Appendix D

OLE Controls Architecture

OLE custom controls comprise a set of extensions that turn OLE 2 containers and objects into more powerful “control containers” and “controls.” These extensions use standard compound document interfaces and new interfaces that can be accessed by control containers and controls. A control container implements a “site” object for each contained object or control. The interfaces, control-specific or not, are on the same site object. The QueryInterface function of any interface can access the other interfaces on that object, with a few minor exceptions.

�xe "Control Container:requirements for"��xe "Control:requirements for"�

To support OLE controls fully, a control container must be a full embedding container — linking support is not necessary — that also supports in-place activation. In the same manner, a control must be an embeddable object that also supports in-place activation as an inside-out object. Controls must also be self-registering (that is, they export the new function DllRegisterServer).

In this chapter the following topics are discussed:

�SYMBOL 117 \f "MSIcons" \s 9.5 \h �	Events and connection points

�SYMBOL 117 \f "MSIcons" \s 9.5 \h �	Standards for events, properties, and methods for OLE custom controls

�SYMBOL 117 \f "MSIcons" \s 9.5 \h �	New interfaces for controls

�SYMBOL 117 \f "MSIcons" \s 9.5 \h �	Standard types

�SYMBOL 117 \f "MSIcons" \s 9.5 \h �	Installation and registration

�SYMBOL 117 \f "MSIcons" \s 9.5 \h �	Licensing

�SYMBOL 117 \f "MSIcons" \s 9.5 \h �	Versioning

�SYMBOL 117 \f "MSIcons" \s 9.5 \h �	Property browsing

Extended Controls

In the OLE compound document model, an embedded object is responsible for its content area, but the placement of the object within its containing document is controlled by the container. In effect, the container “owns” the embedded object’s position. This is necessary since different containers — Word and Excel, for example — have different positioning models. Word positions embedded objects as if they were characters, while Excel positions them relative to cell positions.

�xe "Control Container:usage of properties"�

A container normally models per-control container-specific information as properties. For example, a form-like container might implement Top and Left properties for each control, and have those container-implemented properties appear as peers of the properties implemented directly by the control. Or the container might express a Visible property on each and every control, or express the Z order for a control with a property, and so on. For a more complete set of examples, see the “Standard Types” section.

�xe "Control Container:extended control"��xe "Extended control:desciption of"�

The container implements these properties for each control by creating another object that is parallel to, but separate from, the site object created for that control. This third object (the “extended control”) implements the properties the container adds to each control. The extended control object is also responsible for delegating the control’s properties to the container, so that the container can dispense pointers to the extended control object in lieu of the control.

The container can add appropriate properties to the extended control object. In addition, containers can implement methods on the extended control object; these methods appear as siblings to methods implemented by the control itself.

Object Identity with Extended Controls

�xe "Control Container:aggregation of"��xe "Extended control:aggregation with OLE control"��xe "Control:aggregation with extended control"��xe "Aggregation:desciption of"�

Containers normally attempt to aggregate the extended control object with the control when creating the control, so that the extended control object acts as an invisible controller for the control. This makes the boundary between the control’s native properties and methods and those added by the container seamless, for both early- and late-bound access. That is, a user of the control can use IDispatch to get at properties provided by either the control or the extended control; the extended control implements IDispatch and delegates unimplemented properties to the actual control. Or, the user can use QueryInterface for either the control’s primary interface or the extended control’s primary interface for direct early-bound access to properties and methods.

�xe "Aggregation:failures of"��xe "Aggregation:success of"��xe "IOleDispatch:accessing control properties"�

This aggregation is likely to succeed for controls, since control development kits are expected to produce in-process servers that can be aggregated. If the aggregation fails, the container will only be able to provide late-bound access to the control’s properties and methods.

Assuming aggregation succeeds, the container assigns pointers to the aggregated control and the extended control object when enumerating its contents. If aggregation fails, the container assigns pointers to the controls when enumerating objects from an OLE compound document (CD) interface (IOleContainer) as well as pointers to the corresponding extended control objects in its language integration code.

Properties and Methods

�xe "Properties and Methods:supported by control"��xe "Primary interface:exposing properties and methods"��xe "IDispatch:exposing methods"��xe "Control:OLE Automation guideliness"�

In addition to supporting the compound document interfaces, controls also follow the OLE Automation guidelines. Controls expose properties and methods as is normal for OLE Automation objects. Early-bound access to control properties and methods is provided by defining a primary interface for the control. The primary interface exposes properties as get/set method pairs and object methods as — not surprisingly — methods. Late-bound access to control properties and methods is exposed through IDispatch.

A control container determines whether early or late binding is exposed to end users, since the container assigns pointers to embedded objects.

�xe "IDispatch:GetTypeInfo method"��xe "GetTypeInfo method:accesing properties and methods"��xe "TypeInfo:exposing properties and methods"�

As per normal for an OLE Automation object, a control presents its set of properties and methods through TypeInfo. The TypeInfo that describes a control’s dispatch interface can be retrieved dynamically using the GetTypeInfo method of the control’s IDispatch implementation. Also, OLE controls introduce a new interface, IProvideClassInfo, which should return a CoClass TypeInfo describing the control (as opposed to the DispInterface TypeInfo returned by IDispatch::GetTypeInfo). This interface is described in more detail in “Connection Interfaces.”

�xe "TypeInfo:registry conventions"��xe "Control:registry conventions"�

Controls follow a standard registry convention to give the location of their Type Library and Type Info. Containers which need type information statically can use the registry to locate and load a description of the control. The registry syntax introduced for controls is described in the “Installation and Registration” section.

Events

�xe "Control:events:outgoing/incoming interfaces"�

OLE controls introduces a standard way for OLE compound object model (COM) objects to fire events. The OLE controls architecture, which allows objects to have outgoing interfaces, defines a new connections architecture. The outgoing interfaces complement the normal interfaces an object provides. An object provides normal (or incoming) interfaces by implementing them. Conversely, an object supports outgoing interfaces by calling other objects’ implementations of those interfaces.

�xe "Events:modeled as"��xe "Control:events:modeled as"�

The set of events fired by a control is modeled as a single outgoing dispatch interface (that is, a single outgoing IDispatch interface). This primary event set is the complement for the primary interface exposed by objects. An OLE control collects its set of properties and methods into its primary interface; conversely, it collects its set of events into the primary event set.

�xe "Control:events:other outgoing interfaces"��xe "Interfaces:desciption of:outgoing"��xe "Interfaces:desciption of:incoming"��xe "Interfaces:desciption of:primary interface"�

Note that just as the control can support other interfaces beyond the primary interface (navigating between the supported interfaces with QueryInterface), the control can support other outgoing interfaces beyond the primary event set. The control developer can implement a primary interface to set aside a sub-set of methods, properties, and events that will be commonly used by a beginning programmer. Other interfaces can be created for use by advanced programmers.

Connectable Objects

�xe "Connectable objects:using IConnectionPointContainer"�

While OLE 2 COM defines a general mechanism (IUnknown) for objects to implement and expose functionality in interfaces, it does not define a general method that allows objects to incorporate external interfaces. That is, COM defines how incoming pointers to objects (pointers to that object’s interfaces) are handled, but it does not have an explicit model for outgoing interfaces (pointers the object holds to other objects’ interfaces). Instead, ad hoc solutions are invented where needed.

�xe "IConnectionPointContainer:usage of "�

Objects which expose outgoing pointers do so by supporting the interface IConnectionPointContainer. As implied by the name, this interface allows the caller to enumerate connection point subobjects, each of which supports the IConnectionPoint interface. For each distinct outgoing pointer the object exposes, shown in Figure D.1, a distinct connection point is exposed. For example, a control that fired events through one interface and sent notifications of data changes through another interface would expose two connection points.

	�INCLUDE p:\\slm\\src\\cdkdox\\ocxpg\\art\\cdkpgart.doc art_d01cpts_eps \!��IMPORT P:\\SLM\\SRC\\CDKDOX\\OCXPG\\ART\\D01CPTS.EPS * mergeformat����

Figure D.1 A Control with Two Exposed Connection Points

To establish a connection, OLE control code finds the right connection point via the IConnectionPointContainer interface, then connects by calling a method on that IConnectionPoint interface of that connection point. Of course, the code establishing the connection needs to provide an implementation of the interface provided by the connection point. That is, a connection point of the OLE control that exposes an interface IConnection is exposing the willingness to call an implementation of the IConnection interface. To establish a connection, the caller needs to provide an implementation of the IConnection interface to be called. Each connection has two ends�symbol 190 \f "Symbol" \s 10��the object calling the interface and the object implementing the interface. The object that calls the interface is called the source, while the implementation of the interface is called the sink.

For example, Figure D.2 shows what happens if we connected a sink to the event set connection point of the object illustrated previously in Figure D.1.

	�INCLUDE P:\\SLM\\SRC\\CDKDOX\\OCXPG\\ART\\CDKPGART.DOC art_d01cond_eps \!��IMPORT P:\\SLM\\SRC\\CDKDOX\\OCXPG\\ART\\D01COND.EPS * mergeformat����

Figure D.2 A Connected Connection Point

Through its subobject, the source object then has a pointer to the sink object’s implementation of the event set (in this case, ISomeEventSet). When the source wishes to fire an event, it calls the matching method in the sink’s event set implementation.

�xe "Multicasting:desciption of"��xe "Control:multicasting"��xe "Connection points:multicasting"�

Many scenarios require multicasting (the ability to broadcast to multiple sinks connected to the same interface), so it is designed into the basic interfaces. Multicasting is implemented by connection points that can hold pointers to multiple implementations of the connection interface and then broadcast outgoing calls to all connected implementations. For example, we might connect another sink to the event set connection point of the example source, as shown in Figure D.3.

	�INCLUDE P:\\SLM\\SRC\\CDKDOX\\OCXPG\\ART\\CDKPGART.DOC art_d01mult_eps \!��IMPORT P:\\SLM\\SRC\\CDKDOX\\OCXPG\\ART\\D01MULT.EPS * mergeformat����

Figure D.3 An Example of Multicasting

The source object then has pointers to both sinks’ implementations of the event set. When it fires an event, it calls the matching method on both sinks’ implementations. Note that the source object is responsible for implementing the multicasting; rather than calling a single implementation of the outgoing interface, it calls each connected implementation in turn. The source object defines the multicasting semantics — how to reconcile error return codes, how to parse connection point parameters, and so on.

Connection Interfaces

�xe "Connection interfaces:desciption of"��xe "IProvideClassInfo:connection points"��xe "IConnectionPointContainer:EnumConnectionPoints method"�

Objects that wish to expose outgoing pointers support the IConnectionPointContainer interface and, optionally, the IProvideClassInfo interface, as shown in the following example:

interface IProvideClassInfo : public IUnknown

{

 GetClassInfo(ITypeInfo ** ppTI);

};

interface IConnectionPointContainer : public IUnknown

{

 EnumConnectionPoints(IEnumConnectionPoints ** ppEnum);

 FindConnectionPointFromIID(REFIID iid, IConnectionPoint ** ppCP);

};

�xe "IProvideClassInfo:GetClassInfo method"�

Calling the GetClassInfo method of IProvideClassInfo returns a CoClass TypeInfo that describes the connectable object. The MKTYPLIB.EXE and TYPELIB.DLL implementations have been revised to describe the outgoing interfaces an object supports via IConnectionPointerContainer. Since this information is present in TypeInfo, it’s available both statically and dynamically.

�xe "IConnectionPointContainer:EnumConnectionPoints method"��xe "EnumConnectionPoints method:usage of "�

The EnumConnectionPoints method of IConnectionPointContainer enumerates the connection point subobjects contained by the connectable object. Note that these are true subobjects, with independent ref-counts and parallel to the site objects maintained by an OLE container. The FindConnectionPointFromIID method returns the connection point associated with a particular IID; this method fails if there are multiple connection points that exposes the same IID.

As illustrated in the following example, each connection point subobject supports the IConnectionPoint interface:

interface IConnectionPoint : public IUnknown

{

 GetConnectionInterface(IID * pIID);

 GetConnectionPointContainer(IConnectionPointContainer ** ppCPC);

 Advise(IUnknown * pUnkSink, DWORD * pdwCookie);

 Unadvise(DWORD dwCookie);

 EnumConnections(IEnumConnections ** ppEnum);

};

�xe "GetConnectionInterface method:desciption of"��xe "IConnectionPointContainer:GetConnectionInterface method"�

The GetConnectionInterface method names the interface for which this connection point is able to call implementations. Note that this interface ID also effectively distinguishes this connection point from its siblings; it acts as the “name” of the connection point. It is possible to have more sophisticated naming schemes for connection points (by supporting additional interfaces on the connection point), but in keeping with the goal of keeping things as simple as possible, the base architecture uses only IID’s as names. Note that the IID can identify a dispatch interface (as with OLE control-style events) or a normal interface.

�xe "GetConnectionContainer method:desciption of"��xe "IConnectionPointContainer:GetConnectionContainer method"�

The GetConnectionPointContainer method allows code to navigate back to the container object from the subobject.

�xe "IConnectionPointContainer:Advise/Unadvise methods"��xe "Advise/Unadvise methods:desciption of"��xe "Connection points:establishing and breaking of"�

The Advise and Unadvise methods follow normal OLE conventions, that is, allow connections to be established and broken. The connection point explicitly calls QueryInterface for the interface it expects on the sink; Advise does not assume that the pointer passed to it is of the correct type.

�xe "Multicasting:usage of Advise method"�

�xe "Connection points:using TypeInfo to establish"�Multicasting is achieved in a large part with the Advise method; which has the ability to be called multiple times with different sinks. The connectable object multicasts each method call to each connected sink. Note that connection points for which multicast is not supported will fail Advise calls after the first call. Multicasting is assumed to be supported by most connection points, but in some circumstances, it may be impossible to multicast a particular interface.

Implementations of Advise should never return 0 as a connection cookie value; 0 is not a legal value.

Another method useful for multicasting scenarios is EnumConnections, which enumerates the currently connected sinks along with the connection cookies for them.

�xe "Connection points:using TypeInfo to establish"�

OLE control code that is designed to connect to a connectable object can get a TypeInfo from the object which describes all its connection points. The code then determines which connection point is appropriate, then iterates through the connection points on the object, checking the interface ID of each until a match is found. Then the Advise method on the connection point is used to establish the connection.

Implementing Events with Connections

�xe "Connection points:implementing events with"��xe "Events:implemented as connection points"�

OLE controls model events as being the opposite of method invocations. For example, a control method is implemented by the the control and outside code is calling it. However, with a control event, the control does not provide an implementation; rather, by exposing the event the control indicates its ability to call an implementation provided by some other code. Thus the outside code implements the method and the control calls it.

Individual events are gathered into event sets, just as methods are gathered into interfaces. However, a control’s primary event set is always implemented using IDispatch—so, more specifically, primary event sets are a type of dispatch interface, not a vtable-based interface. As with other uses of the IDispatch interface, the caller (in this case, the control) is responsible for cleanup of the arguments it passes to IDispatch::Invoke.

Event sets are described using the same TypeInfo constructs as dispatch interfaces as well as the same .ODL file. MKTYPELIB.EXE is extended for OLE controls to identify the outgoing and incoming interfaces for a particular class.

Language Integration

Before events fired by a control can be useful, some object needs to be ready to receive them. Given the different model for events (as compared to the method model), the ability to receive an event requires implementation of the event set in which the event exists. Since event sets are a type of dispatch interface, there must be an object that implements the IDispatch for the event set.

�xe "Event handling:and control containers"��xe "Control Container:event handling"��xe "Control Container:mapping control events"��xe "Control Container:tracking event handlers"�

The most important recipient for events fired by a control is the control’s container. Normally, the container provides its own programming model for controls—containers don’t force the developer to explicitly make connections (using the connection point interfaces) between the event sources and the code written by the developer. Instead, the developer writes routines that handle individual events and the container takes care of the details of mapping the control’s event set to these invidual routines. OLE controls do not dictate a particular programming paradigm. Instead, a simple standard way of firing events is provided, leaving it up to containers how to expose these events to end users.

A level of isolation is normally present between the control and user-written event handlers. When the control fires an event, it isn’t calling user-written event handlers directly. Instead, it calls a language integration piece provided by the container, which in turn calls the user-written event handler. This simplifies many things�symbol 190 \f "Symbol"��for example, the user is not forced to implement completely a full event set just to handle a single event in it.

�xe "Control Container:tracking event handlers"��xe "Event handlers:responsibility of control container"�

The container often needs to keep track of some state to perform this event handling properly. For example, the container might need to keep track of what event handlers had been written by the end user so it can route events intended for them appropriately. The container is responsible for generating and saving this state�symbol 190 \f "Symbol"��the control is oblivious to what happens outside it and has no knowledge of what happens inside the event sinks attached to it. This is the main reason why controls are portable between various containers and between different languages.

�xe "Control Container:control events not handled:guidelines for"��xe "Events:not handled by container"�

Containers will often handle only some of the events present in an event interface. The container should return S_OK for events that it does not handle and not change any of the event parameters. Controls rely on this behavior when there is some interaction between the event and the control’s behavior (for example, a cancellable event, where the event handler can cancel the control’s normal processing of the event). The assumed default is that the invocation of the event will succeed and that the parameters will be unaltered. The container is responsible for ensuring this.

�xe "Control Container:event enumeration at design time"��xe "Events:event enumeration using TypeInfo"��xe "TypeInfo:event enumeration of events"�

At design time, the container enumerates the events a control can fire by looking in the TypeInfo for that control’s event set. When the control developer chooses to write an event handler, the control container can examine the parameters of the event in the TypeInfo, and from them create a stub event handler for the user to fill in.

�xe "Connection points:persistence of"��xe "Control Container:persistence of connections"�

Note that this connection proposal does not have any explicit support for persistence. Connections between event sources (controls) and event sinks (created by the control container) are implicit. The control always makes a call to QueryInterface for its event set on the client site. Any state kept with each event sink is saved by the form as part of its state. In short, the container is responsible for making connections persistent, not the controls.

Event Types

�xe "Events:types of"��xe "Events:conventions for"�

Since events are just methods, they can have arbitrary parameters. (Or, at least arbitrary to the extent that IDispatch allows, since the primary event set is implemented with IDispatch.) However, if every custom control comes up with its own conventions for what kinds of events are fired and how event parameters are packaged, developers of applications and end users could find this very confusing. Therefore, OLE controls introduce a simple convention for events. This is a convention that individual event sources can move beyond if it is too restrictive, but following it produces a custom control that is easier for developerss and end users to understand.

Again, this is only a suggestion about how to structure control event sets. It is not a required model, nor are there any technical reasons or architecture that force this model or give it an advantage over other possible event models.

�xe "Events:types of"�

In the suggested event set model, there are four basic event types:

�xe "Request events:desciption of"��xe "Events:types of:request"�

Request events

A control fires a Request event to allow the user to cancel some action. For example, a control container might fire a RequestUnload event, giving a user-written event handler a chance to cancel the close of the control container.

�xe "CancelBoolean:usage of "�

The last parameter of a Request event should be named Cancel and be passed as a by-reference CancelBoolean. The type CancelBoolean is introduced as a standard OLE controls type (see “Miscellaneous Standard Types”); by using this type for the Cancel parameter, the control allows its container to reliably detect that a given parameter is intended to be a Cancel parameter.

The control should set this parameter to FALSE before firing the event, then check the parameter’s value after the event has been fired. If the event handler has set the parameter to TRUE, the control should cancel the event.

�xe "Before events:desciption of"��xe "Events:types of:before"�

Before events

Before events are fired before an action occurs to allow the user to complete any actions needed before the event fires. For example, WM_INITMENUPOPUP could be considered a Before event since it is fired before the menu is actually displayed. Before events are not cancellable.

�xe "After events:desciption of"��xe "Events:types of:after"�

After events

After events are fired after an action occurs to allow the user to respond to the action. For instance, the WM_SIZE message could be considered an After event since it is fired after the click happens. After events are not cancellable.

�xe "Do events:desciption of"��xe "Events:types of:do"�

Do events

Do events are fired to allow the user to override or supplement the control’s default handling of the user action. Most window messages fit into this category since a window procedure can defeat Windows’ default handling with well-chosen return values or by not calling DefWindowProc.

When exposing a Do event, the control often provides default behavior. For example, a smart edit control that can do automatic picture-string formatting might expose a DoFormat event that allows a user-written event handler to supplement or override the control’s default formatting behavior. By convention, the last parameter for the DoFormat event will be EnableDefault. The control sets this parameter to TRUE before firing the event; after the event has been fired, the control checks the parameter value and does its default processing only if the parameter is still TRUE.

This enables two major scenarios. If the user wants to replace the control’s default behavior, the event handler should implement the replacement and set EnableDefault to FALSE. If thehe user wants to do processing before the control’s default behavior occurs, then the event handler should do the processing and leave EnableDefault set to TRUE, so the control’s default processing will occur after the event handler is done.

�xe "EnableDefaultBoolean:usage of"�

Controls allow user-written event handlers to determine whether the default processing takes place through a EnableDefault parameter, passed as a by-reference EnableDefaultBoolean. This is another standard type, analogous to CancelBoolean. For more information, see “Miscellaneous Standard Types.”

�xe "Control:naming convention of events"��xe "Events:naming convention of "�

Controls should follow a naming convention for their events. If the event is a Request, Before, or Do event, then the event name should begin with the appropriate word, for example, BeforeMenuDropDown or DoFormatting. Since After events are the most common, they are the default type assumed; event names that do not begin with one of the other type names can be assumed to be After events. For example, Click, or MouseMove. Control development kits should document and encourage this convention so controls will follow some standardization of naming.

�xe "Do events:similarity to virtual functions"�

Note that Do events, in some ways, play the same role as virtual functions — they provide a mechanism whereby an object can provide well-controlled ways to specialize it. For example, a list box might expose a DoRenderItem event, which allows its appearance to be customized (similar to Windows owner-draw list boxes).

Interlocking Event Groups

�xe "Events:firing of sets"��xe "Interlocking events:firing of"�

In many cases, a single user action may precipitate the firing of a sequence of related events. For example, the user action may result in a Request event being fired, followed by Before and After events. While the control is in the process of firing this sequence of events, it hands over the thread of execution to event handlers. Those event handlers may in turn attempt to set properties and call methods on the object that sourced the event.

�xe "Control:firing event groups"�

In some cases, it may be necessary for the control to enter a somewhat modal state that disallows some subset of normally permissible activities on the control. Controls are required to expect and be ready to handle reentrancy situations, but they are not required to be arbitrarily functional when reentered. For example, while firing a Request event, it may be illegal to call a method on the object which would itself fire the Request event. This decision is wholly up to the control, but the control should be ready for user-written code that attempts implausible actions.

IConnectionPointContainer and Aggregation

�xe "IConnectionPointContainer:aggregation of controls"��xe "Control:aggregation of "��xe "Connection points:aggregation of controls"��xe "Aggregated controls:problems with connection points"�

The individual connection points owned by a connection point container each expose a GetConnectionPointContainer method. This may cause problems if the connectable object is also able to be aggregated. If the object were aggregated, its higher level controller might want to expose some new connection points, in addition to the connection points exposed by the aggregated objects. In order to do this, the controller would support IConnectionPointContainer and enumerate its own connection points followed by those of the aggregated object.

For this to work, the connection points on the aggregated object must return a pointer to the controlling unknown’s IConnectionPointContainer implementation, rather than a pointer to the aggregated object (their immediate owner). In general, connection points exposed by objects that can be aggregated should call QueryInterface on their controlling unknown for IConnectionPointContainer, rather than returning the object’s implementation directly.

Property, Method, and Event Standards

�xe "Events:standards of "��xe "Properties and methods:standards of "��xe "Standards of :properties and methods"��xe "Standards of :events"�

For the sake of interoperability and to present a simplified model for end users, OLE controls defines a standard set of properties, methods, and events that controls can support. This section describes the set of defined standards, and specifies the contract for individual properties, methods, and events.

Qualities

�xe "Properties and methods:qualities of"��xe "Events:qualities of"�

Properties, methods, and events are categorized in terms of two qualities: location and variety. Note that the explanations are given in terms of properties, but apply equally to methods and events.

Property Location

�xe "Property location:overview of"��xe "Ambient properties:desciption of"��xe "Control Container:ambient properties"�

Properties that a container exposes to a control through its control site are called “ambient properties.” They are used to indicate the state of the form to the control and to communicate information about the environment in which the control is embedded — hence ambient. Ambient properties are implemented by the site.

