OLE Controls and Control Containers Guidelines

V1.0		

Contents

� TOC \o "1-3" �Overview	� GOTOBUTTON _Toc332042102 � PAGEREF _Toc332042102 �1��

Why are OLE Control and Control Container Guidelines Important?	� GOTOBUTTON _Toc332042103 � PAGEREF _Toc332042103 �1��

What to do When an Interface You Need is Not Available	� GOTOBUTTON _Toc332042104 � PAGEREF _Toc332042104 �1��

Controls	� GOTOBUTTON _Toc332042105 � PAGEREF _Toc332042105 �1��

Required Interfaces	� GOTOBUTTON _Toc332042106 � PAGEREF _Toc332042106 �1��

Optional Methods	� GOTOBUTTON _Toc332042107 � PAGEREF _Toc332042107 �1��

Interface Method Semantics	� GOTOBUTTON _Toc332042108 � PAGEREF _Toc332042108 �1��

Properties	� GOTOBUTTON _Toc332042109 � PAGEREF _Toc332042109 �1��

Property Pages	� GOTOBUTTON _Toc332042110 � PAGEREF _Toc332042110 �1��

Ambient Properties	� GOTOBUTTON _Toc332042111 � PAGEREF _Toc332042111 �1��

Methods (via OLE Automation)	� GOTOBUTTON _Toc332042112 � PAGEREF _Toc332042112 �1��

Events	� GOTOBUTTON _Toc332042113 � PAGEREF _Toc332042113 �1��

Self Registration	� GOTOBUTTON _Toc332042114 � PAGEREF _Toc332042114 �1��

Containers	� GOTOBUTTON _Toc332042115 � PAGEREF _Toc332042115 �1��

Required Interfaces	� GOTOBUTTON _Toc332042116 � PAGEREF _Toc332042116 �1��

Optional Methods	� GOTOBUTTON _Toc332042117 � PAGEREF _Toc332042117 �1��

Misc. Status Bits Support	� GOTOBUTTON _Toc332042118 � PAGEREF _Toc332042118 �1��

Keyboard Handling	� GOTOBUTTON _Toc332042119 � PAGEREF _Toc332042119 �1��

Storage Interfaces	� GOTOBUTTON _Toc332042120 � PAGEREF _Toc332042120 �1��

Ambient Properties	� GOTOBUTTON _Toc332042121 � PAGEREF _Toc332042121 �1��

Extended Properties, Events and Methods	� GOTOBUTTON _Toc332042122 � PAGEREF _Toc332042122 �1��

Message Reflection	� GOTOBUTTON _Toc332042123 � PAGEREF _Toc332042123 �1��

Automatic Clipping	� GOTOBUTTON _Toc332042124 � PAGEREF _Toc332042124 �1��

General Guidelines	� GOTOBUTTON _Toc332042125 � PAGEREF _Toc332042125 �1��

Function Groups	� GOTOBUTTON _Toc332042126 � PAGEREF _Toc332042126 �1��

Overloading IPropertyNotifySink	� GOTOBUTTON _Toc332042127 � PAGEREF _Toc332042127 �1��

Container-Specific Private Interfaces	� GOTOBUTTON _Toc332042128 � PAGEREF _Toc332042128 �1��

Multi-Threaded Issues	� GOTOBUTTON _Toc332042129 � PAGEREF _Toc332042129 �1��

Event Freezing	� GOTOBUTTON _Toc332042130 � PAGEREF _Toc332042130 �1��

Container Controls	� GOTOBUTTON _Toc332042131 � PAGEREF _Toc332042131 �1��

WS_GROUP and WS_TABSTOP Flags in Controls	� GOTOBUTTON _Toc332042132 � PAGEREF _Toc332042132 �1��

Multiple Controls in One DLL	� GOTOBUTTON _Toc332042133 � PAGEREF _Toc332042133 �1��

IOleContainer::EnumObjects	� GOTOBUTTON _Toc332042134 � PAGEREF _Toc332042134 �1��

Enhanced Metafiles	� GOTOBUTTON _Toc332042135 � PAGEREF _Toc332042135 �1��

Licensing	� GOTOBUTTON _Toc332042136 � PAGEREF _Toc332042136 �1��

Dual Interfaces	� GOTOBUTTON _Toc332042137 � PAGEREF _Toc332042137 �1��

IPropertyBag and IPersistPropertyBag	� GOTOBUTTON _Toc332042138 � PAGEREF _Toc332042138 �1��

Guideline Relaxation for “Document-Style” Use of OLE Controls	� GOTOBUTTON _Toc332042139 � PAGEREF _Toc332042139 �1��

Overview	� GOTOBUTTON _Toc332041563 � PAGEREF _Toc332041563 �Error! Bookmark not defined.3��

Why are OLE Control and Control Container Guidelines Important?	� GOTOBUTTON _Toc332041564 � PAGEREF _Toc332041564 �3��

What to do When an Interface You Need is Not Available	� GOTOBUTTON _Toc332041565 � PAGEREF _Toc332041565 �4��

Controls	� GOTOBUTTON _Toc332041566 � PAGEREF _Toc332041566 �4��

Required Interfaces	� GOTOBUTTON _Toc332041567 � PAGEREF _Toc332041567 �4��

Optional Methods	� GOTOBUTTON _Toc332041568 � PAGEREF _Toc332041568 �5��

Interface Method Semantics	� GOTOBUTTON _Toc332041569 � PAGEREF _Toc332041569 �7��

Properties	� GOTOBUTTON _Toc332041570 � PAGEREF _Toc332041570 �7��

Property Pages	� GOTOBUTTON _Toc332041571 � PAGEREF _Toc332041571 �7��

Ambient Properties	� GOTOBUTTON _Toc332041572 � PAGEREF _Toc332041572 �7��

Methods (via OLE Automation)	� GOTOBUTTON _Toc332041573 � PAGEREF _Toc332041573 �7��

Events	� GOTOBUTTON _Toc332041574 � PAGEREF _Toc332041574 �7��

Self Registration	� GOTOBUTTON _Toc332041575 � PAGEREF _Toc332041575 �8��

Containers	� GOTOBUTTON _Toc332041576 � PAGEREF _Toc332041576 �8��

Required Interfaces	� GOTOBUTTON _Toc332041577 � PAGEREF _Toc332041577 �8��

Optional Methods	� GOTOBUTTON _Toc332041578 � PAGEREF _Toc332041578 �9��

Misc. Status Bits Support	� GOTOBUTTON _Toc332041579 � PAGEREF _Toc332041579 �11��

Keyboard Handling	� GOTOBUTTON _Toc332041580 � PAGEREF _Toc332041580 �11��

Storage Interfaces	� GOTOBUTTON _Toc332041581 � PAGEREF _Toc332041581 �12��

Ambient Properties	� GOTOBUTTON _Toc332041582 � PAGEREF _Toc332041582 �12��

Extended Properties, Events and Methods	� GOTOBUTTON _Toc332041583 � PAGEREF _Toc332041583 �12��

Message Reflection	� GOTOBUTTON _Toc332041584 � PAGEREF _Toc332041584 �13��

Automatic Clipping	� GOTOBUTTON _Toc332041585 � PAGEREF _Toc332041585 �13��

General Guidelines	� GOTOBUTTON _Toc332041586 � PAGEREF _Toc332041586 �13��

Function Groups	� GOTOBUTTON _Toc332041587 � PAGEREF _Toc332041587 �13��

Overloading IPropertyNotifySink	� GOTOBUTTON _Toc332041588 � PAGEREF _Toc332041588 �14��

Container-Specific Private Interfaces	� GOTOBUTTON _Toc332041589 � PAGEREF _Toc332041589 �14��

Multi-Threaded Issues	� GOTOBUTTON _Toc332041590 � PAGEREF _Toc332041590 �15��

Event Freezing	� GOTOBUTTON _Toc332041591 � PAGEREF _Toc332041591 �15��

Container Controls	� GOTOBUTTON _Toc332041592 � PAGEREF _Toc332041592 �15��

WS_GROUP and WS_TABSTOP Flags in Controls	� GOTOBUTTON _Toc332041593 � PAGEREF _Toc332041593 �16��

Multiple Controls in One DLL	� GOTOBUTTON _Toc332041594 � PAGEREF _Toc332041594 �16��

IOleContainer::EnumObjects	� GOTOBUTTON _Toc332041595 � PAGEREF _Toc332041595 �16��

Enhanced Metafiles	� GOTOBUTTON _Toc332041596 � PAGEREF _Toc332041596 �17��

Licensing	� GOTOBUTTON _Toc332041597 � PAGEREF _Toc332041597 �17��

Dual Interfaces	� GOTOBUTTON _Toc332041598 � PAGEREF _Toc332041598 �17��

IPropertyBag and IPersistPropertyBag	� GOTOBUTTON _Toc332041599 � PAGEREF _Toc332041599 �17��

Guideline Relaxation for “Document-Style” Use of OLE Controls	� GOTOBUTTON _Toc332041600 � PAGEREF _Toc332041600 �18��

��
Overview

The purpose of this document is to provide guidelines for implementing OLE controls and containers that will interoperate well with other controls and containers. This document defines the minimum set of interfaces, methods, and features that are required of OLE Controls and Containers to accomplish seamless and useful interoperability.

These guidelines define the minimum set of functionality that is required of a control and container; it therefore also describes the minimum set of functionality that a control can expect of a container, and vice versa. This enables controls and container developers to assume a standard set of functionality, and to reasonably rely on the existence of that functionality. Of course, OLE standard return-checking conventions should always be followed.

Of course, there are many optional features that OLE controls and OLE control containers can choose to implement, which may or may not be essential to correct operation of the control or container. Some optional features are grouped into “function groups”. A control or a control container can choose to implement any of these function groups; function groups are not cumulative, so a control or container can support one group without necessarily supporting another. It is important for a control or container to degrade gracefully if a feature or function group it uses is not available. If an optional feature that is essential for correct operation is not available, then the control or container should alert the user and/or should not instantiate itself.

It is important for controls and containers that require optional features, or features specific to a certain container, to be marketed and packaged as such. For example, a control that requires Visual Basic’s data-bound list box should be marketed as a Visual Basic-specific control, since it cannot run in other containers.

These guidelines explicitly define those features, interfaces, methods, and properties that are mandatory for OLE controls and control containers. Any feature, interface, method, property, or function group that is not explicitly stated as mandatory in these guidelines should be considered optional.

Why are OLE Control and Control Container Guidelines Important?

OLE Controls have become the primary architecture for developing programmable software components for use in a variety of different containers ranging from software development tools to end-user productivity tools. In order for a control to operate well in a variety of containers, the control must be able to assume some minimum level of functionality - some set of features that it can rely on in all containers. Likewise, a container should be able to expect some minimum standard feature set from all the controls that it contains. Controls and containers will most certainly implement features above this minimal set; these guidelines define the minimum common set of features.

By following these guidelines, control and container developers make their controls and containers more reliable and interoperable, and ultimately better and more usable components for building component-based solutions.

The rest of this document is divided into three sections. The first discusses control guidelines, the second discusses container guidelines, and the third discusses general guidelines, relevant to both OLE control and control container developers.

What to do When an Interface You Need is Not Available

While these guidelines will help ensure that required functionality will be present, there will always be instances in which a control does not support a feature requested by the container, or vice versa. It is important for all OLE applications to be written to handle these situations. More specifically, OLE applications must ALWAYS use IUnknown::QueryInterface to acquire interface pointers, and applications must ALWAYS check the return value. OLE Applications cannot safely assume that IUnknown::QueryInterface will succeed. This requirement applies to all OLE applications. If the requested interface is not available (i.e., IUnknown::QueryInterface returns E_NOTIMPL), the control or container must degrade gracefully, even if it means that it must shut down.

Controls

An OLE control is an embeddable OLE object that has additional support for OLE controls interfaces. s the following additional features:

In Place activation

Inside-out activation

Use of ambient properties

Self-registration

OLE Controls must provide support for all of these features.

This section describes the specific interfaces, methods, and other features that are required of OLE Controls. Required Interfaces, Optional Methods, Properties, Property Pages, Ambient Properties, Automation Methods, Events, and Self Registration are addressed in the following subsections.

Required Interfaces

The table below lists the OLE Control interfaces, and denotes which interfaces are mandatory and must be implemented by controls, and which optional.

Interface�
Support Mandatory?�
Comments�
�
IOleObject�
Yes�
�
�
IOleInPlaceObject�
Yes�
�
�
IOleInPlaceActiveObject�
No�
Mandatory for controls with UI�
�
IOleControl�
No�
Mandatory for controls with mnemonics and/or that use ambient properties�
�
IDataObject�
Yes�
Mandatory for controls with property sets. Support for CF_METAFILE format is mandatory.�
�
IViewObject2�
Yes�
�
�
IExternalConnection�
No�
Mandatory for a controls that supports external links to itself, other than from its immediate container.�
�
IDispatch�
Yes�
Not mandatory for controls that have no methods or properties. See Note 1�
�
IConnectionPointContainer�
No�
Mandatory for controls with events or property notifications�
�
IConnectionPoint�
No�
See note for IConnectionPointContainer�
�
IProvideClassInfo�
Yes�
�
�
ISpecifyPropertyPages�
No�
Mandatory for controls with property pages�
�
IPersistStream�
No�
See “Storage Interfaces” section�
�
IPersistStreamInit�
No�
See “Storage Interfaces” section�
�
IPersistStorage�
Yes�
See “Storage Interfaces” section�
�
IClassFactory�
Yes�
�
�
IClassFactory2�
No�
Mandatory for controls with licensing support�
�
IPropertyNotifySink (source)�
No�
Mandatory for controls that provide property change notifications�
�
IPersistPropertyBag�
No�
Strongly recommended (Note 2)�
�
IOleCache�
No�
�
�
IOleCache2�
No�
�
�
IOleCacheControl�
No�
�
�
IRunnableObject�
No�
�
�

Notes:

(1)	Dual interface support is optional but strongly recommended.

(2)	Support for IPersistPropertyBag is optional but strongly recommended. IPersistPropertyBag is an optimization for containers that implement a “save as text” feature.For more information, see the IPersistPropertyBag section under “General Guidelines”.

Optional Methods

An OLE component can implement an interface without implementing all the semantics of every method in the interface, instead returning E_NOTIMPL or S_OK as appropriate. The following table describes those methods that a control is not required to implement (ie., the control can return E_NOTIMPL)

The table below describes optional methods. Note that the method must still exist, but can simply return E_NOTIMPL instead of implementing “real” semantics. Also note that any method from a mandatory interface that is not listed below must be considered mandatory and may not return E_NOTIMPL.

Method�
Comments�
�

IOleControl�
�
�
GetControlInfo�
Mandatory for controls with mnemonics�
�
OnMnemonic�
Mandatory for controls with mnemonics�
�
OnAmbientPropertyChange�
Mandatory for controls that use ambient properties�
�
FreezeEvents�
�
�
�
�
�
IOleObject�
�
�
SetMoniker�
�
�
GetMoniker�
�
�
InitFromData�
�
�
GetClipboardData�
�
�
SetExtent�
Mandatory only for DVASPECT_CONTENT�
�
GetExtent�
Mandatory only for DVASPECT_CONTENT�
�
SetColorScheme�
�
�
DoVerb�
See Note 1.�
�
�
�
�
IOleInPlaceObject�
�
�
ContextSensitiveHelp�
�
�
ReactivateAndUndo�
�
�
�
�
�
IOleInPlaceActiveObject�
�
�
ContextSensitiveHelp�
�
�
�
�
�
IViewObject2�
�
�
Freeze�
�
�
Unfreeze�
�
�
�
�
�
IPersistStreamInit�
�
�
GetSizeMax�
See Note 2.�
�

Notes:

A control with property pages must support IOleObject::DoVerbs for the OLEIVERB_PROPERTIES and OLEIVERB_PRIMARY verbs. A control that can be active must support IOleObject::DoVerbs for the OLEIVERB_INPLACEACTIVATE verb. A control that can be UI active must also supprt IOleObject::DoVerbs for the OLEIVERB_UIACTIVATE verb.

If a control supports IPersistStream and can return an accurate value, then it should do so.

Interface Method Semantics

Just as OLE controls must implement certain interfaces, and provide non-trivial implementations for most interface methods, there are some interface methods that require specific action. This section lists those methods and the required functionality.

IOleControl::FreezeEvents	See “Event Freezing” in the “General Guidelines” section.

Properties

Although most controls do have properties, controls are not required to expose any properties, and there are no guidelines for which properties a control should expose.

Property Pages

Support for property pages and per-property browsing is strongly recommended, but not required.

Ambient Properties

OLE Controls must use the following ambient properties, if they are available from the control site.

Ambient Property�
Comment�
�
LocaleID�
If Locale is significant to the control, e.g. for text output�
�
UserMode �
If the control behaves differently in user (design) mode and run mode�
�
UIDead�
If the control reacts to UI events, then it should honor this ambient property�
�
ShowHatching�
�
�
ShowGrabHandles�
�
�
DisplayAsDefault�
Only if the control is marked OLEMISC_ACTSLIKEBUTTON�
�

Methods (via OLE Automation)

Although most controls do expose and support several methods, controls are not required to expose or support any methods, and there are no guidelines for which methods a control should expose.

Events

Although most controls do expose and fire several events, controls are not required to expose or fire any events, and there are no guidelines for which events a control should expose.

Self Registration

OLE controls must support self-registration by implementing the DllRegisterServer and DllUnregisterServer functions. OLE controls must register all of the standard registry entries for embeddable objects and automation servers. OLE controls should also register the following three registry keys, which are strongly recommended, but not mandatory:

ToolBoxBitmap32

Insertable

Control

Containers

An OLE control container is an OLE container that supports the following additional features:

Embedded objects from in-process servers

In Place activation

Inside-out activation

OLEMISC_ACTIVATEWHENVISIBLE

OLE Control Containers must provide support for all of these features.

Note that support for local servers is currently not required, since OLE controls are currently only implemented in- process. It is no additional work for an OLE Container to support both in-process and cross-process OLE components, so most containers will likely support both by default.

This section describes the specific interfaces, methods, and other features that are required of OLE Control Containers. Required Interfaces, Optional Methods, Misc. Status Bits Support, Keyboard Handling, Storage Interfaces, Ambient Properties, Extended Properties, Events, Methods, Message Reflection, and Automatic Clipping are addressed in the following subsections.

Required Interfaces

The table below lists the OLE Control Container interfaces, and denotes which interfaces are mandatory and must be implemented by control containers, and which optional.

Interface�
Support Mandatory?�
Comments�
�
IOleClientSite�
Yes�
�
�
IAdviseSink�
Yes�
Except where it is not needed, such as where controls are always active�
�
IOleInPlaceSite�
Yes�
�
�
IOleControlSite�
Yes�
�
�
IOleInPlaceFrame�
Yes�
�
�
IOleContainer�
Yes�
See Note 1.�
�
IDispatch for ambient properties�
Yes�
See Note 2 and “Ambient Properties” section �
�
IDispatch for events�
Yes�
See Note 2.�
�
ISimpleFrameSite�
No�
ISimpleFrameSite and support for nested simple frames is optional.�
�
IPropertyNotifySink�
No�
�
�
IErrorInfo�
Yes�
Mandatory if container supports dual interfaces�
�

Notes:

IOleContainer is implemented on the document or form object (or appropriate analog) that holds the container sites. Controls use IOleContainer to navigate to other controls in the same document or form.

Support for dual interfaces is not mandatory, but is strongly recommended. TBy default, the OLE Controls Developers Kit does not currently support dual interfaces. Microsoft Visual C++ Control Development Kit 2.2 does not implement dual interfaces. However, writing your OLE Control Containers to take advantage of dual interfaces will afford you better performance now with controls that have expressly added dual interface support, and with controls that explicitly add dual interface support.in the future with all controls built with the CDK.

OLE control containers must support OLE Automation exceptions. If a control container supports dual interfaces, then it must capture automation exceptions through IErrorInfo. If a control container does not support dual interfaces, then it must capture automation exceptions by XXX.

OOptional Methods

An OLE component can implement an interface without implementing all the semantics of every method in the interface, instead returning E_NOTIMPL or S_OK as appropriate. The following table describes those methods that an OLE control container is not required to implement (ie.e.., the control container can return E_NOTIMPL)

The table below describes optional methods; note that the method must still exist, but can simply return E_NOTIMPL instead of implementing “real” semantics. Note that any method from a mandatory interface that is not listed below must be considered mandatory and may not return E_NOTIMPL.

Method�
Comments�
�
IOleClientSite�
�
�
SaveObject�
�
�
GetMoniker�
�
�
RequestNewObjectLayout�
�
�
�
�
�
IOleInPlaceSite�
�
�
ContextSensitiveHelp�
�
�
Scroll�
May return S_FALSE with no action�
�
DiscardUndoState�
Can return S_OK with no action�
�
DeactivateAndUndo�
Deactivation is mandatory; Undo is optional �
�
�
�
�
IOleControlSite�
�
�
GetExtendedControl�
Mandatory for containers that support extended controls�
�
ShowPropertyFrame�
A control calls this method to display property pages�
�
�
�
�
IDispatch (Ambient properties)�
�
�
GetTypeInfoCount�
Mandatory for containers that support non-standard ambient properties.�
�
GetTypeInfo�
Mandatory for containers that support non-standard ambient properties.�
�
GetIDsOfNames�
Mandatory for containers that support non-standard ambient properties.�
�
�
�
�
IDispatch (Event sink)�
�
�
GetTypeInfoCount�
The control knows its own type information, so it has no need to call this�
�
GetTypeInfo�
The control knows its own type information, so it has no need to call this�
�
GetIDsOfNames�
The control knows its own type information, so it has no need to call this�
�
IOleInPlaceFrame�
�
�
ContextSensitiveHelp�
�
�
GetBorder�
Mandatory for controls with toolbar UI (which is optional)�
�
RequestBorderSpace�
Mandatory for controls with toolbar UI (which is optional)�
�
SetBorderSpace�
Mandatory for controls with toolbar UI (which is optional)�
�
InsertMenus�
Mandatory for controls with menu UI (which is optional)�
�
SetMenu�
Mandatory for controls with menu UI (which is optional)�
�
RemoveMenus�
Mandatory for controls with menu UI (which is optional)�
�
SetStatusText�
�
�
EnableModeless�
�
�
�
�
�
IOleContainer�
�
�
ParseDisplayName�
�
�
LockContainer�
�
�
EnumObjects�
Mandatory, returns all OLE Controls, but not necessarily all objects (since there’s no guarantee that all objects are OLE controls; some may be regular Windows controls)�
�
IAdviseSink�
�
�
OnDataChanged�
OnDataChange returns void instead of an HRESULT. �
�

Misc. Status Bits Support

OLE Control Containers must recognize and support the following OLEMISCSTATUS bits:

Status Bit�
Support Mandatory?�
Comments�
�
ACTIVATEWHENVISIBLE�
Yes�
Mandatory only at run time. There may be other times when a container will not activate controls, such as during design time. This is dependent on the container.�
�
INSIDEOUT�
Yes�
�
�
INVISIBLEATRUNTIME�
Yes�
Designates a control that should be visible at design time, but invisible at run time.�
�
ALWAYSRUN�
Yes�
�
�
ACTSLIKEBUTTON�
Yes�
Designates a control that behaves as a button. The control can identify itself as the default button (container support for default button functionality is optional).�
�
ACTSLIKELABEL�
Yes�
Designates that a control behaves like a label, indicating that it should not become UI active, and should never receive the focus (focus should bypass labels, and continue to the next control in the tabbing order.)�
�
NOUIACTIVATE�
Yes�
�
�
ALIGNABLE�
No�
�
�
SIMPLEFRAME�
No�
See “Container Controls” under “General Guidelines” below�
�
SETCLIENTSITEFIRST�
Yes�
�
�
IMEMODE�
No�
�
�

Keyboard Handling

OLE Control Containers implement keyboard handling by calling the controls’ IOleControl interfacees. OLE control containers must support:

Default button handling

Mnemonic handling

Tab handling including tab order

Optionally, An OLE control container can allow a developer to designate an OLE control to act as the cancel button. In this case, the container treats the Escape key as a click on the designated control.

Storage Interfaces

OLE controls must support IPersistStorage, and any container can rely on support for this interface. Additionally, controls can optionally implement stream persistence using either IPersistStream or IPersistStreamInit. Support for IPersistStreamInit is strongly recommended.

Once an OLE Control Container has chosen a storage interface to use (either IPersistStorage, IPersistStream, or IPersistStreamInit), the control container must use the same interface for the lifetime of the control.

OLE Control Containers do not need to support a “save as text” mechanism.

Ambient Properties

At a minimum, OLE control containers must support the following ambient properties:

Ambient Property�
Comments�
�
LocaleID�
�
�
UserMode�
For containers that have different user and run environments�
�
SupportsMnemonics�
Which must always be TRUE, according to the “Keyboard Handling” section�
�
DisplayAsDefault �
For those containers where a default button makes sense�
�

Extended Properties, Events and Methods

OLE Control Containers are not required to support extended controls. However, if the control container does support extended properties, then it must support the following minimal set:

Visible

Parent

Default

Cancel

OLE Control Containers are not required to support extended events or methods. Currently, extended properties, events, and methods do not have standard dispids.d.

Message Reflection

It is strongly recommended that an OLE control container supports message reflection. This will result in more efficient operation for many controls, particularly subclassed controls. If message reflection is supported, the MessageReflect ambient property must be supported and have a value of TRUE. If a container does not implement message reflection, then the OLE CDK creates two windows for every sub-classed control, to provide message reflection on behalf on the control container.

Automatic Clipping

It is strongly recommended that an OLE control container supports automatic clipping of its controls. This will result in more efficient operation for most controls. If automatic clipping is supported, the AutoClip ambient property must be supported and have a value of TRUE.

Automatic clipping is the ability of a container to ensure that a control’s drawn output goes only to the container’s current clipping region. In a container that supports automatic clipping, a control can paint without regard to its clipping region, because the container will auotmatically clip any painting that occurs outside the control’s area. If a container does not support automatic clipping, then CDK-generated controls will create an extra parent window if a non-null clipping region is passed.

General Guidelines

This section describes various features, hints and tips for OLE control and OLE control container developers.

Function Groups

There are many optional features that OLE controls and OLE control containers can implement, in addition to the minimal set defined by these guidelines. These optional features may or may not be essential to correct operation of the control or container. Some optional features are grouped into “function groups”. A control or a control container can implement any of these function groups; function groups are not cumulative, so a control or container can support one function group without necessarily supporting another. It is important for a control or container to degrade gracefully if a feature or function group it uses is not available. If an optional feature that is essential for correct operation is not available, then the control or container should alert the user and/or should not instantiate itself.

Currently, the following two function groups have been defined:

Data binding

“Simple frame” container controls

Data Binding

The OLE Controls Architecture defines a data binding mechanism, whereby an OLE Control can specify that one or more of its properties are bindable. In most cases, a data bound control should not absolutely require data binding, so that it could be inserted into a container that does not support data binding. Obviously, in such a situation, the functionality of the control may be reduced.

Container Controls

A container control is an OLE control that is composed of other controls. A group box that contains a collection of radio buttons is an example of a container control. Container controls should set the OLEMISC_SIMPLEFRAME status bit, and should call its container’s ISimpleFrameSite implementation. An OLE control container that supports Container Controls must implement ISimpleFrameSite.

Overloading IPropertyNotifySink

Many OLE Control Containers implement modeless property browsing window. If a control’s properties are altered through the control’s property pages, then the control’s properties can get out of sync with the container’s view of those properties (the control is always right, of course). To ensure that it always has the current values for a control’s properties, an OLE Control Container can overload the IPropertyNotifySink interface (data binding) and use it also to be notified that a control property has changed. This technique is optional, and is not required of OLE Control Containers or OLE controls.

Note that a control should use IPropertyNotifySink::OnRequestEdit only for data binding; it is free to use OnChanged for either or both purposes.

Container-Specific Private Interfaces

Some containers provide container-specific private interfaces for additional functionality or improved performance. Controls that rely on those container-specific interfaces must either only instantiate themselves in that container, or work without those container-specific interfaces in different containers. For example, Visual Basic implements private interfaces that provide string formatting functionality to controls. If a control requires VB’s private interfaces to run, then it should destroy itself gracefully if the private interfaces are not available. If the control can function without the private interfaces , then it should take appropriate action (such as warn the user of reduced functionality) but should continue to work.

Multi-Threaded Issues

Starting with In Windows 95 and Windows NT 3.51, OLE provides support for multi-threading applications, allowing applications to make OLE calls from multiple threads. 32-bit Windows environments (excluding Win32s), developers can make use of the multi-threading capabilities inherent in the operating system. However, there are certain things to be aware of when writing OLE controls and control containers. This multi-threaded support is called the “apartment model.” Windows 95 and Windows NT 3.51 support “apartment model” threading, which enables applications to use OLE from multiple threads. The apartment model requires that interface pointers are marshalled (using CoMarshallInterface, and CoUnmarshalInterface) when passed between threads. For more information about apartment model threading, refer to the Win32 SDK documentation, and the OLEAPT sample (in Win32 SDK).

*** So, in theory at least, you can write a control that uses multiple threads. However, imagine the situation where one thread fires an event to the container and then another thread also fires an event (it doesn’t even need to be the same event). All of a sudden, the control is making the assumption that the container is thread-safe, which is in most cases a dangerous assumption. Therefore, it is recommended that, unless a control is written specifically for a thread-safe container, that a control communicate with its container through OLE only in the context of the original thread that created the control. If another thread within the control wants to fire an event, it should post a Windows message to the original thread so that it can fire the event on the other thread’s behalf.

Event Freezing

A container can notify a control that it is not ready to respond to events by calling IOleControl::FreezeEvents(TRUE). It can un-freeze the events by calling IOleControl::FreezeEvents(FALSE). When a container freezes events, it is freezing event processing, not event receiving; that is, a container can still receive events while events are frozen. If a container receives an event notification while its events are frozen, the container should ignore the event. No other action is appropriate.

A control should always honor a container’s call to IOleControl::FreezeEvents(TRUE), and not fire events until the container calls IOleControl::FreezeEvents(FALSE). While a container’s event processing is froze, a control should implement one of the following techniques:

Discard all events that the control would have fired.

Queue up all pending events and fire them after the container has called IOleControl::FreezeEvents(FALSE).

Queue up only relevant or important events and fire them after the container has called IOleControl::FreezeEvents(FALSE).

Each technique is accepted and appropriate in different circumstances. The control developer is responsible for determining and implementing the appropriate technique.

Container Controls

As described above, Container controls are OLE Controls that visually contain other controls. The OLE Controls Architecture specifies the ISimpleFrameSite interface to enable container controls. Containers can also support container controls without supporting ISimpleFrameSite.

In order to support container controls without implementing ISimpleFrameSite, an OLE Control Container must:

Activate all controls at all times

Reparent the contained controls to the hWnd of the containing control

Remain the parent of the container control.

A container can support container controls without supporting ISimpleFrameSite by activating all controls at all times, and by becoming the parent window of its contained controls. Activating all controls at all times eliminates problems with hit testing and cursor movement that occur if all the controls are not always active. The OLE Control container should become the parent window of contained controls so that painting and clipping works correctly.

WS_GROUP and WS_TABSTOP Flags in Controls

A control should not use the WS_GROUP and WS_TABSTOP flags internally; some containers rely on these flags to manage keyboard handling.

Multiple Controls in One DLL

A single .OCX DLL can container any number of OLE controls, thus simplifying the distribution and use of a set of related controls.

If you ship multiple controls in a single DLL, be sure to include the vendor name in each control name in the package. Including the vendors names in each control name will enable users to easily identify controls within a package. For example, if you ship a DLL that implements three controls, Con1, Con2 and Con3, then the control names should be:

<Your company name> Con1 Control

<Your company name> Con2 Control

<Your company name> Con3 Control

IOleContainer::EnumObjects

This method is enumerate over all the OLE objects contained in a document or form, returning an interface pointer for each OLE object. The container must return pointers to each OLE object that shares the same container. Nested forums or nested controls must also be enumerated.

Some containers implement “extender controls”, which wrap non-OLE controls, and then return pointers to these extender controls as a form is enumerated. This behavior enables OLE controls and OLE control containers to integrate well with non-OLE controls, and is thus recommended, but not required.

Enhanced Metafiles

Not surprisingly enhanced metafiles provide more functionalty than standard metafiles; using enhanced metafiles generally simplifies rendering code. An enhanced metafile DC is used in exactly the same way as a standard metafile DC. Enhanced metafiles are not available in 16-bit OLE. OLE supports enhanced metafiles, and includes backwards compatibility with standard metafiles and 16-bit applications.

32-bit OLE control containers should use enhanced metafiles instead of standard metafiles.

Licensing

In order to embed licensed controls successfully, OLE control containers must use IClassFactory2 instead of IClassFactory. Several OLE creation and loading helper functions (i.e., OleLoad and CoCreateInsteance) explicitly call IClassFactory and not IClassFactory2, and therefore cannot be used to create or load licensed OLE controls. th. (e.g. OleLoad, CoCreateInstance) and therefore certain licensing scenarios will fail.. OLE Control Containers should explicitly create and load OLE controls, using IClassFactory2. In the future, Microsoft will update these standard APIs to use both IClassFactory and IClassFactory2, as appropriate.

Dual Interfaces

OLE Automation enables an object to expose a set of methods in two ways: via the IDispatch interface, and through direct OLE Vtable binding. IDispatch is used by most tools available today, and offers support for late binding to properties and methods. Vtable binding, offers much higher performance because method is called directly instead of through IDispatch::Invoke. IDispatch offers late bound support; direct Vtable binding offers a significant performance gain; both techniques are valuable and important in different scenarios. By labeling an interface as “dual” in the type library, an OLE Automation interface can be used either via IDispatch, or it can be bound to directly. Containers can thus choose the most appropriate technique.

Support for dual interfaces is strongly recommended for both controls and containers. Microsoft’s CDK does not currently create dual interfaces by default, but an .odl file can be easily modified to specify dual interfaces.***

IPropertyBag and IPersistPropertyBag

IPropertyBag and IPersistPropertyBag optimize “save as text” mechanisms, and therefore are recommended for OLE control containers that implement a “save as text” mechanism. IPropertyBag is implemented by a container, and is roughly analogous to IStream. IPersistPropertyBag is implemented by controls, and is roughly analogous to IPersistStream.

Guideline Relaxation for “Document-Style” Use of OLE Controls

Some containers will use OLE controls in traditional compound document scenarios. For example, a spreadsheet may allow a user to embed an OLE control into a worksheet. In such scenarios, the container would do keyboard handling differently, because the keyboard interface should remain consistent with the user’s expectations of a spreadsheet. Consequently, OLE control containers that use OLE controls in compound document scenarios may relax the keyboard handling requirements described previously, according the following guidelines:

Support for OLEMISC_ACTSLIKELABEL and OLEMISC_ACTSLIKEBUTTON is not required.

Implementing the DisplayAsDefault ambient property is not required (if it exists, it can return FALSE).

Implementing tab handling for buttons is not required.

Documentation for such products should inform users of differences in control handling in these different scenarios.

	

OLE Controls and OLE Control Container Guidelines		Page � PAGE �218�

