

fragment was produced, then the computed coverage value is applied to the
fragment. In RGBA mode, the value is multiplied by the fragment's alpha

(A) value to yield a �nal alpha value. In color index mode, the value is used
to set the low order bits of the color index value as described in section 3.2.

DRAFT Version 1.2 - Jan. 2, 1998

Chapter 4

Per-Fragment Operations

and the Framebu�er

The framebu�er consists of a set of pixels arranged as a two-dimensional

array. The height and width of this array may vary from one GL imple-
mentation to another. For purposes of this discussion, each pixel in the

framebu�er is simply a set of some number of bits. The number of bits
per pixel may also vary depending on the particular GL implementation or

context.
Corresponding bits from each pixel in the framebu�er are grouped to-

gether into a bitplane; each bitplane contains a single bit from each pixel.
These bitplanes are grouped into several logical bu�ers. These are the color,
depth, stencil, and accumulation bu�ers. The color bu�er actually consists

of a number of bu�ers: the front left bu�er, the front right bu�er, the back
left bu�er, the back right bu�er, and some number of auxiliary bu�ers. Typ-

ically the contents of the front bu�ers are displayed on a color monitor while
the contents of the back bu�ers are invisible. (Monoscopic contexts display

only the front left bu�er; stereoscopic contexts display both the front left
and the front right bu�ers.) The contents of the auxiliary bu�ers are never

visible. All color bu�ers must have the same number of bitplanes, although
an implementation or context may choose not to provide right bu�ers, back

bu�ers, or auxiliary bu�ers at all. Further, an implementation or context
may not provide depth, stencil, or accumulation bu�ers.

Color bu�ers consist of either unsigned integer color indices or R, G, B,

and, optionally, A unsigned integer values. The number of bitplanes in each
of the color bu�ers, the depth bu�er, the stencil bu�er, and the accumulation

bu�er is �xed and window dependent. If an accumulation bu�er is provided,

142

DRAFT Version 1.2 - Jan. 2, 1998

CHAPTER 4. PER-FRAGMENTOPERATIONS ANDTHE FRAMEBUFFER143

Fragment
+

Associated
Data

Pixel
Ownership

Test

Scissor
Test

Stencil
Test

Framebuffer

Alpha
Test

Depth buffer
Test

Blending
(RGBA Only)

Dithering

Framebuffer

Framebuffer

Logicop To
Framebuffer

Framebuffer

(RGBA Only)

Figure 4.1. Per-fragment operations.

it must have at least as many bitplanes per R, G, and B color component
as do the color bu�ers.

The initial state of all provided bitplanes is unde�ned.

4.1 Per-Fragment Operations

A fragment produced by rasterization with window coordinates of (xw; yw)

modi�es the pixel in the framebu�er at that location based on a number of
parameters and conditions. We describe these modi�cations and tests, dia-

grammed in Figure 4.1, in the order in which they are performed. Figure 4.1
diagrams these modi�cations and tests.

4.1.1 Pixel Ownership Test

The �rst test is to determine if the pixel at location (xw; yw) in the frame-
bu�er is currently owned by the GL (more precisely, by this GL context). If

it is not, the window system decides the fate the incoming fragment. Pos-
sible results are that the fragment is discarded or that some subset of the

subsequent per-fragment operations are applied to the fragment. This test

DRAFT Version 1.2 - Jan. 2, 1998

CHAPTER 4. PER-FRAGMENTOPERATIONS ANDTHE FRAMEBUFFER144

allows the window system to control the GL's behavior, for instance, when

a GL window is obscured.

4.1.2 Scissor test

The scissor test determines if (xw; yw) lies within the scissor rectangle de�ned

by four values. These values are set with

void Scissor(int left, int bottom, sizei width,

sizei height) ;

If left � xw < left + width and bottom � yw < bottom + height, then the
scissor test passes. Otherwise, the test fails and the fragment is discarded.

The test is enabled or disabled using Enable or Disable using the con-
stant SCISSOR TEST. When disabled, it is as if the scissor test always passes.

If either width or height is less than zero, then the error INVALID VALUE is
generated. The state required consists of four integer values and a bit

indicating whether the test is enabled or disabled. In the initial state
left = bottom = 0; width and height are determined by the size of the

GL window. Initially, the scissor test is disabled.

4.1.3 Alpha test

This step applies only in RGBA mode. In color index mode, proceed to the

next step. The alpha test discards a fragment conditional on the outcome of
a comparison between the incoming fragment's alpha value and a constant
value. The comparison is enabled or disabled with the generic Enable and

Disable commands using the symbolic constant ALPHA TEST. When disabled,
it is as if the comparison always passes. The test is controlled with

void AlphaFunc(enum func, clampf ref) ;

func is a symbolic constant indicating the alpha test function; ref is a refer-
ence value. ref is clamped to lie in [0; 1], and then converted to a �xed-point

value according to the rules given for an A component in section 2.13.9. For
purposes of the alpha test, the fragment's alpha value is also rounded to

the nearest integer. The possible constants specifying the test function are
NEVER, ALWAYS, LESS, LEQUAL, EQUAL, GEQUAL, GREATER, or NOTEQUAL, meaning

pass the fragment never, always, if the fragment's alpha value is less than,
less than or equal to, equal to, greater than or equal to, greater than, or not

equal to the reference value, respectively.

DRAFT Version 1.2 - Jan. 2, 1998

CHAPTER 4. PER-FRAGMENTOPERATIONS ANDTHE FRAMEBUFFER145

The required state consists of the oating-point reference value, an eight-

valued integer indicating the comparison function, and a bit indicating if the
comparison is enabled or disabled. The initial state is for the reference value

to be 0 and the function to be ALWAYS. Initially, the alpha test is disabled.

4.1.4 Stencil test

The stencil test conditionally discards a fragment based on the outcome of a

comparison between the value in the stencil bu�er at location (xw; yw) and
a reference value. The test is controlled with

void StencilFunc(enum func, int ref, uint mask) ;

void StencilOp(enum sfail, enum dpfail, enum dppass) ;

The test is enabled or disabled with the Enable andDisable commands, us-

ing the symbolic constant STENCIL TEST. When disabled, the stencil test and
associated modi�cations are not made, and the fragment is always passed.

ref is an integer reference value that is used in the unsigned stencil com-
parison. It is clamped to the range [0; 2s� 1], where s is the number of bits
in the stencil bu�er. func is a symbolic constant that determines the stencil

comparison function; the eight symbolic constants are NEVER, ALWAYS, LESS,
LEQUAL, EQUAL, GEQUAL, GREATER, or NOTEQUAL. Accordingly, the stencil test

passes never, always, if the reference value is less than, less than or equal to,
equal to, greater than or equal to, greater than, or not equal to the masked

stored value in the stencil bu�er. The s least signi�cant bits of mask are
bitwise ANDed with both the reference and the stored stencil value. The

ANDed values are those that participate in the comparison.
StencilOp takes three arguments that indicate what happens to the

stored stencil value if this or certain subsequent tests fail or pass. sfail

indicates what action is taken if the stencil test fails. The symbolic constants

are KEEP, ZERO, REPLACE, INCR, DECR, and INVERT. These correspond to keeping
the current value, setting it to zero, replacing it with the reference value,
incrementing it, decrementing it, or bitwise inverting it. For purposes of

increment and decrement, the stencil bits are considered as an unsigned
integer; values clamp at 0 and the maximum representable value. The same

symbolic values are given to indicate the stencil action if the depth bu�er
test (below) fails (dpfail), or if it passes (dppass).

If the stencil test fails, the incoming fragment is discarded. The state
required consists of the most recent values passed to StencilFunc and Sten-

cilOp, and a bit indicating whether stencil testing is enabled or disabled.

DRAFT Version 1.2 - Jan. 2, 1998

CHAPTER 4. PER-FRAGMENTOPERATIONS ANDTHE FRAMEBUFFER146

In the initial state, stenciling is disabled, the stencil reference value is zero,

the stencil comparison function is ALWAYS, and the stencil mask is all ones.
Initially, all three stencil operations are KEEP. If there is no stencil bu�er, no

stencil modi�cation can occur, and it is as if the stencil tests always pass,
regardless of any calls to StencilOp.

4.1.5 Depth bu�er test

The depth bu�er test discards the incoming fragment if a depth comparison
fails. The comparison is enabled or disabled with the generic Enable and

Disable commands using the symbolic constant DEPTH TEST. When disabled,
the depth comparison and subsequent possible updates to the depth bu�er

value are bypassed and the fragment is passed to the next operation. The
stencil value, however, is modi�ed as indicated below as if the depth bu�er

test passed. If enabled, the comparison takes place and the depth bu�er and
stencil value may subsequently be modi�ed.

The comparison is speci�ed with

void DepthFunc(enum func) ;

This command takes a single symbolic constant: one of NEVER, ALWAYS, LESS,
LEQUAL, EQUAL, GREATER, GEQUAL, NOTEQUAL. Accordingly, the depth bu�er test

passes never, always, if the incoming fragment's zw value is less than, less
than or equal to, equal to, greater than, greater than or equal to, or not equal

to the depth value stored at the location given by the incoming fragment's
(xw; yw) coordinates.

If the depth bu�er test fails, the incoming fragment is discarded. The
stencil value at the fragment's (xw; yw) coordinates is updated according to

the function currently in e�ect for depth bu�er test failure. Otherwise, the
fragment continues to the next operation and the value of the depth bu�er

at the fragment's (xw; yw) location is set to the fragment's zw value. In this
case the stencil value is updated according to the function currently in e�ect
for depth bu�er test success.

The necessary state is an eight-valued integer and a single bit indicating
whether depth bu�ering is enabled or disabled. In the initial state the

function is LESS and the test is disabled.
If there is no depth bu�er, it is as if the depth bu�er test always passes.

DRAFT Version 1.2 - Jan. 2, 1998

CHAPTER 4. PER-FRAGMENTOPERATIONS ANDTHE FRAMEBUFFER147

4.1.6 Blending

Blending combines the incoming fragment's R, G, B, and A values with the

R, G, B, and A values stored in the framebu�er at the incoming fragment's
(xw; yw) location.

This blending is dependent on the incoming fragment's alpha value and
that of the corresponding currently stored pixel. Blending applies only in

RGBA mode; in color index mode it is bypassed. Blending is enabled or
disabled using Enable or Disable with the symbolic constant BLEND. If it
is disabled, or if logical operation on color values is enabled (section 4.1.8),

proceed to the next stage.
In the following discussion, Cs refers to the source color for an incoming

fragment, Cd refers to the destination color at the corresponding framebu�er
location, and Cc refers to a constant color in the GL state. Individual

RGBA components of these colors are denoted by subscripts of s, d, and c

respectively.

Destination (framebu�er) components are taken to be �xed-point values
represented according to the scheme given in section 2.13.9 (Final Color Pro-

cessing), as are source (fragment) components. Constant color components
are taken to be oating point values.

Prior to blending, each �xed-point color component undergoes an implied

conversion to oating point. This conversion must leave the values 0 and
1 invariant. Blending computations are treated as if carried out in oating

point.
The commands that control blending are

void BlendColor(clampf red, clampf green, clampf blue,

clampf alpha) ;
void BlendEquation(enum mode) ;

void BlendFunc(enum src, enum dst) ;

Using BlendColor

The constant color Cc to be used in blending is speci�ed with BlendColor.
The four parameters are clamped to the range [0; 1] before being stored.
The constant color can be used in both the source and destination blending

factors.
BlendColor is an imaging subset feature (see section 3.6.2), and is only

allowed when the imaging subset is supported.

DRAFT Version 1.2 - Jan. 2, 1998

CHAPTER 4. PER-FRAGMENTOPERATIONS ANDTHE FRAMEBUFFER148

Using BlendEquation

Blending capability is de�ned by the blend equation. BlendEquation mode

FUNC ADD de�nes the blending equation as

C = CsS + CdD

where Cs and Cd are the source and destination colors, and S and D are
quadruplets of weighting factors as speci�ed by BlendFunc.

If mode is FUNC SUBTRACT, the blending equation is de�ned as

C = CsS � CdD

If mode is FUNC REVERSE SUBTRACT, the blending equation is de�ned as

C = CdD � CsS

If mode is MIN, the blending equation is de�ned as

C = min(Cs; Cd)

Finally, if mode is MAX, the blending equation is de�ned as

C = max(Cs; Cd)

The blending equation is evaluated separately for each color component
and the corresponding weighting factors.

BlendEquation is an imaging subset feature (see section 3.6.2). If
the imaging subset is not available, then blending always uses the blending

equation FUNC ADD.

Using BlendFunc

BlendFunc src indicates how to compute a source blending factor, while

dst indicates how to compute a destination factor. The possible arguments
and their corresponding computed source and destination factors are sum-

marized in Tables 4.1 and 4.2. Addition or subtraction of quadruplets means
adding or subtracting them component-wise.

The computed source and destination blending quadruplets are applied

to the source and destination R, G, B, and A values to obtain a new set of
values that are sent to the next operation. Let the source and destination

DRAFT Version 1.2 - Jan. 2, 1998

CHAPTER 4. PER-FRAGMENTOPERATIONS ANDTHE FRAMEBUFFER149

Value Blend Factors

ZERO (0; 0; 0; 0)

ONE (1; 1; 1; 1)

DST COLOR (Rd; Gd; Bd; Ad)

ONE MINUS DST COLOR (1; 1; 1; 1)� (Rd; Gd; Bd; Ad)

SRC ALPHA (As; As; As; As)

ONE MINUS SRC ALPHA (1; 1; 1; 1)� (As; As; As; As)

DST ALPHA (Ad; Ad; Ad; Ad)

ONE MINUS DST ALPHA (1; 1; 1; 1)� (Ad; Ad; Ad; Ad)

|CONSTANT COLOR (Rc; Gc; Bc; Ac)

|ONE MINUS CONSTANT COLOR (1; 1; 1; 1)� (Rc; Gc; Bc; Ac)

|CONSTANT ALPHA (Ac; Ac; Ac; Ac)

|ONE MINUS CONSTANT ALPHA (1; 1; 1; 1)� (Ac; Ac; Ac; Ac)

SRC ALPHA SATURATE (f; f; f; 1)

Table 4.1: Values controlling the source blending function and the source

blending values they compute. f = min(As; 1�Ad).

Value Blend factors

ZERO (0; 0; 0; 0)

ONE (1; 1; 1; 1)

SRC COLOR (Rs; Gs; Bs; As)

ONE MINUS SRC COLOR (1; 1; 1; 1)� (Rs; Gs; Bs; As)

SRC ALPHA (As; As; As; As)

ONE MINUS SRC ALPHA (1; 1; 1; 1)� (As; As; As; As)

DST ALPHA (Ad; Ad; Ad; Ad)

ONE MINUS DST ALPHA (1; 1; 1; 1)� (Ad; Ad; Ad; Ad)

|CONSTANT COLOR (Rc; Gc; Bc; Ac)

|ONE MINUS CONSTANT COLOR (1; 1; 1; 1)� (Rc; Gc; Bc; Ac)

|CONSTANT ALPHA (Ac; Ac; Ac; Ac)

|ONE MINUS CONSTANT ALPHA (1; 1; 1; 1)� (Ac; Ac; Ac; Ac)

Table 4.2: Values controlling the destination blending function and the des-
tination blending values they compute.

DRAFT Version 1.2 - Jan. 2, 1998

CHAPTER 4. PER-FRAGMENTOPERATIONS ANDTHE FRAMEBUFFER150

blending quadruplets be S and D, respectively. Then a quadruplet of values

is computed using the blend equation speci�ed by BlendEquation. Each
oating-point value in this quadruplet is clamped to [0; 1] and converted

back to a �xed-point value in the manner described in section 2.13.9. The
resulting four values are sent to the next operation.

BlendFunc arguments CONSTANT COLOR, ONE MINUS CONSTANT COLOR,
CONSTANT ALPHA, and ONE MINUS CONSTANT ALPHA are imaging subset features

(see section 3.6.2), and are only allowed when the imaging subset is provided.

Blending State

The state required for blending is an integer indicating the blending equa-

tion, two integers indicating the source and destination blending functions,
four oating-point values to store the RGBA constant blend color, and a

bit indicating whether blending is enabled or disabled. The initial blending
equation is FUNC ADD. The initial blending functions are ONE for the source

function and ZERO for the destination function. The initial constant blend
color is (R;G;B;A) = (0; 0; 0; 0). Initially, blending is disabled.

Blending occurs once for each color bu�er currently enabled for writing
(section 4.2.1) using each bu�er's color for Cd. If a color bu�er has no A

value, then Ad is taken to be 1.

4.1.7 Dithering

Dithering selects between two color values or indices. In RGBA mode, con-

sider the value of any of the color components as a �xed-point value with m

bits to the left of the binary point, where m is the number of bits allocated
to that component in the framebu�er; call each such value c. For each c,

dithering selects a value c1 such that c1 2 fmaxf0; dce � 1g; dceg (after this
selection, treat c1 as a �xed point value in [0,1] with m bits). This selec-

tion may depend on the xw and yw coordinates of the pixel. In color index
mode, the same rule applies with c being a single color index. c must not be

larger than the maximum value representable in the framebu�er for either
the component or the index, as appropriate.

Many dithering algorithms are possible, but a dithered value produced
by any algorithm must depend only the incoming value and the fragment's x

and y window coordinates. If dithering is disabled, then each color compo-
nent is truncated to a �xed-point value with as many bits as there are in the
corresponding component in the framebu�er; a color index is rounded to the

nearest integer representable in the color index portion of the framebu�er.

DRAFT Version 1.2 - Jan. 2, 1998

CHAPTER 4. PER-FRAGMENTOPERATIONS ANDTHE FRAMEBUFFER151

Dithering is enabled with Enable and disabled with Disable using the

symbolic constant DITHER. The state required is thus a single bit. Initially,
dithering is enabled.

4.1.8 Logical Operation

Finally, a logical operation is applied between the incoming fragment's color
or index values and the color or index values stored at the corresponding

location in the framebu�er. The result replaces the values in the framebu�er
at the fragment's (x; y) coordinates. The logical operation on color indices

is enabled or disabled with Enable or Disable using the symbolic constant
INDEX LOGIC OP. (For compatibility with GL version 1.0, the symbolic con-

stant LOGIC OP may also be used.) The logical operation on color values is
enabled or disabled with Enable or Disable using the symbolic constant

COLOR LOGIC OP. If the logical operation is enabled for color values, it is as if
blending were disabled, regardless of the value of BLEND.

The logical operation is selected by

void LogicOp(enum op) ;

op is a symbolic constant; the possible constants and corresponding opera-
tions are enumerated in Table 4.3. In this table, s is the value of the incoming

fragment and d is the value stored in the framebu�er. The numeric values
assigned to the symbolic constants are the same as those assigned to the

corresponding symbolic values in the X window system.
Logical operations are performed independently for each color index

bu�er that is selected for writing, or for each red, green, blue, and alpha
value of each color bu�er that is selected for writing. The required state is

an integer indicating the logical operation, and two bits indicating whether
the logical operation is enabled or disabled. The initial state is for the logic

operation to be given by COPY, and to be disabled.

4.2 Whole Framebu�er Operations

The preceding sections described the operations that occur as individual

fragments are sent to the framebu�er. This section describes operations
that control or a�ect the whole framebu�er.

DRAFT Version 1.2 - Jan. 2, 1998

CHAPTER 4. PER-FRAGMENTOPERATIONS ANDTHE FRAMEBUFFER152

Argument value Operation

CLEAR 0

AND s ^ d
AND REVERSE s ^ :d
COPY s

AND INVERTED :s ^ d
NOOP d

XOR s xor d
OR s _ d
NOR :(s _ d)
EQUIV :(s xor d)
INVERT :d
OR REVERSE s _ :d
COPY INVERTED :s
OR INVERTED :s _ d
NAND :(s ^ d)
SET all 1's

Table 4.3: Arguments to LogicOp and their corresponding operations.

4.2.1 Selecting a Bu�er for Writing

The �rst such operation is controlling the bu�er into which color values are
written. This is accomplished with

void DrawBu�er(enum buf) ;

buf is a symbolic constant specifying zero, one, two, or four bu�ers for writ-
ing. The constants are NONE, FRONT LEFT, FRONT RIGHT, BACK LEFT, BACK RIGHT,

FRONT, BACK, LEFT, RIGHT, FRONT AND BACK, and AUX0 through AUXn, where n+1
is the number of available auxiliary bu�ers.

The constants refer to the four potentially visible bu�ers front left,
front right, back left, and back right, and to the auxiliary bu�ers. Argu-

ments other than AUXi that omit reference to LEFT or RIGHT refer to both left
and right bu�ers. Arguments other than AUXi that omit reference to FRONT

or BACK refer to both front and back bu�ers. AUXi enables drawing only to

auxiliary bu�er i. Each AUXi adheres to AUXi = AUX0+ i. The constants and
the bu�ers they indicate are summarized in Table 4.4. If DrawBu�er is

is supplied with a constant (other than NONE) that does not indicate any of

DRAFT Version 1.2 - Jan. 2, 1998

CHAPTER 4. PER-FRAGMENTOPERATIONS ANDTHE FRAMEBUFFER153

symbolic front front back back aux
constant left right left right i

NONE

FRONT LEFT �
FRONT RIGHT �
BACK LEFT �
BACK RIGHT �
FRONT � �
BACK � �
LEFT � �
RIGHT � �
FRONT AND BACK � � � �
AUXi �

Table 4.4: Arguments to DrawBu�er and the bu�ers that they indicate.

the color bu�ers allocated to the GL context, the error INVALID OPERATION

results.
Indicating a bu�er or bu�ers usingDrawBu�er causes subsequent pixel

color value writes to a�ect the indicated bu�ers. If more than one color
bu�er is selected for drawing, blending and logical operations are computed
and applied independently for each bu�er. Calling DrawBu�er with a

value of NONE inhibits the writing of color values to any bu�er.
Monoscopic contexts include only left bu�ers, while stereoscopic contexts

include both left and right bu�ers. Likewise, single bu�ered contexts include
only front bu�ers, while double bu�ered contexts include both front and back

bu�ers. The type of context is selected at GL initialization.
The state required to handle bu�er selection is a set of up to 4+ n bits.

4 bits indicate if the front left bu�er, the front right bu�er, the back left
bu�er, or the back right bu�er, are enabled for color writing. The other n

bits indicate which of the auxiliary bu�ers is enabled for color writing. In
the initial state, the front bu�er or bu�ers are enabled if there are no back

bu�ers; otherwise, only the back bu�er or bu�ers are enabled.

4.2.2 Fine Control of Bu�er Updates

Four commands are used to mask the writing of bits to each of the logical
framebu�ers after all per-fragment operations have been performed. The

commands

DRAFT Version 1.2 - Jan. 2, 1998

CHAPTER 4. PER-FRAGMENTOPERATIONS ANDTHE FRAMEBUFFER154

void IndexMask(uint mask) ;

void ColorMask(boolean r, boolean g, boolean b,

boolean a) ;

control the color bu�er or bu�ers (depending on which bu�ers are currently
indicated for writing). The least signi�cant n bits of mask, where n is the

number of bits in a color index bu�er, specify a mask. Where a 1 appears
in this mask, the corresponding bit in the color index bu�er (or bu�ers) is
written; where a 0 appears, the bit is not written. This mask applies only in

color index mode. In RGBA mode, ColorMask is used to mask the writing
of R, G, B and A values to the color bu�er or bu�ers. r, g, b, and a indicate

whether R, G, B, or A values, respectively, are written or not (a value of
TRUE means that the corresponding value is written). In the initial state, all

bits (in color index mode) and all color values (in RGBA mode) are enabled
for writing.

The depth bu�er can be enabled or disabled for writing zw values using

void DepthMask(boolean mask) ;

If mask is non-zero, the depth bu�er is enabled for writing; otherwise, it is

disabled. In the initial state, the depth bu�er is enabled for writing.
The command

void StencilMask(uint mask) ;

controls the writing of particular bits into the stencil planes. The least
signi�cant s bits of mask comprise an integer mask (s is the number of bits

in the stencil bu�er), just as for IndexMask. The initial state is for the
stencil plane mask to be all ones.

The state required for the various masking operations is two integers and

a bit: an integer for color indices, an integer for stencil values, and a bit
for depth values. A set of four bits is also required indicating which color

components of an RGBA value should be written. In the initial state, the
integer masks are all ones as are the bits controlling depth value and RGBA

component writing.

4.2.3 Clearing the Bu�ers

The GL provides a means for setting portions of every pixel in a particular

bu�er to the same value. The argument to

DRAFT Version 1.2 - Jan. 2, 1998

CHAPTER 4. PER-FRAGMENTOPERATIONS ANDTHE FRAMEBUFFER155

void Clear(bitfield buf) ;

is the bitwise OR of a number of values indicating which bu�ers
are to be cleared. The values are COLOR BUFFER BIT, DEPTH BUFFER BIT,

STENCIL BUFFER BIT, and ACCUM BUFFER BIT, indicating the bu�ers currently
enabled for color writing, the depth bu�er, the stencil bu�er, and the accu-

mulation bu�er (see below), respectively. The value to which each bu�er is
cleared depends on the setting of the clear value for that bu�er. If the mask
is not a bitwise OR of the speci�ed values, then the error INVALID VALUE is

generated.

void ClearColor(clampf r, clampf g, clampf b, clampf a) ;

sets the clear value for the color bu�ers in RGBA mode. Each of the speci�ed

components is clamped to [0; 1] and converted to �xed-point according to
the rules of section 2.13.9.

void ClearIndex(float index) ;

sets the clear color index. index is converted to a �xed-point value with
unspeci�ed precision to the left of the binary point; the integer part of this

value is then masked with 2m � 1, where m is the number of bits in a color
index value stored in the framebu�er.

void ClearDepth(clampd d) ;

takes a oating-point value that is clamped to the range [0; 1] and con-
verted to �xed-point according to the rules for a window z value given in

section 2.10.1. Similarly,

void ClearStencil(int s) ;

takes a single integer argument that is the value to which to clear the stencil

bu�er. s is masked to the number of bitplanes in the stencil bu�er.

void ClearAccum(float r, float g, float b, float a) ;

takes four oating-point arguments that are the values, in order, to which

to set the R, G, B, and A values of the accumulation bu�er (see the next
section). These values are clamped to the range [�1; 1] when they are spec-

i�ed.

DRAFT Version 1.2 - Jan. 2, 1998

CHAPTER 4. PER-FRAGMENTOPERATIONS ANDTHE FRAMEBUFFER156

When Clear is called, the only per-fragment operations that are applied

(if enabled) are the pixel ownership test, the scissor test, and dithering. The
masking operations described in the last section (4.2.2) are also e�ective. If

a bu�er is not present, then a Clear directed at that bu�er has no e�ect.
The state required for clearing is a clear value for each of the color bu�er,

the depth bu�er, the stencil bu�er, and the accumulation bu�er. Initially,
the RGBA color clear value is (0,0,0,0), the clear color index is 0, and the

stencil bu�er and accumulation bu�er clear values are all 0. The depth
bu�er clear value is initially 1.0.

4.2.4 The Accumulation Bu�er

Each portion of a pixel in the accumulation bu�er consists of four values: one
for each of R, G, B, and A. The accumulation bu�er is controlled exclusively

through the use of

void Accum(enum op, float value) ;

(except for clearing it). op is a symbolic constant indicating an accumula-
tion bu�er operation, and value is a oating-point value to be used in that

operation. The possible operations are ACCUM, LOAD, RETURN, MULT, and ADD.
The accumulation bu�er operations apply identically to every pixel, so

we describe the e�ect of each operation on an individual pixel. Accumulation
bu�er values are taken to be signed values in the range [�1; 1]. Using ACCUM

obtains R, G, B, and A components from the bu�er currently selected for
reading (section 4.3.2). Each component, considered as a �xed-point value

in [0; 1]. (see section 2.13.9), is converted to oating-point. Each result is
then multiplied by value. The results of this multiplication are then added

to the corresponding color component currently in the accumulation bu�er,
and the resulting color value replaces the current accumulation bu�er color

value.
The LOAD operation has the same e�ect as ACCUM, but the computed values

replace the corresponding accumulation bu�er components rather than being

added to them.
The RETURN operation takes each color value from the accumulation

bu�er, multiplies each of the R, G, B, and A components by value, and
clamps the results to the range [0; 1] The resulting color value is placed

in the bu�ers currently enabled for color writing as if it were a fragment
produced from rasterization, except that the only per-fragment operations

that are applied (if enabled) are the pixel ownership test, the scissor test

DRAFT Version 1.2 - Jan. 2, 1998

CHAPTER 4. PER-FRAGMENTOPERATIONS ANDTHE FRAMEBUFFER157

(section 4.1.2), and dithering (section 4.1.7). Color masking (section 4.2.2)

is also applied.
The MULT operation multiplies each R, G, B, and A in the accumulation

bu�er by value and then returns the scaled color components to their corre-
sponding accumulation bu�er locations. ADD is the same as MULT except that

value is added to each of the color components.
The color components operated on by Accum must be clamped only if

the operation is RETURN. In this case, a value sent to the enabled color bu�ers
is �rst clamped to [0; 1]. Otherwise, results are unde�ned if the result of an

operation on a color component is out of the range [�1; 1]. If there is no
accumulation bu�er, or if the GL is in color index mode, Accum generates
the error INVALID OPERATION.

No state (beyond the accumulation bu�er itself) is required for accumu-
lation bu�ering.

4.3 Drawing, Reading, and Copying Pixels

Pixels may be written to and read from the framebu�er using the Draw-
Pixels and ReadPixels commands. CopyPixels can be used to copy a

block of pixels from one portion of the framebu�er to another.

4.3.1 Writing to the Stencil Bu�er

The operation of DrawPixels was described in section 3.6.4, except if the

format argument was STENCIL INDEX. In this case, all operations described for
DrawPixels take place, but window (x; y) coordinates, each with the corre-

sponding stencil index, are produced in lieu of fragments. Each coordinate-
stencil index pair is sent directly to the per-fragment operations, bypassing

the texture, fog, and antialiasing application stages of rasterization. Each
pair is then treated as a fragment for purposes of the pixel ownership and

scissor tests; all other per-fragment operations are bypassed. Finally, each
stencil index is written to its indicated location in the framebu�er, subject

to the current setting of StencilMask.
The error INVALID OPERATION results if there is no stencil bu�er.

4.3.2 Reading Pixels

The method for reading pixels from the framebu�er and placing them in
client memory is diagrammed in Figure 4.2. We describe the stages of the
pixel reading process in the order in which they occur.

DRAFT Version 1.2 - Jan. 2, 1998

CHAPTER 4. PER-FRAGMENTOPERATIONS ANDTHE FRAMEBUFFER158

post
convolution

convert
to [0,1]

RGBA pixel
data in

color index pixel
data in

BBBBBBBBBBBBBBBBBBBBBBBBBBBBBBB
BBBBBBBBBBBBBBBBBBBBBBBBBBBBBBB
BBBBBBBBBBBBBBBBBBBBBBBBBBBBBBB
BBBBBBBBBBBBBBBBBBBBBBBBBBBBBBB
BBBBBBBBBBBBBBBBBBBBBBBBBBBBBBB
BBBBBBBBBBBBBBBBBBBBBBBBBBBBBBB
BBBBBBBBBBBBBBBBBBBBBBBBBBBBBBB
BBBBBBBBBBBBBBBBBBBBBBBBBBBBBBB
BBBBBBBBBBBBBBBBBBBBBBBBBBBBBBB
BBBBBBBBBBBBBBBBBBBBBBBBBBBBBBB
BBBBBBBBBBBBBBBBBBBBBBBBBBBBBBB
BBBBBBBBBBBBBBBBBBBBBBBBBBBBBBB
BBBBBBBBBBBBBBBBBBBBBBBBBBBBBBB
BBBBBBBBBBBBBBBBBBBBBBBBBBBBBBB
BBBBBBBBBBBBBBBBBBBBBBBBBBBBBBB
BBBBBBBBBBBBBBBBBBBBBBBBBBBBBBB
BBBBBBBBBBBBBBBBBBBBBBBBBBBBBBB
BBBBBBBBBBBBBBBBBBBBBBBBBBBBBBB
BBBBBBBBBBBBBBBBBBBBBBBBBBBBBBB
BBBBBBBBBBBBBBBBBBBBBBBBBBBBBBB
BBBBBBBBBBBBBBBBBBBBBBBBBBBBBBB
BBBBBBBBBBBBBBBBBBBBBBBBBBBBBBB
BBBBBBBBBBBBBBBBBBBBBBBBBBBBBBB
BBBBBBBBBBBBBBBBBBBBBBBBBBBBBBB
BBBBBBBBBBBBBBBBBBBBBBBBBBBBBBB
BBBBBBBBBBBBBBBBBBBBBBBBBBBBBBB
BBBBBBBBBBBBBBBBBBBBBBBBBBBBBBB
BBBBBBBBBBBBBBBBBBBBBBBBBBBBBBB
BBBBBBBBBBBBBBBBBBBBBBBBBBBBBBB

scale
and bias

Pixel Transfer
Operations

color table
lookup

convolution
scale and bias

histogram

minmax

color table
lookup

RGBA to RGBA
lookup

shift
and offset

index to index
lookup

index to RGBA
lookup

color table
lookup

color matrix
scale and bias

post
color matrix

BBBBBBBBBBBBBBBBBBBBBBBBBBBBBBB
BBBBBBBBBBBBBBBBBBBBBBBBBBBBBBB
BBBBBBBBBBBBBBBBBBBBBBBBBBBBBBB
BBBBBBBBBBBBBBBBBBBBBBBBBBBBBBB
BBBBBBBBBBBBBBBBBBBBBBBBBBBBBBB
BBBBBBBBBBBBBBBBBBBBBBBBBBBBBBB
BBBBBBBBBBBBBBBBBBBBBBBBBBBBBBB
BBBBBBBBBBBBBBBBBBBBBBBBBBBBBBB
BBBBBBBBBBBBBBBBBBBBBBBBBBBBBBB
BBBBBBBBBBBBBBBBBBBBBBBBBBBBBBB
BBBBBBBBBBBBBBBBBBBBBBBBBBBBBBB
BBBBBBBBBBBBBBBBBBBBBBBBBBBBBBB
BBBBBBBBBBBBBBBBBBBBBBBBBBBBBBB
BBBBBBBBBBBBBBBBBBBBBBBBBBBBBBB

pack

convert
RGB to L

clamp
to [0,1]

mask to
(2n − 1)

byte, short, int, or float pixel
data stream (index or component)

Pixel Storage
Operations

Figure 4.2. Operation of ReadPixels. Operations in dashed boxes may be
enabled or disabled. RGBA and color index pixel paths are shown; depth
and stencil pixel paths are not shown.

DRAFT Version 1.2 - Jan. 2, 1998

CHAPTER 4. PER-FRAGMENTOPERATIONS ANDTHE FRAMEBUFFER159

Parameter Name Type Initial Value Valid Range

PACK SWAP BYTES boolean FALSE TRUE/FALSE

PACK LSB FIRST boolean FALSE TRUE/FALSE

PACK ROW LENGTH integer 0 [0;1)

PACK SKIP ROWS integer 0 [0;1)

PACK SKIP PIXELS integer 0 [0;1)

PACK ALIGNMENT integer 4 1,2,4,8

|PACK IMAGE HEIGHT integer 0 [0;1)

|PACK SKIP IMAGES integer 0 [0;1)

Table 4.5: PixelStore parameters pertaining to ReadPixels, GetTex-
Image1D, GetTexImage2D,GetTexImage3D,GetColorTable, Get-

ConvolutionFilter, GetSeparableFilter, GetHistogram, and Get-

Minmax.

Pixels are read using

void ReadPixels(int x, int y, sizei width, sizei height,

enum format, enum type, void *data) ;

The arguments after x and y to ReadPixels correspond to those of Draw-

Pixels. The pixel storage modes that apply to ReadPixels and other
commands that query images (see section 6.1) are summarized in Table 4.5.

Obtaining Pixels from the Framebu�er

If the format is DEPTH COMPONENT, then values are obtained from the depth

bu�er. If there is no depth bu�er, the error INVALID OPERATION occurs.
If the format is STENCIL INDEX, then values are taken from the stencil

bu�er; again, if there is no stencil bu�er, the error INVALID OPERATION occurs.
For all other formats, the bu�er from which values are obtained is one of

the color bu�ers; the selection of color bu�er is controlled withReadBu�er.
The command

void ReadBu�er(enum src) ;

takes a symbolic constant as argument. The possible values are FRONT LEFT,
FRONT RIGHT, BACK LEFT, BACK RIGHT, FRONT, BACK, LEFT, RIGHT, and AUX0

through AUXn. FRONT and LEFT refer to the front left bu�er, BACK refers
to the back left bu�er, and RIGHT refers to the front right bu�er. The other

DRAFT Version 1.2 - Jan. 2, 1998

CHAPTER 4. PER-FRAGMENTOPERATIONS ANDTHE FRAMEBUFFER160

constants correspond directly to the bu�ers that they name. If the requested

bu�er is missing, then the error INVALID OPERATION is generated. The ini-
tial setting for ReadBu�er is FRONT if there is no back bu�er and BACK

otherwise.
ReadPixels obtains values from the selected bu�er from each pixel with

lower left hand corner at (x + i; y + j) for 0 � i < width and 0 � j <

height; this pixel is said to be the ith pixel in the jth row. If any of these

pixels lies outside of the window allocated to the current GL context, the
values obtained for those pixels are unde�ned. Results are also unde�ned

for individual pixels that are not owned by the current context. Otherwise,
ReadPixels obtains values from the selected bu�er, regardless of how those
values were placed there.

If the GL is in RGBA mode, and format is one of RED, GREEN, BLUE, ALPHA,
RGB, RGBA, BGR, BGRA, LUMINANCE, or LUMINANCE ALPHA, then red, green, blue,

and alpha values are obtained from the selected bu�er at each pixel location.
If the framebu�er does not support alpha values then the A that is obtained

is 1.0. If format is COLOR INDEX and the GL is in RGBA mode then the error
INVALID OPERATION occurs. If the GL is in color index mode, and format is

not DEPTH COMPONENT or STENCIL INDEX, then the color index is obtained at
each pixel location.

Conversion of RGBA values

This step applies only if the GL is in RGBA mode, and then only if format

is neither STENCIL INDEX nor DEPTH COMPONENT. The R, G, B, and A values

form a group of elements. Each element is taken to be a �xed-point value
in [0; 1]] with m bits, where m is the number of bits in the corresponding

color component of the selected bu�er (see section 2.13.9).

Conversion of Depth values

This step applies only if format is DEPTH COMPONENT. An element is taken to
be a �xed-point value in [0,1] with m bits, where m is the number of bits in

the depth bu�er (see section 2.10.1).

Pixel Transfer Operations

This step is actually the sequence of steps that was described separately in

section 3.6.5. After the processing described in that section is completed,
groups are processed as described in the following sections.

DRAFT Version 1.2 - Jan. 2, 1998

CHAPTER 4. PER-FRAGMENTOPERATIONS ANDTHE FRAMEBUFFER161

type Parameter Index Mask

UNSIGNED BYTE 28 � 1

BITMAP 1

BYTE 27 � 1

UNSIGNED SHORT 216 � 1

SHORT 215 � 1

UNSIGNED INT 232 � 1

INT 231 � 1

Table 4.6: Index masks used by ReadPixels. Floating point data are not
masked.

Conversion to L

This step applies only to RGBA component groups, and only if the format

is either LUMINANCE or LUMINANCE ALPHA. A value L is computed as

L = R+G+ B

where R, G, and B are the values of the R, G, and B components. The
single computed L component replaces the R, G, and B components in the

group.

Final Conversion

For an index, if the type is not FLOAT, �nal conversion consists of masking
the index with the value given in Table 4.6; if the type is FLOAT, then the

integer index is converted to a GL oat data value.
For an RGBA color, if the type is not FLOAT then each component is �rst

clamped to [0; 1]. Then the appropriate conversion formula from table 4.7
is applied to the component.

Placement in Client Memory

Groups of elements are placed in memory just as they are taken from mem-

ory for DrawPixels. That is, the ith group of the jth row (corresponding
to the ith pixel in the jth row) is placed in memory just where the ith group

of the jth row would be taken from for DrawPixels. See Unpacking un-
der section 3.6.4. The only di�erence is that the storage mode parameters

whose names begin with PACK are used instead of those whose names be-
gin with UNPACK . If the format is RED, GREEN, BLUE, ALPHA, or LUMINANCE,

DRAFT Version 1.2 - Jan. 2, 1998

CHAPTER 4. PER-FRAGMENTOPERATIONS ANDTHE FRAMEBUFFER162

type Parameter GL Data Type Component

Conversion Formula

UNSIGNED BYTE ubyte c = (28 � 1)f

BYTE byte c = [(28 � 1)f � 1]=2

UNSIGNED SHORT ushort c = (216 � 1)f

SHORT short c = [(216 � 1)f � 1]=2

UNSIGNED INT uint c = (232 � 1)f

INT int c = [(232 � 1)f � 1]=2

FLOAT float c = f

|UNSIGNED BYTE 3 3 2 ubyte c = (2N � 1)f

|UNSIGNED BYTE 2 3 3 REV ubyte c = (2N � 1)f

|UNSIGNED SHORT 5 6 5 ushort c = (2N � 1)f

|UNSIGNED SHORT 5 6 5 REV ushort c = (2N � 1)f

|UNSIGNED SHORT 4 4 4 4 ushort c = (2N � 1)f

|UNSIGNED SHORT 4 4 4 4 REV ushort c = (2N � 1)f

|UNSIGNED SHORT 5 5 5 1 ushort c = (2N � 1)f

|UNSIGNED SHORT 1 5 5 5 REV ushort c = (2N � 1)f

|UNSIGNED INT 8 8 8 8 uint c = (2N � 1)f

|UNSIGNED INT 8 8 8 8 REV uint c = (2N � 1)f

|UNSIGNED INT 10 10 10 2 uint c = (2N � 1)f

|UNSIGNED INT 2 10 10 10 REV uint c = (2N � 1)f

Table 4.7: Reversed component conversions - used when component data

are being returned to client memory. Color, normal, and depth components
are converted from the internal oating-point representation (f) to a datum

of the speci�ed GL data type (c) using the equations in this table. All arith-
metic is done in the internal oating point format. These conversions apply

to component data returned by GL query commands and to components of
pixel data returned to client memory. The equations remain the same even
if the implemented ranges of the GL data types are greater than the mini-

mum required ranges. (See Table 2.2.) Equations with N as the exponent
are performed for each bit�eld of the packed data type, with N set to the

number of bits in the bit�eld.

DRAFT Version 1.2 - Jan. 2, 1998

CHAPTER 4. PER-FRAGMENTOPERATIONS ANDTHE FRAMEBUFFER163

only the corresponding single element is written. Likewise if the format is

LUMINANCE ALPHA, RGB, or BGR, only the corresponding two or three elements
are written. Otherwise all the elements of each group are written.

4.3.3 Copying Pixels

CopyPixels transfers a rectangle of pixel values from one region of the
framebu�er to another. Pixel copying is diagrammed in Figure 4.3.

void CopyPixels(int x, int y, sizei width, sizei height,

enum type) ;

type is a symbolic constant that must be one of COLOR, STENCIL, or DEPTH,

indicating that the values to be transferred are colors, stencil values, or depth
values, respectively. The �rst four arguments have the same interpretation

as the corresponding arguments to ReadPixels.
Values are obtained from the framebu�er, converted (if appropriate),

then subjected to the pixel transfer operations described in section 3.6.5,
just as if ReadPixels were called with the corresponding arguments. If the
type is STENCIL or DEPTH, then it is as if the format for ReadPixels were

STENCIL INDEX or DEPTH COMPONENT, respectively. If the type is COLOR, then if
the GL is in RGBA mode, it is as if the format were RGBA, while if the GL

is in color index mode, it is as if the format were COLOR INDEX.
The groups of elements so obtained are then written to the framebu�er

just as if DrawPixels had been given width and height, beginning with
�nal conversion of elements. The e�ective format is the same as that already

described.

4.3.4 Pixel Draw/Read state

The state required for pixel operations consists of the parameters that are

set with PixelStore, PixelTransfer, and PixelMap. This state has been
summarized in Tables 3.1, 3.2, and 3.3. The current setting of ReadBu�er,

an integer, is also required, along with the current raster position (sec-
tion 2.12). State set with PixelStore is GL client state.

DRAFT Version 1.2 - Jan. 2, 1998

CHAPTER 4. PER-FRAGMENTOPERATIONS ANDTHE FRAMEBUFFER164

post
convolution

BBBBBBBBBBBBBBBBBBBBBBBBBBBBBBB
BBBBBBBBBBBBBBBBBBBBBBBBBBBBBBB
BBBBBBBBBBBBBBBBBBBBBBBBBBBBBBB
BBBBBBBBBBBBBBBBBBBBBBBBBBBBBBB
BBBBBBBBBBBBBBBBBBBBBBBBBBBBBBB
BBBBBBBBBBBBBBBBBBBBBBBBBBBBBBB
BBBBBBBBBBBBBBBBBBBBBBBBBBBBBBB
BBBBBBBBBBBBBBBBBBBBBBBBBBBBBBB
BBBBBBBBBBBBBBBBBBBBBBBBBBBBBBB
BBBBBBBBBBBBBBBBBBBBBBBBBBBBBBB
BBBBBBBBBBBBBBBBBBBBBBBBBBBBBBB
BBBBBBBBBBBBBBBBBBBBBBBBBBBBBBB
BBBBBBBBBBBBBBBBBBBBBBBBBBBBBBB
BBBBBBBBBBBBBBBBBBBBBBBBBBBBBBB
BBBBBBBBBBBBBBBBBBBBBBBBBBBBBBB
BBBBBBBBBBBBBBBBBBBBBBBBBBBBBBB
BBBBBBBBBBBBBBBBBBBBBBBBBBBBBBB
BBBBBBBBBBBBBBBBBBBBBBBBBBBBBBB
BBBBBBBBBBBBBBBBBBBBBBBBBBBBBBB
BBBBBBBBBBBBBBBBBBBBBBBBBBBBBBB
BBBBBBBBBBBBBBBBBBBBBBBBBBBBBBB
BBBBBBBBBBBBBBBBBBBBBBBBBBBBBBB
BBBBBBBBBBBBBBBBBBBBBBBBBBBBBBB
BBBBBBBBBBBBBBBBBBBBBBBBBBBBBBB
BBBBBBBBBBBBBBBBBBBBBBBBBBBBBBB
BBBBBBBBBBBBBBBBBBBBBBBBBBBBBBB
BBBBBBBBBBBBBBBBBBBBBBBBBBBBBBB
BBBBBBBBBBBBBBBBBBBBBBBBBBBBBBB

scale
and bias

Pixel Transfer
Operations

color table
lookup

convolution
scale and bias

histogram

minmax

color table
lookup

RGBA to RGBA
lookup

shift
and offset

index to index
lookup

index to RGBA
lookup

color table
lookup

color matrix
scale and bias

post
color matrix

convert
to [0,1]

RGBA pixel
data from framebuffer

color index pixel
data from framebuffer

RGBA pixel
data to framebuffer

color index pixel
data to framebuffer

Figure 4.3. Operation of CopyPixels. Operations in dashed boxes may be
enabled or disabled. Index-to-RGBA lookup is currently never performed.
RGBA and color index pixel paths are shown; depth and stencil pixel paths
are not shown.

DRAFT Version 1.2 - Jan. 2, 1998

Chapter 5

Special Functions

This chapter describes additional GL functionality that does not �t easily
into any of the preceding chapters. This functionality consists of evalua-

tors (used to model curves and surfaces), selection (used to locate rendered
primitives on the screen), feedback (which returns GL results before raster-

ization), display lists (used to designate a group of GL commands for later
execution by the GL), ushing and �nishing (used to synchronize the GL

command stream), and hints.

5.1 Evaluators

Evaluators provide a means to use a polynomial or rational polynomial map-

ping to produce vertex, normal, and texture coordinates, and colors. The
values so produced are sent on to further stages of the GL as if they had

been provided directly by the client. Transformations, lighting, primitive
assembly, rasterization, and per-pixel operations are not a�ected by the use

of evaluators.
Consider the Rk-valued polynomial p(u) de�ned by

p(u) =
nX
i=0

Bn
i (u)Ri (5.1)

with Ri 2 Rk and

Bn
i (u) =

n

i

!
ui(1� u)n�i;

the ith Bernstein polynomial of degree n (recall that 00 � 1 and
�n
0

�
� 1).

Each Ri is a control point. The relevant command is

165

DRAFT Version 1.2 - Jan. 2, 1998

CHAPTER 5. SPECIAL FUNCTIONS 166

target k Values

MAP1 VERTEX 3 3 x, y, z vertex coordinates

MAP1 VERTEX 4 4 x, y, z, w vertex coordinates

MAP1 INDEX 1 color index

MAP1 COLOR 4 4 R, G, B, A

MAP1 NORMAL 3 x, y, z normal coordinates

MAP1 TEXTURE COORD 1 1 s texture coordinate

MAP1 TEXTURE COORD 2 2 s, t texture coordinates

MAP1 TEXTURE COORD 3 3 s, t, r texture coordinates

MAP1 TEXTURE COORD 4 4 s, t, r, q texture coordinates

Table 5.1: Values speci�ed by the target to Map1. Values are given in the
order in which they are taken.

void Map1ffdg(enum type, T u1, T u2, int stride, int order,

T points) ;

type is a symbolic constant indicating the range of the de�ned polynomial.
Its possible values, along with the evaluations that each indicates, are given
in Table 5.1. order is equal to n + 1; The error INVALID VALUE is generated

if order is less than one or greater than MAX EVAL ORDER. points is a pointer
to a set of n+1 blocks of storage. Each block begins with k single-precision

oating-point or double-precision oating-point values, respectively. The
rest of the block may be �lled with arbitrary data. Table 5.1 indicates how

k depends on type and what the k values represent in each case.
stride is the number of single- or double-precision values (as appropriate)

in each block of storage. The error INVALID VALUE results if stride is less than
k. The order of the polynomial, order, is also the number of blocks of storage

containing control points.
u1 and u2 give two oating-point values that de�ne the endpoints of the

pre-image of the map. When a value u0 is presented for evaluation, the

formula used is

p0(u0) = p(
u0 � u1

u2 � u1
):

The error INVALID VALUE results if u1 = u2.
Map2 is analogous to Map1, except that it describes bivariate polyno-

mials of the form

p(u; v) =
nX
i=0

mX
j=0

Bn
i (u)B

m
j (v)Rij :

DRAFT Version 1.2 - Jan. 2, 1998

CHAPTER 5. SPECIAL FUNCTIONS 167

EvalMesh
EvalPoint

MapGrid Map
EvalCoord

k

l

[u1,u2]

[v1,v2]

[0,1]

[0,1]
ΣBiRiAx+b

Vertices

Normals

Texture Coordinates

Colors

Integers Reals

Figure 5.1. Map Evaluation.

The form of the Map2 command is

void Map2ffdg(enum target, T u1, T u2, int ustride,

int uorder, T v1, T v2, int vstride, int vorder, T points) ;

target is a range type selected from the same group as is used for Map1,

except that the string MAP1 is replaced with MAP2. points is a pointer to
(n + 1)(m+ 1) blocks of storage (uorder = n+ 1 and vorder = m+ 1; the

error INVALID VALUE is generated if either uorder or vorder is less than one
or greater than MAX EVAL ORDER). The values comprising Rij are located

(ustride)i+ (vstride)j

values (either single- or double-precision oating-point, as appropriate) past

the �rst value pointed to by points. u1, u2, v1, and v2 de�ne the pre-image
rectangle of the map; a domain point (u0; v0) is evaluated as

p0(u0; v0) = p(
u0 � u1

u2 � u1
;
v0 � v1

v2 � v1
):

The evaluation of a de�ned map is enabled or disabled with Enable and

Disable using the constant corresponding to the map as described above.
The error INVALID VALUE results if either ustride or vstride is less than k, or

if u1 is equal to u2, or if v1 is equal to v2.
Figure 5.1 describes map evaluation schematically; an evaluation of en-

abled maps is e�ected in one of two ways. The �rst way is to use

void EvalCoordf12gffdg(T arg) ;
void EvalCoordf12gffdgv(T arg) ;

DRAFT Version 1.2 - Jan. 2, 1998

CHAPTER 5. SPECIAL FUNCTIONS 168

EvalCoord1 causes evaluation of the enabled one-dimensional maps. The

argument is the value (or a pointer to the value) that is the domain coor-
dinate, u0. EvalCoord2 causes evaluation of the enabled two-dimensional

maps. The two values specify the two domain coordinates, u0 and v0, in that
order.

When one of the EvalCoord commands is issued, all currently enabled
maps of the indicated dimension are evaluated. Then, for each enabled map,

it is as if a corresponding GL command were issued with the resulting co-
ordinates, with one important di�erence. The di�erence is that when an

evaluation is performed, the GL uses evaluated values instead of current
values for those evaluations that are enabled (otherwise, the current values
are used). The order of the e�ective commands is immaterial, except that

Vertex (for vertex coordinate evaluation) must be issued last. Use of eval-
uators has no e�ect on the current color, normal, or texture coordinates. If

ColorMaterial is enabled, evaluated color values a�ect the result of the
lighting equation as if the current color was being modi�ed, but no change

is made to the tracking lighting parameters or to the current color.
No command is e�ectively issued if the corresponding map (of the indi-

cated dimension) is not enabled. If more than one evaluation is enabled for a
particular dimension (e.g. MAP1 TEXTURE COORD 1 and MAP1 TEXTURE COORD 2),

then only the result of the evaluation of the map with the highest number
of coordinates is used.

Finally, if either MAP2 VERTEX 3 or MAP2 VERTEX 4 is enabled, then the

normal to the surface is computed. Analytic computation, which sometimes
yields normals of length zero is one method which may be used. If auto-

matic normal generation is enabled, then this computed normal is used as
the normal associated with a generated vertex. Automatic normal gener-

ation is controlled with Enable and Disable with symbolic the constant
AUTO NORMAL. If automatic normal generation is disabled, then a correspond-

ing normal map, if enabled, is used to produce a normal. If neither automatic
normal generation nor a normal map are enabled, then no normal is sent

with a vertex resulting from an evaluation (the e�ect is that the current
normal is used).

For MAP VERTEX 3, let q = p. For MAP VERTEX 4, let q = (x=w; y=w; z=w),

where (x; y; z; w) = p. Then let

m =
@q

@u
� @q

@v
:

Then the generated analytic normal, n, is given by n =m=kmk.

DRAFT Version 1.2 - Jan. 2, 1998

CHAPTER 5. SPECIAL FUNCTIONS 169

The second way to carry out evaluations is to use a set of commands

that provide for e�cient speci�cation of a series of evenly spaced values to
be mapped. This method proceeds in two steps. The �rst step is to de�ne

a grid in the domain. This is done using

void MapGrid1ffdg(int n, T u0
1
, T u0

2
) ;

for a one-dimensional map or

void MapGrid2ffdg(int nu, T u0
1
, T u0

2
, int nv, T v0

1
,

T v0
2
) ;

for a two-dimensional map. In the case of MapGrid1 u0
1
and u0

2
describe

an interval, while n describes the number of partitions of the interval. The

error INVALID VALUE results if n � 0. For MapGrid2, (u0
1
; v0

1
) speci�es one

two-dimensional point and (u0
2
; v0

2
) speci�es another. nu gives the number of

partitions between u0
1
and u0

2
, and nv gives the number of partitions between

v0
1
and v0

2
. If either nu � 0 or nv � 0, then the error INVALID VALUE occurs.

Once a grid is de�ned, an evaluation on a rectangular subset of that grid
may be carried out by calling

void EvalMesh1(enum mode, int p1, int p2) ;

mode is either POINT or LINE. The e�ect is the same as performing the fol-
lowing code fragment, with �u0 = (u0

2
� u0

1
)=n:

Begin(type);

for i = p1 to p2 step 1:0
EvalCoord1(i * �u0 + u0

1
);

End();

where EvalCoord1f or EvalCoord1d is substituted for EvalCoord1 as
appropriate. If mode is POINT, then type is POINTS; if mode is LINE, then type

is LINE STRIP. The one requirement is that if either i = 0 or i = n, then the
value computed from i ��u0 + u0

1
is precisely u0

1
or u0

2
, respectively.

The corresponding commands for two-dimensional maps are

void EvalMesh2(enum mode, int p1, int p2, int q1,

int q2) ;

modemust be FILL, LINE, or POINT.Whenmode is FILL, then these commands

are equivalent to the following, with �u0 = (u0
2
� u0

1
)=n and �v0 = (v0

2
�

v0
1
)=m:

DRAFT Version 1.2 - Jan. 2, 1998

CHAPTER 5. SPECIAL FUNCTIONS 170

for i = q1 to q2 � 1 step 1:0

Begin(QUAD STRIP);

for j = p1 to p2 step 1:0

EvalCoord2(j * �u0 + u0
1
, i * �v0 + v0

1
);

EvalCoord2(j * �u0 + u0
1
, (i+ 1) * �v0 + v0

1
);

End();

If mode is LINE, then a call to EvalMesh2 is equivalent to

for i = q1 to q2 step 1:0
Begin(LINE STRIP);

for j = p1 to p2 step 1:0
EvalCoord2(j * �u0 + u0

1
, i * �v0 + v0

1
);

End();;
for i = p1 to p2 step 1:0

Begin(LINE STRIP);

for j = q1 to q2 step 1:0
EvalCoord2(i * �u0 + u0

1
, j * �v0 + v0

1
);

End();

If mode is POINT, then a call to EvalMesh2 is equivalent to

Begin(POINTS);

for i = q1 to q2 step 1:0

for j = p1 to p2 step 1:0
EvalCoord2(j * �u0 + u0

1
, i * �v0 + v0

1
);

End();

Again, in all three cases, there is the requirement that 0 ��u0 + u0
1
= u0

1
,

n ��u0 + u0
1
= u0

2
, 0 ��v0 + v0

1
= v0

1
, and m ��v0 + v0

1
= v0

2
.

An evaluation of a single point on the grid may also be carried out:

void EvalPoint1(int p) ;

Calling it is equivalent to the command

EvalCoord1(p * �u0 + u0
1
);

with �u0 and u0
1
de�ned as above.

void EvalPoint2(int p, int q) ;

is equivalent to the command

DRAFT Version 1.2 - Jan. 2, 1998

CHAPTER 5. SPECIAL FUNCTIONS 171

EvalCoord2(p * �u0 + u0
1
, q * �v0 + v0

1
);

The state required for evaluators potentially consists of 9 one-
dimensional map speci�cations and 9 two-dimensional map speci�cations,

as well as corresponding ags for each speci�cation indicating which are en-
abled. Each map speci�cation consists of one or two orders, an appropriately

sized array of control points, and a set of two values (for a one-dimensional
map) or four values (for a two-dimensional map) to describe the domain.
The maximum possible order, for either u or v, is implementation dependent

(one maximum applies to both u and v), but must be at least 8. Each con-
trol point consists of between one and four oating-point values (depending

on the type of the map). Initially, all maps have order 1 (making them con-
stant maps). All vertex coordinate maps produce the coordinates (0; 0; 0; 1)

(or the appropriate subset); all normal coordinate maps produce (0; 0; 1);
RGBA maps produce (1; 1; 1; 1); color index maps produce 1.0; texture co-

ordinate maps produce (0; 0; 0; 1); In the initial state, all maps are disabled.
A ag indicates whether or not automatic normal generation is enabled for

two-dimensional maps. In the initial state, automatic normal generation is
disabled. Also required are two oating-point values and an integer number
of grid divisions for the one-dimensional grid speci�cation and four oating-

point values and two integer grid divisions for the two-dimensional grid
speci�cation. In the initial state, the bounds of the domain interval for 1-D

is 0 and 1:0, respectively; for 2-D, they are (0; 0) and (1:0; 1:0), respectively.
The number of grid divisions is 1 for 1-D and 1 in both directions for 2-D. If

any evaluation command is issued when no vertex map is enabled, nothing
happens.

5.2 Selection

Selection is used by a programmer to determine which primitives are drawn
into some region of a window. The region is de�ned by the current model-

view and perspective matrices.
Selection works by returning an array of integer-valued names. This

array represents the current contents of the name stack. This stack is con-
trolled with the commands

void InitNames(void) ;

void PopName(void) ;
void PushName(uint name) ;

DRAFT Version 1.2 - Jan. 2, 1998

CHAPTER 5. SPECIAL FUNCTIONS 172

void LoadName(uint name) ;

InitNames empties (clears) the name stack. PopName pops one name
o� the top of the name stack. PushName causes name to be pushed

onto the name stack. LoadName replaces the value on the top of the
stack with name. Loading a name onto an empty stack generates the er-

ror INVALID OPERATION. Popping a name o� of an empty stack generates
STACK UNDERFLOW; pushing a name onto a full stack generates STACK OVERFLOW.

The maximum allowable depth of the name stack is implementation depen-
dent but must be at least 64.

In selection mode, no fragments are rendered into the framebu�er. The
GL is placed in selection mode with

int RenderMode(enum mode) ;

mode is a symbolic constant: one of RENDER, SELECT, or FEEDBACK. RENDER

is the default, corresponding to rendering as described until now. SELECT

speci�es selection mode, and FEEDBACK speci�es feedback mode (described

below). Use of any of the name stack manipulation commands while the GL
is not in selection mode has no e�ect.

Selection is controlled using

void SelectBu�er(sizei n, uint *bu�er) ;

bu�er is a pointer to an array of unsigned integers (called the selection
array) to be potentially �lled with names, and n is an integer indicating the

maximum number of values that can be stored in that array. Placing the GL
in selection mode before SelectBu�er has been called results in an error of

INVALID OPERATION as does calling SelectBu�er while in selection mode.
In selection mode, if a point, line, polygon, or the valid coordinates pro-

duced by a RasterPos command intersects the clip volume (section 2.11)
then this primitive (or RasterPos command) causes a selection hit. In the

case of polygons, no hit occurs if the polygon would have been culled, but
selection is based on the polygon itself, regardless of the setting of Poly-
gonMode. When in selection mode, whenever a name stack manipulation

command is executed or RenderMode is called and there has been a hit
since the last time the stack was manipulated or RenderMode was called,

then a hit record is written into the selection array.
A hit record consists of the following items in order: a non-negative

integer giving the number of elements on the name stack at the time of the
hit, a minimum depth value, a maximum depth value, and the name stack

DRAFT Version 1.2 - Jan. 2, 1998

CHAPTER 5. SPECIAL FUNCTIONS 173

with the bottommost element �rst. The minimum and maximum depth

values are the minimum and maximum taken over all the window coordinate
z values of each (post-clipping) vertex of each primitive that intersects the

clipping volume since the last hit record was written. The minimum and
maximum (each of which lies in the range [0; 1]) are each multiplied by

232 � 1 and rounded to the nearest unsigned integer to obtain the values
that are placed in the hit record. No depth o�set arithmetic (section 3.5.5)

is performed on these values.
Hit records are placed in the selection array by maintaining a pointer

into that array. When selection mode is entered, the pointer is initialized to
the beginning of the array. Each time a hit record is copied, the pointer is
updated to point at the array element after the one into which the topmost

element of the name stack was stored. If copying the hit record into the
selection array would cause the total number of values to exceed n, then as

much of the record as �ts in the array is written and an overow ag is set.
Selection mode is exited by calling RenderMode with an argument

value other than SELECT. Whenever RenderMode is called in selection
mode, it returns the number of hit records copied into the selection array

and resets the SelectBu�er pointer to its last speci�ed value. Values are
not guaranteed to be written into the selection array until RenderMode

is called. If the selection array overow ag was set, then RenderMode

returns �1 and clears the overow ag. The name stack is cleared and the
stack pointer reset whenever RenderMode is called.

The state required for selection consists of the address of the selection
array and its maximum size, the name stack and its associated pointer, a

minimum and maximum depth value, and several ags. One ag indicates
the currentRenderMode value. In the initial state, the GL is in the RENDER

mode. Another ag is used to indicate whether or not a hit has occurred
since the last name stack manipulation. This ag is reset upon entering

selection mode and whenever a name stack manipulation takes place. One
�nal ag is required to indicate whether the maximum number of copied

names would have been exceeded. This ag is reset upon entering selection
mode. This ag, the address of the selection array, and its maximum size
are GL client state.

5.3 Feedback

Feedback, like selection, is a GL mode. The mode is selected by calling

RenderMode with FEEDBACK. When the GL is in feedback mode, no frag-

DRAFT Version 1.2 - Jan. 2, 1998

CHAPTER 5. SPECIAL FUNCTIONS 174

ments are written to the framebu�er. Instead, information about primitives

that would have been rasterized is fed back to the application using the GL.
Feedback is controlled using

void FeedbackBu�er(sizei n, enum type, float *bu�er) ;

bu�er is a pointer to an array of oating-point values into which feedback in-
formation will be placed, and n is a number indicating the maximum number

of values that can be written to that array. type is a symbolic constant de-
scribing the information to be fed back for each vertex (see Figure 5.2). The

error INVALID OPERATION results if the GL is placed in feedback mode before
a call to FeedbackBu�er has been made, or if a call to FeedbackBu�er

is made while in feedback mode.
While in feedback mode, each primitive that would be rasterized (or

bitmap or call to DrawPixels or CopyPixels, if the raster position is
valid) generates a block of values that get copied into the feedback array.
If doing so would cause the number of entries to exceed the maximum, the

block is partially written so as to �ll the array (if there is any room left at
all). The �rst block of values generated after the GL enters feedback mode

is placed at the beginning of the feedback array, with subsequent blocks
following. Each block begins with a code indicating the primitive type, fol-

lowed by values that describe the primitive's vertices and associated data.
Entries are also written for bitmaps and pixel rectangles. Feedback occurs

after polygon culling (section 3.5.1) and PolygonMode interpretation of
polygons (section 3.5.4) has taken place. It may also occur after polygons

with more than three edges are broken up into triangles (if the GL imple-
mentation renders polygons by performing this decomposition). x, y, and z

coordinates returned by feedback are window coordinates; if w is returned,

it is in clip coordinates. No depth o�set arithmetic (section 3.5.5) is per-
formed on the z values. In the case of bitmaps and pixel rectangles, the

coordinates returned are those of the current raster position.
The texture coordinates and colors returned are these resulting from the

clipping operations described in Section 2.13.8. The colors returned are
the primary colors.

The ordering rules for GL command interpretation also apply in feedback
mode. Each command must be fully interpreted and its e�ects on both GL

state and the values to be written to the feedback bu�er completed before
a subsequent command may be executed.

The GL is taken out of feedback mode by calling RenderMode with an

argument value other than FEEDBACK. When called while in feedback mode,

DRAFT Version 1.2 - Jan. 2, 1998

CHAPTER 5. SPECIAL FUNCTIONS 175

Type coordinates color texture total values

2D x, y { { 2

3D x, y, z { { 3

3D COLOR x, y, z k { 3 + k

3D COLOR TEXTURE x, y, z k 4 7 + k

4D COLOR TEXTURE x, y, z, w k 4 8 + k

Table 5.2: Correspondence of feedback type to number of values per vertex.

k is 1 in color index mode and 4 in RGBA mode.

RenderMode returns the number of values placed in the feedback array
and resets the feedback array pointer to be bu�er. The return value never

exceeds the maximum number of values passed to FeedbackBu�er.
If writing a value to the feedback bu�er would cause more values to be

written than the speci�ed maximum number of values, then the value is not

written and an overow ag is set. In this case, RenderMode returns �1
when it is called, after which the overow ag is reset. While in feedback

mode, values are not guaranteed to be written into the feedback bu�er before
RenderMode is called.

Figure 5.2 gives a grammar for the array produced by feedback. Each
primitive is indicated with a unique identifying value followed by some num-

ber of vertices. A vertex is fed back as some number of oating-point values
determined by the feedback type. Table 5.2 gives the correspondence be-

tween feedback bu�er and the number of values returned for each vertex.

The command

void PassThrough(float token) ;

may be used as a marker in feedback mode. token is returned as if it were a
primitive; it is indicated with its own unique identifying value. The ordering

of any PassThrough commands with respect to primitive speci�cation is
maintained by feedback. PassThrough may not occur between Begin and

End. It has no e�ect when the GL is not in feedback mode.
The state required for feedback is the pointer to the feedback array, the

maximum number of values that may be placed there, and the feedback type.
An overow ag is required to indicate whether the maximum allowable

number of feedback values has been written; initially this ag is cleared.
These state variables are GL client state. Feedback also relies on the same

DRAFT Version 1.2 - Jan. 2, 1998

CHAPTER 5. SPECIAL FUNCTIONS 176

mode ag as selection to indicate whether the GL is in feedback, selection,

or normal rendering mode.

5.4 Display Lists

A display list is simply a group of GL commands and arguments that has
been stored for subsequent execution. The GL may be instructed to process
a particular display list (possibly repeatedly) by providing a number that

uniquely speci�es it. Doing so causes the commands within the list to be
executed just as if they were given normally. The only exception pertains

to commands that rely upon client state. When such a command is accu-
mulated into the display list (that is, when issued, not when executed), the

client state in e�ect at that time applies to the command. Only server state
is a�ected when the command is executed. As always, pointers which are

passed as arguments to commands are dereferenced when the command is
issued. (Vertex array pointers are dereferenced when the commands Ar-

rayElement, DrawArrays, or DrawElements are accumulated into a
display list.)

A display list is begun by calling

void NewList(uint n, enum mode) ;

n is a positive integer to which the display list that follows is assigned, and
mode is a symbolic constant that controls the behavior of the GL during

display list creation. If mode is COMPILE, then commands are not executed
as they are placed in the display list. If mode is COMPILE AND EXECUTE then

commands are executed as they are encountered, then placed in the display
list. If n = 0, then the error INVALID VALUE is generated.

After calling NewList all subsequent GL commands are placed in the
display list (in the order the commands are issued) until a call to

void EndList(void) ;

occurs, after which the GL returns to its normal command execution state.
It is only when EndList occurs that the speci�ed display list is actually asso-

ciated with the index indicated withNewList. The error INVALID OPERATION

is generated if EndList is called without a previous matching NewList,

or if NewList is called a second time before calling EndList. The error
OUT OF MEMORY is generated if EndList is called and the speci�ed display list
cannot be stored because insu�cient memory is available. In this case GL

DRAFT Version 1.2 - Jan. 2, 1998

CHAPTER 5. SPECIAL FUNCTIONS 177

feedback-list:
feedback-item feedback-list

feedback-item

feedback-item:

point
line-segment

polygon
bitmap

pixel-rectangle
passthrough

point:

POINT TOKEN vertex
line-segment:

LINE TOKEN vertex vertex

LINE RESET TOKEN vertex vertex
polygon:

POLYGON TOKEN n polygon-spec
polygon-spec:

polygon-spec vertex
vertex vertex vertex

bitmap:
BITMAP TOKEN vertex

pixel-rectangle:

DRAW PIXEL TOKEN vertex
COPY PIXEL TOKEN vertex

passthrough:

PASS THROUGH TOKEN f

vertex:
2D:

f f

3D:

f f f

3D COLOR:

f f f color
3D COLOR TEXTURE:

f f f color tex

4D COLOR TEXTURE:
f f f f color tex

color:

f f f f

f

tex:

f f f f

Figure 5.2: Feedback syntax. f is a oating-point number. n is a oating-

point integer giving the number of vertices in a polygon. The symbols
ending with TOKEN are symbolic oating-point constants. The labels under

the \vertex" rule show the di�erent data returned for vertices depending
on the feedback type. LINE TOKEN and LINE RESET TOKEN are identical except

that the latter is returned only when the line stipple is reset for that line
segment.

DRAFT Version 1.2 - Jan. 2, 1998

CHAPTER 5. SPECIAL FUNCTIONS 178

implementations of revision 1.1 or greater insure that no change is made to

the previous contents of the display list, if any, and that no other change
is made to the GL state, except for the state changed by execution of GL

commands when the display list mode is COMPILE AND EXECUTE.
Once de�ned, a display list is executed by calling

void CallList(uint n) ;

n gives the index of the display list to be called. This causes the commands
saved in the display list to be executed, in order, just as if they were issued

without using a display list. If n = 0, then the error INVALID VALUE is
generated.

The command

void CallLists(sizei n, enum type, void *lists) ;

provides an e�cient means for executing a number of display lists. n is

an integer indicating the number of display lists to be called, and lists is
a pointer that points to an array of o�sets. Each o�set is constructed as

determined by lists as follows. First, type may be one of the constants BYTE,
UNSIGNED BYTE, SHORT, UNSIGNED SHORT, INT, UNSIGNED INT, or FLOAT indicating
that the array pointed to by lists is an array of bytes, unsigned bytes, shorts,

unsigned shorts, integers, unsigned integers, or oats, respectively. In this
case each o�set is found by simply converting each array element to an

integer (oating point values are truncated). Further, type may be one of
2 BYTES, 3 BYTES, or 4 BYTES, indicating that the array contains sequences of

2, 3, or 4 unsigned bytes, in which case each integer o�set is constructed
according to the following algorithm:

offset 0
for i = 1 to b

offset offset shifted left 8 bits
offset offset + byte

advance to next byte in the array

b is 2, 3, or 4, as indicated by type. If n = 0, CallLists does nothing.
Each of the n constructed o�sets is taken in order and added to a display

list base to obtain a display list number. For each number, the indicated
display list is executed. The base is set by calling

void ListBase(uint base) ;

DRAFT Version 1.2 - Jan. 2, 1998

CHAPTER 5. SPECIAL FUNCTIONS 179

to specify the o�set.

Indicating a display list index that does not correspond to any display
list has no e�ect. CallList or CallLists may appear inside a display list. (If

the mode supplied toNewList is COMPILE AND EXECUTE, then the appropriate
lists are executed, but the CallList or CallLists, rather than those lists'

constituent commands, is placed in the list under construction.) To avoid
the possibility of in�nite recursion resulting from display lists calling one

another, an implementation dependent limit is placed on the nesting level
of display lists during display list execution. This limit must be at least 64.

Two commands are provided to manage display list indices.

uint GenLists(sizei s) ;

returns an integer n such that the indices n; : : : ; n + s � 1 are previously

unused (i.e. there are s previously unused display list indices starting at n).
GenLists also has the e�ect of creating an empty display list for each of
the indices n; : : : ; n+s�1, so that these indices all become used. GenLists
returns 0 if there is no group of s contiguous previously unused display list
indices, or if s = 0.

boolean IsList(uint list) ;

returns TRUE if list is the index of some display list.
A contiguous group of display lists may be deleted by calling

void DeleteLists(uint list, sizei range) ;

where list is the index of the �rst display list to be deleted and range is
the number of display lists to be deleted. All information about the display

lists is lost, and the indices become unused. Indices to which no display list
corresponds are ignored. If range = 0, nothing happens.

Certain commands, when called while compiling a display list, are not
compiled into the display list but are executed immediately. These are:

IsList, GenLists, DeleteLists, FeedbackBu�er, SelectBu�er, Ren-
derMode, VertexPointer, NormalPointer, ColorPointer, Index-
Pointer, TexCoordPointer, EdgeFlagPointer, InterleavedArrays,

EnableClientState, DisableClientState, PushClientAttrib, Pop-

ClientAttrib, ReadPixels, PixelStore, GenTextures, DeleteTex-

tures, AreTexturesResident, IsTexture, Flush, Finish, as well as
IsEnabled and all of the Get commands (see Chapter 6).

DRAFT Version 1.2 - Jan. 2, 1998

CHAPTER 5. SPECIAL FUNCTIONS 180

TexImage3D, TexImage2D, TexImage1D, Histogram, and Col-

orTable are
executed immediately when called with the corresponding proxy arguments

PROXY TEXTURE 3D, PROXY TEXTURE 2D, PROXY TEXTURE 1D, PROXY HISTOGRAM, and
PROXY COLOR TABLE, PROXY POST CONVOLUTION COLOR TABLE, or

PROXY POST COLOR MATRIX COLOR TABLE.
Display lists require one bit of state to indicate whether a GL command

should be executed immediately or placed in a display list. In the initial
state, commands are executed immediately. If the bit indicates display

list creation, an index is required to indicate the current display list being
de�ned. Another bit indicates, during display list creation, whether or not
commands should be executed as they are compiled into the display list.

One integer is required for the current ListBase setting; its initial value
is zero. Finally, state must be maintained to indicate which integers are

currently in use as display list indices. In the initial state, no indices are in
use.

5.5 Flush and Finish

The command

void Flush(void) ;

indicates that all commands that have previously been sent to the GL must

complete in �nite time.
The command

void Finish(void) ;

forces all previous GL commands to complete. Finish does not return until
all e�ects from previously issued commands on GL client and server state

and the framebu�er are fully realized.

5.6 Hints

Certain aspects of GL behavior, when there is room for variation, may be
controlled with hints. A hint is speci�ed using

void Hint(enum target, enum hint) ;

DRAFT Version 1.2 - Jan. 2, 1998

CHAPTER 5. SPECIAL FUNCTIONS 181

target is a symbolic constant indicating the behavior to be controlled, and

hint is a symbolic constant indicating what type of behavior is desired.
target may be one of PERSPECTIVE CORRECTION HINT, indicating the desired

quality of parameter interpolation; POINT SMOOTH HINT, indicating the desired
sampling quality of points; LINE SMOOTH HINT, indicating the desired sampling

quality of lines; POLYGON SMOOTH HINT, indicating the desired sampling quality
of polygons; and FOG HINT, indicating whether fog calculations are done per

pixel or per vertex. hint must be one of FASTEST, indicating that the most
e�cient option should be chosen; NICEST, indicating that the highest quality

option should be chosen; and DONT CARE, indicating no preference in the
matter.

The interpretation of hints is implementation dependent. An implemen-

tation may ignore them entirely.

DRAFT Version 1.2 - Jan. 2, 1998

Chapter 6

State and State Requests

The state required to describe the GL machine is enumerated in section 6.2.
Most state is set through the calls described in previous chapters, and can

be queried using the calls described in section 6.1.

6.1 Querying GL State

6.1.1 Simple Queries

Much of the GL state is completely identi�ed by symbolic constants. The
values of these state variables can be obtained using a set ofGet commands.

There are four commands for obtaining simple state variables:

void GetBooleanv(enum value, boolean *data) ;

void GetIntegerv(enum value, int *data) ;
void GetFloatv(enum value, float *data) ;
void GetDoublev(enum value, double *data) ;

The commands obtain boolean, integer, oating-point, or double-precision
state variables. value is a symbolic constant indicating the state variable to

return. data is a pointer to a scalar or array of the indicated type in which
to place the returned data. In addition

boolean IsEnabled(enum value) ;

can be used to determine if value is currently enabled (as with Enable) or
disabled.

182

DRAFT Version 1.2 - Jan. 2, 1998

CHAPTER 6. STATE AND STATE REQUESTS 183

6.1.2 Data Conversions

If a Get command is issued that returns value types di�erent from the

type of the value being obtained, a type conversion is performed. If Get-
Booleanv is called, a oating-point or integer value converts to FALSE if

and only if it is zero (otherwise it converts to TRUE). If GetIntegerv (or
any of the Get commands below) is called, a boolean value is interpreted

as either 1 or 0, and a oating-point value is rounded to the nearest integer,
unless the value is an RGBA color component, a DepthRange value, a
depth bu�er clear value, or a normal coordinate. In these cases, the Get

command converts the oating-point value to an integer according the INT
entry of Table 4.7; a value not in [�1; 1] converts to an unde�ned value.

If GetFloatv is called, a boolean value is interpreted as either 1:0 or 0:0,
an integer is coerced to oating-point, and a double-precision oating-point

value is converted to single-precision. Analogous conversions are carried
out in the case of GetDoublev. If a value is so large in magnitude that

it cannot be represented with the requested type, then the nearest value
representable using the requested type is returned.

Unless otherwise indicated, multi-valued state variables return their mul-
tiple values in the same order as they are given as arguments to the com-
mands that set them. For instance, the two DepthRange parameters are

returned in the order n followed by f. Similarly, points for evaluator maps
are returned in the order that they appeared when passed toMap1. Map2

returns Rij in the [(uorder)i + j]th block of values (see page 167 for i, j,
uorder, and Rij).

6.1.3 Enumerated Queries

1

Other commands exist to obtain state variables that are identi�ed by a

category (clip plane, light, material, etc.) as well as a symbolic constant.
These are

void GetClipPlane(enum plane, double eqn[4]) ;

void GetLightfifgv(enum light, enum value, T data) ;
void GetMaterialfifgv(enum face, enum value, T data) ;

void GetTexEnvfifgv(enum env, enum value, T data) ;
void GetTexGenfifgv(enum coord, enum value, T data) ;

1This section used to be named Indexed Queries. The name is still awkward.

DRAFT Version 1.2 - Jan. 2, 1998

CHAPTER 6. STATE AND STATE REQUESTS 184

void GetTexParameterfifgv(enum target, enum value,

T data) ;
void GetTexLevelParameterfifgv(enum target, int lod,

enum value, T data) ;
void GetPixelMapfui us fgv(enum map, T data) ;

void GetMapfifdgv(enum map, enum value, T data) ;

GetClipPlane always returns four double-precision values in eqn; these
are the coe�cients of the plane equation of plane in eye coordinates (these

coordinates are those that were computed when the plane was speci�ed).
GetLight places information about value (a symbolic constant) for light

(also a symbolic constant) in data. POSITION or SPOT DIRECTION returns val-
ues in eye coordinates (again, these are the coordinates that were computed

when the position or direction was speci�ed).
GetMaterial, GetTexGen, GetTexEnv, and GetTexParameter

are similar toGetLight, placing information about value for the target indi-
cated by their �rst argument into data. The face argument toGetMaterial

must be either FRONT or BACK, indicating the front or back material, respec-
tively. The env argument to GetTexEnv must currently be TEXTURE ENV.
The coord argument to GetTexGen must be one of S, T, R, or Q. For Get-

TexGen, EYE LINEAR coe�cients are returned in the eye coordinates that
were computed when the plane was speci�ed; OBJECT LINEAR coe�cients are

returned in object coordinates.
For GetTexParameter and GetTexLevelParameter, target must

currently be TEXTURE 1D, TEXTURE 2D, or TEXTURE 3D, indicating the currently
bound one-, two-, or three-dimensional texture object, or PROXY TEXTURE 1D,

PROXY TEXTURE 2D, or PROXY TEXTURE 3D, indicating the one-, two-, or three-
dimensional proxy state vector. value is a symbolic value indicat-

ing which texture parameter is to be obtained. The lod argument to
GetTexLevelParameter determines which level-of-detail's state is re-
turned. If the lod argument is less than zero or if it is larger than

the maximum allowable level-of-detail then the error INVALID VALUE oc-
curs. Queries of TEXTURE RED SIZE, TEXTURE GREEN SIZE, TEXTURE BLUE SIZE,

TEXTURE ALPHA SIZE, TEXTURE LUMINANCE SIZE, and TEXTURE INTENSITY SIZE

return the actual resolutions of the stored image array components, not

the resolutions speci�ed when the image array was de�ned. Queries of
TEXTURE WIDTH, TEXTURE HEIGHT, TEXTURE DEPTH, and TEXTURE BORDER return

the width, height, depth, and border as speci�ed when the image ar-
ray was created. The internal format of the image array is queried as

TEXTURE INTERNAL FORMAT, or as TEXTURE COMPONENTS for compatibility with

DRAFT Version 1.2 - Jan. 2, 1998

CHAPTER 6. STATE AND STATE REQUESTS 185

GL version 1.0.

For GetPixelMap, the map must be a map name from Table 3.3. For
GetMap, map must be one of the map types described in section 5.1, and

value must be one of ORDER, COEFF, or DOMAIN.

6.1.4 Texture Queries

The command

void GetTexImage(enum tex, int lod, enum format,

enum type, void *img) ;

is used to obtain texture images. It is somewhat di�erent from the other get

commands; tex is a symbolic value indicating which texture is to be obtained.
TEXTURE 1D indicates a one-dimensional texture, TEXTURE 2D indicates a two-

dimensional texture, and TEXTURE 3D indicates a three-dimensional texture.
lod is a level-of-detail number, format is a pixel format from Table 3.6, type

is a pixel type from Table 3.5, and img is a pointer to a block of memory.
GetTexImage obtains component groups from a texture image with

the indicated level-of-detail. The components are assigned among R, G, B,

and A according to Table 6.1, starting with the �rst group in the �rst row,
and continuing by obtaining groups in order from each row and proceeding

from the �rst row to the last, and from the �rst image to the last for three-
dimensional textures. These groups are then packed and placed in client

memory. No pixel transfer operations are performed on this image, but
pixel storage modes that are applicable to ReadPixels are applied.

For three-dimensional textures, pixel storage operations are applied as
if the image were two-dimensional, except that the additional pixel storage

state values PACK IMAGE HEIGHT and PACK SKIP IMAGES are applied. The cor-
respondence of texels to memory locations is as de�ned for TexImage3D

in section 3.8.1.
The row length, number of rows, image depth, and number of images

are determined by the size of the texture image (including any borders).

Calling GetTexImage with lod less than zero or larger than the maxi-
mum allowable causes the error INVALID VALUE . Calling GetTexImage with

format of COLOR INDEX, STENCIL INDEX, or DEPTH COMPONENT causes the error
INVALID ENUM.

The command

boolean IsTexture(uint texture) ;

DRAFT Version 1.2 - Jan. 2, 1998

CHAPTER 6. STATE AND STATE REQUESTS 186

Base Internal Format R G B A

ALPHA 0 0 0 Ai

LUMINANCE (or 1) Li 0 0 1

LUMINANCE ALPHA (or 2) Li 0 0 Ai

INTENSITY Ii 0 0 1

RGB (or 3) Ri Gi Bi 1

RGBA (or 4) Ri Gi Bi Ai

Table 6.1: Texture, table, and �lter return values. Ri, Gi, Bi, Ai, Li, and Ii
are components of the internal format that are assigned to pixel values R,
G, B, and A. If a requested pixel value is not present in the internal format,

the speci�ed constant value is used.

returns TRUE if texture is the name of a texture object. If texture is zero, or is

a non-zero value that is not the name of a texture object, or if an error condi-
tion occurs, IsTexture returns FALSE. A name returned by GenTextures,

but not yet bound, is not the name of a texture object.

6.1.5 Stipple Query

The command

void GetPolygonStipple(void *pattern) ;

obtains the polygon stipple. The pattern is packed into memory according
to the procedure given in section 4.3.2 for ReadPixels; it is as if the height

and width passed to that command were both equal to 32, the type were
BITMAP, and the format were COLOR INDEX.

6.1.6 Color Matrix Query

The scale and bias variables are queried using GetFloatv with pname set to
the appropriate variable name. The top matrix on the color matrix stack is

returned by GetFloatv called with pname set to COLOR MATRIX. The depth
of the color matrix stack, and the maximum depth of the color matrix stack,

are queried with GetIntegerv, setting pname to COLOR MATRIX STACK DEPTH

and MAX COLOR MATRIX STACK DEPTH respectively.

DRAFT Version 1.2 - Jan. 2, 1998

CHAPTER 6. STATE AND STATE REQUESTS 187

6.1.7 Color Table Query

The current contents of a color table are queried using

void GetColorTable(enum target, enum format, enum type,

void *table) ;

target must be one of the regular color table names listed in table 3.4. format

and type accept the same values as do the corresponding parameters of

GetTexImage. The one-dimensional color table image is returned to client
memory starting at table. No pixel transfer operations are performed on

this image, but pixel storage modes that are applicable to ReadPixels are
performed. Color components that are requested in the speci�ed format,

but which are not included in the internal format of the color lookup table,
are returned as zero. The assignments of internal color components to the

components requested by format are described in Table 6.1.
The functions

void GetColorTableParameterfifgv(enum target,

enum pname, T params) ;

are used for integer and oating point query.
target must be one of the regular or proxy color table names listed

in table 3.4. pname is one of COLOR TABLE SCALE, COLOR TABLE BIAS,
COLOR TABLE FORMAT, COLOR TABLE WIDTH, COLOR TABLE RED SIZE,
COLOR TABLE GREEN SIZE, COLOR TABLE BLUE SIZE, COLOR TABLE ALPHA SIZE,

COLOR TABLE LUMINANCE SIZE, or COLOR TABLE INTENSITY SIZE. The value of
the speci�ed parameter is returned in params.

6.1.8 Convolution Query

The current contents of a convolution �lter image are queried with the com-
mand

void GetConvolutionFilter(enum target, enum format,

enum type, void *image) ;

target must be CONVOLUTION 1D or CONVOLUTION 2D. format and type accept the
same values as do the corresponding parameters of GetTexImage. The

one-dimensional or two-dimensional images is returned to client memory
starting at image. Pixel processing and component mapping are identical

to those of GetTexImage.
The current contents of a separable �lter image are queried using

DRAFT Version 1.2 - Jan. 2, 1998

CHAPTER 6. STATE AND STATE REQUESTS 188

void GetSeparableFilter(enum target, enum format,

enum type, void *row, void *column, void *span) ;

target must be SEPARABLE 2D. format and type accept the same values as

do the corresponding parameters of GetTexImage. The row and column
images are returned to client memory starting at row and column respec-

tively. span is currently unused. Pixel processing and component mapping
are identical to those of GetTexImage.

The functions

void GetConvolutionParameterfifgv(enum target,

enum pname, T params) ;

are used for integer and oating point query. target must be CONVOLUTION 1D,

CONVOLUTION 2D, or SEPARABLE 2D. pname is one of CONVOLUTION BORDER COLOR,
CONVOLUTION BORDER MODE,

CONVOLUTION FILTER SCALE, CONVOLUTION FILTER BIAS, CONVOLUTION FORMAT,
CONVOLUTION WIDTH, CONVOLUTION HEIGHT, MAX CONVOLUTION WIDTH, or

MAX CONVOLUTION HEIGHT. The value of the speci�ed parameter is returned
in params.

6.1.9 Histogram Query

The current contents of the histogram table are queried using

void GetHistogram(enum target, boolean reset, enum for-

mat, enum type, void* values) ;

target must be HISTOGRAM. reset and format accept the same values as do
the corresponding parameters of GetTexImage. The one-dimensional his-

togram table image is returned to values. Pixel processing and component
mapping are identical to those of GetTexImage.

If reset is TRUE, each component counter that is actually returned is reset

to zero. Counters that are not returned are not modi�ed 2. No counters are
modi�ed if reset is FALSE.

Calling

void ResetHistogram(enum target) ;

2 We may want to change this so that all counters are zeroed whether or not they're

returned.

DRAFT Version 1.2 - Jan. 2, 1998

CHAPTER 6. STATE AND STATE REQUESTS 189

resets all counters of all elements of the histogram table to zero. target must

be HISTOGRAM.
It is not an error to reset or query the contents of a histogram table with

zero entries.
The functions

void GetHistogramParameterfifgv(enum target,

enum pname, T params) ;

are used for integer and oating point query. target must be HISTOGRAM

or PROXY HISTOGRAM. pname is one of HISTOGRAM FORMAT, HISTOGRAM WIDTH,
HISTOGRAM RED SIZE, HISTOGRAM GREEN SIZE,

HISTOGRAM BLUE SIZE, HISTOGRAM ALPHA SIZE, or HISTOGRAM LUMINANCE SIZE.
pname may be HISTOGRAM SINK only for target HISTOGRAM. The value of the

speci�ed parameter is returned in params.

6.1.10 Minmax Query

The current contents of the minmax table are queried using

void GetMinmax(enum target, boolean reset, enum format,

enum type, void* values) ;

target must be MINMAX. reset and format accept the same values as do the
corresponding parameters of GetTexImage. A one-dimensional image of

width 2 is returned to values. Pixel processing and component mapping are
identical to those of GetTexImage.

If reset is TRUE, each minimum value that is actually returned is reset to
the maximum representable value, and each maximum value that is returned

is reset to the minimum representable value. Minimum and maximum values
that are not returned are not modi�ed 3. No values are modi�ed if reset is

FALSE.
Calling

void ResetMinmax(enum target) ;

resets all minimum and maximum values of target to to their maximum and
minimum representable values, respectively, target must be MINMAX.

The functions

3 The previous footnote for GetHistogram reset behavior applies here as well.

DRAFT Version 1.2 - Jan. 2, 1998

CHAPTER 6. STATE AND STATE REQUESTS 190

void GetMinmaxParameterfifgv(enum target,

enum pname, T params) ;

are used for integer and oating point query. target must be MINMAX. pname

is MINMAX FORMAT or MINMAX SINK. The value of the speci�ed parameter is
returned in params.

6.1.11 Pointer and String Queries

The command

void GetPointerv(enum pname, void **params) ;

obtains the pointer or pointers named pname in the array

params. The possible values for pname are SELECTION BUFFER POINTER,
FEEDBACK BUFFER POINTER, VERTEX ARRAY POINTER, NORMAL ARRAY POINTER,
COLOR ARRAY POINTER, INDEX ARRAY POINTER, TEXTURE COORD ARRAY POINTER,

and EDGE FLAG ARRAY POINTER. Each returns a single pointer value.
Finally,

ubyte *GetString(enum name) ;

returns a pointer to a static string describing some aspect of the current
GL connection. The possible values for name are VENDOR, RENDERER, VERSION,

and EXTENSIONS. The format of the RENDERER and
strings is implementation dependent. The EXTENSIONS string contains a

space separated list of extension names (The extension names themselves do
not contain any spaces); the VERSION string is laid out as follows:

<version number><space><vendor-speci�c information>

The version number is either of the form major number.minor number or
major number.minor number.release number, where the numbers all have

one or more digits. The vendor speci�c information is optional. However, if
it is present then it pertains to the server and the format and contents are

implementation dependent.
GetString returns the version number (returned in the VERSION string)

and the extension names (returned in the EXTENSIONS string) that can be

supported on the connection. Thus, if the client and server support di�erent
versions and/or extensions, a compatible version and list of extensions is

returned.

DRAFT Version 1.2 - Jan. 2, 1998

CHAPTER 6. STATE AND STATE REQUESTS 191

6.1.12 Saving and Restoring State

Besides providing a means to obtain the values of state variables, the GL also

provides a means to save and restore groups of state variables. ThePushAt-
trib, PushClientAttrib, PopAttrib and PopClientAttrib commands

are used for this purpose. The commands

void PushAttrib(bitfield mask) ;

void PushClientAttrib(bitfield mask) ;

take a bitwise OR of symbolic constants indicating which groups of state

variables to push onto an attribute stack. PushAttrib uses a server at-
tribute stack while PushClientAttrib uses a client attribute stack. Each

constant refers to a group of state variables. The classi�cation of each vari-
able into a group is indicated in the following tables of state variables. The
error STACK OVERFLOW is generated if PushAttrib or PushClientAttrib is

executed while the corresponding stack depth is MAX ATTRIB STACK DEPTH or
MAX CLIENT ATTRIB STACK DEPTH respectively. The commands

void PopAttrib(void) ;
void PopClientAttrib(void) ;

reset the values of those state variables that were saved with the last cor-
responding PushAttrib or PopClientAttrib. Those not saved remain

unchanged. The error STACK UNDERFLOW is generated if PopAttrib or Pop-
ClientAttrib is executed while the respective stack is empty.

Table 6.2 shows the attribute groups with their corresponding symbolic
constant names and stacks.

When PushAttrib is called with TEXTURE BIT set, the priorities, border
colors, �lter modes, and wrap modes of the currently bound texture objects,

as well as the current texture bindings and enables, are pushed onto the
attribute stack. (Unbound texture objects are not pushed or restored.)

When an attribute set that includes texture information is popped, the
bindings and enables are �rst restored to their pushed values, then the bound
texture objects' priorities, border colors, �lter modes, and wrap modes are

restored to their pushed values.
The depth of each attribute stack is implementation dependent but must

be at least 16. The state required for each attribute stack is potentially 16
copies of each state variable, 16 masks indicating which groups of variables

are stored in each stack entry, and an attribute stack pointer. In the initial
state, both attribute stacks are empty.

DRAFT Version 1.2 - Jan. 2, 1998

CHAPTER 6. STATE AND STATE REQUESTS 192

Stack Attribute Constant

server accum-bu�er ACCUM BUFFER BIT

server color-bu�er COLOR BUFFER BIT

server current CURRENT BIT

server depth-bu�er DEPTH BUFFER BIT

server enable ENABLE BIT

server eval EVAL BIT

server fog FOG BIT

server hint HINT BIT

server lighting LIGHTING BIT

server line LINE BIT

server list LIST BIT

server pixel PIXEL MODE BIT

server point POINT BIT

server polygon POLYGON BIT

server polygon-stipple POLYGON STIPPLE BIT

server scissor SCISSOR BIT

server stencil-bu�er STENCIL BUFFER BIT

server texture TEXTURE BIT

server transform TRANSFORM BIT

server viewport VIEWPORT BIT

server ALL ATTRIB BITS

client vertex-array CLIENT VERTEX ARRAY BIT

client pixel-store CLIENT PIXEL STORE BIT

client select can't be pushed or pop'd

client feedback can't be pushed or pop'd

client ALL CLIENT ATTRIB BITS

Table 6.2: Attribute groups

DRAFT Version 1.2 - Jan. 2, 1998

CHAPTER 6. STATE AND STATE REQUESTS 193

In the tables that follow, a type is indicated for each variable. Table 6.3

explains these types. The type actually identi�es all state associated with
the indicated description; in certain cases only a portion of this state is

returned. This is the case with all matrices, where only the top entry on
the stack is returned; with clip planes, where only the selected clip plane is

returned, with parameters describing lights, where only the value pertaining
to the selected light is returned; with textures, where only the selected

texture or texture parameter is returned; and with evaluator maps, where
only the selected map is returned. Finally, a \{" in the attribute column

indicates that the indicated value is not included in any attribute group (and
thus can not be pushed or popped with PushAttrib, PushClientAttrib,
PopAttrib, or PopClientAttrib).

6.2 State Tables

The tables on the following pages indicate which state variables are ob-

tained with what commands. State variables that can be obtained using any
of GetBooleanv, GetIntegerv, GetFloatv, or GetDoublev are listed
with just one of these commands { the one that is most appropriate given

the type of the data to be returned. These state variables cannot be ob-
tained using IsEnabled. However, state variables for which IsEnabled is

listed as the query command can also be obtained using GetBooleanv,
GetIntegerv, GetFloatv, and GetDoublev. State variables for which

any other command is listed as the query command can be obtained only
by using that command.

6.2.1 Imaging Subset State - To Be Completed

Some state is only needed when the imaging subset (see section 3.6.2 is
provided. This state will be enumerated here in the February draft.

DRAFT Version 1.2 - Jan. 2, 1998

CHAPTER 6. STATE AND STATE REQUESTS 194

Type code Explanation

B Boolean

C Color (oating-point R, G, B, and A values)

CI Color index (oating-point index value)

T Texture coordinates (oating-point s, t, r, q
values)

N Normal coordinates (oating-point x, y, z

values)

V Vertex, including associated data

Z Integer

Z+ Non-negative integer

Zk , Zk� k-valued integer (k� indicates k is minimum)

R Floating-point number

R+ Non-negative oating-point number

R[a;b] Floating-point number in the range [a; b]

Rk k-tuple of oating-point numbers

P Position (x, y, z, w oating-point coordinates)

D Direction (x, y, z oating-point coordinates)

M4 4� 4 oating-point matrix

I Image

A Attribute stack entry, including mask

Y Pointer (data type unspeci�ed)

n� type n copies of type type (n� indicates n is

minimum)

Table 6.3: State variable types

DRAFT Version 1.2 - Jan. 2, 1998

CHAPTER 6. STATE AND STATE REQUESTS 195

G
et
va
lu
e

T
y
p
e

G
et

C
m
n
d

In
it
ia
l

V
a
lu
e

D
es
cr
ip
ti
o
n

S
ec
.

A
tt
ri
b
u
te

{

Z
1
1

{

0

W
h
en
6=
0
,
in
d
ic
a
te
s

b
e
g
in
/
e
n
d
o
b
je
ct

2
.6
.1

{

{

V

{

{

P
re
v
io
u
s
v
er
te
x
in

B
e
g
in
/
E
n
d
li
n
e

2
.6
.1

{

{

B

{

{

In
d
ic
a
te
s
if
li
n
e
-
v
e
r
t
e
x

is
th
e
�
rs
t

2
.6
.1

{

{

V

{

{

F
ir
st
v
er
te
x
o
f
a

B
e
g
in
/
E
n
d
li
n
e
lo
o
p

2
.6
.1

{

{

Z
+

{

{

L
in
e
st
ip
p
le
co
u
n
te
r

3
.4

{

{

n
�
V

{

{

V
er
ti
ce
s
in
si
d
e
o
f

B
e
g
in
/
E
n
d
p
o
ly
g
o
n

2
.6
.1

{

{

Z
+

{

{

N
u
m
b
er
o
f

p
o
ly
g
o
n
-
v
e
r
t
ic
e
s

2
.6
.1

{

{

2
�
V

{

{

P
re
v
io
u
s
tw
o
v
er
ti
ce
s

in
a
B
e
g
in
/
E
n
d

tr
ia
n
g
le
st
r
ip

2
.6
.1

{

{

Z
3

{

{

N
u
m
b
er
o
f
v
er
ti
ce
s
so

fa
r
in
tr
ia
n
g
le
st
ri
p
:
0
,

1
,
o
r
m
o
re

2
.6
.1

{

{

Z
2

{

{

T
ri
a
n
g
le
st
ri
p
A
/
B

v
er
te
x
p
o
in
te
r

2
.6
.1

{

{

3
�
V

{

{

V
er
ti
ce
s
o
f
th
e
q
u
a
d

u
n
d
er
co
n
st
ru
ct
io
n

2
.6
.1

{

{

Z
4

{

{

N
u
m
b
er
o
f
v
er
ti
ce
s
so

fa
r
in
q
u
a
d
st
ri
p
:
0
,
1
,

2
,
o
r
m
o
re

2
.6
.1

{

Table 6.4. GL Internal begin-end state variables (inaccessible)

DRAFT Version 1.2 - Jan. 2, 1998

CHAPTER 6. STATE AND STATE REQUESTS 196

G
et
va
lu
e

T
y
p
e

G
et

C
m
n
d

In
it
ia
l

V
a
lu
e

D
es
cr
ip
ti
o
n

S
ec
.

A
tt
ri
b
u
te

C
U
R
R
E
N
T

C
O
L
O
R

C

G
e
tI
n
te
g
e
r
v
,

G
e
tF
lo
a
tv

1
,1
,1
,1

C
u
rr
en
t
co
lo
r

2
.7

cu
rr
en
t

C
U
R
R
E
N
T

IN
D
E
X

C
I

G
e
tI
n
te
g
e
r
v
,

G
e
tF
lo
a
tv

1

C
u
rr
en
t
co
lo
r
in
d
ex

2
.7

cu
rr
en
t

C
U
R
R
E
N
T

T
E
X
T
U
R
E

C
O
O
R
D
S

T

G
e
tF
lo
a
tv

0
,0
,0
,1

C
u
rr
en
t
te
x
tu
re

co
o
rd
in
a
te
s

2
.7

cu
rr
en
t

C
U
R
R
E
N
T

N
O
R
M
A
L

N

G
e
tF
lo
a
tv

0
,0
,1

C
u
rr
en
t
n
o
rm
a
l

2
.7

cu
rr
en
t

{

C

{

-

C
o
lo
r
a
ss
o
ci
a
te
d
w
it
h

la
st
v
er
te
x

2
.6

{

{

C
I

{

-

C
o
lo
r
in
d
ex
a
ss
o
ci
a
te
d

w
it
h
la
st
v
er
te
x

2
.6

{

{

T

{

-

T
ex
tu
re
co
o
rd
in
a
te
s

a
ss
o
ci
a
te
d
w
it
h
la
st

v
er
te
x

2
.6

{

C
U
R
R
E
N
T

R
A
S
T
E
R

P
O
S
IT
IO
N

R
4

G
e
tF
lo
a
tv

0
,0
,0
,1

C
u
rr
en
t
ra
st
er
p
o
si
ti
o
n

2
.1
2

cu
rr
en
t

C
U
R
R
E
N
T

R
A
S
T
E
R

D
IS
T
A
N
C
E

R
+

G
e
tF
lo
a
tv

0

C
u
rr
en
t
ra
st
er
d
is
ta
n
ce

2
.1
2

cu
rr
en
t

C
U
R
R
E
N
T

R
A
S
T
E
R

C
O
L
O
R

C

G
e
tI
n
te
g
e
r
v
,

G
e
tF
lo
a
tv

1
,1
,1
,1

C
o
lo
r
a
ss
o
ci
a
te
d
w
it
h

ra
st
er
p
o
si
ti
o
n

2
.1
2

cu
rr
en
t

C
U
R
R
E
N
T

R
A
S
T
E
R

IN
D
E
X

C
I

G
e
tI
n
te
g
e
r
v
,

G
e
tF
lo
a
tv

1

C
o
lo
r
in
d
ex
a
ss
o
ci
a
te
d

w
it
h
ra
st
er
p
o
si
ti
o
n

2
.1
2

cu
rr
en
t

C
U
R
R
E
N
T

R
A
S
T
E
R

T
E
X
T
U
R
E

C
O
O
R
D
S

T

G
e
tF
lo
a
tv

0
,0
,0
,1

T
ex
tu
re
co
o
rd
in
a
te
s

a
ss
o
ci
a
te
d
w
it
h
ra
st
er

p
o
si
ti
o
n

2
.1
2

cu
rr
en
t

C
U
R
R
E
N
T

R
A
S
T
E
R

P
O
S
IT
IO
N

V
A
L
ID

B

G
e
tB
o
o
le
a
n
v

T
r
u
e

R
a
st
er
p
o
si
ti
o
n
va
li
d

b
it

2
.1
2

cu
rr
en
t

E
D
G
E

F
L
A
G

B

G
e
tB
o
o
le
a
n
v

T
r
u
e

E
d
g
e

a
g

2
.6
.2

cu
rr
en
t

Table 6.5. Current Values and Associated Data

DRAFT Version 1.2 - Jan. 2, 1998

CHAPTER 6. STATE AND STATE REQUESTS 197

G
et
v
a
lu
e

T
y
p
e

G
et

C
m
n
d

In
it
ia
l

V
a
lu
e

D
es
cr
ip
ti
o
n

S
ec
.

A
tt
ri
b
u
te

V
E
R
T
E
X

A
R
R
A
Y

B

Is
E
n
a
b
le
d

F
a
ls
e

V
er
te
x
a
rr
ay
en
a
b
le

2
.8

v
er
te
x
-a
rr
ay

V
E
R
T
E
X

A
R
R
A
Y

S
IZ
E

Z
+

G
e
tI
n
te
g
e
r
v

4

C
o
o
rd
in
a
te
s
p
er
v
er
te
x

2
.8

v
er
te
x
-a
rr
ay

V
E
R
T
E
X

A
R
R
A
Y

T
Y
P
E

Z
4

G
e
tI
n
te
g
e
r
v

F
L
O
A
T

T
y
p
e
o
f
v
er
te
x
co
o
rd
in
a
te
s

2
.8

v
er
te
x
-a
rr
ay

V
E
R
T
E
X

A
R
R
A
Y

S
T
R
ID
E

Z
+

G
e
tI
n
te
g
e
r
v

0

S
tr
id
e
b
et
w
ee
n
v
er
ti
ce
s

2
.8

v
er
te
x
-a
rr
ay

V
E
R
T
E
X

A
R
R
A
Y

P
O
IN
T
E
R

Y

G
e
tP
o
in
te
r
v

0

P
o
in
te
r
to
th
e
v
er
te
x
a
rr
a
y

2
.8

v
er
te
x
-a
rr
ay

N
O
R
M
A
L

A
R
R
A
Y

B

Is
E
n
a
b
le
d

F
a
ls
e

N
o
rm
a
l
a
rr
ay
en
a
b
le

2
.8

v
er
te
x
-a
rr
ay

N
O
R
M
A
L

A
R
R
A
Y

T
Y
P
E

Z
5

G
e
tI
n
te
g
e
r
v

F
L
O
A
T

T
y
p
e
o
f
n
o
rm
a
l
co
o
rd
in
a
te
s

2
.8

v
er
te
x
-a
rr
ay

N
O
R
M
A
L

A
R
R
A
Y

S
T
R
ID
E

Z
+

G
e
tI
n
te
g
e
r
v

0

S
tr
id
e
b
et
w
ee
n
n
o
rm
a
ls

2
.8

v
er
te
x
-a
rr
ay

N
O
R
M
A
L

A
R
R
A
Y

P
O
IN
T
E
R

Y

G
e
tP
o
in
te
r
v

0

P
o
in
te
r
to
th
e
n
o
rm
a
l
a
rr
a
y

2
.8

v
er
te
x
-a
rr
ay

C
O
L
O
R

A
R
R
A
Y

B

Is
E
n
a
b
le
d

F
a
ls
e

C
o
lo
r
a
rr
ay
en
a
b
le

2
.8

v
er
te
x
-a
rr
ay

C
O
L
O
R

A
R
R
A
Y

S
IZ
E

Z
+

G
e
tI
n
te
g
e
r
v

4

C
o
lo
rs
p
er
v
er
te
x

2
.8

v
er
te
x
-a
rr
ay

C
O
L
O
R

A
R
R
A
Y

T
Y
P
E

Z
8

G
e
tI
n
te
g
e
r
v

F
L
O
A
T

T
y
p
e
o
f
co
lo
r
co
m
p
o
n
en
ts

2
.8

v
er
te
x
-a
rr
ay

C
O
L
O
R

A
R
R
A
Y

S
T
R
ID
E

Z
+

G
e
tI
n
te
g
e
r
v

0

S
tr
id
e
b
et
w
ee
n
co
lo
rs

2
.8

v
er
te
x
-a
rr
ay

C
O
L
O
R

A
R
R
A
Y

P
O
IN
T
E
R

Y

G
e
tP
o
in
te
r
v

0

P
o
in
te
r
to
th
e
co
lo
r
a
rr
ay

2
.8

v
er
te
x
-a
rr
ay

IN
D
E
X

A
R
R
A
Y

B

Is
E
n
a
b
le
d

F
a
ls
e

In
d
ex
a
rr
ay
en
a
b
le

2
.8

v
er
te
x
-a
rr
ay

IN
D
E
X

A
R
R
A
Y

T
Y
P
E

Z
4

G
e
tI
n
te
g
e
r
v

F
L
O
A
T

T
y
p
e
o
f
in
d
ic
es

2
.8

v
er
te
x
-a
rr
ay

IN
D
E
X

A
R
R
A
Y

S
T
R
ID
E

Z
+

G
e
tI
n
te
g
e
r
v

0

S
tr
id
e
b
et
w
ee
n
in
d
ic
es

2
.8

v
er
te
x
-a
rr
ay

IN
D
E
X

A
R
R
A
Y

P
O
IN
T
E
R

Y

G
e
tP
o
in
te
r
v

0

P
o
in
te
r
to
th
e
in
d
ex
a
rr
a
y

2
.8

v
er
te
x
-a
rr
ay

T
E
X
T
U
R
E

C
O
O
R
D

A
R
R
A
Y

B

Is
E
n
a
b
le
d

F
a
ls
e

T
ex
tu
re
co
o
rd
in
a
te
a
rr
ay
en
a
b
le

2
.8

v
er
te
x
-a
rr
ay

T
E
X
T
U
R
E

C
O
O
R
D

A
R
R
A
Y

S
IZ
E

Z
+

G
e
tI
n
te
g
e
r
v

4

C
o
o
rd
in
a
te
s
p
er
el
em
en
t

2
.8

v
er
te
x
-a
rr
ay

T
E
X
T
U
R
E

C
O
O
R
D

A
R
R
A
Y

T
Y
P
E

Z
4

G
e
tI
n
te
g
e
r
v

F
L
O
A
T

T
y
p
e
o
f
te
x
tu
re
co
o
rd
in
a
te
s

2
.8

v
er
te
x
-a
rr
ay

T
E
X
T
U
R
E

C
O
O
R
D

A
R
R
A
Y

S
T
R
ID
E

Z
+

G
e
tI
n
te
g
e
r
v

0

S
tr
id
e
b
et
w
ee
n
te
x
tu
re
co
o
rd
in
a
te
s

2
.8

v
er
te
x
-a
rr
ay

T
E
X
T
U
R
E

C
O
O
R
D

A
R
R
A
Y

P
O
IN
T
E
R

Y

G
e
tP
o
in
te
r
v

0

P
o
in
te
r
to
th
e
te
x
tu
re
co
o
rd
in
a
te

a
rr
ay

2
.8

v
er
te
x
-a
rr
ay

E
D
G
E

F
L
A
G

A
R
R
A
Y

B

Is
E
n
a
b
le
d

F
a
ls
e

E
d
g
e

a
g
a
rr
ay
en
a
b
le

2
.8

v
er
te
x
-a
rr
ay

E
D
G
E

F
L
A
G

A
R
R
A
Y

S
T
R
ID
E

Z
+

G
e
tI
n
te
g
e
r
v

0

S
tr
id
e
b
et
w
ee
n
ed
g
e

a
g
s

2
.8

v
er
te
x
-a
rr
ay

E
D
G
E

F
L
A
G

A
R
R
A
Y

P
O
IN
T
E
R

Y

G
e
tP
o
in
te
r
v

0

P
o
in
te
r
to
th
e
ed
g
e

a
g
a
rr
a
y

2
.8

v
er
te
x
-a
rr
ay

Table 6.6. Vertex Array Data

DRAFT Version 1.2 - Jan. 2, 1998

CHAPTER 6. STATE AND STATE REQUESTS 198

G
et
va
lu
e

T
y
p
e

G
et

C
m
n
d

In
it
ia
l

V
a
lu
e

D
es
cr
ip
ti
o
n

S
ec
.

A
tt
ri
b
u
te

|
C
O
L
O
R

M
A
T
R
IX

2
�
�
M
4

G
e
tF
lo
a
tv

Id
en
ti
ty

C
o
lo
r
m
a
tr
ix
st
a
ck

3
.6
.3

{

M
O
D
E
L
V
IE
W

M
A
T
R
IX

3
2
�
�
M
4

G
e
tF
lo
a
tv

Id
en
ti
ty

M
o
d
el
-v
ie
w
m
a
tr
ix

st
a
ck

2
.1
0
.2

{

P
R
O
J
E
C
T
IO
N

M
A
T
R
IX

2
�
�
M
4

G
e
tF
lo
a
tv

Id
en
ti
ty

P
ro
je
ct
io
n
m
a
tr
ix

st
a
ck

2
.1
0
.2

{

T
E
X
T
U
R
E

M
A
T
R
IX

2
�
�
M
4

G
e
tF
lo
a
tv

Id
en
ti
ty

T
ex
tu
re
m
a
tr
ix
st
a
ck

2
.1
0
.2

{

V
IE
W
P
O
R
T

4
�
Z

G
e
tI
n
te
g
e
r
v

se
e
2
.1
0
.1

V
ie
w
p
o
rt
o
ri
g
in
&

ex
te
n
t

2
.1
0
.1

v
ie
w
p
o
rt

D
E
P
T
H

R
A
N
G
E

2
�
R
+

G
e
tF
lo
a
tv

0
,1

D
ep
th
ra
n
g
e
n
ea
r
&

fa
r

2
.1
0
.1

v
ie
w
p
o
rt

|
C
O
L
O
R

M
A
T
R
IX

S
T
A
C
K

D
E
P
T
H

Z
+

G
e
tI
n
te
g
e
r
v

1

C
o
lo
r
m
a
tr
ix
st
a
ck

p
o
in
te
r

3
.6
.3

{

M
O
D
E
L
V
IE
W

S
T
A
C
K

D
E
P
T
H

Z
+

G
e
tI
n
te
g
e
r
v

1

M
o
d
el
-v
ie
w
m
a
tr
ix

st
a
ck
p
o
in
te
r

2
.1
0
.2

{

P
R
O
J
E
C
T
IO
N

S
T
A
C
K

D
E
P
T
H

Z
+

G
e
tI
n
te
g
e
r
v

1

P
ro
je
ct
io
n
m
a
tr
ix

st
a
ck
p
o
in
te
r

2
.1
0
.2

{

T
E
X
T
U
R
E

S
T
A
C
K

D
E
P
T
H

Z
+

G
e
tI
n
te
g
e
r
v

1

T
ex
tu
re
m
a
tr
ix
st
a
ck

p
o
in
te
r

2
.1
0
.2

{

|
M
A
T
R
IX

M
O
D
E

Z
4

G
e
tI
n
te
g
e
r
v

M
O
D
E
L
V
I
E
W

C
u
rr
en
t
m
a
tr
ix
m
o
d
e

2
.1
0
.2

tr
a
n
sf
o
rm

N
O
R
M
A
L
IZ
E

B

Is
E
n
a
b
le
d

F
a
ls
e

C
u
rr
en
t
n
o
rm
a
l

n
o
rm
a
li
za
ti
o
n
o
n
/
o
�

2
.1
0
.3

tr
a
n
sf
o
rm
/
en
a
b
le

|
R
E
S
C
A
L
E

N
O
R
M
A
L

B

Is
E
n
a
b
le
d

F
a
ls
e

C
u
rr
en
t
n
o
rm
a
l

re
sc
a
li
n
g
o
n
/
o
�

2
.1
0
.3

tr
a
n
sf
o
rm
/
en
a
b
le

C
L
IP

P
L
A
N
E
i

6
�
�
R
4

G
e
tC
li
p
P
la
n
e

0
,0
,0
,0

U
se
r
cl
ip
p
in
g
p
la
n
e

co
e�
ci
en
ts

2
.1
1

tr
a
n
sf
o
rm

C
L
IP

P
L
A
N
E
i

6
�
�
B

Is
E
n
a
b
le
d

F
a
ls
e

it
h
u
se
r
cl
ip
p
in
g
p
la
n
e

en
a
b
le
d

2
.1
1

tr
a
n
sf
o
rm
/
en
a
b
le

Table 6.7. Transformation state

DRAFT Version 1.2 - Jan. 2, 1998

CHAPTER 6. STATE AND STATE REQUESTS 199

G
et
va
lu
e

T
y
p
e

G
et

C
m
n
d

In
it
ia
l

V
a
lu
e

D
es
cr
ip
ti
o
n

S
ec
.

A
tt
ri
b
u
te

F
O
G

C
O
L
O
R

C

G
e
tF
lo
a
tv

0
,0
,0
,0

F
o
g
co
lo
r

3
.1
0

fo
g

F
O
G

IN
D
E
X

I

G
e
tF
lo
a
tv

0

F
o
g
in
d
ex

3
.1
0

fo
g

F
O
G

D
E
N
S
IT
Y

R

G
e
tF
lo
a
tv

1
.0

E
x
p
o
n
en
ti
a
l
fo
g

d
en
si
ty

3
.1
0

fo
g

F
O
G

S
T
A
R
T

R

G
e
tF
lo
a
tv

0
.0

L
in
ea
r
fo
g
st
a
rt

3
.1
0

fo
g

F
O
G

E
N
D

R

G
e
tF
lo
a
tv

1
.0

L
in
ea
r
fo
g
en
d

3
.1
0

fo
g

F
O
G

M
O
D
E

Z
3

G
e
tI
n
te
g
e
r
v

E
X
P

F
o
g
m
o
d
e

3
.1
0

fo
g

F
O
G

B

Is
E
n
a
b
le
d

F
a
ls
e

T
ru
e
if
fo
g
en
a
b
le
d

3
.1
0

fo
g
/
en
a
b
le

S
H
A
D
E

M
O
D
E
L

Z
+

G
e
tI
n
te
g
e
r
v

S
M
O
O
T
H

S
h
a
d
e
M
o
d
e
l
se
tt
in
g

2
.1
3
.7

li
g
h
ti
n
g

Table 6.8. Coloring

DRAFT Version 1.2 - Jan. 2, 1998

CHAPTER 6. STATE AND STATE REQUESTS 200

G
et
va
lu
e

T
y
p
e

G
et

C
m
n
d

In
it
ia
l

V
a
lu
e

D
es
cr
ip
ti
o
n

S
ec
.

A
tt
ri
b
u
te

L
IG
H
T
IN
G

B

Is
E
n
a
b
le
d

F
a
ls
e

T
ru
e
if
li
g
h
ti
n
g

is
en
a
b
le
d

2
.1
3
.1

li
g
h
ti
n
g
/
en
a
b
le

C
O
L
O
R

M
A
T
E
R
IA
L

B

Is
E
n
a
b
le
d

F
a
ls
e

T
ru
e
if
co
lo
r

tr
a
ck
in
g
is

en
a
b
le
d

2
.1
3
.3

li
g
h
ti
n
g
/
en
a
b
le

C
O
L
O
R

M
A
T
E
R
IA
L

P
A
R
A
M
E
T
E
R

Z
5

G
e
tI
n
te
g
e
r
v

A
M
B
I
E
N
T
A
N
D
D
I
F
F
U
S
E

M
a
te
ri
a
l

p
ro
p
er
ti
es

tr
a
ck
in
g
cu
rr
en
t

co
lo
r

2
.1
3
.3

li
g
h
ti
n
g

C
O
L
O
R

M
A
T
E
R
IA
L

F
A
C
E

Z
3

G
e
tI
n
te
g
e
r
v

F
R
O
N
T
A
N
D
B
A
C
K

F
a
ce
(s
)
a
�
ec
te
d

b
y
co
lo
r

tr
a
ck
in
g

2
.1
3
.3

li
g
h
ti
n
g

A
M
B
IE
N
T

2
�
C

G
e
tM
a
te
r
ia
lf
v

(0
.2
,0
.2
,0
.2
,1
.0
)

A
m
b
ie
n
t

m
a
te
ri
a
l
co
lo
r

2
.1
3
.1

li
g
h
ti
n
g

D
IF
F
U
S
E

2
�
C

G
e
tM
a
te
r
ia
lf
v

(0
.8
,0
.8
,0
.8
,1
.0
)

D
i�
u
se
m
a
te
ri
a
l

co
lo
r

2
.1
3
.1

li
g
h
ti
n
g

S
P
E
C
U
L
A
R

2
�
C

G
e
tM
a
te
r
ia
lf
v

(0
.0
,0
.0
,0
.0
,1
.0
)

S
p
ec
u
la
r

m
a
te
ri
a
l
co
lo
r

2
.1
3
.1

li
g
h
ti
n
g

E
M
IS
S
IO
N

2
�
C

G
e
tM
a
te
r
ia
lf
v

(0
.0
,0
.0
,0
.0
,1
.0
)

E
m
is
si
v
e
m
a
t.

co
lo
r

2
.1
3
.1

li
g
h
ti
n
g

S
H
IN
IN
E
S
S

2
�
R

G
e
tM
a
te
r
ia
lf
v

0
.0

S
p
ec
u
la
r

ex
p
o
n
en
t
o
f

m
a
te
ri
a
l

2
.1
3
.1

li
g
h
ti
n
g

L
IG
H
T

M
O
D
E
L

A
M
B
IE
N
T

C

G
e
tF
lo
a
tv

(0
.2
,0
.2
,0
.2
,1
.0
)

A
m
b
ie
n
t
sc
en
e

co
lo
r

2
.1
3
.1

li
g
h
ti
n
g

L
IG
H
T

M
O
D
E
L

L
O
C
A
L

V
IE
W

E
R

B

G
e
tB
o
o
le
a
n
v

F
a
ls
e

V
ie
w
er
is
lo
ca
l

2
.1
3
.1

li
g
h
ti
n
g

L
IG
H
T

M
O
D
E
L
T
W
O

S
ID
E

B

G
e
tB
o
o
le
a
n
v

F
a
ls
e

U
se
tw
o
-s
id
ed

li
g
h
ti
n
g

2
.1
3
.1

li
g
h
ti
n
g

|
L
IG
H
T

M
O
D
E
L

C
O
L
O
R

C
O
N
T
R
O
L

Z
2

G
e
tI
n
te
g
e
r
v

S
I
N
G
L
E
C
O
L
O
R

C
o
lo
r
co
n
tr
o
l

2
.1
3
.1

li
g
h
ti
n
g

Table 6.9. Lighting (see also Table 2.7 for defaults)

DRAFT Version 1.2 - Jan. 2, 1998

CHAPTER 6. STATE AND STATE REQUESTS 201

G
et
va
lu
e

T
y
p
e

G
et

C
m
n
d

In
it
ia
l

V
a
lu
e

D
es
cr
ip
ti
o
n

S
ec
.

A
tt
ri
b
u
te

A
M
B
IE
N
T

8
�
�
C

G
e
tL
ig
h
tf
v

(0
.0
,0
.0
,0
.0
,1
.0
)

A
m
b
ie
n
t
in
te
n
si
ty
o
f

li
g
h
t
i

2
.1
3
.1

li
g
h
ti
n
g

D
IF
F
U
S
E

8
�
�
C

G
e
tL
ig
h
tf
v

se
e
2
.5

D
i�
u
se
in
te
n
si
ty
o
f

li
g
h
t
i

2
.1
3
.1

li
g
h
ti
n
g

S
P
E
C
U
L
A
R

8
�
�
C

G
e
tL
ig
h
tf
v

se
e
2
.5

S
p
ec
u
la
r
in
te
n
si
ty
o
f

li
g
h
t
i

2
.1
3
.1

li
g
h
ti
n
g

P
O
S
IT
IO
N

8
�
�
P

G
e
tL
ig
h
tf
v

(0
.0
,0
.0
,1
.0
,0
.0
)

P
o
si
ti
o
n
o
f
li
g
h
t
i

2
.1
3
.1

li
g
h
ti
n
g

C
O
N
S
T
A
N
T

A
T
T
E
N
U
A
T
IO
N

8
�
�
R
+

G
e
tL
ig
h
tf
v

1
.0

C
o
n
st
a
n
t
a
tt
en
.
fa
ct
o
r

2
.1
3
.1

li
g
h
ti
n
g

L
IN
E
A
R

A
T
T
E
N
U
A
T
IO
N

8
�
�
R
+

G
e
tL
ig
h
tf
v

0
.0

L
in
ea
r
a
tt
en
.
fa
ct
o
r

2
.1
3
.1

li
g
h
ti
n
g

Q
U
A
D
R
A
T
IC

A
T
T
E
N
U
A
T
IO
N

8
�
�
R
+

G
e
tL
ig
h
tf
v

0
.0

Q
u
a
d
ra
ti
c
a
tt
en
.

fa
ct
o
r

2
.1
3
.1

li
g
h
ti
n
g

S
P
O
T

D
IR
E
C
T
IO
N

8
�
�
D

G
e
tL
ig
h
tf
v

(0
.0
,0
.0
,-
1
.0
)

S
p
o
tl
ig
h
t
d
ir
ec
ti
o
n
o
f

li
g
h
t
i

2
.1
3
.1

li
g
h
ti
n
g

S
P
O
T

E
X
P
O
N
E
N
T

8
�
�
R
+

G
e
tL
ig
h
tf
v

0
.0

S
p
o
tl
ig
h
t
ex
p
o
n
en
t
o
f

li
g
h
t
i

2
.1
3
.1

li
g
h
ti
n
g

S
P
O
T

C
U
T
O
F
F

8
�
�
R
+

G
e
tL
ig
h
tf
v

1
8
0
.0

S
p
o
t.
a
n
g
le
o
f
li
g
h
t
i

2
.1
3
.1

li
g
h
ti
n
g

L
IG
H
T
i

8
�
�
B

Is
E
n
a
b
le
d

F
a
ls
e

T
ru
e
if
li
g
h
t
i
en
a
b
le
d

2
.1
3
.1

li
g
h
ti
n
g
/
en
a
b
le

C
O
L
O
R

IN
D
E
X
E
S

2
�
3
�
R

G
e
tM
a
te
r
ia
lf
v

0
,1
,1

a
m

,
d
m

,
a
n
d
s
m

fo
r

co
lo
r
in
d
ex
li
g
h
ti
n
g

2
.1
3
.1

li
g
h
ti
n
g

Table 6.10. Lighting (cont.)

DRAFT Version 1.2 - Jan. 2, 1998

CHAPTER 6. STATE AND STATE REQUESTS 202

G
et
v
a
lu
e

T
y
p
e

G
et

C
m
n
d

In
it
ia
l

V
a
lu
e

D
es
cr
ip
ti
o
n

S
ec
.

A
tt
ri
b
u
te

P
O
IN
T

S
IZ
E

R
+

G
e
tF
lo
a
tv

1
.0

P
o
in
t
si
ze

3
.3

p
o
in
t

P
O
IN
T

S
M
O
O
T
H

B

Is
E
n
a
b
le
d

F
a
ls
e

P
o
in
t
a
n
ti
a
li
a
si
n
g
o
n

3
.3

p
o
in
t/
en
a
b
le

L
IN
E

W

ID
T
H

R
+

G
e
tF
lo
a
tv

1
.0

L
in
e
w
id
th

3
.4

li
n
e

L
IN
E

S
M
O
O
T
H

B

Is
E
n
a
b
le
d

F
a
ls
e

L
in
e
a
n
ti
a
li
a
si
n
g
o
n

3
.4

li
n
e/
en
a
b
le

L
IN
E

S
T
IP
P
L
E

P
A
T
T
E
R
N

Z
+

G
e
tI
n
te
g
e
r
v

1
's

L
in
e
st
ip
p
le

3
.4
.2

li
n
e

L
IN
E

S
T
IP
P
L
E

R
E
P
E
A
T

Z
+

G
e
tI
n
te
g
e
r
v

1

L
in
e
st
ip
p
le
re
p
ea
t

3
.4
.2

li
n
e

L
IN
E

S
T
IP
P
L
E

B

Is
E
n
a
b
le
d

F
a
ls
e

L
in
e
st
ip
p
le
en
a
b
le

3
.4
.2

li
n
e/
en
a
b
le

C
U
L
L

F
A
C
E

B

Is
E
n
a
b
le
d

F
a
ls
e

P
o
ly
g
o
n
cu
ll
in
g

en
a
b
le
d

3
.5
.1

p
o
ly
g
o
n
/
en
a
b
le

C
U
L
L
F
A
C
E

M
O
D
E

Z
3

G
e
tI
n
te
g
e
r
v

B
A
C
K

C
u
ll
fr
o
n
t/
b
a
ck
fa
ci
n
g

p
o
ly
g
o
n
s

3
.5
.1

p
o
ly
g
o
n

F
R
O
N
T

F
A
C
E

Z
2

G
e
tI
n
te
g
e
r
v

C
C
W

P
o
ly
g
o
n
fr
o
n
tf
a
ce

C
W
/
C
C
W

in
d
ic
a
to
r

3
.5
.1

p
o
ly
g
o
n

P
O
L
Y
G
O
N

S
M
O
O
T
H

B

Is
E
n
a
b
le
d

F
a
ls
e

P
o
ly
g
o
n
a
n
ti
a
li
a
si
n
g

o
n

3
.5

p
o
ly
g
o
n
/
en
a
b
le

P
O
L
Y
G
O
N

M
O
D
E

2
�
Z
3

G
e
tI
n
te
g
e
r
v

F
I
L
L

P
o
ly
g
o
n
ra
st
er
iz
a
ti
o
n

m
o
d
e
(f
ro
n
t
&
b
a
ck
)

3
.5
.4

p
o
ly
g
o
n

P
O
L
Y
G
O
N

O
F
F
S
E
T

F
A
C
T
O
R

R

G
e
tF
lo
a
tv

0

P
o
ly
g
o
n
o
�
se
t
fa
ct
o
r

3
.5
.5

p
o
ly
g
o
n

P
O
L
Y
G
O
N

O
F
F
S
E
T

U
N
IT
S

R

G
e
tF
lo
a
tv

0

P
o
ly
g
o
n
o
�
se
t
b
ia
s

3
.5
.5

p
o
ly
g
o
n

P
O
L
Y
G
O
N

O
F
F
S
E
T

P
O
IN
T

B

Is
E
n
a
b
le
d

F
a
ls
e

P
o
ly
g
o
n
o
�
se
t
en
a
b
le

fo
r
P
O
I
N
T
m
o
d
e

ra
st
er
iz
a
ti
o
n

3
.5
.5

p
o
ly
g
o
n
/
en
a
b
le

P
O
L
Y
G
O
N

O
F
F
S
E
T

L
IN
E

B

Is
E
n
a
b
le
d

F
a
ls
e

P
o
ly
g
o
n
o
�
se
t
en
a
b
le

fo
r
L
I
N
E
m
o
d
e

ra
st
er
iz
a
ti
o
n

3
.5
.5

p
o
ly
g
o
n
/
en
a
b
le

P
O
L
Y
G
O
N

O
F
F
S
E
T

F
IL
L

B

Is
E
n
a
b
le
d

F
a
ls
e

P
o
ly
g
o
n
o
�
se
t
en
a
b
le

fo
r
F
I
L
L
m
o
d
e

ra
st
er
iz
a
ti
o
n

3
.5
.5

p
o
ly
g
o
n
/
en
a
b
le

{

I

G
e
tP
o
ly
g
o
n
S
ti
p
p
le

1
's

P
o
ly
g
o
n
st
ip
p
le

3
.5

p
o
ly
g
o
n
-s
ti
p
p
le

P
O
L
Y
G
O
N

S
T
IP
P
L
E

B

Is
E
n
a
b
le
d

F
a
ls
e

P
o
ly
g
o
n
st
ip
p
le
en
a
b
le

3
.5
.2

p
o
ly
g
o
n
/
en
a
b
le

Table 6.11. Rasterization

DRAFT Version 1.2 - Jan. 2, 1998

CHAPTER 6. STATE AND STATE REQUESTS 203

G
et
v
a
lu
e

T
y
p
e

G
et

C
m
n
d

In
it
ia
l

V
a
lu
e

D
es
cr
ip
ti
o
n

S
ec
.

A
tt
ri
b
u
te

|
T
E
X
T
U
R
E

x
D

3
�
B

Is
E
n
a
b
le
d

F
a
ls
e

T
ru
e
if
x
D
te
x
tu
ri
n
g
is

en
a
b
le
d
;
x
is
1
,
2
,
o
r
3

3
.8
.1
0

te
x
tu
re
/
en
a
b
le

|
T
E
X
T
U
R
E

B
IN
D
IN
G

x
D

3
�
Z
+

G
e
tI
n
te
g
e
r
v

0

T
ex
tu
re
o
b
je
ct
b
o
u
n
d

to
T
E
X
T
U
R
E
x
D

3
.8
.8

te
x
tu
re

|
T
E
X
T
U
R
E

x
D

n
�
I

G
e
tT
e
x
Im
a
g
e

se
e
3
.8

x
D
te
x
tu
re
im
a
g
e
a
t

l.
o
.d
.
i

3
.8

{

T
E
X
T
U
R
E

W

ID
T
H

n
�
Z
+

G
e
tT
e
x
L
e
v
e
lP
a
r
a
m
e
te
r

0

x
D
te
x
tu
re
im
a
g
e
i'
s

sp
ec
i�
ed
w
id
th

3
.8

{

T
E
X
T
U
R
E

H
E
IG
H
T

n
�
Z
+

G
e
tT
e
x
L
e
v
e
lP
a
r
a
m
e
te
r

0

2
D
te
x
tu
re
im
a
g
e
i'
s

sp
ec
i�
ed
h
ei
g
h
t

3
.8

{

|
T
E
X
T
U
R
E

D
E
P
T
H

n
�
Z
+

G
e
tT
e
x
L
e
v
e
lP
a
r
a
m
e
te
r

0

3
D
te
x
tu
re
im
a
g
e
i'
s

sp
ec
i�
ed
d
ep
th

3
.8

{

T
E
X
T
U
R
E

B
O
R
D
E
R

n
�
Z
+

G
e
tT
e
x
L
e
v
e
lP
a
r
a
m
e
te
r

0

x
D
te
x
tu
re
im
a
g
e
i'
s

sp
ec
i�
ed
b
o
rd
er
w
id
th

3
.8

{

T
E
X
T
U
R
E

IN
T
E
R
N
A
L

F
O
R
M
A
T

(T
E
X
T
U
R
E

C
O
M
P
O
N
E
N
T
S
)

n
�
Z
4
2

G
e
tT
e
x
L
e
v
e
lP
a
r
a
m
e
te
r

1

x
D
te
x
tu
re
im
a
g
e
i'
s

in
te
rn
a
l
im
a
g
e
fo
rm
a
t

3
.8

{

T
E
X
T
U
R
E

R
E
D

S
IZ
E

n
�
Z
+

G
e
tT
e
x
L
e
v
e
lP
a
r
a
m
e
te
r

0

x
D
te
x
tu
re
im
a
g
e
i'
s

re
d
re
so
lu
ti
o
n

3
.8

{

T
E
X
T
U
R
E

G
R
E
E
N

S
IZ
E

n
�
Z
+

G
e
tT
e
x
L
e
v
e
lP
a
r
a
m
e
te
r

0

x
D
te
x
tu
re
im
a
g
e
i'
s

g
re
en
re
so
lu
ti
o
n

3
.8

{

T
E
X
T
U
R
E

B
L
U
E

S
IZ
E

n
�
Z
+

G
e
tT
e
x
L
e
v
e
lP
a
r
a
m
e
te
r

0

x
D
te
x
tu
re
im
a
g
e
i'
s

b
lu
e
re
so
lu
ti
o
n

3
.8

{

T
E
X
T
U
R
E

A
L
P
H
A

S
IZ
E

n
�
Z
+

G
e
tT
e
x
L
e
v
e
lP
a
r
a
m
e
te
r

0

x
D
te
x
tu
re
im
a
g
e
i'
s

a
lp
h
a
re
so
lu
ti
o
n

3
.8

{

T
E
X
T
U
R
E

L
U
M
IN
A
N
C
E

S
IZ
E

n
�
Z
+

G
e
tT
e
x
L
e
v
e
lP
a
r
a
m
e
te
r

0

x
D
te
x
tu
re
im
a
g
e
i'
s

lu
m
in
a
n
ce
re
so
lu
ti
o
n

3
.8

{

T
E
X
T
U
R
E

IN
T
E
N
S
IT
Y

S
IZ
E

n
�
Z
+

G
e
tT
e
x
L
e
v
e
lP
a
r
a
m
e
te
r

0

x
D
te
x
tu
re
im
a
g
e
i'
s

in
te
n
si
ty
re
so
lu
ti
o
n

3
.8

{

Table 6.12. Texture Objects

DRAFT Version 1.2 - Jan. 2, 1998

CHAPTER 6. STATE AND STATE REQUESTS 204

G
et
va
lu
e

T
y
p
e

G
et

C
m
n
d

In
it
ia
l

V
a
lu
e

D
es
cr
ip
ti
o
n

S
ec
.

A
tt
ri
b
u
te

T
E
X
T
U
R
E

B
O
R
D
E
R

C
O
L
O
R

2
+

�
C

G
e
tT
e
x
P
a
r
a
m
e
te
r

0
,0
,0
,0

T
ex
tu
re
b
o
rd
er
co
lo
r

3
.8

te
x
tu
re

T
E
X
T
U
R
E

M
IN

F
IL
T
E
R

2
+

�
Z
6

G
e
tT
e
x
P
a
r
a
m
e
te
r

se
e
3
.8

T
ex
tu
re
m
in
i�
ca
ti
o
n

fu
n
ct
io
n

3
.8
.5

te
x
tu
re

T
E
X
T
U
R
E

M
A
G

F
IL
T
E
R

2
+

�
Z
2

G
e
tT
e
x
P
a
r
a
m
e
te
r

se
e
3
.8

T
ex
tu
re
m
a
g
n
i�
ca
ti
o
n

fu
n
ct
io
n

3
.8
.6

te
x
tu
re

T
E
X
T
U
R
E

W

R
A
P

S

3
+

�
Z
3

G
e
tT
e
x
P
a
r
a
m
e
te
r

R
E
P
E
A
T

T
ex
tu
re
w
ra
p
m
o
d
e
S

3
.8

te
x
tu
re

T
E
X
T
U
R
E

W

R
A
P

T

2
+

�
Z
3

G
e
tT
e
x
P
a
r
a
m
e
te
r

R
E
P
E
A
T

T
ex
tu
re
w
ra
p
m
o
d
e
T

3
.8

te
x
tu
re

|
T
E
X
T
U
R
E

W

R
A
P

R

1
+

�
Z
3

G
e
tT
e
x
P
a
r
a
m
e
te
r

R
E
P
E
A
T

T
ex
tu
re
w
ra
p
m
o
d
e
R

3
.8

te
x
tu
re

T
E
X
T
U
R
E

P
R
IO
R
IT
Y

2
+

�
R
[0
;
1
]

G
e
tT
e
x
P
a
r
a
m
e
te
r
fv

1

T
ex
tu
re
o
b
je
ct
p
ri
o
ri
ty

3
.8
.8

te
x
tu
re

T
E
X
T
U
R
E

R
E
S
ID
E
N
T

2
+

�
B

G
e
tT
e
x
P
a
r
a
m
e
te
r
iv

F
a
ls
e

T
ex
tu
re
re
si
d
en
cy

3
.8
.8

te
x
tu
re

|
T
E
X
T
U
R
E

M
IN

L
O
D

n
�
R

G
e
tT
e
x
P
a
r
a
m
e
te
r
fv

-1
0
0
0

M
in
im
u
m
le
v
el
o
f

d
et
a
il

3
.8

te
x
tu
re

|
T
E
X
T
U
R
E

M
A
X

L
O
D

n
�
R

G
e
tT
e
x
P
a
r
a
m
e
te
r
fv

1
0
0
0

M
a
x
im
u
m
le
v
el
o
f

d
et
a
il

3
.8

te
x
tu
re

|
T
E
X
T
U
R
E

B
A
S
E

L
E
V
E
L

n
�
R

G
e
tT
e
x
P
a
r
a
m
e
te
r
fv

0

B
a
se
te
x
tu
re
a
rr
ay

3
.8

te
x
tu
re

|
T
E
X
T
U
R
E

M
A
X

L
E
V
E
L

n
�
R

G
e
tT
e
x
P
a
r
a
m
e
te
r
fv

1
0
0
0

M
a
x
im
u
m
te
x
tu
re

a
rr
ay
le
v
el

3
.8

te
x
tu
re

Table 6.13. Texture Objects (cont.)

DRAFT Version 1.2 - Jan. 2, 1998

CHAPTER 6. STATE AND STATE REQUESTS 205

G
et
v
a
lu
e

T
y
p
e

G
et

C
m
n
d

In
it
ia
l

V
a
lu
e

D
es
cr
ip
ti
o
n

S
ec
.

A
tt
ri
b
u
te

T
E
X
T
U
R
E

E
N
V

M
O
D
E

Z
4

G
e
tT
e
x
E
n
v
iv

M
O
D
U
L
A
T
E

T
ex
tu
re
a
p
p
li
ca
ti
o
n

fu
n
ct
io
n

3
.8
.9

te
x
tu
re

T
E
X
T
U
R
E

E
N
V

C
O
L
O
R

C

G
e
tT
e
x
E
n
v
fv

0
,0
,0
,0

T
ex
tu
re
en
v
ir
o
n
m
en
t

co
lo
r

3
.8
.9

te
x
tu
re

T
E
X
T
U
R
E

G
E
N

x

4
�
B

Is
E
n
a
b
le
d

F
a
ls
e

T
ex
g
en
en
a
b
le
d
(x
is

S
,
T
,
R
,
o
r
Q
)

2
.1
0
.4

te
x
tu
re
/
en
a
b
le

E
Y
E

P
L
A
N
E

4
�
R
4

G
e
tT
e
x
G
e
n
fv

se
e
2
.1
0
.4

T
ex
g
en
p
la
n
e
eq
u
a
ti
o
n

co
e�
ci
en
ts
(f
o
r
S
,
T
,

R
,
a
n
d
Q
)

2
.1
0
.4

te
x
tu
re

O
B
J
E
C
T

P
L
A
N
E

4
�
R
4

G
e
tT
e
x
G
e
n
fv

se
e
2
.1
0
.4

T
ex
g
en
o
b
je
ct
li
n
ea
r

co
e�
ci
en
ts
(f
o
r
S
,
T
,

R
,
a
n
d
Q
)

2
.1
0
.4

te
x
tu
re

T
E
X
T
U
R
E

G
E
N

M
O
D
E

4
�
Z
3

G
e
tT
e
x
G
e
n
iv

E
Y
E
L
I
N
E
A
R

F
u
n
ct
io
n
u
se
d
fo
r

te
x
g
en
(f
o
r
S
,
T
,
R
,

a
n
d
Q

2
.1
0
.4

te
x
tu
re

Table 6.14. Texture Environment and Generation

DRAFT Version 1.2 - Jan. 2, 1998

CHAPTER 6. STATE AND STATE REQUESTS 206

G
et
va
lu
e

T
y
p
e

G
et

C
m
n
d

In
it
ia
l

V
a
lu
e

D
es
cr
ip
ti
o
n

S
ec
.

A
tt
ri
b
u
te

S
C
IS
S
O
R

T
E
S
T

B

Is
E
n
a
b
le
d

F
a
ls
e

S
ci
ss
o
ri
n
g
en
a
b
le
d

4
.1
.2

sc
is
so
r/
en
a
b
le

S
C
IS
S
O
R

B
O
X

4
�
Z

G
e
tI
n
te
g
e
r
v

se
e
4
.1
.2

S
ci
ss
o
r
b
o
x

4
.1
.2

sc
is
so
r

A
L
P
H
A

T
E
S
T

B

Is
E
n
a
b
le
d

F
a
ls
e

A
lp
h
a
te
st
en
a
b
le
d

4
.1
.3

co
lo
r-
b
u
�
er
/
en
a
b
le

A
L
P
H
A

T
E
S
T

F
U
N
C

Z
8

G
e
tI
n
te
g
e
r
v

A
L
W
A
Y
S

A
lp
h
a
te
st
fu
n
ct
io
n

4
.1
.3

co
lo
r-
b
u
�
er

A
L
P
H
A

T
E
S
T

R
E
F

R
+

G
e
tI
n
te
g
e
r
v

0

A
lp
h
a
te
st
re
fe
re
n
ce

va
lu
e

4
.1
.3

co
lo
r-
b
u
�
er

S
T
E
N
C
IL

T
E
S
T

B

Is
E
n
a
b
le
d

F
a
ls
e

S
te
n
ci
li
n
g
en
a
b
le
d

4
.1
.4

st
en
ci
l-
b
u
�
er
/
en
a
b
le

S
T
E
N
C
IL
F
U
N
C

Z
8

G
e
tI
n
te
g
e
r
v

A
L
W
A
Y
S

S
te
n
ci
l
fu
n
ct
io
n

4
.1
.4

st
en
ci
l-
b
u
�
er

S
T
E
N
C
IL

V
A
L
U
E

M
A
S
K

Z
+

G
e
tI
n
te
g
e
r
v

1
's

S
te
n
ci
l
m
a
sk

4
.1
.4

st
en
ci
l-
b
u
�
er

S
T
E
N
C
IL
R
E
F

Z
+

G
e
tI
n
te
g
e
r
v

0

S
te
n
ci
l
re
fe
re
n
ce
va
lu
e

4
.1
.4

st
en
ci
l-
b
u
�
er

S
T
E
N
C
IL
F
A
IL

Z
6

G
e
tI
n
te
g
e
r
v

K
E
E
P

S
te
n
ci
l
fa
il
a
ct
io
n

4
.1
.4

st
en
ci
l-
b
u
�
er

S
T
E
N
C
IL
P
A
S
S
D
E
P
T
H

F
A
IL

Z
6

G
e
tI
n
te
g
e
r
v

K
E
E
P

S
te
n
ci
l
d
ep
th
b
u
�
er

fa
il
a
ct
io
n

4
.1
.4

st
en
ci
l-
b
u
�
er

S
T
E
N
C
IL

P
A
S
S
D
E
P
T
H

P
A
S
S

Z
6

G
e
tI
n
te
g
e
r
v

K
E
E
P

S
te
n
ci
l
d
ep
th
b
u
�
er

p
a
ss
a
ct
io
n

4
.1
.4

st
en
ci
l-
b
u
�
er

D
E
P
T
H

T
E
S
T

B

Is
E
n
a
b
le
d

F
a
ls
e

D
ep
th
b
u
�
er
en
a
b
le
d

4
.1
.5

d
ep
th
-b
u
�
er
/
en
a
b
le

D
E
P
T
H

F
U
N
C

Z
8

G
e
tI
n
te
g
e
r
v

L
E
S
S

D
ep
th
b
u
�
er
te
st

fu
n
ct
io
n

4
.1
.5

d
ep
th
-b
u
�
er

B
L
E
N
D

B

Is
E
n
a
b
le
d

F
a
ls
e

B
le
n
d
in
g
en
a
b
le
d

4
.1
.6

co
lo
r-
b
u
�
er
/
en
a
b
le

|
B
L
E
N
D

S
R
C

Z
1
3

G
e
tI
n
te
g
e
r
v

O
N
E

B
le
n
d
in
g
so
u
rc
e

fu
n
ct
io
n

4
.1
.6

co
lo
r-
b
u
�
er

|
B
L
E
N
D

D
S
T

Z
1
2

G
e
tI
n
te
g
e
r
v

Z
E
R
O

B
le
n
d
in
g
d
es
ti
n
a
ti
o
n

fu
n
ct
io
n

4
.1
.6

co
lo
r-
b
u
�
er

|
B
L
E
N
D

E
Q
U
A
T
IO
N

Z
5

G
e
tI
n
te
g
e
r
v

F
U
N
C
A
D
D

B
le
n
d
in
g
eq
u
a
ti
o
n

4
.1
.6

co
lo
r-
b
u
�
er

|
B
L
E
N
D

C
O
L
O
R

C

G
e
tF
lo
a
tv

0
,0
,0
,0

C
o
n
st
a
n
t
b
le
n
d
co
lo
r

4
.1
.6

co
lo
r-
b
u
�
er

D
IT
H
E
R

B

Is
E
n
a
b
le
d

T
r
u
e

D
it
h
er
in
g
en
a
b
le
d

4
.1
.7

co
lo
r-
b
u
�
er
/
en
a
b
le

IN
D
E
X

L
O
G
IC

O
P

(v
1
.0
:
G
L
L
O
G
IC

O
P
)

B

Is
E
n
a
b
le
d

F
a
ls
e

In
d
ex
lo
g
ic
o
p
en
a
b
le
d

4
.1
.8

co
lo
r-
b
u
�
er
/
en
a
b
le

C
O
L
O
R

L
O
G
IC

O
P

B

Is
E
n
a
b
le
d

F
a
ls
e

C
o
lo
r
lo
g
ic
o
p
en
a
b
le
d

4
.1
.8

co
lo
r-
b
u
�
er
/
en
a
b
le

L
O
G
IC

O
P

M
O
D
E

Z
1
6

G
e
tI
n
te
g
e
r
v

C
O
P
Y

L
o
g
ic
o
p
fu
n
ct
io
n

4
.1
.8

co
lo
r-
b
u
�
er

Table 6.15. Pixel Operations

DRAFT Version 1.2 - Jan. 2, 1998

CHAPTER 6. STATE AND STATE REQUESTS 207

G
et
va
lu
e

T
y
p
e

G
et

C
m
n
d

In
it
ia
l

V
a
lu
e

D
es
cr
ip
ti
o
n

S
ec
.

A
tt
ri
b
u
te

D
R
A
W

B
U
F
F
E
R

Z
1
0
�

G
e
tI
n
te
g
e
r
v

se
e
4
.2
.1

B
u
�
er
s
se
le
ct
ed
fo
r

d
ra
w
in
g

4
.2
.1

co
lo
r-
b
u
�
er

IN
D
E
X

W
R
IT
E
M
A
S
K

Z
+

G
e
tI
n
te
g
e
r
v

1
's

C
o
lo
r
in
d
ex
w
ri
te
m
a
sk

4
.2
.2

co
lo
r-
b
u
�
er

C
O
L
O
R

W

R
IT
E
M
A
S
K

4
�
B

G
e
tB
o
o
le
a
n
v

T
r
u
e

C
o
lo
r
w
ri
te
en
a
b
le
s;
R
,

G
,
B
,
o
r
A

4
.2
.2

co
lo
r-
b
u
�
er

D
E
P
T
H

W

R
IT
E
M
A
S
K

B

G
e
tB
o
o
le
a
n
v

T
r
u
e

D
ep
th
b
u
�
er
en
a
b
le
d

fo
r
w
ri
ti
n
g

4
.2
.2

d
ep
th
-b
u
�
er

S
T
E
N
C
IL
W

R
IT
E
M
A
S
K

Z
+

G
e
tI
n
te
g
e
r
v

1
's

S
te
n
ci
l
b
u
�
er

w
ri
te
m
a
sk

4
.2
.2

st
en
ci
l-
b
u
�
er

C
O
L
O
R

C
L
E
A
R

V
A
L
U
E

C

G
e
tF
lo
a
tv

0
,0
,0
,0

C
o
lo
r
b
u
�
er
cl
ea
r

va
lu
e
(R
G
B
A
m
o
d
e)

4
.2
.3

co
lo
r-
b
u
�
er

IN
D
E
X

C
L
E
A
R

V
A
L
U
E

C
I

G
e
tF
lo
a
tv

0

C
o
lo
r
b
u
�
er
cl
ea
r
va
lu
e

(c
o
lo
r
in
d
ex
m
o
d
e)

4
.2
.3

co
lo
r-
b
u
�
er

D
E
P
T
H

C
L
E
A
R

V
A
L
U
E

R
+

G
e
tI
n
te
g
e
r
v

1

D
ep
th
b
u
�
er
cl
ea
r

va
lu
e

4
.2
.3

d
ep
th
-b
u
�
er

S
T
E
N
C
IL
C
L
E
A
R

V
A
L
U
E

Z
+

G
e
tI
n
te
g
e
r
v

0

S
te
n
ci
l
cl
ea
r
va
lu
e

4
.2
.3

st
en
ci
l-
b
u
�
er

A
C
C
U
M

C
L
E
A
R

V
A
L
U
E

4
�
R
+

G
e
tF
lo
a
tv

0

A
cc
u
m
u
la
ti
o
n
b
u
�
er

cl
ea
r
va
lu
e

4
.2
.3

a
cc
u
m
-b
u
�
er

Table 6.16. Framebu�er Control

DRAFT Version 1.2 - Jan. 2, 1998

CHAPTER 6. STATE AND STATE REQUESTS 208

G
et
va
lu
e

T
y
p
e

G
et

C
m
n
d

In
it
ia
l

V
a
lu
e

D
es
cr
ip
ti
o
n

S
ec
.

A
tt
ri
b
u
te

U
N
P
A
C
K

S
W
A
P

B
Y
T
E
S

B

G
e
tB
o
o
le
a
n
v

F
a
ls
e

V
a
lu
e
o
f

U
N
P
A
C
K
S
W
A
P
B
Y
T
E
S

4
.3

p
ix
el
-s
to
re

U
N
P
A
C
K

L
S
B

F
IR
S
T

B

G
e
tB
o
o
le
a
n
v

F
a
ls
e

V
a
lu
e
o
f

U
N
P
A
C
K
L
S
B
F
I
R
S
T

4
.3

p
ix
el
-s
to
re

|
U
N
P
A
C
K

IM
A
G
E

H
E
IG
H
T

Z
+

G
e
tI
n
te
g
e
r
v

0

V
a
lu
e
o
f

U
N
P
A
C
K
I
M
A
G
E
H
E
I
G
H
T

4
.3

p
ix
el
-s
to
re

|
U
N
P
A
C
K

S
K
IP

IM
A
G
E
S

Z
+

G
e
tI
n
te
g
e
r
v

0

V
a
lu
e
o
f

U
N
P
A
C
K
S
K
I
P
I
M
A
G
E
S

4
.3

p
ix
el
-s
to
re

U
N
P
A
C
K

R
O
W

L
E
N
G
T
H

Z
+

G
e
tI
n
te
g
e
r
v

0

V
a
lu
e
o
f

U
N
P
A
C
K
R
O
W
L
E
N
G
T
H

4
.3

p
ix
el
-s
to
re

U
N
P
A
C
K

S
K
IP

R
O
W

S

Z
+

G
e
tI
n
te
g
e
r
v

0

V
a
lu
e
o
f

U
N
P
A
C
K
S
K
I
P
R
O
W
S

4
.3

p
ix
el
-s
to
re

U
N
P
A
C
K

S
K
IP

P
IX
E
L
S

Z
+

G
e
tI
n
te
g
e
r
v

0

V
a
lu
e
o
f

U
N
P
A
C
K
S
K
I
P
P
I
X
E
L
S

4
.3

p
ix
el
-s
to
re

U
N
P
A
C
K

A
L
IG
N
M
E
N
T

Z
+

G
e
tI
n
te
g
e
r
v

4

V
a
lu
e
o
f

U
N
P
A
C
K
A
L
I
G
N
M
E
N
T

4
.3

p
ix
el
-s
to
re

P
A
C
K

S
W
A
P

B
Y
T
E
S

B

G
e
tB
o
o
le
a
n
v

F
a
ls
e

V
a
lu
e
o
f

P
A
C
K
S
W
A
P
B
Y
T
E
S

4
.3

p
ix
el
-s
to
re

P
A
C
K

L
S
B

F
IR
S
T

B

G
e
tB
o
o
le
a
n
v

F
a
ls
e

V
a
lu
e
o
f

P
A
C
K
L
S
B
F
I
R
S
T

4
.3

p
ix
el
-s
to
re

|
P
A
C
K

IM
A
G
E

H
E
IG
H
T

Z
+

G
e
tI
n
te
g
e
r
v

0

V
a
lu
e
o
f

P
A
C
K
I
M
A
G
E
H
E
I
G
H
T

4
.3

p
ix
el
-s
to
re

|
P
A
C
K

S
K
IP

IM
A
G
E
S

Z
+

G
e
tI
n
te
g
e
r
v

0

V
a
lu
e
o
f

P
A
C
K
S
K
I
P
I
M
A
G
E
S

4
.3

p
ix
el
-s
to
re

P
A
C
K

R
O
W

L
E
N
G
T
H

Z
+

G
e
tI
n
te
g
e
r
v

0

V
a
lu
e
o
f

P
A
C
K
R
O
W
L
E
N
G
T
H

4
.3

p
ix
el
-s
to
re

P
A
C
K

S
K
IP

R
O
W

S

Z
+

G
e
tI
n
te
g
e
r
v

0

V
a
lu
e
o
f

P
A
C
K
S
K
I
P
R
O
W
S

4
.3

p
ix
el
-s
to
re

P
A
C
K

S
K
IP

P
IX
E
L
S

Z
+

G
e
tI
n
te
g
e
r
v

0

V
a
lu
e
o
f

P
A
C
K
S
K
I
P
P
I
X
E
L
S

4
.3

p
ix
el
-s
to
re

P
A
C
K

A
L
IG
N
M
E
N
T

Z
+

G
e
tI
n
te
g
e
r
v

4

V
a
lu
e
o
f

P
A
C
K
A
L
I
G
N
M
E
N
T

4
.3

p
ix
el
-s
to
re

Table 6.17. Pixels

DRAFT Version 1.2 - Jan. 2, 1998

CHAPTER 6. STATE AND STATE REQUESTS 209

G
et
va
lu
e

T
y
p
e

G
et

C
m
n
d

In
it
ia
l

V
a
lu
e

D
es
cr
ip
ti
o
n

S
ec
.

A
tt
ri
b
u
te

M
A
P

C
O
L
O
R

B

G
e
tB
o
o
le
a
n
v

F
a
ls
e

T
ru
e
if
co
lo
rs
a
re

m
a
p
p
ed

4
.3

p
ix
el

M
A
P

S
T
E
N
C
IL

B

G
e
tB
o
o
le
a
n
v

F
a
ls
e

T
ru
e
if
st
en
ci
l
v
a
lu
es

a
re
m
a
p
p
ed

4
.3

p
ix
el

IN
D
E
X

S
H
IF
T

Z

G
e
tI
n
te
g
e
r
v

0

V
a
lu
e
o
f
I
N
D
E
X
S
H
I
F
T

4
.3

p
ix
el

IN
D
E
X

O
F
F
S
E
T

Z

G
e
tI
n
te
g
e
r
v

0

V
a
lu
e
o
f
I
N
D
E
X
O
F
F
S
E
T

4
.3

p
ix
el

x

S
C
A
L
E

R

G
e
tF
lo
a
tv

1

V
a
lu
e
o
f
x
S
C
A
L
E
;
x
is

R
E
D
,
G
R
E
E
N
,
B
L
U
E
,

A
L
P
H
A
,
o
r
D
E
P
T
H

4
.3

p
ix
el

x

B
IA
S

R

G
e
tF
lo
a
tv

0

V
a
lu
e
o
f
x
B
I
A
S
;
x
is

o
n
e
o
f
R
E
D
,
G
R
E
E
N
,

B
L
U
E
,
A
L
P
H
A
,
o
r
D
E
P
T
H

4
.3

p
ix
el

|
C
O
L
O
R

T
A
B
L
E

B

Is
E
n
a
b
le
d

F
a
ls
e

T
ru
e
if
co
lo
r
ta
b
le

lo
o
k
u
p
is
d
o
n
e

3
.6
.3

p
ix
el
/
en
a
b
le

|
P
O
S
T

C
O
N
V
O
L
U
T
IO
N

C
O
L
O
R

T
A
B
L
E

B

Is
E
n
a
b
le
d

F
a
ls
e

T
ru
e
if
p
o
st

co
n
v
o
lu
ti
o
n
co
lo
r
ta
b
le

lo
o
k
u
p
is
d
o
n
e

3
.6
.3

p
ix
el
/
en
a
b
le

|
P
O
S
T

C
O
L
O
R

M
A
T
R
IX

C
O
L
O
R

T
A
B
L
E

B

Is
E
n
a
b
le
d

F
a
ls
e

T
ru
e
if
p
o
st
co
lo
r

m
a
tr
ix
co
lo
r
ta
b
le

lo
o
k
u
p
is
d
o
n
e

3
.6
.3

p
ix
el
/
en
a
b
le

|
C
O
L
O
R

T
A
B
L
E

3
�
I

G
e
tC
o
lo
r
T
a
b
le

e
m

p
t
y

C
o
lo
r
ta
b
le
s

3
.6
.3

{

|
C
O
L
O
R

T
A
B
L
E

F
O
R
M
A
T

2
�
3
�
Z
4
2

G
e
tC
o
lo
r
T
a
b
le
-

P
a
r
a
m
e
te
r
iv

R
G
B
A

C
o
lo
r
ta
b
le
s'
in
te
rn
a
l

im
a
g
e
fo
rm
a
t

3
.6
.3

{

|
C
O
L
O
R

T
A
B
L
E

W

ID
T
H

2
�
3
�
Z
+

G
e
tC
o
lo
r
T
a
b
le
-

P
a
r
a
m
e
te
r
iv

0

C
o
lo
r
ta
b
le
s'
sp
ec
i�
ed

w
id
th

3
.6
.3

{

|
C
O
L
O
R

T
A
B
L
E

x

S
IZ
E

6
�
2
�
3
�
Z
+

G
e
tC
o
lo
r
T
a
b
le
-

P
a
r
a
m
e
te
r
iv

0

C
o
lo
r
ta
b
le
co
m
p
o
n
en
t

re
so
lu
ti
o
n
;
x
is
R
E
D
,

G
R
E
E
N
,
B
L
U
E
,
A
L
P
H
A
,

L
U
M
I
N
A
N
C
E
,
o
r

I
N
T
E
N
S
I
T
Y

3
.6
.3

{

|
C
O
L
O
R

T
A
B
L
E

S
C
A
L
E

3
�
R
4

G
e
tC
o
lo
r
T
a
b
le
-

P
a
r
a
m
e
te
r
fv

1
,1
,1
,1

S
ca
le
fa
ct
o
rs
a
p
p
li
ed

to
co
lo
r
ta
b
le
en
tr
ie
s

3
.6
.3

{

|
C
O
L
O
R

T
A
B
L
E

B
IA
S

3
�
R
4

G
e
tC
o
lo
r
T
a
b
le
-

P
a
r
a
m
e
te
r
fv

0
,0
,0
,0

B
ia
s
fa
ct
o
rs
a
p
p
li
ed
to

co
lo
r
ta
b
le
en
tr
ie
s

3
.6
.3

{

Table 6.18. Pixels (cont.)

DRAFT Version 1.2 - Jan. 2, 1998

CHAPTER 6. STATE AND STATE REQUESTS 210

G
et
va
lu
e

T
y
p
e

G
et

C
m
n
d

In
it
ia
l

V
a
lu
e

D
es
cr
ip
ti
o
n

S
ec
.

A
tt
ri
b
u
te

|
C
O
N
V
O
L
U
T
IO
N

1
D

B

Is
E
n
a
b
le
d

F
a
ls
e

T
ru
e
if
1
D
co
n
v
o
lu
ti
o
n

is
d
o
n
e

3
.6
.3

p
ix
el
/
en
a
b
le

|
C
O
N
V
O
L
U
T
IO
N

2
D

B

Is
E
n
a
b
le
d

F
a
ls
e

T
ru
e
if
2
D
co
n
v
o
lu
ti
o
n

is
d
o
n
e

3
.6
.3

p
ix
el
/
en
a
b
le

|
S
E
P
A
R
A
B
L
E

2
D

B

Is
E
n
a
b
le
d

F
a
ls
e

T
ru
e
if
se
p
a
ra
b
le
2
D

co
n
v
o
lu
ti
o
n
is
d
o
n
e

3
.6
.3

p
ix
el
/
en
a
b
le

|
C
O
N
V
O
L
U
T
IO
N

2
�
I

G
e
tC
o
n
v
o
lu
ti
o
n
-

F
il
te
r

e
m

p
t
y

C
o
n
v
o
lu
ti
o
n
�
lt
er
s

3
.6
.3

{

|
C
O
N
V
O
L
U
T
IO
N

2
�
I

G
e
tS
e
p
a
r
a
b
le
-

F
il
te
r

e
m

p
t
y

S
ep
a
ra
b
le
co
n
v
o
lu
ti
o
n

�
lt
er

3
.6
.3

{

|
C
O
N
V
O
L
U
T
IO
N

B
O
R
D
E
R

C
O
L
O
R

3
�
C

G
e
tC
o
n
v
o
lu
ti
o
n
-

P
a
r
a
m
e
te
r
fv

0
,0
,0
,0

C
o
n
v
o
lu
ti
o
n
b
o
rd
er

co
lo
r

4
.3

p
ix
el

|
C
O
N
V
O
L
U
T
IO
N

B
O
R
D
E
R

M
O
D
E

3
�
Z
4

G
e
tC
o
n
v
o
lu
ti
o
n
-

P
a
r
a
m
e
te
r
iv

R
E
D
U
C
E

C
o
n
v
o
lu
ti
o
n
b
o
rd
er

m
o
d
e

4
.3

p
ix
el

|
C
O
N
V
O
L
U
T
IO
N

F
IL
T
E
R

S
C
A
L
E

3
�
R
4

G
e
tC
o
n
v
o
lu
ti
o
n
-

P
a
r
a
m
e
te
r
fv

1
,1
,1
,1

S
ca
le
fa
ct
o
rs
a
p
p
li
ed

to
co
n
v
o
lu
ti
o
n
�
lt
er

en
tr
ie
s

3
.6
.3

p
ix
el

|
C
O
N
V
O
L
U
T
IO
N

F
IL
T
E
R

B
IA
S

3
�
R
4

G
e
tC
o
n
v
o
lu
ti
o
n
-

P
a
r
a
m
e
te
r
fv

0
,0
,0
,0

B
ia
s
fa
ct
o
rs
a
p
p
li
ed
to

co
n
v
o
lu
ti
o
n
�
lt
er

en
tr
ie
s

3
.6
.3

p
ix
el

|
C
O
N
V
O
L
U
T
IO
N

F
O
R
M
A
T

3
�
Z
4
2

G
e
tC
o
n
v
o
lu
ti
o
n
-

P
a
r
a
m
e
te
r
iv

R
G
B
A

C
o
n
v
o
lu
ti
o
n
�
lt
er

in
te
rn
a
l
fo
rm
a
t

4
.3

{

|
C
O
N
V
O
L
U
T
IO
N

W

ID
T
H

3
�
Z
+

G
e
tC
o
n
v
o
lu
ti
o
n
-

P
a
r
a
m
e
te
r
iv

0

C
o
n
v
o
lu
ti
o
n
�
lt
er

w
id
th

4
.3

{

|
C
O
N
V
O
L
U
T
IO
N

H
E
IG
H
T

2
�
Z
+

G
e
tC
o
n
v
o
lu
ti
o
n
-

P
a
r
a
m
e
te
r
iv

0

C
o
n
v
o
lu
ti
o
n
�
lt
er

h
ei
g
h
t

4
.3

{

Table 6.19. Pixels (cont.)

DRAFT Version 1.2 - Jan. 2, 1998

CHAPTER 6. STATE AND STATE REQUESTS 211

G
et
v
a
lu
e

T
y
p
e

G
et

C
m
n
d

In
it
ia
l

V
a
lu
e

D
es
cr
ip
ti
o
n

S
ec
.

A
tt
ri
b
u
te

|
P
O
S
T

C
O
N
V
O
L
U
T
IO
N

x

S
C
A
L
E

R

G
e
tF
lo
a
tv

1

C
o
m
p
o
n
en
t
sc
a
le

fa
ct
o
rs
a
ft
er

co
n
v
o
lu
ti
o
n
:
x
is
R
E
D
,

G
R
E
E
N
,
B
L
U
E
,
o
r
A
L
P
H
A

3
.6
.3

p
ix
el

|
P
O
S
T

C
O
N
V
O
L
U
T
IO
N

x

B
IA
S

R

G
e
tF
lo
a
tv

0

C
o
m
p
o
n
en
t
b
ia
s

fa
ct
o
rs
a
ft
er

co
n
v
o
lu
ti
o
n
:
x
is
R
E
D
,

G
R
E
E
N
,
B
L
U
E
,
o
r
A
L
P
H
A

3
.6
.3

p
ix
el

|
P
O
S
T

C
O
L
O
R

M
A
T
R
IX

x

S
C
A
L
E

R

G
e
tF
lo
a
tv

1

C
o
m
p
o
n
en
t
sc
a
le

fa
ct
o
rs
a
ft
er
co
lo
r

m
a
tr
ix
;
x
is
R
E
D
,

G
R
E
E
N
,
B
L
U
E
,
o
r
A
L
P
H
A

3
.6
.3

p
ix
el

|
P
O
S
T

C
O
L
O
R

M
A
T
R
IX

x

B
IA
S

R

G
e
tF
lo
a
tv

0

C
o
m
p
o
n
en
t
b
ia
s

fa
ct
o
rs
a
ft
er
co
lo
r

m
a
tr
ix
;
x
is
R
E
D
,

G
R
E
E
N
,
B
L
U
E
,
o
r
A
L
P
H
A

3
.6
.3

p
ix
el

|
H
IS
T
O
G
R
A
M

B

Is
E
n
a
b
le
d

F
a
ls
e

T
ru
e
if
h
is
to
g
ra
m
m
in
g

is
en
a
b
le
d

3
.6
.3

p
ix
el
/
en
a
b
le

|
H
IS
T
O
G
R
A
M

I

G
e
tH
is
to
g
r
a
m

e
m

p
t
y

H
is
to
g
ra
m
ta
b
le

3
.6
.3

{

|
H
IS
T
O
G
R
A
M

W

ID
T
H

2
�
Z
+

G
e
tH
is
to
g
r
a
m
-

P
a
r
a
m
e
te
r
iv

0

H
is
to
g
ra
m
ta
b
le
w
id
th

3
.6
.3

{

|
H
IS
T
O
G
R
A
M

F
O
R
M
A
T

2
�
Z
4
2

G
e
tH
is
to
g
r
a
m
-

P
a
r
a
m
e
te
r
iv

R
G
B
A

H
is
to
g
ra
m
ta
b
le

in
te
rn
a
l
fo
rm
a
t

3
.6
.3

{

|
H
IS
T
O
G
R
A
M

x

S
IZ
E

5
�
2
�
Z
+

G
e
tH
is
to
g
r
a
m
-

P
a
r
a
m
e
te
r
iv

0

H
is
to
g
ra
m
ta
b
le

co
m
p
o
n
en
t
re
so
lu
ti
o
n
;

x
is
R
E
D
,
G
R
E
E
N
,
B
L
U
E
,

A
L
P
H
A
,
o
r
L
U
M
I
N
A
N
C
E

3
.6
.3

{

|
H
IS
T
O
G
R
A
M

S
IN
K

B

G
e
tH
is
to
g
r
a
m
-

P
a
r
a
m
e
te
r
iv

F
a
ls
e

T
ru
e
if
h
is
to
g
ra
m
m
in
g

co
n
su
m
es
p
ix
el
g
ro
u
p
s

3
.6
.3

{

Table 6.20. Pixels (cont.)

DRAFT Version 1.2 - Jan. 2, 1998

CHAPTER 6. STATE AND STATE REQUESTS 212

G
et
v
a
lu
e

T
y
p
e

G
et

C
m
n
d

In
it
ia
l

V
a
lu
e

D
es
cr
ip
ti
o
n

S
ec
.

A
tt
ri
b
u
te

|
M
IN
M
A
X

B

Is
E
n
a
b
le
d

F
a
ls
e

T
ru
e
if
m
in
m
a
x
is

en
a
b
le
d

3
.6
.3

p
ix
el
/
en
a
b
le

|
M
IN
M
A
X

R
n

G
e
t
M
in
m
a
x

(M
,M
,M
,M
),
(m
,m
,m
,m
)

M
in
m
a
x
ta
b
le

3
.6
.3

{

|
M
IN
M
A
X

F
O
R
M
A
T

Z
4
2

G
e
t
M
in
m
a
x
-

P
a
r
a
m
e
te
r
iv

R
G
B
A

M
in
m
a
x
ta
b
le
in
te
rn
a
l

fo
rm
a
t

3
.6
.3

{

|
M
IN
M
A
X

S
IN
K

B

G
e
t
M
in
m
a
x
-

P
a
r
a
m
e
te
r
iv

F
a
ls
e

T
ru
e
if
m
in
m
a
x

co
n
su
m
es
p
ix
el
g
ro
u
p
s

3
.6
.3

{

Z
O
O
M

X

R

G
e
t
F
lo
a
tv

1
.0

x
zo
o
m
fa
ct
o
r

4
.3

p
ix
el

Z
O
O
M

Y

R

G
e
t
F
lo
a
tv

1
.0

y
zo
o
m
fa
ct
o
r

4
.3

p
ix
el

x

8
�
3
2
�
�
R

G
e
t
P
ix
e
lM
a
p

0
's

R
G
B
A
P
ix
e
lM
a
p

tr
a
n
sl
a
ti
o
n
ta
b
le
s;
x
is

a
m
a
p
n
a
m
e
fr
o
m

T
a
b
le
3
.3

4
.3

{

x

2
�
3
2
�
�
Z

G
e
t
P
ix
e
lM
a
p

0
's

In
d
ex
P
ix
e
lM
a
p

tr
a
n
sl
a
ti
o
n
ta
b
le
s;
x
is

a
m
a
p
n
a
m
e
fr
o
m

T
a
b
le
3
.3

4
.3

{

x

S
IZ
E

Z
+

G
e
t
In
t
e
g
e
r
v

1

S
iz
e
o
f
ta
b
le
x

4
.3

{

R
E
A
D

B
U
F
F
E
R

Z
3

G
e
t
In
t
e
g
e
r
v

se
e
4
.3
.2

R
ea
d
so
u
rc
e
b
u
�
er

4
.3

p
ix
el

Table 6.21. Pixels (cont.)

DRAFT Version 1.2 - Jan. 2, 1998

CHAPTER 6. STATE AND STATE REQUESTS 213

G
et
va
lu
e

T
y
p
e

G
et

C
m
n
d

In
it
ia
l

V
a
lu
e

D
es
cr
ip
ti
o
n

S
ec
.

A
tt
ri
b
u
te

O
R
D
E
R

9
�
Z
8
�

G
e
tM
a
p
iv

1

1
d
m
a
p
o
rd
er

5
.1

{

O
R
D
E
R

9
�
2
�
Z
8
�

G
e
tM
a
p
iv

1
,1

2
d
m
a
p
o
rd
er
s

5
.1

{

C
O
E
F
F

9
�
8
�
�
R
n

G
e
tM
a
p
fv

se
e
5
.1

1
d
co
n
tr
o
l
p
o
in
ts

5
.1

{

C
O
E
F
F

9
�
8
�
�
8
�
�
R
n

G
e
tM
a
p
fv

se
e
5
.1

2
d
co
n
tr
o
l
p
o
in
ts

5
.1

{

D
O
M
A
IN

9
�
2
�
R

G
e
tM
a
p
fv

se
e
5
.1

1
d
d
o
m
a
in
en
d
p
o
in
ts

5
.1

{

D
O
M
A
IN

9
�
4
�
R

G
e
tM
a
p
fv

se
e
5
.1

2
d
d
o
m
a
in
en
d
p
o
in
ts

5
.1

{

M
A
P
1
x

9
�
B

Is
E
n
a
b
le
d

F
a
ls
e

1
d
m
a
p
en
a
b
le
s:
x
is

m
a
p
ty
p
e

5
.1

ev
a
l/
en
a
b
le

M
A
P
2
x

9
�
B

Is
E
n
a
b
le
d

F
a
ls
e

2
d
m
a
p
en
a
b
le
s:
x
is

m
a
p
ty
p
e

5
.1

ev
a
l/
en
a
b
le

M
A
P
1
G
R
ID

D
O
M
A
IN

2
�
R

G
e
tF
lo
a
tv

0
,1

1
d
g
ri
d
en
d
p
o
in
ts

5
.1

ev
a
l

M
A
P
2
G
R
ID

D
O
M
A
IN

4
�
R

G
e
tF
lo
a
tv

0
,1
;0
,1

2
d
g
ri
d
en
d
p
o
in
ts

5
.1

ev
a
l

M
A
P
1
G
R
ID

S
E
G
M
E
N
T
S

Z
+

G
e
tF
lo
a
tv

1

1
d
g
ri
d
d
iv
is
io
n
s

5
.1

ev
a
l

M
A
P
2
G
R
ID

S
E
G
M
E
N
T
S

2
�
Z
+

G
e
tF
lo
a
tv

1
,1

2
d
g
ri
d
d
iv
is
io
n
s

5
.1

ev
a
l

A
U
T
O

N
O
R
M
A
L

B

Is
E
n
a
b
le
d

F
a
ls
e

T
ru
e
if
a
u
to
m
a
ti
c

n
o
rm
a
l
g
en
er
a
ti
o
n

en
a
b
le
d

5
.1

ev
a
l/
en
a
b
le

Table 6.22. Evaluators (GetMap takes a map name)

DRAFT Version 1.2 - Jan. 2, 1998

CHAPTER 6. STATE AND STATE REQUESTS 214

G
et
v
a
lu
e

T
y
p
e

G
et

C
m
n
d

In
it
ia
l

V
a
lu
e

D
es
cr
ip
ti
o
n

S
ec
.

A
tt
ri
b
u
te

P
E
R
S
P
E
C
T
IV
E

C
O
R
R
E
C
T
IO
N

H
IN
T

Z
3

G
e
tI
n
te
g
e
r
v

D
O
N
T
C
A
R
E

P
er
sp
ec
ti
v
e
co
rr
ec
ti
o
n

h
in
t

5
.6

h
in
t

P
O
IN
T

S
M
O
O
T
H

H
IN
T

Z
3

G
e
tI
n
te
g
e
r
v

D
O
N
T
C
A
R
E

P
o
in
t
sm
o
o
th
h
in
t

5
.6

h
in
t

L
IN
E

S
M
O
O
T
H

H
IN
T

Z
3

G
e
tI
n
te
g
e
r
v

D
O
N
T
C
A
R
E

L
in
e
sm
o
o
th
h
in
t

5
.6

h
in
t

P
O
L
Y
G
O
N

S
M
O
O
T
H

H
IN
T

Z
3

G
e
tI
n
te
g
e
r
v

D
O
N
T
C
A
R
E

P
o
ly
g
o
n
sm
o
o
th
h
in
t

5
.6

h
in
t

F
O
G

H
IN
T

Z
3

G
e
tI
n
te
g
e
r
v

D
O
N
T
C
A
R
E

F
o
g
h
in
t

5
.6

h
in
t

Table 6.23. Hints

DRAFT Version 1.2 - Jan. 2, 1998

CHAPTER 6. STATE AND STATE REQUESTS 215

G
et
va
lu
e

T
y
p
e

G
et

C
m
n
d

M
in
im
u
m

V
a
lu
e

D
es
cr
ip
ti
o
n

S
ec
.

A
tt
ri
b
u
te

M
A
X

L
IG
H
T
S

Z
+

G
e
tI
n
te
g
e
r
v

8

M
a
x
im
u
m
n
u
m
b
er
o
f

li
g
h
ts

2
.1
3
.1

{

M
A
X

C
L
IP

P
L
A
N
E
S

Z
+

G
e
tI
n
te
g
e
r
v

6

M
a
x
im
u
m
n
u
m
b
er
o
f

u
se
r
cl
ip
p
in
g
p
la
n
es

2
.1
1

{

|
M
A
X

C
O
L
O
R

M
A
T
R
IX

S
T
A
C
K

D
E
P
T
H

Z
+

G
e
tI
n
te
g
e
r
v

2

M
a
x
im
u
m
co
lo
r
m
a
tr
ix

st
a
ck
d
ep
th

3
.6
.3

{

M
A
X

M
O
D
E
L
V
IE
W

S
T
A
C
K

D
E
P
T
H

Z
+

G
e
tI
n
te
g
e
r
v

3
2

M
a
x
im
u
m
m
o
d
el
-v
ie
w

st
a
ck
d
ep
th

2
.1
0
.2

{

M
A
X

P
R
O
J
E
C
T
IO
N

S
T
A
C
K

D
E
P
T
H

Z
+

G
e
tI
n
te
g
e
r
v

2

M
a
x
im
u
m
p
ro
je
ct
io
n

m
a
tr
ix
st
a
ck
d
ep
th

2
.1
0
.2

{

M
A
X

T
E
X
T
U
R
E

S
T
A
C
K

D
E
P
T
H

Z
+

G
e
tI
n
te
g
e
r
v

2

M
a
x
im
u
m
n
u
m
b
er

d
ep
th
o
f
te
x
tu
re

m
a
tr
ix
st
a
ck

2
.1
0
.2

{

S
U
B
P
IX
E
L

B
IT
S

Z
+

G
e
tI
n
te
g
e
r
v

4

N
u
m
b
er
o
f
b
it
s
o
f

su
b
p
ix
el
p
re
ci
si
o
n
in
x

&
y

3

{

M
A
X

T
E
X
T
U
R
E

S
IZ
E

Z
+

G
e
tI
n
te
g
e
r
v

6
4

S
ee
th
e
d
is
cu
ss
io
n
in

S
ec
ti
o
n
3
.8
.

3
.8

{

M
A
X

P
IX
E
L

M
A
P

T
A
B
L
E

Z
+

G
e
tI
n
te
g
e
r
v

3
2

M
a
x
im
u
m
si
ze
o
f
a

P
ix
e
lM
a
p
tr
a
n
sl
a
ti
o
n

ta
b
le

3
.6
.3

{

M
A
X

N
A
M
E

S
T
A
C
K

D
E
P
T
H

Z
+

G
e
tI
n
te
g
e
r
v

6
4

M
a
x
im
u
m
se
le
ct
io
n

n
a
m
e
st
a
ck
d
ep
th

5
.2

{

M
A
X

L
IS
T

N
E
S
T
IN
G

Z
+

G
e
tI
n
te
g
e
r
v

6
4

M
a
x
im
u
m
d
is
p
la
y
li
st

ca
ll
n
es
ti
n
g

5
.4

{

M
A
X

E
V
A
L

O
R
D
E
R

Z
+

G
e
tI
n
te
g
e
r
v

8

M
a
x
im
u
m
ev
a
lu
a
to
r

p
o
ly
n
o
m
ia
l
o
rd
er

5
.1

{

M
A
X

V
IE
W

P
O
R
T

D
IM
S

2
�
Z
+

G
e
tI
n
te
g
e
r
v

se
e
2
.1
0
.1

M
a
x
im
u
m
v
ie
w
p
o
rt

d
im
en
si
o
n
s

2
.1
0
.1

{

M
A
X

A
T
T
R
IB

S
T
A
C
K

D
E
P
T
H

Z
+

G
e
tI
n
te
g
e
r
v

1
6

M
a
x
im
u
m
d
ep
th
o
f
th
e

se
rv
er
a
tt
ri
b
u
te
st
a
ck

6

{

M
A
X

C
L
IE
N
T

A
T
T
R
IB

S
T
A
C
K

D
E
P
T
H

Z
+

G
e
tI
n
te
g
e
r
v

1
6

M
a
x
im
u
m
d
ep
th
o
f
th
e

cl
ie
n
t
a
tt
ri
b
u
te
st
a
ck

6

{

Table 6.24. Implementation Dependent Values

DRAFT Version 1.2 - Jan. 2, 1998

CHAPTER 6. STATE AND STATE REQUESTS 216

G
et
va
lu
e

T
y
p
e

G
et

C
m
n
d

M
in
im
u
m

V
a
lu
e

D
es
cr
ip
ti
o
n

S
ec
.

A
tt
ri
b
u
te

A
U
X

B
U
F
F
E
R
S

Z
+

G
e
tI
n
te
g
e
r
v

0

N
u
m
b
er
o
f
a
u
x
il
ia
ry

b
u
�
er
s

4
.2
.1

{

R
G
B
A

M
O
D
E

B

G
e
tB
o
o
le
a
n
v

{

T
ru
e
if
co
lo
r
b
u
�
er
s

st
o
re
rg
b
a

2
.7

{

IN
D
E
X

M
O
D
E

B

G
e
tB
o
o
le
a
n
v

{

T
ru
e
if
co
lo
r
b
u
�
er
s

st
o
re
in
d
ex
es

2
.7

{

D
O
U
B
L
E
B
U
F
F
E
R

B

G
e
tB
o
o
le
a
n
v

{

T
ru
e
if
fr
o
n
t
&
b
a
ck

b
u
�
er
s
ex
is
t

4
.2
.1

{

S
T
E
R
E
O

B

G
e
tB
o
o
le
a
n
v

{

T
ru
e
if
le
ft
&
ri
g
h
t

b
u
�
er
s
ex
is
t

6

{

P
O
IN
T

S
IZ
E

R
A
N
G
E

2
�
R
+

G
e
tF
lo
a
tv

1
,1

R
a
n
g
e
(l
o
to
h
i)
o
f

a
n
ti
a
li
a
se
d
p
o
in
t
si
ze
s

3
.3

{

P
O
IN
T

S
IZ
E

G
R
A
N
U
L
A
R
IT
Y

R
+

G
e
tF
lo
a
tv

{

A
n
ti
a
li
a
se
d
p
o
in
t
si
ze

g
ra
n
u
la
ri
ty

3
.3

{

L
IN
E

W

ID
T
H

R
A
N
G
E

2
�
R
+

G
e
tF
lo
a
tv

1
,1

R
a
n
g
e
(l
o
to
h
i)
o
f

a
n
ti
a
li
a
se
d
li
n
e
w
id
th
s

3
.4

{

L
IN
E

W

ID
T
H

G
R
A
N
U
L
A
R
IT
Y

R
+

G
e
tF
lo
a
tv

{

A
n
ti
a
li
a
se
d
li
n
e
w
id
th

g
ra
n
u
la
ri
ty

3
.4

{

|
M
A
X

C
O
N
V
O
L
U
T
IO
N

W

ID
T
H

3
�
Z
+

G
e
tC
o
n
v
o
lu
ti
o
n
P
a
r
a
m
e
te
r
iv

{

M
a
x
im
u
m
w
id
th
o
f

co
n
v
o
lu
ti
o
n
�
lt
er

4
.3

{

|
M
A
X

C
O
N
V
O
L
U
T
IO
N

H
E
IG
H
T

2
�
Z
+

G
e
tC
o
n
v
o
lu
ti
o
n
P
a
r
a
m
e
te
r
iv

{

M
a
x
im
u
m
h
ei
g
h
t
o
f

co
n
v
o
lu
ti
o
n
�
lt
er

4
.3

{

|
M
A
X

E
L
E
M
E
N
T
S
IN
D
IC
E
S

Z
+

G
e
tI
n
te
g
e
r
v

{

R
ec
o
m
m
en
d
ed

m
a
x
im
u
m
n
u
m
b
er
o
f

D
r
a
w
R
a
n
g
e
E
le
-

m
e
n
ts

in
d
ic
es

2
.8

{

|
M
A
X

E
L
E
M
E
N
T
S
V
E
R
T
IC
E
S

Z
+

G
e
tI
n
te
g
e
r
v

{

R
ec
o
m
m
en
d
ed

m
a
x
im
u
m
n
u
m
b
er
o
f

D
r
a
w
R
a
n
g
e
E
le
-

m
e
n
ts

v
er
ti
ce
s

2
.8

{

Table 6.25. More Implementation Dependent Values

DRAFT Version 1.2 - Jan. 2, 1998

CHAPTER 6. STATE AND STATE REQUESTS 217

G
et
v
a
lu
e

T
y
p
e

G
et

C
m
n
d

In
it
ia
l

V
a
lu
e

D
es
cr
ip
ti
o
n

S
ec
.

A
tt
ri
b
u
te

|
x

B
IT
S

Z
+

G
e
tI
n
te
g
e
r
v

-

N
u
m
b
er
o
f
b
it
s
in
x

co
lo
r
b
u
�
er

co
m
p
o
n
en
t;
x
is
o
n
e
o
f

R
E
D
,
G
R
E
E
N
,
B
L
U
E
,

A
L
P
H
A
,
o
r
I
N
D
E
X

4

{

D
E
P
T
H

B
IT
S

Z
+

G
e
tI
n
te
g
e
r
v

-

N
u
m
b
er
o
f
d
ep
th

b
u
�
er
p
la
n
es

4

{

S
T
E
N
C
IL
B
IT
S

Z
+

G
e
tI
n
te
g
e
r
v

-

N
u
m
b
er
o
f
st
en
ci
l

p
la
n
es

4

{

A
C
C
U
M

x

B
IT
S

Z
+

G
e
tI
n
te
g
e
r
v

-

N
u
m
b
er
o
f
b
it
s
in
x

a
cc
u
m
u
la
ti
o
n
b
u
�
er

co
m
p
o
n
en
t
(x
is
R
E
D
,

G
R
E
E
N
,
B
L
U
E
,
o
r
A
L
P
H
A

4

{

Table 6.26. Implementation Dependent Pixel Depths

DRAFT Version 1.2 - Jan. 2, 1998

CHAPTER 6. STATE AND STATE REQUESTS 218

G
et
va
lu
e

T
y
p
e

G
et

C
m
n
d

In
it
ia
l

V
a
lu
e

D
es
cr
ip
ti
o
n

S
ec
.

A
tt
ri
b
u
te

L
IS
T

B
A
S
E

Z
+

G
e
tI
n
te
g
e
r
v

0

S
et
ti
n
g
o
f
L
is
tB
a
se

5
.4

li
st

L
IS
T

IN
D
E
X

Z
+

G
e
tI
n
te
g
e
r
v

0

n
u
m
b
er
o
f
d
is
p
la
y
li
st

u
n
d
er
co
n
st
ru
ct
io
n
;
0

if
n
o
n
e

5
.4

{

L
IS
T

M
O
D
E

Z
+

G
e
tI
n
te
g
e
r
v

0

M
o
d
e
o
f
d
is
p
la
y
li
st

u
n
d
er
co
n
st
ru
ct
io
n
;

u
n
d
e�
n
ed
if
n
o
n
e

5
.4

{

{

1
6
�
�
A

{

em
p
ty

S
er
v
er
a
tt
ri
b
u
te
st
a
ck

6

{

A
T
T
R
IB

S
T
A
C
K

D
E
P
T
H

Z
+

G
e
tI
n
te
g
e
r
v

0

S
er
v
er
a
tt
ri
b
u
te
st
a
ck

p
o
in
te
r

6

{

{

1
6
�
�
A

{

em
p
ty

C
li
en
t
a
tt
ri
b
u
te
st
a
ck

6

{

C
L
IE
N
T

A
T
T
R
IB

S
T
A
C
K

D
E
P
T
H

Z
+

G
e
tI
n
te
g
e
r
v

0

C
li
en
t
a
tt
ri
b
u
te
st
a
ck

p
o
in
te
r

6

{

N
A
M
E

S
T
A
C
K

D
E
P
T
H

Z
+

G
e
tI
n
te
g
e
r
v

0

N
a
m
e
st
a
ck
d
ep
th

5
.2

{

R
E
N
D
E
R

M
O
D
E

Z
3

G
e
tI
n
te
g
e
r
v

R
E
N
D
E
R

R
e
n
d
e
r
M
o
d
e
se
tt
in
g

5
.2

{

S
E
L
E
C
T
IO
N

B
U
F
F
E
R

P
O
IN
T
E
R

Y

G
e
tP
o
in
te
r
v

0

S
el
ec
ti
o
n
b
u
�
er

p
o
in
te
r

5
.2

se
le
ct

S
E
L
E
C
T
IO
N

B
U
F
F
E
R

S
IZ
E

Z
+

G
e
tI
n
te
g
e
r
v

0

S
el
ec
ti
o
n
b
u
�
er
si
ze

5
.2

se
le
ct

F
E
E
D
B
A
C
K

B
U
F
F
E
R

P
O
IN
T
E
R

Y

G
e
tP
o
in
te
r
v

0

F
ee
d
b
a
ck
b
u
�
er

p
o
in
te
r

5
.3

fe
ed
b
a
ck

F
E
E
D
B
A
C
K

B
U
F
F
E
R

S
IZ
E

Z
+

G
e
tI
n
te
g
e
r
v

0

F
ee
d
b
a
ck
b
u
�
er
si
ze

5
.3

fe
ed
b
a
ck

F
E
E
D
B
A
C
K

B
U
F
F
E
R

T
Y
P
E

Z
5

G
e
tI
n
te
g
e
r
v

2
D

F
ee
d
b
a
ck
ty
p
e

5
.3

fe
ed
b
a
ck

{

n
�
Z
8

G
e
tE
r
r
o
r

0

C
u
rr
en
t
er
ro
r
co
d
e(
s)

2
.5

{

{

n
�
B

{

F
a
ls
e

T
ru
e
if
th
er
e
is
a

co
rr
es
p
o
n
d
in
g
er
ro
r

2
.5

{

Table 6.27. Miscellaneous

DRAFT Version 1.2 - Jan. 2, 1998

Appendix A

Invariance

The OpenGL speci�cation is not pixel exact. It therefore does not guarantee
an exact match between images produced by di�erent GL implementations.

However, the speci�cation does specify exact matches, in some cases, for
images produced by the same implementation. The purpose of this appendix

is to identify and provide justi�cation for those cases that require exact
matches.

A.1 Repeatability

The obvious and most fundamental case is repeated issuance of a series of
GL commands. For any given GL and framebu�er state vector, and for

any GL command, the resulting GL and framebu�er state must be identical
whenever the command is executed on that initial GL and framebu�er state.

One purpose of repeatability is avoidance of visual artifacts when a
double-bu�ered scene is redrawn. If rendering is not repeatable, swapping

between two bu�ers rendered with the same command sequence may re-
sult in visible changes in the image. Such false motion is distracting to the
viewer. Another reason for repeatability is testability.

Repeatability, while important, is a weak requirement. Given only re-
peatability as a requirement, two scenes rendered with one (small) polygon

changed in position might di�er at every pixel. Such a di�erence, while
within the law of repeatability, is certainly not within its spirit. Additional

invariance rules are desirable to ensure useful operation.

219

DRAFT Version 1.2 - Jan. 2, 1998

APPENDIX A. INVARIANCE 220

A.2 Multi-pass Algorithms

Invariance is necessary for a whole set of useful multi-pass algorithms. Such
algorithms render multiple times, each time with a di�erent GL mode vec-

tor, to eventually produce a result in the framebu�er. Examples of these
algorithms include:

� \Erasing" a primitive from the framebu�er by redrawing it, either in

a di�erent color or using the XOR logical operation.

� Using stencil operations to compute capping planes.

On the other hand, invariance rules can greatly increase the complexity

of high-performance implementations of the GL. Even the weak repeatabil-
ity requirement signi�cantly constrains a parallel implementation of the GL.

Because GL implementations are required to implement ALL GL capabili-
ties, not just a convenient subset, those that utilize hardware acceleration
are expected to alternate between hardware and software modules based on

the current GL mode vector. A strong invariance requirement forces the
behavior of the hardware and software modules to be identical, something

that may be very di�cult to achieve (for example, if the hardware does
oating-point operations with di�erent precision than the software).

What is desired is a compromise that results in many compliant, high-
performance implementations, and in many software vendors choosing to

port to OpenGL.

A.3 Invariance Rules

For a given instantiation of an OpenGL rendering context:

Rule 1 For any given GL and framebu�er state vector, and for any given

GL command, the resulting GL and framebu�er state must be identical each

time the command is executed on that initial GL and framebu�er state.

Rule 2 Changes to the following state values have no side e�ects (the use

of any other state value is not a�ected by the change):

Required:

� Framebu�er contents (all bitplanes)

� The color bu�ers enabled for writing

DRAFT Version 1.2 - Jan. 2, 1998

APPENDIX A. INVARIANCE 221

� The values of matrices other than the top-of-stack matrices

� Scissor parameters (other than enable)

� Writemasks (color, index, depth, stencil)

� Clear values (color, index, depth, stencil, accumulation)

� Current values (color, index, normal, texture coords, edgeag)

� Current raster color, index and texture coordinates.

� Material properties (ambient, di�use, specular, emission, shini-

ness)

Strongly suggested:

� Matrix mode

� Matrix stack depths

� Alpha test parameters (other than enable)

� Stencil parameters (other than enable)

� Depth test parameters (other than enable)

� Blend parameters (other than enable)

� Logical operation parameters (other than enable)

� Pixel storage and transfer state

� Evaluator state (except as it a�ects the vertex data generated by

the evaluators)

� Polygon o�set parameters (other than enables, and except as they

a�ect the depth values of fragments)

Corollary 1 Fragment generation is invariant with respect to the state val-

ues marked with � in Rule 2.

Corollary 2 The window coordinates (x, y, and z) of generated fragments

are also invariant with respect to

Required:

� Current values (color, color index, normal, texture coords, edge-

ag)

� Current raster color, color index, and texture coordinates

� Material properties (ambient, di�use, specular, emission, shini-

ness)

DRAFT Version 1.2 - Jan. 2, 1998

APPENDIX A. INVARIANCE 222

Rule 3 The arithmetic of each per-fragment operation is invariant except

with respect to parameters that directly control it (the parameters that control

the alpha test, for instance, are the alpha test enable, the alpha test function,

and the alpha test reference value).

Corollary 3 Images rendered into di�erent color bu�ers sharing the same

framebu�er, either simultaneously or separately using the same command

sequence, are pixel identical.

A.4 What All This Means

Hardware accelerated GL implementations are expected to default to soft-
ware operation when some GL state vectors are encountered. Even the weak

repeatability requirement means, for example, that OpenGL implementa-
tions cannot apply hysteresis to this swap, but must instead guarantee that
a given mode vector implies that a subsequent command always is executed

in either the hardware or the software machine.
The stronger invariance rules constrain when the switch from hardware

to software rendering can occur, given that the software and hardware ren-
derers are not pixel identical. For example, the switch can be made when

blending is enabled or disabled, but it should not be made when a change
is made to the blending parameters.

Because oating point values may be represented using di�erent formats
in di�erent renderers (hardware and software), many OpenGL state values

may change subtly when renderers are swapped. This is the type of state
value change that Rule 1 seeks to avoid.

DRAFT Version 1.2 - Jan. 2, 1998

Appendix B

Corollaries

The following observations are derived from the body and the other ap-
pendixes of the speci�cation. Absence of an observation from this list in no

way impugns its veracity.

1. The CURRENT RASTER TEXTURE COORDINATES must be maintained cor-
rectly at all times, including periods while texture mapping is not

enabled, and when the GL is in color index mode.

2. When requested, texture coordinates returned in feedback mode are
always valid, including periods while texture mapping is not enabled,

and when the GL is in color index mode.

3. The error semantics of upward compatible OpenGL revisions may

change. Otherwise, only additions can be made to upward compat-
ible revisions.

4. GL query commands are not required to satisfy the semantics of the

Flush or the Finish commands. All that is required is that the
queried state be consistent with complete execution of all previously

executed GL commands.

5. Application speci�ed point size and line width must be returned as

speci�ed when queried. Implementation dependent clamping a�ects
the values only while they are in use.

6. Bitmaps and pixel transfers do not cause selection hits.

7. The mask speci�ed as the third argument to StencilFunc a�ects the
operands of the stencil comparison function, but has no direct e�ect on

223

DRAFT Version 1.2 - Jan. 2, 1998

APPENDIX B. COROLLARIES 224

the update of the stencil bu�er. The mask speci�ed by StencilMask

has no e�ect on the stencil comparison function; it limits the e�ect of
the update of the stencil bu�er.

8. Polygon shading is completed before the polygon mode is interpreted.

If the shade model is FLAT, all of the points or lines generated by a
single polygon will have the same color.

9. A display list is just a group of commands and arguments, so errors
generated by commands in a display list must be generated when the

list is executed. If the list is created in COMPILE mode, errors should
not be generated while the list is being created.

10. RasterPos does not change the current raster index from its default
value in an RGBA mode GL context. Likewise, RasterPos does not

change the current raster color from its default value in a color index
GL context. Both the current raster index and the current raster

color can be queried, however, regardless of the color mode of the GL
context.

11. A material property that is attached to the current color via Color-
Material always takes the value of the current color. Attempts to

change that material property via Material calls have no e�ect.

12. Material and ColorMaterial can be used to modify the RGBA ma-

terial properties, even in a color index context. Likewise, Material

can be used to modify the color index material properties, even in an

RGBA context.

13. There is no atomicity requirement for OpenGL rendering commands,
even at the fragment level.

14. Because rasterization of non-antialiased polygons is point sampled,
polygons that have no area generate no fragments when they are ras-

terized in FILLmode, and the fragments generated by the rasterization
of \narrow" polygons may not form a continuous array.

15. OpenGL does not force left- or right-handedness on any of its coor-
dinates systems. Consider, however, the following conditions: (1) the

object coordinate system is right-handed; (2) the only commands used
to manipulate the model-view matrix are Scale (with positive scaling

values only), Rotate, and Translate; (3) exactly one of either Frus-
tum or Ortho is used to set the projection matrix; (4) the near value

DRAFT Version 1.2 - Jan. 2, 1998

APPENDIX B. COROLLARIES 225

is less than the far value for DepthRange. If these conditions are all

satis�ed, then the eye coordinate system is right-handed and the clip,
normalized device, and window coordinate systems are left-handed.

16. ColorMaterial has no e�ect on color index lighting.

17. (No pixel dropouts or duplicates.) Let two polygons share an identical
edge (that is, there exist vertices A and B of an edge of one polygon,

and vertices C and D of an edge of the other polygon, and the coordi-
nates of vertex A (resp. B) are identical to those of vertex C (resp. D),

and the state of the the coordinate transfomations is identical when
A, B, C, and D are speci�ed). Then, when the fragments produced

by rasterization of both polygons are taken together, each fragment
intersecting the interior of the shared edge is produced exactly once.

18. OpenGL state continues to be modi�ed in FEEDBACK mode and in
SELECT mode. The contents of the framebu�er are not modi�ed.

19. The current raster position, the user de�ned clip planes, the spot direc-

tions and the light positions for LIGHTi, and the eye planes for texgen
are transformed when they are speci�ed. They are not transformed

during a PopAttrib, or when copying a context.

20. Dithering algorithms may be di�erent for di�erent components. In

particular, alpha may be dithered di�erently from red, green, or blue,
and an implementation may choose to not dither alpha at all.

DRAFT Version 1.2 - Jan. 2, 1998

Appendix C

Version 1.1

OpenGL version 1.1 is the �rst revision since the original version 1.0 was
released on 1 July 1992. Version 1.1 is upward compatible with version 1.0,

meaning that any program that runs with a 1.0 GL implementation will also
run unchanged with a 1.1 GL implementation. Several additions were made

to the GL, especially to the texture mapping capabilities, but also to the
geometry and fragment operations. Following are brief descriptions of each

addition.

C.1 Vertex Array

Arrays of vertex data may be transferred to the GL with many fewer com-

mands than were previously necessary. Six arrays are de�ned, one each
storing vertex positions, normal coordinates, colors, color indices, texture

coordinates, and edge ags. The arrays may be speci�ed and enabled inde-
pendently, or one of the pre-de�ned con�gurations may be selected with a

single command.
The primary goal was to decrease the number of subroutine calls required

to transfer non-display listed geometry data to the GL. A secondary goal was

to improve the e�ciency of the transfer; especially to allow direct memory
access (DMA) hardware to be used to e�ect the transfer. The additions

match those of the EXT vertex array extension, except that static array data
are not supported (because they complicated the interface, and were not

being used), and the pre-de�ned con�gurations are added (both to reduce
subroutine count even further, and to allow for e�cient transfer of array

data).

226

DRAFT Version 1.2 - Jan. 2, 1998

APPENDIX C. VERSION 1.1 227

C.2 Polygon O�set

Depth values of fragments generated by the rasterization of a polygon may be
shifted toward or away from the origin, as an a�ne function of the window

coordinate depth slope of the polygon. Shifted depth values allow copla-
nar geometry, especially facet outlines, to be rendered without depth bu�er

artifacts. They may also be used by future shadow generation algorithms.
The additions match those of the EXT polygon offset extension, with two

exceptions. First, the o�set is enabled separately for POINT, LINE, and FILL

rasterization modes, all sharing a single a�ne function de�nition. (Shifting

the depth values of the outline fragments, instead of the �ll fragments, allows
the contents of the depth bu�er to be maintained correctly.) Second, the
o�set bias is speci�ed in units of depth bu�er resolution, rather than in the

[0,1] depth range.

C.3 Logical Operation

Fragments generated by RGBA rendering may be merged into the frame-
bu�er using a logical operation, just as color index fragments are in GL
version 1.0. Blending is disabled during such operation because it is rarely

desired, because many systems could not support it, and to match the se-
mantics of the EXT blend logic op extension, on which this addition is loosely

based.

C.4 Texture Image Formats

Stored texture arrays have a format, known as the internal format, rather
than a simple count of components. The internal format is represented as
a single enumerated value, indicating both the organization of the image

data (LUMINANCE, RGB, etc.) and the number of bits of storage for each image
component. Clients can use the internal format speci�cation to suggest the

desired storage precision of texture images. New base formats, ALPHA and
INTENSITY, provide new texture environment operations. These additions

match those of a subset of the EXT texture extension.

C.5 Texture Replace Environment

A common use of texture mapping is to replace the color values of generated

fragments with texture color data. This could be speci�ed only indirectly

DRAFT Version 1.2 - Jan. 2, 1998

APPENDIX C. VERSION 1.1 228

in GL version 1.0, which required that client speci�ed \white" geometry

be modulated by a texture. GL version 1.1 allows such replacement to be
speci�ed explicitly, possibly improving performance. These additions match

those of a subset of the EXT texture extension.

C.6 Texture Proxies

Texture proxies allow a GL implementation to advertise di�erent maximum

texture image sizes as a function of some other texture parameters, especially
of the internal image format. Clients may use the proxy query mechanism

to tailor their use of texture resources at run time. The proxy interface is
designed to allow such queries without adding new routines to the GL inter-

face. These additions match those of a subset of the EXT texture extension,
except that implementations return allocation information consistent with

support for complete mipmap arrays.

C.7 Copy Texture and Subtexture

Texture array data can be speci�ed from framebu�er memory, as well as

from client memory, and rectangular subregions of texture arrays can be
rede�ned either from client or framebu�er memory. These additions match

those de�ned by the EXT copy texture and EXT subtexture extensions.

C.8 Texture Objects

A set of texture arrays and their related texture state can be treated as a

single object. Such treatment allows for greater implementation e�ciency
when multiple arrays are used. In conjunction with the subtexture capabil-

ity, it also allows clients to make gradual changes to existing texture arrays,
rather than completely rede�ning them. These additions match those of the

EXT texture object extension, with slight additions to the texture residency
semantics.

C.9 Other Changes

1. Color indices may now be speci�ed as unsigned bytes.

DRAFT Version 1.2 - Jan. 2, 1998

APPENDIX C. VERSION 1.1 229

2. Texture coordinates s, t, and r are divided by q during the rasterization

of points, pixel rectangles, and bitmaps. This division was documented
only for lines and polygons in the 1.0 version.

3. The line rasterization algorithm was changed so that vertical lines on

pixel borders rasterize correctly.

4. Separate pixel transfer discussions in chapter 3 and chapter 4 were

combined into a single discussion in chapter 3.

5. Texture alpha values are returned as 1.0 if there is no alpha channel
in the texture array. This behavior was unspeci�ed in the 1.0 version,

and was incorrectly documented in the reference manual.

6. Fog start and end values may now be negative.

7. Evaluated color values direct the evaluation of the lighting equation if

ColorMaterial is enabled.

C.10 Acknowledgements

OpenGL 1.1 is the result of the contributions of many people, representing

a cross section of the computer industry. Following is a partial list of the
contributors, including the company that they represented at the time of

their contribution:
Kurt Akeley, Silicon Graphics

Bill Armstrong, Evans & Sutherland
Andy Bigos, 3Dlabs

Pat Brown, IBM
Jim Cobb, Evans & Sutherland
Dick Coulter, Digital Equipment

Bruce D'Amora, GE Medical Systems
John Dennis, Digital Equipment

Fred Fisher, Accel Graphics
Chris Frazier, Silicon Graphics

Todd Frazier, Evans & Sutherland
Tim Freese, NCD

Ken Garnett, NCD
Mike Heck, Template Graphics Software

Dave Higgins, IBM
Phil Huxley, 3Dlabs

DRAFT Version 1.2 - Jan. 2, 1998

APPENDIX C. VERSION 1.1 230

Dale Kirkland, Intergraph

Hock San Lee, Microsoft
Kevin LeFebvre, Hewlett Packard

Jim Miller, IBM
Tim Misner, SunSoft

Jeremy Morris, 3Dlabs
Israel Pinkas, Intel

Bimal Poddar, IBM
Lyle Ramshaw, Digital Equipment

Randi Rost, Hewlett Packard
John Schimpf, Silicon Graphics
Mark Segal, Silicon Graphics

Igor Sinyak, Intel
Je� Stevenson, Hewlett Packard

Bill Sweeney, SunSoft
Kelvin Thompson, Portable Graphics

Neil Trevett, 3Dlabs
Linas Vepstas, IBM

Andy Vesper, Digital Equipment
Henri Warren, Megatek

Paula Womack, Silicon Graphics
Mason Woo, Silicon Graphics
Steve Wright, Microsoft

DRAFT Version 1.2 - Jan. 2, 1998

Appendix D

Version 1.2

OpenGL version 1.2, released on ???, 1998, is the second revision since the
original version 1.0. Version 1.2 is upward compatible with version 1.1,

meaning that any program that runs with a 1.1 GL implementation will
also run unchanged with a 1.2 GL implementation.

Several additions were made to the GL, especially to texture mapping ca-
pabilities and the pixel processing pipeline. Following are brief descriptions

of each addition.

D.1 Three-Dimensional Texturing

three-dimensional textures can be de�ned and used. In-memory formats for
three-dimensional images, and pixel storage modes to support them, are also

de�ned. The additions match those of the EXT texture3D extension.
One important application of three-dimensional textures is rendering

volumes of image data.

D.2 BGRA Pixel Formats

BGRA extends the list of host-memory color formats. Speci�cally, it pro-
vides a component order matching �le and frame bu�er formats common on

Windows platforms. The additions match those of the EXT bgra extension.

D.3 Packed Pixel Formats

Packed pixels in host memory are represented entirely by one unsigned byte,
one unsigned short, or one unsigned integer. The �elds with the packed pixel

231

DRAFT Version 1.2 - Jan. 2, 1998

APPENDIX D. VERSION 1.2 232

are not proper machine types, but the pixel as a whole is. Thus the pixel

storage modes and their unpacking counterparts all work correctly with
packed pixels.

The additions match those of the EXT packed pixels extension, with the
further addition of reversed component order packed formats.

D.4 Normal Rescaling

Normals may be rescaled by a constant factor derived from the modelview
matrix. Rescaling can operate faster than renormalization in many cases,

while resulting in the same unit normals.
The additions are based on the EXT rescale normal extension.

D.5 Separate Specular Color

Lighting calculations are modi�ed to produce a primary color consisting of
emissive, ambient and di�use terms of the usual GL lighting equation, and

a secondary color consisting of the specular term. Only the primary color
is modi�ed by the texture environment; the secondary color is added to

the result of texturing to produce a single post-texturing color. This allows
highlights whose color is based on the light source creating them, rather

than surface properties.
The additions match those of the EXT separate specular color exten-

sion.

D.6 Texture Coordinate Edge Clamping

GL normally clamps such that the texture coordinates are limited to exactly

the range [0; 1]. When a texture coordinate is clamped using this algorithm,
the texture sampling �lter straddles the edge of the texture image, taking

half its sample values from within the texture image, and the other half from
the texture border. It is sometimes desirable to clamp a texture without

requiring a border, and without using the constant border color.
A new texture clamping algorithm, CLAMP TO EDGE, clamps texture co-

ordinates at all mipmap levels such that the texture �lter never samples a

border texel. When used with a NEAREST or a LINEAR �lter, the color returned
when clamping is derived only from texels at the edge of the texture image.

The additions match those of the SGIS texture edge clamp extension.

DRAFT Version 1.2 - Jan. 2, 1998

APPENDIX D. VERSION 1.2 233

D.7 Texture Level of Detail Control

Two constraints related to the texture level of detail parameter � are added.
One constraint clamps � to a speci�ed oating point range. The other limits

the selection of mipmap image arrays to a subset of the arrays that would
otherwise be considered.

Together these constraints allow a large texture to be loaded and used
initially at low resolution, and to have its resolution raised gradually as more

resolution is desired or available. Image array speci�cation is necessarily in-
tegral, rather than continuous. By providing separate, continuous clamping

of the � parameter, it is possible to avoid "popping" artifacts when higher
resolution images are provided.

The additions match those of the SGIS texture lod extension.

D.8 Vertex Array Draw Element Range

A new form of DrawElements that provides explicit information on the

range of vertices referred to by the index set is added. Implementations can
take advantage of this additional information to process vertex data without
having to scan the index data to determine which vertices are referenced.

The additions match those of the EXT draw range elements extension.

D.9 Imaging Subset

The remaining new features are primarily intended for advanced image pro-
cessing applications, and may not be present in all GL implementations.

The are collectively referred to as the imaging subset.

D.9.1 Color Tables

A new RGBA-format color lookup mechanism is de�ned in the pixel trans-

fer process, providing additional lookup capabilities beyond the existing
lookup. The key di�erence is that the new lookup tables are treated as
one-dimensional images with internal formats, like texture images and con-

volution �lter images. Thus the new tables can operate on a subset of the
components of passing pixel groups. For example, a table with internal for-

mat ALPHA modi�es only the A component of each pixel group, leaving the
R, G, and B components unmodi�ed.

DRAFT Version 1.2 - Jan. 2, 1998

APPENDIX D. VERSION 1.2 234

Three independent lookups may be performed: prior to convolution;

after convolution and prior to color matrix transformation; after color matrix
transformation and prior to gathering pipeline statistics.

Methods to initialize the color lookup tables from the framebu�er, in
addition to the standard memory source mechanisms, are provided.

Portions of a color lookup table may be rede�ned without reinitializing
the entire table. The a�ected portions may be speci�ed either from host

memory or from the framebu�er.
The

additions match those of the EXT color table and EXT color subtable ex-
tensions.

D.9.2 Convolution

One- or two-dimensional convolution operations are executed following the
�rst color table lookup in the pixel transfer process. The convolution kernels
are themselves treated as one- and two-dimensional images, which can be

loaded from application memory or from the framebu�er.
The convolution framework is designed to accommodate three-

dimensional convolution, but that API is left for a future extension.
The additions

match those of the EXT convolution and HP convolution border modes ex-
tensions.

D.9.3 Color Matrix

A 4x4 matrix transformation and associated matrix stack are added to the
pixel transfer path. The matrix operates on RGBA pixel groups, using the

equation

C0 = MC;

where

C =

0
BB@
R

G

B

A

1
CCA

and M is the 4�4 matrix on the top of the color matrix stack. After the
matrix multiplication, each resulting color component is scaled and biased

by a programmed amount. Color matrix multiplication follows convolution.

DRAFT Version 1.2 - Jan. 2, 1998

APPENDIX D. VERSION 1.2 235

The color matrix can be used to reassign and duplicate color components.

It can also be used to implement simple color space conversions.
The additions match those of the SGI color matrix extension.

D.9.4 Pixel Pipeline Statistics

Pixel operations that count occurences of speci�c color component values
(histogram) and that track the minimum and maximum color component

values (minmax) are performed at the end of the pixel transfer pipeline. An
optional mode allows pixel data to be discarded after the histogram and/or

minmax operations are completed. Otherwise the pixel data continues on
to the next operation una�ected.

The additions match those of the EXT histogram extension.

D.9.5 Constant Blend Color

A constant color that can be used to de�ne blend weighting factors may be

de�ned. A typical usage is blending two RGB images. Without the constant
blend factor, one image must have an alpha channel with each pixel set to
the desired blend factor.

The additions match those of the EXT blend color extension.

D.9.6 New Blending Equations

Blending equations other than the normal weighted sum of source and des-

tination components may be used.
Two of the new equations produce the minimum (or maximum) color

components of the source and destination colors. Taking the maximum is
useful for applications such as maximum projection in medical imaging.

The other two equations are similar to the default blending equation,
but produce the di�erence of its left and right hand sides, rather than the

sum. Image di�erences are useful in many image processing applications.
The additions match those of the EXT blend minmax and

EXT blend subtract extensions.

D.10 Acknowledgements

OpenGL 1.2 is the result of the contributions of many people, representing

a cross section of the computer industry.
Add list of people here

DRAFT Version 1.2 - Jan. 2, 1998

Index of GL calls

x BIAS, 78, 209
x SCALE, 78, 209

2D, 175, 177, 218
2 BYTES, 178

3D, 175, 177
3D COLOR, 175, 177
3D COLOR TEXTURE, 175, 177

3 BYTES, 178
4D COLOR TEXTURE, 175, 177

4 BYTES, 178

1, 117, 121, 132, 137, 138, 186, 203
2, 117, 121, 137, 138, 186, 203

3, 117, 121, 137, 138, 186, 203
4, 117, 121, 137, 138, 186

ACCUM, 156

Accum, 156, 157
ACCUM BUFFER BIT, 155, 192

ADD, 156, 157
ALL ATTRIB BITS, 192
ALL CLIENT ATTRIB BITS,

192
ALPHA, 78, 92, 103, 104, 115,

116, 137, 138, 160, 161,
186, 209, 211, 217, 227,

233
ALPHA12, 116

ALPHA16, 116
ALPHA4, 116

ALPHA8, 116
ALPHA BIAS, 101

ALPHA SCALE, 101
ALPHA TEST, 144

AlphaFunc, 144
ALWAYS, 144{146, 206

AMBIENT, 50, 52
AMBIENT AND DIFFUSE, 50,

52

AND, 152
AND INVERTED, 152

AND REVERSE, 152
AreTexturesResident, 135, 179

ArrayElement, 19, 23, 24, 176
AUTO NORMAL, 168

AUXi, 152, 153
AUXn, 152, 159

AUX0, 152, 159

BACK, 49, 52, 70, 73, 152, 153,
159, 160, 184, 202

BACK LEFT, 152, 153, 159

BACK RIGHT, 152, 153, 159
Begin, 12, 15{20, 23, 24, 28, 54,

62, 67, 70, 73, 169, 170,
175

BGR, 92, 160, 163
BGRA, 92, 94, 98, 160, 231

BindTexture, 134
BITMAP, 72, 89, 91, 98, 111, 161,

186
Bitmap, 111
BITMAP TOKEN, 177

BLEND, 136, 138, 147, 151

236

DRAFT Version 1.2 - Jan. 2, 1998

INDEX 237

BlendColor, 77, 147

BlendEquation, 77, 147, 148, 150
BlendFunc, 77, 147, 148, 150

BLUE, 78, 92, 160, 161, 209, 211,
217

BLUE BIAS, 101
BLUE SCALE, 101

BYTE, 22, 91, 161, 162, 178

C3F V3F, 25, 26
C4F N3F V3F, 25, 26
C4UB V2F, 25, 26

C4UB V3F, 25, 26
CallList, 19, 178, 179

CallLists, 19, 178, 179
can't be pushed or pop'd, 192

CCW, 48, 202
CLAMP, 125, 129

CLAMP TO EDGE, 125, 126,
129, 232

CLEAR, 152
Clear, 155, 156
ClearAccum, 155

ClearColor, 155
ClearDepth, 155

ClearIndex, 155
ClearStencil, 155

CLIENT PIXEL STORE BIT,
192

CLIENT VERTEX ARRAY BIT,
192

CLIP PLANEi, 39
CLIP PLANE0, 39
ClipPlane, 38

COEFF, 185
COLOR, 81, 85, 86, 121, 163

Color, 19{21, 42, 56
Color3, 20

Color4, 20
COLOR ARRAY, 23, 27

COLOR ARRAY POINTER, 190

COLOR BUFFER BIT, 155, 192
COLOR INDEX, 72, 89, 92, 102,

111, 160, 163, 185, 186
COLOR INDEXES, 50, 53

COLOR LOGIC OP, 151
COLOR MATERIAL, 52

COLOR MATRIX, 31, 34, 86, 186
COLOR MATRIX STACK DEPTH,

186
COLOR TABLE, 80, 82, 103
COLOR TABLE ALPHA SIZE,

187
COLOR TABLE BIAS, 80, 187

COLOR TABLE BLUE SIZE,
187

COLOR TABLE FORMAT, 187
COLOR TABLE GREEN SIZE,

187
COLOR TABLE INTENSITY SIZE,

187
COLOR TABLE LUMINANCE SIZE,

187

COLOR TABLE RED SIZE, 187
COLOR TABLE SCALE, 80, 81,

187
COLOR TABLE WIDTH, 187

ColorMask, 154
ColorMaterial, 51, 52, 168, 224,

229
ColorPointer, 19, 21, 22, 27, 179

ColorSubTable, 81, 82
ColorTable, 79, 81{83, 108, 109,

180

ColorTableParameter, 80
ColorTableParameterfv, 80

Colorub, 55
Colorui, 55

Colorus, 55
COMPILE, 176, 224

DRAFT Version 1.2 - Jan. 2, 1998

INDEX 238

COMPILE AND EXECUTE,

176, 178, 179
CONSTANT ALPHA, 77, 149,

150
CONSTANT ATTENUATION,

50
CONSTANT BORDER, 105, 106

CONSTANT COLOR, 77, 149,
150

CONVOLUTION 1D, 84, 86, 103,
118, 187, 188

CONVOLUTION 2D, 83{85, 103,

118, 187, 188
CONVOLUTION BORDER COLOR,

106, 188
CONVOLUTION BORDER MODE,

105, 188
CONVOLUTION FILTER BIAS,

83{85, 188
CONVOLUTION FILTER SCALE,

83{86, 188
CONVOLUTION FORMAT, 188
CONVOLUTION HEIGHT, 188

CONVOLUTION WIDTH, 188
ConvolutionFilter1D, 84{86

ConvolutionFilter2D, 83{86
ConvolutionParameter, 84, 105

ConvolutionParameterfv, 83, 84,
106

ConvolutionParameteriv, 85, 106
COPY, 151, 152, 206

COPY INVERTED, 152
COPY PIXEL TOKEN, 177
CopyColorSubTable, 81, 82

CopyColorTable, 81, 82
CopyConvolutionFilter1D, 85

CopyConvolutionFilter2D, 85
CopyPixels, 75, 78, 81, 85, 86, 103,

121, 157, 163, 164, 174
CopyTexImage1D, 103, 121, 122,

131

CopyTexImage2D, 103, 119, 121,
122, 131

CopyTexImage3D, 122
CopyTexSubImage1D, 103, 122,

124
CopyTexSubImage2D, 103, 122,

123
CopyTexSubImage3D, 122, 123

CULL FACE, 70
CullFace, 70
CURRENT BIT, 192

CURRENT RASTER TEXTURE COORDINATES,
223

CW, 48

DECAL, 136, 138
DECR, 145

DeleteLists, 179
DeleteTextures, 134, 179

DEPTH, 163, 209
DEPTH BIAS, 78, 101
DEPTH BUFFER BIT, 155, 192

DEPTH COMPONENT, 80, 83,
89, 92, 113, 159, 160, 163,

185
DEPTH SCALE, 78, 101

DEPTH TEST, 146
DepthFunc, 146

DepthMask, 154
DepthRange, 30, 183, 225

DIFFUSE, 50, 52
Disable, 35, 38, 39, 44, 51, 52, 60,

64, 67, 70, 72, 75, 108{

110, 136, 139, 144{147,
151, 167, 168

DisableClientState, 19, 23, 27, 179
DITHER, 151

DOMAIN, 185
DONT CARE, 181

DRAFT Version 1.2 - Jan. 2, 1998

INDEX 239

DOUBLE, 22

DRAW PIXEL TOKEN, 177
DrawArrays, 23, 24, 176

DrawBu�er, 152, 153
DrawElements, 24, 25, 176, 233

DrawPixels, 72, 75, 76, 78, 80, 83,
89{94, 98, 100, 103, 111,

113, 114, 157, 159, 161,
163, 174

DrawRangeElements, 25, 216
DST ALPHA, 149
DST COLOR, 149

EDGE FLAG ARRAY, 23, 27

EDGE FLAG ARRAY POINTER,
190

EdgeFlag, 18, 19
EdgeFlagPointer, 19, 21, 22, 179

EdgeFlagv, 18
EMISSION, 50, 52

Enable, 35, 38, 39, 44, 51, 52, 60,
64, 67, 70, 72, 74, 108{
110, 136, 139, 144{147,

151, 167, 168, 182
ENABLE BIT, 192

EnableClientState, 19, 23, 27, 179
End, 12, 15{20, 23, 24, 28, 54, 62,

70, 73, 169, 170, 175
EndList, 176

EQUAL, 144{146
EQUIV, 152

EVAL BIT, 192
EvalCoord, 19, 167, 168
EvalCoord1, 168{170

EvalCoord1d, 169
EvalCoord1f, 169

EvalCoord2, 168, 170, 171
EvalMesh1, 169

EvalMesh2, 169, 170
EvalPoint, 19

EvalPoint1, 170

EvalPoint2, 170
EXP, 140, 141, 199

EXP2, 140
EXT bgra, 231

EXT blend color, 235
EXT blend logic op, 227

EXT blend minmax, 235
EXT blend subtract, 235

EXT color subtable, 234
EXT color table, 234
EXT convolution, 234

EXT copy texture, 228
EXT draw range elements, 233

EXT histogram, 235
EXT packed pixels, 232

EXT polygon o�set, 227
EXT rescale normal, 232

EXT separate specular color, 232
EXT subtexture, 228

EXT texture, 227, 228
EXT texture3D, 231
EXT texture object, 228

EXT vertex array, 226
EXTENSIONS, 190

EYE LINEAR, 37, 38, 184, 205
EYE PLANE, 37

FALSE, 18, 19, 46{48, 76, 78, 87,

88, 98, 101, 110, 111, 135,
159, 183, 186, 188, 189

FASTEST, 181
FEEDBACK, 172{174, 225
FEEDBACK BUFFER POINTER,

190
FeedbackBu�er, 174, 175, 179

FILL, 73{75, 169, 202, 224, 227
Finish, 179, 180, 223

FLAT, 54, 224

DRAFT Version 1.2 - Jan. 2, 1998

INDEX 240

FLOAT, 22, 26, 27, 91, 161, 162,

178, 197
Flush, 179, 180, 223

FOG, 139
Fog, 140, 141

FOG BIT, 192
FOG COLOR, 140

FOG DENSITY, 140
FOG END, 140

FOG HINT, 181
FOG INDEX, 141
FOG MODE, 140, 141

FOG START, 140
FRONT, 49, 52, 70, 73, 152, 153,

159, 160, 184
FRONT AND BACK, 49, 52, 70,

73, 152, 153
FRONT LEFT, 152, 153, 159

FRONT RIGHT, 152, 153, 159
FrontFace, 48, 70

Frustum, 32, 33, 224
FUNC ADD, 148, 150, 206
FUNC REVERSE SUBTRACT,

148
FUNC SUBTRACT, 148

GenLists, 179

GenTextures, 134, 179, 186
GEQUAL, 144{146

Get, 30, 179, 182, 183
GetBooleanv, 182, 183, 193

GetClipPlane, 183, 184
GetColorTable, 83, 159, 187
GetColorTableParameter, 187

GetConvolutionFilter, 159, 187
GetConvolutionParameter, 188

GetConvolutionParameteriv, 83,
84

GetDoublev, 182, 183, 193
GetError, 11

GetFloatv, 182, 183, 186, 193

GetHistogram, 88, 159, 188, 189
GetHistogramParameter, 189

GetIntegerv, 25, 182, 183, 186, 193
GetLight, 183, 184

GetMap, 184, 185
GetMaterial, 183, 184

GetMinmax, 159, 189
GetMinmaxParameter, 190

GetPixelMap, 184, 185
GetPointerv, 190
GetPolygonStipple, 186

GetSeparableFilter, 159, 188
GetString, 190

GetTexEnv, 183, 184
GetTexGen, 183, 184

GetTexImage, 133, 185, 187{189
GetTexImage1D, 159

GetTexImage2D, 159
GetTexImage3D, 159

GetTexLevelParameter, 184
GetTexParameter, 184
GetTexParameterfv, 133, 135

GetTexParameteriv, 133, 135
GL EXTENSIONS, 77

GREATER, 144{146
GREEN, 78, 92, 160, 161, 209,

211, 217
GREEN BIAS, 101

GREEN SCALE, 101

Hint, 180
HINT BIT, 192
HISTOGRAM, 87, 88, 110, 188,

189
Histogram, 87, 88, 110, 180

HISTOGRAM ALPHA SIZE, 189
HISTOGRAM BLUE SIZE, 189

HISTOGRAM FORMAT, 189

DRAFT Version 1.2 - Jan. 2, 1998

INDEX 241

HISTOGRAM GREEN SIZE,

189
HISTOGRAM LUMINANCE SIZE,

189
HISTOGRAM RED SIZE, 189

HISTOGRAM SINK, 189
HISTOGRAM WIDTH, 189

HP convolution border modes,
234

IGNORE BORDER, 105{107
INCR, 145

INDEX, 217
Index, 19, 21

INDEX ARRAY, 23, 27
INDEX ARRAY POINTER, 190

INDEX LOGIC OP, 151
INDEX OFFSET, 78, 101, 209

INDEX SHIFT, 78, 101, 209
IndexMask, 154

IndexPointer, 19, 22, 179
InitNames, 171, 172
INT, 22, 91, 161, 162, 178

INTENSITY, 87, 88, 103, 104,
115, 116, 137, 138, 186,

209, 227
INTENSITY12, 87, 88, 116

INTENSITY16, 87, 88, 116
INTENSITY4, 87, 88, 116

INTENSITY8, 87, 88, 116
InterleavedArrays, 19, 25, 26, 179

INVALID ENUM, 12, 13, 38, 49,
77, 83, 87{89, 121, 133,
185

INVALID OPERATION, 13, 19,
77, 89, 93, 134, 153, 157,

159, 160, 172, 174, 176
INVALID VALUE, 12, 13, 22, 25,

30, 33, 49, 60, 64, 76, 78{
80, 82{84, 87, 114, 115,

117, 122{124, 131, 135,

140, 144, 155, 166, 167,
169, 176, 178, 184, 185

INVERT, 145, 152
IsEnabled, 179, 182, 193

IsList, 179
IsTexture, 179, 185, 186

KEEP, 145, 146, 206

LEFT, 152, 153, 159

LEQUAL, 144{146
LESS, 144{146, 206
Light, 49, 50

LIGHTi, 49, 51, 225
LIGHT0, 49

LIGHT MODEL AMBIENT, 50
LIGHT MODEL COLOR CONTROL,

50
LIGHT MODEL LOCAL VIEWER,

50
LIGHT MODEL TWO SIDE, 50

LIGHTING, 43, 44
LIGHTING BIT, 192
LightModel, 49, 50

LINE, 73{75, 169, 170, 202, 227
LINE BIT, 192

LINE LOOP, 15
LINE RESET TOKEN, 177

LINE SMOOTH, 64
LINE SMOOTH HINT, 181

LINE STIPPLE, 67
LINE STRIP, 15, 169

LINE TOKEN, 177
LINEAR, 125, 126, 129, 131{133,

140, 232

LINEAR ATTENUATION, 50
LINEAR MIPMAP LINEAR,

125, 130, 132

DRAFT Version 1.2 - Jan. 2, 1998

INDEX 242

LINEAR MIPMAP NEAREST,

125, 130, 131
LINES, 16, 67

LineStipple, 66
LineWidth, 62

LIST BIT, 192
ListBase, 178, 180

LOAD, 156
LoadIdentity, 31

LoadMatrix, 31
LoadName, 172
LOGIC OP, 151

LogicOp, 151, 152
LUMINANCE, 92, 99, 103, 104,

115{117, 137, 138, 160,
161, 186, 209, 211, 227

LUMINANCE12, 116
LUMINANCE12 ALPHA12, 116

LUMINANCE12 ALPHA4, 116
LUMINANCE16, 116

LUMINANCE16 ALPHA16, 116
LUMINANCE4, 116
LUMINANCE4 ALPHA4, 116

LUMINANCE6 ALPHA2, 116
LUMINANCE8, 116

LUMINANCE8 ALPHA8, 116
LUMINANCE ALPHA, 92, 99,

103, 104, 115{117, 137,
138, 160, 161, 163, 186

Map1, 166, 167, 183

MAP1 COLOR 4, 166
MAP1 INDEX, 166
MAP1 NORMAL, 166

MAP1 TEXTURE COORD 1,
166, 168

MAP1 TEXTURE COORD 2,
166, 168

MAP1 TEXTURE COORD 3,
166

MAP1 TEXTURE COORD 4,

166
MAP1 VERTEX 3, 166

MAP1 VERTEX 4, 166
Map2, 166, 167, 183

MAP2 VERTEX 3, 168
MAP2 VERTEX 4, 168

MAP COLOR, 78, 101, 102
MAP STENCIL, 78, 102

MAP VERTEX 3, 168
MAP VERTEX 4, 168
MapGrid1, 169

MapGrid2, 169
Material, 19, 49, 50, 53, 224

MatrixMode, 31
MAX, 148

MAX ATTRIB STACK DEPTH,
191

MAX CLIENT ATTRIB STACK DEPTH,
191

MAX COLOR MATRIX STACK DEPTH,
186

MAX CONVOLUTION HEIGHT,

83, 188
MAX CONVOLUTION WIDTH,

83, 84, 188
MAX ELEMENTS INDICES, 25

MAX ELEMENTS VERTICES,
25

MAX EVAL ORDER, 166, 167
MAX TEXTURE SIZE, 117

MIN, 148
MINMAX, 88, 110, 189, 190
Minmax, 88, 111

MINMAX FORMAT, 190
MINMAX SINK, 190

MODELVIEW, 31, 34
MODULATE, 136, 137

MULT, 156, 157
MultMatrix, 31, 32

DRAFT Version 1.2 - Jan. 2, 1998

INDEX 243

N3F V3F, 25, 26

NAND, 152
NEAREST, 125, 126, 128, 131,

132, 232
NEAREST MIPMAP LINEAR,

125, 130, 132, 133
NEAREST MIPMAP NEAREST,

125, 130{132
NEVER, 144{146

NewList, 176, 179
NICEST, 181
NO ERROR, 11, 12

NONE, 152, 153
NOOP, 152

NOR, 152
Normal, 19, 20

Normal3, 8, 9, 20
Normal3d, 8

Normal3dv, 9
Normal3f, 8

Normal3fv, 9
NORMAL ARRAY, 23, 27
NORMAL ARRAY POINTER,

190
NORMALIZE, 35

NormalPointer, 19, 22, 27, 179
NOTEQUAL, 144{146

OBJECT LINEAR, 37, 38, 184

OBJECT PLANE, 37
ONE, 149, 150, 206

ONE MINUS CONSTANT ALPHA,
77, 149, 150

ONE MINUS CONSTANT COLOR,

77, 149, 150
ONE MINUS DST ALPHA, 149

ONE MINUS DST COLOR, 149
ONE MINUS SRC ALPHA, 149

ONE MINUS SRC COLOR, 149
OR, 152

OR INVERTED, 152

OR REVERSE, 152
ORDER, 185

Ortho, 32, 33, 224
OUT OF MEMORY, 12, 13, 176

PACK ALIGNMENT, 159, 208

PACK IMAGE HEIGHT, 159,
185, 208

PACK LSB FIRST, 159, 208
PACK ROW LENGTH, 159, 208
PACK SKIP IMAGES, 159, 185,

208
PACK SKIP PIXELS, 159, 208

PACK SKIP ROWS, 159, 208
PACK SWAP BYTES, 159, 208

PASS THROUGH TOKEN, 177
PassThrough, 175

PERSPECTIVE CORRECTION HINT,
181

PIXEL MAP A TO A, 79, 101
PIXEL MAP B TO B, 79, 101
PIXEL MAP G TO G, 79, 101

PIXEL MAP I TO A, 79, 102
PIXEL MAP I TO B, 79, 102

PIXEL MAP I TO G, 79, 102
PIXEL MAP I TO I, 79, 102

PIXEL MAP I TO R, 79, 102
PIXEL MAP R TO R, 79, 101

PIXEL MAP S TO S, 79, 102
PIXEL MODE BIT, 192

PixelMap, 75, 78, 79, 163
PixelStore, 19, 75, 76, 78, 159,

163, 179

PixelTransfer, 75, 78, 108, 163
PixelZoom, 100

POINT, 73{75, 169, 170, 202, 227
POINT BIT, 192

POINT SMOOTH, 60
POINT SMOOTH HINT, 181

DRAFT Version 1.2 - Jan. 2, 1998

INDEX 244

POINT TOKEN, 177

POINTS, 15, 169
PointSize, 60

POLYGON, 16, 19
POLYGON BIT, 192

POLYGON OFFSET FILL, 74,
75

POLYGON OFFSET LINE, 74,
75

POLYGON OFFSET POINT,
74, 75

POLYGON SMOOTH, 70

POLYGON SMOOTH HINT,
181

POLYGON STIPPLE, 72
POLYGON STIPPLE BIT, 192

POLYGON TOKEN, 177
PolygonMode, 69, 73, 75, 172, 174

PolygonO�set, 74
PolygonStipple, 72

PopAttrib, 191, 193, 225
PopClientAttrib, 19, 179, 191, 193
PopMatrix, 34

PopName, 171, 172
POSITION, 50, 184

POST COLOR MATRIX x BIAS,
78

POST COLOR MATRIX x SCALE,
78

POST COLOR MATRIX ALPHA BIAS,
109

POST COLOR MATRIX ALPHA SCALE,
109

POST COLOR MATRIX BLUE BIAS,

109
POST COLOR MATRIX BLUE SCALE,

109
POST COLOR MATRIX COLOR TABLE,

80, 109
POST COLOR MATRIX GREEN BIAS,

109

POST COLOR MATRIX GREEN SCALE,
109

POST COLOR MATRIX RED BIAS,
109

POST COLOR MATRIX RED SCALE,
109

POST CONVOLUTION x BIAS,
78

POST CONVOLUTION x SCALE,
78

POST CONVOLUTION ALPHA BIAS,

108
POST CONVOLUTION ALPHA SCALE,

108
POST CONVOLUTION BLUE BIAS,

108
POST CONVOLUTION BLUE SCALE,

108
POST CONVOLUTION COLOR TABLE,

80, 108
POST CONVOLUTION GREEN BIAS,

108

POST CONVOLUTION GREEN SCALE,
108

POST CONVOLUTION RED BIAS,
108

POST CONVOLUTION RED SCALE,
108

PrioritizeTextures, 135
PROJECTION, 31, 34

PROXY COLOR TABLE, 80, 82,
180

PROXY HISTOGRAM, 87, 88,

180, 189
PROXY POST COLOR MATRIX COLOR TABLE,

80, 180
PROXY POST CONVOLUTION COLOR TABLE,

80, 180
PROXY TEXTURE 1D, 118,

DRAFT Version 1.2 - Jan. 2, 1998

INDEX 245

133, 180, 184

PROXY TEXTURE 2D, 117,
133, 180, 184

PROXY TEXTURE 3D, 113,
133, 180, 184

PushAttrib, 191, 193
PushClientAttrib, 19, 179, 191,

193
PushMatrix, 34

PushName, 171, 172

Q, 37, 38, 184

QUAD STRIP, 17
QUADRATIC ATTENUATION,

50
QUADS, 18, 19

R, 37, 38, 184

R3 G3 B2, 116
RasterPos, 41, 172, 224

RasterPos2, 41
RasterPos3, 41

RasterPos4, 41
ReadBu�er, 159, 160, 163
ReadPixels, 75, 76, 78, 91, 92, 94,

103, 157{161, 163, 179,
185{187

Rect, 28, 70
RED, 78, 92, 160, 161, 209, 211,

217
RED BIAS, 101

RED SCALE, 101
REDUCE, 105, 106, 108, 210

RENDER, 172, 173, 218
RENDERER, 190
RenderMode, 172{175, 179

REPEAT, 125, 126, 128, 129, 133,
204

REPLACE, 136, 137, 145
REPLICATE BORDER, 105, 107

RESCALE NORMAL, 35

ResetHistogram, 188
ResetMinmax, 189

RETURN, 156, 157
RGB, 92, 94, 98, 103, 104, 115{

117, 137, 138, 160, 163,
186, 227

RGB10, 116
RGB10 A2, 116

RGB12, 116
RGB16, 116
RGB4, 116

RGB5, 116
RGB5 A1, 116

RGB8, 116
RGBA, 81, 82, 85{88, 92, 94, 98,

103, 104, 115{117, 137,
138, 160, 163, 186, 209,

210
RGBA12, 116

RGBA16, 116
RGBA2, 116
RGBA4, 116

RGBA8, 116
RIGHT, 152, 153, 159

Rotate, 32, 224

S, 37, 184
Scale, 32, 33, 224

Scissor, 144
SCISSOR BIT, 192

SCISSOR TEST, 144
SELECT, 172, 173, 225
SelectBu�er, 172, 173, 179

SELECTION BUFFER POINTER,
190

SEPARABLE 2D, 85, 103, 118,
188

SeparableFilter2D, 84

DRAFT Version 1.2 - Jan. 2, 1998

INDEX 246

SEPARATE SPECULAR COLOR,

47
SET, 152

SGI color matrix, 235
SGIS texture edge clamp, 232

SGIS texture lod, 233
ShadeModel, 54

SHININESS, 50
SHORT, 22, 91, 161, 162, 178

SINGLE COLOR, 46, 47, 200
SMOOTH, 54, 199
SPECULAR, 50, 52

SPHERE MAP, 37, 38
SPOT CUTOFF, 50

SPOT DIRECTION, 50, 184
SPOT EXPONENT, 50

SRC ALPHA, 149
SRC ALPHA SATURATE, 149

SRC COLOR, 149
STACK OVERFLOW, 13, 34,

172, 191
STACK UNDERFLOW, 13, 34,

172, 191

STENCIL, 163
STENCIL BUFFER BIT, 155,

192
STENCIL INDEX, 80, 83, 89, 92,

100, 113, 157, 159, 160,
163, 185

STENCIL TEST, 145
StencilFunc, 145, 223

StencilMask, 154, 157, 224
StencilOp, 145, 146

T, 37, 184
T2F C3F V3F, 25, 26

T2F C4F N3F V3F, 25, 26
T2F C4UB V3F, 25, 26

T2F N3F V3F, 25, 26
T2F V3F, 25, 26

T4F C4F N3F V4F, 25, 26

T4F V4F, 25, 26
TABLE TOO LARGE, 13, 80, 87

TexCoord, 19, 20
TexCoord1, 20

TexCoord2, 20
TexCoord3, 20

TexCoord4, 20
TexCoordPointer, 19, 21, 22, 27,

179
TexEnv, 136
TexGen, 36{38

TexImage, 122
TexImage1D, 76, 103, 105, 114,

117{119, 121, 122, 131,
133, 180

TexImage2D, 76, 83, 87, 88, 103,
105, 114, 117{119, 121,

122, 131, 133, 180
TexImage3D, 76, 113{115, 117{

119, 122, 131, 133, 179,
185

TexParameter, 124

TexParameter[if], 127, 131
TexParameterf, 135

TexParameterfv, 135
TexParameteri, 135

TexParameteriv, 135
TexSubImage, 122

TexSubImage1D, 121, 122, 124
TexSubImage2D, 103, 121{123

TexSubImage3D, 121, 122
TEXTURE, 31, 34
TEXTURE xD, 203

TEXTURE 1D, 118, 121, 122,
125, 133, 134, 136, 184,

185
TEXTURE 2D, 117, 121, 122,

125, 133, 134, 136, 184,
185

DRAFT Version 1.2 - Jan. 2, 1998

INDEX 247

TEXTURE 3D, 113, 122, 125,

133, 134, 139, 184, 185
TEXTURE ALPHA SIZE, 184

TEXTURE BASE LEVEL, 125,
127, 131, 132

TEXTURE BIT, 191, 192
TEXTURE BLUE SIZE, 184

TEXTURE BORDER, 184
TEXTURE BORDER COLOR,

125, 130, 133
TEXTURE COMPONENTS, 184
TEXTURE COORD ARRAY,

23, 27
TEXTURE COORD ARRAY POINTER,

190
TEXTURE DEPTH, 184

TEXTURE ENV, 136, 184
TEXTURE ENV COLOR, 136

TEXTURE ENV MODE, 136
TEXTURE GEN MODE, 37, 38

TEXTURE GEN Q, 38
TEXTURE GEN R, 38
TEXTURE GEN S, 38

TEXTURE GEN T, 38
TEXTURE GREEN SIZE, 184

TEXTURE HEIGHT, 184
TEXTURE INTENSITY SIZE,

184
TEXTURE INTERNAL FORMAT,

184
TEXTURE LUMINANCE SIZE,

184
TEXTURE MAG FILTER, 125,

132, 133

TEXTURE MAX LEVEL, 125,
131

TEXTURE MAX LOD, 125, 127
TEXTURE MIN FILTER, 125,

128{133
TEXTURE MIN LOD, 125, 127

TEXTURE PRIORITY, 125, 135

TEXTURE RED SIZE, 184
TEXTURE RESIDENT, 135

TEXTURE WIDTH, 184
TEXTURE WRAP R, 125, 129

TEXTURE WRAP S, 125, 128,
129

TEXTURE WRAP T, 125, 129
TRANSFORM BIT, 192

Translate, 32, 224
TRIANGLE FAN, 17
TRIANGLE STRIP, 16

TRIANGLES, 17, 19
TRUE, 18, 19, 40, 46{48, 76, 78,

87, 88, 135, 154, 159, 179,
183, 186, 188, 189

UNPACK ALIGNMENT, 76, 93,

113, 208
UNPACK IMAGE HEIGHT, 76,

113, 208
UNPACK LSB FIRST, 76, 98,

208

UNPACK ROW LENGTH, 76,
93, 113, 208

UNPACK SKIP IMAGES, 76,
113, 118, 208

UNPACK SKIP PIXELS, 76, 93,
98, 208

UNPACK SKIP ROWS, 76, 93,
98, 208

UNPACK SWAP BYTES, 76, 89,
92, 208

UNSIGNED BYTE, 22, 24, 26,

91, 95, 161, 162, 178
UNSIGNED BYTE 2 3 3 REV,

91, 93{95, 162
UNSIGNED BYTE 3 3 2, 91, 93{

95, 162

DRAFT Version 1.2 - Jan. 2, 1998

INDEX 248

UNSIGNED INT, 22, 24, 91, 97,

161, 162, 178
UNSIGNED INT 10 10 10 2, 91,

93, 94, 97, 162
UNSIGNED INT 2 10 10 10 REV,

91, 93, 94, 97, 162
UNSIGNED INT 8 8 8 8, 91, 93,

94, 97, 162
UNSIGNED INT 8 8 8 8 REV,

91, 93, 94, 97, 162
UNSIGNED SHORT, 22, 24, 91,

96, 161, 162, 178

UNSIGNED SHORT 1 5 5 5 REV,
91, 93, 94, 96, 162

UNSIGNED SHORT 4 4 4 4, 91,
93, 94, 96, 162

UNSIGNED SHORT 4 4 4 4 REV,
91, 93, 94, 96, 162

UNSIGNED SHORT 5 5 5 1, 91,
93, 94, 96, 162

UNSIGNED SHORT 5 6 5, 91,
93, 94, 96, 162

UNSIGNED SHORT 5 6 5 REV,

91, 93, 94, 96, 162

V2F, 25, 26
V3F, 25, 26

VENDOR, 190
VERSION, 190

Vertex, 7, 19, 20, 41, 168
Vertex2, 20, 28

Vertex2sv, 7
Vertex3, 20
Vertex3f, 7

Vertex4, 20
VERTEX ARRAY, 23, 27

VERTEX ARRAY POINTER,
190

VertexPointer, 19, 22, 27, 179
Viewport, 30

VIEWPORT BIT, 192

XOR, 152

ZERO, 145, 149, 150, 206