Note

The definition of ambient properties given here supercedes any hints or partial specifications given for ambient properties in earlier OLE specifications.

�xe "Extended properties:desciption of"��xe "Control Container:usage of extended properties"�

Properties the container may want to associate with each control it contains are called “extended” properties. For example, a container might want to associate an Enabled property with each control. The container is able to provide, or not provide, this sort of per-control extension. Containers that provide extra per-control properties express them on an object separate from the control itself since the control’s implementation is opaque.

Properties implemented by the control itself are called “control properties.”

Property Variety

�xe "Property variety:overview of"��xe "Standard properties:requirements for"��xe "Control:implementing standard properties"�

Standard properties have a guaranteed contract for behavior, a negative DispID. Controls are not required to implement standard properties but are required to follow the contract if they do implement one. For example, controls are not required to implement a “Caption” property; however, if they do implement a Caption property, it must follow the contract for Caption properties given in the “Control Properties, Methods, and Events” section. Note that the name of the standard property is not an explicit part of this contract. These properties should be accessed only through their DispID.

�xe "Common properties:conventions for"�

Common properties have a suggested, but not strict, contract for behavior. For example, position properties differ in type for containers with different coordinate models. Despite this, a property named “Left” should always refer to the left edge of the control, no matter what coordinate model the container is using.

�xe "Other properties:desciption of"�

Properties that are not standard or common, specific to a particular control or container, are called “Other” properties. Currently this specification does not define any “other” properties.

The Common Ambient category does not contain any definitions; all ambient properties defined in this specification are standard. Of course, containers may implement their own “other” ambients.

Ambient Properties

�xe "Ambient properties:overview of"�

As mentioned previously, ambient properties are properties that a container exposes to its controls through their control sites. They are used in two ways:

�SYMBOL 117 \f "MSIcons" \s 9.5 \h �	To give hints to the control on how it should be setting the default value of its properties to appear integrated with its environment. Examples of this are BackColor on a form (that is, the color that the form is using as its background color) or Font in a word processing document (the document might use this to tell a control, “all the text around you is Arial Narrow”).

�SYMBOL 117 \f "MSIcons" \s 9.5 \h �	To convey specific information to the control. For example, LocaleID tells a control which locale the container’s user interface is using.

�xe "Control:handling ambient properties"��xe "Ambient properties:usage by controls"�

Controls need advance knowledge about the ambient properties they might encounter so they can build in behavior that takes these properties into account. There is no general way to handle an arbitrary ambient property. By definition, controls are expected to take some specific action in response to ambient properties, and the control has no way of knowing what specific action is expected without prior knowledge of the set of ambient properties.

The majority of the ambient properties available on any container will be from the list of ambient properties outlined below. The control writer can use this list to decide which ambient properties would help the control behave in a more integrated manner. However, the control writer may choose to add properties that indicate something unique to that container that is not available using a standard ambient property.

�xe "Control:handling DISP_E_MEMBERNOTFOUND"��xe "DISP_E_MEMBERNOTFOUND:usage of "�

Controls can take advantage of application-specific ambient properties in order to make them appear more integrated with a given application, but they should still work reasonably if these properties do not exist. The container will return DISP_E_MEMBERNOTFOUND if the control asks for a ambient property that is not implemented; the control should expect this and be able to handle it.

�xe "Ambient properties:exposed as"��xe "Ambient properties:standards of "��xe "Control:accessing ambient properties"�

Ambient properties are exposed as the default dispatch interface on the site. The control accesses ambient properties by a call to QueryInterface for IID_IDispatch on the site. Note that the name of the property is not part of the contract; controls should get properties through DispID. The control can call GetIDsOfNames to access ambient properties by name, but this is discouraged. Standard ambient properties have negative DispID’s assigned to them. If an application wants to define application-specific site properties, it should use positive numbers for the ID’s, as is normal for dispatch interfaces.

Note also that ambient properties are read-only. Controls are not able to write new values into ambient properties (the container should return DISP_E_MEMBERNOTFOUND in response to an attempt to modify an ambient property).

Note

What determines that a property should be ambient? Ambient properties give information about the state of the container around the control. This will reflect the state of entire container (for example, Backcolor in a control container) or the state in the immediate area of the control. For example, a Word document can contain many different fonts. Depending on where a control is inserted into the document, the Ambient Font property has different values.

�xe "Ambient properties:table of"��xe "Control Container:ambient properties:table of"�

Table D.�SEQ table�1� Ambient Properties

�����DispID�Name�Type�Description�������-701�BackColor�OLE_COLOR�Specifies the color for the interior of a control (in RGB values).��-702�DisplayName�VT_BSTR�Specifies the name the control should display for itself in error messages.��-703�Font�OLE_FONT�Font information for the control.��-704�ForeColor�OLE_COLOR�Specifies the color for the display of text and graphics in a control (in RGB values).��-705�LocaleID�VT_I4�Specifies the ID of UI locale.��-706�MessageReflect�VT_BOOL�If TRUE, the container reflects Windows messages back to the control.��-707�ScaleUnits�VT_BSTR�Coordinate unit name being used by container. ��-708�TextAlign�VT_I2�Specifies how the text should be aligned in a control: 0 is general (numbers to the right, text to the left), 1 is left, 2 is center, 3 is right, 4 fill justify.��-709�UserMode�VT_BOOL�Allows the control to determine how it is being used. If it is being used to design a control container (or some other thing), then the value is FALSE. If it is being used by an end user interacting with or viewing the control, then the value is TRUE. If this property is not present, the control should assume TRUE.

Note that this value may change dynamically, as some containers may not distinguish between designing and using a control container and may switch without destroying (and reloading) the control.��

�xe "Ambient properties:table of"��xe "Control Container:ambient properties:table of"�

Table D.�SEQ table�2� Ambient Properties (continued)

�����DispID�Name�Type�Description�������-710�UIDead�VT_BOOL�Allows the control to detect situations where the container should not allow the control to interact with user input. The value of this property can change dynamically. If FALSE, the control behaves normally. If TRUE, the UI is nonresponsive, so the control shouldn’t set the cursor and should ignore UI input.

If this ambient property isn’t present, the control should assume a value of FALSE.��-711�ShowGrabHandles�VT_BOOL�If TRUE, the control should display grab handles when UI Active.��-712�ShowHatching�VT_BOOL�If TRUE, the control should show the normal UI Active hatching feedback when UI Active.��-713�DisplayAsDefaultButton�VT_BOOL�Exposed only to button-like controls. If TRUE, the button should display itself using default button visuals.��-714�SupportsMnemonics�VT_BOOL�If TRUE, then the container supports mnemonics.��-715�AutoClip�VT_BOOL�Indicates whether the container will automatically clip the control if TRUE, then the control may safely ignore the lprcClipRect parameter to IOleInPlaceObject::SetObjectRects. If this ambient property isn’t present, the control should assume a value of FALSE.��

Control Properties, Methods, and Events

�xe "Control properties and methods :standards of "��xe "Control events:standards of "��xe "Standards for:control events"��xe "Standards for:control properties and methods"�

Controls can share many properties, methods, and events with other controls. For example, many controls have a Caption property and many fire a MouseMove event. In some cases, it is useful for containers and other code to know that a particular property (or method or event) has well-understood semantics. For example, if a container knows that a control has a Caption property — not just a property with the name “Caption,” but a property that can be relied on to act like other Caption properties — then the container is able to deal with that property with little or no need for special information.

The following sections define a standard set of properties, methods, and events that can (and should) be reused by controls.

�xe "Control Container:accessing of:standard control events"��xe "Control Container:accessing of:standard control properties and methods"��xe "Control Properties:desciption of"�

Standard properties, methods, and events are identified by a dispatch ID; OLE controls provide a header file that defines dispID’s for the standard properties, methods, and events. This implies that a container that has to access a standard property on a control must do so via IDispatch. The control may also provide early-bound access to this property in the control’s primary interface, but the container has no type-safe way of accessing this property since it will show up in different places in different controls’ vtables.

Note that no early-bound mechanism for accessing standard properties is defined. It would be possible to define an interface, IStandardProperties, which collects all the properties defined. However, any individual control normally will support only a subset of the large number of standard properties defined, and implementing a wide interface but filling in only a small set of methods is considered too inefficient.

Control Properties

�xe "Control Properties:desciption of"�

Control properties are named attributes of a control. They define object characteristics (such as caption string, foreground color, background color) or control behaviors. They are managed and implemented by the control itself.

Note

What determines that a property should be a control property? These properties specify information needed by the control. If the information is needed by both the control and the container, then it should be a Standard Control property. For example, the Enabled property is used by both the control (to determine its visualization) and the container (to decide whether to stop at the control as the user tabs through the control’s form).

�xe "Control properties:table of"�

Table D.2 Control Properties

�����DispID�Name�Type�Description�������-501�BackColor�OLE_COLOR�Specifies the color for the interior of the control (in RGB values).��-504�BorderStyle�VT_I2�Determines whether a control is displayed with a border.��-502�BackStyle�VT_I2�Determines whether a control is transparent (0) or opaque (1).��-512�Font�OLEFONT�Specifics current font for control.��-513�ForeColor�OLE_COLOR�Specifies the color for the display of text and graphics in a control (in RGB values).��-514�Enabled�VT_BOOL�Indicates whether the control can receive the focus. May also affect the control’s appearance.��-515�hWnd�VT_I4�Specifies the handle of the control’s window.��-517�Text�VT_BSTR�Value of a text box, list box, or combo box.��-518�Caption�VT_BSTR�Text displayed in or next to control.��

Control Methods

�xe "Control method:desciption of"��xe "Refresh method:desciption of"��xe "DoClick method:desciption of"�

A control method is a function that operates on a control. The following methods are Standard or Common for controls.

�xe "Control methods:table of"�

Table D.3 Control Methods

�����DispID�Name�Arguments

(in order)�Description�������-550�Refresh�None�Forces a repaint of the control — synchronously if the control currently has a window; otherwise asynchronously .��-551�DoClick�None�For button-like controls, simulates the button being clicked by the user. This is used to simulate the button being clicked when the user presses ENTER or ESC.��-552�AboutBox�None�Pops up a modal AboutBox dialog for the control.��

Control Events

�xe "Control event:desciption of"�

A control event is an action that is fired by a control to a form in response to some user action, such as clicking the mouse or pressing a key, or another action that changes the control. The control user can write code to respond to these events. Events can occur as a result of user action or program code, or they can be triggered by the system. The following table lists those control events that are standard or common.

�xe "Control events:table of"�

Table D.4 Standard Control Events

�����DispID�Name�Arguments

(in order)�Description�������-600�Click�None�Occurs when the user presses and then releases a mouse button over a control. For some controls, this event is fired when the value of the control is changed.��-601�DblClick�None�Occurs when the user double-clicks in the control.��-608�Error�Number, Description, SCode, Source, HelpFile, HelpContext, CancelDisplay�See next section.��-602�KeyDown�KeyCode, Shift�Occurs when user presses a key when the control has the focus.

KeyCode Key code for the key pressed.

Shift Bit mask that details state of the CONTROL, SHIFT, and ALT keys

KeyCode is passed by reference; changing it sends a different character to the object. Changing KeyCode to 0 cancels the keystroke so that the object receives no character.��-604�KeyUp�KeyCode, Shift�Occurs when the user releases a key when the control has the focus. See KeyDown for argument details.

KeyCode is passed by reference; changing it sends a different character to the object. Changing KeyCode to 0 cancels the keystroke so that the object receives no character.��

�xe "Control events:table of"�

Table D.4 Standard Control Events (continued)

�����DispID�Name�Arguments

(in order)�Description�������-605�MouseDown�Button, Shift, X, Y�Occurs when the user depresses a mouse button while over a control.

Button Bit mask that identifies which mouse button is now down (or up, for MouseUp events).

Shift Bit mask that details state of the CTRL, SHIFT, and ALT keys

X, Y Current location of mouse over control.��-606�MouseMove�Button, Shift, X, Y�Occurs when the mouse moves over the control. See MouseDown for details on arguments; note that for MouseMove events, Button identifies the set of buttons currently down.��-607�MouseUp�Button, Shift, X, Y�Indicates that the user has released the mouse button over this control. See MouseDown for details on args.��

Standard Error Event

�xe "Error event:desciption of"��xe "Control event:standard Error"��xe "Events:standard Error"�

In most circumstances, OLE controls will encounter errors when manipulated by the user’s code. For example, a list box may run out of memory when its AddString method is called. In this case, the list box will return an error, which is normal for OLE Automation objects.

�xe "Errors:reporting within a control"�

However, in some cases, a control may encounter an error outside the context of user code. For example, a text box control may run out of memory as the user is typing. No user code is running at this point, therefore the control has no place to which to return an error. Nevertheless, the user should be notified of the error, and the user’s code should be allowed to participate in the error handling.

�xe "Error event:desciption of"�

To handle these circumstances, a standard Error event is introduced. A control fires this event when an error occurs outside of methods or properties being manipulated by user code. The Error event has the following signature:

Error(short Number, BSTR* Description, SCODE SCode, BSTR Source,

 BSTR HelpFile, long HelpContext, BOOL* CancelDisplay);

The Number parameter gives an error number local to the control, while the SCode parameter gives an OLE 2 error code. A short description of the error is passed via the Description parameter; the description is passed by reference so event handlers can replace the string before the control displays it. The Source parameter gives a user-friendly name for the object that raised the error. The HelpFile and HelpContext parameters point to more detailed information about the error. Normally, after firing this event objects will pop up a message box with the Description string. The CancelDisplay parameter allows event handlers to cancel this behavior.

A control does not fire this event unless it has no other means of communicating the error to the user or programmer. If the control is able to return the error through other means — by HRESULT for an interface method or ExcepInfo for a Dispatch method — it should do so.

Extended Control Properties, Methods, and Events

Extended Control Properties

�xe "Extended control properties:desciption of"��xe "Control container:extended control properties"�

Extended control properties are those properties that the container associates with each control. Control writers need to be aware of extended control properties for two reasons:

�SYMBOL 117 \f "MSIcons" \s 9.5 \h �	Containers may, in their end-user programming models, choose to blur the distinction between control properties and extended control properties. Control writers should avoid using the same names that are defined for the standard properties listed in Table D.5.

�SYMBOL 117 \f "MSIcons" \s 9.5 \h �	Each container can provide its own set of individual control properties. Controls should always refer the user to the container’s documentation for more details.

�xe "Control:standard extended properties"��xe "Extended control properties:desciption of"�

Extended control properties are properties that are managed by the control container itself and only appear to be properties of the control. The control container adds the extended properties to the set of properties that the user sees for the control so that the user is isolated from the actual owner of each property. Control writers need to be aware of standard extended control properties for two reasons:

�SYMBOL 117 \f "MSIcons" \s 9.5 \h �	Users of a control will see them as an integral part of the control. Control writers should always refer their users to product-specific documentation to find out which extended control properties are added to every control for a given application.

�SYMBOL 117 \f "MSIcons" \s 9.5 \h �	Control writers should not implement other control properties with the same name as any standard extended control property. If they do, the container’s extended object property should override the control’s property; the extended object property has precedence over the control’s property.

Containers can detect this sort of collision and warn the user, ideally at the point that the end user first adds the control to the container.

Note

Why should a property be an extended control property? These properties specify control-specific information that only the container needs to know. This information is available to the control through the GetExtendedControl method in IOleControlSite (see below); however, controls that access their extended control object risk becoming specific to a particular container.

In general, controls are not expected to navigate to their extended control object. However, the IOleControlSite interface does provide a mechanism for doing this, should it prove necessary. However, a control that relies on the extended control being present and having a certain set of properties is at severe risk of only working in a limited set of containers.

�xe "Standard extended properties:reserved DISPID's"�

To avoid collisions between the DispIDs assigned to control properties and members (whether standard or control specific) and the container’s extended control properties, a range of standard DispIDs are reserved for the container’s use. Containers should choose DispIDs for container-specific extended control properties from the range 0x80010000 to 0x8001ffff.

Since these values are negative, the table below gives DispID values that should be bitwise OR’d with 0x80010000 to obtain the true DispID. For example, the standard Cancel extended control property has the value 0x37 listed below; the true DispID for the standard Cancel property is therefore 0x80010037.

�xe "Standard control properties:table of"�

Table D.5 Standard Control Properties

�����DispID�Name�Type�Description�������0x00�Name�VT_BSTR�This returns the user-defined name of an object.��0x07�Visible�VT_BOOL�Indicates if the control is visible on the container.��0x08�Parent�VT_DISPATCH�Parent always returns the document that a object is embedded in. A control should be able to use this property to enumerate properties of its container, etc.��0x37�Cancel�VT_BOOL�TRUE if the control is the default Cancel button for the form.��0x38�Default�VT_BOOL�Determines which button on a form is the default button (that is, the default OK button on a dialog).��

�xe "Standard control properties:overriden by control container"��xe "Control container:overriding standard properties"�

Note that in some cases a container may purposely elect to override a standard control property in order to modify its semantics. For example, the standard Enabled property applies directly to the control. If it is FALSE, the control considers itself disabled and renders itself appropriately. A container which itself had an Enabled property might decide to provide an extended control property Enabled that overrides the control’s Enabled property. This version of Enabled might take into account the container’s own Enabled property so that the user could tell whether the control was “really” enabled, as opposed to only locally enabled.

Extended Control Methods and Events

Containers may also choose to expose methods and/or events on an individual control basis. Containers should use the same mechanism as properties to do this. OLE controls do not (at this time) define any standard extended control methods or events.

New Interfaces for Controls

�xe "Control:new interfaces for"�

In order to support the extended functionality of OLE custom controls several OLE 2 interfaces were created. These interfaces support several abilities and functions unique to OLE controls, such as communication between OLE control and container, special support for button controls, in-place active objects, keyboard interfaces, and many more.

IOleControl and IOleControlSite

�xe "IOleControl:desciption of"��xe "IOleControlSite:desciption of"��xe "Control:communication with control container"��xe "Control container:communication with control"�

OLE controls introduce a pair of interfaces used for communication between the control and its container that goes beyond the normal communication defined by the OLE Compound Documents interfaces. The control implements an interface IOleControl, and the container implements an interface IOleControlSite on its site objects:

�xe "IOleControl:description of interface"�

interface IOleControl : public IUnknown

{

 GetControlInfo(CONTROLINFO * pCI);

 OnMnemonic(LPMSG pMsg);

 OnAmbientPropertyChange(DISPID dispid);

 FreezeEvents(BOOL fFreeze);

};

�xe "IOleControlSite:description of interface"�

interface IOleControlSite : public IUnknown

{

 OnControlInfoChanged(void);

 LockInPlaceActive(BOOL fLock);

 GetExtendedControl(IDispatch ** ppDisp);

 TransformCoords(

 POINTL * pPtlHiMetric,

 POINTF * pPtfContainer,

 DWORD dwFlags);

 TranslateAccelerator(MSG * lpmsg, DWORD grfModifiers);

 OnFocus(BOOL fGotFocus);

 ShowPropertyFrame();

};

The GetControlInfo and OnMnemonic methods of IOleControl and the OnControlInfoChanged method of IOleControlSite are documented fully in “New Misc Status Bits.” They expose control-style keyboard interface support for OLE controls.

�xe "IOleControl:OnAmbientChanged method"��xe "OnAmbientChanged method:desciption of"��xe "Control container:ambinet property change notification"�

The OnAmbientPropertyChange method is called by the container when any of its ambient properties change value. A control that is using ambient properties from the container may need to update its own internal or visual state in response. The container indicates which ambient property changed with the DispID parameter. The container may pass DISPID_UNKNOWN (= -1), in which case the control should assume some unspecified set of ambient properties changed value.

�xe "IOleControl:FreezeEvents method"��xe "FreezeEvents method:desciption of"�

The FreezeEvents method informs the control when the container is “listening” to events. When initially created, the control’s freeze count is at zero, and the control is free to fire events when appropriate. If the container calls FreezeEvents(TRUE), then the freeze count is incremented and the control should assume that the container will ignore any events until the freeze count returns to zero via the container calling FreezeEvents(FALSE).

�xe "Control:handling events when frozen"�

The control is free to decide whether to discard events which are triggered when the control is frozen, or to queue them up and fire them when the control becomes unfrozen. Normally, a control makes this decision based on how important the event is to the control’s contract — if discarding the event is likely to break users’ assumptions, and therefore their code, then the control should queue the event.

�xe "IOleControlSite:InPlaceActive method"��xe "InPlaceActive method:called by control"��xe "Control:calling the InPlaceActive method"�

Controls can call LockInPlaceActive to prevent the container from attempting to demote the control out of the InPlaceActive state. Demoting the control from InPlaceActive (or UIActive) to the Running or Loading state would cause the control to be deactivated and its window destroyed. This avoids potential crashing bugs in Windows 3.1; destroying a Win 3.1 window while (for example) handling a WM_GETFOCUS message for that window causes a general protection fault in USER.

�xe "Control:protection during event firing"��xe "Event firing :using LockInPlaceActive"��xe "LockInPlaceActive method :used when firing events"�

Controls often call LockInPlaceActive(TRUE) before firing an event, and LockInPlaceActive(FALSE) afterwards if destroying the control’s window during event processing could cause problems. Note that LockInPlaceActive calls should nest; the container needs to keep a “lock count” for each control. Also, a container itself should not go to the Loaded or Running states when one of its embedded controls is locked since that would demote the embedding; locking a control in the InPlaceActive state effectively locks its container in that state as well.

�xe "IOleControlSite:GetExtendedControl method"��xe "GetExtendedControl method:desciption of"��xe "Control container:focus during event firing"�

The GetExtendedControl method allows controls to navigate through the site to the Extended Control Object provided for them by the container. The method returns a pointer to the Extended Control Object’s default programmability interface, which normally merges the properties and methods of the Extended Control Object with those of the control. With the exception of looking for standard Extended Control properties, there is very little the control can do with the Extended Control that isn’t container-dependent.

The TranslateCoordinates method is defined in more detail in “Handling Coordinates.”

�xe "Control container:focus during event firing"��xe "IOleControlSite:OnFocus method"��xe "OnFocus method:usage of by control"�

Normally, a container will fire events as the user moves between controls in the container, changing which control is UI Active. In most cases, the Windows focus will be on the UI Active control; controls normally set the focus to themselves when UI Activated. However, in some circumstances it may be necessary for controls to grab the focus before becoming UI Active; for instance, a control may need to set the focus to itself on mouse down messages, but not UI Activate itself until a mouse up message is received. The OnFocus method allows the control to notify its container that it is doing this.

The ShowPropertyFrame method allows a container to hook the control’s display of a property frame window. Whenever the control wants to display a property frame, it should call this method. If the method returns NOERROR, then the control’s site has displayed the property frame, and the control should take no further action. Otherwise, the control should proceed with displaying its own property frame (e.g., by calling the OleCreatePropertyFrameIndirect API).

New MiscStatus Bits

�xe "MiscStatus bit set:desciption of new types"��xe "Control container:usage of MiscStatus bits"�

In some cases, containers may need to obtain information about an object’s capabilities without creating an instance of that object. The main mechanism for doing this in OLE 2 is MiscStatus bits. Each embeddable class adds a key to the registry which identifies its capabilities. The container (or handler, in its implementation of GetMiscStatus) can look in the registry to see if an object supports some particular capability. For example, in OLE 2 the OLEMISC_INSIDEOUT bit identifies an object which can be in-place activated without being UI Activated.

OLE controls add some new MiscStatus bits to the set:

�xe "OLEMISC_INVISIBLEATRUNTIME:desciption of"��xe "MiscStatus bits:OLEMISC_INVISIBLEATRUNTIME"�

�SYMBOL 117 \f "MSIcons" \s 9.5 \h �	OLEMISC_INVISIBLEATRUNTIME

Used by a container that has a distinction between design-time and run-time, as most control containers do, to only show the object when in design mode. A Timer control that fires a Click event at preset intervals might use this bit; it would be visible at design-time (so the user can set properties on the timer) but not at run-time.

�xe "OLEMISC_ALWAYSRUN:desciption of"��xe "MiscStatus bits:OLEMISC_ALWAYSRUN"�

�SYMBOL 117 \f "MSIcons" \s 9.5 \h �	OLEMISC_ALWAYSRUN

Used by a container to always put objects with this bit set into the Running state, even when not visible. That is, the container should request that it not be given the standard handler for this object, but that the server be activated instead. This allows the object to fire events and take other proactive action; again, this is useful for Timer-like objects. This bit is not normally required for in-process servers.

�xe "OLEMISC_ACTSLIKEABUTTON:desciption of"��xe "MiscStatus bits:OLEMISC_ACTSLIKEABUTTON"�

�SYMBOL 117 \f "MSIcons" \s 9.5 \h �	OLEMISC_ACTSLIKEBUTTON

Used by a container that provides Default/Cancel buttons. Controls that provide this flag are capable of acting like buttons. In particular, the control’s primary event can be triggered in its IOleControl::OnMnemonic method, and the control is prepared to render itself as the default button based on the ambient DisplayAsDefaultButton.

�xe "OLEMISC_ACTSLIKELABEL:desciption of"��xe "MiscStatus bits:OLEMISC_ACTSLIKELABEL"�

�SYMBOL 117 \f "MSIcons" \s 9.5 \h �	OLEMISC_ACTSLIKELABEL

Used by a container that potentially allows OLE controls to replace the container’s native label. The container is responsible for determining what to do with this flag (or ignore it). A container that uses this flag will typically intercept mnemonics and/or mouse clicks targeted for the label-like control at run time and reinterpret these messages as attempts to move to the field associated with the label.

�xe "OLEMISC_NOUIACTIVATE:desciption of"��xe "MiscStatus bits:OLEMISC_NOUIACTIVATE"�

�SYMBOL 117 \f "MSIcons" \s 9.5 \h �	OLEMISC_NOUIACTIVATE

Used by a container to determine if a control doesn’t support UI Activation. Under OLE 2 such an object was not very useful since activating it was generally the only way to edit it. With OLE controls, the user can program the control using OLE Automation or set its properties using property pages; therefore, it can use a non-UI activated control. Note that controls can already indicate that they don’t support a separate In-Place Active state by not including the OLEMISC_INSIDEOUT bit. Containers that use the Tab key to move focus from one control to another should interpret the OLEMISC_NOUIACTIVATE flag to indicate that a control should not be included in the Tab order.

�xe "OLEMISC_ALIGNABLE:desciption of"��xe "MiscStatus bits:OLEMISC_ALIGNABLE"�

�SYMBOL 117 \f "MSIcons" \s 9.5 \h �	OLEMISC_ALIGNABLE

Used by a container that supports aligned controls. This bit is used by a control that is most useful when aligned on some side of its container. Containers that support such aligned controls can use this bit to decide whether the user should be allowed to align a particular control.

�xe "OLEMISC_IMEMODE:desciption of"��xe "MiscStatus bits:OLEMISC_IMEMODE"�

�SYMBOL 117 \f "MSIcons" \s 9.5 \h �	OLEMISC_IMEMODE

Marks a control that understands IME Mode. This only makes sense for DBCS versions of Windows. Containers will typically add an IMEMode property to the extended control for controls that mark themselves with this bit.

�xe "OLEMISC_SIMPLEFRAME:desciption of"��xe "MiscStatus bits:OLEMISC_SIMPLEFRAME"�

�SYMBOL 117 \f "MSIcons" \s 9.5 \h �	OLEMISC_SIMPLEFRAME

Used by containers to determine if a control supports the ISimpleFrameSite protocol. Containers that also support this interface will use simple frame controls as parents for other controls in the container. In effect, the simple frame control operates as an OLE compound document container, but the frame control’s container does almost all the work.

�xe "OLEMISC_SETCLIENTSITEFIRST:desciption of"��xe "MiscStatus bits:OLEMISC_SETCLIENTSITEFIRST"�

�SYMBOL 117 \f "MSIcons" \s 9.5 \h �	OLEMISC_SETCLIENTSITEFIRST

Used by new OLE containers to identify controls that support having SetClientSite called first, immediately after being created, and before the control has been completely constructed. Normal OLE compound document containers are written to call SetClientSite on embedded objects after calling IPersistStorage::Load or IPersistStorage::InitNew on the object. Since OLE controls get state through their client site and that state is useful during the load process, they need to have the client site available during Load or InitNew.

Existing OLE Containers ignore these bits, and controls need to be prepared for this. Similarly, existing OLE servers never specify these bits, but containers need to handle such objects.

Container Modality

�xe "Control container:modality of"��xe "Design mode:desciption of"��xe "Run mode:desciption of"�

Many control containers have traditionally changed their behavior according to the mode of their container. For example, many control containers distinguish between design mode (where the author lays out a form) and run mode (where a user uses the form).

This paradigm potentially breaks down with multiple containers that host controls, since the attributes of design mode in one container do not necessarily match the attributes in another container. Hence, suggesting a set of ambient properties such as { DesignMode, TestMode, RunMode } is unlikely to work since the exact characteristics that define these modes is very likely to differ between containers, leading to a set of ambients that are effectively meaningless. A simple set of modes does not allow containers to fully communicate how controls need to modify their behavior.

�xe "Ambient properties:related to control container mode"��xe "Control container mode:ambient properties describing"�

Instead, the various aspects of control behavior are split out as separate ambients depending on the container’s mode. Rather than exposing the reason for a behavioral change (that is, DesignMode), the ambient exposes the intended effect (not showing activation feedback, for example). The ambients exposed for this purpose are:

�xe "Ambient properties:UserMode"��xe "UserMode ambient property:desciption of"�

�SYMBOL 117 \f "MSIcons" \s 9.5 \h �	UserMode(BOOL)

This property allows the control to determine how it is being used. If it is being used to design a form (or some other thing), then the value is FALSE (=Designer). If it is being used by an end user interacting with or viewing the control, then the value is TRUE (=EndUser). Note that this value might change dynamically since some containers may not distinguish between designing and using a control container, and might switch user modes without destroying (and reloading) the control.

�xe "UserMode ambient property:usage by a control"�

Controls may use this property for many purposes. For example, making certain properties read-only to end users in situations where changing the property might be catastrophic; possibly resulting in losing some state that would be inappropriate for end users to deal with. It is recommended, however, that controls should have as few differences as possible between True-EndUser and False-Designer. Different visualization, such as displaying a dotted border around an otherwise totally transparent control is another possibility. Finally, a control could use this property to behave differently when UI Active — allowing visual editing of itself at design time, via mouse clicks, drag and drop, etc.

�xe "Ambient properties:UIDead"��xe "UIDead ambient property:desciption of"�

�SYMBOL 117 \f "MSIcons" \s 9.5 \h �	UIDead(BOOL)

This property allows the control to detect situations where the container does not want the control to interact with user input, such as in Visual Basic’s BreakMode. A well-behaved control can act accordingly, ignoring UI input and not calling SetCursor.

The value of this ambient property can change dynamically as the container changes mode.

Control Activation and Grab Handles

�xe "Control activation and grab handles:OLE guideliness"��xe "Control container:behavior in design mode"�

OLE controls follow the normal OLE 2 guidelines about which object is responsible for drawing selection feedback and grab handles: when an object is UI active, it is responsible for drawing activation feedback (the hatched border and grab handles). When an object is inactive, or only in-place active, the container is responsible for drawing any feedback or grab handles.

�xe "ShowHatching ambient property:usage by control"��xe "ShowGrabHandles ambient property:usage by control"��xe "Ambient properties:ShowGrabHandles"��xe "Ambient properties:ShowHatching"�

This makes sense for containers in design mode. However, in run mode for a container like Visual Basic�SYMBOL 226 \f "Symbol"�, the hatched border should not be shown in any case for control-like objects. However, different containers have different concepts of modality so the ability to suppress an active object’s border differs between containers. Containers can expose two standard ambient properties, ShowHatching and ShowGrabHandles, to indicate to controls that feedback should be suppressed. Well-behaved controls should look for these ambient properties; if they are present and their values are FALSE, the control should suppress drawing a border and grab handles in all circumstances.

�xe "ShowGrabHandles ambient property:usage by control"�

If the ShowGrabHandles (with a BOOL parameter) ambient property is present and FALSE, grab handles should not be displayed for controls on a form in run mode. This ambient allows the container to request that controls not show grab handles when UI Active.

�xe "ShowHatching ambient property:usage by control"�

The ShowHatching (with a BOOL parameter) ambient property allows the container to tell the control when it is appropriate to display hatching. A well-behaved control should display hatching when UI Active only if ShowHatching is TRUE or if the ShowHatching ambient isn’t available.

OLE has no provisions in regards to containers communicating to CD objects whether hatching should be displayed when UI Active, since in the relatively heavyweight world of compound documents hatching was always desirable. With controls, some degree of communication is necessary. Hatching should not be displayed around the active control in a run-mode form, for instance.

Although this property may change values dynamically, controls usually only need to inspect it each time they become UI Active. Hence, containers should not change this for a control that is UI Active (or at least not expect the control to immediately respond).

Special Support for Buttons

OLE custom controls offer additional support for button controls. This support includes handling for default buttons and exclusivity for radio buttons.

Default Buttons

�xe "Control:support for default buttons"��xe "Default buttons:support by OLE controls"�

The normal command button control can act as the “default” or “cancel” button for a form. If a form has a default button, it is triggered when the user pressed ENTER when the form is active; similarly, the cancel button is triggered when the user types ESC. The default button for a form is normally displayed with a thick border or bold text. However, when the focus is in a control that wants to handle the ENTER key, the form will not trigger the default button on ENTER keystrokes, and will disable any special thick border or bold text displayed by the button.

Providing this behavior requires solving three problems: detecting that a control is “button-like”, triggering the button, and communicating to the default button whether to show its special default button rendering.

�xe "MiscStatus bits:OLEMISC_ACTSLIKEBUTTON"�

�SYMBOL 117 \f "MSIcons" \s 9.5 \h �	Controls indicate they are “button-like” with a new MiscStatus bit, OLEMISC_ACTSLIKEBUTTON.

�xe "Control container:triggering default buttons"��xe "Default buttons:triggered by control container"�

�SYMBOL 117 \f "MSIcons" \s 9.5 \h �	Containers trigger the button by calling the button’s IOleControl::OnMnemonic method. Any window message passed to this method will typically trigger the button; no distinction is made between specific keystrokes. Note the control itself might elect to expose its triggering capability to users via some OLE Automation method.

�xe "Ambient properties:DisplayAsDefaultButton"��xe "DisplayAsDefaultButton:usage of "�

�SYMBOL 117 \f "MSIcons" \s 9.5 \h �	Containers let the button know whether to show the default button style with a standard ambient property, DisplayAsDefaultButton.

This ambient property has different values for the different controls on the form. The control can detect changes in the value of this property through the change notification mechanism for standard ambient properties. The container will update the ambient as the focus moves into and out of controls which themselves process the ENTER key. Containers will normally show this ambient property to all controls, even those that don’t act like buttons. Controls that are not button-like should ignore the ambient property, just as they ignore any ambient property they don’t expect or recognize.

Containers need to be able to detect which controls process the ENTER key themselves, so that the container can update the DisplayAsDefaultButton ambient property for the container’s default button. For example, if the user navigates into a multiline edit control that processes the ENTER key, then the default button should not be highlighted. This information is present in the CONTROLINFO struct returned from the IOleControl interface.

Exclusive and Tri-State Buttons

�xe "Control:support for exclusivity of radio buttons"�

Radio buttons and similar controls support exclusivity for a boolean property. That is, if one radio button in a group is checked, the other controls in the group should not be checked. Controls indicate that they support exclusivity by using a special type for their Value property. (The Value property is a property with a dispatch ID of DISPID_VALUE, which is interpreted by OLE Automation as the property that most nearly represents the object’s primary “value.”) The standard OLE controls Standard TypeLib defines this “exclusive boolean” type:

typedef BOOL OLE_OPTEXCLUSIVE;

Containers can then detect which controls are similar to radio buttons by looking for a Value property of this type. To identify whether a control’s Value property has this type, the container needs to examine the type information for the control’s primary dispatch interface, and compare the GUID of the property’s type against the constant GUID_OPTIONVALUEEXCLUSIVE.

For containers to take advantage of this feature, the control needs to support property binding for its Value property. If a control supports property binding for an OLE_OPTEXCLUSIVE Value property, the container can detect changes to the Value property and layer whatever model it wants for radio buttons on top.

�xe "Control:usage of ExclusiveBool type"��xe "ExclusiveBool type:usage of "�

In general, controls should not use the OLE_OPTEXCLUSIVE type for properties other than their Value property. The semantics of this would be too confusing, especially with a heterogeneous group of controls; the only property that all such controls are expected to support is Value.

Check boxes and similar controls normally expose a three-state Value, since check boxes support an indeterminate third state, in addition to TRUE and FALSE:

typedef enum

{

 Unchecked = 0,

 Checked = 1,

 Grayed = 2,

} OLE_TRISTATE;

This type is also defined in the OLE Controls Standard TypeLib. Containers can provide similar exclusivity functionality for Value properties of type OLE_TRISTATE.

Handling In-place Active Objects

�xe "In-place active objects:desciption of"��xe "Control container:handling of in-place active objects"�

The released version of OLE 2 includes support for in-place active CD objects; that is, objects that are in-place active (have created a window for themselves) but not UI active (for example, they do not own the menu). Objects are allowed to request (by specifying OLEMISC_ACTIVATEWHENVISIBLE) that their containers in-place activate them when the container is in-place activated. This implies that containers need to deal with multiple embedded-object windows at a time.

This causes some complications for containers. Suggested ways for containers to deal with these complications are given below. Note, however, that the Controls architecture does not stress having in-place active objects. Most objects are expected to act as normal OLE objects and only be in-place active when UI active.

Z-Order

�xe "Control container:Z-Order"��xe "Z-Ordering:implemented by control containers"�

Many control containers support overlapping embeddings, which were not explicitly supported in OLE 2. For overlapping controls to be useable, the container must be able to implement Z-ordering; a process in Windows where windows are ordered on the screen according to their Z-order. For example, the window at the top of the Z-order appears on top of all other windows in the order.

�xe "Z-Ordering of inactive controls:implemented by control containers"��xe "Inactive controls:z-ordering of by control container"�

For inactive controls, implementing Z-ordering is straightforward. The container is rendering the controls so it either renders them from back to front or sets up clipping regions so that the controls’ visualizations reflect the proper Z-order.

�xe "Z-Ordering of active controls:implemented by control containers"��xe "Active controls:z-ordering of by control container"��xe "Z-Ordering in containers:requirements for controls"�

To have in-place active and UI active controls participate in the Z-order, the container needs cooperation from the in-place active controls. The controls, which have no way to implement Z-order themselves, should cede control of the Z-order of their window to their container. In particular:

�SYMBOL 117 \f "MSIcons" \s 9.5 \h �	Controls should create their window at the top of the Z-order when in-place activated. This is the default behavior of CreateWindow, so this does not mean extra work for the control.

�SYMBOL 117 \f "MSIcons" \s 9.5 \h �	Controls should not manipulate the Z-order of the window once it has been created. In particular, controls should not attempt to bring their window to the front when they are UI activated.

�SYMBOL 117 \f "MSIcons" \s 9.5 \h �	Containers manipulate the control’s window’s Z-order dynamically. Controls should be written to expect this.

�xe "Z-Ordering in containers:types of"��xe "Physical z-order:desciption of"��xe "Logical z-order:desciption of"�

A reasonable Z-ordering container is expected to maintain two Z-orders: the logical Z-order and the physical Z-order. The current UI Active object should be maintained on top of the physical Z-order, even though it may not be on top of the logical Z-order. This means that windows can pop to the front as the user moves between fields. The other In-Place Active objects will be next in the physical Z-order, followed by the inactive objects on the bottom. Within the In-Place Active objects or IViewObject objects, the relative logical Z-ordering should be maintained.

Containers are notified whenever objects transition between the various states and can obtain the object’s hWnd when one has been created. Given this, the correct physical Z-order of the objects can be maintained. Since the container does all drawing for the nonactive objects, displaying them in the correct Z-order is straightforward.

Controls Recreating Windows

�xe "Control:recreating windows"�

Some controls may expose properties that map directly to window styles. For example, a control may expose a Border property and implement it with the WS_BORDER window style. Changing the window style of an extant window is not well supported in Windows, so the user would normally destroy and re-create a window in order to change its style.

However, in the existing OLE Compound Document architecture, an object is not expected to do this, except when making state transitions between the Running and InPlaceActive states. For compatibility with existing servers, OLE controls should not unilaterally destroy and re-create their window. Destroying and re-creating the window should only be done as part of the transition from the In-Place Active state to the Running state and back again. However, the control can decide to make this transition unilaterally, notifying its container through the appropriate site methods.

Keyboard Interface

�xe "Control:implementing a keyboard interface"��xe "Keyboard interface:implementation of by a control"�

Implementing a keyboard interface in the context of OLE presents two basic problems. First, how are the Windows input messages for special keys — TAB, the arrow keys, ENTER—routed to the correct object? Second, how do objects communicate with their container about their specific keyboard interface needs — for example, how does a Label control implement its mnemonic character?

Routing Keyboard Messages with Existing Interfaces

�xe "Keyboard messages:using the TranslateAccelerator method"��xe "TranslateAccelerator method:routing keyboard messages"�

The existing OLE Compound Document interfaces provide enough support to handle some of the work in routing keyboard events to the correct objects. However, to make this work, some existing methods need to be reused in a manner outside their original intent.

The CD interfaces provide the TranslateAccelerators methods used to coordinate accelerator keys, the implementation of which is normally split between the (innermost) UI Active object and the (outermost) Frame object. That is, the UI Active object provides some accelerators, and the Frame provides some. Any object that owns the message loop — which changes with different combinations of EXE- and DLL-implemented servers and containers — is responsible for making sure each of these objects gets a change to translate all keyboard messages.

OLE controls leverage this basic infrastructure for the simpler keyboard event routing cases.

Interpreting Special Key Combinations

�xe "Special key combinations:handling by controls"��xe "Special key combinations:examples of"�

Some objects want to handle certain keystroke combinations specially. There are two basic examples of this. First, some controls have their own interpretation of keystrokes their container otherwise use in its keyboard interface. For example, a multiline text box control inserts a new line when the ENTER key is pressed, overriding the container, which might instead activate the default button. Second, some controls have mnemonics that are active no matter which of their siblings is currently UI Active (i.e., has the focus). For example, a Label control may change which sibling control is active when the Labels mnemonic is seen.

�xe "Special key combinations:IOleControl interface methods"�

Objects that need custom interactions with the keyboard interface implement methods in the IOleControl interface. Similarly, the container implements keyboard interface methods in its IOleControlSite implementation.

struct CONTROLINFO

{

 ULONG cb; // Structure size

 HACCEL hAccel; // Control mnemonics

 USHORT cAccel; // Number of entries in mnemonics table

 DWORD dwFlags; // Flags chosen from list below...

};

#define CTRLINFO_EATS_RETURN 1 // Control processes VK_RETURN

#define CTRLINFO_EATS_ESCAPE 2 // Control processes VK_ESCAPE

interface IOleControl : public IUnknown

{

 ...

 GetControlInfo(CONTROLINFO * pCI);

 OnMnemonic(LPMSG pMsg, DWORD grfModifiers);

};

interface IOleControlSite : public IUnknown

{

 ...

 OnControlInfoChanged(void);

 TranslateAccelerator(LPMSG pmsg, DWORD grfModifiers);

};

�xe "Control container:determining special key handling"�

At load time, a control container asks each embedded control for CONTROLINFO via GetControlInfo. The control uses the struct to return an accelerator table containing the mnemonics it wants to expose when not UI active. It also sets the appropriate flags in the structure, telling the container whether the control processes the ENTER and ESC keys when UI Active. This allows the container to properly set the state of the OK and Cancel buttons on the form; the OK button, for example, should have a thick border if typing ENTER will trigger it, but whether this happens changes as the focus moves from control to control.

The form can compare the entries in the accelerator table against the type of key combinations it can intercept. The form decides what key combinations it intercepts ahead of time. Containers may elect to not support arbitrary key combinations as accelerators. For example, a form might decide to intercept only ALT-key combinations; in this case, a control that wants to use CTRL + ENTER as a mnemonic could not.

�xe "Special key combinations:usage of OnMnemonic method"�

In any case, when the form receives a key combination that matches a combination in the control’s accelerator table, the form calls the control’s OnMnemonic method. The control decides what the appropriate response to the mnemonic is; this differs from control to control. Note that OLE controls define special support for handling accelerators on Label-like controls; this support was outlined earlier in this section.

�xe "Control:notification of mnemonic key changes"��xe "OnControlInfoChanged:usage of"�

If the mnemonics for a control change while the control is loaded, the control should call OnControlInfoChanged on the client site. The container is then responsible for reloading CONTROLINFO from the control.

An in-process control should have an IOleInPlaceActiveObject::TranslateAccelerator method similar to the following:

STDMETHODIMP

CFooControl::TranslateAccelerator(LPMSG pmsg)

{

 // Process any keys that the control wants to “override” its

 // container and frame’s accelerators

 hr = m_pOleControlSite->TranslateAccelerator(pmsg, 0);

 if (hr == S_OK)

 return hr;

 // Process any keys that the control wants to “override” its

 // frame’s accelerators, but not its immediate container’s

}

The control then processes “normal” keys as OLE compound document objects do, by responding to window messages sent to its window procedure. Note that since the control is in-process, it doesn’t delegate messages to the outermost frame.

OK and Cancel Button handling

�xe "Control:usage of OLEMISC_ACTSLIKEBUTTON"��xe ":usage of"�

In OLE controls, a control indicates that it is “button-like” by setting the OLEMISC_ACTSLIKEBUTTON MiscStatus bit. Containers can then allow the user to mark such a control as being the default or cancel button for the form. The default button is activated when the user presses ENTER; the cancel button when the user presses ESC.

�xe "Control container:handling the OK button"��xe "Control container:handling the Cancel button"�

The container traps the ENTER and ESC keys by including them in its accelerator table. When one of these keys is pressed, the container calls the standard method Click in the appropriate control’s primary dispinterface. The standard Click method is described in “Control Methods.”

Note that the container’s ability to trap the ENTER key will vary as the user moves in and out of controls which themselves trap the ENTER key. The container can detect which controls intercept ENTER by inspecting the CTRLINFO_EATS_RETURN bit in ControlInfo. To follow the Windows style guide, the container needs to communicate to the default button that it will no longer be triggered when the user presses ENTER ; the container does this through the standard DisplayAsDefaultButton ambient property (described in “Ambient Properties”). Button-like controls should look for this ambient property, track changes to it through the OnAmbientChanged method, and display themselves to match.

Mnemonic Translation

�xe "Control:determining mnemonic translation support"��xe "Control container:supporting mnemonic translation"��xe "Ambient properties:SupportsMnemonics"��xe "SupportsMnemonics ambient property:description of"�

Controls may wish to detect whether their container supports the control-style extended keyboard interface. Containers that do support mnemonic translation should expose the standard ambient property SupportsMnemonics of type BOOL with the value TRUE. The control can examine this ambient and hide or show its mnemonic feedback (underlining the mnemonic character, for example) appropriately.

Note that during normal usage, a container should not change its SupportsMnemonics value. This includes the container going from the UI Active state to a non-UI Active state. This follows the existing Windows standard, where mnemonic feedback is shown for nonactive windows. This also includes going between design and run mode for modal containers; SupportsMnemonics should be TRUE in each mode, even if the container doesn’t plan on forwarding accelerators in design mode.

Persistence and Initialization

�xe "IPersistStorage:usage of"��xe "Control:persistence of"�

OLE 2 compound document objects use IPersistStorage for persistence. This makes sense for the relatively heavyweight document editor applications OLE 2 focuses on, but makes less sense for controls. Consequently, OLE controls allow controls to support persistence to streams. New containers written for OLE controls can detect this support and save embedded controls to streams rather than storages.

Of course, existing compound document containers only support IPersistStorage. Controls will normally want to support being embedded in compound document containers, and should therefore support IPersistStorage.

�xe "IPersistStreamInit:usage by control"��xe "IPersistStreamInit:interface description"�

Controls support persistence to streams through the new interface IPersistStreamInit:

interface IPersistStreamInit : public IPersist

{

 IsDirty(void);

 Load(LPSTREAM pStrm);

 Save(LPSTREAM pStrm, BOOL fClearDirty);

 GetSizeMax(ULARGE_INTEGER * pcbSize);

 InitNew(void);

};

�xe "IPersistStreamInit:analog for InitNew method"�

The IPersistStream interface itself is almost perfect for controls. The major omission is that it doesn’t have an analog to the InitNew method in IPersistStorage. This method serves two functions for IPersistStorage objects: first, it gives the object a pointer to its storage (which the object can hold on to), and second, it notifies the object that it is being newly created (rather than being deserialized).

�xe "InitNew method:usage of "�

The first use does not apply to streamed objects — they are not allowed to hold on to the stream pointer passed but rather must load all their state synchronously from the stream and release the pointer — but the second does. Without an InitNew method, a streamed object would be forced to fully construct its state at CreateInstance time, even though that state might be overwritten with a call to IPersistStream::Load. With InitNew, the object can avoid performing expensive operations twice during deserialization.

Note that this new interface is not derived from IPersistStream. This is because it would imply that the object could be used as a normal IPersistStream object, without calling its InitNew method. This would defeat the purpose of having a new contract.

Initialization Order

�xe "Control:initialization order"�

Normal compound document containers call the IOleObject::SetClientSite method after fully loading an instance of the object, either by creating it (CoCreateInstance followed by IPersistStorage::InitNew) or by loading it from a storage (CoCreateInstance followed by IPersistStorage::Load). This works fine for normal compound document objects, since their persistent state is self-contained — they have no need to interact with their container through the client site during their creation or deserialization process.

However, OLE controls can get interesting states from their container — specifically, ambient properties — that would be useful during the creation or deserialization process. For example, a control might choose to not serialize those of its properties whose values match ambient properties exposed by the container, choosing instead to copy those properties from the container during deserialization.

�xe "MiscStatus bits:OLEMISC_SETCLIENTSITEFIRST"��xe "OLEMISC_SETCLIENTSITEFIRST:usage of "�

For this to happen, the control needs to be given its client site before Load or InitNew is called (either on IPersistStorage or IPersistStreamInit), rather than after. A control indicates that it supports this contract by setting the new MiscStatus bit OLEMISC_SETCLIENTSITEFIRST. New OLE control containers should support controls with this bit set by calling SetClientSite before Load or InitNew.

Controls can detect whether their container supports this new style of initialization by monitoring whether SetClientSite or InitNew/Load is called first. If the container calls SetClientSite first, then it can be counted on to do this in the future.

Interactions Between IPersistStreamInit and IPersistStorage

�xe "Control:initialization sequence types"�

A control is guaranteed that its parent will follow one of the initialization sequences given above. The container will either use IPersistStreamInit or IPersistStorage, and will always call InitNew or Load on the control’s interface before using the control. As expected, the container may also make any number of calls to the Save method on the interface, either saving the state of the control to its permanent location or performing a “Save As” to another location to save a new copy of the control.

�xe "IPersistStreamInit:interaction with IPersistStorage"��xe "IPersistStorage:interaction with IPersistStreamInit"�

In some cases, the container may need to save the new copy using either the IPersistStreamInit or IPersistStorage interface. For example, the container may load and save a control using IPersistStreamInit, but need to make a “Save As” copy using IPersistStorage. Although the control’s IPersistStreamInit::InitNew or IPersistStreamInit::Load method will have been called in this case, neither its IPersistStorage::InitNew or IPersistStorage::Load method will have been called. Nevertheless, IPersistStorage::Save should normally succeed (as long as an IStorage pointer is explicitly passed in, implying a “Save As” operation).

This means that the control’s implementations of IPesistStreamInit and IPersistStorage aren’t completely separable. After a legal initialization through either interface, the Save method on the other interface should function correctly.

Control Size Negotiation

�xe "Control:sizing when active"��xe "OnPosRectChanged:usage by control"�

Controls can negotiate with their containers for new sizes. When UI Active or In-Place Active, the control calls the IOleInPlaceSite::OnPosRectChanged method exposed by its container on the control’s site, passing the desired new size. The container in turn calls IOleInPlaceObject::SetObjectRects on the control to effect the change. This mechanism functions exactly as it does for normal compound document objects.

�xe "Control:sizing when not active"��xe "RequestNewObjectLayout method:usage by control"�

When the control is merely Loaded or Running and wants to change its size, it should call the IOleClientSite::RequestNewObjectLayout method. This method was introduced as part of OLE Compound Documents, but its semantics were not fully documented. Existing compound document containers will return E_NOTIMPL from this method, indicating that they do not support the control’s request for a new size.

New OLE Control containers may decide to return S_OK, accepting the request. The container should call IOleObject::GetExtent to retrieve the control’s preferred size. The container does not need to do this synchronously; it may decide to defer the resize until it is convenient. When the container later resizes the control, the control’s new size is passed to the control via IOleObject::SetExtent.

Standard Types

�xe "Control:standard types used by"��xe "Standard types:usage by controls"�

Since controls share many of the same properties, it isn’t surprising that they share many of the same types. For example, many controls have properties that control the colors used for the control. It is useful to be able to identify a particular property as being of a standard OLE_COLOR type. Containers and other code can be written to deal specifically with color-valued properties.

This section defines a standard set of types intended for reuse by Controls. These types are defined in a standard Type Library provided as part of OLE controls. Most controls will have references to this type library in their type description.

Handling Coordinates

�xe "Control:coordinate types"�

Different containers provide different coordinate models.

For Extended Control properties and methods, this isn’t a problem. Each container implements its own Extended Control, so it exposes whatever coordinate model it likes. Properties are exposed with a data type chosen by the container, as are parameters to methods. The same is true for any Extended Control events — Move or Size, for example — the container chooses the data types and scaling for the event’s parameters.

However, controls may also use coordinates — for their own properties, or as parameters on their events and methods. This is common for control events: Click, MouseMove, MouseDown and MouseUp, for example. It is much less common for control properties and methods. A Grid control might have a ColumnWidths property, for example, but examples of this sort of property are relatively rare.

The solution:

�xe "Control:coordinate types"��xe "Control coordinates:types of"�

�SYMBOL 117 \f "MSIcons" \s 9.5 \h �	OLE controls provides standard TypeDefs for the different flavors of coordinates:

typedef LONG OLE_XPOS_PIXELS;

typedef LONG OLE_YPOS_PIXELS;

typedef LONG OLE_XSIZE_PIXELS;

typedef LONG OLE_YSIZE_PIXELS;

typedef LONG OLE_XPOS_HIMETRIC;

typedef LONG OLE_YPOS_HIMETRIC;

typedef LONG OLE_XSIZE_HIMETRIC;

typedef LONG OLE_YSIZE_HIMETRIC;

Since containers may need to provide different mapping of positional and size values into the container’s coordinate space, position and size are separated into separate type definitions. For example, a container may apply an offset when mapping a position but not when mapping a size. Similarly, different typedefs are provided for coordinates measured in pixels (the most natural coordinate to use when firing events from window procedures) and those measured in HIMETRIC (matching OLE).

�SYMBOL 117 \f "MSIcons" \s 9.5 \h �	The container can detect event parameters of these standard types. Since the container is interposed between the control and the container’s language integration, the container has the opportunity to translate event parameters of these types to the container’s preferred coordinate model. Often, the container needs to make this translation in the TypeInfo it provides for the extended control (control + Extended Control), since the container may change the data type of the parameter, along with the other merging work it does in TypeInfo.

�SYMBOL 117 \f "MSIcons" \s 9.5 \h �	Since the container does not normally interpose itself between user code and the control (at least not for early-bound access to control properties), the container may not be able to provide automatic translation for object properties and method parameters. Instead, the control is responsible for identifying coordinate-valued properties and method parameters and fulfilling a simple contract for them.

�xe "Control coordinates:use by arbitrary containers"�

To match arbitrary containers, coordinate-valued properties and method parameters should be single-precision floats, and should be defined with standard typedefs provided by the OLE Custom Controls Development Kit (CDK). The control is responsible for translating its own internal coordinate-valued properties into the container’s coordinate system when making them visible.

�xe "TranslateCoordinates method:usage by controls"��xe "Coordinate conversion:implemented by TranslateCoordinates method"�

However, since the container owns the coordinate model, the control must delegate to it to perform the translation. The container exposes a method TranslateCoordinates on the control’s site to enable this. This method allows coordinates to be converted between HIMETRIC and the container’s coordinate model and back again, for both positional coordinates and sizes. The flags passed to the method govern the exact manipulation that occurs; note that during the conversion from container coordinates to HIMETRIC, the first parameter is the output parameter, a minor deviation from OLE conventions.

typedef struct tagPOINTF

{

 float x;

 float y;

} POINTF;

interface IOleControlSite

{

 ...

 TranslateCoordinates(

 POINTL * pPtlHiMetric,

 POINTF * pPtfContainer,

 DWORD dwFlags);

};

#define XFORMCOORDS_POSITION 1

#define XFORMCOORDS_SIZE 2

#define XFORMCOORDS_HIMETRICTOCONTAINER 4

#define XFORMCOORDS_CONTAINERTOHIMETRIC 8

In addition, the control may show coordinates itself, perhaps in its property pages. In this case, the control should display the property in the container’s coordinate model. Using the method described above, it can convert the value. However, it also needs to get the unit name as a string for use as a label for the property. The container provides this string as the standard ambient property ScaleUnits.

�xe "Container-scaled coordinates:list of standard types for"�

In some cases, containers may wish to detect which of a control’s properties are container-scaled coordinates. The standard OLE controls Type Library defines standard types for such properties, which the container can then look for by UUID in the control’s Type Library.

typedef float OLE_XPOS_CONTAINER;

typedef float OLE_YPOS_CONTAINER;

typedef float OLE_XSIZE_CONTAINER;

typedef float OLE_YSIZE_CONTAINER;

For most controls, this produces a relatively seamless end-user coordinate model.

Standard Color Type

�xe "OleTranslateColor:description of"��xe "OLE_COLOR:mapping to a COLORREF value"��xe "Standard Color type:overview of"�

A helper API is provided to help manage mapping an OLE_COLOR value to the matching Windows COLORREF value. The helper routines, under Win3.1, return a reasonable default RGB value when asked for those indices.

STDAPI OleTranslateColor(OLE_COLOR color, HPALETTE hpal, COLORREF * pcolorref);

This API takes a value of type OLE_COLOR and maps it to the corresponding Windows COLORREF. The algorithm for doing this is a little complicated. Table D.6 below defines how the conversion happens, based on the input color value, and shows what the output COLORREF will be.

Note that NULL may be passed for lpcolorref, in which case this API is simply verifying that color has a valid value.

Table D.6 Mapping of Colors Using OleTranslateColor

����Color�hpal�Resulting COLORREF������invalid�don’t care�Error��0x800000xx, xx is not a valid GetSysColor() index.�don’t care�Error��don’t care�invalid�Undefined��0x0100iiii, iiii is not valid for hpal�valid palette�Error��0x800000xx, xx is a GetSysColor() index�NULL�0x00bbggrr��0x0100iiii, iiii is a palette index�NULL�0x0100iiii��0x02bbggrr (palette relative)�NULL�0x02bbggrr��0x00bbggrr�NULL�0x00bbggrr��0x800000xx, xx is a GetSysColor() index�valid palette�0x00bbggrr��0x0100iiii, iiii is a valid palette index in hpal�valid palette�0x0100iiii��0x02bbggrr (palette relative)�valid palette�0x02bbggrr��0x00bbggrr�valid palette�0x02bbggrr��

Standard Font Type

�xe "Standard Font type:overview of"��xe "Control:standard Font property"�

OLE controls define a standard object for fonts, and an implementation of this object is provided as part of OLE controls. With OLE controls, controls are expected to have a single object-valued Font property. Properties of the font itself are accessed through the font object rather than through the control.

The standard font object supports the following interface (described in ODL syntax):

�xe "IFontDisp:interface description"�

dispinterface Font

{

 properties:

 BSTR Name;

 CURRENCY Size;

 boolean Bold;

 boolean Italic;

 boolean Underline;

 boolean Strikethrough;

 short Weight;

 short Charset;

};

typedef Font IFontDisp;

interface IFont : IUnknown

{

 ...

 HRESULT get_hFont([out]OLE_HANDLE *hFontOut);

 HRESULT IsEqual([in] IFont * lpFontOther);

 HRESULT Clone([out]IFont ** lplpfont);

 HRESULT SetRatio([in]long cyLogical, OLE_YSIZE_HIMETRIC cyHimetric);

 HRESULT QueryTextMetrics([out] TEXTMETRICOLE* lptm);

 HRESULT AddRefHfont([in]HFONT hfont);

 HRESULT ReleaseHfont([in]HFONT hfont);

};

�xe "IFontDisp:description of properties"�

�xe "Name property:description of"��xe "Size property:description of"��xe "Italic property:description of"��xe "Underline property:description of"��xe "Strike property:description of"��xe "Bold property:description of"��xe "Weight property:description of"�

The Name property gives the typeface of the font. The Size property gives the size, measured in points. Note that the type used for the Size property is VT_CURRENCY; effectively, this type is used as a generic fixed-point integer type here. The Italic, Underline, and Strikethrough properties give the matching characteristics of the font. The Bold and Weight properties are related; as in Windows, the Weight property ranges from 0 to 1000, and gives the relative weight of the font. A Weight value of 400 is a normal font, while a Weight of 700 is a bold font. The Bold property is TRUE if the Weight is greater than the average of these two (that is, 550); setting Bold to TRUE sets the Weight to 700, and setting Bold to FALSE sets Weight to 400. The Charset property names the character set expressed by the font.

�xe "hFont property:description of"�

The get_hFont method returns a Windows font handle that matches the other properties. The font object delays realizing this hFont object when possible, so consecutively setting two properties on a font won’t cause an “intermediate” font to be realized. In addition, as an optimization, the standard font object maintains a cache of font handles. Two font objects (in the same process) that have identical properties will return the same font handle.

Since the font object caches font handles, any particular hFont returned has a limited and indeterminate lifetime. If one of the properties of the font object changes, then the hFont last returned may be removed from the internal cache and destroyed. Therefore, in normal use, the hFont property should be retrieved from the object, used, then discarded.

�xe "AddRefHFont method:usage of "��xe "ReleaseHFont method:usage of "�

In cases where the font handle needs to be kept viable, the user can call the AddRefHfont method. This increments the internal cache reference count kept for the given font, guaranteeing that the font handle remains valid until a matching call to ReleaseHfont is made.

�xe "Clone method:usage of "�

The Clone method creates a copy of a font object from the hFont object.

The SetRatio method informs the font object of the ratio between logical units and himetric units for the device context in which it is being used.

The QueryTextMetrics method fills in a structure with the text metrics for the font in its current device context.Since the control is not implementing the font object, it doesn’t know when the user manipulates the font properties. The control needs to be notified when this happens so that it knows to repaint itself. In the process, the control gets a new font handle by supporting IConnectionPointContainer and exposing a connection point for the IPropertyNotifySink interface, which is described in more detail in the “Notifications” section of this chapter.

�xe "Standard Font object:persistence of"�

The font object supports IPersistStream. The control normally asks the font object to save itself as part of the process of saving the control. In addition, the font object supports IDataObject, following the conventions given in the Save As Text section of this specification. This allows the font object’s properties to be saved as a text stream.

�xe "standard Font object:creating new instances of"��xe "OleCreateFontIndirect:description of"�

OLE controls provides an API to create new instances of the standard font object. This API can be called with a NULL description pointer, in which case a default font object is created and returned.

typedef struct tagFONTDESC

{

 ULONG cbSizeofstruct;

 LPOLESTR lpstrName;

 CY cySize;

 SHORT sWeight;

 SHORT sCharset; // Used only if lpstrName is ambiguous

 BOOL fItalic;

 BOOL fUnderline;

 BOOL fStrikethrough;

} FONTDESC;

HRESULT OleCreateFontIndirect(

 LPFONTDESC lpfd,

 REFIID riid,

 LPVOID FAR* lplpvObj);

Some additional points about the standard Font object:

�xe "GetFontHandle:usage of "��xe "standard Font object:calling GetFontHandle method"�

�SYMBOL 117 \f "MSIcons" \s 9.5 \h �	The Font object will not actually translate its properties into an actual hFont handle until the get_hFont method is called. Controls that use the notification connection point should not call this method when they are notified that the font has changed; instead, they should invalidate their contents and set an internal flag. During repaint, they should call get_hFont again. The exception to this is OLE controls that are based on existing window procedures, which may need to send WM_SETFONT messages in response to the font changing. Recall that when passing the hFont in a WM_SETFONT message, AddRefHfont must be used, to keep it locked in the font object’s internal cache.

�xe "Control container:ambient font property"�

�SYMBOL 117 \f "MSIcons" \s 9.5 \h �	Containers can provide an ambient Font property. Well-behaved controls normally copy this property when created. The user model is that the control has a copy of the container’s Font, not an alias to it.

Standard Picture Type

�xe "Standard Picture type:overview of"��xe "Control:Standard Picture type"�

The standard picture type provides a language-neutral abstraction for bitmaps, icons, and metafiles. As with the standard font object, OLE controls provides an implementation of the standard picture object.

dispinterface Picture

{

properties:

 OLE_HANDLE Handle;

 OLE_HANDLE hPal;

 short Type;

 OLE_XSIZE_HIMETRIC Width;

 OLE_YSIZE_HIMETRIC Height;

};

typedef Picture IPictureDisp;

�xe "IPicture:interface description"�

interface IPicture : IUnknown

{

 ...

 HRESULT get_KeepOriginalFormat([out] BOOL *fKeep);

 HRESULT put_KeepOriginalFormat([in] BOOL fKeep);

 HRESULT Render([in]HDC hdc,

 [in]long x, [in]long y, [in]long cx, [in]long cy,

 [in]OLE_XPOS_HIMETRIC xSrc, [in]OLE_YPOS_HIMETRIC ySrc,

 [in]OLE_XSIZE_HIMETRIC cxSrc, [in]OLE_YSIZE_HIMETRIC cySrc,

 [in]LPCRECT lprcWBounds);

 HRESULT PictureChanged();

 HRESULT get_CurDC([out] HDC *lphdcOut);

 HRESULT SaveAsFile(

 [in] IStream *lpstream,

 [in] BOOL fSaveMemCopy,

 [out] LONG *lpcbSize);

 HRESULT SelectPicture(

 [in] HDC hdcIn,

 [out] HDC *phdcOut,

 [out] OLE_HANDLE *phbmpOut);

 HRESULT get_Attributes(DWORD FAR* lpdwAttr);

};

�xe "standard Picture object:description of types included"��xe "standard Picture object:Type property"��xe "Type property:description of"��xe "Handle property:description of"��xe "Width property:description of"��xe "Height property:description of"��xe "hPal property:description of"�

The picture object can contain three kinds of GDI objects: bitmaps, icons, and metafiles. The type of Windows object contained is given by the Type property. The Handle property returns the handle for the Windows object contained by the picture object. The Width and Height properties return the size of the picture, measured in HIMETRIC units. The hPal property gives the palette that should be used when rendering the picture.

�xe "Render method:description of"�

The Render method draws the picture object’s contents into the given device context (DC).

�xe "standard Font object:KeepOriginalFormat property"��xe "KeepOriginalFormat property:description of"�

The KeepOriginalFormat property determines how conservative the picture object is about maintaining the complete original source data for the picture across persistences. For example, if a 24-bit RGB bitmap is loaded by a picture object, but the user’s display only supports 8-bit color, the bitmap would normally be converted to an 8-bit color bitmap internally. Saving the picture at this point would save the 8-bit color bitmap; the original 24-bit color bitmap would be lost. If the KeepOriginalFormat property is set to TRUE, then the picture object keeps a copy of the original data in memory, as well as converting it for the user’s display.

�xe "Standard Picture object:notification of change"��xe "Standard Picture type:connection points exposed"�

Since controls are using a standard implementation of the picture object, they need to be notified when the picture’s content changes so that the control can invalidate and redraw itself to match. The picture exposes a connection point for the IPropNotify interface, as with the Font object; when the picture’s content (or other properties) changes, notification is sent through this connection point.

�xe "Standard Picture type:direct modification of"�

Note that since the picture’s handle is available, it is possible to directly alter the picture’s contents with the Windows API. Code that does this should call the PictureChanged method to notify the picture object that its contents have changed. The picture object then sends notifications of this change through the IPropNotify connection point.

�xe "IPicture:CurDC property"��xe "CurDC property:description of"��xe "SelectPicture method:description of"��xe "IPicture:SelectPicture method"�

The CurDC property and SelectPicture method exist to circumvent limitations in Windows; specifically, the limitation that an object can be selected into exactly one DC at a time. In some cases, a picture object may be permanently selected into a particular device content. For example, a control that exposes its background as a bitmap might expose a Picture property to match. In order to use this picture property elsewhere, it needs to be temporarily deselected from its old DC, selected into the new DC for the operation, then reselected back into the old DC. The CurDC property returns the DC into which the picture is currently selected. The SelectPicture method selects the picture into a new DC, returning the old DC and the picture’s Windows object handle. The caller should select the picture back into the old DC when the caller is done with it, as per normal for Windows code.

�xe "Standard picture object:supported interfaces:IPersistStream"��xe "Standard picture object:supported interfaces:IDataObject"�

The standard picture object supports IPersistStream. However, note that the stream format by definition must be self-describing. The picture may not be the only object in the stream, so it can’t rely on using the end of the stream to mark the end of the picture. Unfortunately, the standard Windows file formats for the picture types rely on this behavior, so the stream format for pictures does not match the file format (the stream format prepends length information). The SaveAsFile method provides a mechanism to save the picture as the appropriate Windows file type — BMP, ICO, WMF.

The Attributes property describes the kind of the picture in terms of characteristics, rather than a specific picture type. This allows client code to operate in terms of these attributes, even if the set of picture types is extended in the future. The following attributes are defined:

#define PICTURE_SCALABLE 0x11

#define PICTURE_TRANSPARENT 0x21

�xe "Standard picture object:creating new instances of"��xe "OLECreatePictureIndirect:usage of "�

An API OleCreatePictureIndirect is provided for creating new instances of picture objects. This API can be called with a NULL description pointer, which creates an uninitialized picture object. The IPersistStream methods can be used on the picture to deserialize it; if any other methods are called, the uninitialized picture is converted into an empty (type = None) picture. The fPictureOwnsHandle parameter to this API determines whether the picture destroys the Windows handle when the picture object is destroyed.

#define PICTYPE_UNKNOWN -1 // Not valid for OleCreatePicture

#define PICTYPE_NONE 0

#define PICTYPE_BITMAP 1

#define PICTYPE_METAFILE 2

#define PICTYPE_ICON 3

struct PICTDESC

{

 UINT cbSizeofstruct;

 UINT picType;

 union

 {

 struct

 {

 HBITMAP hbitmap; // Bitmap

 HPALETTE hpal; // Accompanying palette

 } bmp;

 struct

 {

 HMETAFILE hmeta; // Metafile

 int xExt;

 int yExt; // Extent

 } wmf;

 struct

 {

 HICON hicon; // Icon

 } icon;

 };

};

STDAPI OleCreatePictureIndirect(

 LPPICTDESC lppictdesc, // Can be NULL

 REFIID riid,

 BOOL fPictureOwnsHandle,

 LPVOID FAR* lplpvObj);

�xe "OleLoadPicture:usage of "�

The OleLoadPicture API can be used to read Windows file formats for bitmaps, metafiles, and icons, returning the matching picture object.

STDAPI OleLoadPicture(

 LPSTREAM lpstream,

 LONG lSize, // 0 means entire stream

 BOOL fKeepOriginalFormat, // From container’s ambient

 REFIID riid,

 LPVOID FAR* lplpv);

The lSize parameter gives the number of bytes that should be read from the stream, or zero if the entire stream should be read. The fKeepOriginalFormat parameter determines whether the picture object maintains the entire original state of the picture in memory, or whether any state not applicable to the user’s machine is discarded. The interface pointer matching riid is returned in *lplpv.

Miscellaneous Standard Types

�xe "Standard miscellaneous types:list of"��xe "OLE_HANDLE:description of"��xe "OLE_TRISTATE:description of"��xe "OLE_OPTEXCLUSIVE:description of"��xe "OLE_CANCELBOOLEAN:description of"��xe "OLE_ENABLEDEFAULTBOOLEAN:description of"�

In addition, other types are defined for miscellaneous purposes:

OLE_HANDLE

Used when a Windows handle is being passed. The type is I2 (or I4).

OLE_TRISTATE

Corresponds to the value of a tristate checkbox.The type is enumerated with following available values:

�SYMBOL 117 \f "MSIcons" \s 9.5 \h �	0 Unchecked

�SYMBOL 117 \f "MSIcons" \s 9.5 \h �	1 Checked

�SYMBOL 117 \f "MSIcons" \s 9.5 \h �	2 Gray

OLE_OPTEXCLUSIVE

Identifies controls whose value property can participate in an exclusive group. Containers can support this by detecting controls with a value property of this type, then using the property binding interfaces to detect when the property becomes TRUE. At that point, the container can set the value property of the other controls in the group to FALSE. The type is BOOL. For more information, see the “Special Support for Buttons” section.

OLE_CANCELBOOL

Should be used as the type for Cancel parameters in Request events. The type is BOOL.

OLE_ENABLEDEFAULTBOOL

Should be used as the type for EnableDefault parameters in Do events. The type is BOOL.

Save as Text

�xe "Control container:saving as text"��xe "Control:saving as text"�

Some container implementations have the functional requirement that they be able to save a form definition in a textual stream, such that the text stream can later be used to recreate the original state of the control container and its controls. OLE controls define the mechanism by which the text stream corresponding to an individual control is created and also the mechanism by which that text stream is later interpreted to recreate the state of that control.

�xe "Control container:saving as text:requirements of"��xe "Control:saving as text:requirements of"�

The following are requirements on the textual representation for a control’s state:

�SYMBOL 117 \f "MSIcons" \s 9.5 \h �	The text should be at least somewhat human-readable. That is, properties of the control should be identifiable by name, and values should be human understandable wherever possible.

�SYMBOL 117 \f "MSIcons" \s 9.5 \h �	As much information as possible should be represented in such a way that small changes to the control’s state correspond to small changes to the corresponding text. This allows source control systems to manage the files more easily.

�SYMBOL 117 \f "MSIcons" \s 9.5 \h �	It must be possible to communicate data elements that don’t meet these criteria (for example, picture values). This can be done by designating an individual Stream or Storage in some kind of companion storage.

�SYMBOL 117 \f "MSIcons" \s 9.5 \h �	The state represented in the text should be semantically equivalent to the state created by the Save method in IPersistStream or IPersistStorage. That is, it should represent the complete persistent state of the control.

�SYMBOL 117 \f "MSIcons" \s 9.5 \h �	From the textual representation, it should be possible to recreate the state in a manner semantically equivalent to the Load method in IPersistStream or IPersistStorage.

�xe "Control:OLE property set"��xe "OLE property set:description of"�

The approach taken is to have the control provide an OLE property set consisting of those properties that make up its persistent representation and put the burden on the container implementation to emit a stream of text that is coherent and human-understandable. Later, the text is parsed by the container implementation into an equivalent property set that is passed to a new control instance to re-create the previously saved state.

OLE controls define several new field types to complement the set described in the document on OLE Property Sets, found in this chapter. These field types will be described in more detail in the next version of the documentation.

Property Set Represenatation

�xe "Property set:requirements for"��xe "Standard conventions:property sets"�

A given object can expose a variety of different property set formats, all within the confines of the OLE 2 property set format. OLE controls define a standard convention for controls using OLE 2 property sets. This canonical format is self-describing. A new standard FMTID is introduced that identifies the canonical format, which encapsulates a complete picture of the control’s persistent state.

�xe "Property sets:property entries"�

Each property that is part of the persistent state of the control then has a corresponding entry in the property set. Each entry is a { PropertyID (dword), Type (dword), Value (varies) } triplet.

Note that the property set for an object need not contain values of all properties�symbol 190 \f "Symbol" \s 10��only those whose value differs from the value of a newly constructed instance of the object are required. The requirement is that the property set reflect the complete persistent state of the control. A control might choose to only put properties with nondefault values in the property set, and then substitute the default value for any property that does not appear in the property set at load time.

PropertyID

�xe "Property set entry:property ID element"��xe "Property ID element:description of"�

The PropertyID is a 32-bit cookie that, according to the OLE documentation, is supposed to have meaning in the context of a given format. This is a pretty vague definition. In the classic property set example of document summary properties, the OLE documentation lists what properties make up this standard format, with their corresponding PropertyIDs.

It is important to note that PropertyIDs are entirely different from DispIDs. Any observed similarity between them should be considered purely coincidental.

Containers must map the PropertyID to a user-readable string. The property set definition addresses this problem by defining a Dictionary property (id = 0) whose value is a table mapping the other PropertyIDs to corresponding strings. Containers should look for this Dictionary property (which is required of all controls) and use it to map the control’s PropertyIDs to strings.

Type

�xe "Property set entry:type element"��xe "Type element:description of"�

The type element of a property is a 32-bit number that comes from a superset of the variant type enumeration in IDispatch.

�xe "IDispatch:additional variant types"��xe "Variant types:types supported by IDispatch"�

Notable additions over the IDispatch variants are types for Binary Large Object’s (BLOB), BLOB’ed objects (a BLOB tagged with a CLSID), streams (a BLOB in its own substream), streamed objects (a substream tagged with a CLSID), storages, storaged objects, and clipboard format/content BLOBs. These new types are constants, values for which are defined in a header file provided as part of OLE controls.

The container makes use of this type information to determine the appropriate way to convert the value to a text form. If the container doesn’t know how to convert the type to a text form, it will probably elect to shunt those values off into some kind of companion file.

Value

�xe "Property set entry:value element"��xe "Value element:description of"�

The type for a property determines both how the value is stored and how it is to be interpreted by the container. Simple values and BLOBs are stored in situ within the property set stream. Objects can be stored as in-situ BLOBs, or as substreams/substorages of the overall storage containing the property set. In these latter two cases, the value designates the name of the substream or substorage, which are presumed to be peers of the contents stream within the property set storage.

Simple Properties

�xe "Property sets:storing simple properties"��xe "Simple properties:persistence of"�

Simple values are stored in situ within the property set stream (or contents stream if the property set is contained within a storage). Because the types of these properties come from the defined IDispatch VT_ enumeration, most container implementations know how to directly interpret simple property values for text conversion.

�xe "Property sets:storing enumerated properties"��xe "Enumerated properties:persistence of"��xe "VT_VERBOSE_ENUM:usage of "��xe "Property sets:VT_VERBOSE_ENUM"�

Properties for enumerated values present a small problem. Without accessing the TypeInfo for the control that created a property set, it’s not possible to map the integer value of the enum to its corresponding friendly string. This problem is addressed by adding a new VT_VERBOSE_ENUM, which is derived from VT_BLOB. The stream format of a VT_VERBOSE_ENUM is:

�SYMBOL 117 \f "MSIcons" \s 9.5 \h �	I4 Overall length of BLOB

�SYMBOL 117 \f "MSIcons" \s 9.5 \h �	I4 Enumeration value

�SYMBOL 117 \f "MSIcons" \s 9.5 \h �	Null-terminated string; friendly name for enumeration value

Although strictly speaking the overall length entry is redundant, it follows the convention that new VT_’s, which may be unknown to some property set consumers, are derived from VT_BLOB and thus can be easily skipped over.

It is possible that on re-creating the property set by reading text, the container may not know the exact type for a given property. For example, the text encoding for an I2, I4, R4, R8 may be identical. While containers should make their best guesses about the correct type of a property value, the object should be prepared for properties that are not the correct type and attempt to coerce them to the correct type. If the coercion fails, it’s an error.

Opaque Binary Properties

�xe "Property sets:opaque binary properties"��xe "Opaque binary properties:persistence of"�

These can be represented in one of three ways in the property set�symbol 190 \f "Symbol" \s 10��as BLOBs stored in situ within the property set stream, as an untagged substream, or as an untagged substorage. Because there is no class or type identification to assist the container in interpreting the bytes, the only way to represent them persistently is to shunt them to a stream/storage in a companion file.

Object-Valued Properties

�xe "Property sets:object-valued properties"��xe "Object-valued properties:persistence of"�

Object-valued properties can be represented in several ways in the property set. Currently, they can be stored as CLSID-tagged BLOBs, as tagged substreams, or as tagged substorages. In these representations, the only way the container can interpret the values directly for text conversion is if the container implementation has special knowledge about the stored format of the class. This might be the case for specific types such as Pictures or Fonts, but in general these values need to be shunted to a stream/storage in a companion file.

�xe "Property sets:subobjects"��xe "Subobjects:persistence of"�

By introducing new VT_’s indicating property-set valued properties, we enable a subobject to present itself as a property set — which means the container could represent (sub)objects in text in the same manner as controls. The object would simply create a property set representation of itself, which would become part of the tree structure of the overall property set for the control. It’s then up to the container implementation to determine how to represent this heirarchical structure within the text stream for the form as a whole.

�xe "Property types:additional OLE 2"��xe "Property sets:new property types"��xe "VT_BLOB_PROPSET:description of"��xe "Property sets:VT_BLOB_PROPSET"��xe "VT_STREAMED_PROPSET:description of"��xe "Property sets:VT_STREAMED_PROPSET"��xe "VT_STORED_PROPSET:description of"��xe "Property sets:VT_STORED_PROPSET"�

Therefore, we will introduce three new property types:

VT_BLOB_PROPSET (essentially derived from VT_BLOB)

VT_STREAMED_PROPSET (essentially derived from VT_STREAMED_OBJECT)

VT_STORED_PROPSET (essentially derived from VT_STORED_OBJECT)

Note that Streams and BLOBs are conceptually interchangeable, and, in fact, an object may put a property set into a VT_BLOB_PROPSET, yet be presented with a VT_STREAMED_PROPSET on loading, etc.

Subcontrols

�xe "Subcontrols:persistence of"��xe "Property sets:Subcontrols"�

One can imagine the situation where the persistent state of a control could include a wholesale representation of the persistent state of a subcontrol within the control. For example, if one were designing a super-flexible combo box, it might be deemed appropriate to save the text box in its entirety as part of the persistent property set. An alternative would be to save individual properties of the text box as part of the combo box’s persistent state.

�xe "Property sets:subcontrols:issues of"�

Representing a subcontrol (the text box in this example) actually involves dealing with the X object for the text box, which needs to provide a property set for its own properties and a nested property set for the text box. This nesting is required because, on reloading, we must be able to give a property set back to the text box that describes its persistent state, since the text box knows nothing about the site properties the container associated with it. Mixing up the X object properties with the textbox’s properties within a single property set seems like a bad idea.

So the property set for a control which contains a subcontrol, may actually end up being a heirarchy of three levels.

One interesting aspect of subcontrols is that the TypeInfo for the contained subcontrol is not necessarily available to the container responsible for mapping the property sets to text. In the combo box example, the container has the TypeInfo of the combo box, but not necessarily the TypeInfo of the text box. Hence, the use of the Dictionary property to map PropertyID’s to strings.

Note that the presence of a dictionary implies that a property set may be locale-specific. The property set format already defines a convention whereby the code page is identified by a predefined property whose ID is 1. Extending on that convention, a predefined property ID of 2 will correspond to a VT_I4 property containing the LCID for the property set. If this LCID property is not present, it is presumed to be 0.

The container specifies the desired LCID for the property set it is requesting by specifying DVASPECT_LOCALE (= 16 decimal) and putting the LCID into the lindex field of the FORMATETC structure passed to the GetData request.

Nonproperties

�xe "Property sets:nonproperties"��xe "Nonproperties:persistence of"�

A control may want to expose something as part of its persistent state that doesn’t correspond directly to an exposed property. For example, a rich text control might save some encoded text stream as its persistent image without wanting to expose that encoding as a property. This could be thought of as a “private property.” This is another case where the container does not have adequate information through the TypeInfo for the control to determine how to text-convert the PropertyID to a text name string. Again, the inclusion of a dictionary addresses this problem.

Note that these nonproperties must have names in the dictionary, since that is how they will be identified by the control when the property set is read back later.

Interface Usage

�xe "Control container:accessing property sets of controls"��xe "Property sets:access by control container"��xe "Control:exposure of property sets"�

A container gets the property-set representation of a control in a two-step process. First, the container inspects the object’s IDataObject FORMATETC structures, looking for one that is identifiably of the right format. We will define a new CF_ that corresponds to the canonical format, by text-converting the GUID for our new, canonical FMTID.

In the second step, the container calls IDataObject::GetData to get the corresponding Stream/Storage property set.

The above two steps are done recursively by the object if it, in turn, contains other controls or objects that are part of its persistent state. Hence the result can be a heirarchy of property sets.

�xe "Control container:converting property sets of controls"�

The top-level container then walks through the resulting property-set hierarchy, converting to text all properties it knows about and shunting the rest into appropriate companion storage entries. Specifically, BLOBs, substreams, and substorages which are neither property sets nor tagged with a CLSID for which the container has special text-conversion knowledge, will be put in the companion storage in binary form and the name of the new stream/storage (invented by the container) will be inserted into the text stream as the “value” for the property.

On reloading, the opposite is done. The top-level container is responsible for parsing the ASCII file�symbol 190 \f "Symbol" \s 10��for each control’s part of the text, the container creates a property set (which could involve nested property sets, or stream/storage-valued properties), constructs a control object, and passes the property set to the object via IDataObject::SetData. The control object is responsible for recursively handling nested property sets.

A control can also be initialized with property set data via the IPersistStorage::Load method. The storage object passed to this method should contain the property set in its Contents stream, and should be tagged with CLSID_PersistPropset, the class ID for the persistent property set format.

�xe "Property sets:nesting"��xe "Control:property sets:nesting of"�

Nesting (object-valued property or sub property set) can be done via BLOBs (which creates a flat stream), or nested IStream/Storage. Even if the control has a preferred approach toward nesting, the host won’t know what it is when it comes time to later create the property set from text. This implies that the host must be prepared to see property sets that use either nesting approach, and that the control must be prepared to later accept a property set from the host using either nesting approach.

�xe "Property sets:lifetime of:VT_STORED_OBJECT"��xe "VT_STORED_OBJECT:presence in property sets"�

The lifetime of the property set is the duration of the SetData operation. The one exception to this is that VT_STORED_OBJECT typed properties are allowed to AddRef and hold onto the IStorage pointer that the control obtained by opening the storage named in the property value. For example, this allows a very large value, such as a video clip or word document, to be read on demand. It is the responsibility of the container implementation to control the IStorage implementation in such a way that the lifetime of the IStorage pointer can exceed the lifetime of the control itself. This is the case for OLE-implemented Docfiles and memory IStorages.

The object that is holding the IStorage may need to be able to write back into it, even if those writes aren’t to be committed back to the original source of the data by the host.

Example

�xe "Property sets:example of:PictView control"��xe "PictView control:overview of"�

Consider the control shown in Figure D.4, named “PictView,” which contains a picture box and a text box:

	�INCLUDE P:\\SLM\\SRC\\CDKDOX\\OCXPG\\ART\\CDKPGART.DOC art_d01xmpl_eps \!��IMPORT P:\\SLM\\SRC\\CDKDOX\\OCXPG\\ART\\D01XMPL.EPS * mergeformat����

Figure D.4 The PictView Control

A user can type the path of a disk file containing a picture, and the picture is displayed in the picture box. Let us suppose that within the set of properties exposed by this control are the picture property and an integer property that contains the size of the picture in bytes. The control writes out these properties as part of its persistent image, plus a private data member, called “Scale,” of type Real. In addition, the control has its “PathBox” subcontrol save itself as part of the data.

When the container wishes to save an ASCII representation of the object, it calls IDataObject::GetData on the object with the appropriate FORMATETC. The object then fills in a data structure in property set format containing all data to be saved. Figure D.5 provides an example:

	�INCLUDE P:\\SLM\\SRC\\CDKDOX\\OCXPG\\ART\\CDKPGART.DOC art_d01strm_eps \!��IMPORT P:\\SLM\\SRC\\CDKDOX\\OCXPG\\ART\\D01STRM.EPS * mergeformat����

Figure D.5 Stream Containing a Serialized Property Set

�xe "PictView control:saving as text:steps of"��xe "Save as text:PictView control"��xe "Property set:example of:PictView control"�

Let us suppose that our control is embedded in a control container and the user saves the embedded control container objects as text. The following steps are executed:

	1.	The container asks PictView for a property set (using the GetData() or GetDataHere() function).

	2.	Pictview fills in a property set structure with all of its own persistent data. The following is one example:

Offset Bytes

; Property Set Header

0000 FE FF ; WORD Byte-order Indicator

0002 00 00 ; WORD Format Version

0004 0A 03 00 00 ; DWORD Originating OS Version

0008 90 31 2B 2B 00 08 60 8A

0010 69 10 F1 0D 01 FD 16 F6 ; CLSID of Pict Browser

0018 01 00 00 00 ; DWORD Count of Sections

; FormatID/Offset pairs

001C 00 00 00 00 00 00 00 00

0024 00 00 00 00 00 00 00 00 ; FMTID of Section 1 - TBD

002C 30 00 00 00 ; DWORD Offset of Section 1

; Start of section

0030 43 01 00 00 ; DWORD size of section

0034 05 00 00 00 ; DWORD number of properties in section

; PropID/Offset pairs

0038 00 00 00 00 ; DWORD Property ID (0 == dictionary)

003C 30 00 00 00 ; DWORD offset to property ID

0040 03 00 00 00 ; DWORD Property ID (i.e. PID_SIZE)

0044 7F 00 00 00 ; DWORD offset to property ID

0048 08 00 00 00 ; DWORD Property ID (i.e. PID_PICT)

004C 87 00 00 00 ; DWORD offset to property ID

0050 23 01 00 00 ; DWORD Property ID (Generated ID)

0054 15 01 00 00 ; DWORD offset to property ID

0058 34 06 00 00 ; DWORD Property ID (Generated ID)

005C 1D 01 00 00 ; DWORD offset to property ID

; First Property (Type/Value Pair), (which is really the dictionary

; because it has Property ID 0)

0060 05 00 00 00 ; DWORD Number of entries in dictionary

0064 00 00 00 00 ; DWORD dwPropID = 0

0068 0A 00 00 00 ; DWORD cb = 10

006C "PictView1\0" ; char sz[10]

0077 03 00 00 00 ; DWORD dwPropID = 3 (PID_SIZE)

007B 05 00 00 00 ; DWORD cb = 5

007F "Size\0" ; char sz[5]

0084 08 00 00 00 ; DWORD dwPropID = 8 (PID_PICT)

0088 05 00 00 00 ; DWORD cb = 5

008C "Pict\0" ; char sz[5]

0091 7B 00 00 00 ; DWORD dwPropID = 123 (Generated ID)

0095 06 00 00 00 ; DWORD cb = 6

0099 "Scale\0" ; char sz[6]

009F 7A 02 00 00 ; DWORD dwPropID = 634 (Generated ID)

00A3 08 00 00 00 ; DWORD cb = 8

00A7 "PathBox\0" ; char sz[8]

; Property (Type/Value Pairs)

00AF 02 00 00 00 ; DWORD type indicator (VT_I2 == 02)

00B3 08 00 00 00 ; INT Frame Number - zero padded to dword

00B7 65 00 00 00 ; DWORD type indicator (VT_BLOB == 65)

00B9 07 00 00 00 ; DWORD length of Blob data

... ... ; BLOB DATA

0145 04 00 00 00 ; DWORD type indicator (VT_R4 == 04)

0149 0D B3 31 87 ; REAL

014D 65 00 00 00 ; DWORD type indicator (perhaps VT_BLOB_PROPSET?)

0151 00 00 00 00 ; DWORD length of Blob data

0155 ... ; Property Set data for PathBox

	3.	PictView now asks the subobject “PathBox” to save itself. However, before doing this PictView needs to save site properties relating to the PathBox object (that is, Left, Top, Height, Width). It does this by asking the site object responsible for PathBox to save itself into a sub property set. The site object, in turn, asks the PathBox control to create a property set that is a child of the property set for the site object. What is created is a property set hierarchy, shown in Figure D.6:

		�INCLUDE P:\\SLM\\SRC\\CDKDOX\\OCXPG\\ART\\CDKPGART.DOC art_d01pset_eps \!��IMPORT P:\\SLM\\SRC\\CDKDOX\\OCXPG\\ART\\D01PSET.EPS * mergeformat����

	Figure D.6 PictView’s Property Set Hierarchy

	4.	PathBox fills in its property set structure with its persistent data in much the same way it did for this object.

	5.	Depending on which method was used to get PathBox’s data, PictView may need to copy data into its own property set and tag it as a PROPSETBLOB.

	6.	The container walks through the property set, looking up each property name in the dictionary. Then, looking at the type indicator, the container decides if the property name can be adequately represented in ASCII and, if so, writes out a line such as <propname> = <value>. If it cannot be represented in ASCII, the container puts it in a companion Docfile and puts a name in the ASCII stream.

Note the following:

�SYMBOL 117 \f "MSIcons" \s 9.5 \h �	This scenario assumes that object-valued properties and subcontrols are inserted as BLOBs directly into the property set, instead of as separate streams/storages.

�SYMBOL 117 \f "MSIcons" \s 9.5 \h �	The second BLOB (labeled “Property Set data for PathBox”) is retrieved from the PathBox subcontrol in the same way that our container is getting its property set data. As an object, we don’t have to worry about how many levels down we’re embedded, the procedure is the same.

�SYMBOL 117 \f "MSIcons" \s 9.5 \h �	The dictionary is stored as PropertyID 0. Note that all the saved properties are included in the dictionary. Hence this property set is self-contained, and the container needs no extra knowledge of the object to write out the ASCII stream.

�SYMBOL 117 \f "MSIcons" \s 9.5 \h �	If the property doesn’t have a DISPID (that is, it is not exposed), then the object generates an ID for it, such as is the case with “Scale” of type real, and with the text box.

The final file, written entirely by the top-level container might look something like this:

Begin Form Form1

 Caption = "Form1"

 Begin PictView PictView1

 Height = 826

 Left = 1202

 Top = 120

 Width = 1424

 .object

 Size = 3146

 Pict = FORM1.FRX:Moniker

 Scale = 6.23

 Begin TextBox PathBox

 Height = 372

 Left = 2400

 Top = 1080

 Width = 972

 .object

 Text = "c:\pictures\arch.bmp"

 End

 End

End

Note the following:

�SYMBOL 117 \f "MSIcons" \s 9.5 \h �	The picture is stored in a separate Docfile since there is no ASCII representation for it. However, the text box is stored in ASCII representation, since it supplied a property set to our object. If it didn’t support the format, it would have been put in the companion file in binary form.

�SYMBOL 117 \f "MSIcons" \s 9.5 \h �	There are properties attributed to the PictView control (Height = 826, Left = 1202, etc.) that weren’t implemented by that control. These are the extended object properties for the control and are supplied by our container. (In this example, the “.object” identifier is used to separate the site properties from the object’s properties)

When the user goes to reload the form, the following happens:

	1.	The container parses the text file and creates a property set heirarchy such as the one in Figure D.6. Note that type indicators are not stored in the ASCII file, so the container has to take its best guess as to what type the value is.

	2.	The container passes the property set heirarchy to PictView (using SetData()).

	3.	PictView sets its own properties with the values supplied in the top-level property set. If a value is of the wrong type, PictView coerces it. If it cannot be coerced, it generates an error in the log. When it encounters the property set for PathBox, it first sets the site properties for that subobject from the contained property set. It then passes the property set containing PathBox’s properties to that object.

Installation and Registration

�xe "Control:installation and registration"��xe "System registryl:installing and registering controls"�

One of the design advantages of the OLE Compound Object Model (COM) infrastructure is that it uses the operating system registry. OLE uses the registry for many things, among them enumerating and mapping classes to servers (DLLs and EXEs). As OLE is currently defined, a server DLL is not useful without its registry information, since it is opaque without that information. Consequently, OLE server DLLs and EXEs need an install process.

This is reasonable when the server is a large application like Excel or Word and the existing setup program for the application can be used. However, many control servers carry less overhead and would not otherwise have need of a specific setup process.

Self-Registering DLL’s

�xe "Control:self-registering"��xe "Self-registering controls:description of"�

The registry is the key piece of the puzzle. Without registry information, the DLL is unable to be seen by other OLE applications. There may be other extra files associated with the DLL — help files, for example — but registering with the operating system is unavoidable.

�xe "Control:self-registering:DLL entry points"��xe "Self-registering:DLL entry points"��xe "DllRegisterServer:description of"��xe "DllUnRegisterServer:description of"�

The solution is to have a DLL entry point with a well-known name (using the existing DllGetClassObject) that registers the controls in the DLL. A DLL entry point for removing and unregistering a server is defined as follows:

HRESULT DllRegisterServer(void);

HRESULT DllUnregisterServer(void);

Both of these entry points are required for a DLL to be self-registering. The implementation of the DllRegisterServer entry point adds or updates registry information for all the classes implemented by the DLL. The DllUnregisterServer entry point removes its information from the registry.

Typical Registry Contents

�xe "Control:registry contents"��xe "Self-registering controls:registry keys associated with"�

A control development kit normally supplies a default implementation for these routines. The following sections give typical examples of the registry keys associated with a server.

Registering a Control

 HKEY_CLASSES_ROOT

 CLSID

 {class id of control} = friendly name of control

 ProgID = identifier

 InprocServer [InprocServer32] = filename.OCX

 ToolboxBitmap [ToolboxBitmap32] = filename.OCX, resourceID

 Insertable*

 Control*

 MiscStatus = 0

 1 = **

 TypeLib = {typelib ID for DLL}***

 Version = version number***

* If applicable.

** Value varies, depending on control features.

*** New keys that assist with finding the typelib for a given CLSID.

�xe "Property page:registry keys associated with"�

Registering a Property Page

 HKEY_CLASSES_ROOT

 CLSID

 {class id of property sheet} = friendly name of property page

 InprocServer = filename.OCX

�xe "Type library:registry keys associated with"�

Registering a Type Library

 HKEY_CLASSES_ROOT

 TYPELIB

 {typelib id for DLL}

 version number = friendly name of DLL

 lcid

 WIN16 [WIN32] = filename.OCX

 FLAGS = 0

 HELPDIR = directory

Identifying Self-Registering Servers

�xe "Control:self-registering:identification of"��xe "Self-registering control:identification of"�

Applications need to check if a given DLL is self-registering without actually loading the DLL, since loading the DLL executes LibMain with possible negative side-effects. To accomplish this, the DLL (and EXE) modifies the version resource to hold a self-registration keyword. Since the VERSIONINFO section is fixed and cannot be easily extended, we add the following string to the “StringFileInfo,” with an empty key value:

VALUE "OLESelfRegister", "\0"

For example:

VS_VERSION_INFO VERSIONINFO

 FILEVERSION 1,0,0,1

 PRODUCTVERSION 1,0,0,1

 FILEFLAGSMASK VS_FFI_FILEFLAGSMASK

#ifdef _DEBUG

 FILEFLAGS VS_FF_DEBUG|VS_FF_PRIVATEBUILD|VS_FF_PRERELEASE

#else

 FILEFLAGS 0 // final version

#endif

 FILEOS VOS_DOS_WINDOWS16

 FILETYPE VFT_APP

 FILESUBTYPE 0 // not used

BEGIN

 BLOCK "StringFileInfo"

 BEGIN

 BLOCK "040904E4" // Lang=US English, CharSet=Windows Multilingual

 BEGIN

 VALUE "CompanyName", "\0"

 VALUE "FileDescription", "BUTTON OLE Control DLL\0"

 VALUE "FileVersion", "1.0.001\0"

 VALUE "InternalName", "BUTTON\0"

 VALUE "LegalCopyright", "\0"

 VALUE "LegalTrademarks", "\0"

 VALUE "OriginalFilename","BUTTON.DLL\0"

 VALUE "ProductName", "BUTTON\0"

 VALUE "ProductVersion", "1.0.001\0"

�SYMBOL 219 \f "MSIcons" \s 7 \h� VALUE "OLESelfRegister", "\0" // New keyword

 END

 END

 BLOCK "VarFileInfo"

 BEGIN

 VALUE "Translation", 0x409, 1252

 END

END

To support self-registering DLLs, an application can add a “Browse” button to its Insert Object dialog (or its analog, like Add Control to Toolbox), which pops up a standard File Open dialog. After the user chooses a DLL, the application can check whether it is marked for self-registration and, if so, call its DllRegisterServer entry point. The DLL should register itself in this entry point, so the application should refresh the Insert Object dialog to show the newly added classes.

The application can search the registry to find out which classes are implemented by the DLL after it has registered itself. For example, a container with a toolbox might choose to automatically add all the controls implemented by the DLL to the toolbox.

Self-Registering EXE’s

�xe "Self-registering executable:description of"�

There isn’t an easy way for EXEs to publish entry points with well-known names, so a direct translation of DllRegisterServer isn’t possible. Instead, EXEs support self-registration using special command line flags. EXEs that support self-registration must mark their resource fork in the same way as DLLs, so that the EXEs support for the command line flags is detectable. Launching an EXE marked as self-registering with the /REGSERVER command line argument should cause it to do whatever OLE installation is necessary and then exit. The /UNREGSERVER argument is the equivalent to DllUnregisterServer.

Other than guaranteeing that it has the correct entry point or implements the correct command line argument, an application that indicates it is self-registering must build its registration logic so that it may be called any number of times on a given system�symbol 190 \f "Symbol" \s 10��even if it is already installed. Telling it to register itself more than once should not have any negative side effects. The same is true for unregistering.

On normal startup (without the REGSERVER command line option) EXEs should call the registration code to make sure their registry information is current. EXEs will indicate the failure or success of the self-registration process through their return code by returning 0 for success and non-zero for failure.

Location and Extension Used by Controls

�xe "Control:extension of"��xe "OCX:extension of an OLE control"�

By convention, control DLLs should use the extension OCX. This helps end users locate and identify DLLs that implement control classes. It also helps containers that want to support self-registering control servers by defining a reasonable filename filtering mechanism for the container’s browse dialog.

Note that this is only a convention and, in fact, an object may act as a control without being implemented as an OCX-suffixed DLL. In particular, existing OLE compound document servers can easily be retro-fitted to act as controls (that is, as source events, have standard methods and properties, self-register, and so on).

There is no standard location defined for OLE controls. As with other OLE servers, the control’s DLL or EXE does not need to be in the user’s path; the registry should have the full path to the server. A large or overly complex control or group of controls typically installs itself into its own directory, just as most applications do. A smaller or simpler control may choose to put itself in the Windows system directory.

Toolbar Button Images

�xe "Control:toolbar image of"��xe "Toolbar image:of an OLE control"��xe "ExtractIcon:usage of "�

OLE 2 defines how classes name a standard-size icon that should be used to represent the class. Classes list the icon in the registry and code that displays the icon extracts its name from the DLL/EXE named in the registry with the ExtractIcon Windows API. For example:

\HKEY_CLASSES_ROOT\CLSID\{xxxx-...-xx}\DefaultIcon = myserver.dll, 2

Control containers will often have to represent the class on a toolbar button, but a full-size icon is too big. The standard size of bitmaps for toolbar buttons is 16x15 pixels on Win16 and the Macintosh computers. So, the control provides a bitmap of this size and registers it under its class key in the registry:

\HKEY_CLASSES_ROOT\CLSID\{xxxx-...-xx}\ToolboxBitmap = myserver.dll, 301

Since there is no analog of ExtractIcon for bitmaps, the second argument gives the resource ID of the bitmap. The code that wants to show the bitmap may need to load the EXE or DLL using LoadModule to extract the icon, or using the Win 3.1 GetFileResource API.

�xe "Control:bitmap of :OLE Automation guidelines of"��xe "Toolbar bitmap :OLE Automation guideliness"�

The bitmap should not include beveling around the edges; the container is responsible for drawing this. The bitmap should follow the convention that the bitmap’s background color is the lower-left pixel of the bitmap. A container normally uses the DIB routines to substitute the proper background color for this color; for a toolbar button, gray is normally used. Effectively, the lower-left corner of the bitmap identifies a “transparent” color for the bitmap.

Finding OLE Controls

�xe "Control:Insertable key"��xe "Insertable key:usage of in a control"��xe "Embeddable classes:Insertable key"�

OLE 2 defines how embeddable objects are identified. Each embeddable class adds an “Insertable” key to the registry under its class key:

\HKEY_CLASSES_ROOT\CLSID\{xxxx-...-xx}\Insertable

More precisely, containers use this key to determine which classes to list in their “Insert Object” dialog box. Controls that are to appear in Insert Object dialog boxes should register this key.

It should be noted that some OLE containers are “control-aware.” In particular, they may not provide a way to activate an inside-out object (e.g., controls) with a single mouse click, once the object has been deactivated. Therefore, if a control that declares itself to be insertable via the Insert Object dialog, it should provide an “Edit” verb (which UI Activates the control) as its primary verb, so that a double-click will activate it.

�xe "Insert Object dialog box:list contents"��xe "Control:Control key"��xe "Embeddable classes:Control key"�

Most controls will not appear in the Insert Object dialog, but should still be recognizable as controls. To solve this, our containers introduce another key “Control,” parallel to “Insertable,” that identifies classes that can act as controls:

\HKEY_CLASSES_ROOT\CLSID\{xxxx-...-xx}\Control

�xe "Control key:usage of in a control"�

This key determines whether the class is listed in an Insert Control dialog box (or wherever the container lists controls).

A new container that specifically wants to disallow control-like objects from its Insert Object dialog can list those classes that have the Insertable key but not the Control key.

Licensing

�xe "Control:overview of:licensing"��xe "Licensing of an OLE control:overview of"�

By enabling and promoting a component-oriented approach toward software design, OLE has the potential to significantly expand the marketplace for third-party software vendors. Independent software vendors (ISVs) can create components for integration and use by other applications whose functionality and fit and finish could previously only be accomplished through internal development.

There are benefits to recommending and enabling a common approach to the programmatic enforcement of the license to use components. Third parties inevitably run into questions about how they want to license the use of their components. From the component user’s point of view, the way in which this license is structured and enforced is effectively part of the component interface.

Note that OLE components are not limited to reuse by applications, but can also be used to build other reusable components. For brevity, this document often refers to the situation where a component is used by an application. But the intent is that anywhere the word “application” is used, it could be replaced by the word “component.”

The notion of distinguishing between situations where a component is being used in designing a consuming application versus being used in running a consuming application is still applicable in the OLE world. However, the current OLE COM interfaces do not make that distinction visible to the component. This deficit must be addressed in order to let component vendors continue to structure and enforce their component licenses in such a way that their components can be freely redistributed for use by a consuming application, without also giving away the ability to design and build other applications with the redistributed component.

�xe "Licensing:implemented by:type library interface"��xe "Licensing:implemented by:COM extensions"�

This section outlines a set of extensions to COM and the type library interfaces that enable components to enforce their licensing model. This model is flexible in terms of both which behaviors a component can license and how it can detect that the current user (or machine) holds the appropriate license for a behavior.

Requirements

�xe "Licensing:requirements for"��xe "Control:licensing of:requirements"�

The following requirements must be fulfilled before a control can be licensed.

�SYMBOL 117 \f "MSIcons" \s 9.5 \h �	No change should be required for the simplest form of license, where the license to use the component is defined by the physical ownership of the component software itself.

�SYMBOL 117 \f "MSIcons" \s 9.5 \h �	Component license should be able to differentiate between the use of the component by another ISV in designing an application and the use of the component by an end-user of the application. For example, an ISV might charge for the rights to use a component in building an application, but allow unlimited free distribution of the component as part of the application “runtime.”

�SYMBOL 117 \f "MSIcons" \s 9.5 \h �	Differential licensing (different terms for different levels of usage) should be possible without requiring different versions of the licensed component. This avoids potentially major logistical and testing headaches for component providers.

�SYMBOL 117 \f "MSIcons" \s 9.5 \h �	The enabling COM interface extensions should be designed such that the component provider is in control of how simple or sophisticated their scheme of license enforcement will be. It should be easy to enforce a simple scheme that detects and thwarts casual unauthorized usage. It should also be possible to enforce a more complex scheme that detects and thwarts determined attempts at unauthorized usage.

�SYMBOL 117 \f "MSIcons" \s 9.5 \h �	License enforcement should be as unobtrusive as possible.

�SYMBOL 117 \f "MSIcons" \s 9.5 \h �	Client applications that are not “licensing-aware” should still be able to use a user- or machine-licensed component.

�SYMBOL 117 \f "MSIcons" \s 9.5 \h �	Enforcement scheme should be able to differentiate between the creation of new object instances and loading of instances created under license.

Licensing Design

�xe "Control:licensing design"��xe "Licensing:modeled as"�

The core of this design is that the component gates access to some or all of its functionality based on its verification that the current machine or user application is licensed for access to that functionality. This verification can occur in one of two ways.

�xe "Licensing:verification of"��xe "Control:verification of licensing"��xe "License key:usage of by controls"�

First, the object can inspect the computer for a known indication of license. For example, a component can require that a particular license key file be present on the machine for the component to run. By verifying the presence of this key file, the component recognizes that the machine has a valid license for the control. This approach can be generalized by components that have more complex needs.

�xe "License key:usage of by controls"�

Second, a component can verify its license is to have the client application pass it a cached license key signifying that it is licensed to use the component.

�xe "License key:description of"��xe "Control:license key"��xe "License key:embeddin an application"�

One of the licensing capabilities of a component is its ability to provide a key that can be built into a consuming application. In this way, the key can be presented later on to a machine that may not otherwise be licensed for use of the component. Typically, a component distinguishes between a license valid for creating new applications that use a component (a design-time license) and a license valid to run an application that uses the component (a run-time license).

When the application is being designed, the development environment requests and obtains the key from the component and then bundles the key into the developed application. At run time, the cached key is presented to the component, unlocking its capabilities, even on machines where the physical license key file does not exist. This is regulated by the OLE control, of course.

�xe "Licensing:example of:Sample control"��xe "Sample control:example of licensing"��xe "Control:example of licensing"�

The following example illustrates the licensing process. Suppose ISV “SampleCorp” is selling an OLE control called “Sample,” which is in SAMPLE.DLL. They represent their design-time license with a file called SAMPLE.LIC, which contains a key of some kind. A “Sample developer’s kit” includes SAMPLE.DLL, SAMPLE.LIC, and documentation. SAMPLE.DLL can be freely distributed by anyone who buys the Sample developer’s kit.

A developer buys the Sample kit and installs it on his or her machine. This amounts to simply copying SAMPLE.DLL and SAMPLE.LIC onto a hard disk. The developer goes to the development environment and attempts to place a Sample control into the control container. This causes SAMPLE.DLL to be first registered (using the self-registration API), then loaded; upon loading, the DLL looks for SAMPLE.LIC to make sure this machine is licensed. It finds SAMPLE.LIC, so a Sample control is successfully created and placed in the form. At this point, the container asks the Sample class factory object for a key that the container can build into the user’s application EXE file. Since SAMPLE.DLL earlier verified the presence of SAMPLE.LIC (the design-time license), a license key is returned to the development environment, which puts it into the user’s executable, APP.EXE.

Now the developer wants to sell a copy of the application to an end user, “Customer.” Money changes hands. The user gives Customer a copy of APP.EXE and SAMPLE.DLL. Customer goes home and installs the application by copying APP.EXE and SAMPLE.DLL onto the hard disk.

Customer runs the application and the form is loaded. The container gets a pointer to the Sample class factory, which causes SAMPLE.DLL to be loaded. SAMPLE.DLL’s LibMain attempts to verify the presence of a design-time license, by looking for SAMPLE.LIC. It is not found, which means that any attempt to create a SampleObject on this machine without passing in a run-time license key will be rejected by Sample’s class factory. However, since the container built the key for Sample into APP.EXE, the container is able to pass the key to Sample’s class factory along with its request to create a new Sample control. Sample’s class factory recognizes the key (thus verifying that APP has a valid run-time license for Sample), and the control is successfully created and placed in APP’s control container.

While the example uses a container having an OLE control, it’s important to note that the same fundamental interactions would work equally well for any application- or component-creating host, dealing with any COM object. All that is required is that the host detect all class references, request the corresponding keys, and build them into the shippable application or component such that the keys can be presented along with all requests to create and place objects at run-time.

OLE COM Extensions

�xe "OLE COM extensions:extensions of"��xe "IClassFactory:interface extension of"�

The currently defined OLE COM interfaces aren’t sufficient for the above interactions to take place in a defined manner. Instead, IClassFactory is extended to accommodate the necessary interactions

typedef struct licinfo

{

 long cbLicInfo; // Size of licinfo structure

 BOOL fRuntimeKeyAvail; // True if class offers a runtime key

 // for building into solution

 BOOL fLicVerified; // True if component has already verified

 // machine/user lic

} LICINFO;

interface IClassFactory2 : public IClassFactory

{

 GetLicInfo(LICINFO FAR *plicinfo);

 RequestLicKey(DWORD dwReserved, BSTR FAR *pbstrKey);

 CreateInstanceLic(

 LPUNKNOWN pUnkOuter,

 LPUNKNOWN pUnkReserved,

 REFIID riid,

 BSTR bstrKey,

 LPVOID FAR *ppvObject);

};

�xe "GetLicInfo method:description of"��xe "IDispatch:GetLicInfo method"��xe "Licensing:accessing state of"�

The GetLicInfo method returns information about the state of licensing for the object. RequestLicKey allows the caller to request the licensing key (represented as a BSTR) from the object. CreateInstanceLic is analogous to IClassFactory::CreateInstance, adding only the license key that allows for the preverification scenarios as outlined earlier.

Using BSTR representation of keys in this interface allows them to have self-described length and to contain NULLs. These keys are essentially BLOBs. The dwReserved parameter is included to allow for a future implementation that allows a component to simultaneously offer multiple different keys.

If the consumer passes in a key that connotes functionality that is more restricted than the user or machine license enables, the component should provide the limited functionality for that instance — as if the user or machine license had not been previously verified. This allows the consumer to test its interactions with the component as they occur in an installation that is not machine or user licensed.

�xe "fLicVerified:usage of "��xe "LICINFO structure:fLicVerified"�

The fLicVerified flag in the LICINFO structure allows the component consumer to detect, prior to the presentation of a key, the situation where the component has already found a valid license for this user or machine. If the container wants the current user or machine license to override the application license corresponding to a key, it can use fLicVerified to avoid passing the key unnecessarily.

�xe "SCODE extensions:E_NOTLICENSED"��xe "E_NOTLICENSED:description of"�

A new standard SCODE is defined, CLASS_E_NOTLICENSED, which should be returned when the control container attempts to construct a licensed object where the license has not been verified or the appropriate key has not been passed.

Many clients currently use OLE-provided cover functions in situations where class instances are created. Because those cover functions are written to IClassFactory instead of IClassFactory2, clients that want to support retaining or presenting run-time license keys (mainly programming environments) will no longer be able to use those cover functions. For example, this includes CoCreateInstance, as well as the many variations of OleCreate and OleLoad.

Licensing an Object’s Capabilities

The example given earlier is fairly straightforward. However, the underlying licensing mechanism is pretty flexible, and it’s worth an exploration of what that flexibility enables.

�xe "Licensing:implementing multiple levels of"��xe "Control:multiple levels of licensing"�

A single executable version of a component can support multiple levels of licensed functionality. For example, the vendor might ship different .LIC files (at different price points) corresponding to different levels of functionality. The contents of the .LIC file determine what behavior was enabled at design time, what key was built into the application, and what functionality was enabled at run time when that key is presented.

While shipping and detecting a .LIC file is a familiar mechanism for verifying a component license, the component vendor is free to choose whatever scheme they wish. For example, the component could use a third-party licensing tool such as Hermes, LSAPI, or some other metered licensing tool to verify that this particular user or machine is appropriately licensed for this component.

�xe "E_NOTLICENSED:additional uses of"�

A component need not be completely disabled in the absence of a valid license or run time key. For example, a component might allow previously saved object instances to be loaded and viewed, but not edited, even if the current user, machine, or application were not licensed. Or, perhaps the component would allow access to some interfaces, but not others — for example allowing access to simple OLE embedding, but not the object’s OLE Automation capabilities. These scenarios imply that the CLASS_E_NOTLICENSED error may be returned from a variety of calls besides CreateInstance. This conforms with the guidelines for HRESULTs in general; since CLASS_E_NOTLICENSED is a Microsoft-defined error code, it can be returned legally from any entry point.

This error may arise in other situations as well. For example, if a component designer wanted to allow loading of previously saved object instances, but not the creation of new object instances, this would need to be enforced outside of IClassFactory::CreateInstance, since that method would be called in either case. If the object were IStorage based, this effect would probably be obtained by gating IPersistStorage::InitNew. Otherwise it might have to gate all methods except IPersistStream::Load.

Licensing with Document Editing Apps

�xe "Licensing:document editing applications"�

In some cases, the distinction between designing and running an application is not clear. This can make very unclear the decision of when a key should be requested and presented to give the effect of “application licensing.” For example, consider a spreadsheet with an embedded licensed control (for example, a workbook). In a sense, the workbook can be thought of as an application for distribution. But anyone with that workbook can modify it arbitrarily to the point where it becomes a very different “application.” Unless the original key is automatically discarded, the second user has, in effect, obtained unauthorized application design rights by virtue of the original application license key. Yet many workbook changes — data entry, for example — should not necessarily invalidate the original application license.

It is very important that applications that want to implement “application licensing” be designed to give careful consideration to what differentiates “design-time activity” from “run time activity.” Failure to do so erodes the meaning of enforceable application licensing that is key to many third-party licensing and distribution models, which in turn may hamper the market for third-party components.

If the component vendors want their licensed components to be used with applications that are not licensing aware , they need to take this into account when they design their license enforcement schemes. The simplest approach would be to require users of those applications to buy a design-time (machine or user) license for the component. Alternatively, the component vendor might sell a cheaper license for end-users. Or, as outlined above, they might support a restricted set of interfaces such as those required for simple linking and embedding, even in the absence of a valid license.

Versioning

�xe "Versioning:overview of"��xe "Control:versioning of"�

The exising OLE 2 conversion/emulation scheme was devised to make it possible to upgrade a compound document server component in such a way that the new implementation can make use of persistent images saved by the original implementation. This is simplified by the fact that most OLE 2 compound document containers treat OLE 2 compound document servers opaquely. That is, they interact with the server through the generic OLE 2 compound document interfaces rather than through class-specific interfaces.

�xe "Versioning:emulation of old control"��xe "Versioning:conversion of old control"�

In that context, the server provides upward compatibility by being able to read existing persistent images. In activating a particular persistent image, the server is tasked with either emulation of the old class or conversion from the old class. Emulation means that the server is to save a changed object back into its original persistent format. Conversion means that the server is to save into the new persistent format.

The server determines which of these two behaviors is desired by inspecting the format, which OLE stores in a special place in the object’s IStorage. If the format is identified as being an old format, the server knows that either an emulation or conversion is required. The server discriminates between emulation and conversion by inspecting the fConvert bit, which OLE also stores in a special place in the object’s IStorage.

In either case, the server is activated via its new CLSID, which is typically accomplished using special forwarding entries in the registry, created by CoSetTreatAsClass and OleSetAutoConvert calls at the time the upgraded server is registered. The user also has the option of suppressing automatic conversion and emulation, instead applying conversion or emulation on a per-instance basis through container UI.

This scheme leverages and depends on the container’s uniform treatment of different object classes. It also depends on the object using an IStorage to save itself, so that old instances can be matched up with current implementations, and so that the container can communicate how it wants the new implementation to save a modified instance’s data.

OLE controls violate both of these key design points of the current scheme. Containers typically have detailed dependencies on at least two class-specific interface definitions for the control: its primary dispatch interface (and in many cases its interface, as well) and its primary EventSet. Also, for efficiency’s sake, controls typically support persistence into streams as well as storages.

A new model is required that enables an upgraded OLE control to correctly satisfy the detailed, class-specific dependencies of containers built against older versions, while also allowing the control to add functional enhancements that new versions of containers can leverage. The remainder of this section describes the OLE controls solution to this problem.

Binary Compatibility

�xe "Versioning:binary compatibility"��xe "Binary compatibility:overview of"��xe "Control:binary compatibility of"�

When application A is built against a specific version of a component C, A will have embedded in it detailed assumptions about the set of interfaces that C supports and the definition of those interfaces. Each interface that C supports is contractually specified by an IID, which corresponds to a specific interface definition taken from C’s accompanying type library. The collective set of interfaces that C supports is contractually specified by a CLSID, which corresponds to a specific CoClass description in C’s accompanying type library. Furthermore, the ability to compatibly read and write a persistent image of C is also designated by CLSID.

�xe "Binary compatibility:requirements for"�

When an upgrade of a component is able to meet the contractual obligations of the original version, as specified by the original CLSID and IIDs, it is said to be a “binary compatible” upgrade. The following set of rules define the requirements of binary compatibility:

�SYMBOL 117 \f "MSIcons" \s 9.5 \h �	The new implementation must support (at least) the original CLSID. This means that the implementation is registered under the original CLSID in the registry, and that the class factory registered is available via DllGetClassObject on the server (or via CoRegisterClassObject for local servers).

�SYMBOL 117 \f "MSIcons" \s 9.5 \h �	The new implementation of a component must support all the interfaces, including connection points, exactly as they were described in the original implementation’s type library. This means that the new component’s implementation of QueryInterface will be able to return all the interfaces named in the old type library. The component’s FindConnectionPointFromIID method, which is supplied to the container, should be able to return a connection point to the container for each outgoing interface named in the old type library. In addition, the component’s EnumConnectionPoints enumerator should enumerate a connection point for each as well.

Following the normal OLE conventions, it’s acceptable for the component to return an interface pointer to a new version of IID for the incoming interface, assuming that the new interface is a strict superset of the old interface. This can greatly simplify the task of continuing to support old interfaces. In Dispatch case, doing GetTypeInfo / GetTypeInfoCount may return a description of the new interface if this is done, rather than the old interface.

Similarly, it’s acceptable for the component to map connection requests for an old IID connection point onto the connection point for the new version of the outgoing interface. When firing an event via Invoke (for a Dispatch-based connection point), the component may invoke methods that the event sink isn’t expecting, corresponding to events that are part of the new version of the outgoing interface. The sink should simply ignore these and return S_OK.

With interface-based connection points, supporting multiple versions of the same interface on a single connection point is slightly more complicated. When attempting to Advise to a new event sink, the connection point should first call QueryInterface (QI) for the most derived interface (that is, the most recent version). If this QI fails, then the connection point QI’s for the next most derived interface, and so on. The connection then keeps track of which version of the interface was supported by each event sink and only calls methods on the event sink that it supports.

�SYMBOL 117 \f "MSIcons" \s 9.5 \h �	It is acceptable for the new implementation to support additional interfaces and connection points. Furthermore, if the component supports IProvideClassInfo, the description returned from a running instance of the component may describe the interfaces for the new version of the component. See notes below on providing simultaneous source and binary compatibility.

�SYMBOL 117 \f "MSIcons" \s 9.5 \h �	The new implementation must be capable of reading, without loss of information, a persistent image of the component saved by the original implementation. By definition, since an instance of the component was created via its original CLSID, any persistent load is an emulation.

�SYMBOL 117 \f "MSIcons" \s 9.5 \h �	The new implementation must be capable of writing out a persistent image of the component that can be read by the original implementation, where the only loss of information relates to functionality that was not part of the original implementation.

Note

IStream objects can’t use the Read/WriteFmtUserTypeStg or Read/WriteClassStg mechanisms to determine the originating version of a persistent image. It is recommended that some kind of version stamp be included in the stream format for such a class.

Source Compatibility

�xe "Source compatibility:overview of"��xe "Versioning:source compatibility"��xe "Control:source compatibility of"�

Typically, a component upgrade provides added functionality that is accessed programmatically. While a previously built application that uses the component in a binary-compatible manner will not know to access this functionality, a new version of that application will most likely want to take advantage of the new behavior. Ideally, this would be accomplished with a minimum of changes to the source code for the application.

Assuming that the source code for application A holds symbolic references to control C’s class and interfaces and that A binds these references through an accompanying type library to get binary references, then a source-compatible upgrade to C can be accomplished by making only additive changes and by providing the correct accompanying type library. The following set of rules defines source compatibility:

�xe "Source compatibility:requirements for"�

�SYMBOL 117 \f "MSIcons" \s 9.5 \h �	If an interface is left intact syntactically and semantically, its corresponding TypeInfo in the type library can remain unchanged and the interface should retain its original name and IID.

�SYMBOL 117 \f "MSIcons" \s 9.5 \h �	If an interface is extended through the addition of new members and all original members are intact, then the interface should retain its original name but be given a new IID.

�SYMBOL 117 \f "MSIcons" \s 9.5 \h �	If an interface is modified in other ways, for example, by adding a parameter to an existing method, then the original interface must be described and supported via its original name and the new interface must be given a new name and IID.

�SYMBOL 117 \f "MSIcons" \s 9.5 \h �	The CoClass description for the component must contain all interfaces and connection points, according to their names, that the original CoClass description for the component contained. It may contain additional interfaces and connection points. The CoClass should retain its original name but be given a new CLSID.

�SYMBOL 117 \f "MSIcons" \s 9.5 \h �	The new type library should be registered under the same GUID/LCID as the original type library. It should be given a higher version number.

�SYMBOL 117 \f "MSIcons" \s 9.5 \h �	The new implementation must support (at least) the new CLSID. The requirements are the same as for binary compatibility.

�SYMBOL 117 \f "MSIcons" \s 9.5 \h �	The new implementation of the component (created from its new CLSID) must be capable of reading a persistent image created by the original implementation of the component. It is not strictly required that it be able to write a persistent image that the original component implementation can read.

If the component supports IStream persistence, it should assume that loading a previously saved instance corresponds to a Conversion request. If the component supports IStorage persistence, it can distinguish between emulation and conversion requests via the normal OLE 2 IStorage-based conventions. See cautions below under “Providing Both Binary and Source Compatibility.”

�SYMBOL 117 \f "MSIcons" \s 9.5 \h �	If the component uses another class, K, such that instances of K are exposed via one of the component’s interfaces, and K also has source-compatible changes, then the source-compatible upgrade of the component must include or require a source-compatible upgrade of K so that the application can be correctly rebuilt.

Providing Both Binary and Source Compatibility

�xe "Versioning:providing both binary and source compatibility"��xe "Control:providing binary and source compatibility"�

Typically, a component upgrade strives to provide both binary and source compatibility. This is accomplished by registering the new implementation under both the old and new CLSIDs and by providing a source-compatible type library.

�xe "Source compatibility:techniques for simplification"��xe "Binary compatibility:techniques for simplification"�

This task is greatly simplified if all interface changes are strictly additive in nature. With a little special care, the new implementation can simultaneously support both old and new CLSIDs. The implementation needs to note the CLSID by which a given instance was created so that the implementation can correctly handle any calls with CLSID-specific behavior, such as IPersist::GetClassID.

�xe "Source compatibility:techniques for simplification"��xe "Binary compatibility:techniques for simplification"�

Strictly speaking, the new type library need only describe the new, extended interfaces, and a consumer of the old IID will not care if it receives a pointer to an interface that happens to support some additional methods. The new implementation could simply map QueryInterfaces for the old IID onto the corresponding new interface.

�xe "Source compatibility:techniques for simplification"��xe "Binary compatibility:techniques for simplification"�

The implementor could also choose to describe the support for both old and new versions of the interface as a derivation in its type library. The old interface is described with its original IID in one TypeInfo, while the new version of the interface, with the original name but a new IID, is described as being derived from the original interface.

Since a TypeInfo description of the component obtained from a running instance describes the new versions’ interfaces, by extension it is reasonable that the registry information for the old CLSID be updated to also point at the new type library. It is suggested that the type library contain a “CoClass alias” TypeInfo record that maps the old CLSID to the TypeInfo record describing the new CoClass.

�xe "Control:OLE 2-style conversion"��xe "OLE 2-style conversion:description of"�

If the component vendor also wants to also provide OLE 2-style conversion and emulation support, some significant caveats apply. As described at the beginning of this section, the existing OLE 2 scheme causes the server to be activated via its new CLSID in both conversion and emulation scenarios. This raises the following special concerns:

�SYMBOL 117 \f "MSIcons" \s 9.5 \h �	Instances of IStream objects have no OLE-managed stream to carry format and conversion information. Therefore, an instance of an IStream object that is identifiably “old” (based on some version stamp within the persistent image stream) can only assume that being invoked via the old CLSID is emulation, while being invoked via new CLSID is conversion. Because OLE CD containers don’t know about IStream objects, this situation should only arise in the context of a control-aware container.

�SYMBOL 117 \f "MSIcons" \s 9.5 \h �	An IStorage object instance that is identifiably “old” (based on format info obtained via ReadFmtUserTypeStg), invoked via its new CLSID, faces a more complex situation. By convention, the server distinguishes between emulation and conversion by calling GetConvertStg. If this returns TRUE, then a conversion is desired.

Care must be taken such that this situation arises only where the container is prepared for conversion. The server can indicate (with the user’s permission at setup time) that it can automatically convert old instances and also enable manual conversion via registry conventions. The container only enables manual conversion through its own UI and enables automatic conversion by deciding whether to call OleDoAutoConvert.

�SYMBOL 117 \f "MSIcons" \s 9.5 \h �	OLE 2-style emulation for OLE controls, where an identifiably “old” IStorage instance is invoked via new CLSID and GetConvertStg returns FALSE, is not a well-defined operation, and should be avoided.

The current OLE 2 rules for which behaviors should reflect the old CLSID versus which should reflect the new CLSID during emulation seem biased toward providing new CLSID behavior. The server cannot determine if the container is prepared for this nor can the container determine if the server provides the degree of binary compatibility it may require.

The upgraded server should not be registered as the emulator for an old CLSID via CoTreatAsClass.

Incompatible Upgrades

�xe "Control:incompatible upgrades"��xe "Versioning:incompatible upgrades"��xe "Incompatible upgrades:guidelines of"�

A component vendor may wish to ship an upgrade that does not meet the criteria of source or binary compatibility. Assuming they want consumers of the old class to make use of their old application code, they should follow these guidelines:

�SYMBOL 117 \f "MSIcons" \s 9.5 \h �	Give the accompanying type library a new GUID. This requires the consumer to manually change their type library reference to the new type library.

�SYMBOL 117 \f "MSIcons" \s 9.5 \h �	Reuse previous class, interface, and member names where some reasonable mapping exists. Reusing a name where syntax is the same but semantics are different is dangerous since there would be no compiler warning to cause the user to visit the referencing code.

�SYMBOL 117 \f "MSIcons" \s 9.5 \h �	Change CLSID/IID’s anywhere that the original contractual meaning of the class or interfaces is not fully preserved.

�SYMBOL 117 \f "MSIcons" \s 9.5 \h �	Ensure that the component is capable of reading a persistent image created with an old implementation.

Consumer Obligations for Ensuring Compatibility

�xe "Control container:obligations for compatible upgrades"��xe "Versioning:obligations for compatible upgrades"�

The consuming application or component must also follow rules to enable predictable and convenient upgrade behavior:

�SYMBOL 117 \f "MSIcons" \s 9.5 \h �	All class or interface references in a consuming application should be held and bound in a similar way to make behavior predictable in the face of an upgrade. For example, class references in code and the control references on control containers should exhibit the same behavior.

�SYMBOL 117 \f "MSIcons" \s 9.5 \h �	Built applications should reference classes by CLSID and interfaces by IID. This ensures that the implementation they connect to will meet the expected contractual obligations.

�SYMBOL 117 \f "MSIcons" \s 9.5 \h �	Application “source” references should be stored as symbolic class and interface names, as resolved through an accompanying type library.

�SYMBOL 117 \f "MSIcons" \s 9.5 \h �	A reference to the type library itself must also be held, so that symbolic source references can be bound to actual implementations. The type library reference should consist of a GUID, LCID, and a major.minor version number

�SYMBOL 117 \f "MSIcons" \s 9.5 \h �	“Normal” rules for connecting to the correct version of a type library should be followed. If the exact version (major.minor) is available, it should be used. If an exact match cannot be found, then a type library with the same GUID/LCID and largest version number (which must be greater than the version number of the reference) should be used. If no such library can be found, then the library reference is “broken” and the user must be alerted.

�SYMBOL 117 \f "MSIcons" \s 9.5 \h �	Running instances constructed from old CLSID, IDispatch::GetTypeInfo and IProvideClassInfo may return type descriptions of the new version’s CoClass and interfaces.

�SYMBOL 117 \f "MSIcons" \s 9.5 \h �	Version-dependent ProgIDs are equivalent to CLSID in terms of being a strong contract. They have the advantage of being moderately user-friendly should a class name ever need to be presented to the user. They have the disadvantage of requiring a registry access in order to be dereferenced to their equivalent CLSID.

�SYMBOL 117 \f "MSIcons" \s 9.5 \h �	Version-independent ProgIDs are a very weak contract since there is no correlation with a type library or a particular set of interfaces.

Property Change Notification

�xe "Control:property change notification"��xe "Properties:change notification"�

OLE controls introduce support for a simple sort of property change notification. Often, it is useful to have controls reflect values stored in some external data source. For example, the user might construct a form that shows column values of a record in a database. The user might then use this form not only to browse database records but also to enter new records or edit records already in the database.

�xe "Property binding:overview of"�

This sort of property binding is modeled as simply moving data into and out of the control’s properties, using the normal property access mechanisms. OLE controls define a new mechanism for the control to send notifications when the values of its properties change.

The actual logic for moving values back and forth between the control and the data source, and for monitoring when the two are out of sync with each other, is done externally. The control supports properties as per normal and sends notifications of property changes, but otherwise has no knowledge of any particular property-binding model. This enables a great deal of flexibility regarding property binding.

Typically, the property binding logic is provided by the control’s container. It is also possible that some other entity handles property binding.

This architecture intentionally simplifies, as much as possible, the support required of controls to make property binding work, with the goal of keeping the entry cost low, ensuring that most controls support property binding, thus making it much more useful.

Notifications

�xe "Property binding:notifications of"��xe "Property binding:using IPropNotifySink"��xe "IPropNotifySink:usage in property binding"��xe "Control:property binding:implementation of"�

An object supports property-binding notifications by exposing a connection point that supports the IPropertyNotifySink interface.

interface IPropertyNotifySink : IUnknown

{

 void OnChanged(DISPID dispid);

 HRESULT OnRequestEdit(DISPID dispid);

};

�xe "Properties:indication of bindability"��xe "Control:indicating bindable properties"�

The object may support property binding for a subset of its properties or may support property binding for nearly all its properties. The object describes its properties in its type library, as with OLE Automation today. It indicates which properties are bindable with some new extensions to Type Libraries, which are outlined in the next section.

�xe "Property binding:requirements for"��xe "OnChanged method:usage of "�

For each bindable property, the control should call the OnChanged method on all connected IPropertyNotifySink objects whenever the property changes value. This notification is sent after the property change has occurred and the property whose value changed is identified with the dispid parameter.

Note that this notification should be sent whenever the property changes value, no matter what the cause for the change. The property could change value as a result of some bit of user code running (for example, code setting a property value), through interactions with the control’s UI (for example, typing text into a TextBox), or by some internal state change (for example, a property changing value due to a change in some related property).

�xe "OnRequestEdit method:usage of "�

In addition, the control can call the OnRequestEdit method for properties that are about to change value but have not yet changed. This gives sinks attached to the connection point an opportunity to save the original value (by getting the property value from the object). It also gives sinks a chance to veto the property change. If a sink returns the value S_FALSE, then the control should cancel the operation that would have changed the property value. For example, if some bit of user code was attempting to set the property value, then the property set function would return an error.

�xe "OnRequestEdit method:usage of "�

The control should not fire OnRequestEdit for a property unless it can implement the contract fully. The notification must be cancellable and sent in all circumstances before the property changes value. This may be difficult for some properties; in these cases, the control should support only the OnChanged notification for the property.

In some cases, a large number of control properties may be changing at once. In these cases, the control can pass DISPID_UNKNOWN (= -1) as the parameter to OnChanged and OnRequestEdit. This special value indicates that some unspecified subset of the control’s properties has changed (or is about to change) value. A sink that is looking for notification about a particular property normally assumes that the property is in the set of properties that have changed (or are about to change).

Finally, controls should not send property change notifications as part of their creation process, nor should they send notifications as part of deserialization. Notifications should be sent only for property changes occurring on fully constructed and initialized controls. Implicitly, all the control’s properties are assumed to have “changed” as part of the startup sequence, so notifications need not be sent.

Type Library Extensions

�xe "Type library:extensions of"�

OLE controls introduces new functionality and, in some cases, this functionality needs to be described statically. In a limited set of cases, OLE controls uses MiscStatus bits to statically describe a control. When more than a single bit is required, the description is exposed with new entries in a Type Library.

In particular, several attributes are added to the Object Description Language (ODL) and corresponding bits are made available in the Type Library produced. The Bindable, RequestEdit, DefaultBind and DisplayBind attributes relate to data-bound objects, which may have one or more properties that can be bound to a field in a database record. The Licensed, Source, Restricted, and Default attributes have also been added.

Attributes of Data-Bound Objects

�xe "Bindable objects:attributes of"��xe "Bindable attribute:description of"��xe "Property binding:Bindable attribute"�

The Bindable attribute is allowed on a property and indicates that the property supports property binding. In particular, the object sends notifications through OnChanged when the property changes value, as described earlier. The bindable attribute refers to the property as a whole, so it must be specified wherever the property is defined. This sometimes means specifying the attribute on both the property Get description and on the property Set description. The bindable attribute is represented by FUNCFLAG_FBINDABLE or VARFLAG_FBINDABLE.

�xe "RequestEdit attribute:description of"��xe "Property binding:RequestEdit attribute"�

The RequestEdit attribute indicates that the property supports the OnRequestEdit notification. The OnRequestEdit notification is raised by an object before the property changes value and gives the notificaton sink an opportunity to cancel the change. The property that has the RequestEdit attribute must also have the Bindable attribute. MkTypLib enforces this restriction. The RequestEdit attribute is represented as FUNCFLAG_FREQUESTEDIT or VARFLAG_FREQUESTEDIT.

�xe "DisplayBind attribute:description of"��xe "Property binding:DisplayBind attribute"�

The DisplayBind attribute is set on properties the object determines to be displayed to the user as bindable. It is possible for an object to support property binding but not have this attribute. Controls should specify the DisplayBind attribute for those properties that users would typically want to bind to. A property which has the DisplayBind attribute must also have the Bindable attribute. MkTypLib enforces this restriction. The DisplayBind attribute is represented as FUNCFLAG_FDISPLAYBIND or VARFLAG_FDISPLAYBIND.

�xe "DefaultBind attribute:description of"��xe "Property binding:DefaultBind attribute"��xe "Property binding:default property"�

The DefaultBind attribute on a property indicates the single bindable property that best represents the object as a whole; for example, the text property of a textbox object. This is used by containers that have a user model that involves binding to an object rather than binding to a property of an object. Containers that allow binding to any property on the object should suggest the DefaultBind property to users as a default choice. A property that has the DefaultBind attribute must also have the Bindable attribute. It is also illegal to specify DefaultBind on more than one property in a dispatch interface. MkTypLib enforces these restrictions. The DefaultBind attribute is represented as FUNCFLAG_FDEFAULTBIND or VARFLAG_FDEFAULTBIND.

Examples of Data-Binding Attributes

�xe "Bindable objects:binding attributes:examples of"��xe "Property binding:example of"�

 [uuid 00000000-0000-0000-0000-123456789012]

dispinterface MyObject

{

 properties:

 methods:

 [id(1), propget, bindable, defaultbind, displaybind]

 long x();

 [id(1), propput, bindable, defaultbind, displaybind]

 void x(long rhs);

}

[uuid 00000000-0000-0000-0000-123456789013]

dispinterface MyObject

{

 properties:

 [id(1), bindable, defaultbind, displaybind]

 long x;

 methods:

}

[uuid 00000000-0000-0000-0000-123456789014, odl]

interface IMyOtherObject

{

 [id(1), propget, bindable, defaultbind, displaybind]

 long y();

 [id(1), propput, bindable, defaultbind, displaybind]

 void y(long rhs);

}

[uuid 00000000-0000-0000-0000-123456789015]

dispinterface MyOtherObject

{ interface IMyOtherObject }

Other Attributes

�xe "Properties:Licensed attribute"��xe "Licensed attribute:description of"�

The Licensed attribute is specified on a coclass, and indicates that its class is licensed, as per the licensing section given earlier. It is represented as TYPEFLAG_FLICENSED on the coclass. The ODL syntax is as the following example:

[licensed, 00000000-0000-0000-0000-123456789016] coclass Sample

�xe "Properties:Source attribute"��xe "Source attribute:description of"�

The Source attribute is specified on a member of a coclass that is called rather than implemented. That is, it marks an interface that is available on a connection point. Note that there is no corresponding “sink” attribute; any member of a coclass that is not a source is a sink by default. The Source attribute is represented by the presence or absence of IMPLTYPEFLAG_FSOURCE.

For example, a class called Sample that implemented an interface called baz and was able to call an interface bar through a connection point might be described with the following ODL:

[uuid 00000000-0000-0000-0000-123456789017]

coclass Sample

{

 [source] interface bar;

 interface baz;

}

�xe "Properties:Default attribute"��xe "Default attribute:description of"�

The Default attribute can be specified on one source coclass member and one sink coclass member. It is represented by the presence of IMPLTYPEFLAG_FDEFAULT. If no coclass member has the Default attribute, the Default attribute is assigned automatically by MkTypLib to the first member that does not have the restricted attribute. A control SampleBox, with a primary interface Sample and primary event set SampleEvents, would be described with the following ODL:

[uuid 00000000-0000-0000-0000-123456789018]

coclass SampleBox

{

 [source, default] dispinterface SampleEvents;

 [default] interface Sample;

}

The Restricted attribute is allowed on a member of a coclass and should be placed on any interface or dispatch interface that is not intended for use by a macro programmer. The Restricted attribute is allowed on a member of a coclass, independent of whether the member is a dispatch or other type interface, and independent of whether the member is a sink or source.

It is illegal for a member of a coclass to have both the Restricted and Default attributes. MkTypLib enforces this restriction.

The Restricted attribute existed in OLE version 2.01 but could not be used on a member of a coclass. In all contexts, the presence of the Restricted attribute means “A macro programmer should never see or be able to access this.”

The Restricted attribute is represented by the presence or absence of IMPLTYPEFLAG_FRESTRICTED and would appear in an ODL script as follows:

[uuid 00000000-0000-0000-0000-123456789019]

coclass Sample

{

 [restricted] interface bar;

 interface baz;

}

Example of Source, Default, and Restricted Attributes

�xe "Properties:Source attribute:example of"��xe "Source attribute::example of"��xe "Properties:Default attribute:example of"��xe "Default attribute::example of"��xe "Properties:Restricted attribute:example of"��xe "Restricted attribute::example of"�

[uuid 00000000-0000-0000-0000-123456789020]

library MyLibrary

{

 [uuid 00000000-0000-0000-0000-123456789021]

 dispinterface ButtonEvents

 {

 void Click(long X, long Y);

 }

 [uuid 00000000-0000-0000-0000-123456789022]

 dispinterface DButton

 {

 properties:

 BSTR Caption;

 methods:

 }

 [uuid 00000000-0000-0000-0000-123456789023]

 dispinterface DPlumbing

 {

 void Sample();

 }

 [uuid 00000000-0000-0000-0000-123456789024]

 coclass Button

 {

 [source, default] dispinterface ButtonEvents;

 dispinterface DButton; // Implicitly a "sink"

 [restricted] dispinterface DPlumbing; // Implicitly a "sink"

 }

 [uuid 00000000-0000-0000-0000-123456789025]

 coclass MyButtonHandler

 {

 dispinterface ButtonEvents; // Implicitly a "sink" and “default”

 [restricted, source] dispinterface DPlumbing;

 }

}

Summary

Table D.6 summarizes the OLE 2.01 attributes.

�xe "OLE 2 attributes:table of"�

Table D.6 OLE 2.01 Attributes

�����Attribute�Allowed On�Effect�Comments�������Bindable�Property�The property supports property binding.�Refers to the property as a whole, so it must be specified wherever the property is defined. This may mean specifying the attribute on both the property Get description and on the property Put description. Representations: FUNCFLAG_FBINDABLE, VARFLAG_FBINDABLE��Default�Coclass�Indicates that the interface or dispatch interface represents the default for the source or sink.�Representation: IMPLTYPEFLAG_FDEFAULT��

�xe "OLE 2 attributes:table of"�

Table D.6 OLE 2.01 Attributes (continued)

�����Attribute�Allowed On�Effect�Comments�������DefaultBind�Property�Indicates the single bindable property that best represents the object. Used by containers having a user model that involves binding to an object rather than binding to a property of an object.�An object can support property binding but not have this attribute.

Property having DefaultBind attribute must also have the Bindable attribute.

Cannot specify DefaultBind on more than one property in a dispinterface. Representation: FUNCFLAG_FDEFAULTBIND, VARFLAG_FDEFAULTBIND��DisplayBind�Property�Set on those properties recommended by the object to be displayed to the user as bindable.�An object can support property binding but not have this attribute.

The property which has the DisplayBind attribute must also have the Bindable attribute. Representations: FUNCFLAG_FDISPLAYBIND, VARFLAG_FDISPLAYBIND��Licensed�Coclass�Indicates that the class is licensed.�Representation: TYPEFLAG_FLICENSED��RequestEdit�Property�The property supports the OnRequestEdit notification, raised by a property before it is edited.�An object can support property binding but not have this attribute.

Representations: FUNCFLAG_FREQUESTEDITBIND, VARFLAG_FREQUESTEDITBIND��Restricted�Coclass�Prevents the interface or dispatch interface from being used by a macro programmer.�Allowed on a member of a coclass, independent of whether the member is a dispatch or other type interface, and independent of whether the member is a sink or source. A member of a coclass cannot have both the Restricted and Default attributes.��Source�Coclass�Specified on a member of a coclass that is called rather than implemented.�Representation: IMPTYPEFLAG_FSOURCE��

Property Browsing

�xe "Control:property browsing"��xe "Property browsing:overview of"�

OLE controls introduce a new page-based mechanism for property browsing. This enables the same property browsing UI that will be encouraged for Chicago applications. In short, an object provides property pages, each of which allows the user to edit some related set of properties on the object. The system provides a property frame, which shows the property pages that apply to a particular object (or set of objects).

As with the rest of OLE controls, the interactions among an object, its set of property pages, and the system property frame are all conducted through interfaces. This section describes these interfaces.

Specifying Property Pages

�xe "Property pages:description of"��xe "ISpecifyPropertyPages:usage of "��xe "ISpecifyPropertyPages:interface description"�

An important issue is how a particular object specifies which set of pages should be used to browse the object’s properties. An object specifies pages by supporting the ISpecifyPropertyPages interface:

struct CAUUID

{

 ULONG cElems;

 GUID FAR* pElems;

};

interface ISpecifyPropertyPages : public IUnknown

{

 GetPages(CAUUID * pPages);

};

Property pages are COM objects. Each type of property page defines a new OLE class and has a CLSID assigned to it. Creating an instance of the property page is done with CoCreateInstance, just as for any any COM object.

�xe "GetPages method:usage of "��xe "ISpecifyPropertyPages:GetPages method"�

Asking an object what set of property pages should be used to browse it, then, is equivalent to listing the CLSIDs for the object’s pages. This is done by calling the GetPages method, which returns a counted array of the CLSIDs for the object’s pages. To actually create the pages, CoCreateInstance is called for each CLSID.

Since CLSIDs are unique, this mechanism can be used to determine the set of pages that two or more objects share.

Property Pages

�xe "Property pages:creation and usage of"��xe "IPropertyPage:interface description"��xe "IPropertyPage:description of"��xe "IPropertyPageSite:usage of "�

Once the set of property pages is determined, property page objects can be created. Each page is required to support the IPropertyPage interface (or the IPropertyPage2 interface, which is derived from IPropertyPage; IPropertyPage2 is described later). In turn, the property frame provides a page site to each page; the site supports the IPropertyPageSite interface. All interactions between the property frame and its pages occur through these interfaces.

struct tagPROPPAGEINFO

{

 size_t cb;

 LPSTR pszTitle;

 SIZE size;

 LPSTR pszDocString;

 LPSTR pszHelpFile;

 DWORD dwHelpContext;

};

interface IPropertyPage : public IUnknown

{

 SetPageSite(LPPROPERTYPAGESITE pPageSite);

 Activate(HWND hwndParent, LPCRECT rect, BOOL fModal);

 Deactivate(void);

 GetPageInfo(LPPROPPAGEINFO pPageInfo);

 SetObjects(ULONG cObjects, LPUNKNOWN FAR* ppunk);

 Show(UINT nCmdShow);

 Move(LPCRECT prect);

 IsPageDirty(void);

 Apply(void);

 Help(LPCSTR lpszHelpDir);

 TranslateAccelerator(LPMSG lpMsg);

};

�xe "IPropertyPage:SetPageSite method"��xe "SetPageSite method:usage of"�

The SetPageSite method is called by the property frame after creating the page and passes in the site object that the page should use to communicate with the frame. The frame calls SetPageSite(NULL) as part of closing itself down.

The PROPPAGEINFO struct provides enough information about the page for the frame to size itself and list the pages it contains, as well as providing help information. This struct is returned by the GetPageInfo method; the strings are allocated by the control.

�xe "IPropertyPage:Activate method"��xe "Activate method:usage of"�

The frame calls the Activate method to ask the property page to create a window to display itself. The parent window the page should use and the initial rectangle for the page are passed as parameters. The fModal parameter lets the page know whether it is being invoked inside a modal property frame. The window should be created visible. The frame calls Deactivate to ask the page to destroy the window created by Activate.

�xe "IPropertyPage:SetObjects method"��xe "SetObjects method:usage of"�

The property frame calls the SetObjects method to pass the set of objects being browsed to the page. Note that the page may be passed multiple objects if the container supports property browsing of a multiple selection. Once the page has the set of objects being browsed, it should be able to load the properties of the browsed object into fields on the property page, typically using IDispatch::Invoke.

�xe "IPropertyPage:Show method"��xe "Show method:usage of"�

The frame calls Show to show or hide the page’s window; the page should pass the nCmdShow parameter to ShowWindow. Similarly, the frame calls Move to reposition or resize the page’s window.

�xe "IPropertyPage:IsPageDirty method"��xe "IsPageDirty method:usage of"�

The IsPageDirty method is used to determine whether the user has done any editing on the page or, in general, whether the page is out of sync with the known state of the browsed object(s). The page should return S_FALSE if it hasn’t been changed, or S_OK if it has been changed.

�xe "IPropertyPage:Apply method"��xe "IsPageDirty method:usage of"�

The page should apply any changes entered into the page back to the browsed object in response to the Apply method. Note that, in general, property pages should use a delayed commit model. That is, instead of applying changes to the browsed object immediately, or when the user leaves the field, the page should wait until its Apply method is called. This enables the object and its pages to function smoothly in different containers, which may have different property browsing models.

�xe "IPropertyPage:Help method"��xe "Help method:usage of"�

The Help method is used to invoke help for the page.

�xe "IPropertyPage:TranslateAccelerator method"��xe "TranslateAccelerator method:usage of"�

The frame calls the TranslateAccelerator method for each Windows event it receives. This gives the page a chance to implement a keyboard interface.

interface IPropertyPageSite : public IUnknown

{

 OnStatusChange(DWORD flags);

 GetLocaleID(LCID * pLocaleID);

 GetPageContainer(LPUNKNOWN * ppUnk);

 TranslateAccelerator(LPMSG lpMsg);

};

�xe "Property pages:OnStatusChange method"��xe "OnStatusChange method:usage of"�

The page interacts with its frame through the IPropertyPageSite interface. The page should call the OnStatusChange method whenever its status changes. The flags parameter indicates which aspects of the page have changed:

#define PROPPAGESTATUS_DIRTY		0x1 // Values in page have changed

#define PROPPAGESTATUS_VALIDATE	0x2	// Appropriate time to validate

The page can request the locale ID currently in use by the container through the GetLocaleID method.

A pointer to the property frame can be obtained with GetPageContainer. Note, however, that no interface has been defined that all property frames can be relied on to support; hence, the type of the pointer returned from this method is unknown.

The page calls the TranslateAccelerator to integrate the its own tab order with that of the frame. For example, when the focus is on the last field in the page, the page should forward a Tab key message to the site’s TranslateAccelerator function, allowing the frame to move the focus to one of its own controls. Likewise, when the focus is on the first field in the page, a Shift+Tab key message should be forwarded to the site.

Property Frame

�xe "Property pages:property frame description"��xe "Property frame:description of"��xe "OleCreatePropertyFrame:description of"�

A standard system property frame implementation is provided as part of OLE. It is invoked with the following API:

STDAPI OleCreatePropertyFrame(

 HWND hWndOwner,

 UINT x,

 UINT y,

 LPCOLESTR lpszCaption,

 ULONG cObjects,

 LPUNKNOWN FAR* ppUnk,

 ULONG cPages,

 LPCLSID pPageClsID,

 LCID lcid,

 DWORD dwReserved,

 LPVOID pvReserved);

�xe "OleCreatePropertyFrame:parameters"�

This creates a modal property frame, with UI details defined by the operating system. The hWndOwner parameter names the window that should own the property frame dialog, or NULL if it has no owner. The x and y parameters give the screen position, relative to the owner window (or screen, if there is no owner window). The lpszCaption parameter is used as the caption for the property frame dialog.

The ppUnk parameter gives the list of objects that should be browsed, with cObjects giving the count of objects in the array. The pPageClsID parameter names the set of pages that should be used, with cPages giving the count of pages. If pPageClsID is NULL, or cPages is 0, then the property frame uses ISpecifyPropertyPages on the objects to determine which pages should be used.

The lcid parameter determines the locale in which the UI will be displayed.

�xe "OleCreatePropertyFrame:parameters"�

The dwReserved and pvReserved parameters are in place for future use; they should be set to 0 and NULL (respectively) in all current use of the property frame.

Note that other implementations of the property frame are entirely possible. A container application might choose to provide its own frame, to better match the rest of the container’s UI. In the long run, however, applications are expected to converge on the standard property browsing UI style introduced with Chicago.

Per-Property Browsing

�xe "Per-property browsing:description of"��xe "Properties:per-property browsing"�

The earlier sections define a reasonable mechanism for page-based property browsing. Some containers, though, may need to browse individual property values rather than groups of property values. Some level of per-property browsing is possible using only the information in TypeInfo. For example, a container can clearly allow the user to edit an integer-valued property; at a minimum, the set of built-in OLE Automation types can be browsed. In addition, the container can specially treat the standard types defined for OLE controls and provide reasonable editing for properties of type Font, Picture, and others.

However, this approach does not allow any customization. For example, there isn’t a mechanism that allows a string-valued property to indicate that it can only legally contain filenames, other than predefining a standard set of such types and building support for them into all per property browsers.

Control writers are expected to define property pages for their controls, and this support is leveraged in the per property browsing case. The interfaces following allow a per property browser to navigate from any particular property to the property page on which it appears.

�xe "IPerPropertyBrowsing:interface description"�

interface IPerPropertyBrowsing

{

 GetDisplayString(DISPID dispid, BSTR * pbstr);

 MapPropertyToPage(DISPID dispid, CLSID * pclsid);

 GetPredefinedStrings(DISPID dispid, CALPOLESTR * pcaStrings,� CADWORD * pcaCookies);

 GetPredefinedValue(DISPID dispid, DWORD dwCookie, VARIANT *� pvarOut);

};

�xe "description of:IPerPropertyBrowsing"�

A control that wants to support nondefault per-property browsing implements IPerPropertyBrowsing. If this interface is not provided by a control, then the property browser does the best it can with the information in TypeInfo.

�xe "IPerPropertyBrowsing:GetDisplayString method"��xe "GetDisplayString method:description of"��xe "Properties:custom editing for"�

The control normally provides custom editing for some of its properties and relies on the external property browser to provide default editing for the rest. The GetDisplayString method should return S_FALSE for all properties for which the property browser’s default string is acceptable. For custom-edited properties, GetDisplayString returns the string that should be displayed in the property browsing grid. For example, for a picture-valued property currently holding a bitmap, GetDisplayString might return the string “(Picture - Bitmap)”. A property browser is expected to show a reasonable string for object-valued properties; the string shown might be the name of the CoClass or CoType, or of the primary dispatch interface on the object. Note that the caller can set pbstr to NULL, if it is only interested in whether a custom string is available, but not in the actual value.

�xe "IPerPropertyBrowsing:MapPropertyToPage method"��xe "MapPropertyToPage method:description of"��xe "Properties:mapping to a property page"��xe "Property pages:mapping properties to"�

The page that provides editing for a particular property is returned by MapPropertyToPage. If no page is available for a particular property, then this method should return PERPROP_E_NOPAGEAVAILABLE. If a page is available, and should or must be used to edit the property, this method returns S_FALSE. If a page is available, but direct editing is also feasible, then S_OK is returned. The last two values are distinguished to accommodate properties like filenames, which are of a well-known type (string) but require specialized property editing.

Grids are not expected to allow direct editing of custom display strings; instead, an ellipsis button (or the equivalent) is provided. When the button is pushed, the grid invokes the standard modal property page frame. Note that the grid can explicitly pass in the single matching page CLSID to OleCreatePropertyFrame. This overrides the normal use of ISpecifyPropertyPages, namely to compute the set of pages to show, if it wants to show only the page on which the property appears.

�xe "IPerPropertyBrowsing:GetPreDefinedStrings method"��xe "GetPreDefinedStrings method:description of"��xe "IPerPropertyBrowsing:GetPreDefinedValues method"��xe "GetPreDefinedValues method:description of"�

The GetPredefinedStrings and GetPredefinedValues methods allow the object to define a set of legal display strings and values that the caller can use to populate a drop-down list box. These methods should return S_FALSE if no list of legal strings is available.

�xe "IPropertyPage2:interface description"��xe "Properties:editing of"�

An interface IPropertyPage2 is defined that allows the frame to navigate to the proper property within a page:

interface IPropertyPage2 : public IPropertyPage

{

 EditProperty(DISPID dispid);

};

�xe "IPropertyPage2:EditProperty method"��xe "EditProperty method:usage of "�

Implementing this interface and method is optional for property pages; pages can return E_NOTIMPL, in which case the focus will set to the first control on the page. Otherwise, the page moves the focus to the matching control on the page.

�xe "OleCreatePropertyFrameIndirect :usage of "�

The OleCreatePropertyFrameIndirect API allows the initial page and property to to be defined when the property frame is invoked.

struct OCPFIPARAMS

{

 ULONG cbStructSize;

 HWND hWndOwner;

 int x;

 int y;

 LPCOLESTR szCaption;

 ULONG cObjects;

 LPUNKNOWN* ppUnk;

 ULONG cPages;

 CLSID * pPages;

 LCID lcid;

 DISPID dispidInitialProperty;

};

STDAPI OleCreatePropertyFrameIndirect(OCPFIPARAMS * pParams);

�xe "OCPFIPARAMS structure:description of "�

All members of the OCPFIPARAMS struct, except the last, map to parameters in OleCreatePropertyFrame. The first member gives the size of the struct. Use the size to mark new versions of the struct, which adds new parameters to the call.

�xe "OCPFIPARAMS structure:dispidInitialProperty member"��xe "dispidInitialProperty member:usage of "�

The dispidInitialProperty member identifies which property should be browsed initially. The frame first maps the property given to the proper page with IPerPropertyBrowsing::MapPropertyToPage, then moves the focus to the matching control with IPropertyPage2::EditProperty. If DISPID_UNKNOWN is passed for dispidInitialProperty, then defaults are used for the initial page and property. Note that dispidInitialProperty = 0 is a legal value. It indicates that the Value property of the control should be edited, and is not equivalent to DISPID_UNKNOWN.

Miscellaneous

�xe "Control container:viewing properties"��xe "Properties:old-style browsing"��xe "Control:properties verb"�

Controls can be embedded in old-style OLE 2 compound document containers that were written long before OLE controls were introduced and which know nothing about property browsing. However, for many controls, the interesting capabilities of the control are provided solely through properties. Not allowing the user to set properties severely restricts the usefulness of controls in old-style containers.

To address this scenario, a new standard OLE Verb is introduced that invokes the modal system property browser on the control. Controls should name this verb “Properties...,” and list it with their other verbs. Well-behaved OLE 2 containers list the verb with the other verbs exposed by the control, so the user can access the properties dialog for a control even when the control is embedded in an old-style container.

#define OLEIVERB_PROPERTIES (-7L)

“Simple Frame” Containment of Controls

The ISimpleFrameSite interface is called by controls that are capable of "containing" other controls. This containment is in the Windows sense, not the OLE compound document sense.

The ISimpleFrameSite interface is implemented by the client site of containers that support controls with simple frame capabilities. The control can obtain this interface by using QueryInterface on its client site. The interface contains two member functions:

 interface ISimpleFrameSite : public IUnknown

 {

 PreMessageFilter(HWND hwnd, UINT msg, WPARAM wp, LPARAM lp,

 LRESULT FAR* lplResult, DWORD FAR* lpdwCookie);

 PostMessageFilter(HWND hwnd, UINT msg, WPARAM wp, LPARAM lp,

 LRESULT FAR* lplResult, DWORD dwCookie);

 }

A control with simple frame capabilities is required to call PreMessageFilter before doing its own processing on each window message, and PostMessageFilter afterwards. The cookie returned by PreMessageFilter should be passed to the corresponding call to PostMessageFilter. If PreMessageFilter returns S_FALSE, then the control's window procedure should immediately return the result value, without processing the message further.

Controls that use the ISimpleFrameSite interface should have the following characteristics:

be implemented as an in-process server

include OLEMISC_SIMPLEFRAME among the flags returned by IOleObject::GetMiscStatus

properly handle subclassed painting (in WM_PAINT, treat wParam as the HDC of the device context for painting)

Summary of OLE Controls Architecture

OLE Custom Controls is a set of extensions to the existing OLE 2 compound document specifications. It builds on the concepts of embedded objects, in-place activation, and OLE Automation to meet the specific interaction requirements between controls and control container. Controls are more than just editable embedded objects. They transform end-user events, like mouse clicks and keystrokes, into programmatic notifications to the container, which can use those transformed events to execute other code.

�xe "Control:summary of"�

A control is a standard embedded object capable of in-place activation with several interfaces implemented in an in-process server DLL. In addition to the standard interfaces, IOleObject, IDataObject, IViewObject, IPersistStorage, and IOleInPlaceActiveObject (IOleCache is optional), the control also implements IPersistStream and IDispatch interfaces to handle the control’s properties and methods, and the new interfaces IOleControl, IConnectionPointContainer, and IConnectionPoint, which handle control mnemonics and events. All of these interfaces combined meet all the needs of any control, even those that currently exist in Windows as simple window classes.

�xe "Control container:summary of"�

A control container is a standard in-place capable embedded object container with the IOleClientSite, IOleIn-PlaceSite, and IAdviseSink interfaces on its site objects, IOleInPlaceUIWindow on its document objects, and IOleInPlaceFrame on its frame object. To work properly with controls, the container also implements an IDispatch for ambient properties and an IDispatch for control events on its sites, along with the new IControlSite interface that serves as a notification sink for changes in a control’s mnemonics.

All these interfaces create the necessary standard mechanisms through which an arbitrary control container can use any arbitrary control to create any type of Windows application. Obviously, there is a lot of work involved in implementing all these interfaces, so the Microsoft Foundation Class Library includes a Control Wizard to simplify the process of writing a control, by automatically giving you all the compound document code you need. All you have to do is add a few customizations where necessary, and you have a great new control that will serve you now and well into the future.

�PAGE�328418� Appendix D

	OLE Controls Architecture �PAGE�329405�

�print \p page "

/ndf{1 index where{pop pop pop}{dup xcheck{bind}if def} ifelse}bind def

/ed{exch def}bind def

/SetPageOffset{neg wp$y add/dTop ed/dLeft ed}ndf

/SetPageSize {neg dTop add/dBot ed dLeft add/dRight ed}ndf

/DoCropMarks{gsave 0 setgray /dopaint true def 0.25 setlinewidth

 dLeft 76 sub dTop moveto 72 0 rlineto dLeft 76 sub dBot moveto 72 0 rlineto

 dRight 4 add dTop moveto 72 0 rlineto dRight 4 add dBot moveto 72 0 rlineto

 dLeft dTop 76 add moveto 0 -72 rlineto dRight dTop 76 add moveto 0 -72 rlineto

 dLeft dBot 4 sub moveto 0 -72 rlineto dRight dBot 4 sub moveto 0 -72 rlineto

 stroke grestore}ndf

/DoPageBox {gsave 0 setgray /dopaint true def 0.25 setlinewidth

 dLeft dTop moveto dRight dTop lineto dRight dBot lineto dLeft dBot lineto

 closepath stroke grestore}ndf

40.5 72 SetPageOffset

531 648 SetPageSize

DoCropMarks

DoPageBox"�

Filename: �filename �CTLSPEC.DOC� Project: �title � �Template: �template �MSGRIDA1.DOT� Author: �author �AFXBUILD� Last Saved By: �lastsavedby �John Elsbree��Revision #: �revnum �23� Page: �page * arabic�328418� of �numpages �94� Printed: �printdate \@ "MM/dd/yy hh:mm AM/PM"�09/02/94 05:04 PM�

�print \p para "

0 setgray /dopaint true def 2 2 moveto

/str 30 string def /Times-Roman findfont 5 scalefont setfont

(Printed On:) show statusdict begin product show end

(Colorlayer:) show /colorlayer where {pop colorlayer str cvs show}{(?) show}ifelse

(Document Page:) show wp$fpage show"�!Unexpected End of Expression�

�print \p page "

/ndf{1 index where{pop pop pop}{dup xcheck{bind}if def} ifelse}bind def

/ed{exch def}bind def

/SetPageOffset{neg wp$y add/dTop ed/dLeft ed}ndf

/SetPageSize {neg dTop add/dBot ed dLeft add/dRight ed}ndf

/DoCropMarks{gsave 0 setgray /dopaint true def 0.25 setlinewidth

 dLeft 76 sub dTop moveto 72 0 rlineto dLeft 76 sub dBot moveto 72 0 rlineto

 dRight 4 add dTop moveto 72 0 rlineto dRight 4 add dBot moveto 72 0 rlineto

 dLeft dTop 76 add moveto 0 -72 rlineto dRight dTop 76 add moveto 0 -72 rlineto

 dLeft dBot 4 sub moveto 0 -72 rlineto dRight dBot 4 sub moveto 0 -72 rlineto

 stroke grestore}ndf

/DoPageBox {gsave 0 setgray /dopaint true def 0.25 setlinewidth

 dLeft dTop moveto dRight dTop lineto dRight dBot lineto dLeft dBot lineto

 closepath stroke grestore}ndf

40.5 72 SetPageOffset

531 648 SetPageSize

DoCropMarks

DoPageBox"�

Filename: �filename �CTLSPEC.DOC� Project: �title � �Template: �template �MSGRIDA1.DOT� Author: �author �AFXBUILD� Last Saved By: �lastsavedby �John Elsbree��Revision #: �revnum �23� Page: �page * arabic�329405� of �numpages �94� Printed: �printdate \@ "MM/dd/yy hh:mm AM/PM"�09/02/94 05:04 PM�

�print \p para "

0 setgray /dopaint true def 2 2 moveto

/str 30 string def /Times-Roman findfont 5 scalefont setfont

(Printed On:) show statusdict begin product show end

(Colorlayer:) show /colorlayer where {pop colorlayer str cvs show}{(?) show}ifelse

(Document Page:) show wp$fpage show"�!Unexpected End of Expression�

	�PAGE�323323�

�print \p page "

/ndf{1 index where{pop pop pop}{dup xcheck{bind}if def} ifelse}bind def

/ed{exch def}bind def

/SetPageOffset{neg wp$y add/dTop ed/dLeft ed}ndf

/SetPageSize {neg dTop add/dBot ed dLeft add/dRight ed}ndf

/DoCropMarks{gsave 0 setgray /dopaint true def 0.25 setlinewidth

 dLeft 76 sub dTop moveto 72 0 rlineto dLeft 76 sub dBot moveto 72 0 rlineto

 dRight 4 add dTop moveto 72 0 rlineto dRight 4 add dBot moveto 72 0 rlineto

 dLeft dTop 76 add moveto 0 -72 rlineto dRight dTop 76 add moveto 0 -72 rlineto

 dLeft dBot 4 sub moveto 0 -72 rlineto dRight dBot 4 sub moveto 0 -72 rlineto

 stroke grestore}ndf

/DoPageBox {gsave 0 setgray /dopaint true def 0.25 setlinewidth

 dLeft dTop moveto dRight dTop lineto dRight dBot lineto dLeft dBot lineto

 closepath stroke grestore}ndf

40.5 72 SetPageOffset

531 648 SetPageSize

DoCropMarks

DoPageBox"�

Filename: �filename �CTLSPEC.DOC� Project: �title � �Template: �template �MSGRIDA1.DOT� Author: �author �AFXBUILD� Last Saved By: �lastsavedby �John Elsbree��Revision #: �revnum �23� Page: �page * arabic�323323� of �numpages �94� Printed: �printdate \@ "MM/dd/yy hh:mm AM/PM"�09/02/94 05:04 PM�

�print \p para "

0 setgray /dopaint true def 2 2 moveto

/str 30 string def /Times-Roman findfont 5 scalefont setfont

(Printed On:) show statusdict begin product show end

(Colorlayer:) show /colorlayer where {pop colorlayer str cvs show}{(?) show}ifelse

(Document Page:) show wp$fpage show"�!Unexpected End of Expression�

