
An Interactive Introduction to OpenGL Programming

1

An Interactive Introduction to
OpenGL Programming

Dave Shreiner
Ed Angel

Vicki Shreiner

An Interactive Introduction to OpenGL Programming

2

2

What You’ll See Today

• General OpenGL Introduction
• Rendering Primitives
• Rendering Modes
• Lighting
• Texture Mapping
• Additional Rendering Attributes
• Imaging

This course provides a general introduction and overview to the OpenGL API
(Application Programming Interface) and its features. OpenGL is a rendering
library available on almost any computer which supports a graphics monitor.

Today, we’ll discuss the basic elements of OpenGL: rendering points, lines,
polygons and images, as well as more advanced features as lighting and texture
mapping.

An Interactive Introduction to OpenGL Programming

3

3

Goals for Today

• Demonstrate enough OpenGL to write an
interactive graphics program with
• custom modeled 3D objects or imagery

• lighting

• texture mapping

• Introduce advanced topics for future
investigation

Today we hope to demonstrate the capabilities and flexibility of OpenGL such
that you’ll be able to author your own programs which can display 3D objects
with lighting effects, shading, and custom texture maps.

Additionally, we’ll introduce more advanced OpenGL topics for further
personal investigation.

One of OpenGL’s strengths is that its interface is easy to use for the novice, yet
powerful enough to satisfy the requirement of professional applications,
whether they be for flight simulation, animation, computer aided design, or
scientific visualization.

An Interactive Introduction to OpenGL Programming

4

OpenGL and GLUT Overview

Vicki Shreiner

An Interactive Introduction to OpenGL Programming

5

5

OpenGL and GLUT Overview

• What is OpenGL & what can it do for me?
• OpenGL in windowing systems
• Why GLUT
• A GLUT program template

In this section, we discuss what the OpenGL API (Application Programming
Interface) is, and some of its capabilities.

As OpenGL is platform independent, we need some way to integrate OpenGL
into each windowing system. Every windowing system where OpenGL is
supported has additional API calls for managing OpenGL windows, colormaps,
and other features. These additional APIs are platform dependent.

For the sake of simplicity, we’ll use an additional freeware library for
simplifying interacting with windowing systems, GLUT. GLUT, the OpenGL
Utility Toolkit is a library to make writing OpenGL programs regardless of
windowing systems much easier. It’ll be the base of all of our examples in the
class.

We conclude the section with a basic program template for an OpenGL
program using GLUT.

An Interactive Introduction to OpenGL Programming

6

6

What Is OpenGL?

• Graphics rendering API
• high-quality color images composed of geometric

and image primitives

• window system independent

• operating system independent

OpenGL is a library for doing computer graphics. By using it, you can create
interactive applications which render high-quality color images composed of
3D geometric objects and images.

OpenGL is window and operating system independent. As such, the part of
your application which does rendering is platform independent. However, in
order for OpenGL to be able to render, it needs a window to draw into.
Generally, this is controlled by the windowing system on whatever platform
you’re working on.

An Interactive Introduction to OpenGL Programming

7

7

OpenGL Architecture

Display
List

Polynomial
Evaluator

Per Vertex
Operations &

Primitive
Assembly

Rasterization Per Fragment
Operations

Frame
Buffer

Texture
Memory

CPU

Pixel
Operations

This is the most important diagram you will see today, representing the flow of
graphical information, as it is processed from CPU to the frame buffer.

There are two pipelines of data flow. The upper pipeline is for geometric,
vertex-based primitives. The lower pipeline is for pixel-based, image
primitives. Texturing combines the two types of primitives together.

There is a pull-out poster in the back of the OpenGL Reference Manual (“Blue
Book”), which shows this diagram in more detail.

An Interactive Introduction to OpenGL Programming

8

8

OpenGL as a Renderer

• Geometric primitives
• points, lines and polygons

• Image Primitives
• images and bitmaps

• separate pipeline for images and geometry

• linked through texture mapping

• Rendering depends on state
• colors, materials, light sources, etc.

As mentioned, OpenGL is a library for rendering computer graphics. Generally,
there are two operations that you do with OpenGL:

• draw something

• change the state of how OpenGL draws

OpenGL has two types of things that it can render: geometric primitives and
image primitives. Geometric primitives are points, lines and polygons. Image
primitives are bitmaps and graphics images (i.e. the pixels that you might
extract from a JPEG image after you’ve read it into your program.)
Additionally, OpenGL links image and geometric primitives together using
texture mapping, which is an advanced topic we’ll discuss this afternoon.

The other common operation that you do with OpenGL is setting state. “Setting
state” is the process of initializing the internal data that OpenGL uses to render
your primitives. It can be as simple as setting up the size of points and color
that you want a vertex to be, to initializing multiple mipmap levels for texture
mapping.

An Interactive Introduction to OpenGL Programming

9

9

Related APIs

• AGL, GLX, WGL
• glue between OpenGL and windowing systems

• GLU (OpenGL Utility Library)
• part of OpenGL

• NURBS, tessellators, quadric shapes, etc.

• GLUT (OpenGL Utility Toolkit)
• portable windowing API

• not officially part of OpenGL

As mentioned, OpenGL is window and operating system independent. To
integrate it into various window systems, additional libraries are used to modify
a native window into an OpenGL capable window. Every window system has
its own unique library and functions to do this. Some examples are:

• GLX for the X Windows system, common on Unix platforms

• AGL for the Apple Macintosh

• WGL for Microsoft Windows

OpenGL also includes a utility library, GLU, to simplify common tasks such as:
rendering quadric surfaces (i.e. spheres, cones, cylinders, etc.), working with
NURBS and curves, and concave polygon tessellation.

Finally to simplify programming and window system dependence, we’ll be
using the freeware library, GLUT. GLUT, written by Mark Kilgard, is a public
domain window system independent toolkit for making simple OpenGL
applications. It simplifies the process of creating windows, working with
events in the window system and handling animation.

An Interactive Introduction to OpenGL Programming

10

10

OpenGL and Related APIs

GLUT

GLU

GL

GLX, AGL
or WGL

X, Win32, Mac O/S

software and/or hardware

application program

OpenGL Motif
widget or similar

The above diagram illustrates the relationships of the various libraries and
window system components.

Generally, applications which require more user interface support will use a
library designed to support those types of features (i.e. buttons, menu and scroll
bars, etc.) such as Motif or the Win32 API.

Prototype applications, or one which don’t require all the bells and whistles of a
full GUI, may choose to use GLUT instead because of its simplified
programming model and window system independence.

An Interactive Introduction to OpenGL Programming

11

11

Preliminaries

• Headers Files
• #include <GL/gl.h>

• #include <GL/glu.h>

• #include <GL/glut.h>

• Libraries
• Enumerated Types

• OpenGL defines numerous types for compatibility
– GLfloat, GLint, GLenum, etc.

All of our discussions today will be presented in the C computer language.

For C, there are a few required elements which an application must do:

• Header files describe all of the function calls, their parameters and
defined constant values to the compiler. OpenGL has header files for
GL (the core library), GLU (the utility library), and GLUT (freeware
windowing toolkit).

Note: glut.h includes gl.h and glu.h . On Microsoft Windows,
including only glut.h is recommended to avoid warnings about
redefining Windows macros.

• Libraries are the operating system dependent implementation of
OpenGL on the system you’re using. Each operating system has its own
set of libraries. For Unix systems, the OpenGL library is commonly
named libGL.so and for Microsoft Windows, it’s named
opengl32.lib .

• Finally, enumerated types are definitions for the basic types (i.e. float,
double, int, etc.) which your program uses to store variables. To
simplify platform independence for OpenGL programs, a complete set
of enumerated types are defined. Use them to simplify transferring your
programs to other operating systems.

An Interactive Introduction to OpenGL Programming

12

12

GLUT Basics

• Application Structure
• Configure and open window

• Initialize OpenGL state

• Register input callback functions

• render

• resize

• input: keyboard, mouse, etc.

• Enter event processing loop

Here’s the basic structure that we’ll be using in our applications. This is
generally what you’d do in your own OpenGL applications.

The steps are:

 1) Choose the type of window that you need for your application and
initialize it.

 2) Initialize any OpenGL state that you don’t need to change every frame of
your program. This might include things like the background color, light
positions and texture maps.

 3) Register the callback functions that you’ll need. Callbacks are routines you
write that GLUT calls when a certain sequence of events occurs, like the
window needing to be refreshed, or the user moving the mouse. The most
important callback function is the one to render your scene, which we’ll discuss
in a few slides.

 4) Enter the main event processing loop. This is where your application
receives events, and schedules when callback functions are called.

An Interactive Introduction to OpenGL Programming

13

13

Sample Program

void main(int argc, char** argv)
{
 int mode = GLUT_RGB|GLUT_DOUBLE;
 glutInitDisplayMode(mode);
 glutCreateWindow(argv[0]);

 init();

 glutDisplayFunc(display);
 glutReshapeFunc(resize);
 glutKeyboardFunc(key);
 glutIdleFunc(idle);

 glutMainLoop();
}

Here’s an example of the main part of a GLUT based OpenGL application.
This is the model that we’ll use for most of our programs in the course.

The glutInitDisplayMode() and glutCreateWindow() functions
compose the window configuration step.

We then call the init() routine, which contains our one-time initialization.
Here we initialize any OpenGL state and other program variables that we might
need to use during our program that remain constant throughout the program’s
execution.

Next, we register the callback routines that we’re going to use during our
program.

Finally, we enter the event processing loop, which interprets events and calls
our respective callback routines.

An Interactive Introduction to OpenGL Programming

14

14

OpenGL Initialization

• Set up whatever state you’re going to use

void init(void)
{
 glClearColor(0.0, 0.0, 0.0, 1.0);
 glClearDepth(1.0);

 glEnable(GL_LIGHT0);
 glEnable(GL_LIGHTING);
 glEnable(GL_DEPTH_TEST);
}

Here’s the internals of our initialization routine, init() . Over the course of
the day, you’ll learn what each of the above OpenGL calls do.

An Interactive Introduction to OpenGL Programming

15

15

GLUT Callback Functions

• Routine to call when something happens
• window resize or redraw

• user input

• animation

• “Register” callbacks with GLUT
glutDisplayFunc(display);

glutIdleFunc(idle);

glutKeyboardFunc(keyboard);

GLUT uses a callback mechanism to do its event processing. Callbacks
simplify event processing for the application developer. As compared to more
traditional event driven programming, where the author must receive and
process each event, and call whatever actions are necessary, callbacks simplify
the process by defining what actions are supported, and automatically handling
the user events. All the author must do is fill in what should happen when.

GLUT supports many different callback actions, including:

• glutDisplayFunc() - called when pixels in the window need to
be refreshed.

• glutReshapeFunc() - called when the window changes size

• glutKeyboardFunc() - called when a key is struck on the
keyboard

• glutMouseFunc() - called when the user presses a mouse button
on the mouse

• glutMotionFunc() - called when the user moves the mouse while
a mouse button is pressed

• glutPassiveMouseFunc() - called when the mouse is moved
regardless of mouse button state

• glutIdleFunc() - a callback function called when nothing else is
going on. Very useful for animations.

An Interactive Introduction to OpenGL Programming

16

16

Rendering Callback

• Do all of your drawing here
glutDisplayFunc(display);

void display(void)
{
 glClear(GL_COLOR_BUFFER_BIT);
 glBegin(GL_TRIANGLE_STRIP);
 glVertex3fv(v[0]);
 glVertex3fv(v[1]);
 glVertex3fv(v[2]);
 glVertex3fv(v[3]);
 glEnd();
 glutSwapBuffers();
}

One of the most important callbacks is the glutDisplayFunc() callback.
This callback is called when the window needs to be refreshed. It’s here that
you’d do all of your OpenGL rendering.

The above routine merely clears the window, and renders a triangle strip and
then swaps the buffers for smooth animation transition. You’ll learn more about
what each of these calls do during the day.

An Interactive Introduction to OpenGL Programming

17

17

Idle Callbacks

• Use for animation and continuous update
glutIdleFunc(idle);

void idle(void)
{
 t += dt;
 glutPostRedisplay();
}

Animation requires the ability to draw a sequence of images. The
glutIdleFunc() is the mechanism for doing animation. You register a
routine which updates your motion variables (usually global variables in your
program which control how things move) and then requests that the scene be
updated.

glutPostRedisplay() requests that the callback registered with
glutDisplayFunc() be called as soon as possible. This is preferred over
calling your rendering routine directly, since the user may have interacted with
your application and user input events need to be processed.

An Interactive Introduction to OpenGL Programming

18

18

User Input Callbacks

• Process user input
glutKeyboardFunc(keyboard);

void keyboard(char key, int x, int y)
{
 switch(key) {
 case ‘q’ : case ‘Q’ :
 exit(EXIT_SUCCESS);
 break;
 case ‘r’ : case ‘R’ :
 rotate = GL_TRUE;
 break;
 }
}

Above is a simple example of a user input callback. In this case, the routine was
registered to receive keyboard input. GLUT supports user input through a
number of devices including the keyboard, mouse, dial and button boxes and
spaceballs.

An Interactive Introduction to OpenGL Programming

19

Elementary Rendering

Vicki Shreiner

An Interactive Introduction to OpenGL Programming

20

20

Elementary Rendering

• Geometric Primitives
• Managing OpenGL State
• OpenGL Buffers

In this section, we’ll be discussing the basic geometric primitives that OpenGL
uses for rendering, as well as how to manage the OpenGL state which controls
the appearance of those primitives.

OpenGL also supports the rendering of bitmaps and images, which is discussed
in a later section.

Additionally, we’ll discuss the different types of OpenGL buffers, and what
each can be used for.

An Interactive Introduction to OpenGL Programming

21

21

OpenGL Geometric Primitives

• All geometric primitives are specified by
vertices

GL_QUAD_STRIP

GL_POLYGON

GL_TRIANGLE_STRIP GL_TRIANGLE_FAN

GL_POINTS

GL_LINES

GL_LINE_LOOPGL_LINE_STRIP

GL_TRIANGLES

GL_QUADS

Every OpenGL geometric primitive is specified by its vertices, which are
homogenous coordinates. Homogenous coordinates are of the form
(x, y, z, w). Depending on how vertices are organized, OpenGL can render any
of the shown primitives.

An Interactive Introduction to OpenGL Programming

22

22

Simple Example

void drawRhombus(GLfloat color[])
{

 glBegin(GL_QUADS);
 glColor3fv(color);
 glVertex2f(0.0, 0.0);
 glVertex2f(1.0, 0.0);
 glVertex2f(1.5, 1.118);
 glVertex2f(0.5, 1.118);
 glEnd();

}

The drawRhombus() routine causes OpenGL to render a single quadrilateral
in a single color. The rhombus is planar, since the z value is automatically set
to 0.0 by glVertex2f() .

An Interactive Introduction to OpenGL Programming

23

23

OpenGL Command Formats

glVertex3fv(v)

Number of
components

2 - (x,y)
3 - (x,y,z)
4 - (x,y,z,w)

Data Type

b - byte
ub - unsigned byte
s - short
us - unsigned short
i - int
ui - unsigned int
f - float
d - double

Vector

omit “v” for
scalar form

glVertex2f(x, y)

The OpenGL API calls are designed to accept almost any basic data type,
which is reflected in the calls name. Knowing how the calls are structured
makes it easy to determine which call should be used for a particular data
format and size.

For instance, vertices from most commercial models are stored as three
component floating point vectors. As such, the appropriate OpenGL command
to use is glVertex3fv (coords).

As mentioned before, OpenGL uses homogenous coordinates to specify
vertices. For glVertex*() calls which don’t specify all the coordinates
(i.e. glVertex2f()), OpenGL will default z = 0.0, and w = 1.0 .

An Interactive Introduction to OpenGL Programming

24

24

Specifying Geometric Primitives

• Primitives are specified using
glBegin(primType);

glEnd();

• primType determines how vertices are combined

GLfloat red, greed, blue;
Glfloat coords[3];
glBegin(primType);
for (i = 0; i < nVerts; ++i) {
 glColor3f(red, green, blue);
 glVertex3fv(coords);
}
glEnd();

OpenGL organizes vertices into primitives based upon which type is passed
into glBegin() . The possible types are:

GL_POINTS GL_LINE_STRIP

GL_LINES GL_LINE_LOOP

GL_POLYGON GL_TRIANGLE_STRIP

GL_TRIANGLES GL_TRIANGLE_FAN

GL_QUADS GL_QUAD_STRIP

An Interactive Introduction to OpenGL Programming

25

25

OpenGL Color
Models

• RGBA or Color Index
color index mode

Display1
2

4
8

16
���

���

Red Green Blue

0
1
2
3

24
25
26

123 219 74

��

��

RGBA mode

CPU DL

Poly.
Per

Vertex

Raster Frag FB

Pixel

Texture

Every OpenGL implementation must support rendering in both RGBA mode,
(sometimes described as TrueColor mode) and color index (or colormap)
mode.

For RGBA rendering, vertex colors are specified using the glColor*() call.

For color index rendering, the vertex’s index is specified with glIndex*() .

The type of window color model is requested from the windowing system.
Using GLUT, the glutInitDisplayMode() call is used to specify either
an RGBA window (using GLUT_RGBA), or a color indexed window (using
GLUT_INDEX).

An Interactive Introduction to OpenGL Programming

26

26

Shapes Tutorial

This is the first of the series of Nate Robins’ tutorials. This tutorial illustrates
the principles of rendering geometry, specifying both colors and vertices.

The shapes tutorial has two views: a screen-space window and a command
manipulation window.

In the command manipulation window, pressing the LEFT mouse while the
pointer is over the green parameter numbers allows you to move the mouse in
the y-direction (up and down) and change their values. With this action, you
can change the appearance of the geometric primitive in the other window.
With the RIGHT mouse button, you can bring up a pop-up menu to change the
primitive you are rendering. (Note that the parameters have minimum and
maximum values in the tutorials, sometimes to prevent you from wandering too
far. In an application, you probably don’t want to have floating-point color
values less than 0.0 or greater than 1.0, but you are likely to want to position
vertices at coordinates outside the boundaries of this tutorial.)

In the screen-space window, the RIGHT mouse button brings up a different
pop-up menu, which has menu choices to change the appearance of the
geometry in different ways.

The left and right mouse buttons will do similar operations in the other
tutorials.

An Interactive Introduction to OpenGL Programming

27

27

Controlling Rendering
Appearance

• From Wireframe to Texture Mapped

OpenGL can render from a simple line-based wireframe to complex multi-pass
texturing algorithms to simulate bump mapping or Phong lighting.

An Interactive Introduction to OpenGL Programming

28

28

OpenGL’s State Machine

• All rendering attributes are encapsulated
in the OpenGL State
• rendering styles

• shading

• lighting

• texture mapping

Each time OpenGL processes a vertex, it uses data stored in its internal state
tables to determine how the vertex should be transformed, lit, textured or any of
OpenGL’s other modes.

An Interactive Introduction to OpenGL Programming

29

29

Manipulating OpenGL State

• Appearance is controlled by current state
 for each (primitive to render) {

 update OpenGL state
 render primitive

 }

• Manipulating vertex attributes is most
 common way to manipulate state

glColor*() / glIndex*()
glNormal*()
glTexCoord*()

The general flow of any OpenGL rendering is to set up the required state, then
pass the primitive to be rendered, and repeat for the next primitive.

In general, the most common way to manipulate OpenGL state is by setting
vertex attributes, which include color, lighting normals, and texturing
coordinates.

An Interactive Introduction to OpenGL Programming

30

30

Controlling current state

• Setting State
glPointSize(size);

glLineStipple(repeat , pattern);

glShadeModel(GL_SMOOTH);

• Enabling Features
glEnable(GL_LIGHTING);

glDisable(GL_TEXTURE_2D);

Setting OpenGL state usually includes modifying the rendering attribute, such
as loading a texture map, or setting the line width. Also for some state changes,
setting the OpenGL state also enables that feature (like setting the point size or
line width).

Other features need to be turned on. This is done using glEnable() , and
passing the token for the feature, like GL_LIGHT0 or
GL_POLYGON_STIPPLE.

An Interactive Introduction to OpenGL Programming

31

Transformations

Ed Angel

An Interactive Introduction to OpenGL Programming

32

32

Transformations in OpenGL

• Modeling
• Viewing

• orient camera

• projection

• Animation
• Map to screen

Transformations are used both by the applications programmer to move and
orient objects (either statically or dynamically) and by OpenGL to implement
the viewing pipeline.

Three transformations (model-view, perspective, texture) are part of the state.
Their matrices can be set by application programs but the operations are carried
out within the viewing pipeline.

An Interactive Introduction to OpenGL Programming

33

33

Camera Analogy

• 3D is just like taking a photograph (lots of
photographs!)

camera

tripod model

viewing
volume

This model has become know as the synthetic camera model.

Note that both the objects to be viewed and the camera are three-dimensional
while the resulting image is two dimensional.

An Interactive Introduction to OpenGL Programming

34

34

Camera Analogy and
Transformations

• Projection transformations
• adjust the lens of the camera

• Viewing transformations
• tripod–define position and orientation of the viewing

volume in the world

• Modeling transformations
• moving the model

• Viewport transformations
• enlarge or reduce the physical photograph

Note that human vision and a camera lens have cone-shaped viewing volumes.
OpenGL (and almost all computer graphics APIs) describe a pyramid-shaped
viewing volume. Therefore, the computer will “see” differently from the natural
viewpoints, especially along the edges of viewing volumes. This is particularly
pronounced for wide-angle “fish-eye” camera lenses.

An Interactive Introduction to OpenGL Programming

35

35

Coordinate Systems and
Transformations

• Steps in Forming an Image
• specify geometry (world coordinates)

• specify camera (camera coordinates)

• project (window coordinates)

• map to viewport (screen coordinates)

• Each step uses transformations
• Every transformation is equivalent to a

change in coordinate systems (frames)

Every transformation can be thought of as changing the representation of a
vertex from one coordinate system or frame to another. Thus, initially vertices
are specified in world or application coordinates. However, to view them,
OpenGL must convert these representations to ones in the reference system of
the camera. This change of representations is described by a transformation
matrix (the model-view matrix). Similarly, the projection matrix converts from
camera coordinates to window coordinates.

An Interactive Introduction to OpenGL Programming

36

36

Affine Transformations

• Want transformations which preserve
geometry
• lines, polygons, quadrics

• Affine = line preserving
• Rotation, translation, scaling

• Projection

• Concatenation (composition)

The transformations supported by OpenGL are a special class that is important
for graphical applications and for problems in science and engineering. In
particular, affine transformations will not alter the type of object. A
transformed line (polygon, quadric) is still a line (polygon, quadric).

Any composition of affine transformations is still affine. For example, a
rotation followed by a translation followed by a projection preserves lines and
polygons.

An Interactive Introduction to OpenGL Programming

37

37

Homogeneous Coordinates

• each vertex is a column vector

• w is usually 1.0

• all operations are matrix multiplications

• directions (directed line segments) can be represented
with w = 0.0

=

w

z

y

x

v
&

A 3D vertex is represented by a 4-tuple vector (homogeneous coordinate
system).

Why is a 4-tuple vector used for a 3D (x, y, z) vertex? To ensure that all matrix
operations are multiplications.

If w is changed from 1.0, we can recover x, y and z by division by w. Generally,
only perspective transformations change w and require this perspective division
in the pipeline.

An Interactive Introduction to OpenGL Programming

38

38

3D Transformations

• A vertex is transformed by 4 x 4 matrices
• all affine operations are matrix multiplications

• all matrices are stored column-major in OpenGL

• matrices are always post-multiplied

• product of matrix and vector is v*M

=

151173

141062

13951

12840

mmmm

mmmm

mmmm

mmmm

M

Perspective projection and translation require 4th row and column, or
operations would require addition, as well as multiplication.

For operations other than perspective projection, the fourth row is always
(0, 0, 0, 1) which leaves w unchanged..

Because OpenGL only multiplies a matrix on the right, the programmer must
remember that the last matrix specified is the first applied.

An Interactive Introduction to OpenGL Programming

39

39

Specifying Transformations

• Programmer has two styles of specifying
transformations
• specify matrices (glLoadMatrix, glMultMatrix)

• specify operation (glRotate, glOrtho)

• Programmer does not have to remember
the exact matrices
• check appendix of Red Book (Programming Guide)

Generally, a programmer can obtain the desired matrix by a sequence of simple
transformations that can be concatenated together, e.g. glRotate() ,
glTranslate() , and glScale() .

For the basic viewing transformations, OpenGL and the Utility library have
supporting functions.

An Interactive Introduction to OpenGL Programming

40

40

Programming Transformations

• Prior to rendering, view, locate, and orient:
• eye/camera position

• 3D geometry

• Manage the matrices
• including matrix stack

• Combine (composite) transformations

Because transformation matrices are part of the state, they must be defined
prior to any vertices to which they are to apply.

In modeling, we often have objects specified in their own coordinate systems
and must use OpenGL transformations to bring the objects into the scene.

OpenGL provides matrix stacks for each type of supported matrix (model-view,
projection, texture) to store matrices.

An Interactive Introduction to OpenGL Programming

41

41

v
e
r
t
e
x

Modelview
Matrix

Projection
Matrix

Perspective
Division

Viewport
Transform

Modelview

Modelview

Projection

z

z

z

object eye clip normalized
device

window

• other calculations here
• material Î color
• shade model (flat)
• polygon rendering mode
• polygon culling
• clipping

Transformation
Pipeline

CPU DL

Poly. Per
Vertex

Raster Frag FB

Pixel

Texture

The depth of matrix stacks are implementation-dependent, but the Modelview
matrix stack is guaranteed to be at least 32 matrices deep, and the Projection
matrix stack is guaranteed to be at least 2 matrices deep.

The material-to-color, flat-shading, and clipping calculations take place after
the Modelview matrix calculations, but before the Projection matrix. The
polygon culling and rendering mode operations take place after the Viewport
operations.

There is also a texture matrix stack, which is outside the scope of this course. It
is an advanced texture mapping topic.

An Interactive Introduction to OpenGL Programming

42

42

Matrix Operations

• Specify Current Matrix Stack
glMatrixMode(GL_MODELVIEW or GL_PROJECTION)

• Other Matrix or Stack Operations
glLoadIdentity() glPushMatrix()

glPopMatrix()

• Viewport
• usually same as window size

• viewport aspect ratio should be same as projection
transformation or resulting image may be distorted

glViewport(x, y, width, height)

glLoadMatrix*() replaces the matrix on the top of the current matrix stack.
glMultMatrix*() , post-multiples the matrix on the top of the current matrix
stack. The matrix argument is a column-major 4 x 4 double or single precision
floating point matrix.

Matrix stacks are used because it is more efficient to save and restore matrices
than to calculate and multiply new matrices. Popping a matrix stack can be said
to “jump back” to a previous location or orientation.

glViewport() clips the vertex or raster position. For geometric primitives, a
new vertex may be created. For raster primitives, the raster position is
completely clipped.

There is a per-fragment operation, the scissor test, which works in situations
where viewport clipping doesn’t. The scissor operation is particularly good for
fine clipping raster (bitmap or image) primitives.

An Interactive Introduction to OpenGL Programming

43

43

Projection Transformation

• Shape of viewing frustum
• Perspective projection

gluPerspective(fovy, aspect, zNear, zFar)

glFrustum (left, right, bottom, top, zNear, zFar)

• Orthographic parallel projection
glOrtho(left, right, bottom, top, zNear, zFar)

gluOrtho2D(left, right, bottom, top)

• calls glOrtho with z values near zero

For perspective projections, the viewing volume is shaped like a truncated
pyramid (frustum). There is a distinct camera (eye) position, and vertexes of
objects are “projected” to camera. Objects which are further from the camera
appear smaller. The default camera position at (0, 0, 0), looks down the z-axis,
although the camera can be moved by other transformations.

For gluPerspective() , fovy is the angle of field of view (in degrees)
in the y direction. fovy must be between 0.0 and 180.0, exclusive. aspect is
x/y and should be same as the viewport to avoid distortion. zNear and zFar
define the distance to the near and far clipping planes.

glFrustum() is rarely used.

Warning: for gluPerspective() or glFrustum() , don’t use zero
 for zNear !

For glOrtho() , the viewing volume is shaped like a rectangular
parallelepiped (a box). Vertexes of an object are “projected” towards infinity.
Distance does not change the apparent size of an object. Orthographic
projection is used for drafting and design (such as blueprints).

An Interactive Introduction to OpenGL Programming

44

44

Applying Projection
Transformations

• Typical use (orthographic projection)
glMatrixMode(GL_PROJECTION);

glLoadIdentity();

glOrtho(left, right, bottom, top, zNear, zFar);

Many users would follow the demonstrated sequence of commands with a
glMatrixMode(GL_MODELVIEW) call to return to modelview stack.

In this example, the red line segment is inside the view volume and is projected
(with parallel projectors) to the green line on the view surface. The blue line
segment lies outside the volume specified by glOrtho() and is clipped.

An Interactive Introduction to OpenGL Programming

45

45

Viewing Transformations

• Position the camera/eye in the scene
• place the tripod down; aim camera

• To “fly through” a scene
• change viewing transformation and

redraw scene

• gluLookAt(eye x, eye y, eye z,
 aim x, aim y, aim z,
 up x, up y, up z)

• up vector determines unique orientation

• careful of degenerate positions

tripod

gluLookAt() multiplies itself onto the current matrix, so it usually comes
after glMatrixMode(GL_MODELVIEW) and glLoadIdentity().

Because of degenerate positions, gluLookAt() is not recommended for
most animated fly-over applications.

An alternative is to specify a sequence of rotations and translations that are
concatenated with an initial identity matrix.

Note: that the name modelview matrix is appropriate since moving objects in
the model front of the camera is equivalent to moving the camera to view a set
of objects.

An Interactive Introduction to OpenGL Programming

46

46

Projection Tutorial

The RIGHT mouse button controls different menus. The screen-space view
menu allows you to choose different models. The command-manipulation menu
allows you to select different projection commands (including glOrtho and
glFrustum).

An Interactive Introduction to OpenGL Programming

47

47

Modeling Transformations

• Move object
glTranslate{fd}(x, y, z)

• Rotate object around arbitrary axis
glRotate{fd}(angle, x, y, z)

• angle is in degrees

• Dilate (stretch or shrink) or mirror object
glScale{fd}(x, y, z)

()zyx

glTranslate() , glRotate() , and glScale() multiplies itself onto the
current matrix, so it usually comes after
glMatrixMode(GL_MODELVIEW) . There are many situations where the
modeling transformation is multiplied onto a non-identity matrix.

A vertex’s distance from the origin changes the effect of glRotate() or
glScale() . These operations have a fixed point for the origin. Generally, the
further from the origin, the more pronounced the effect. To rotate (or scale)
with a different fixed point, we must first translate, then rotate (or scale) and
then undo the translation with another translation.

An Interactive Introduction to OpenGL Programming

48

48

Transformation Tutorial

For right now, concentrate on changing the effect of one command at a time.
After each time that you change one command, you may want to reset the
values before continuing on to the next command.

The RIGHT mouse button controls different menus. The screen-space view
menu allows you to choose different models. The command-manipulation menu
allows you to change the order of the glTranslatef() and
glRotatef() commands. Later, we will see the effect of changing the order
of modeling commands.

An Interactive Introduction to OpenGL Programming

49

49

Connection: Viewing and
Modeling

• Moving camera is equivalent to moving
every object in the world towards a
stationary camera

• Viewing transformations are equivalent to
several modeling transformations
gluLookAt() has its own command

can make your own polar view or pilot view

Instead of gluLookAt(, one can use the following combinations of
glTranslate() and glRotate() to achieve a viewing transformation.
Like gluLookAt() , these transformations should be multiplied onto the
ModelView matrix, which should have an initial identity matrix.

To create a viewing transformation in which the viewer orbits an object, use
this sequence (which is known as “polar view”):

glTranslated(0, 0, -distance)

glRotated(-twist, 0, 0, 1)

glRotated(-incidence, 1, 0, 0)

glRotated(azimuth, 0, 0, 1)

To create a viewing transformation which orients the viewer (roll, pitch, and
heading) at position (x, y, z), use this sequence (known as “pilot view”):

glRotated(roll, 0, 0, 1)

glRotated(pitch, 0, 1, 0)

glRotated(heading, 1, 0, 0)

glTranslated(-x, -y, -z)

An Interactive Introduction to OpenGL Programming

50

50

Projection is left handed

• Projection transformations (gluPerspective,

glOrtho) are left handed
• think of zNear and zFar as distance from view

point

• Everything else is right handed, including
the vertexes to be rendered

x
x

y
y

z+

z+

left handed right handed

If you get this wrong, you may see nothing in your image. Switching from right
to left handed coordinates is equivalent to rotating the camera 180 degrees!

One way to think of problem is that the viewing system is left-handed so
distances from the camera are measured from the camera to the object.

An Interactive Introduction to OpenGL Programming

51

51

Common Transformation Usage

• 3 examples of resize() routine
• restate projection & viewing transformations

• Usually called when window resized
• Registered as callback for glutReshapeFunc ()

Example: Suppose the user resizes the window. Do we see the same objects?

What if the new aspect ratio is different from the original? Can we avoid
distortion of objects?

What we should do is application dependent. Hence users should write their
own reshape callbacks.

Typical reshape callbacks alter the projection matrix or the viewport.

An Interactive Introduction to OpenGL Programming

52

52

resize() : Perspective &
LookAt

void resize(int w, int h)
{
 glViewport(0, 0, (GLsizei) w, (GLsizei) h);
 glMatrixMode(GL_PROJECTION);
 glLoadIdentity();
 gluPerspective(65.0, (GLfloat) w / h,

 1.0, 100.0);
 glMatrixMode(GL_MODELVIEW);
 glLoadIdentity();
 gluLookAt(0.0, 0.0, 5.0,

 0.0, 0.0, 0.0,
 0.0, 1.0, 0.0);

}

Using the viewport width and height as the aspect ratio for gluPerspective

eliminates distortion.

An Interactive Introduction to OpenGL Programming

53

53

resize() : Perspective &
Translate

• Same effect as previous LookAt
void resize(int w, int h)
{
 glViewport(0, 0, (GLsizei) w, (GLsizei) h);
 glMatrixMode(GL_PROJECTION);
 glLoadIdentity();
 gluPerspective(65.0, (GLfloat) w/h,
 1.0, 100.0);
 glMatrixMode(GL_MODELVIEW);
 glLoadIdentity();
 glTranslatef(0.0, 0.0, -5.0);
}

Moving all objects in the world five units away from you is mathematically the
same as “backing up” the camera five units.

An Interactive Introduction to OpenGL Programming

54

54

resize() : Ortho (part 1)

void resize(int width, int height)
{
 GLdouble aspect = (GLdouble) width / height;
 GLdouble left = -2.5, right = 2.5;
 GLdouble bottom = -2.5, top = 2.5;
 glViewport(0, 0, (GLsizei) w, (GLsizei) h);
 glMatrixMode(GL_PROJECTION);
 glLoadIdentity();

 … continued …

In this routine, we first compute the aspect ratio (aspect) of the new viewing
area. We’ll use this value to modify the world space values (left , right ,
bottom , top) of the viewing frustum depending on the new shape of the
viewing volume

An Interactive Introduction to OpenGL Programming

55

55

 if (aspect < 1.0) {
 left /= aspect;
 right /= aspect;
 } else {
 bottom *= aspect;
 top *= aspect;
 }
 glOrtho(left, right, bottom, top, near, far);
 glMatrixMode(GL_MODELVIEW);
 glLoadIdentity();
}

resize() : Ortho (part 2)

Continuing from the previous page, we determine how to modify the viewing
volume based on the computed aspect ratio. After we compute the new world
space values, we call glOrtho() to modify the viewing volume.

An Interactive Introduction to OpenGL Programming

56

56

Compositing Modeling
Transformations

• Problem 1: hierarchical objects
• one position depends upon a previous position

• robot arm or hand; sub-assemblies

• Solution 1: moving local coordinate
system
• modeling transformations move coordinate system

• post-multiply column-major matrices

• OpenGL post-multiplies matrices

The order in which modeling transformations are performed is important
because each modeling transformation is represented by a matrix, and matrix
multiplication is not commutative. So a rotate followed by a translate is
different from a translate followed by a rotate.

An Interactive Introduction to OpenGL Programming

57

57

Compositing Modeling
Transformations

• Problem 2: objects move relative to absolute
world origin
• my object rotates around the wrong origin

• make it spin around its center or something else

• Solution 2: fixed coordinate system
• modeling transformations move objects around fixed

coordinate system

• pre-multiply column-major matrices

• OpenGL post-multiplies matrices

• must reverse order of operations to achieve desired effect

You’ll adjust to reading a lot of code backwards!

Typical sequence

glTranslatef(x,y,z);

glRotatef(theta, ax, ay, az);

glTranslatef(-x,-y,-z);

object();

Here (x, y, z) is the fixed point. We first (last transformation in code) move it to
the origin. Then we rotate about the axis (ax, ay, az) and finally move fixed
point back.

An Interactive Introduction to OpenGL Programming

58

58

Additional Clipping Planes

• At least 6 more clipping planes available
• Good for cross-sections
• Modelview matrix moves clipping plane
• clipped
• glEnable(GL_CLIP_PLANEi)

• glClipPlane(GL_CLIP_PLANEi, GLdouble* coeff)

0<+++ DCzByAx

Use of additional clipping places may slow rendering as they are usually
implemented in software.

An Interactive Introduction to OpenGL Programming

59

59

Reversing Coordinate
Projection

• Screen space back to world space
glGetIntegerv(GL_VIEWPORT, GLint viewport[4])

glGetDoublev(GL_MODELVIEW_MATRIX, GLdouble mvmatrix[16])

glGetDoublev(GL_PROJECTION_MATRIX,
 GLdouble projmatrix[16])

gluUnProject(GLdouble winx, winy, winz,
 mvmatrix[16], projmatrix[16],
 GLint viewport[4],
 GLdouble *objx, *objy, *objz)

• gluProject goes from world to screen
space

Generally, OpenGL projects 3D data onto a 2D screen. Sometimes, you need
to use a 2D screen position (such as a mouse location) and figure out where in
3D it came from. If you use gluUnProject() with winz = 0 and
winz = 1, you can find the 3D point at the near and far clipping planes. Then
you can draw a line between those points, and you know that some point on that
line was projected to your screen position.

OpenGL Release 1.2 also introduced gluUnProject4() , which also returns
the transformed world-space w coordinate.

An Interactive Introduction to OpenGL Programming

60

Animation and Depth Buffering

Vicki Shreiner

An Interactive Introduction to OpenGL Programming

61

61

Animation and Depth Buffering

• Discuss double buffering and animation
• Discuss hidden surface removal using the

depth buffer

In this section we talk about adding the necessary steps for producing smooth
interactive animations with OpenGL using double buffering. Additionally, we
discuss hidden surface removal using depth buffering.

An Interactive Introduction to OpenGL Programming

62

62

Double
Buffering

1
2

4
8

16

1
2

4
8

16
Front
Buffer

Back
Buffer

Display

CPU DL

Poly.
Per

Vertex

Raster Frag FB

Pixel

Texture

Double buffer is a technique for tricking the eye into seeing smooth animation
of rendered scenes. The color buffer is usually divided into two equal halves,
called the front buffer and the back buffer.

The front buffer is displayed while the application renders into the back buffer.
When the application completes rendering to the back buffer, it requests the
graphics display hardware to swap the roles of the buffers, causing the back
buffer to now be displayed, and the previous front buffer to become the new
back buffer.

An Interactive Introduction to OpenGL Programming

63

63

Animation Using Double
Buffering

cRequest a double buffered color buffer
glutInitDisplayMode (GLUT_RGB |

GLUT_DOUBLE);

dClear color buffer
glClear (GL_COLOR_BUFFER_BIT);

eRender scene
fRequest swap of front and back buffers

glutSwapBuffers();

• Repeat steps 2 - 4 for animation

Requesting double buffering in GLUT is simple. Adding GLUT_DOUBLE to
your glutInitDisplayMode() call will cause your window to be double
buffered.

When your application is finished rendering its current frame, and wants to
swap the front and back buffers, the glutSwapBuffers() call will request
the windowing system to update the window’s color buffers.

An Interactive Introduction to OpenGL Programming

64

64

Depth Buffering and
Hidden Surface Removal

1
2

4
8

16

1
2

4
8

16
Color
Buffer

Depth
Buffer

Display

Depth buffering is a technique to determine which primitives in your scene are
occluded by other primitives. As each pixel in a primitive is rasterized, its
distance from the eyepoint (depth value), is compared with the values stored in
the depth buffer. If the pixel’s depth value is less than the stored value, the
pixel’s depth value is written to the depth buffer, and its color is written to the
color buffer.

The depth buffer algorithm is:
 if (pixel->z < depthBuffer(x,y)->z) {
 depthBuffer(x,y)->z = pixel->z;
 colorBuffer(x,y)->color = pixel->color;
 }

OpenGL depth values range from [0, 1], with one being essentially infinitely far
from the eyepoint. Generally, the depth buffer is cleared to one at the start of a
frame.

An Interactive Introduction to OpenGL Programming

65

65

Depth Buffering Using OpenGL

cRequest a depth buffer
glutInitDisplayMode(GLUT_RGB |

GLUT_DOUBLE | GLUT_DEPTH);

dEnable depth buffering
glEnable(GL_DEPTH_TEST);

eClear color and depth buffers
glClear(GL_COLOR_BUFFER_BIT |

GL_DEPTH_BUFFER_BIT);

fRender scene
gSwap color buffers

Enabling depth testing in OpenGL is very straightforward.

A depth buffer must be requested for your window, once again using the
glutInitDisplayMode() , and the GLUT_DEPTH bit.

Once the window is created, the depth test is enabled using
glEnable(GL_DEPTH_TEST) .

An Interactive Introduction to OpenGL Programming

66

66

An Updated Program Template

void main(int argc, char** argv)
{

 glutInit(&argc, argv);
 glutInitDisplayMode(GLUT_RGB |

 GLUT_DOUBLE | GLUT_DEPTH);
 glutCreateWindow(“Tetrahedron”);
 init();
 glutIdleFunc(idle);
 glutDisplayFunc(display);
 glutMainLoop();

}

In main() ,

 1) GLUT initializes and creates a window named “Tetrahedron”

 2) set OpenGL state which is enabled through the entire life of the program
 in init()

 3) set GLUT’s idle function, which is called when there are no user events
 to process.

 4) enter the main event processing loop of the program.

An Interactive Introduction to OpenGL Programming

67

67

An Updated Program Template
(cont.)

void init(void)
{
 glClearColor(0.0, 0.0, 1.0, 1.0);
}

void idle(void)
{
 glutPostRedisplay();
}

In init() the basic OpenGL state to be used throughout the program is
initialized. For this simple program, all we do is set the background (clear
color) for the color buffer. In this case, we’ve decided that instead of the default
black background, we want a blue background.

Additionally, our glutIdleFunc() , which we’ve set to the function
idle() above, requests that GLUT re-render our scene again. The function
glutPostRedisplay() requests that GLUT call our display function (this
was set with glutDisplayFunc()) at the next convenient time. This
method provides better event processing response from the application.

An Interactive Introduction to OpenGL Programming

68

68

An Updated Program Template
(cont.)

void drawScene(void)
{

 GLfloat vertices[] = { … };

 GLfloat colors[] = { … };

 glClear(GL_COLOR_BUFFER_BIT |
 GL_DEPTH_BUFFER_BIT);

 glBegin(GL_TRIANGLE_STRIP);

/* calls to glColor*() and glVertex*() */
 glEnd();
 glutSwapBuffers();

}

In drawScene() ,

 1) the color buffer is cleared to the background color

 2) a triangle strip is rendered to create a tetrahedron (use your imagination
for the details!)

 3) the front and back buffers are swapped.

An Interactive Introduction to OpenGL Programming

69

Lighting

Dave Shreiner

An Interactive Introduction to OpenGL Programming

70

70

Lighting Principles

• Lighting simulates how objects reflect
light
• material composition of object

• light’s color and position

• global lighting parameters

• ambient light

• two sided lighting

• available in both color index
and RGBA mode

Lighting is an important technique in computer graphics. Without lighting,
objects tend to look like they’re made out of plastic.

OpenGL divides lighting into three parts: material properties, light properties
and global lighting parameters.

Lighting is available in both RGBA mode and color index mode. RGBA is
more flexible and less restrictive than color index mode lighting.

An Interactive Introduction to OpenGL Programming

71

71

How OpenGL Simulates Lights

• Phong lighting model
• Computed at vertices

• Lighting contributors
• Surface material properties

• Light properties

• Lighting model properties

OpenGL lighting is based on the Phong lighting model. At each vertex in the
primitive, a color is computed using that primitives material properties along
with the light settings.

The color for the vertex is computed by adding four computed colors for the
final vertex color. The four contributors to the vertex color are:

• Ambient is color of the object from all the undirected light in a scene.

• Diffuse is the base color of the object under current lighting. There
must be a light shining on the object to get a diffuse contribution.

• Specular is the contribution of the shiny highlights on the object.

• Emission is the contribution added in if the object emits light (i.e.
glows)

An Interactive Introduction to OpenGL Programming

72

72

Surface
Normals

• Normals define how a surface reflects light
glNormal3f(x, y, z)

• Current normal is used to compute vertex’s color

• Use unit normals for proper lighting

• scaling affects a normal’s length
 glEnable(GL_NORMALIZE)

or
glEnable(GL_RESCALE_NORMAL)

CPU DL

Poly. Per
Vertex

Raster Frag FB

Pixel

Texture

The lighting normal tells OpenGL how the object reflects light around a vertex.
If you imagine that there is a small mirror at the vertex, the lighting normal
describes how the mirror is oriented, and consequently how light is reflected.

glNormal*() sets the current normal, which is used in the lighting
computation for all vertices until a new normal is provided.

Lighting normals should be normalized to unit length for correct lighting
results. glScale*() affects normals as well as vertices, which can change
the normal’s length, and cause it to no longer be normalized. OpenGL can
automatically normalize normals, by enabling glEnable(GL_NORMALIZE) .
or glEnable(GL_RESCALE_NORMAL). GL_RESCALE_NORMAL is a
special mode for when your normals are uniformly scaled. If not, use
GL_NORMALIZE which handles all normalization situations, but requires the
computation of a square root, which can potentially lower performance

OpenGL evaluators and NURBS can provide lighting normals for generated
vertices automatically.

An Interactive Introduction to OpenGL Programming

73

73

Material Properties

• Define the surface properties of a primitive
glMaterialfv(face, property, value);

• separate materials for front and back

GL_DIFFUSE Base color

GL_SPECULAR H igh ligh t Color

GL_AMBIENT Low -ligh t Color

GL_EMISSION G low C olor

GL_SHININESS Surface Sm oothness

Material properties describe the color and surface properties of a material (dull,
shiny, etc.). OpenGL supports material properties for both the front and back
of objects, as described by their vertex winding.

The OpenGL material properties are:

• GL_DIFFUSE - base color of object

• GL_SPECULAR - color of highlights on object

• GL_AMBIENT - color of object when not directly illuminated

• GL_EMISSION - color emitted from the object (think of a firefly)

• GL_SHININESS - concentration of highlights on objects. Values
 range from 0 (very rough surface - no highlight) to 128 (very shiny)

Material properties can be set for each face separately by specifying either
GL_FRONT or GL_BACK, or for both faces simultaneously using
GL_FRONT_AND_BACK.

An Interactive Introduction to OpenGL Programming

74

74

Light Properties

glLightfv(light, property, value);

• light specifies which light

• multiple lights, starting with GL_LIGHT0

glGetIntegerv(GL_MAX_LIGHTS, &n);

• properties

• colors

• position and type

• attenuation

The glLight() call is used to set the parameters for a light. OpenGL
implementations must support at least eight lights, which are named
GL_LIGHT0 through GL_LIGHTn, where n is one less than the maximum
number supported by an implementation.

OpenGL lights have a number of characteristics which can be changed from
their default values. Color properties allow separate interactions with the
different material properties. Position properties control the location and type of
the light and attenuation controls the natural tendency of light to decay over
distance.

An Interactive Introduction to OpenGL Programming

75

OpenGL lights can emit different colors for each of a materials properties. For
example, a light’s GL_AMBIENT color is combined with a material’s
GL_AMBIENT color to produce the ambient contribution to the color - Likewise
for the diffuse and specular colors.

75

Light Sources (cont.)

• Light color properties
• GL_AMBIENT

• GL_DIFFUSE

• GL_SPECULAR

An Interactive Introduction to OpenGL Programming

76

76

Types of Lights

• OpenGL supports two types of Lights
• Local (Point) light sources

• Infinite (Directional) light sources

• Type of light controlled by w coordinate
()

()w
z

w
y

w
xw

zyxw

 at positioned Light Local
 along directed LightInfinite

0

0

≠
=

OpenGL supports two types of lights: infinite (directional) and local (point)
light sources. The type of light is determined by the w coordinate of the light’s
position.

A light’s position is transformed by the current ModelView matrix when it is
specified. As such, you can achieve different effects by when you specify the
position.

()
()

≠
=

w
z

w
y

w
xw

zyxw

at light local a define0

at light infinitean define0
if

An Interactive Introduction to OpenGL Programming

77

77

Turning on the Lights

• Flip each light’s switch
glEnable(GL_LIGHTn);

• Turn on the power
glEnable(GL_LIGHTING);

Each OpenGL light is controllable separately, using glEnable() and the
respective light constant GL_LIGHTn. Additionally, global control over
whether lighting will be used to compute primitive colors is controlled by
passing GL_LIGHTING to glEnable(). This provides a handy way to
enable and disable lighting without turning on or off all of the separate
components.

An Interactive Introduction to OpenGL Programming

78

78

Light Material Tutorial

In this tutorial, concentrate on noticing the affects of different material and light
properties. Additionally, compare the results of using a local light versus using
an infinite light.

In particular, experiment with the GL_SHININESS parameter to see its affects
on highlights.

An Interactive Introduction to OpenGL Programming

79

79

Controlling a Light’s Position

• Modelview matrix affects a light’s position
• Different effects based on when position is specified

• eye coordinates

• world coordinates

• model coordinates

• Push and pop matrices to uniquely control a light’s
position

As mentioned previously, a light’s position is transformed by the current
ModelView matrix when it is specified. As such, depending on when you
specify the light’s position, and what’s in the ModelView matrix, you can
obtain different lighting affects.

In general, there are three coordinate systems where you can specify a light’s
position/direction

1) Eye coordinates - which is represented by an identity matrix in the
ModelView. In this case, when the light’s position/direction is specified,
it remains fixed to the imaging plane. As such, regardless of how the
objects are manipulated, the highlights remain in the same location
relative to the eye.

2) World Coordinates - when only the viewing transformation is in the
ModelView matrix. In this case, a light’s position/direction appears
fixed in the scene, as if the light were on a lamppost.

3) Model Coordinates - any combination of viewing and modeling
transformations is in the ModelView matrix. This method allows
arbitrary, and even animated, position of a light using modeling
transformations.

An Interactive Introduction to OpenGL Programming

80

80

Light Position Tutorial

This tutorial demonstrates the different lighting affects of specifying a light’s
position in eye and world coordinates. Experiment with how highlights and
illuminated areas change under the different lighting position specifications.

An Interactive Introduction to OpenGL Programming

81

81

Advanced Lighting Features

• Spotlights
• localize lighting affects

• GL_SPOT_DIRECTION

• GL_SPOT_CUTOFF

• GL_SPOT_EXPONENT

A local light can also be converted into a spotlight. By setting the
GL_SPOT_DIRECTION, GL_SPOT_CUTOFF, and GL_SPOT_EXPONENT,
the local light will shine in a direction and its light will be limited to a cone
centered around that direction vector.

An Interactive Introduction to OpenGL Programming

82

82

Advanced Lighting Features

• Light attenuation
• decrease light intensity with distance

• GL_CONSTANT_ATTENUATION

• GL_LINEAR_ATTENUATION

• GL_QUADRATIC_ATTENUATION

2

1

dkdkk
f

qlc
i ++

=

Each OpenGL light source supports attenuation, which describes how light
diminishes with distance. The OpenGL model supports quadratic attenuation,
and utilizes the following attenuation factor, fi, where d is the distance from the
eyepoint to the vertex being lit:

where:

• kc is the GL_CONSTANT_ATTENUATION term

• kl is the GL_LINEAR_ATTENUATION term

• kq is the GL_QUADRATIC_ATTENUATION term

2

1

dkdkk
f

qlc
i ++

=

An Interactive Introduction to OpenGL Programming

83

83

Light Model Properties

glLightModelfv(property, value);

• Enabling two sided lighting
GL_LIGHT_MODEL_TWO_SIDE

• Global ambient color
GL_LIGHT_MODEL_AMBIENT

• Local viewer mode
GL_LIGHT_MODEL_LOCAL_VIEWER

• Separate specular color
GL_LIGHT_MODEL_COLOR_CONTROL

Properties which aren’t directly connected with materials or lights are grouped
into light model properties. With OpenGL 1.2, there are four properties
associated with the lighting model:

1) Two-sided lighting uses the front and back material properties for
illuminating a primitive.

2) Global ambient color initializes the global ambient contribution of
the lighting equation.

3) Local viewer mode disables an optimization which provides faster
lighting computations. With local viewer mode on, you get better light
results at a slight performance penalty.

4) Separate specular color is a mode for maintaining better specular
highlights in certain texture mapped conditions. This is a new feature
for OpenGL 1.2.

An Interactive Introduction to OpenGL Programming

84

84

Tips for Better Lighting

• Recall lighting computed only at vertices
• model tessellation heavily affects lighting results

• better results but more geometry to process

• Use a single infinite light for fastest
lighting
• minimal computation per vertex

As with all of computing, time versus space is the continual tradeoff. To get the
best results from OpenGL lighting, your models should be finely tessellated to
get the best specular highlights and diffuse color boundaries. This yields better
results, but usually at a cost of more geometric primitives, which could slow
application performance.

To achieve maximum performance for lighting in your applications, use a
single infinite light source. This minimizes the amount of work that OpenGL
has to do to light every vertex.

An Interactive Introduction to OpenGL Programming

85

Imaging and Raster Primitives

Vicki Shreiner

An Interactive Introduction to OpenGL Programming

86

86

Imaging and Raster Primitives

• Describe OpenGL’s raster primitives:
bitmaps and image rectangles

• Demonstrate how to get OpenGL to read
and render pixel rectangles

OpenGL is not only a complete interface for 3D rendering, it’s also a very
capable image processing engine. In this section we discuss some of the basic
functions of OpenGL for rendering color-pixel rectangles and single-bit
bitmaps, as well as how to read color information from the framebuffer.

OpenGL doesn’t render images, per se, since images usually are stored in some
file with an image format associated with it (for example, JPEG images).
OpenGL only knows how to render rectangles of pixels, not decode image files.

An Interactive Introduction to OpenGL Programming

87

87

Pixel-based primitives

• Bitmaps
• 2D array of bit masks for pixels

• update pixel color based on current color

• Images
• 2D array of pixel color information

• complete color information for each pixel

• OpenGL doesn’t understand image
formats

In addition to geometric primitives, OpenGL also supports pixel-based
primitives. These primitives contain explicit color information for each pixel
that they contain. They come in two types:

Bitmaps are single bit images, which are used as a mask to determine
which pixels to update. The current color, set with glColor() is used
to determine the new pixel color.

Images are blocks of pixels with complete color information for each
pixel.

OpenGL, however, doesn’t understand image formats, like JPEG, PNG or GIFs.
In order for OpenGL to use the information contained in those file formats, the
file must be read and decoded to obtain the color information, at which point,
OpenGL can rasterize the color values.

An Interactive Introduction to OpenGL Programming

88

Frame
Buffer

Rasterization
(including

Pixel Zoom)

Per Fragment
Operations

Texture
Memory

Pixel-Transfer
Operations

(and Pixel Map)
CPU

Pixel
Storage
Modes

glReadPixels(), glCopyPixels()

glBitmap(), glDrawPixels()

glCopyTex*Image();

Pixel Pipeline

• Programmable pixel storage
 and transfer operations

CPU DL

Poly. Per
Vertex

Raster Frag FB

Pixel

Texture

Just as there’s a pipeline that geometric primitives go through when they are
processed, so do pixels. The pixels are read from main storage, processed to
obtain the internal format which OpenGL uses, which may include color
translations or byte-swapping. After this, each pixel from the image is
processed by the fragment operations discussed in the last section, and finally
rasterized into the framebuffer.

In addition to rendering into the framebuffer, pixels can be copied from the
framebuffer back into host memory, or transferred into texture mapping
memory.

For best performance, the internal representation of a pixel array should match
the hardware. For example, for a 24 bit frame buffer, 8-8-8 RGB would
probably be a good match, but 10-10-10 RGB could be bad. Warning: non-
default values for pixel storage and transfer can be very slow.

An Interactive Introduction to OpenGL Programming

89

89

Positioning Image Primitives

glRasterPos3f(x, y, z)

• raster position transformed like geometry

• discarded if raster position is
outside of viewport

• may need to fine tune
viewport for desired results

Raster Position

Images are positioned by specifying the raster position, which maps the lower
left corner of an image primitive to a point in space. Raster positions are
transformed and clipped the same as vertices. If a raster position fails the clip
check, no fragments are rasterized.

An Interactive Introduction to OpenGL Programming

90

90

Rendering Bitmaps

glBitmap(width, height, xorig, yorig, xmove,
ymove, bitmap)

• render bitmap in current color
at

• advance raster position by
 after rendering

 ()yorigyxorigx −−

()ymovexmove

width

he
ig

ht

xorig

yorig

xmove

Bitmaps are used as a mask to determine which pixels to update. A bitmap is
specified as a packed array of bits in a byte array. For each value of one in the
bitmap, a fragment is generated in the currently set color and processed by the
fragment operations.

Bitmaps can have their own origin, which provides a relative position to the
current raster position. Additionally, after the bitmap is rendered, the raster
position is automatically updated by the offset provided in (xmove, ymove).

Bitmaps are particularly useful for rendering bitmapped text, which we’ll
discuss in a moment.

An Interactive Introduction to OpenGL Programming

91

91

Rendering Fonts using Bitmaps

• OpenGL uses bitmaps for font rendering
• each character is stored in a display list containing

a bitmap

• window system specific routines to access system
fonts

• glXUseXFont()

• wglUseFontBitmaps()

OpenGL uses bitmaps to do font rendering. The window system specific
routines process system native font files, and create bitmaps for the different
glyphs in the font. Each character is stored in a display list that is part of a set
that is created when the font is processed.

An Interactive Introduction to OpenGL Programming

92

92

Rendering Images

glDrawPixels(width, height, format, type,
pixels)

• render pixels with lower left of
image at current raster position

• numerous formats and data types
for specifying storage in memory

• best performance by using format and type that
matches hardware

Rendering images is done with the glDrawPixels() command. A block of
pixels from host CPU memory is passed into OpenGL with a format and data
type specified. For each pixel in the image, a fragment is generated using the
color retrieved from the image, and further processed.

OpenGL supports many different formats for images including:

• RGB images with an RGB triplet for every pixel

• intensity images which contain only intensity for each pixel. These
images are converted into greyscale RGB images internally.

• depth images which are depth values written to the depth buffer, as
compared to the color framebuffer. This is useful in loading the depth
buffer with values and then rendering a matching color images with
depth testing enabled.

• stencil images which copy stencil masks in the stencil buffer. This
provides an easy way to load a complicated per pixel mask.

The type of the image describes the format that the pixels stored in host
memory. This could be primitive types like GL_FLOAT or GL_INT , or pixels
with all color components packed into a primitive type, like
GL_UNSIGNED_SHORT_5_6_5.

An Interactive Introduction to OpenGL Programming

93

93

Reading Pixels

glReadPixels(x, y, width, height, format,
type, pixels)

• read pixels form specified (x,y) position in
framebuffer

• pixels automatically converted from framebuffer
format into requested format and type

• Framebuffer pixel copy
glCopyPixels(x, y, width, height, type)

Just as you can send pixels to the framebuffer, you can read the pixel values
back from the framebuffer to host memory for doing storage or image
processing.

Pixels read from the framebuffer are processed by the pixel storage and transfer
modes, as well as converting them into the format and type requested, and
placing them in host memory.

Additionally, pixels can be copied from the framebuffer from one location to
another using glCopyPixels() . Pixels are processed by the pixel storage
and transfer modes before being returned to the framebuffer.

An Interactive Introduction to OpenGL Programming

94

94

Raster
Position

glPixelZoom(1.0, -1.0);

Pixel Zoom

glPixelZoom(x, y)

• expand, shrink or reflect pixels
around current raster position

• fractional zoom supported

OpenGL can also scale pixels as they are being rendered.
glPixelZoom() will scale or shrink pixels as well as reflect them around the
current raster position.

An Interactive Introduction to OpenGL Programming

95

95

Storage and Transfer Modes

• Storage modes control accessing memory
• byte alignment in host memory

• extracting a subimage

• Transfer modes allow modify pixel values
• scale and bias pixel component values

• replace colors using pixel maps

When pixels are read from or written to host memory, pixels can be modified
by storage and transfer modes.

Storage modes control how host memory is accessed and written to, including
byte swapping and addressing, and modifying how memory is accessed to read
only a small subset of the original image.

Transfer modes allow pixel modifications as they are processed. This includes
scaling and biasing the color component values, as well as replacing color
values using color lookup tables.

An Interactive Introduction to OpenGL Programming

96

Texture Mapping

Ed Angel

An Interactive Introduction to OpenGL Programming

97

97

• Apply a 1D, 2D, or 3D image to geometric
 primitives

• Uses of Texturing
• simulating materials

• reducing geometric complexity

• image warping

• reflections

Texture
Mapping

CPU DL

Poly. Per
Vertex

Raster Frag FB

Pixel

Texture

In this section, we’ll discuss texture (sometimes also called image) mapping.
Texture mapping augments the colors specified for a geometric primitive with
the colors stored in an image. An image can be a 1D, 2D, or 3D set of colors
called texels. 2D textures will be used throughout the section for
demonstrations, however, the processes described are identical for 1D and 3D
textures.

Some of the many uses of texture mapping include:

• simulating materials like wood, bricks or granite

• reducing the complexity (number of polygons) of a geometric object

• image processing techniques like image warping and rectification,
 rotation and scaling

• simulating reflective surfaces like mirrors or polished floors

An Interactive Introduction to OpenGL Programming

98

98

Texture Mapping

s

t

x

y

z

image

geometry screen

Textures are images that can be thought of as continuous and be one, two, three,
or four dimensional. By convention, the coordinates of the image are s, t, r and
q. Thus for the two dimensional image above, a point in the image is given by
its (s, t) values with (0, 0) in the lower-left corner and (1, 1) in the top-right
corner.

A texture map for a two-dimensional geometric object in (x, y, z) world
coordinates maps a point in (s, t) space to a corresponding point on the screen.

An Interactive Introduction to OpenGL Programming

99

99

Texture Mapping and the
OpenGL Pipeline

geometry pipelinevertices

pixel pipelineimage

rasterizer

• Images and geometry flow through
separate pipelines that join at the
rasterizer
• “complex” textures do not affect geometric

complexity

The advantage of texture mapping is that visual detail is in the image, not in the
geometry. Thus, the complexity of an image does not affect the geometric
pipeline (transformations, clipping) in OpenGL. Texture is added during
rasterization where the geometric and pixel pipelines meet.

An Interactive Introduction to OpenGL Programming

100

100

Texture Example

• The texture (below) is a
256 x 256 image that has been
mapped to a rectangular
polygon which is viewed in
perspective

This example is from the tutorial demo.

The size of textures must be a power of two. However, we can use image
manipulation routines to convert an image to the required size.

Texture can replace lighting and material effects or be used in combination
with them.

An Interactive Introduction to OpenGL Programming

101

101

Applying Textures I

• Three steps
c specify texture

• read or generate image

• assign to texture

d assign texture coordinates to vertices

e specify texture parameters

• wrapping, filtering

In the simplest approach, we must perform these three steps.

Textures reside in texture memory. When we assign an image to a texture it is
copied from processor memory to texture memory where pixels are formatted
differently.

Texture coordinates are actually part of the state as are other vertex attributes
such as color and normals. As with colors, OpenGL interpolates texture inside
geometric objects.

Because textures are really discrete and of limited extent, texture mapping is
subject to aliasing errors that can be controlled through filtering.

Texture memory is a limited resource and having only a single active texture
can lead to inefficient code.

An Interactive Introduction to OpenGL Programming

102

102

Applying Textures II

• specify textures in texture objects

• set texture filter

• set texture function

• set texture wrap mode

• set optional perspective correction hint

• bind texture object

• enable texturing

• supply texture coordinates for vertex

• coordinates can also be generated

The general steps to enable texturing are listed above. Some steps are optional,
and due to the number of combinations, complete coverage of the topic is
outside the scope of this course.

Here we use the texture object approach. Using texture objects may enable
your OpenGL implementation to make some optimizations behind the scenes.

As with any other OpenGL state, texture mapping requires that glEnable()
be called. The tokens for texturing are:

GL_TEXTURE_1D - one dimensional texturing

GL_TEXTURE_2D - two dimensional texturing

GL_TEXTURE_3D - three dimensional texturing

2D texturing is the most commonly used. 1D texturing is useful for applying
contours to objects (like altitude contours to mountains). 3D texturing is
useful for volume rendering.

An Interactive Introduction to OpenGL Programming

103

103

Texture Objects

• Like display lists for texture images
• one image per texture object

• may be shared by several graphics contexts

• Generate texture names
glGenTextures(n, *texIds);

The first step in creating texture objects is to have OpenGL reserve some
indices for your objects. glGenTextures() will request n texture ids and
return those values back to you in texIds .

To begin defining a texture object, you call glBindTexture() with the id
of the object you want to create. The target is one of
GL_TEXTURE_{123}D() . All texturing calls become part of the object until
the next glBindTexture() is called.

To have OpenGL use a particular texture object, call glBindTexture()
with the target and id of the object you want to be active.

To delete texture objects, use glDeleteTextures(n, *texIds) ,
where texIds is an array of texture object identifiers to be deleted.

An Interactive Introduction to OpenGL Programming

104

104

Texture Objects (cont.)

• Create texture objects with texture data and
state
glBindTexture(target, id);

• Bind textures before using
glBindTexture(target, id);

An Interactive Introduction to OpenGL Programming

105

105

• Define a texture image from an array of
 texels in CPU memory

glTexImage2D(target, level, components,
 w, h, border, format, type, *texels);

• dimensions of image must be powers of 2

• Texel colors are processed by pixel
pipeline
• pixel scales, biases and lookups can be

done

Specify Texture
Image

CPU DL

Poly. Per
Vertex

Raster Frag FB

Pixel

Texture

Specifying the texels for a texture is done using the glTexImage{123}D()
call. This will transfer the texels in CPU memory to OpenGL, where they will
be processed and converted into an internal format.

The array of texels sent to OpenGL with glTexImage*() must be a power
of two in both directions. An optional one texel wide border may be added
around the image. This is useful for certain wrapping modes.

The level parameter is used for defining how OpenGL should use this image
when mapping texels to pixels. Generally, you’ll set the level to 0, unless
you’re using a texturing technique called mipmapping, which we’ll discuss in a
few slides.

An Interactive Introduction to OpenGL Programming

106

106

Converting A Texture Image

• If dimensions of image are not power of 2
gluScaleImage(format, w_in, h_in,

 type_in, *data_in, w_out, h_out,
 type_out, *data_out);

• *_in is for source image

• *_out is for destination image

• Image interpolated and filtered during
scaling

If your image does not meet the power of two requirement for a dimension, the
gluScaleImage() call will resample an image to a particular size. It uses a
simple box filter to interpolate the new images pixels from the source image.

Additionally, gluScaleImage() can be used to convert from one data type
(i.e. GL_FLOAT) to another type, which may better match the internal format
in which OpenGL stores your texture.

Note that use of gluScaleImage() can also save memory.

An Interactive Introduction to OpenGL Programming

107

107

Specifying a Texture:
Other Methods

• Use frame buffer as source of texture image
• uses current buffer as source image

glCopyTexImage2D(...)

glCopyTexImage1D(...)

• Modify part of a defined texture
glTexSubImage2D(...)

glTexSubImage1D(...)

• Do both with glCopyTexSubImage2D(...) , etc.

glCopyTexImage*() allows textures to be defined by rendering into any
of OpenGL’s buffers. The source buffer is selected using the
glReadBuffer() command.

Using glTexSubImage*() to replace all or part of an existing texture often
outperforms using glTexImage*() to allocate and define a new one. This
can be useful for creating a “texture movie” (sequence of textures which
changes appearance on an object’s surface).

There are some advanced techniques using glTexSubImage*() which
include loading an image which doesn’t meet the power of two requirement.
Additionally, several small images can be “packed” into one larger image
(which was originally created with glTexImage*()), and loaded
individually with glTexSubImage*() . Both of these techniques require the
manipulation of the texture transform matrix, which is outside the scope of this
course.

An Interactive Introduction to OpenGL Programming

108

108

• Based on parametric texture coordinates
• glTexCoord*() specified at each vertex

s

t 1, 1
0, 1

0, 0 1, 0

(s, t) = (0.2, 0.8)

(0.4, 0.2)

(0.8, 0.4)

A

B C

a

b
c

Texture Space Object Space

Mapping a
Texture

CPU DL

Poly. Per
Vertex

Raster Frag FB

Pixel

Texture

When you want to map a texture onto a geometric primitive, you need to
provide texture coordinates. The glTexCoord*() call sets the current
texture coordinates. Valid texture coordinates are between 0 and 1, for each
texture dimension, and the default texture coordinate is (0, 0, 0, 1). If you
pass fewer texture coordinates than the currently active texture mode (for
example, using glTexCoord1d() while GL_TEXTURE_2D is enabled),
the additionally required texture coordinates take on default values.

An Interactive Introduction to OpenGL Programming

109

109

Generating Texture Coordinates

• Automatically generate texture coords
glTexGen{ifd}[v]()

• specify a plane
• generate texture coordinates based upon distance

from plane

• generation modes
• GL_OBJECT_LINEAR

• GL_EYE_LINEAR

• GL_SPHERE_MAP

0=+++ DCzByAx

You can have OpenGL automatically generate texture coordinates for vertices
by using the glTexGen() and glEnable(GL_TEXTURE_GEN_{STRQ}) .
The coordinates are computed by determining the vertex’s distance from each
of the enabled generation planes.

As with lighting positions, texture generation planes are transformed by the
ModelView matrix, which allows different results based upon when the
glTexGen() is issued.

There are three ways in which texture coordinates are generated:

 GL_OBJECT_LINEAR - textures are fixed to the object (like wall paper)

 GL_EYE_LINEAR - texture fixed in space, and object move through
 texture (like underwater light shining on a swimming fish)

 GL_SPHERE_MAP - object reflects environment, as if it were made of
 mirrors (like the shiny guy in Terminator 2)

An Interactive Introduction to OpenGL Programming

110

110

Tutorial: Texture

An Interactive Introduction to OpenGL Programming

111

111

• Filter Modes
• minification or magnification

• special mipmap minification filters

• Wrap Modes
• clamping or repeating

• Texture Functions
• how to mix primitive’s color with texture’s color

• blend, modulate or replace texels

Texture Application Methods

Textures and the objects being textured are rarely the same size (in pixels).
Filter modes determine the methods used by how texels should be expanded
(magnification), or shrunk (minification) to match a pixel’s size. An
additional technique, called mipmapping is a special instance of a minification
filter.

Wrap modes determine how to process texture coordinates outside of the [0,1]
range. The available modes are:

 GL_CLAMP - clamp any values outside the range to closest valid value,
 causing the edges of the texture to be “smeared” across the primitive

 GL_REPEAT - use only the fractional part of the texture coordinate, causing
 the texture to repeat across an object

Finally, the texture environment describes how a primitives fragment colors
and texel colors should be combined to produce the final framebuffer color.
Depending upon the type of texture (i.e. intensity texture vs. RGBA texture)
and the mode, pixels and texels may be simply multiplied, linearly combined,
or the texel may replace the fragment’s color altogether.

An Interactive Introduction to OpenGL Programming

112

112

Filter Modes

Texture Polygon

Magnification Minification

PolygonTexture

Example:
glTexParameteri(target, type, mode);

Filter modes control how pixels are minified or magnified. Generally a color is
computed using the nearest texel or by a linear average of several texels.

The filter type, above is one of GL_TEXTURE_MIN_FILTER or
GL_TEXTURE_MAG_FILTER.

The mode is one of GL_NEAREST, GL_LINEAR, or special modes for
mipmapping. Mipmapping modes are used for minification only, and have
values of:

 GL_NEAREST_MIPMAP_NEAREST

 GL_NEAREST_MIPMAP_LINEAR

 GL_LINEAR_MIPMAP_NEAREST

 GL_LINEAR_MIPMAP_LINEAR

Full coverage of mipmap texture filters is outside the scope of this course.

An Interactive Introduction to OpenGL Programming

113

113

Mipmapped Textures

• Mipmap allows for prefiltered texture maps of
decreasing resolutions

• Lessens interpolation errors for smaller
textured objects

• Declare mipmap level during texture definition
glTexImage*D(GL_TEXTURE_*D, level, …)

• GLU mipmap builder routines
gluBuild*DMipmaps(…)

• OpenGL 1.2 introduces advanced LOD controls

As primitives become smaller in screen space, a texture may appear to shimmer
as the minification filters creates rougher approximations. Mipmapping is an
attempt to reduce the shimmer effect by creating several approximations of the
original image at lower resolutions.

 Each mipmap level should have an image which is one-half the height and
width of the previous level, to a minimum of one texel in either dimension. For
example, level 0 could be 32 x 8 texels. Then level 1 would be 16 x 4; level 2
would be 8 x 2; level 3, 4 x 1; level 4, 2 x 1, and finally, level 5, 1 x 1.

The gluBuild*Dmipmaps() routines will automatically generate each
mipmap image, and call glTexImage*D() with the appropriate level value.

OpenGL 1.2 introduces control over the minimum and maximum mipmap
levels, so you don’t have to specify every mipmap level (and also add more
levels, on the fly).

An Interactive Introduction to OpenGL Programming

114

114

Wrapping Mode

• Example:
glTexParameteri(GL_TEXTURE_2D,

 GL_TEXTURE_WRAP_S, GL_CLAMP)

glTexParameteri(GL_TEXTURE_2D,

 GL_TEXTURE_WRAP_T, GL_REPEAT)

texture
GL_REPEAT

wrapping
GL_CLAMP

wrapping

s

t

Wrap mode determines what should happen if a texture coordinate lies outside
of the [0,1] range. If the GL_REPEAT wrap mode is used, for texture
coordinate values less than zero or greater than one, the integer is ignored and
only the fractional value is used.

If the GL_CLAMP wrap mode is used, the texture value at the extreme (either 0
or 1) is used.

An Interactive Introduction to OpenGL Programming

115

115

Texture Functions

• Controls how texture is applied
glTexEnv{fi}[v](GL_TEXTURE_ENV, prop, param)

• GL_TEXTURE_ENV_MODE modes
• GL_MODULATE

• GL_BLEND

• GL_REPLACE

• Set blend color with
GL_TEXTURE_ENV_COLOR

The texture mode determines how texels and fragment colors are combined.
The most common modes are:

GL_MODULATE - multiply texel and fragment color

GL_BLEND - linearly blend texel, fragment, env color

GL_REPLACE - replace fragment’s color with texel

If prop is GL_TEXTURE_ENV_COLOR, param is an array of four floating point
values representing the color to be used with the GL_BLEND texture function.

An Interactive Introduction to OpenGL Programming

116

116

Perspective Correction Hint

• Texture coordinate and color interpolation
• either linearly in screen space

• or using depth/perspective values (slower)

• Noticeable for polygons “on edge”
glHint(GL_PERSPECTIVE_CORRECTION_HINT, hint)

where hint is one of

• GL_DONT_CARE

• GL_NICEST

• GL_FASTEST

An OpenGL implementation may chose to ignore hints.

An Interactive Introduction to OpenGL Programming

117

117

Is There Room for a Texture?

• Query largest dimension of texture image
• typically largest square texture

• doesn’t consider internal format size

glGetIntegerv(GL_MAX_TEXTURE_SIZE, &size)

• Texture proxy
• will memory accommodate requested texture size?

• no image specified; placeholder

• if texture won’t fit, texture state variables set to 0
• doesn’t know about other textures
• only considers whether this one texture will fit all of memory

GLint proxyComponents;

glTexImage2D(GL_PROXY_TEXTURE_2D, 0, GL_RGBA8, 64,
64, 0, GL_RGBA, GL_UNSIGNED_BYTE, NULL);

glGetTexLevelParameteriv(GL_PROXY_TEXTURE_2D, 0,
GL_TEXTURE_COMPONENTS, &proxyComponents);

An Interactive Introduction to OpenGL Programming

118

118

Texture Residency

• Working set of textures
• high-performance, usually hardware accelerated

• textures must be in texture objects

• a texture in the working set is resident

• for residency of current texture, check
GL_TEXTURE_RESIDENT state

• If too many textures, not all are resident
• can set priority to have some kicked out first

• establish 0.0 to 1.0 priorities for texture objects

Query for residency of an array of texture objects:

GLboolean glAreTexturesResident(GLsizei n,
 Gluint *texNums, GLboolean *residences)

Set priority numbers for an array of texture objects:

glPrioritizeTextures(GLsizei n, GLuint *texNums,
 GLclampf *priorities)

Lower priority numbers mean that, in a crunch, these texture objects will be
more likely to be moved out of the working set.

One common strategy is avoid prioritization, because many implementations
will automatically implement an LRU (least recently used) scheme, when
removing textures from the working set.

If there is no high-performance working set, then all texture objects are
considered to be resident.

An Interactive Introduction to OpenGL Programming

119

Advanced OpenGL Topics

Dave Shreiner

An Interactive Introduction to OpenGL Programming

120

120

Advanced OpenGL Topics

• Display Lists and Vertex Arrays
• Alpha Blending and Antialiasing
• Using the Accumulation Buffer
• Fog
• Feedback & Selection
• Fragment Tests and Operations
• Using the Stencil Buffer

An Interactive Introduction to OpenGL Programming

121

121

Immediate Mode versus Display
Listed Rendering

• Immediate Mode Graphics
• Primitives are sent to pipeline and display right away

• No memory of graphical entities

• Display Listed Graphics
• Primitives placed in display lists

• Display lists kept on graphics server

• Can be redisplayed with different state

• Can be shared among OpenGL graphics contexts

If display lists are shared, texture objects are also shared.

To share display lists among graphics contexts in the X Window System, use
the glXCreateContext() routine.

An Interactive Introduction to OpenGL Programming

122

122

Immediate Mode versus
Display Lists

Immediate Mode

Display Listed

Display
List

Polynomial
Evaluator

Per Vertex
Operations &

Primitive
Assembly

Rasterization Per Fragment
Operations

Texture
Memory

CPU

Pixel
Operations

Frame
Buffer

In immediate mode, primitives (vertices, pixels) flow through the system and
produce images. These data are lost. New images are created by reexecuting the
display function and regenerating the primitives.

In retained mode, the primitives are stored in a display list (in “compiled”
form). Images can be recreated by “executing” the display list. Even without a
network between the server and client, display lists should be more efficient
than repeated executions of the display function.

An Interactive Introduction to OpenGL Programming

123

123

Display Lists

• Creating a display list
GLuint id;
void init(void)
{
 id = glGenLists(1);
 glNewList(id, GL_COMPILE);
 /* other OpenGL routines */
 glEndList();
}

• Call a created list
void display(void)
{
 glCallList(id);
}

CPU DL

Poly. Per
Vertex

Raster Frag FB

Pixel

Texture

Instead of GL_COMPILE, glNewList also accepts the constant
GL_COMPILE_AND_EXECUTE, which both creates and executes a display
list.

If a new list is created with the same identifying number as an existing display
list, the old list is replaced with the new calls. No error occurs.

An Interactive Introduction to OpenGL Programming

124

124

Display Lists

• Not all OpenGL routines can be stored in display
lists

• State changes persist, even after a display list is
finished

• Display lists can call other display lists
• Display lists are not editable, but you can fake it

• make a list (A) which calls other lists (B, C, and D)

• delete and replace B, C, and D, as needed

Some routines cannot be stored in a display list. Here are some of them:

all glGet* routines

glIs* routines (e.g., glIsEnabled, glIsList, glIsTexture)

glGenLists glDeleteLists glFeedbackBuffer

glSelectBuffer glRenderMode glVertexPointer

glNormalPointer glColorPointer glIndexPointer

glReadPixels glPixelStore glGenTextures

glTexCoordPointer glEdgeFlagPointer

glEnableClientState glDisableClientState

glDeleteTextures glAreTexturesResident

glFlush glFinish

If there is an attempt to store any of these routines in a display list, the routine is
executed in immediate mode. No error occurs.

An Interactive Introduction to OpenGL Programming

125

125

Display Lists and Hierarchy

• Consider model of a car
• Create display list for chassis

• Create display list for wheel
glNewList(CAR, GL_COMPILE);

glCallList(CHASSIS);
glTranslatef(…);
glCallList(WHEEL);
glTranslatef(…);
glCallList(WHEEL);

…
glEndList();

An Interactive Introduction to OpenGL Programming

126

126

Advanced Primitives

• Vertex Arrays
• Bernstein Polynomial Evaluators

• basis for GLU NURBS

• NURBS (Non-Uniform Rational B-Splines)

• GLU Quadric Objects
• sphere

• cylinder (or cone)

• disk (circle)

In addition to specifying vertices one at a time using glVertex*() ,
OpenGL supports the use of arrays, which allows you to pass an array of
vertices, lighting normals, colors, edge flags, or texture coordinates. This is
very useful for systems where function calls are computationally expensive.
Additionally, the OpenGL implementation may be able to optimize the
processing of arrays.

OpenGL evaluators, which automate the evaluation of the Bernstein
polynomials, allow curves and surfaces to be expressed algebraically. They are
the underlying implementation of the OpenGL Utility Library’s NURBS
implementation.

Finally, the OpenGL Utility Library also has calls for generating polygonal
representation of quadric objects. The calls can also generate lighting normals
and texture coordinates for the quadric objects.

An Interactive Introduction to OpenGL Programming

127

127

Vertex
Arrays

• Pass arrays of vertices, colors, etc. to
OpenGL in a large chunk
 glVertexPointer(3, GL_FLOAT, 0, coords)

 glColorPointer (4, GL_FLOAT, 0, colors)

 glEnableClientState (GL_VERTEX_ARRAY)

 glEnableClientState (GL_COLOR_ARRAY)

 glDrawArrays(GL_TRIANGLE_STRIP, 0, numVerts);

• All active arrays are used in rendering

Color
data

Vertex
data

CPU DL

Poly.
Per

Vertex

Raster Frag FB

Pixel

Texture

Vertex Arrays allow vertices, and their attributes to be specified in chunks,
which reduces the need for sending single vertices and their attributes one call
at a time. This is a useful optimization technique, as well as usually
simplifying storage of polygonal models.

glInterleavedArrays() is a specialized command which substitutes for
both calls to gl*Pointer() and glEnableClientState(*).

When OpenGL processes the arrays, any enabled array is used for rendering.
There are three methods for rendering using vertex arrays:

One way is the glDrawArrays() routine, which will render the specified
primitive type by processing numVerts consecutive data elements from the
enabled arrays.

A second way is glDrawElements(), which allows indirect indexing of
data elements in the enabled arrays. This allows shared data elements to be
specified only once in the arrays, but be accessed numerous times.

Another way is glArrayElement() , which processes a single set of data
elements from all activated arrays. As compared to the previous two commands
above, glArrayElement() must appear between a glBegin() /
glEnd() pair.

For more information on vertex arrays, see chapter 2 of the OpenGL
Programming Guide.

An Interactive Introduction to OpenGL Programming

128

128

Why use Display Lists or Vertex
Arrays?

• May provide better performance than
immediate mode rendering

• Display lists can be shared between
multiple OpenGL context
• reduce memory usage for multi-context applications

• Vertex arrays may format data for better
memory access

Display lists and vertex arrays are principally performance enhancements. On
some systems, they may provide better OpenGL performance than immediate
mode because of reduced function call overhead or better data organization.

Display lists can also be used to group similar sets of OpenGL commands, like
multiple calls to glMaterial() to set up the parameters for a particular
object. In addition for applications which have multiple OpenGL contexts,
display lists can be shared across contexts for less memory usage.

An Interactive Introduction to OpenGL Programming

129

129

Alpha: the 4 th Color Component

• Measure of Opacity
• simulate translucent objects

• glass, water, etc.

• composite images

• antialiasing

• ignored if blending is not enabled

glEnable(GL_BLEND)

The alpha component for a color is a measure of the fragment’s opacity. As
with other OpenGL color components, its value ranges from 0.0 (which
represents completely transparent) to 1.0 (completely opaque).

Alpha values are important for a number of uses:

• simulating translucent objects like glass, water, etc.

• blending and compositing images

• antialiasing geometric primitives

Blending can be enabled using glEnable(GL_BLEND) .

An Interactive Introduction to OpenGL Programming

130

130

Blending

• Combine pixels with what’s in already
 in the framebuffer

glBlendFunc(src, dst)

Framebuffer
Pixel
(dst)

Blending
Equation

Fragment
(src)

Blended
Pixel

pfr CdstCsrcC

+=

CPU DL

Poly. Per
Vertex

Raster Frag FB

Pixel

Texture

Blending combines fragments with pixels to produce a new pixel color. If a
fragment makes it to the blending stage, the pixel is read from the framebuffer’s
position, combined with the fragment’s color and then written back to the
position.

The fragment and pixel each have a factor which controls their contribution to
the final pixel color. These blending factors are set using glBlendFunc() ,
which sets the source factor, which is used to scale the incoming fragment
color, and the destination blending factor, which scales the pixel read from the
framebuffer. Common OpenGL blending factors are:

GL_ONE GL_ZERO

GL_SRC_ALPHA GL_ONE_MINUS_SRC_ALPHA

They are then combined using the blending equation, which is addition by
default.

Blending is enabled using glEnable(GL_BLEND)

Note: If your OpenGL implementation supports the GL_ARB_imaging
extension, you can modify the blending equation as well.

An Interactive Introduction to OpenGL Programming

131

131

Multi-pass Rendering

• Blending allows results from multiple
drawing passes to be combined together
• enables more complex rendering algorithms

Example of bump-mapping
done with a multi-pass

OpenGL algorithm

OpenGL blending enables techniques which may require accumulating multiple
images of the same geometry with different rendering parameters to be done.

An Interactive Introduction to OpenGL Programming

132

132

Antialiasing

• Removing the Jaggies
glEnable(mode)

• GL_POINT_SMOOTH

• GL_LINE_SMOOTH

• GL_POLYGON_SMOOTH

• alpha value computed by computing
sub-pixel coverage

• available in both RGBA and colormap modes

Antialiasing is a process to remove the jaggies which is the common name for
jagged edges of rasterized geometric primitives. OpenGL supports antialiasing
of all geometric primitives by enabling both GL_BLEND and one of the
constants listed above.

Antialiasing is accomplished in RGBA mode by computing an alpha value for
each pixel that the primitive touches. This value is computed by subdividing the
pixel into subpixels and determining the ratio used subpixels to total subpixels
for that pixel. Using the computed alpha value, the fragment’s colors are
blended into the existing color in the framebuffer for that pixel.

Color index mode requires a ramp of colors in the colormap to simulate the
different values for each of the pixel coverage ratios.

In certain cases, GL_POLYGON_SMOOTH may not provide sufficient results,
particularly if polygons share edges. As such, using the accumulation buffer for
full scene antialising may be a better solution.

An Interactive Introduction to OpenGL Programming

133

133

Accumulation Buffer

• Problems of compositing into color
buffers
• limited color resolution

• clamping
• loss of accuracy

• Accumulation buffer acts as a “floating point” color
buffer

• accumulate into accumulation buffer
• transfer results to frame buffer

Since most graphics hardware represents colors in the framebuffer as integer
numbers, we can run into problems if we want to accumulate multiple images
together.

Suppose the framebuffer has 8 bits per color component. If we want to prevent
any possible overflow adding 256 8 bit per color images, we would have to
divide each color component by 256 thus reducing us to 0 bits of resolution.

Many OpenGL implementations support the accumulation in software only, and
as such, using the accumulation buffer may cause some slowness in rendering.

An Interactive Introduction to OpenGL Programming

134

134

Accessing Accumulation Buffer

glAccum(op, value)

• operations

• within the accumulation buffer: GL_ADD, GL_MULT

• from read buffer: GL_ACCUM, GL_LOAD

• transfer back to write buffer: GL_RETURN

• glAccum(GL_ACCUM, 0.5) multiplies each value
in write buffer by 0.5 and adds to accumulation
buffer

If we want to average n images, we can add in each with a value of 1 and read
the result with a factor of 1/n. Equivalently, we can accumulate each with a
factor of 1/n and read back with a factor of 1.

An Interactive Introduction to OpenGL Programming

135

135

Accumulation Buffer
Applications

• Compositing
• Full Scene Antialiasing
• Depth of Field
• Filtering
• Motion Blur

Compositing, which combines several images into a single image, done with the
accumulation buffer generally gives better results than blending multiple passes
into the framebuffer.

Full scene antialiasing utilizes compositing in the accumulation buffer to
smooth the jagged edges of all objects in the scene. Depth of field, simulates
how a camera lens can focus on a single object while other objects in the view
may be out of focus.

Filtering techniques, such as convolutions and blurs (from image processing)
can be done easily in the accumulation buffer by rendering the same image
multiple times with slight pixel offsets.

Motion blur, a technique often used in Saturday morning cartoons, simulates
motion in a stationary object. We can do with the accumulation buffer by
rendering the same scene multiple times, and varying the position of the object
we want to appear as moving for each render pass. Compositing the results will
give the impression of the object moving.

An Interactive Introduction to OpenGL Programming

136

136

Full Scene Antialiasing :
Jittering the view

• Each time we move the viewer, the image
shifts
• Different aliasing artifacts in each image

• Averaging images using accumulation
buffer averages out
these artifacts

Full scene antialiasing, as mentioned, reduces the aliasing artifacts of objects in
the scene by combining several renderings of the same scene, with each
rendering done from a slightly different viewpoint. Since the viewpoint is only
changed a little for each rendering pass, most of the scene looks very similar,
but when all the images are composited together, the hard edges are averaged
away.

An Interactive Introduction to OpenGL Programming

137

137

Depth of Focus : Keeping a
Plane in Focus

• Jitter the viewer to keep one plane
unchanged

Front Plane

Back Plane

Focal Plane

eye pos1 eye pos2

Depth of field images can be produced by shifting the eyepoint around in the
same parallel plane as to the focal plane. By compositing the resulting images
together, objects near the center of the viewing frustum are kept in focus, while
objects farther from the focal plane are composited to be a little blurry.

An Interactive Introduction to OpenGL Programming

138

138

Fog

glFog(property, value)

• Depth Cueing
• Specify a range for a linear fog ramp

• GL_FOG_LINEAR

• Environmental effects
• Simulate more realistic fog

• GL_FOG_EXP

• GL_FOG_EXP2

Fog works in two modes:

Linear fog mode is used for depth cueing affects. In this mode, you provide
OpenGL with a starting and ending distance from the eye, and between those
distances, the fog color is blended into the primitive in a linear manner based
on distance from the eye.

In this mode, the fog coefficient is computed as

Here’s a code snippet for setting up linear fog:
 glFogf(GL_FOG_MODE, GL_FOG_LINEAR);
 glFogf(GL_FOG_START, fogStart);
 glFogf(GL_FOG_END, fogEnd);
 glFogfv(GL_FOG_COLOR, fogColor);
 glEnable(GL_FOG);

Exponential fog mode is used for more natural environmental affects like fog,
smog and smoke. In this mode, the fog’s density increases exponentially with
the distance from the eye. For these modes, the coefficient is computed as

startend

startz
f

−
−=

= ⋅−

⋅−

2GL_FOG_EXP

GL_FOG_EXP
2zdensity

zdensity

e

e
f

An Interactive Introduction to OpenGL Programming

139

139

Fog Tutorial

In this tutorial, experiment with the different fog modes, and in particular, the
parameters which control either the fog density (for exponential mode) and the
start and end distances (for linear mode).

An Interactive Introduction to OpenGL Programming

140

140

Feedback Mode

• Transformed vertex data is returned to the
application, not rendered
• useful to determine which primitives will make it to

the screen

• Need to specify a feedback buffer
glFeedbackBuffer(size, type, buffer)

• Select feedback mode for rendering
glRenderMode(GL_FEEDBACK)

Feedback mode is useful for determining which primitives will eventually be
rendered, after transformation and clipping. The data returned back from
feedback mode is dependant on what type of data was requested.

Possible types of values which can be returned are:

• 2D or 3D vertex values

• 3D vertex data with color

• 4D vertex data with color and texture

Each set of vertex data returned is delineated with a token representing what
type of primitive was rendered (GL_POINT_TOKEN, GL_LINE_TOKEN,
GL_POLYGON_TOKEN, GL_BITMAP_TOKEN,
GL_DRAW_PIXELS_TOKEN, GL_PASS_THROUGH_TOKEN) , followed by
the requested data.

An Interactive Introduction to OpenGL Programming

141

141

Selection Mode

• Method to determine which primitives are
inside the viewing volume

• Need to set up a buffer to have results
returned to you

glSelectBuffer(size, buffer)

• Select selection mode for rendering
glRenderMode(GL_SELECT)

Selection mode is a way to determine which primitives fall within the viewing
volume. As compared to feedback mode, where all the vertex data for a
primitive is returned to you, selection mode only returns back a “name” which
you assign for the primitive.

An Interactive Introduction to OpenGL Programming

142

142

Selection Mode (cont.)

• To identify a primitive, give it a name
• “names” are just integer values, not strings

• Names are stack based
• allows for hierarchies of primitives

• Selection Name Routines
glLoadName(name) glPushName(name)

glInitNames()

Selection mode uses names to identify primitives that pass the selection test.
Any number of primitives can share the same name, allowing groups of
primitives to be identified as a logical object.

After specifying the selection buffer, it must be initialized first by calling
glPushName() . A hierarchy of names can be set up by calling
glPushName() to obtain a new level in the hierarchy, and glLoadName()
to uniquely name each node in the hierarchy.

glInitNames() can be used to completely clear out an existing name
hierarchy.

An Interactive Introduction to OpenGL Programming

143

143

Picking

• Picking is a special case of selection
• Programming steps

• restrict “drawing” to small region near pointer

use gluPickMatrix() on projection matrix

• enter selection mode; re-render scene

• primitives drawn near cursor cause hits

• exit selection; analyze hit records

The picking region is usually specified in a piece of code like this:

glMatrixMode (GL_PROJECTION);

glLoadIdentity();

gluPickMatrix(x, y, width, height, viewport);

gluPerspective(...) or glOrtho(...)

The picking matrix is the rare situation where the standard projection matrix
(perspective or ortho) is multiplied onto a non-identity matrix.

Each hit record contains:

• number of names per hit

• smallest and largest depth values

• all the names

An Interactive Introduction to OpenGL Programming

144

144

Picking Template

glutMouseFunc(pickMe);

void pickMe(int button, int state, int x, int y)
{

 GLuint nameBuffer[256];
 GLint hits;
 GLint myViewport[4];
 if (button != GLUT_LEFT_BUTTON ||
 state != GLUT_DOWN) return;
 glGetIntegerv(GL_VIEWPORT, myViewport);
 glSelectBuffer(256, nameBuffer);
 (void) glRenderMode(GL_SELECT);
 glInitNames();

In this example, we specify a function to be called when a mouse button is
pressed.

The routine which is called specifies the selection buffer, and switches into
selection mode for retrieving which objects fall within the picking region.

The glInitNames() function resets the selection buffer to its default state.

An Interactive Introduction to OpenGL Programming

145

145

Picking Template (cont.)

 glMatrixMode(GL_PROJECTION);
 glPushMatrix();
 glLoadIdentity();
 gluPickMatrix((GLdouble) x, (GLdouble)
 (myViewport[3]-y), 5.0, 5.0, myViewport);
/* gluPerspective or glOrtho or other projection */

 glPushName(1);
/* draw something */
 glLoadName(2);
/* draw something else … continue … */

We continue the example by specifying the picking region using
gluPickMatrix() and then specifying our normal projection
transformation. Continuing, we initialize the name stack by calling
glPushName() (remember, you need to do a glPushName() , and not a
glLoadName() first).

Finally, we render all the objects in our scene, providing new names for the
selection buffer as necessary.

An Interactive Introduction to OpenGL Programming

146

146

Picking Template (cont.)

 glMatrixMode(GL_PROJECTION);
 glPopMatrix();
 hits = glRenderMode(GL_RENDER);
/* process nameBuffer */
}

Completing our example, we restore the projection matrix to its pre-pick matrix
mode, and process our hits with the data returned back to us in the selection
buffer provided previously.

An Interactive Introduction to OpenGL Programming

147

147

Picking Ideas

• For OpenGL Picking Mechanism
• only render what is pickable (e.g., don’t clear

screen!)
• use an “invisible” filled rectangle, instead of text
• if several primitives drawn in picking region, hard to

use z values to distinguish which primitive is “on
top”

• Alternatives to Standard Mechanism
• color or stencil tricks (for example, use

glReadPixels() to obtain pixel value from back
buffer)

There are a few tricks that make picking more useful and simpler to use:

• in order to make picking as fast as possible, only render what’s
pickable.

• Try to use simple geometry to simulate a more complex object. For
example, use a filled rectangle as compared to a text string, or the
bounding sphere of a complicated polygonal object.

The selection mechanism returns the depth values of objects, which can be used
to sort objects based on their distance from the eyepoint.

OpenGL selection and picking methods aren’t the only ways to determine what
primitives are on the screen. In some cases, it may be faster and easier to use
unique colors for each object, render the scene into the back-buffer, and read
the pixel or pixels which are of interest (like the hot spot on a cursor). Looking
up the color may be much faster and more direct than parsing the hit list
returned from selection.

An Interactive Introduction to OpenGL Programming

148

148

Getting to the Framebuffer

Blending
Depth
Test

Dithering
Logical

Operations

Scissor
Test

Stencil
Test

Alpha
Test

F
ra

gm
e

nt

F
ra

m
e

bu
ffe

r

In order for a fragment to make it to the frame buffer, it has a number of testing
stages and pixel combination modes to go through.

The tests that a fragment must pass are:

• scissor test - an additional clipping test

• alpha test - a filtering test based on the alpha color component

• stencil test - a pixel mask test

• depth test - fragment occlusion test

Each of these tests is controlled by a glEnable() capability.

If a fragment passes all enabled tests, it is then blended, dithered and/or
logically combined with pixels in the framebuffer. Each of these operations can
be enabled and disabled.

An Interactive Introduction to OpenGL Programming

149

149

Scissor Box

• Additional Clipping Test
glScissor(x, y, w, h)

• any fragments outside of box are clipped

• useful for updating a small section of a viewport

• affects glClear() operations

The scissor test provides an additional rectangular clipping test in addition to
clipping to the viewport. This is useful for clearing only particular parts of the
viewport (glClear() is not bounded by the viewport clipping operation), and
restricting pixel updates to a small region of the viewport.

The scissor test can be enabled with glEnable(GL_SCISSOR_TEST);

An Interactive Introduction to OpenGL Programming

150

150

Alpha Test

• Reject pixels based on their alpha value
glAlphaFunc(func, value)

glEnable(GL_ALPHA_TEST)

• use alpha as a mask in textures

CPU DL

Poly. Per
Vertex

Raster Frag FB

Pixel

Texture

Alpha values can also be used for fragment testing. glAlphaFunc() sets a
value which, if glEnable(GL_ALPHA_TEST) has been called, will test
every fragment’s alpha against the value set, and if the test fails, the fragment is
discarded.

The functions which glAlphaFunc() can use are:

GL_NEVER GL_LESS

GL_EQUAL GL_LEQUAL

GL_GREATER GL_NOTEQUAL

GL_GEUQAL GL_ALWAYS

The default is GL_ALWAYS, which always passes fragments.

Alpha testing is particularly useful when combined with texture mapping with
textures which have an alpha component. This allows your texture map to act as
a localized pixel mask. This technique is commonly used for objects like trees
or fences, where modeling the objects (and all of its holes) becomes prohibitive.

An Interactive Introduction to OpenGL Programming

151

151

Stencil Buffer

• Used to control drawing based on values
in the stencil buffer
• Fragments that fail the stencil test are not drawn

• Example: create a mask in stencil buffer and draw
only objects not in mask area

CPU DL

Poly. Per
Vertex

Raster Frag FB

Pixel

Texture

Unlike other buffers, we do not draw into the stencil buffer. We set its values
with the stencil functions. However, the rendering can alter the values in the
stencil buffer depending on whether a fragment passes or fails the stencil test.

An Interactive Introduction to OpenGL Programming

152

152

Controlling Stencil Buffer

glStencilFunc(func, ref, mask)
• compare value in buffer with ref using func

• only applied for bits in mask which are 1

• func is one of standard comparison functions

glStencilOp(fail, zfail, zpass)
• Allows changes in stencil buffer based on passing

or failing stencil and depth tests: GL_KEEP,
GL_INCR

The two principal functions for using the stencil buffer are
glStencilFunc() which controls how the bits in the stencil buffer are used
to determine if a particular pixel in the framebuffer is writable.

glStencilOp() controls how the stencil buffer values are updated, based on
three tests:

 1) did the pixel pass the stencil test specified with glStencilFunc()

 2) did the pixel fail the depth test for that pixel.

 3) did the pixel pass the depth test for that pixel. This would mean that the
pixel in question would have appeared in the image.

An Interactive Introduction to OpenGL Programming

153

153

Creating a Mask

glInitDisplayMode(…|GLUT_STENCIL|…);

glEnable(GL_STENCIL_TEST);

glClearStencil(0x1);

glStencilFunc(GL_ALWAYS, 0x1, 0x1);

glStencilOp(GL_REPLACE, GL_REPLACE,
 GL_REPLACE);

• draw mask

In this example, we specify a simple stencil mask. We do this by specifying that
regardless of which tests the pixel passes or fails, we replace its value in the
stencil buffer with the value 0x1. This permits us to render the shape of the
pixel mask we want directly into the stencil buffer (in a manner of speaking).

An Interactive Introduction to OpenGL Programming

154

154

Using Stencil Mask

glStencilFunc(GL_EQUAL, 0x1, 0x1)

• draw objects where stencil = 1
glStencilFunc(GL_NOT_EQUAL, 0x1, 0x1);

glStencilOp(GL_KEEP, GL_KEEP, GL_KEEP);

• draw objects where stencil != 1

After the stencil mask is specified, we can use the mask to selectively update
pixels. With the first set of commands, we only update the pixels where the
stencil buffer is set to 0x01 in the stencil buffer.

In the second example, we set the stencil state up to render only to pixels where
the stencil value is not 0x01.

An Interactive Introduction to OpenGL Programming

155

155

Dithering

glEnable(GL_DITHER)

• Dither colors for better looking results
• Used to simulate more available colors

Dithering is a technique to trick the eye into seeing a smoother color when only
a few colors are available. Newspaper’s use this trick to make images look
better. OpenGL will modify a fragment’s color value with a dithering table
before it is written into the framebuffer.

An Interactive Introduction to OpenGL Programming

156

156

Logical Operations on Pixels

• Combine pixels using bitwise logical
operations

glLogicOp(mode)

• Common modes

• GL_XOR

• GL_AND

Logical operations allows pixels to be combined with bitwise logical
operations, like logical ands, ors and nots. The fragment’s color bits are
combined with the pixel’s color bits using the logical operation, and then
written into the framebuffer.

GL_XOR is a useful logical operation for creating “rubber banding” type
techniques, where you only momentarily want to modify a pixel, and then
return back to its original value.

There are several OpenGL logical operation modes:

 GL_CLEAR GL_SET GL_COPY,

 GL_COPY_INVERTED GL_NOOP GL_INVERT

 GL_AND GL_NAND GL_OR

 GL_NOR GL_XOR GL_AND_INVERTED

 GL_AND_REVERSE GL_EQUIV GL_OR_REVERSE

 GL_OR_INVERTED

An Interactive Introduction to OpenGL Programming

157

157

Advanced Imaging

• Imaging Subset
• Only available if GL_ARB_imaging defined

• Color matrix

• Convolutions

• Color tables

• Histogram
• MinMax

• Advanced Blending

OpenGL may also contain an advanced set of functionality referred to as the
Imaging subset. This functionality is only present if your implementation
supports the GL_ARB_imaging extension.

Some of the functionality included in the imaging subset is:

• using a color matrix to apply linear transformation to color
components

• computing image convolutions

• replacing colors using color tables

• histogramming and computing the minimum and maximum pixel
values (minmax)

• advanced pixel blending modes

An Interactive Introduction to OpenGL Programming

158

Summary / Q & A

Dave Shreiner
Ed Angel

Vicki Shreiner

An Interactive Introduction to OpenGL Programming

159

159

On-Line Resources

• http://www.opengl.org

• start here; up to date specification and lots of sample code

• news:comp.graphics.api.opengl

• http://www.sgi.com/software/opengl

• http://www.mesa3d.org/

• Brian Paul’s Mesa 3D

• http://www.cs.utah.edu/~narobins/opengl.html

• very special thanks to Nate Robins for the OpenGL Tutors
• source code for tutors available here!

An Interactive Introduction to OpenGL Programming

160

160

Books

• OpenGL Programming Guide, 3 rd Edition
• OpenGL Reference Manual, 3 rd Edition
• OpenGL Programming for the X Window

System
• includes many GLUT examples

• Interactive Computer Graphics: A top-
down approach with OpenGL, 2 nd Edition

An Interactive Introduction to OpenGL Programming

161

161

Thanks for Coming

• Questions and Answers
Dave Shreiner shreiner@sgi.com

Ed Angel angel@cs.unm.edu

Vicki Shreiner vshreiner@sgi.com

