Guide to Preparing Product Kits

e

,,....._,—.—..._,—-»..‘

" DIGITAL EQUIP.
1L
 CX38041303
i Tru64 UNIX
' Guide to Preparing Product Kits
’ Part Number: AA-QlYWTC-TE
Aprll 1999
Product Version: Tru64 UNIX Version 4.0F or higher

This book describes the procedures for creating, delivering, and
installing layered product kits for use on Compaq Tru64 UNIX (formerly
DIGITAL UNIX) operating systems.

RECEIVED
: MAY 61399

INFUHMATION CENTER/CS

L Compaq Computer Corporation
l Houston, Texas

© Digital Equipment Corporation 1996, 1999
All rights reserved.

Compag Computer Corporation makes no representations that the use of its products in the manner
described in this publication will not infringe on existing or future patent rights, nor do the descriptions
contained in this publication imply the granting of licenses to make, use, or sell equipment or software in
accordance with the description.

Possession, use, or copying of the software deseribed in this publication is authorized only pursuant to a
valid written license from Compaq or an authorized sublicensor,

COMPAQ, the Compaq logo, and the Digital logo are registered in the U.S. Patent and Trademark Office.
The following are trademarks of Digital Equipment Corporation: ALL-IN-1, Alpha AXP,
AlphaGeneration, AlphaServer, AltaVista, ATMworks, AXP, Bookreader, CDA, DDIS, DEC, DEC Ada,
DECevent, DEC Fortran, DEC FUSE, DECnet, DECstation, DECsystem, DECterm, DECUS,
DECwindows, DTIF, Massbus, MicroVAX, OpenVMS, POLYCENTER, PrintServer, Q-bus, StorageWorks,
Tru64, TruCluster, TURBOchannel, ULTRIX, ULTRIX Mail Connection, ULTRIX Worksystem Software,
UNIBUS, VAX, VAXstation, VMS, and XUT. Other product names mentioned herein may be the
trademarks of their respective companies,

NFS is a registered trademark of Sun Microsystems, Inc. UNIX is a registered trademark and The Open
Group is a trademark of The Open Group in the US and other countries.

About This Manual

1 Overview of Product Kits

Contents

1.1 Product TYPes ..oveiiiii i e 1-2
1.2 Kit FOrmats ...ooeiiiiieiiiie ettt caiiria st crieeaiaeans -3
1.3 Kit-Building Processccvervviioiiiiiiiiiiiiineiinnrannaaeenes -3
1.4 Sample Products Used in This Booko;cieiiinn, 1-6
2 Creating the Kit Directory Structure

2.1 Creating a Kit Building Directory Structure 2-1
2.2 Populating the Source Directorycoovvvviiiiiiiina i 2-3
221 Directory Structure for a User Product Kit 2-7
222 Directory Structure for Kernel Product and Hardware

Product Kitscoiiiiiiiiiiiiaii st e 2-8

3 Creating Subset Control Programs

3.1 Common Characteristics of a Subset Control Program 31
3141 Creating Subset Control Program Source Files 3-2
3.1.2 Including Library Routinesocovviviiiiiiiniineinenne 3-2
3.1.3 Invoking Subset Control Programsoovvveneen. 3-3
3.1.4 Stopping the Programccoiiiviiiiiiiiin 34
3.1.5 Setting Global Variablesc.ooovii 34
3.1.6 Working in a DMS Environmentcooviiieiiiniinen. 3-5
3.2 SCP Tasks Associated with Installation Phases 3-6
3.2.1 Displaying the Subset Menu (M Phase) 3-6
3.2.2 Before Loading the Subset (PRE_L Phase) 37
3.23 After Loading the Subset (POST_L Phase} 3-9
3.2.3.1 Creating Backward Linksocoiiiiiiaciiiinns 3-10
3.2.3.2 Locking Subsetscccovvvriiiiiiiimiiieninaiii, 3-11
3.24 After Securing the Subset (C INSTALL Phase) 3-12
3.25 Verifying the Subset (V Phase)cooovvviiiiiiiiianinns 3-13
3.2.6 Before Deleting a Subset (C DELETE Phase) 3-13
3.27 Before Deleting a Subset (PRE_D Phase) 3-13

Contents i

3.2.8 After Deleting a Subset (POST_D Phase)
3.3 Subset Control File Flag Bitscocooooiii
3.4 Creating a Subset Control Program for a User Produet
3.5 Creating a Subset Control Program for a Kernel Product.

4 Building Subsets and Control Files

41 Grouping Files into Subsetsc..ocoiviiiiniini,
4.2 Creating the Master Inventory Filec.ooos,
43 Creating the Key File ...,
4.4 Running the kits Utility ...,
441 Compression Flag Filecooviiiiiiiiiiiiiiiicieens
442 Image Data File ...
4.4.3 Subset Control Filesccccvvueeriveinreeiiaernrinnnnn,
4.4.4 Subset Inventory Fileccocoeeiiiiieiiienireann.

5 Hardware Product Kits

5.1 Additional Files Required for Hardware Product Kits
5.1.1 The name.kit Filescoiiiiiiii e,
5.1.2 The kitname.kk Fileccooviiiiiiiii
513 The HWdb File ... e
5.1.4 The hardware kithw Fileocoovvvviineiiinieaiin,
515 The hardwarename.hw File viiiiiiini ..

52 Creating a Subset Control Program for a Hardware Product
5.3 Creating Distribution Media for a Hardware Product Kit

54 Testing a Hardware Product Kitc.oooiinal.
541 Using setld to Test a Hardware Product Kit
542 Testing a Hardware Product Kit on a Running System ...
5.4.3 Using the hw_check Utility to Test a Hardware Product
Kit
5.4.4 Testing a Hardware Product Kit in a RIS Area
5.4.4.1 Registering a Client for a RIS Area Containing a
Hardware Product Kitocoiviiiiiinnns

6.1 Editing the fetc/kitcap Filecooovvviiiii i,
6.1.1 Tape Media kitcap Record Formatcccooneeeann,
6.1.2 Disk Media kitcap Record Format
6.2 Building a User or Kernel Product Kit on Magnetic Tape
Media in tar Formatc
6.3 Building a User or Kernel Product Kit on Disk Media

iv Contenis

314
3-14
3-15
3—18

4-1
4-2
4-5
4-8

4-10

4-11

4-11

4-12

5-2
54
5-7
57
5-8
5-10
B-12
5-16
5-20
5-20
5-21

5-26
5-29

| 5-33

6 Producing Distribution Media for User and Kernel Product Kits

6-3
6-3
6—4

65
66

6.3.1

Preparing a User or Kernel Product Kit in tar Format ...

7 Testing a User or Kernel Product Kit

71
7.2
7.3

Testing a User Product Kit ...
Testing a Kernel Product Kitco i,
Testing a User or Kernel Product in a RIS Area

A Creating a Consolidated CD-ROM

A1

Al1A1
Al.2

A2

A21
A22

Build Instructionsccvvvrreeiiiiiiiiiiiin s e
How to Prepare for the Buildne
How to Build a Consolidated CD-ROMee

Sample Build SeSSI101o.veiiiiininiiiiiinia e
Preparing for the Build Sessioncccoociiinns
Building a Consolidated CD-ROMoeneet.

B Standard Directory Structure

Glossary

Index

Examples

31
3-2
3-3
3-4
3-5
41
4-2
4-3
4-4
5-1
5-2
5-3

54
5-5
56

Subset Control Program Test for Machine During M Phase ..
Backward Link Creationcccoviiiiiiiiiiiiiiiiiiiiininian.
Using the BitTest Routine to Test Bitsconie
Subset Control Program for the ODB User Preduct
Subset Control Program for the /dev/none Driver
Sample Master Inventory File for the ODB Kit
Key File for the ODB Kitcooooveiiii
Sample Subset Control Filecooooviiiieiiiiins
Sample Subset Inventory Filecc.c.ccconiiiiins
Contents of an Installed namekit Filec.el
Contents of a HW.db File ...
Contents of a Hardware Support File ...
Contents of an Installed Hardware Support File
Subset Control Program for the EDGgraphics Device Driver .
Sample /etc/kitcap Record for a Hardware Product Kit on

T3 000510 . A R

71
7-3
7-5

3-7
3-11
315
3-15
3-18

4-5
4-12
4-13

5-6

5-8

5-9
5-11
512

517

Contents v

5-7

6~1
62

Figures
1-1

2-1

2-2

2-3

24

2-5

2-6

31

4-1

4-2

| 5-1
5-2

5-3

6-1

7-1

7-2

7-3

B-1

B-2

. Tables
3-1
3-2
4-1
4-2
4-3
4-4
4-5
4-6
5-1
B-1
B2

vi Contents

Sample /ete/kiteap Record for a CD-ROM with Multiple

Hardware Kitscocoeeiieiiiiiiiii i nve e 5-17
Sample /etc/kitcap Record for Magnetic Tape 64
Sample /etc/kitcap Record for CD-ROM or Diskette 6-5
Steps in the Kit-Building Processoiiiviiinens 14
Kit Directory Hierarchy R 21
Layered Product Standard Directoriescooenen, 2-6
Directory Hierarchy for the ODB Kitcccoinie, 2-8
Directory Structure for the /dev/mone Driver Kit 2-9
Editing the files File Fragmentocooiiiinnen. 2-10
Editing the sysconfigtab File Fragment 2-11
Time Line of the setld Utility i, 3-3
Subsets and Files in the ODB kit PP 4-2
Contents of the ODB output Directoryooovivvivneiiniinnns 410
Directory Structure for a Hardware Product Kit 54
Using the Distribution name kit File During Installation 57
Bootstrap Linking with a Hardware Product Kit 5-22
File Formats for Layered Product Kitscceevvnnens 62
Defining Links and Dependencies for the ODB User Product 7-2
Statically Configuring a Drivercccociiiiiiiieiennnn. 7-4
Dynamically Configuring a Driver ..., 7-4
Base System Directory Structureocovviviiviiiiiiirinnn, B-2
X Directory Structureooovvviiiiiiiiiiiiiiniiiie e B-6
STL_Scplnit Global Variablesc..ocoviiiiiiiiiiieeininne.. 34
Elements of a Dependency Expressioncoovveee, 3-9
Fields in the Master Inventory Filecccccvvvvinninnnn. 4-3
Key File Product Attributesviiiiiiiiiiciiiiiiiinnens 4-6
Key File Subset Descriptor Fieldscccooviinenn... 4-7
Installation Control Files in the instetrl Directory 4-9
Image Data File Fieldscooiiiiiiiiiiiiiiiiiie e, 4-11
Subset Inventory Field Descriptionsc.oovvvvnenn... 4-13
Format of the name kit File PO 56
Contents and Purpose of Base System Directories B-3
Contents and Purpose of X Directories B-7

About This Manual

A product kit ig the standard mechanism by which layered products are
delivered to and maintained on a Compaq Tru64™ UNIX® (formerly
DIGITAL UNIX) operating system. This manual describes the procedures
for creating, installing, and managing the collections of files and directories
that make up a layered product kit that will be installed on a customer’s
system. Kits can be distributed on CD-ROM, diskette, or magnetic tape. A
hardware product kit can only be distributed on CD-ROM in Direct CD
format.

Audience

This book is intended for software developers who are responsible for
creating product kits. They are expected to be moderately experienced with
UNIX based operating systems and should have experience performing
system administration tasks.

New and Chahged Features

The following list describes the major changes made to this book:

The definition of a kit at the beginning of Chapter 1 has been expanded
and clarified.

Notes have been added to Section 1.3 and Section 3.1.6 to explain
subset control program requirements for DMS compliance.

The definition of the DEPS subset control file field has been changed in
Section 4.4.3.

The sections referring to foreign device kits have been removed. This
information has been superseded by Chapter 5 which describes how to
create, test, and deliver hardware product kits.

Appendix A has been added to provide instructions on how to create
and build a consolidated CD-ROM. A consolidated CD-ROM lets you
upgrade your processor firmware at the same time that you install the
operating system.

About This Manual vii

.Organization

This manual is organized as follows:

Chapter 1 Introduction

Presents an introduction to the kit-building process.
Chapter 2 | Creating the Kit Directory Structure

Describes how to create kit directories and build product kits.
Chapter 3 Creating Subset Control Programs

Describes how to write subset control programs (SCPs) to
install and manage software subsets.

Chapter 4 Building Subsets and Control Files

Describes how to create subsets and subset control files with
the newinv and kits utilities.

Chapter 5 Hardware Product Kits

Describes how to create, test, and deliver hardware product
kits for new or existing hardware.

Chapter 6 Producing Distribution Media for User and Kernel Produect
Kits
Describes how to produce a user or kernel product kit on the
distribution media.

Chapter 7 Testing a User or Kernel Product Kit

Describes how to test user and kernel product kits on the
target system.

Appendix A Creating a Consolidated CD-ROM

Dscribes how te create a consolidated CD-ROM,
Appendix B Standard Directory Structure

Describes the standard directory hierarchy.

Glossary Defines terms used in this manual.

Related Documents

The printed version of the Tru64 UNIX documentation set is color coded to
help specific audiences quickly find the books that meet their needs. (You
can order the printed documentation from Compagq.) This color coding is
reinforced with the use of an icon on the spines of books. The f0110w1ng list
describes this convention:

viii About This Manual

Audience " Icon Color Code

General users G Blue
System and network administrators S Red
Programmers . P Purple
Device driver writers . D Orange
Reference page users R Green

Some books in the documentation set help meet the needs of several
audiences. For example, the information in some system books is also used
by programmers. Keep this in mind when searching for information on
specific topics.

The Documentation Overview provides information on all of the books in
the Tru64 UNIX documentation set.

You may find the following documents helpful when preparing product kits:

Sharing Software on a Local Area Network

This manual describes Remote Installation Services (RIS) and Dataless
~ Management Services (DMS). RIS is used to install software across a

network instead of using locally mounted media. DMS allows a server
system to maintain the root, /usr, and /var file systems for client
systems. Each client system has its own root file system on the server,
but shares the /usr and /var file systems.

This manual can be helpful if you are preparing a hardware product kit
that will be installed in a RIS environment.

Writing Device Drivers: Tutorial -

This manual provides information for systems engineers who write
device drivers for hardware that runs the operating system. Systems
engineers can find information on driver concepts, device driver
interfaces, kernel interfaces used by device drivers, kernel data
structures, configuration of device drivers, and header files related to
device drivers.

This manual can be helpful if you are preparing product kits for a
device driver.

Installation Guide

This manual describes the procedures to perform an Update Installation
or Full Installation of the operating system on all supported processors
and single-board computers. It explains how to prepare your system for
installation, boot the processor, and perform the installation procedures.

System Administration

About This Manual ix

This manual describes how to configure, use, and maintain the
operating system. It includes information on general day-to-day
activities and tasks, changing your system configuration, and locating
and eliminating sources of trouble. This manual is intended for the
system administrators responsible for managing the operating system.
It assumes’ a knowledge of operating system concepts, commands, and
configurations.

Reference Pages Sections 8 and Im

This section describes commands for system operation and
maintenance. It is intended for system administrators. In printed
format, this section is divided into two volumes,

Release Notes

The Release Notes describe known problems you might encounter when
working with the operating system and provides possible solutions for
those problems. The printed format also contains information about
new and changed features of the operating system, as well as plans to
retire obsolete features of the operating system. Obsolete features are
features that have been replaced by new technology or otherwise
outdated and are no longer needed. The Release Notes are intended for
anyone installing the operating system or for anyone using the .
operaling system after it is installed.

:

x About This Manual

Reader’s Comments

Comphq welcomes any comments and suggestions you have on this and
other Tru64 UNIX manuals.

You can send your comments in the following ways:
¢ Fax: 603-884-0120 Attn: UBPG Publications, ZK03-3/¥Y32 -

¢ Internet electronic mail: readers_comment@zk3.dec.com

A Reader’s Comment form is located on your system in the following
location:

/usr/doc/readers_comment.txt
¢ Mail:

Compaq Computer Corporation

UBPG Publications Manager .

ZK03-3/Y32

110 Spit Brook Road

Nashua, NH 03062-9887

A Reader’s Comment form is located in the back of each printed
manual. The form is postage paid if you mail it in the United States.

Please include the following information along with your comments:

e The full title of the book and the order number. (The order number is
printed on the title page of this book and on its back cover.)

e The section numbers and page numbers of the information on which
you are commenting.

s The version of Tru64 UNIX that you are using.

¢ If known, the type of processor that is running the Tru64 UNIX
software.

The Tru64 UNIX Publications group cannot respond to system problems or
technical support inquiries. Please address technical questions to your local
system vendor or to the appropriate Compaq technical support office.
Information provided with the software media explains how to send
problem reports to Compaq.

About This Manual xi

Conventions

The following conventions are used in this manual:

%
' S

% cat

file

cat(l)

Return

Ctri/x

xii About This Manual

A percent sign represents the C shell system
prompt. A dollar sign represents the system prompt
for the Bourne, Korn, and POSIX shells.

A number sign represents the superuser prompt.

Boldface type in interactive examples indicates
typed user input.

Italic (slanted) type indicates variable values,
placeholders, and function argument names.

In syntax definitions, brackets indicate items that
are optional and braces indicate items that are
required. Vertical bars separating items inside
brackets or braces indicate that you chocse one item
from among those listed.

In syntax definitions, a horizontal ellipsis indicates
that the preceding item can be repeated one or
more times.

A cross-reference to a reference page ineludes the
appropriate section number in parentheses. For
example, cat(l) indicates that you can find
information on the cat command in Section 1 of the
reference pages.

In an example, a key name enclosed in a box
indicates that you press that key.

This symbol indicates that you hold down the first
named key while pressing the key or mouse button
that follows the slash. In examples, this key
combination is enclosed in a box (for example,

Ctr/C).

1

Overview of Product Kits

This guide is intended to provide product and kit developers with the
proper method to create a product kit for a UNIX based operating system
environment. A product kit is the collection of files and directories that
represent a new or upgraded product to be installed onto a customer’s
system. The kit contains not only the actual files and directories that
compose the product, but also contains the supporting files that are
required by the set1d utility to install the product on the system. The kit
is the standard mechanism by which most products are delivered and
maintained on a customer’s system. Kits for user and kernel products can
be distributed on a CD-ROM, diskette, or tape for installation onto the
customer’s system. Hardware product kits can be delivered only on
CD-ROM in Direct CD-ROM format.

All product kits consist of two types of files: product kit files and kit
support files (such as subset control files). The subset control files are
instrumental in telling the set1d utility where and how the files should be
installed onto the target system. Product kit files are the actual files that
compose the product kit being delivered.

If you are preparing a kit to support new or additional hardware to be
installed (or an upgrade kit for existing hardware) on the customer’s

. system, you need to provide hardware product files along with the subset
control files and the product kit files for the operating system to properly
install the hardware product kit.

Before building a kit, consider the kind of product the kit represents:

¢ Does it run in user space or kernel space?

e TIs it used during the initial installation and bootstrap of the operating
system?

s Is the kit being built for a hardware product?
The answers to these questions determine the type of format you choose,

the type of medium you use to distribute the kit, and the installation
procedures that your users run when they install the kit on their systems.

This chapter helps you answer these questions. It describes the product
types supported by the kit-building process and the options for packaging
and installing the kit on the customer’s system. It leads you through the

Overview of Product Kits 1-1

steps involved in building kits for the varicus kinds of products, and it
describes the installation options that the operating system supports.

After you determine the kind of kit you are building, you can refer to
individual chapters of the book for detailed steps for building your
particular kit.

Note

Many processes in this document refer to the osf_boot utility.
This is a common term referring to the boot command for your
hardware’s console subsystem that supports the operating
system. For additional information, refer to your system’s
hardware documentation. At the >>> console prompt, you can
enter help boot to view online help for this command.

1.1 Product Types

The process described in this book lets you deliver layered products for a
customer’s system. A layered product is any software product that is not
part of the base operating system, Layered products can fall into the
following categories:

User product

A user product runs in user space. Commands and utilities fall into
this category, as do applications such as text editors and database
systems. Users interact directly with user products, for example,
through commands or window interfaces.

Kernel product

A kernel product runs in kernel space. Users do not directly run
kernel products, but the operating system and utilities access them to
perform their work. For example, a device driver is one common type of
kernel product. A user runs an application or utility, which generates
system requests to perform operations such as opening a file or writing
data to a disk. The system determines which device driver should
service this request and then calls the appropriate driver interface.

Hardware product

A hardware product provides the kernel modules necessary for the
operating system to support new or additional hardware. Before a
system manager can use the hardware, the hardware product kit must
be configured into the kernel, since there are no kernel modules
available to handle potential kernel and user requests for the
hardware. The hardware product kit contains a kernel product — the

1-2 Qverview of Product Kits

device driver for the hardware— and other files needed for configuring
the driver into a kernel at system installation time. A hardware
product kit can be installed either concurrent with or after the
operating system installation.

1.2 Kit Formats

Before being copied onto the distribution media (diskette, CD-ROM, or
tape), the product files are gathered into subsets. A subset groups together
related files and specifies whether the group is required or optional for the
installation procedure. You can copy the product files onto the distribution
media in one of the following formats:

tar format

In tar format, the product files belonging to the same subset are
dumped to the distribution media as a single file. During installation,
the setld utility uncompresses the files, then moves them onto the
customer’s system, preserving the files’ original directory structure. The
gentapes and gendisk utilities can create kits in car format. Kits for
user and kernel products should be produced in tar format.

Direct CD-ROM (DCD) format

In direct CD-ROM format, the files are written to any disk media
(CD-ROM, hard disk, or diskette) as a UNIX file system (UFS). Subsets
distributed in DCD format cannot be compressed. The gendisk utility
can create kits in DCD format. Hardware product kits must be
produced on CD-ROM in DCD format.

1.3 Kit-Building Process

Figure 1-1 illustrates the process of creating and packaging a kit. In the
figure, boxes drawn with dashed lines represent optional steps; for example,
you do not have to create subset control programs if your kit requires no
special handling when it is installed. In Figure 1-1, the commands
enclosed in ovals perform the associated steps of the kit-building process.

Overview of Product Kits 1-3

Figure 1-1: Steps in the Kit-Building Process

Create kit directory
structure

Create subset control
programs

Produce distribution
media

ZK-0460U-Al

The kit-building process consists of the following steps:

1.

2.

Creating the kit directory structure that contains the source files

On the development system, you create the following directory
structure for the kit you want to build:

* A source hierarchy, which contains all the files that make up the
product.

¢ A data hierarchy, which contains files needed to build the kit.

* An output hierarchy, which holds the result of the kit-building
process — one or more subsets that make up the product kit.

This directory structure is the same for user products, kernel products,

and hardware product kits. Only the contents of these directories differ

among the product types. For example, a hardware product kit needs

additional files that are unique to this specific kit type.

Optionally create subset control programs

The setld utility can call a subset control program (SCP) to
perform installation steps specific to your kit. The SCP is opticnal. You
supply it on your kit only if the product requires special installation
steps. Most layered products supply a subset control program, though

14 Qverview of Product Kits

the actions the programs perform differ for each product type. For
example, the subset control program for a kernel product may call the
kreg utility to maintain the system file that registers kernel layered
products, while the subset control program for a user product would
not. Example 3-5 in Chapter 3 shows a subset control program for a
kernel product that uses the kreg utility.

Note

The set1d utility uses an alternate root directory in a
Dataless Management Services (DMS) environment..

To make your subset control program DMS compliant, use
dot-relative pathnames for file names and full absolute
pathnames (starting from root) for commands in your subset
control program. This ensures that the proper command is
executed when running on either the server or the client in
the dataless environment. The following is the default path
for subset control program processing commands to be run
from the server in 2 DMS environment:

/sbin:/us;/lbin:/usr/sbin:/usr/bin:.

Refer to Section 3.1.6 and Sharing Software on a Local Area
Network for more information about DMS.

Building subsets and control files

Before transferring your kit onto distribution media, organize the
product files into subsets. Subsets group together related files. For
example, one subset could contain optional product files, while another
subset could contain the files required to run the product. The kits
utility creates subsets according to the specifications you define in the
master inventory and key files. The kits utility is invoked from the
same directory in which the master inventory file is located.

Producing the distribution media

When you have created the subsets for the product, you are ready to
package the kit. At this point, you must decide whether to create the
kit in DCD format or in tar format. To do this, use the gendisk or
gentapes utility. If you are creating a kit for a hardware product, you
must also modify the kit and add files to support your system’s
bootstrap link. Hardware product kits must use the DCD format.

Overview of Product Kits 1-5

Testing the installation of the kit

After you have successfully created the kit, you should test the
installation of the kit. For user products and kernel products, you
install the kit by running the set1d utility. For hardware product kits,
first test the kit by running the set1d utility and then test by using
your system boot utility’s bootstrap link technology to bootstrap the
custom kernel and test the ability of the kit to be installed successfully
by the installation process. It is also recommended that you install the
kit in a RIS area so that RIS clients can install it across a network.

1.4 Sample Products Used in This Book

This book uses the following fictitious produets to demonstrate how to build
kits for each product type:

User Product — Orpheus Document Builder (ODB)

The Orpheus Document Builder application is produced by the fictitious
company, Orpheus Authoring Tools, Inc.. In the examples in this book,
the Orpheus Document Builder product is used to show how to build a
kit for a user product.

Kernel Product — /dev/none device driver

The /dev/none peripheral device driver is developed by the fictitious
company, EasyDriver, Inc.. In the examples in this book, the /dev/none
device driver is used to show how to build a kit for a kernel product.
The Writing Device Drivers: Tutorial introduced this fictitious product.

Hardware Product — edg graphics device driver

The edg graphics device driver, which EasyDriver, Inc. also produces, is
used in examples to show to how to build a kit for a hardware product.

16 Overview of Product Kits

2

Creating the Kit Directory Structure

When engineers finish developing a product, they give the product files to
you, the kit developer, for packaging and processing into a kit. Your first
task is to organize these files by function and use, then to place them in a
kit-building directory structure. When designing the kit-building directory
structure, you must consider where you want to place the product files on
the customer’s system. You then create a kit directory structure on the
development system that closely mirrors the customer’s directory structure.

This chapfer describes the standard directory structure and how to create a
kit-building directory structure to fit within the standard directory
structure for user, kernel, and hardware product kits.

2.1 Creating a Kit Building Directory Structure

To create a kit, you need three separate directory hierarchies on the kit
development system, as shown in Figure 2-1.

Figure 2-1: Kit Directory Hierarchy

Data Hierarchy
(kit-building
ontrol ”»==-' j

Source Hierarchy ™\

(product source g
tiles})
e

Qutput Hierarchy
. (builtkittiles)

e

ZK-0481U-Al

The following describes each directory hierarchy:
* Source hierarchy

The source hierarchy is a directory structure that exactly mirrors the
directory structure into which customers install your finished kit. You
must place each file that is to become part of your kit into the
appropriate directory in the source hierarchy. You can create the source
hierarchy under any directory you choose.

Creating the Kit Directory Structure 2-1

Data hierarchy

The data hierarchy is a directory structure that contains the following
files to specify the contents of the kit and how it is organized:

- A master inventory file lists each of the files in the kit and
defines which subset contains each file.

— A Kkey file specifies the kit’s attributes, such as the product name
and version and whether the subsets are in compressed or
uncompressed format.

— A subdirectory named scps contains any subset control programs
that the product requires.

The kits utility is run from the directory in which these files are
located. There is no specific requirement for the location of the data
hierarchy, but it is good practice to place it under the same directory as
the source hierarchy. Additional files may be required, depending on the
kit type.

Qutput hierarchy

The output hierarchy is a directory structure that contains the
subsets that are placed on the kit. The subset control files that are
needed during installation are stored in the . /kit/instctrl
subdirectory. There is no specific requirement for the location of the
output hierarchy, but it is good practice to place it under the same
directory as the source and data hierarchies.

Follow these steps to create the kit-building directory structure:

1.

Issue the appropriate mkdir commands for each of the directories and
subdirectories that you need. Refer to the mkdixr(1) reference page if
you need more information. :

Populate the src directory with all the files that are to be part of the
finished kit.

* Section 2.2.1 describes the directory file structure you need for a
user product

e Section 2.2.2 describes the directory file structure you need for a
kernel product

e Section 2.2.2 and Section 5.1 describe the directory file structure
you need for a hardware product

You can choose any appropriate method for populating the source
hierarchy. For example, you could create a Makefile file for use with
the make command.

2-2 Creating the Kit Directory Structure

Caution

File atiributes (ownership and permissions) for files and
directories in the kit’s source hierarchy must be set exactly as
they should be on the customer’s system. This means that you
must be superuser when populating the source hierarchy so that
you can change these file attributes.

Do not attempt to circumvent this requirement by setting file
attributes in your subset control programs. If a superuser on the
customer’s system runs the fverify command on your subsets,
attributes that the subset control programs have modified are
reset to their original values in the kit’s master inventory files.

2.2 Populating the Source Directory

It is possible to install the components of a kit in any directory on the
customer’s system. However, guidelines exist for deciding where to place kit
files. The standard system directory structure is set up for efficient
organization. It separates files by function and use.

You should install product files in subdirectories of /opt, /usr/opt, and
/usr/var/cpt, as follows:

s Boot files reside in /opt

Files that are required at bootstrap time, such as device drivers, are
installed in a product-specific subdirectory of /opt. This also includes
any files accessed before file systems other than root (/) are mounted.

+ Read-only files reside in /usr/opt
Files that are usually read-only, such as commands, startup files (which

can be modified, but not by individual users), or data files are installed
in a product-specific subdirectory of /usr/opt.

¢ Read/write files reside in /usz/var/cpt
Files that users can read and write, such as lists of data that any user

is allowed to change, are installed in a product-specific subdirectory of
/usr/var/opt.

The first thing you will need to get is a three letter product code from
Compag Computer Corporation for your product kit name. To obtain a
product code, send mail to the Product@DSsSR.enet.dec.com electronic
mail address. You use this product code and a product version number that
you assign to name the product-specific subdirectories of your product.

Examples in this book use OAT as the prefix for the product-specific
subdirectory names for the Orpheus Document Builder (ODB) product kit.

Creating the Kit Directory Structure 2-3

Assuming this is the first release of the product, the kit developer chose
100 as the version number. As such, directories are named /opt/0AT100,
/ust/opt/0AT1040, and /usr/var/opt/OAT100. OAT is the code assigned
to Orpheus Authoring Tools, Inc., the ficticious company who developed the
ODB product, and 100 is the product version number,

Using a standard directory structure has the following advantages:

¢ If disk partition restructuring or product maintenance becomes
necessary, it is easier to find all of your kit if its components are in the
/opt directories rather than scattered throughout the standard
directories.

e Exporting software to share across a network is simplified and more
secure; you need to export only the specific directories under /opt,
/usr/cpt, and /usr/var/cpt that contain the product you want, then
create links on the importing system. You can set up a server with
multiple versions of a given product, using the links created on the
client systems to determine which version a given client uses. In this
way, you can maintain software for multiple dissimilar hardware
platforms on the same server.

s Name space conflicts are avoided. When a layered product installs a file
that overwrites a file shipped by another product, it is known as a
name space conflict. Shipping the files in the /opt, /usr/opt and
/usr/var/opt avoids this conflict because each three letter product
code is unique to a particular original equipment manufacturer (OEM).

For users to make effective use of your product after it is installed, they

_should add the directories that contain your product commands to the

normal search path in their .profile or . login files. For example, the
Orpheus Document Builder (ODB) product is installed in the standard
directory structure under /opt, /usr/opt and /usz/var/opt. The
commands for the product are located in the /opt/0AT100/bin and

fusr fopt /CAT100/bin directories. To be able to use ODB commands
without specifying the full path on the command line, the user can add the
product path to the PATH environment variable.

It is possible to ship a symbolic link to make commands accessible through
the standard directories. For example, the ODB kit contains the command
/usr/opt/OAT100/bin/attr. A symbelic link can be created from
/usr/bin/attr to /usr/opt/0OAT100/bin/attr. This would also make
the attr command available to the user as a part of their normal search
path, since /usr/bin is part of the standard path.

Shipping a symbolic link ean be done if:

¢ The symbolic link does not conflict with any base opérating system file.
Using our example, it means that you could create the /usr/bin/attr

2-4 Creating the Kit Directory Structure

link only if the operating system does not already contain a
/usr/bin/attr file. If the operating system did contain a
/usr/bin/attr file, you could not ship the symbolic link, because
installing the link would overwrite an operating system file.

¢ The command name does not conflict with any standard operating
system command. For example, the /usr/opt/0AT100/bin/attr
command is shipped in the ODB kit and as part of the standard
operating system in /bin/attr. When the user enters the attr
command, there would be a command name conflict and, depending
upon which directory is first in the search path, /bin or /usr/bin, the
user could be getting the operating system version or the symbolically
linked ODB product version.

Figure 2-2 shows how the Orpheus Document Builder (ODB) product is
installed in the standard directory structure, under /opt, /usr/opt, and
/ust /var /opt. The directories shown above the OAT* directories are the
existing directories on the customer’s system. All directories and files
created by the layered product ship under the OAT* directories. In this
example, directory names begin with OAT because OAT is the three letter
product code assigned to Orpheus Authoring Tools, Inc..

Creating the Kit Directory Structure 2-5

Figure 2-2: Layered Product Standard Directories

ZK-1201U-Al

Caution

Shipping any file outside of the /opt, /usr/opt, and

/usr /var /opt directories is not recommended and could cause
a name space conflict with the base operating system or another
layered product.

Overwriting base operating system files can cause the following
problems:

* Your product will be corrupted during an Update Installation
of the operating system. The Update Installation will
overwrite any file that was shipped as part of the old version
with the new version of the file.

* Overwriting a base operating. system file can prevent an
Update Installation from completing successfully and may
render the system unusable.

2-6 Creating the Kit Directory Structure

¢ The user could be forced to remove your product from the
system as a part of an Update Installation process. The user
would then have to reinstall your product after the Update
Installation has been completed.

2.2.1 Directory Structure for a User Product Kit

The files are installed in directories under /opt, /usr/opt, and
/usr/var /opt so that the files are centrally located and easy to find. The
ODB kit contains files to be installed in the following directories:

¢ Jusr/opt/0AT100/bin
¢ /usr/opt/OAT100/1lib/br
¢ /usr/opt/OAT100/lib/doclib/templates

Figure 2-3 illustrates the complete directory structure for the ODB kit. In
this figure, the top level directory (drawn with dashed lines), dcb_tools,
represents an existing directory under which a kit developer created the
hierarchy directories.

The stc directory represents the roct (/) directory on the customer’s
system; the usr directory represents /usr on the customer’s system. All
the other directories in the source hierarchy are mapped to the customer’s
system in the same way.

The name of the top-level product-specific directory, under the source
hierarchy’s opt directory, is made up of the product code and a three-digit
version number, where the first digit identifies the major version number,
the second digit identifies the minor version number, and the third digit
identifies the update level. For example, the product code for the ODB kit
is OAT and its version number is 100, indicating major version 1, minor
version 0, update 0. Version numbers cannot be lower than 100.

If the ODB kit included user-writable files, they would be placed under the
Jusrt /var /opt/OAT100 directory. It is recommended that this convention
be used for consistency among user products.

Creating the Kit Directory Structure 2-7

Figure 2-3: Directory Hierarchy for the ODB Kit

L

"dcb“tools ;
_,-/

OAT100)

templates 3

ZK-0462U-Al

2.2.2 Directory Structure for Kernel Product and Hardware Product
Kits

You set up a kit directory structure for a kernel product and hardware
product in the same way as you would for a user product. You create three
directory hierarchies — src, data, and cutput — and populate the source
hierarchy with the product files. Under the src directory, create a directory
structure similar to the one on the customer’s system and place the product
files in /opt, /usr/opt, and /usr/var/opt as appropriate. Unlike a user
product, the kit for a kernel product or hardware preduct (such as a device
driver) requires certain files to be present in specific directory locations.

Figure 2—4 shows the directory structure of a device driver product as it
would appear in the kit development area. The driver shown here is the
/dev/none driver preduced by the fictitious company called EasyDriver,
Inc. This driver is first introduced in Writing Device Drivers: Tutorial.

2-8 Creating the Kit Directory Structure

Figure 2—4: Directory Structure for the /dev/hone Driver Kit

-
- -

easy

ZK-1198U-Al

The top-level directory (which is drawn with dashed lines) easy represents
the working area for all kit development at EasyDriver, Inc.. The szc
directory corresponds to the customer’s root directory (/). Directories under
src have a one-to-one relationship to directories on the customer’s system.
The EsA100 directory represents the top-level product directory for the
/dev/none driver.

The files needed for building a kit depend on whether the driver product
will be statically or dynamically configured on the customer’s system. For
example:

» A statically configured driver is statically linked into the kernel at build
{or bootlink) time. It is configured at boot time. A static driver can be
built from source files, binary objects, modules, or all three.

* A dynamically configured driver is loaded into a running kernel after it
has been booted. It is not part of the permanent kernel, and must be
reloaded after each boot of the system. It is configured when it is
loaded. A dynamie driver can be built from source files, binary objects,
modules, or all three.

Note:

A module that is capable of being loaded dynamically also can be
linked statically. The only difference is the call to configure the

Creating the Kit Directory Structure 2-9

driver (for more information on static or dynamic drivers, see
Writing Device Drivers: Tutorial).

The following list describes the files that go into a kernel or hardware kit
for a device driver, the directories where they reside, and the types of
drivers that use them:

s files file fragment

Contains information about the location of the source code and modules
associated with the driver, tags indicating when the driver is loaded
into the kernel, and whether the source or binary form of the driver is
supplied to the customer. For both statically and dynamically
configured drivers, place this file in a product directory, such as
/opt/ESA100/etc. You need to edit this file if the kit development
directory structure differs from the driver development directory
structure or if you must change the driver name for any reason.

Figure 2-5 shows which fields within the £iles file fragment need to
change,

Note

The files file fragment must be in the same directory as
the kernel modules or the kreg and doconfig utilities will
not work properly.

Figure 2-5: Editing the files File Fragment

files file fragment

This is the files file fragment for the /dev/none driver
used to preoduce the single binary module.

#
MODULE/STATIC Gone) standard Binary
i0/E5A100/none.c module

Edit this field to make it match Edit these fields to change
the kit development directory the driver name
structure

ZK-1199U-Al

* gysconfigtab file fragment

Contains device special file information, bus option data information,
and information on contiguous memory usage for statically and
dynamically configured drivers. When the user installs a kernel product
or hardware product kit, the driver’s sysconfigtab file fragment gets
appended to the /etc/sysconfigtab database. You should place this

2-10 Creating the Kit Directory Structure

file fragment in a product directory, such as /opt/ESA100/etc. You do
not need to change the sysconfigtab file fragment unless you change
the driver (subsystem) name. The driver name appears in three places
within the file, as shown in Figure 2-6. In the example, the driver runs
on 2 TURBOchannel bus (indicated by the TC_Option entry}, but a
similar set of bus options would be specified for other bus types.

Figure 2-6: Editing the sysconfigtab File Fragment

Edit these items to point to

sysconfigtab file fragment /the correct driver name

Module Config Name =

Device Dir = /dev

Device_Char_Major = ANY
Device_Char_Minor = 0
Device_Char_Files = none
Device_User = root
Device_Group = 0
Device_Mcde = 666
Device_Major_Req = Same

TC_Option = Modname ‘None *, Driver_ Name

Type C, Adpt_Config N

ZK-1203U-Al

driver.mod object module file

Contains the single binary module for both statically and dynamically
configured drivers, You should include this file in a product directory,
such as /opt/ESA100/sys/BINARY which must be in the roct (/) file
system. The kernel will not allow two kernel modules to have the same
name. To avoid kernel module naming conflicts with other OEMs and
the base operating system, it is recommended that you prepend your
three letter product code to your module names.

Note

Module files for hardware products must be compressed
using the cbjZz utility. Do not use the compress or gzip
utilities to compress module files.

* . c (source) and * .h (header) files

Contain the source code for the device driver. You should include these
files in a product directory, such as /usr/opt/ESA100, when the driver
is statically configured and distributed in source form.

device.mth method files

Creating the Kit Directory Structure 2-11

2-12

Contain driver methods that are called during auto configuration to
create device special files for dynamically configured drivers. These files
are on the distribution media, but are not installed onto the customer’s
system as part of the driver kit. The subset control program creates
links to these files in the customer’s subsys directory when the driver
is installed. The device driver developer can tell you which method files
_the subset control program should link to, typically
/subsys/device.mth. You need to link the method in a device driver
kernel kit only if the driver needs to have device special files created for
its devices.

Creating the Kit Directory Structure

|
3

Creating Subset Control Programs

This chapter describes how to write subset control programs for layered
products.

A subset control program (SCP) perforrﬁs special tasks beyond the basic
installation tasks managed by the set1d utility. The following are some of
the reasons why you might need to write a subset control program:

* Some of your kit'’s files have to be customized before the product will
work properly

* You want to offer the user the option to install some of the files in a
nonstandard location

¢ You want to register and statically or dynamically configure a device
driver

¢ Your kit depends on the presence of other products

* You need to establish nonstandard permissions or ownership for certain
files

* Your kit requires changes in system files such as /etc/passwd

A subset control program can perform all of these tasks.

3.1 Common Characteristics of a Subset Control Program
Regardless of the specific tasks they perform, all subset control programs
share the following characteristies:

¢ They are named according to certain conventions and placed in the
kit-building directory structure so that the kits utility can find them.

» They include library routines supplied by the operating system.
* They are invoked at various times by the set14 utility.

* If errors occur, they must exit and return an error status to the setld
utility.

* They can call routines to return subset information to global variables.
By using these routines, you do not have to hard code subset
information into the subset control program.

Creating Subset Control Programs 3-1

o They can call routines to determine whether the subset control program
is Tunning in a dataless environment.

The following sections describe the characteristics shared by all subset
control programs.

3.1.1 Creating Subset Control Program Source Files

You create one subset control program for each subset that requires special
handling during installation. You can write the program in any
programming language, but you must take care that your subset control
program is executable on all platforms on which the kit can be installed. If
your product works on more than one hardware platform, you cannot write
your subset control program in a compiled language. For this reason, it is
recommended that you write your subset control program as a script for
/sbin/sh. All of the examples in this chapter are written in this way.

Usually subset control programs are short. If written as a shell seript, a
subset control program should be under 100 lines in length. If your subset
control program is lengthy, it is likely that you are trying to make up for a
deficiency in the architecture or configuration of the product itself.

Place all subset control programs that you write in the scps directory, a
subdirectory of the data directory. The subset control program’s file name
must mateh the subset name to which it belongs, and it must end with the
scp suffix. For example, the ODB product defines two subsets, named
OATODB100C and OATODBDOC100. If both subsets required a subset control
program, the source file names would be CATODB100 . scp and
OATODBDQC100 . scp.

When you create the subsets as described in Chapter 4, the kits utility
copies the subset control programs from the scps directory to the
instctrl directory. If a subset has no subset control program, the kits
utility creates an empty subset control program file for it in the instctrl
directory. '

3.1.2 Including Library Routines

A set of routines in the form of Bourne shell script code is provided by the
operating system. These routines are located in the
/usr/share/lib/shell/libscp file. Do not copy these routines into
your subset control program. Such a design would prevent your kit from
receiving the benefit of enhancements or bug fixes made in future releases.
Use the shel¥s source command to call in the routines, as follows:

. /usr/share/lib/shell/libscyp

3-2 Creating Subset Control Programs

3.1.3 Invoking Subset Control Programs

Your kit does not need to do anything to inveke its subset control program.
The setld utility invokes it during various phases of the installation
procedure. The subset control program can perform any tasks that it needs
during a phase, such as creating or deleting a file or displaying messages.
Certain tasks, such as performing dependency checks or creating forward
and backward links, should be performed only during specific phases if the
installation requires them.

Figure 3-1 shows timelines of the set1d utility when it is invoked with the
-1, —d, and —v options. The actions of the set1d utility are written above
the timelines; the value of the ACT environment variable and the actions
taken by the subset control program at each phase are shown below the
timelines.

Figure 3-1: Time Line of the setld Utility

setld -1 Display subset menu Load subsets Secure subsets >
| I | 1
M PRE_L POST_L C INSTALL
Determine if Check for Create links - Configure
subset belongs dependencies Lock subsets product
in the menu
setld -d Delete subsets
] | >
C DELETE PRE_D POST_D
Unconfigure Remove links Reverse PRE_L
the preduct Unlock subsets actions
getld -v Verify subsels
T >
v .

Run installation
verification program

ZK-1220U-Al

When it enters a new phase, the set1d utility sets the ACT environment
variable to a value that corresponds to the phase, then it invokes your
subset control program. The subset control program checks the value of the
environment variable to determine what action it needs to take. In some
cases, the set1d utility also passes arguments to the subset control
program. The subset control program uses the argument values to further
determine the actions it needs to take.

Creating Subset Control Programs 3-3

Do not inciude a wildcard in your subset control program’s option-parsing
routine; write code only for the cases the subset control program actually
handles. For example, the subset control programs in this chapter provide
no code for several conditions under which they can be invoked. The case
statements that choose an action simply exit with zero status in these
undetected cases, and the set1d utility continues.

3.1.4 Stopping the Program

Depending on the tests it makes, your subset control program could decide
at some point to stop the installation or deletion of its subset. For example,
if it checks for the existence of subsets upon which your product depends
and fails to find one or more of them, the subset control program can stop
the process.

To stop the installation or deletion of the subset, the subset control
program must return a nonzero status to the setld utility upon exiting
from the particular phase for which it was called. If the subset control
program returns a status of 0 (zero), the setld utility assumes that the
subset control program is satisfied that the set1d process should continue.

3.1.5 Setting Global Variables

The subset control program can use global variables to access information
about the current subset. Table 3-1 lists these variables.

Table 3-1: STL_Scpinit Global Variables

Variable Description

_SUB Subset identifier, for example, OATCDB100

_DESC Subset description, for example, Document Builder Tools

_PCODE Product code, for example, OAT

_VCODE Version code, for example, 100

_PVCODE Concatenation of product code and version code, for example,
CAT100

_PROD Product description, for example, Crpheus Document Builder

_RQOOT The root directory of the installation

_SMDB The location of the subset control files, . /usx/. smdb.

_INV The inventory file, for example, CATODE100 . inv

_CTRL The subset control file, for example, CATODB100.¢ctrl

_OPT The directory specifier /opt./

3-4 Creating Subset Control Programs

O

Table 3—1: STL_Scpinit Global Variables {cont.)

Variable Description

_ORGEXT File extension for files saved by the STL_LinkCreate routine, set
to pre$ PVCCDE

_0O0PS The NULL string, for dependency checking

You can call the STL_ScpInit routine to define these variables and
initialize them to their values for the current subset. This routine
eliminates the need to hard code subset information in your subset control
program. Use STL ScpInit in all phases except the M phase to initialize
global variables. All variable names begin with an underscore (_) for easy
identification.

3.1.6 Working in a DMS Environment

In a Dataless Management Environment (DMS) environment, one computer
acts as a server by storing the operating system software on its disk. Other
computers, called clients, access this software across the Local Area
Network (LAN) rather than from their local disks. Sharing software across
the network saves disk space on each of the computers in the network.

Note

The set1d utility uses an alternate root (/) directory in a
Dataless Management Services (DMS) environment.

To make your subset control program DMS compliant, use
dot-relative pathnames for file names and full absolute
pathnames starting from rcot (/) for commands in your subset
control program. This ensures that the proper command is
executed when running on either the server or the client in the
dataless environment. The following is the default path for
subset control program processing commands to be run from the
server in a DMS environment:

/sbin: /usr/lbin: /usr/sbin: /usr/bin:.

Refer to Sharing Software on a Local Area Network for more
information about DMS.

A subset control program may need to perform differently in a dataless
environment or disallow installation of the subset on such a system. In
particular, you should be concerned with the following issues when writing
a subset control program for installing in a dataless environment:

Creating Subset Control Programs 3-8

o If the product will be installed onto a DMS server, the subset control
program should not specify absolute pathnames. Otherwise, the setld
utility will install the product into a dataless area of
/var/adm/dms/dmsx.alpha rather than root (/), as if it were
installing onto the system itself.

* When running on a dataless client, the /usr area is not writable.
Therefore, you should not let the subset control program or the product
itself attempt to write to the /usr area during the C INSTALL phase.

You can use the following routines to handle dataless environments:

8TL_ IsDataless
Checks to see if a subset is being installed into a dataless environment.

STL_NoDataless .)
Declines installation of a subset inte a dataless environment.

3.2 SCP Tasks Associated with Installation Phases

The set1d utility calls the subset control program at the beginning of each
phase. Before calling the subset control program, the set1d utility sets the
ACT environment variable to a value that indicates the current phase. The
subset control program uses this variable to determine what action to take.
You can write the subset control program as a series of case statements,
where each statement handles one phase.

Some tasks must take place during specific phases. For example, checking
dependency relationships between subsets must take place during the
PRE_L phase; creating links between product files and the standard
directory structure must take place during the POST_1 phase.

The following sections describe the tasks that a subset control program
may take in each phase.

3.2.1 Displaying the Subset Menu (M Phase)

At the beginning of an installation, the set1d utility presents a menu of
subsets that it can install. Before displaying the menu, it sets the ACT
environment variable to M and calls the subset control program for each
subset. At this time, the subset control program can determine whether to
include its subset in the menu. The subset control program should return a
value of 0 (zero) if the subset can be included in the menu.

When it calls the subset control program during this phase, the set1d
utility passes one argument, which can have one of two values:

¢ -1 indicates that the operation is a subset load.

3-6 Creating Subset Control Programs

¢ —x is reserved for extraction of the subset into a remote installation
services (RIS)server’s product area.

For example, during this phase the subset control program can issue the
machine command to verify that the subset is being installed on the
correct hardware platform. If the command returns a nonzero status, the
subset control program exits with a nonzero status.

When setld extracts a subset into a RIS server’s product area, the server
also executes the subset control program to make use of the program’s code
for the M phase of installation. You should code the M phase to detect the
difference between extraction of the subset into a RIS area and loading of
the subset for use of its contents. To make this determination, check the
value of the $1 command argument (either —x for RIS extraction or -1 for
loading). For RIS extraction, the subset control program should do nothing
during the 4 phase. When loading subsets, it should make this machine
test. The following Bourne shell example illustrates one way to code the M
phase. In Example 31, the subset control program is checking to
determine the type of processor on which it is running.

Example 3-1: Subset Control Program Test for Machine During M Phase

case SACT in

M}
case $1 in
-1)
[" ./bin/machine’" = alpha] || exit 1
esac
esac

Installation for a dataless client requires that the client’s local copy of the
machine command be used even though the installation is being performed
in the dataless area on a different platform. Because the machine
command is a shell script, it can be executed on any platform.

3.2.2 Before Loading the Subset (PRE_L Phase)

After presenting the menu and before loading the subset, the set1d utility
sets the ACT environment variable to PRE_L and calls the subset control
program for each subset. At this time, the subset control program can take
any action required to protect existing files.

Creating Subset Control Programs 3-7

Caution

Overwriting base operating system files can cause the following
problems:

* Your product will be corrupted during an Update Installation
of the operating system. The Update Installation will
overwrite any file that was shipped as part of the old version
with the new version of the file.

* QOverwriting a base operating system file can prevent an
Update Installation from completing successfully and may
render the system unusable.

¢ The user could be forced to remove your product from the
system as a part of an Update Installation process. The user
would then have to reinstall your product after the Update
Installation has completed.

The subset control program should also check for subset dependencies at
thig time. A suhset dependency is a condition under which a subset
depends on the existence of one or more other subsets. Because the setld
utility can install and remove subsets, a system administrater could
attempt to remove one or more subsets on which your product depends.
Because those subsets do not in turn depend on your product’s subsets, the
setld utility usually removes them without question, leaving your product
unusable or disabled. You can prevent this inadvertent destruction of your
product’s environment by locking the subsets on which your subset
depends. Subset locking can occur during the POST L phase (see

Section 3.2.3.2).

To make dependency management easier to implement, a set of routines is

provided in the form of Bourne shell script code. These routines are located
in the /usr/share/lib/shell/libscp file.

The dependency management routines use dependency expressions to
examine conditions on the system. A dependency expression is a postfix
logical expression that describes the conditions on which the subset
depends. Dependency expressions are recursive left to right and are
processed using conventional postfix techniques. Dependency expressions
are defined in Backus-Naur form, as follows:

_depexp ::= wc_subset_id
| depexp not
| depexp depexp and
| depexp depexp or

Table 3-2 lists the elements of a dependency expression (depexp):

3-8 Creating Subset Control Programs

Table 3-2: Elements of a Dependency Expression

Element Description

we_subset_id Represents a subset identifier that can contain file name
expansion characters (asterisks, question marks, or
bracketed sets of characters), for example, as in
QAT [RV]DOR*277.

and operator Requires two dependency expressions. The dependency is
satisfied if both expressions are satisfied.

or operator Requires two dependency expressions. The dependency is
satisfied if at least one of the expressions is satisfied.

not operator Requires one dependency expression. The dependency is
satisfied if the expression is not satisfied.

The following are valid dependency expressions:

SUBSETX??0

SUBSETY200 not

SUBSET {WX] 100 SUBSETY200 and

SUBSETX100 SUBSETY200 or

SUBSETX100 SUBSETY200 and SUBSETZ300 or not

The last of these expressions evaluates as follows:

+ The and operator is satisfied if both SUBSETX100 and SUBSETY200 are
present.

¢ The or operator is satisfied if the and operator was satisfied or if
SUBSETZ300 is present.

» The not operator is satisfied only if the combination of SUBSETX100
and SUBSETY200 is not present and SUBSETZ300 is not present.

You can call the following routines to perfor-m dependency checking:

STL DepInit
Establishes objects that the STL_DepEval routine uses. Before you use
" STL DepFval to check your subset’s dependencies, you must execute
STL DepTnit once. This routine has no arguments and returns no
status.

STL DepEval depexp
Evaluates the dependency expression that you specify as an argument.
You can use as many invocations of STL DepEval as you need to verify
that all your subset dependencies are met.

3.2.3 After Loading the Subset (POST_L Phase)

After loading the subset, the set1d utility sets the ACT environment
variable to POST 1. and calls the subset control program for each subset. At

Creating Subset Control Programs 3-9

this time the subset control program can make any modifications required
to subset files that usually are protected from modification when the
installation is complete, such as moving them to a different location. The
subset control program should create links and perform subset dependency
locking at this time.

Sometimes you may need to create links within your product’s directories
in the layered product areas that refer to files in the standard hierarchy.
Such backward links must be created carefully because the layered
product directories themselves can be symbolic links. This means that you
cannot rely on knowing in advance the correct number of directory levels
(../) to include in the in commands for your backward links. For
example, /var is frequently a link to /usr/var.

When s kit is installed on a network file system (NFS) server, all the
backward links are made in the server’s kit area. Then, when that area is
exported to clients, the links are already in place for the client. You do not
need to create any backward links in the client area.

Note

NFS clients importing products with backward links must have
directory hierarchies that exactly match those on the server.
Otherwise, the backward links fail.

3.2.31 Creating Backward Links

The subset control program should create backward links so that
installation on an NFS client cannot overwrite any existing backward links
in the server’s kit areas. You do not run the subset control program on an
NFS client. Your subset control program should create and remove
backward links in the POST 1. and PRE_D phases, respectively.

Use the ST, LinkInit and STL_ LinkBack routines to create backward
links as follows, and use the rm shell command to remove them:

STL LinkInit

Used in the pCST_L phase to establish internal variables for the
STL_LinkBack routine. Before you use STL._LinkBack to create a link,
you must execute STL LinkInit once. This routine has no arguments
and returns no status.

STL LinkBack link file file path link path

Creates a valid symbolic link from your product area (under /usr/opt
or /var/opt) to a directory within the standard UNIX directory

3-10 Creating Subset Control Programs

structure. In this example, 1ink file is the file to link, file pathis
the dot-relative path of the directory where the file actually resides,
and 1ink path is the dot-relative path of the directory where you
should place the link. You can use STL_LinkBack repeatedly to create
as many links as required. This routine returns no status.

Example 3—2 uses STL_LinkInit and STL_LinkBack in the POST_ T phase
to create a link named /usr/opt/0AT100/1ib/odb users that refers to
the real file /etc/odb_users, and removes the link in the PRE_D phase.

Example 3-2: Backward Link Creation

#! /sbin/sh

case SACT in

POST_L}
STL_LinkInit
STL LinkBack odb users ./etc ./ust/opt/OAT100/1ib

PRE D)
rm -f . /usr/opt/OATiI00/1ib/odb _users

P

esac

3.2.3.2 Locking Subsets

Every subset in the system’s inventory has two lock files:

* A lock file named subset-id. 1k indicates successful installation of a
subset

e A lock file named subset-id.dw indicates failed corrupt installation of
a subset ’

When it installs a subset, the set1d utility creates one of these two lock

files. At that time, the lock file is empty. Assuming successful installation,

that subset is then available for dependency checks and locking performed

on behalf of subsets installed later. A subset’s lock file can contain any

number of records, each naming a single dependent subset.

For example, the ODB kit requires that some version of the Orpheus
Document Builder base product must be installed for the ODB product to
work properly. Suppose that the OATBASEZ00 subset is present. When the
setld utility installs the OATODR1 GO subset from the ODB kit, it inserts a
record that contains the subset identifier OATODB100 into the

Creating Subset Control Programs 3~11

OATBASE200. 1k file. When the system administrator uses the setld
utility to remove the CATBASE200 subset, the setld utility checks
OATBASEZ200. 1k and finds a record that indicates that OATODB100 depends
on OATEASE200. Then the setld utility displays a warning message with
this information and requires confirmation that the user really intends to
remove the CATBASE200 subset.

If the administrator removes the CATODB100 subset, the set1d utility
removes the corresponding record from the OATBASE200 . 1k file.
Thereafter, the administrator can remove CATBASE200 without causing a
dependency warning.

You can call the following routines to lock subsets:

STL_LockInit
Used in the POST L and PRE_D phases to establish objects for the
STL DepLock and STL DepUnLock routines. Before you use
STL_DepLock or STL DepUnLock to manipulate subset locks, you
must execute STI. LockInit once. Because locking and unlocking are
managed by different invocations of your subset control program,
STL_LockInit must appear in both the POST I and PRE_D phases. You
should code two instances of STL LockInit rather than calling it once
before you make a decision based on the value of the ACT environment
variable. This routine has no arguments and returns no status.

STL Deplock subset depexp ...
Used in the POST_L phase to add the new subset’s name to the lock
lists for each of the subsets named as arguments. (You can use
dependency expressions as arguments.) The name of the new subset is
the first argument to STL DepLock. For example, the following call to
STL DepLock places CATODB100 in the OATTCOLS100. 1k and
OATBASE27 7. 1k files:

STL_DepLock OATODB1C0O OATTOOLS100 CATBASE2??

3.2.4 After Securing the Subset (C INSTALL Phase)

After securing the subset, the set1d utility sets the ACT environment
variable to ¢ and calls the subset control program for each subset, passing
INSTALL as an argument. At this time, the subset control program can
perform any configuration operations required for product-specific tailoring.
For example, a kernel kit would statically or dynamically configure a device
driver at this point. The subset control program cannot create a layered
product’s symbolic links at this time.

The setld utility enters this phase at the following times:

* When the user invokes it with the —c option

3-12 Creating Subset Control Programs

¢ When the user invokes it with the -1 option and without the -D flag to
specify an alternate root (/) directory

The setld utility does not pass through this phase if the user loads the
subset and specifies an alternate root directory with the -D flag.

3.2.5 Verifying the Subset (V Phase)

When the user invokes the set1d utility with the —v option, the utility sets -
the ACT environment variable to v and calls the subset control program for
each subset.

The setld utility checks for the existence of the installed subset. If the
user has invoked the set1d utility with the -1 option and the installed
subset exists, the setild utility verifies the size and checksum information
for each file in the subset during loading. The set1d utility does not call
the subset control program V Phase during the installation process.

If the subset’s subset control program includes an installation verification
program (IVP), the IVP is executed. However, in a kit that contains
multiple subsets, the last subset control program called could execute an
IVP (or a suite of IVPs) to ensure that the product works properly.

3.2.6 Before Deleting a Subset (C DELETE Phase)

When the user invokes the set1d utility with the —-d option, the utility sets
the ACT environment variable to C and calls the subset control program for
each subset, passing DELETE as an argument. At this time, the subset
control program can make configuration modifications to remove evidence
of the subset’s existence from the system. For example, a kernel kit would
deconfigure a statically or dynamically configured driver during this phase.
The subset control program cannot remove a layered product’s links at this
time.

3.2.7 Before Deleting a Subset (PRE_D Phase)

When the user invokes the set1d utility with the —d option, the utility sets
the ACT environment variable to PRE_D and calls the subset control
program for each subset. At this time, the subset control program can
reverse modifications made during the POST_L phase of installation, such
as removing links and dependency locks, or restoring moved files to their
default installation locations so that the set1d utility can delete them
properly. A return status of 0 (zero) allows the delete operation to continue.

You can call the following routines to remove links and unlock subszets:

Creating Subset Control Programs 3-13

STL LinkRemove
Removes links created by STL LinkCreate and restores any original
files that STL, LinkCreate saved. Call STL_ScpInit first to initialize
required global variables. The STL LinkRemcve routine cannot remove
modified links.

STL DepUnLock subset depexp ...
Removes the new subset’s name from the lock lists for each of the
subsets named as arguments.

3.2.8 After Deleting a Subset (POST_D Phase)

During the POST D phase, after deleting a subset, the sec1d utility sets
the ACT environment variable to POST_D and calls the subset control
program for each subset. At this time the subset control program can
reverse any modifications made during the PRE_L phase of installation.

3.3 Subset Control File Flag Bits

As explained in Table 4-3, you can use bits 8 to 15 of the subset control
file’s flags field to specify special subset-related information. The subset
control program ean read these bits from the subset control file (files with a
.ctrl suffix) into which this information was placed when the kit was
built. During an installation, the set1d utility moves the subset control file
to the . /usr/.smdb. directory, where the subset control program can read
the file as needed.

Not all subset control programs need to use the subset control file. It can be
a convenient way to pass information between subsets, if such
communication is necessary.

Caution

If you must use the subset control file, be extremely careful. Bits
0 through 7 of the flags field are reserved by the setld utility;
do not use or modify these bits in any way.

To find the current settings of the flags field, the subset control program
should read the subset control file, looking for a line that lists the settings.
For example, the OATODBDOC100.ctzrl file contains the following line:

FLAGS=1

The value of the flags field is expressed as a decimal integer. You can use
the BitTest shell routine, contained in the file

3—-14 Creating Subset Control Programs

/usr/share/lib/shell/BitTest, to test an individual bit. The following
example tests bit 11 of the flags field for the OATODBDOC10GC subset:

Example 3-3: Using the BitTest Routine to Test Bits

! /sbin/sh
. /usr/share/lib/shell/BitTest

flags=‘sed -n '/FLAGS=/s///p’ usr/.smdb. /OATODBDCCLO0 . ctr1?
BitTest $flags 11 && |

}

3.4 Creating a Subset Control Program for a User Product

Example 3—4 shows a subset control program for the ODB user product.
This program illustrates one correct method to obtain the value of the ACT
environment variable. It uses the value of the variable to determine what
actions to perform, as follows:

¢ During the PRE_T. phase, performs dependency checking to make sure
the base tools are already installed.

» During the POST L phase, creates symbolic links and locks subsets on
which it depends.

e During the ¢ INSTALL phase, notifies the user that installation is
complete.

¢ During the PRE_D phase, removes symbolic links.

* During the PCST D phase, unlocks subsets.

The program does not handle the v phase or the ¢ DELETE phase. When
the setid utility invokes the program at these times, the program exits
with a success status.

Example 3-4: Subset Control Program for the ODB User Product

#1/sbin/sh

B

Subset Control Program for OATODE??? subset
INCLUDE SCP LIBRARY FUNCTIONS

[*/bin/machine’ = alpha] &&
. /usr/share/lib/shell/libscp [J

BEGIN EXECUTION HERE

Creating Subset Control Programs 3-15

Example 3-4: Subset Control Program for the ODB User Product (cont.)

case SACT in @

u) [3]
case $1 in
.13
hardware platform check
[" ./bin/machine’" = alpha] || exit 1
esac
i
PRE_L) (4]

dependency checking
STL_Scpinit
STL_DepInit

STL_DepEval ${ PCODE}TOOLS??? | |
{
_00Pg="%_O0PS
orpheus Document Builder Tools (${_PCODE}TOOLS)"
}

STL_DepBEval ${_PCODE}BASE[2-9]7?7 ||
{
_QOPg="$_00PS
Orpheus Document Builder Base Tools, Version 2.0 or later (${_PCCDE}TOOLS)™"
}

["$_OOPS] &&
{
echo ¢
The $_DESC requires the existence of
the following uninstalled subset{s}:
$_OCPS

Please install these subsets before recrying the installation.
"orE2
exit 1

i

i
posT L) |5

create symbolic links

STL_Scplnit

dependency locking
STL LockInit
STL _PepLock $_SUB ${_ PCODE}TCOLS??? ${_ PCODE}BASE(2-2]7?? and

¢ [8)
STL_ScpInit
case $1 in
INSTALL) .
echo "
Installation of the $ DESC (S_SUB)
subset is complete.

i

Before using the teoels in this subset, please read the README.odb
file located in the /usr/lib/br directory for information on the
kit’s contents and for release information.

3-16 Creating Subset Control Programs

Example 3—4: Subset Control Program for the ODB User Product (cont.)

P

esac

PRE_D)

esac

remcve symbolic links
STL_Scplnit

dependency unlocking
STL_LockInit
STL DepUnLock $_SUB S {__PCODE} TOCL5?7? & {_PCODE} BASE[2-9]77 and

exit 0

Reads in the subset control program library routines if the installation
is running on an Alpha platform.

Examines the ACT environment variable to select the action the subset
control program takes when called by the set1d utility.

For the M phase, allows the set1d utility to continue if the installation
is running on an Alpha platform. If not, the subset control program
returns a nonzero status and exits. As a result, the set1d utility does
not present this subset in its menu of subsets to be installed.

During the PRE_L phase, ensures that subsets on which the
OATODB100 subset depends are installed. If they are not installed, the
subset control program describes the missing subsets and returns a
nonzero status to the set1d utility, which stops the installation of this
subset. If multiple subsets are being installed, each is treated
individually. The $_PCODE, $_00OPS, and $_DESC variables are defined
by the STL_ScpInit routine.

During the POST_L phase, creates symbolic links from the subset by
invoking the STL._ ScpTnit routine. After creating the links, the

- subset control program secures the subset by locking the subsets on

which it depends to ensure that they are not deleted without warning
the user of potential problems. The subset control program uses the

$ SUB and $_PCODE global variables to define the subsets in the
dependency relationship.

During the C phase, checks to see if the argument passed in by the
setld utility has the value of TNSTALL. If so, the program displays a
message indicating that the installation is complete. It uses
STL_ScpTnit and global variables to substitute the product
description ($_DESC) and subset ID ($_5UB) within the message text.

Creating Subset Control Programs 3-17

During the PRE_D phase, calls the STL ScpInit reutine to remove
symbolic links and calls the STL_LockInit and STL_DepUnLock
routines to unlock the subsets on which OATODE100 depends. The
$_SUB variable is defined by the STL_ScpInit routine.

Ensures that the subset control program returns a success status to
the setld utility for each successful action and for all of the possible
cases that the subset control program does not handle. Do not code
exit 0 statements elsewhere in your subset control program.

3.5 Creating a Subset Control Program for a Kernel
Product

In addition to the optional processing described in Section 3.4, a subset
control program for a kernel product (or hardware product) such as a
device driver must also configure the driver into the kernel. When building
subset control programs for a kernel product, such as a device driver, you
can choose one of the following configuration strategies:

* Write one subset control program for a kit that contains the software
subset associated with the single binary module for a statically
configured driver.

¢ Write one subset control program for a kit that contains the software
subset associated with the single binary module for a dynamically
‘ configured driver.

* Write one subset control program for a kit that contains the software
subsets associated with the device driver that can be statically or
‘ _ dynamically configured.

Example 3—-5 shows the subset control program for the single binary
module associated with the /dev/none driver. The user can choose to
configure this single binary module into the kernel either statically or
dynamically. The subset control program runs the doconfig utility to
configure the driver into the kernel.

Example 3—~5: Subset Control Program for the /dev/none Driver

#1/sbin/sh

NONE.scp - Install the files associated with the /dev/none
device driver. This driver, implemented as a single binary
module (.mod file), can be statically or dynamically configured
into the kernel.

B S

case "$ACT" in m

3-18 Creating Subset Control Programs

Example 3-5: Subset Control Program for the /dev/none Driver (cont.)

c}

case §1
INSTALL)
acho
eche
echo
echa

echo

read
case

in

nexxwx /dev/neone Product Installation Menu *x»x»*"
LS X 8 X ° ook ok I
"1, Install the static device driver subset.™

"2. Install the dynamic device driver subset."

" Type the number for your choice [] "

answer

${answer} in

1} '
Register the files associated with the static
4 /dev/none device driver product.
kreg -1 EasyDriverInc ESANONESTATIC100 /usr/opt/ESA100 |E|

Merge the files associated with the statically configured
/dev/none device driver product to the customer's

/etc/sysconfigtab database

sysconfigdbh -m -f fusr/opt/ESA100/sysconfigtab none []

echo "The rest of the procedure will take 5-15 minutes"
echo "to rebuild vour kernel, depending on the processor"
echo "type."
echo o
echo "Starting kernel rebuild... "
if doconfig -c.SHOSTNAME [6]
then
echo "Kernel built successfully"
else
1>&2 echo "Error building kernel."
return 1
fi

5

2)

Merge the files assoclated with the dynamically cenfigured
/dev/nione device driver product to the customer’s

/fetc/sysconfigtab database

sysconfigdb -m -f /usr/opt/ESA100/sysconfigtab none

Copy the none.mod file to the /subsys directory. Create
the none.mth driver method by linking to device.mth

/subsys/none.mth -> /subsys/device.mth

cp /usr/opt/ESA100/none.mod /subsys/neone.med []

1n -s /subsys/device.mth /subsys/none.mth

Load the /dev/ncne device driver and create the device
special files
sysconfig -c none

echo "The /dev/none device driver was added to your
echo "/etc/sysconfigtab database."

DELETE) [13]

echo

vexkk /dey/none Preduct Installation Menu *****n

Creating Subset Control Programs

3-19

Example 3-5: Subset Control Program for the /dev/none Driver (cont.)

echo "rxxx# *kxk kN

echo "1. Delete the static /dev/none device driver subset."
echo "2. Delete the dynamic /dev/none device driver subset."

echo" Type the number for your choice [} ™

read answer
case ${answer} in
1}
kreg -d ESANONESTATTC100

Delece the /dev/none device driver’'s entry from the
/etc/sysconfigqrab database

sysconfigdb -d none Iﬁl

gcho "The rest' of the procedure will take 5-15 minutes"
echo "to rebuild your kernel, depending on the processor"
echo “type."

echo LIRI}

echo "Starting kernel rebuild... "

if doconfig -¢ SHOSTNAME

then

echo "Kernel built successfully”
alse

1»&2 echo "Error building kernel."

return 1

fi

i

2)

Make sure the /dev/none device driver is not currently
% loaded

sysconfig -u none

k Delete the /dev/none device driver's entry from the
/etc/syscontigtab database
syscenfigdb -d none
esac
esac
esac
exit 0

[i] Examines the ACT environment variable to select the action the subset
control program should take.

(2] Displays a menu of installation options during the ¢ INSTALL phase.
The user can choose to install the driver for static configuration or
dynamic configuration.

(3] Performs a static configuration, if the user chooses menu item 1.

4] Invokes the kreg utility to register the driver files with the kernel.
The kreg utility registers a device driver product by creating the

3-20 Creating Subset Control Programs

/usr/sye/cont/.product.list file on the customer’s system. This
file contains registration information associated with the static device
driver product. The subset control program calls kreg with the
following arguments: '

The -1 flag

This flag indicates that the subset was loaded, and it directs kreg
to register the device driver product as a new kernel extension.

Company name

The company name is EzsyDriverInc. The kreg utility places
this name in the company name field of the customer’s
/usz/sys/conf/.product.list file.

Software subset name

The software subset name for this device driver product is
ESANONESTATIC100. The subset name consists of the product code,
subset mnemonic, and three-digit version code. The kreg utility
extracts information from the specified subset data and loads it
into the customer’s /usr/sys/conf/.product.list file.

Directory name

The directory on the customer’s system where kreg copies the files
associated with this driver product is /usr/opt/ESA10C. The
kreg utility places this directory in the driver files path field of the
customer’s /usr/sys/conf/.product.list file.

Refer to the kreg(8) reference page for more information.

5] Adds the éysconf igtab file fragment for the statically configured
driver to the system’s /etc/sysconfigtab database by calling the
sysconfigdb utility with the following arguments:

The —m flag

This flag causes the sysconfigdb utility to merge the device
driver entry to the customer’s /etc/sysconfigtab database.

The -f flag

This flag precedes the name of the sysconfigtab file fragment
whose device driver entry is to be added to the
/ete/sysconfigtab database. This flag is used with the —a flag.

The sysconfigtab file fragment

The kit developer at EasyDriver, Inc. specifies the path
/usr/opt/ESA100/sysconfigtab to indicate the location of the
sysconfigtab file fragment for the /dev/none device driver.

Device driver name

Creating Subset Control Programs 3—21

=]

IR

B B =

&l [l

The kit developer at EasyDriver, Inc. specifies none as the name of
the driver whose associated information is added to the
/ete/sysconfictalb database. This name is obtained from the
entry name item of the sysconfigtab file fragment, as described
in Writing Device Drivers: Tutorial.

Runs the doconfig utility to configure the driver into the kernel. The
subset control program returns an error if doconfig fails for any
reason.

Performs a dynamic configuration if the user chooses menu item 2.

Calls the sysconfigdb utility to merge the driver’s sysconfigtab
file fragment to the system’s /etc/sysconfigtab database.

Copies the dynamically configured driver’s single binary module (. mod
file) to the /subsys directory.

Creates a symbolic link from the /subsys/device.mth ﬁ]e to the
driver’s /subsys/ncne.mth file.

Calls the sysconfig utility with the —c option to reconfigure the
system and include the /dev/none driver. The —c option causes the -
sysconfig utility to dynamically configure the driver into the running
system and to create device special files. The name of the driver as
specified in the sysconfigtab file fragment follows the option.

Displays a message notifying the user that the driver has been added
to the system.

Displays a menu of options for deleting subsets during the C DELETE
phase. The user must tell the set1d utility whether the subset to be
deleted represents a statically configured driver or a dynamically
configured driver. The way the driver was configured determines how
the driver is deleted.

Calls the kreg utility to deregister the driver with the kernel, if the
user chooses menu option 1 (delete a statically configured driver).
When the kreqg utility is called with the -d flag, it deletes the entry
for the specified layered product from the customer’s
/usr/sys/conf/.product. ist file. In this case, the layered
product is the /dev/none driver, represented by the
ESANONESTATIC1G0 subset identifier.

Calls the sysceonfigdb utility with the -d flag, which deletes the
static /dev/none device driver from the customer’s
/etc/sysconfigtab database.

Runs the doconfig utility to reconfigure the kernel. The subset
control program returns an error if doconfig fails for any reason.

Calls the sysconfig utility with the -u flag to deconfigure the
dynamically configured /dev/ncne device driver from the running

3-22 Creating Subset Control Programs

system if the user chooses menu item 2 (delete a dynamically
configured driver).

Calls the sysconfigdb utility with the - d flag to delete the
dynamically configured /dev/none device driver from the customer’s
/etc/sysconfigtab database.

Creating Subset Control Programs 3-23

4

Building Subsets and Control Files

In a kit, a subset is the smallest ingtallable entity that is compatible with
the setld utility. It is up to you, the kit developer, to specify how many
subsets your kit has and what files each contains. A good practice is to
group files by related function or interdependence.

This chapter also describes how to create the master inventory and key
files for the ODB product and how to use the ki ts utility to create the
subsets and subset control files. You perform the same steps when creating
subsets for user products, kernel producis, and hardware product kits.

The following list summarizes the steps a kit developer must follow to build
subsets and associated control files:

Organize product files into subsets.

2. Create a master inventory file which contains information about each
file in the subset.

3. Create a key file to define product attributes such as the product
name, product version, and subset definitions.

4, Optionally create a subset control program (SCP) to perform special
tasks that are beyond the basic instaliation tasks managed by the
setld utility. SCPs are decumented in Chapter 3.

5. Run the kits utility to create the subsets and related control files.

4.1 Grouping Files into Subsets

The fictitious user product ODB requires two subsets. The subset named
OATODR10C contains the files needed to run the product. The subset named
OATODRDOC100 contains documentation and online help files. By placing
the documentation in a separate subset, the customer’s system
administrator can choose not to install the documentation subset if space is
limited on the system.

Figure 4-1 shows how the files that make up the ODB product are grouped
into subsets. As the figure shows, the physical location of a file is not
necessarily a factor in determining the subset to which it belongs.

~Building Subsets and Control Files 4-1

Figure 4-1: Subsets and Files in the ODB kit

OATODB100 OATDBDOC100

I OADODBDQC. Links

"2 —
I

READMEdch

| conv_bracesl
docbld

doebld.1

4.2 Creating the Master Inventory File

ZK-1216U-Al

After deciding upon subset names and their contents, you have to specify in
a master inventory file the subset names and the files that each subset
contains.

You can create a master inventory file with any text editor you like, or
create the file with the touch command. The master inventory file name
must consist of the product code and version, with the letters mi as a suffix.
The file should be located in the data directory of the kit. For example:

% ed /deb tools/data
% touch OAT100.mi

The first time you process a kit, the master inventory file is empty. You
must enter one record for each file that belongs on the kit. To get an initial
list of these files, you can use the newinv command. Specify the file name
of the empty master inventory file and the pathname of the source
hierarchy’s top-level directory. For example:

% newinv OAT100.mi ../data

4-2 Building Subsets and Control Files

This command invokes newinv on the master inventory file for the ODB
product. It specifies the pathname to the source hierarchy as a relative
path from the current directory (data).

The newinv utility produces a list of files that are present in the source
hierarchy and places you in the vi editor, or the editor specified by your
EDITOR environment variable, so that you can make the required changes.
Remove the entries for any files that should not appear on the kit, and add
the flags, pathname, and subset identifier for each entry that should
appear on the kit.

Note

¢ T[se extreme care when editing the master inventory file; you
must separate fields in this file with a single tab character,
not a space. File names must not contain spaces or tabs.

* The files listed in the master inventory file are given
dot-relative pathnames. The setld utility usually works
from the system’s root (/) directory, but the user can specify
an alternate root directory with the —D option. For this
reason, you should not use absolute pathnames in the master
inventory file.

The master inventory file contains one record for each file in the kit. Each
record in the master inventory file consists of three fields, described in
Table 4-1.

Table 4-1: Fields in the Master Inventory File

Field Description

Flags A 16-bit unsigned integer.

Bit 1 is the v (volatility) bit. When set, changes to the existing
copy of the file can occur during kit installation. It usually is set
for files such as usr/spocl/mqueue/syslog.

Bit 2 is the 1 (link) bit. When set, the STL_LinkCreate routine
invoked in the subset control program (. scp) creates a forward
link from the standard system directories to the layered product
opt areas. The remaining bits are reserved; possible values for
this field are therefore 0, 2, 4, or 6.

Building Subsets and Control Files 4-3

Table 4-1: Fields in the Master Inventory File (cont.)

Field Description

Pathname The dot-relative (. /) pathname of the file.

Subset The name of the subset that contains the file. Subset names
identifier consist of the produet code, subset mnemonic, and version

number. You must not include standard system directories in your
gubsets. In the ODB master inventory file, several records specify
directories that are part of the standard system hierarchy. Instead
of a subset identifier, these records specify RESERVED; this
keyword prevents setld from overwriting existing directories.

Example 4-1 shows that the ODB kit has two subsets. The OATCDB100
subset contains utilities and libraries and must be installed to use the
product. The OATODEDOC100 subset contains the product’s documentation
which is not required to run the product.

Example 4-1: Sample Master Inventory File for the ODB Kit

c . RESERVED

0 .fusr/opt RESERVED

0 . /usr/opt/0AT100/0ATODBDOC, Links OATODBDOC100
0 L/ust/opt/OATLO0/bin OATODBLOC

4 JJusr/opt/OATi00/bin/attr QATCDB10D

4 ./usr/opt /OAT100/bin/dch. spr OATCDE100O

4 ./usr/opt/OAT100/bin/dcb_defaults OATODELOC

4 L /usr/opt/OAT100/bin/deb diag.sed CATODB10Q

4 ., /usz/opt/0AT100/bin/dockld OATCDB100

4 fusr/opt/BAT100/bin/unstamp ORTCDB100

0 Ljusz/opt/0ATi00/1libk OATCDELOQ

0 ./usr/opt/OAT100/1ib/br ORTODBLOO

4 . /usr/opt/OAT100/lib/br /README. dch CGATODBLOO

4 ,/usr/opt /OAT100/1ib/br/attr.1 OQATODBDOC100

4 . /usr/opt/OAT100/1lib/br/dch.ps CATODBDOC100

4 ./usr/opt/0aT100/1ib/br /dochid. 1 QOATCDBDOCLO00
4 . /usT/opt/OAT100/1ib/br /unstamp. i OATODBDOC100
o] . fusr/opt/OAT100/1ib/doclib OATODEL10Q

0 . /usr/opt/OAT100/1ib/doclib/templates OATCDE100

4 . /usr/opt/OAT100/1lib/doclib/templates/conv.braces OATODRB100

In the example, the . /usr/opt directory has the RESERVED subset
identifier, indicating that the set1d utility should not allow the directory
to be overwritten if it exists on the customer’s system. The Flags field is set
to O (zero), indicating that this directory cannot change and that it is not
linked to another directory on the customer’s system. On the other hand,
the /usr/opt/0AT100/bin/attr file has the OATODB100 subset
identifier, indicating that the file belongs in the specified subset, The Flags

4—4 Building Subsets and Control Files

field is set to 4, indicating that the file may change and that it has a link to
another file on the customer’s system.

For subsequent updates to the kit, use the existing version of the master
inventory file for the input file. The newinv utility performs the following
additional steps:

¢ Creates a backup file, invencory-file.bkp.
* Finds all the file and directory names in the source hierarchy.
* Produces the following sorted groups of records:

~ Records that contain pathnames only, representing files now present
that were not in the previous inventory

— Records that represent files now present that were also present in
the previous inventory (this list is empty the first time you create
the inventory)

— Records that were in the previous inventory but are no longer
present (also empty the first time you create the inventory)

* Lets you edit the third of these groups, deleting records for files that no
longer belong in the kit.

* Lets you edit the group of new records by adding the flags and subset
identification fields (see Table 4-1).

¢ Merges the three groups of records and sorts the result to produce a
finished master inventory file that matches the source hierarchy.

4.3 Creating the Key File

The key file identifies the product on the product kit and includes the
product name and version number and the name of the master inventory
file for the kit. You create this file in the data directory with the text editor
of you choice. The key file name must consist of the product code and
version, with the letter k as a suffix. For example, OAT100 . k is the key file
for the ODB kit. Example 4-2 illustrates this key file.

Example 4-2: Key File for the ODB Kit

Product-level attributes
#

NAME='Qrpheus Document Builder’
CODE=OAT

VERS=100

MI=0AT100.mi

COMPRESS=1

#

4 Subset definjtions

#

%%

Building Subsets and Control Files 4-5

Example 4-2: Key File for the ODB Kit (cont.)

OATODB10O0 . o3 ‘Document Builder Teols’
OATCDBDOC100 OATCDB10D | OSFDCMT440 2 ‘Document Builder Documentation’

As shown in Example 4-2, the key file is divided into two sections
separated by a line that contains two percent signs (%%):

e The product attributes portion of the file describes the naming
conventions for the kit and provides kit-level instructions for the kits
command. This section of the key file consists of several lines of
attribute-value pairs as described in Table 4-2. Each attribute name
is separated from its value by an equal sign (=). You can include
comment lines, which begin with a number sign (#).

e The subset descriptor portion of the file describes each of the subsets in
the kit and provides subset-level instructions for the kits command.
This section contains one line for each subset in the kit. Each line
consists of four fields, each separated by a single tab character. You
cannot include comments in this section of the key file. Table 4-3
describes the subset descriptor fields. In Example 4-2, the CATCDB100
subset is mandatory; its Flags field is set to 0 (zero). The
CATODRDOC100 Document Builder Documentation subset in
Example 4-2 is optional; its Flags field is set to 2 (two). The
OATODBDOC100 subset is dependent on both the 0ATODB100 Document
Builder Tools subset, part of the ODB kit, and the 0SFDCMT440 Text
Processing subset, which is part of the base operating system.

Table 4-2: Key File Product Attributes

Attribute Description

NAME The product name; for example, Orpheus Document Builder.

Enclose the preduct name in single quotation marks (') if it
contains spaces.

CODE A unique product code that consists of three characters, for
example, OAT. The first character must be a letter. In this book,
OAT is the three character eode assigned to the Orpheus
Authoring Tools, Inc. development company. This code cannot
contain more than three characters. The product code is assigned
by Compaq. Send mail to the Procduct@DssR. enet.dec. com
electronic mail address to obtain a product code.
Note: The first three letters of a subset name must be the same as
the product code.

4-6 Building Subsets and Control Files

Table 4-2: Key File Product Attributes (cont.)

Attribute

Description

VERS

MT

ROCT

COMPRESS

Several of these product codes are reserved, including, but not
limited to, the following: DNP, DNU, EPI, FOR, LSP, ORT, OSF,
SNA, UDT, UDW, UDX, ULC, ULT, ULX, and UWS.

A three-digit version code; for example, 100, The setld utility
interprets this version code as 1.0.0. The first digit should reflect
the product’s major release number, the second the minor release
number, and the third the upgrade level, if any. The version
number cannot be lower than 100, The version number is
assigned by the kit developer.

The name of the master inventory file. If the master inventory file
is not in the same directory where the kits utility is run, you
maust specify the explicit path to it. The file name of the product’s
master inventory file consists of the product code and version plus
the .mi extension. You create and maintain the master inventory
file with the newinv utility.

Not illustrated in the example, the operating system has reserved
this optional attribute for the base operating system. ROOT has a
string value that names the root image file. Do not assign this
attribute for a layered product.

An optional flag that is set to 1 if you want to create compressed

-subset files. For kits in Direct CD-ROM (DCD} format, you must

set this flag to 0 (zero). Do not compress subsets on hardware
product kits. Compressed files require less space on the
distribution media (sometimes as little as 40% of the space
required by uncompressed files), but they take longer to install
than uncompressed files. If missing, this flag defaults to 0 (zero).

Table 4-3: Key

File Subset Descriptor Fields

Field

Description

Subset identifier

Dependency list

A character string up to 80 characters in length, composed of
the product code (for example, CAT), a mnemonic identifying
the subset (for example, OCB), and the three-digit version
code (for example, 100). All letters in the subset identifier
must be uppercase.

Either a list of subsets upon which this subset is dependent
(OATODB100 | OSFDCMT440), or a single period (.) indicating
that there are no subset dependencies. If there is more than
one subset dependency, separate them with the pipe
character (|).

Building Subsets and Control Files 4-7

Table 4-3: Key File Subset Descriptor Fields (cont.)

Field

Description

Flags

Subset description

A 16-bit unsigned integer. The operating system defines the
use of the lower 8 bits. Set bit 0, the sticky bit, to indicate
that the subset cannot be removed. Set bit 1 to indicate that
the subset is optional. Bits 2-7 are reserved for future use.
You can use bits 8-15 to relay special subset-related
information to your subset control program.

A short description of the subset, delimited by single
quotation marks (*); for example, 'Document Builder
Tools’.

The percent sign character (%) is reserved in this field and
must not be used for layered products.

4.4 Running the kits Utility

After you create the master inventory and key files, you create subsets and
control files by running the ki ts utility. This command requires three

arguments:

¢ Key file name

Pathname for the source hierarchy

Pathname for the output hierarchy

Note

‘The master inventory file (* .mi) and the key file (* . k) are
typically in the same directory. If they are not, the MI= attribute
in the key file must contain the explicit path to the master
inventory file. The scps directory that contains the subset
control programs must be in the same directory where the kits
utility is run.

For example, the following command builds the subsets for the ODB

product kit:

% cd /dchb tools/data
% kits OAT100.k ../data ../output

The kits utility performs the following steps and reports its progress:

1. Creates the subsets.

2. Compresses each subset, if you specify the COMPRESS attribute in the

key file.

4-8 Building Subsets and Control Files

3. Creates the installation control files listed in Table 4—4 and places
them in the instctrl directory.

4. Creates the instctrl file, which contains-a tar image of all the
installation control files. This file is placed in the output directory.

Table 4-4: Installation Control Files in the instctrl Directory

File

Description

product-id.comp

product-
code.image

subset-id.ctrl

subset-id.inv

subset-id.scp

Compression flag file. This empty file is created only
if you specified the COMPRESS attribute in the key
file. Its presence signals to the setld utility that the
subset files are compressed. The ODB kit’s
compression flag file is named 0AT100" comp.

Image data file. This file contains size and checksum
information for the subsets.

Subset control file. This file contains the set1d
utility control information. There is one subset
control file for each subset.

‘Subset inventory file. This file contains an inventory

of the files in the subset. Each record describes one
file. There is one subset inventory file for each subset.

Subset control program. If you created subset control
programs for your kit, these files are copied from the
scps directory to the inscctrl directory. There is
one subset control program for each subset; if you
have not created a subset control pregram for a
subset, the kits utility creates a blank file. For more
information on .scp files, refer to Chapter 3.

Figure 4-2 shows the contents of the cutput directory after the kits

utility has run.

Building Subsets and Control Files 4-9

Figure 4-2: Contents of the ODB output Directory

CATODB100 I

OATODBOC100

OAT100.comp

INSTCTRL

i
il

OAT100.image

OAT100.ctrl

QAT100.inv

OATODB100.scp

I

OATODBDOC100.scp

ZK-1218U-At

The subset files and the installation control {(instctrl) file are
constituents of the final kit. The following sections describe the contents of
the installation control files in detail.

4.4.1 Compression Flag File

The setld utility uses the presence of the compression flag file

(product -id.comp) to determine whether the subset files are compressed.
The compression flag is an empty file whose name consists of the product
code and the version number with the string comp as a suffix; for example,
CAT100 . comp. :

Note

Do not compress subsets on hardware preduct kits.

4-10 Building Subsets and Control Files

4.4.2 Image Data File

The setld utility uses the image data file to verify that the subset images
it loads from the installation media are uncorrupted before the actual
ingtallation process begins. The image data file name consists of the
product’s unique three-letter name with the string image for a suffix. The
image data file contains one record for each subset in the kit. The following
example illustrates OAT. image, the image data file for the ODB kit:

15923 70 OATODB10O
24305 400 OATCDEDOC100

Table 4-5 describes the three fields in each record.

Table 4-5: Image Data File Fields

Field Description

Checksum The modulo-65536 (16-bit) checksum of the subset file (after

compression, if the file is compressed)

Size The size of the subset file in kilobytes (after compression, if the
file is compressed)

Subset The product code, subset mnemonic, and version number

identifier

4.4.3 Subset Control Files

The setld utility uses the subset control files as a source of descriptive

information about subsets. A control file for each subset contains the
following fields:

NAME

Specifies the product name.

DESC

Specifies a brief description of the subset.
ROOTSIZE

Specifies (in bytes) the space the subset requires in the rcot (/) file
gystem.

USRSIZE

Specifies (in bytes) the space the subset requires in the usr file system.
VARSIZE

Specifies (in bytes) the space the subset requires in the var file system.
NVOLS

Building Subsets,and Centrol Files 4-11

Specifies disk volume identification information as two colon-separated
integers (the volume number of the disk that contains the subset
archive and the number of disks required to contain the subset archive).

* MTLOC

Specifies the tape volume number and subset’s location on the tape as
two colon-separated integers (the volume number of the tape that
contains the subset archive and the file offset at which the subset
archive begins). On tape volumes, the first three files are reserved for a
bootable operating system image and are not used by the setlid utility.
An offset of 0 (zero) indicates the fourth file on the tape. The fourth file
is a tar archive named INSTCTRL, which contains the kit’s installation
control files (listed in Table 4—4). :

®¢ DEPS

Specifies either a list of subsets upon which this subset is dependent
(DEPS="OATODB100 OSFDCMT440"), or a single period (DEPS=".")
indicating that there are no subset dependencies. If there is more than
one subset dependency, each subset name is separated by a space (see
Example 4-3).

¢ TFLAGS

Specifies the value in the flags field of the subsets record in the key file.
Bit 0 is the sticky bit which indicates that the subset cannot be
removed. Bit 1 indicates that the subset is optional. Bits 2 to 7 are
reserved; bits 8 to 16 are undefined.

The following example illustrates OATODBDOC100 . ctrl, the control file for
the ODB kit’s OATODBDCC100 subset:

Example 4-3: Sample Subset Control File

NAME='Qrpheus Document Builder’
DESC='Document Builder Documentation'
ROOTSIZE=0

USRSIZE=5220%0

VARSIZE=0

NVOLS=1: 2

MTLOC=1:1

DEPS="0ATCDB100 OSFDCMT240"

FLAGS=1
\

4.4.4 Subset Inventory File
The subset i-nventory file describes each file in the subset, listing its size,

checksum, permissions, and other information. The kits utility generates
this information, which reflects the exact state of the files in the source

4-12 Building Subsets and Control Files

o

v

hierarchy from which the kit was built. The set1d utility uses the
information to duplicate that state, thus transferring an exact copy of the
source hierarchy to the customer’s system. Example 4-4 shows the
inventory file, CATODBDOC100 . inv, for the ODB kit's OATODBDOC100
subset. -

Note

The backslashes (\) in this example indicate line continuation
and are not present in the actual file.

Example 4-4: Sample Subset Inventory File

4 983 01851 1065 0 100644 3/21/99 100 £y
./usr/opt/OAT100/1ib/br/attr.1 none OATODBDOC100

4 424937 63356 1065 10 100644 4/15/99 100 £\
L/usr/opt/OAT100/1lib/br/dch.ps none DATODBDOC16G0

4 7283 03448 1065 10 100644 4/15/59 100 £\
Lfusr/oept/OATI00/1ib/br/dockld. 1 none OATODBDOCL00O

4 6911 37501 1065 0 100644 3/21/99 100 £\
. /usr/opt/OAT100/1ib/br fdochld. 5 none CATODBDOCLOD

4 985 41326 1065 0 100644 3/21/99 100 £\
./usr/opt/OAT100/1ib/br /unstamp.1 none GATODEDOCLO0

/

Each record of the inventory is composed of 12 fields, each separated by
single tab characters. Table 46 describes the contents of these fields.

Table 4-6: Subset Inventory Field Descriptions

Field Name Description

1 Flags A 16-bit unsigned integer-

Bit 1 is the v (volatility) bit. When set, changes to
the existing copy of the file can occur during kit
installation. It usually is set for files such as
usr/spool/mgueue/syslog.

Bit 2 is the 1 (link) bit. When set, the
STL_LinkCreate routine creates & forward link
from the standard system directories to the layered-
product areas. The remaining bits are reserved;
possible values for this field are therefore 0, 2, 4, or 6.

2 Size The actual number of bytes in the file.

3 Checksum The module-65536 (16-bit) checksum of the file.
4 uid The user ID of the file’s owner.

5 gid The group ID of the file’s owner.

Building Subsets and Coentrol Files 4-13

Table 4-6: Subset Inventory Field Descriptions (cont.)

Field Name Description

6 Mode The six-digit octal representation of the file’s mode.

7 Date The file’s last modification date.

8 Revision The version code of the product that includes the file.

9 Type A letter that describes the file:

b — Block device.

¢ — Character device.

d — Directory containing one or more files.

f — Regular file. For regular files with a link count
greater than one, see file type 1.

1 — Hard link. Qther files in the inventory have the
same inode number. The first {(in ASCII collating
sequence) is listed in the referent field.

p — Named pipe (FIFO).

s — Symbelic link.

10 Pathname The dot-relative (. /) pathname of the file.

11 Referent For file types 1 and s, the path to which the file is
linked; for types b and c, the major and minor
numbers of the device; for all other types, none.

12 Subset The name of the subset that contains the file.

identifier

4-14 Building Subsets and Control Files

T b SELE

5

Hardware Product Kits

A hardware product kit is developed to deliver software support for
hardware on a customer’s system. This chapter describes how to prepare a
hardware product kit, the additional files required for the kit, and how to
test the installation of the kit.

A hardware product kit includes the kernel modules that let your operating
system support new or upgraded hardware, and it enables you to install
hardware support without reinstalling or updating the base operating
systern. However, you must reboot your system to rebuild the kernel so that
it includes the modules that support your new hardware. To support the
new hardware and the hardware product kit software, the customer may
need to install or update to Version 4.0F of the operating system before
installing the hardware product kit software.

The kernel modules and the kit support files are distributed on CD-ROM as
a hardware product kit and can be installed either directly from the
distribution media or loaded onto a Remote Installation Services (RIS) area
for installation by RIS clients over a local area network (LAN).

Follow these steps to create and test a hardware product kit:

Read Chapter 1 for an overview of product kits.
Design the kit structure as described in Section 2.1.

Populate the source directory as described in Section 2.2 and read
about the file considerations for hardware product kits in Section 2.2.2.

Read Chapter 3 for information about creating subset control programs.

5. Read Chapter 4 to group files into subsets, create the master
inventory and key files, and build files into subsets.)

6. Create the additional files required for hardware product kits as
described in Section 5.1.

Create a subset control program as described in Section 5.2.
8. Create the kit distribution media as described in Section 5.3.
Test the hardware product kit as described in Section 5.4.

Hardware Product Kits 5-1

5.1 Additional Files Required for Hardware Product Kits

A hardware product kit requires that you create the following files on the
distribution media to make the hardware product accessible during initial
system installation and bootstrap:

* A name.kit file for the distribution media

A name.kit file (where name represents the device or product name) is
provided on the hardware product kit and is located on the distribution
media only. This file must ship in the

./usr/opt/PROD CODE/sys/hardware directory. The PROD CODE
directory represents the three letter product code and product version.
Using the example in this chapter, PROD CODE is EDG100.

The file is used to control the actions of the system’s boot utility to
allow the kernel to boot with the new hardware support software off the
distribution media for the installation. The file is placed in the oot
directory on the hardware product kit distribution media after creating
the kit media with the gendisk utility. The content of the distribution
name. kit file specifies the location of the module files for the hardware
on the distribution media. This file is not part of the installed product
and does not need to be part of the product inventory. Each hardware
product kit on the distribution media must have its own name. kit file.

See Section 5.1.1 for more information about the format and contents of
this file.

* A name.kit file to be installed on the target system

A name. kit file (where name represents the device or product name) is
installed with the kit software onto the target system. This file controls
the boot link of the kernel from the installed target disk allowing the
target system kernel to boot with the new hardware support software.
The format of this file is the same as the format of the name.kit file on
the distribution media, but the location of the module files is specified
as the location of the hardware support files on the installed disk. This
file is a required part of the installed product and needs to be part of
the product inventory. -

See Section 5.1.1 for more information about the format and contents of
this file.

e Additional installed name.kit files

If there are any other hardware product kits on the same distribution
media, you must create a separate name.kit file for each kit. A single
media may contain several kits and several name.kit files (where
name represents the device or product name). '

52 Hardware Product Kits

o

A PROD _CODE.root file

This file must ship in the instctrl directory and contains the path to
the expanded subset files starting from the kit directory (for example,
/mnt/EasyDriver/kit). This file is automatically created by the
gendisk utility when a Direct CD-ROM (DCD) distribution media is
built. Using the example in this chapter, this file would be called
EDG1C0O.root.

A portion of the /etc/sysconfigtab file

The contents are passed to the kernel and logically are appended to the
contents of the /etc/sysconfigtab file read from the base disk. This
database defines attributes of the modules configured by the boot
utility. The contents of this file are described in Section 2.2.2.

A kitname.kk file

A kitname. kk file (where kitname is the product name) must be in
the instctr] subdirectory so that the hardware product kit can be
installed into a RIS area. The kitname.kk file is created automatically
by the gendisk utility when the kk=true option is used in conjunction
with the dd= option in the /etc/kitcap file.

See Section 5.1.2 for more information about the kitname.kk file. See
the kitcap(4) reference page for more information about the format of
the /etc/kitcap file.

The HW . db module database file

The module database file describes the list of subsets that need to be
installed for each kernel module. There is only one 4w .db file on each
piece of shipped media (CD-ROM or disk), and it contains information
about all of the hardware product kits on the media. This file must be
located in the root directory of the distribution media. See Section 5.1.3
for more information about the format and content this file.

The hardware_kit.hw hardware support file

The hardware support file contains information about each of the
product kits available on the shipped media. There is only one

hardware kit.hw file on each piece of distribution media, which
contains information about all the hardware products supported by the
kits on the media. The hardware support file must be named

hardware_ kit .hw. This file must be located in the root directory of
the distribution media. See Section 5.1.4 for more information about the
format and content of this file.

An installed hardwarename.hw hardware support file

The hardwarename.hw file is installed with the kit onto the target
system and contains information about the hardware product supported

Hardware Product Kits 5-3

by the installed kit. There should be one hardwarename.hw file for
each piece of hardware supported by the installed kit. Each file must be
part of the inventory of the subset that contains the associated
hardware support. This file must ship in the

./usr/opt/PROD CODE/sys/hardware directory. The PROD CODE
directory represents the three letter product code and product version.
Using the example in this chapter, PROD_CODE is KDG100. See

Section 5.1.5 for more information about the format and contents of this
file.

Figure 5-1 shows the directory structure for the EDGgraphics device
driver product. In this figure, the top level directory (drawn with dashed
lines), easy, is an existing directory under which the developer created the
hierarchy:directories. In the example, EDG is the three letter product code
assigned to the sample graphics device driver produced by EasyDriver, Inc..

Figure 5-1: Directory Structure for a Hardware Product Kit

——
e ~a

ZK-1200U-Al

. The following sections describe the contents of the name.kit, kitname.kk,
HW.db, hardware_kit.hw, and hardwarename.hw files.

5.1.1 The name.kit Files

The format of the distribution and the installed name.kit files is the
same. The difference between the two files is:

¢ In the distribution name. kit file, the modules are specified as their
location on the distribution media. This file must ship in the .

5-4 Hardware Product Kits

l |

./usr/opt/PROD CODE/sys/hardware directory. This file is not part
of the installed product and does not need to be part of the product
inventory. '

¢ In the installed name.kit file, the modules are specified as their
location on the installed system. The installed name. kit file must ship
under the /opt directory (that is, it must be on the root file system).
This file is a required part of the installed product and must be part of
the product inventory.

Commands in the distribution name.kit file describe how the boot utility
needs to modify the bootstrap link process to boot this kit off the
distribution media. When bootstrap linking the kernel, this file controls
where hardware product modules are found during the boot process. When
bootstrap linking from a hardware product kit, the boot utility sets the
default directory to the media root directory. During a normal boot
process, the default is /sys/BINARY on the system disk. Commands in the
distribution name.kit file indicate which modules should be added,
removed, or replaced in the kernel.

Note

i The kernel will not allow two kernel modules to have the same
name. To avoid kernel module naming conflicts with other OEMs
and the base operating system, it is recommended that you
prepend your three letter product code to your module names.
For example, the module name for the sample hardware product
in this chapter is EDGgraphics.mod.

! Modules needed for the kernel must reside in the

; . /opt/PROD _CODE/sys/BINARY directory, so that they can be accessed at

| boot time. Kernel modules for the fictitious graphics device driver used in
this chapter are located in . /opt/EDG100/sys/BINARY.

Note

Module files for hardware product kits must be compressed with
the objz utility. Do not use the compress or gzip utilities to
compress module files for hardware product kits. See the objZ(1)
reference page for more information.

Table 5-1 shows the format of the commands in the name. kit file.

Hardware Product Kits 5-5

Table 5-1: Format of the name.kit File

Format of Command - Description

+ldevice:1 /path/1file.mod Adds file.mod from the root or
the specified device. You can specify
a full path or accept the default.

—[/path/] file.mod Deletes (or subtracts) file.mod
: from the module list on the default
path for £i1e.mod. Each moduie in
the kit file must be removed before
it is added in case the module
already exists.

file.mod=[device:] [/path/] new.mod Replaces £ile.mod on the default
path with the module you specify.

Each kernel module listed in the name. kit file first must be removed with
the - operator and then added with the + operator. If kernel modules are
just added and you already have an older version of the hardware product
on the system, the bootlink will fail because the kernel module already
exists. The + operator does not replace a module if it already exists.
Therefore, to protect against this, it is recommended to first remove the
module and then add it to make sure you get the latest version of the
module in the kernel.

The hardware product kit for the EDGgraphics device driver supplies a
name. kit file which first removes and then adds the EDGgraphics.mod
gsingle binary module to the kernel. In Example 5-1, the sample name . kit
file is referencing the /opt/EDG100/sys/BINARY directory on the
installed system, not on the distribution media.

Example 5-1: Contents of an Installed name.kit File

- /opt/EDG100/sys/BINARY/EDGgraphics . mod
+/opt/EDG100/sys/BINARY/EDGgraphics . mod

Figure 5-2 shows how the distribution name.kit file works with boot
utility software during the installation of a hardware product kit.

In the figure, the kit contains a name. kit file called edgd.kit. The
edgd. kit file instructs the system’s boot utility to build and configure a
temporary kernel that includes the EDGgraphics device driver. Upon
completion, this temporary kernel makes the EDGgraphics device driver
available to handle user and system requests of a specific hardware device
during the installation of the operating system.

56 Hardware Product Kits

Figure 5-2: Using the Distribution name.kit File During Installation
Driver kit

|

edgd.kit l
osfboot reads commands from
+/5vys/BINARY /edgd.mod [the edgd.kit file for building the
driver into the kernel

~vmunix

The driver is now available during
installation of the Digital UNIX
operaling system

ZK-1202U-Al

5.1.2 The kitname.kk File

By default, all hardware product kits should contain a ki tname.kk file in
the instctrl directory. The file can be empty, but it must exist. This file
indicates to RIS that a hardware product kit exists on the distribution
media. When the ris utility finds this file, you are prompted for a
hardware product kit name to add to the RIS area. This file is
automatically created by the gendisk utility when it finds the kk=true
option in the /etc/kitcap file.

5.1.3 The HW.db File

The HW.db file is the module database file. This file only is needed when
you are creating a hardware product kit. The file describes how to map a
kernel module to a list of subsets that need to be installed. The installation
process uses this description to determine what subsets need to be loaded
from the hardware product kit and if the kernel needs to be rebuilt after
the subsets have been loaded.

Hardware Product Kits 5-7

The module database file must be named Hw. db, and it must be located in
the root directory of the hardware product media. The file must contain
one entry (and only one) per kernel module. For example, if the hardware
product kit has seven kernel modules, each module will have one entry in
the HW.db file.

There can be only one HW. db file on each piece of distribution media you
are shipping. If you are planning to ship several hardware product kits on
the same CD-ROM, the module database file will contain one entry for each
kernel module for each kit.

For example, if you shipped two hardware product kits, with the first kit
having three kernel modules and the second kit having five kernel
modules, the 5w . db file would have eight entries.

The syntax for the HW . db file uses the following conventions:

» Lines beginning with the # character are comment lines. All text after
the # (number or pound sign) character is ignored. Blank lines are also
ignored.

* Each entry must be on a single line. Line continuation, carriage return,
and line feed characters are not permitted.

Example 5-2 shows a sample Hw.db file. The format for a file entry is:
¢ Module name

» Kernel build requirements enclosed in curly braces. Values are { ¢} or {
1} — O=no build; 1=build required

o List of subsets enclosed by { } (eurly braces) and separated by spaces

Example 5-2: Contents of a HW.db File

/EasyDriver/opt/EDG100/sys/BINARY/EDGgraphics . mod
{1}
{EDGBASE100 EDGDOC100}

5.1.4 The hardware_kit.hw File

The hardware kit.hw file is the hardware support file. This file only is
needed when you are creating a hardware product kit. The file contains
information about each of the product kits available on the distribution
media and it is used by the Update Installation process.

The hardware support file must be named hardware kit.hw, and it must
be located in the root directory of the distribution media. The file must

58 Hardware Product Kits

contain one entry (and only one) per piece of hardware supperted by the
kit. If the hardware product kit contains support for several pieces of
hardware, each piece of hardware will have one entry in the hardware
support file. Even if the media only contains one subset, every piece of
hardware supported on the media must have one entry in the file.

There only can be one hardware kit.hw file per piece of media you are
shipping. If you are planning to ship several hardware product kits on the
same CD-ROM, the hardware support file will contain one entry for each
piece of hardware supported by each kit on the media.

For example, if you shipped two hardware product kits, with the first kit
containing support for two pieces of hardware and the second kit
containing support for seven pieces of hardware, the hardware_kit.hw
file would have nine entries.

The syntax for the hardware_ kit.hw file uses the following conventions:

e Lines beginning with the # (pound sign or number) character are
comment lines. All text after the # character is ignored. Blank lines are

alse ignored.
» Each entry must be enclosed in { } (curly braces).
e Each field in an entry must be enclosed in { } (curly braces).

e Entries and fields can span lines without the use of a line continuation
character.

The format for an entry contains four fields:
¢ Vendor name
* Hardware name

s Name of kit file containing the necessary kernel modules for the
hardware

» List of releases under which the product is supported (space separated).
Do not include the letter v in front of the release number.

The vendor and hardware name must be unique when combined and must
match the name to be used in the hardwarename. hw file, described in
Section 5.1.5. Each product release supported by the kit must map to at
least one release of the operating system as shown in Example 5-3.
Operating system release versions use the format
{MajorNumber}l.{MinorNumberf{VariantLetter].

Example 5-3: Contents of a Hardware Support File

{

{Easy Driver Inc.}

Hardware Product Kits 5-9

Example 5-3: Contents of a Hardware Support File (cont.)

{EDG Graphics Device Driver)
{/EasyDriver/usr/opt/EDG100/sys/hardware/edgd. kit}
{4.0F}

5.1.5 The hardwarename.hw File

The hardwarename.hw file is the installed hardware support file. The file
containg information about each of the product kits and it is installed onto
the user’s system, The file must be part of the subset inventory file and is
used by the Update Installation process to determine what hardware
product has been instalied. Each piece of supported hardware installed on
the user’s system needs to have a unique hardwarename.hw file containing
the subsets that were installed to support the hardware. .

The installed hardware support file must use a unique combination of

" vendor and hardware identification for the file name and must use the . hw
~ extension. For example, for the EasyDriver graphics device driver, the file

might be called edgdriver . hw.

The file must be located in the . /ust /opt/PROD CCODE/svs/hardware
directory relative to the top of the hardware product kit for each piece of
supported hardware. For example, using our sample hardware scenario,
the edgdriver .hw file is in the . /usr/opt/EDG100/sys/hardware/
directory.

Each piece of hardware in each of the hardware product kits on the media
should have its own hardwarename.hw file. This enables the subsets to be
built so that only files that contain entries for the hardware product
support will be installed.

As an example, assume that the EDG graphics device driver product has
two subsets, EDGRASE100 and EDGLSM100. The EDGBASE100 subset
supports two pieces of hardware, ATM_V1 and ATM_V2, and the
EDGLSM100 subset supports a hardware product called LSM_V1. If a user
installs the EDGEASE100 subset, the installed hardware support file should
contain entries for both ATM_V1 and ATM_V2, but should not contain an
entry for LSM_V1. The installed hardware support file for the EDGL.SM100
subset only would have an entry for the LSM_V1 product.

You could also have ATM_V1 and ATM_V2 as single entries in separate
installed hardwarename.hw files. Each file would be listed as inventory for
the EDGBASE100 subset and would be installed along with the subset. The

5-10 Hardware Product Kits

installed hardwarename.hw file can contain more than one entry, but
having an installed hardware support file for each entry will provide
maximum flexibility when building the subsets.

The syntax for the hardwarename . hw file uses the following conventions:

e Lines beginning with the # (pound or number sign) character are
comment lines. All text after the # character is ignored. Blank lines are
ignored.

e Each entry must be enclosed in { } (curly braces).

o FEach field in an entry must be enclosed in { } (curly braces).

¢ Entries and fields can span lines without the use of a line continuation
character,

The format for an entry contains four fields:

¢ Vendor name

» Hardware name

o . Name of kit file containing the necessary kernel modules for the
hardware

+ Releases under which the product is supported (space separated) are in
the format {MajorNumber}{MinorNumber}[Variantietter]

As deseribed in Section 5.1.4, the vendor and hardware name must be
unique when combined and must match the name used in the
hardware_kit.hw file . Each product release supported by the kit must
map to at least one release of the operating system, as shown in
Example 5-4. :

Example 5-4: Contents of an Installed Hardware Support File

{
{Fasy Driver 1Inc.}
{EDG Graphics Device Driver}
{EDGBASE100 EDGDOC100}
{4.0F}

Hardware Product Kits 5-11

5.2 Creating a Subset Control Program for a Hardware
Product

In addition to the optional processing described in Section 3.4, a subset
control program for a hardware product kit such as a device driver also
must configure the driver into the kernel. When building subset control
programs for a hardware product kit, such as a device driver, you can
choose one of the following configuration strategies:

* Write one subset control program for a kit that containg the software
subset associated with the single binary module for a statically
configured driver

¢ Write one subset control program for a kit that contains the software
subset associated with the single binary module for a dynamically
configured driver

» Write one subset control program for a kit that contains the software
subsets associated with the device driver that can be statically or
dynamically configured

Example 5-5 shows the subset control program for the single binary
module associated with the EDG graphics device driver. The user can
configure this single binary module into the kernel either statically or
dynamically. The subset control program runs the doconfig utility to
configure the driver into the kernel.

Example 5-5: Subset Control Program for the EDGgraphics Device Driver

#J/sbin/sh

EDGBASE100.scp - Install the files associated with the EDGgraphics
device driver. This driver, implemented as a single binary

module (EDGgraphics.mod file}, can be statically or dynamically
configured intec the kernel.

SN SR SF 4E 4

case “"SACT" in |I|
c)
case $1 in
INSTALL) [2]
echo "****+ EDG Graphics Product Installation Menu **xxwxu
EC]’\O Mo de ok & ok EE TN
echo "1. Install the statiec device driver subset.®
echo "2. Install the dynamic device driver subset."

echo" Type the number for your choice (] ¢

read answer
case ${answer! in
1)
Register the files associated with the static
EDG graphics device driver proeduct.
kreg -1 EasyDriverInc EDGBASEL00 /opt/EDG10G/sys/BINARY(4]

512 Hardware Product Kits

Example 5-5: Subset Control Program for the EDGgraphics Device Driver
(cont)

Merge the files asgociated with the statically configured
EDG graphics device driver product to the customer’s

/etc/sysconfigtab database

sysconfigdb -m -f /opt/EDG100/etc/sysconfigtab EDGgraphics [§]

echo "The rest of the procedure will take 5-15 minutes”
echo "to rebuild your kernel, depending on the processor"
echo "type."

echo nn

echo "Starting kernel rebuild... »

if doconfig -c SHOSTNAME

then
echo "Kernel built successfully"
else
1>&2 echo "Error building kernel.®
return 1
£i
H
2) [7]

Merge the files asgsociated with the dynamically configured
EDG graphics device driver product to the customer’s

/etc/sysconfigtab database

sysconfigdb -m -f /opt/EDGL00/etc/sysconfigtab EDGgraphics

% Load the EDG graphics device driver and create the device
% special files }
sysconflg -c EDGgraphics []

echo "The EDG graphics device driver was added to yeur
echo "/etc/sysconfigtab database." [10]

DELETE) [11]
echt “*%*** EDG Graphics Product Removal Menu **+x*"
echo LLEE X 2 X2 EE L Rl
echo "1. Delete the static EDG graphics device driver subset."
eche "2. Delete the dynamic EDG graphics device driver subset."

eche" Type the number for vour cholce []1 "

read answer
case $lanswer] in
1) ’
kreg -d EDGBASEL00 [12]

Delete the EDG graphics device driver’s entry from the
/etc/sysconfigtab database

sysconfigdb -d EDCgraphics E:]

echo "The rest of the procedure will take 5-15 minutes"
echo "to rebuild your kernel, depending on the processor"
echo "type."

echo ""

echo "Starting kernel rebuild... *

Hardware Product Kits 5-13

Example 5-5: Subset Control Program for the EDGgraphics Device Driver
{cont.)

if doconfig -¢ $HOSTNAME
then
echo "Kernel built successfully"
else
1>&2 echo "Error building kernel."
return 1
fi

2}

Make sure the EDG graphics device driver is not currently
loaded

sysconfig -u EDGgraphics IE

Delete the EDG graphics device driver's entry from the
/etc/sysconfigtab database
sysconfigdk -d EDGgraphics
esac
esac
esac
exit 0

(1] Examines the ACT environment variable to select the action the subset
control program should take.

2] Displays a menu of installation options during the ¢ INSTALL phase.
The user can install the driver for static configuration or dynamic :
configuration.

[3] The system performs a static configuration if the user chooses menu
item 1.

[@ Invokes the kreg utility to register the driver files with the kernel.
The kreg utility registers a device driver product by creating the
Jusr/sys/conf/.product.list file on the customer’s system. This
file contains registration information associated with the static device
driver product. The subset control program calls kreg with the
following arguments:

¢ The -1 flag

This flag indicates that the subset was loaded; and it directs kreg
to register the device driver product as a new kernel extension.

¢ Company name

The company name is EasyDriverInc. The kreg utility places
this name in the company name field of the customer’s
| /usr/sys/conf/.product.list file.

5-14 Hardware Product Kits

* Software subset name

The software subset name for this device driver product is
EDGBASE100. The subset name consists of the product code, subset
mnemoniec, and three digit version code. The kreg utility extracts
information from the specified subset data and loads it into the
customer’s /usr/sys/conf/.product.list file.

¢+ Directory name

The directory on the customer’s system where kreg copies the files
associated with this driver product is /opt/EDG100/sys/BINARY.
The kreg utility places this directory in the driver files path field
of the customer’s /usr/sys/conf/ product.list file.

Refer to the kreg(8) reference page for more information.

Adds the /opt/EDG100/etc/sysconfigtab file fragment for the
statically configured driver to the system’s /etc/sysconfigtab
database by calling the sysconfigdb utility with the following
arguments:

¢ The —m flag
This flag causes sysconfigdb to merge the device driver entry to
the customer’s /etc/sysconfigtab database.

o The -f flag

This flag precedes the name of the sysconfigtab file fragment
whose device driver entry is to be added to the
/etc/sysconfigtab database. This flag is used with the —a flag.

* The sysconfigtab file fragment

The kit developer at EasyDriver, Inc. specifies the path
/opt/EDGLl00/ete/sysconfigtab to indicate the location of the
sysconfigtab file fragment for the EDGgraphics device driver.-

® Device driver name

The kit developer at EasyDriver, Inc. specifies EDGgraphics as the
name of the device driver whose associated information is added to
the /etc/sysconfigtab database. This name is obtained from
the entry name item of the sysconfigtab file fragment, as
described in Writing Device Drivers: Tutorial.

Runs the doconfig utility to configure the driver into the kernel. The
subset control program returns an error if docenf ig fails for any
reason.

Performs a dynamic configuration if the user chooses menu item 2.

Calls the sysconfigdb utility to add the driver’s sysconfigtab file
fragment to the system’s /etc/sysconfigtab database.

Hardware Product Kits 5-15

[8] Calls the sysconfig utility with the ~c option to reconfigure the
system and include the EDGgraphics device driver, The —c option
causes the sysconfig utility to dynamically configure the driver inte
the system that is running and to create device special files. The name
of the driver as specified in the sysconfigtab file fragment follows
the option.

Displays a message notifying the user that the driver has been added
to the system.

[11] Displays a menu of options for deleting subsets during the ¢ DELETE
phase. The user must tell the set1d utility whether the subset to be
deleted represents a statically configured driver or a dynamically
configured driver. The way the driver was configured determines how
the driver is deleted.

[12] Calls the kreg utility to deregister the driver with the kernel if the
user chooses menu option 1 (delete a statically configured driver).
When the kreq utility is called with the -a flag, it deletes the entry
for the specified layered produect from the customer’s
/usr/sys/conf/.product.list file. In this case, the layered
product is the EDGgraphics device driver, represented by the
EDGBASE100 subset identifier.

[13] Calls the sysconfigdb utility with the -d flag, which deletes the
static EDGgraphics kernel subsystem from the customer’s
/etc/sysconfigtab database.

Runs the doconfig utility to reconfigure the kernel. The subset
control program returns an error if doconfig fails for any reason.

I

Calls the sysconfig utility with the -u flag {o deconfigure the
dynamically configured EDGgraphics kernel subsystem from the
system that is running if the user chooses menu item 2 (delete a
dynamically configured driver).

Calls the sysconiigdb utility with the -d flag to delete the
dynamically configured EDGgraphics kernel subsystem from the
customer’s /etc/sysconfigtab database.

5.3 Creating Distribution Media for a Hardware Product Kit

To prepare a hardware product kit, edit the /etc/kitcap file to describe
the kit, and then run the gendisk utility with the —d option. The gendisk
utility creates a kit in Direct CD-ROM (DCD) format as specified in the
/etc/kitcap entry. The /etc/kitcap file is a database for kit descriptors.
This database contains product codes, media codes, and the names of the
directories, files, and subsets that make up product description.

5-16 Hardware Product Kits

Example 56 shows a sample ki tcap record for a hardware product kit.
Notice the use of the kk=true and rcotdd= options.

Example 5-6: Sample /etc/kitcap Record for a Hardware Product Kit on
CD-ROM

EDGLGOHD:c:/: \
dd=/EasyDriver/kit,kk=true, rootdd=..:EasyDriver edg driver: \
/easy/output:instctrl:EDGBASEL00

Example 5-7 shows a sample ki tcap record for a CD-ROM with multiple
hardware products. In Example 5-7, the , rootdd=. . entry overrides the
default and places the expanded subset files in the product-specific
directory of /EasyDriver. By default, expanded subset files (in DCD
format) are placed at the top of the media’s file system.

Example 5-7: Sarﬁple fetc/kitcap Record for a CD-ROM with Multiple
Hardware Kits

EDG100HD:c:/: \
dd=/EDG100/kit,kk=true,rootdd=..:EagyDriver_edg driver V1.0: \
/easyl00/output:instctrl:EDGBASEL00:)\
dd=/EDG200/kit, kk=true,rootdd=. . :EasyDriver edg driver Vv2.0: \
/easy200/cutput:instctrl EDGBASE200:

Refer to the kitcap(4) reference page for more information about the
format of the /etc/kitcap file.

Note

Each kit must be contained in a subdirectory of the root media
which only can be one level deep. For example, a kit is located in
/mnt/EasyDriver where /mnt is the mount point and
EasyDriver is the subdirectory under which the kit files are
located. :

The following instructions deseribe how to assemble the files to create the
distribution media. The hard disk serves as the master for the kit. You can
then burn the kit onto a CD-ROM by following the instructions that came
with your CD-ROM burner.

Hardware Product Kits 5-17

Note

When testing a DCD kit, be sure to reference the kit media at its
mount point. For instance, if you decide to use a spare disk for
creating a media master area, you must reference your kit to the
mount point of the device.

Perform the following steps to create a kit on a hard disk for the EDG100
product: .

1.

Determine the device where the master media is located. The following
example uses the disk located at rz1.

Erase any existing label on the disk (this destroys the data on the disk):

disklabel -z rzl
Write a disk label to the disk:

digklabel -wr rzl rz26L

Note

Before running the gendi sk utility in the next step, make
sure you have added the name of the system you are using
to the root (/) .rhosts file. You will need an entry for the
host name and root account, otherwise the gendisk utility
fails with a Permission denied error.

Run the gendisk utility to move the kit onto the disk. In this
example, the system name is visier.

gendisk -d EDGLl00 /dev/rzla
Generating EDG100 Kit from visier on /dev/rzla

WARNING: this will remcve any information stored in
/dev/rzila

Are you sure you want tc do this? (y/n): ¥

Do you want to clean the entire disk first? (y/n): =n

When the gendisk utility asks if you want to clean the disk, always
answer n. Otherwise, the gendisk replaces the current disk label with
a default label.

The output of the gendi sk utility is similar to the following:

Preparing /dev/rzla
done.

Checking /dev/rzla

5-18 Hardware Product Kits

/sbinjusf_fdck /dev/rzla
=% fdev/rzla
File system unmounted cleanly - no fsck needed

Mounting /dev/rzla on /usr/tmp/cd_mdt8344
Writing Images (dd=/).

Image instctrl...done.
Image EDGBASEL100...dene.

verifying Images (dd=/}.

Image instctrl...done,
Image EDGBASE100...dene.

Kit EDG100 dcne.

Cleaning up working directories.
Unmounting /dev/rzla
L]

Mount the disk in preparation for making hardware praduet kit
modifications:

4 mount /dev/rzla /mnt
cd /mnt

Verify that the ki tname.kk and PROD CODE.root files exist in the
instectrl directory:

4 ed ./EasyDriver/kit/instetrl
1s *.kk *.root

Copy the name . kit, HW.db, and hardware kit. hw files from the
kit-building area to the disk:

Note

The backslash (\) in this example represents a line
continuation character. Do not include it in the command
line.

¢p /kit area/edgd.kit \
/mnt/EagyDriver/usr/opt/EDG100/ays/hardware/edgd. kit

£ op /kit_area/HW.db /mnt/HW.db

4% cp /kit_area/hardware kit.hw /mnt/hardware_kit.hw

Unmount the disk:

umount /mnt

Hardware Product Kits 5-19

5.4 Testing a Hardware Product Kit

Before shipping a hardware product kit to customers, it is recommended
that you test the kit using the same procedures that your customers will
use on hardware configurations that resemble your customers’ systems.

There are four separate tests that you should run to test the completeness
of a hardware product kit:

¢ Use the setld utility to verify that the subsets have been built
correctly and that the files get installed into the correct locations on the
target system. '

e Use the bootlink process to test that all of the modules are in the correct
locations to allow the system to add support to the boot linked kernel.

e Use the hw_check utility to verify that the HW.db, hardware kit.hw,
and hardwarename . hw files are in the correct locations and that they
contain the correct information. :

e TUse the ris utility to add a hardware product kit into a RIS area to
verify that the correct files are present on the kit. Then, test the area
by registering a client system to it and starting a Full Installation of
the client system.

The following sections describe how to set up and perform these four test
cases.

5.4.1 Using setld to Test a Hardware Product Kit

To test a hardware product kit using the set1d utility, the system on
which the test is run must be running the same version of the operating
system for which the hardware product kit was built. That is, if the
hardware product kit was built for Version 4.0F of the operating system,
the target system must be running Version 4.0F.

Follow these steps to test the hardware product kit using the set1d utility.
The purpose of this test is so that you can test the location of the installed
product files as you defined them in the master inventory file.

1. Log in as the user root from multiuser mode on the system to be
tested.

2. Mount the hardware product kit using the mount command:

mount -r /dev/rz3a /mnt

3. Use the following set1d command syntax to install each subset on the
distribution media:

5-20 Hardware Product Kits

setld -1 location subset name

In the command syntax Iocation is the path to the . /kit directory
on the hardware product kit (for example, /mnt/EasyDriver/kit),
and subset name is the name of the subset (for example,
EDGBASE100). If you want to install more than one subset, separate
each subset name with a space. Using these examples, the command
line looks like this:
setld -1 /mnt/EasyDriver/kit EDGBASE10(
Successful output of the set1d utility is similar to the following:
Checking file system space regquired to install specified subsets:
File system space checked OK.
1 subset{s} will be installed.
Loading @ of 1 subsetis}...
EDG Graphics Device Driver Files

Copying from /mnt/EasyDriver/kit (disk)

Verifying
1 of 1 subset{s} installed successfully.

Configuring "EDG Graphics Device Driver Files " (EDGBASE100)

If there is an error during subset installation, the setld utility
displays a message explaining the error. Details for verification errors
are in the /var/adm/smlogs/fverify.log file.

4. After the setld utility has finished installing and configuring each
subset, verify that the files for each subset (including any
hardwarename . hw files) have been installed in the locations you
intended them to be in.

5.4.2 Testing a Hardware Product Kit on a Running System

This section contains procedures for testing the installation of a hardware
product kit on a system that already is running Version 4.0F of the
‘operating system.

Figure 5-3 shows how the boot utility builds a kernel to include a
hardware product kit.

Hardware Product Kits 5-21

Figure 5-3: Bootstrap Linking with a Hardware Product Kit

osfboot brings base system
files into memory.

Base System
CD-RCM Kit

For each module on the kit,
osfboot makes an entry in
cfgmgr_subsys_list and

reads the module into memory.

name1 .kit:
modulei.mod
module2.mod

namez2. kit
module3.mod
moduled.mod

fetc/sysconfigtab

Layered Product
Kit

osfboot merges the /ete/sysconfigtab
databases from the base system and
fayered product kits.

Base System
CD-ROM Kit

Follow these steps to use the bootlink process to install a hardware product
kit onto a system that is running Version 4.0F of the operating system:

1. Login as the user root or use the su command to gain superuser

privileges.

2. Back up the operating system,

§-22 Hardware Product Kits

Base system

Configuration
subsystem list

module1.mod
modute2.mod
module3.mod
module4.mod

module1.mod
module2.mod
module3.mod
moduled4.mod

sysconfigtab
database

ZK-1219U-Al

3. Use the shutdown command to halt your system and bring it down to
console mode:

% shutdown -h now

4, Enter the following command to turn off automatic reboots at the
console prompt:

>>> set auto _action halt

5. Power down your system, install the new hardware, and power up
your system.

6. Enter the following command at the console prompt:
>>> boot ~fl fa -£i "/GENERIC" sys_disk
In the previous example:

¢ The -£1 fa defines the boot flags: £ for a hardware product kit
and a for multiuser mode.

¢ The -£i "/CGENERIC" tells the kernel to bootlink using the file
/GENERIC.

* The optional sys disk argument is the conscle device name of the
system disk of the system that is running. You only need this
argument if your boctdef_dev eonsole variable is not set to your
running system disk.

7. Enter the CD-ROM console device name, for example, DKA500, at the
following prompt:

Enter Device Name:
8. Enter the hardware product kit name at the following prompt:
Enter Kit Name:

Enter the name of the hardware product kit that you want to install
and press Return, This is the full path and file name of the name . kit
file.

9. Insert the CD-ROM containing hardware product kit into the CD-ROM
drive when you see the following prompt:

Insert media for kit 'device:hw kit name’, press Return when ready:

In this example, device:hw kit name is the device name you entered
in Step 7 and the hardware product kit name you entered in Step 8 .

When you press the Return key, the boot utility reads the selected -
hardware product kit file into memory.

10. Do one of the following at the Enter Kit Name: prompt:

* If you are installing another hardware product kit from the same
CD-ROM, enter the kit name, press Return, and return to Step 9.

Hardware Product Kits 5-23

+ If you are not installing another hardware product kit just press
Return and continue.

11. Do one of the following at the Enter Device Name: prompt:

o If you are installing another hardware product kit, enter the
CD-ROM device name, press Return, and go back to Step 8.

s If you are not installing another hardware product kit, just press
Return and continue.

12. Because you are adding hardware support to a running system, and
the system disk is your boot media, just press Return at the following
prompt.

Insert boot media, hit <return> when ready:

The generic kernel modules are read so that the bootlink process can
build the kernel in memory in the next step.

13. The boot utility links the kernel objects, and issues the following
prompt. Insert the CD-ROM into the drive and press Return.

Insert media for kit ‘dev_name:hw kit name’, press Return when ready:

In this prompt dev_name is the CD-ROM device name you entered in
Step 7 and hw kit name is the hardware product kit name that you
entered in Step 8.

This step is performed for every device and every kit name entered in
Step 7 through Step 11.

14. Because the boot media is still your installed system disk, press Return
at the following prompt:

Insert boot media, press Retirn when ready:

The boot utility loads and configures the hardware product kit.

Note

different media on the same device, the boot utility may
prompt you for the location of some of the hardware support
subsets. If you see this prompt, load the appropriate
CD-ROM into the CD-ROM drive and enter the appropriate
console device name.

15. Enter the name of the kernel configuration file at the following prompt:

Enter a name for the kernel ceonfiguration file. [SYS NAME]:

If you installed more than one hardware product kit from
) 524 Hardware Product Kits

In the previous prompt, SYS NAME is the name of your existing kernel
configuration file, usually your system name in upper case characters. -
Two things may happen here:

If you select the existing kernel configuration file name, you are
asked to confirm your selection. If you confirm your selection of the
existing file name, the old kernel configuration file is backed up to
SYS NAME.bck.

If the boot utility prompts you to rebuild the kernel:

a. You see a prompt similar to the following:
+ KERNEL OPTION SELECTION *

Saelection Kernel Optiocn

1 System V Devices

2 Logical Volume Manager (LVM)

3 NTP V3 Kernel Phase Lock Loop (NTP_TIME}

4 Kernel Breakpoint Debugger (KDEBUG)

5 Packetfilter driver (PACKETFILTIER}

[Point-to-Point Protocol (£PP)

7 STREAMS pckt module (PCKT)

8 Data Link Bridge (DLPI V2.0 Service Class 1)

a ¥/Open Transport Interface (XTISO, TIMOD, TIRDWR)
10 IS0 9640 Compact Disc File System (CDFS}

11 Audit Subsystem

12 ACL Subsystem

13 Logical Storage Manager (LSM)

14 Advanced File System (ADVFS}

15 A1l of the above

16 None ¢of the above

17 Help

18 Display all options again

Enter the selection number for each kernel option you want.

For example, 1 3 [1&8]:

The options you see depend upon the software subsets that
you have ingtalled. See the Installation Guide for information
about selecting kernel options and the doconfig(8) reference
page for information about the kernel build process.

b. After selecting kernel options, you see a prompt similar to the
following:

You selected the following kernel opticons:

System V Devices

Logical Volume Manager (LVM)

HTP V3 Kernel Phase Lock bLoop (NTP_TIME}

Kernel Breakpoint Debugger (KDEBUG)

Packetfilter driver (PACKETFILTER)

Poing-to-Point Protocol (PPP)

STREAMS pckt module (PCXT)

Data Link Bridge (DLPI V2.0 Service Clags 1)
X/Cpen Transport Interface (XTISO, TIMOD, TIRDWR)

Hardware Product Kits 5-25

16.

17.

18.

19.

180 9660 Compact Disc File System (CBFS)
Audit Subsystem

ACL Subsystem

Logical Storage Manager {LSM)

Advanced File System (ADVFS)

Ig that correct? (y/m) [yl:
Respond as follows:
— If the list is correct, enter y and continue to the next step.

— If the list is not correct, enter n to return to Step 14a and
select kernel aptions again.

¢. The boot utility asks if you want to edit the
just/sys/cont/Sys NaME kernel configuration file. For
information about editing this file, refer to the Installation
Guide. Usually, there is no reason to edit this file.

The boot utility rebuilds your operating system kernel and reboots
with the new kernel. After a successful reboot, you see the operating
system login window.

Log in as the user root and use the setld -1 command to verify that
your hardware product kit is installed

Check to make sure that the installed files are where you want them
to be and that the hardware product is operational.

Check to make sure that the /GENERIC file was rebuilt correctiy by
issuing the following command for each module file that was loaded:
% cat /GENERIC | grep -e module_name.mod

In the previous example, module name.mod represents the name of
the module file that was loaded. If the .mod file was supplied in the
/opt directory, the full path and file name should be in the /GENERIC
file.

5.4.3 Using the hw_check Utility to Test a Hardware Product Kit

When you perform an Update Installation, the process automatically
checks for any installed hardware product kits and lets you know:

If an existing hardware product kit will continue to operate correctly
with the new version of the operating system.

If an existing hardware product kit is integrated into the new version of
the operating system. If so, the hardware product kit will be removed
as part of the Update Installation and will be replaced by the
functionality shipped with the operating system.

If an existing kit is not supported in the new version of the operating
system.

" §5-26 Hardware Product Kits

This section describes two test cases in which to test the validity of a
hardware product kit during an Update Installation.

Follow these steps to test the format of the * . hw files:

Note

The following test assumes that you have performed the bootlink
test as described in Section 5.4.2.

1. Login as the user root to the same system where you performed the
boot link test.

2. Mount the Version 4.0F operating system CD-ROM from multiuser
mode:

mount -r /dev/rzSa /mmnt
3. Run the hw_check utility:

/usr/lbin/hw_check /mnt
A successful test shows output similar to the following:

Checking for installed supplemental hardware support...

The following hardware was installed using a supplemental
hardware kit and will continue to work under the new
operating system without any modifications.

EDG Graphics Device Driver

Press RETURN to continue. ..

Note

If you do not see this message, the most likely cause of the
error is an incorrect value in the supported release field of
the hardwarename.hw file (for example, '

L /usr /OpL/EDGL00/sys/hardware/edgd . hw). See
Section 5.1.5 for information about the format of this file.

Next, follow these steps to run the hw_check utility which tests the kit
Jjust as if you were performing an Update Installation. This test sets up a
scenario where an existing kit is not supported in the new release of the

Hardware Product Kits 527

operating system. This procedure assumes that you have already tested the
kit with the bootlink utility as described in Section 5.4.2.

1.

Log in as the user root to the same system where you tested the kit
with the set1d utility.

Use the editor of your choice to modify the installed system’s
/usr/opt/PROD CODE/sys/hardware/hardwarename. hw file and
change the value in the supported release field to XXX. For example,
assume this is the original installed hardwarename. hw file:

{
{Fasy Driver Inc.}
{EDG Graphics Device Driver}
{EDGBASE100 EDGDOC100}
f4.0F}

}

Change the supported release field as shown in this example:

{
{Basy Driver Inc.}
{EDG Graphics Device Driver}
{EDGBASE100 EDGDOCL100}
{XHX}
}

Changing the support release field to xxx indicates that the hardware

product kit is supported only under operating system version XXX.

Changing this field should trigger the appropriate warning logic in the
Update Installation process because XxX is not a valid release format.

Run the hw_check utility to start the test:

Jusr/lbin/hw_chack /mnt

The output of the hw_check utility is similar to the following:

Checking for installed hardware product kits...

The Update Installaticn has detected that the hardware
product kit listed below is loaded on your system and

is not supported in the new release of the operating
system (V4.0F). In order for the update to

complete successfully, you must provide the distribution
media that contains the v4.0F version of the hardware
product listed below. The update install process will
verify that the media you provide contains

the correct scftware.

Eésy Driver Inc. EDG Graphics Device Driver

Enter kit location (e.g.: /dev/rzic or /mnt)

528 Hardware Product Kits

-

S LTAE ks

1

Enter the kit location, for example /mnt, and press the Return key.

The output is similar to the following:

The kit located at /mnt contains support for hardware
that is currently installed on your system and is not
supported under the new version of the operating
system V4.0F. In order for your hardware

to continue tec function preperly you will be asked

to supply the following kit file names when the update
installation reboots the system for the first time.
Be sure to reccrd these file names for future use
within the update install process. Each kit file
will only need to be entered once for all of the
assoclated hardware support to be loaded.

Easy Driver Inc. EDG Graphics Device Driver
.{Kit File: /EasyDriver/usr/opt/EDG100/sys/hardware/edgd.kit)

Press <RETURN> to continue...

The test is successful when you see this message. Otherwise, the
hw_check utility displays an error message to describe the problem.
You must correct the problem and start the test over.

5.4.4 Testing a Hardware Product Kit in a RIS Area

To install a hardware product kit into a RIS area, you must extract the
base operating system into the RIS area first. Follow these steps to extract
the base operating system into a new RIS area and then add the hardware
product kit to the new area:

Log in to the RIS server, and start the RIS utility:
4 fusr/sbin/ris

Choose INSTALL software products from the RIS Utility Main
Menu.

x*% RIS Utility Main Menu **+
Chrices without key letters are not available.

a) ADD a client
d} DELETE software products
i) INSTALL software products
) LIST registered clients
} MODIFY a client
} REMOVE a client
5) SHOW software products in remote installation
environments
=} EXIT

Enter your cheice: i

Hardware Product Kits 5-29

Choose Tnetall software into a new area from the RIS
Software Installation Menu,

RIS Scoftware Installation Menu:

1} Install software into a new area
2} Add software into an existing area
3} Return te previcus menu

Enter your choice: 1 .
You have chosen to establish new remote installation
environment,

Enter the location of the base operating system distribution media. In
this example, the location is /mnt/ALPHA/BASE.
Enter the de#ice special file name or the path of the

directory where the software is located (for example,
/mnt/ALPHA/BASE) or press <Return> to exit: /mnt/ALPHA/BASE

Select the Boot-Link method to create the base product:

select the type of DIGITAL UNIX base product to create.

1f the software you are offering supports add-on hardware that is needed

to boot the client system, select "boot-link" as the type of RIS area to
create. Otherwise, select "standard". If you select "boot-link", the
software will be extracted (or copied) to the RIS area, because symbolically
linked RIS areas do not support this feature.

Choose one of the following options:
1} Standard boot method
2} Boot-Link method

Enter your choice: 2

The base operating system is extracted into the new RIS area. The ris
utility displays a list of subset extraction messages and the base
product that has just been extracted to the RIS area.

Media extraction complete
The new environment is in /var/adm/ris/ris0.alpha

Building Network Bootable Kernel. Done
The following software now exists in RIS product area

/var/adm/ris/rist.alpha:
1 'DIGITAL UNIX V4.0F Operating System (Rev nnn }'

Choose INSTALL software products from the RIS Utility Main
Menu to extract the hardware product kit into the RIS area you have
just created:

*++ RIS Utility Main Menu ***
Choices without key letters are not available.
a) ADD a client

d} DELETE- software products
i) INSTALL software products

5-30 Hardware Product Kits

10.

11,

} LIST registered clients

} MODIFY a c¢lient

) REMOVE a client

} SHOW software products in remote installation
environments

x) EXIT

s

Enter your choice: i

Choose Add software into an existing area from the RIS
Software Installation Menu.

RIS Software Installation Menu:

1} Install software into a new area
2) Add software into an existing area
3) Return to previous menu

Enter your choice: 2

The ris utility displays the names of any existing RIS environments,

Enter the number that represents the new RIS environment where you
just extracted the base operating system.

You have chosen to add a product to an existing environment.
Select the remcte installation environment:

1) /usr/var/adm/ris/ris0.alpha
DIGITAL UNIX V4,0F Operating System { Rev nnn)

Enter your choice or press RETURN to quit: 1

Enter the location of the hardware product kit that you want to install.

In this example, the location is /mnt /kit. The location you enter is the

name of the top-level directory of the kit followed by the kit directory.

Enter the device special file name or the path of the

directory where the software is located (for example,

/mnt/ALPHA/BASE) or press <Return> to exit: /fmnt/kit

The ris utility searches the distribution media for the kitname.kk

file, which indicates that the distribution media contains a hardware

product kit. If this file is found, you will see the message displayed in

the next step. :

Select the option to Tntegrate with Base product and include
product to integrate the kit with the base product.

The kit you have specified has been identified as a DIGITAL

UNIX kernel kit. This type of kit may contain software which,is
needed during the booting of the kernel for the installation, due
to required hardware support. If vou need to add this kit to the
base, select the option to integrate the kit. You may otherwise
choose to add this kit to the RIS area as a separate product.

1) Integrate with Base product and include product

Hardware Product Kits 5-31

12,

13.

14.

2} Include as separate product
3} Return te Main Menu

Enter vour cholce:l1

NOTE

If you do not see this message, the hardware product kit is
not structured correctly. The most likely cause is a missing
./kit/instctrl/*.kXx file or specifying an invalid location
in the previous step. Make sure all kit files are located in
the appropriate directories, then, start this test over.

Select the version of the base operating system into which you want to
integrate the kit:

pPlease select one of the following products to add the kit to.
1 ‘DIGITAL UNIX V4.0F Operating System (Rev nnn)’

Enter your selection or <return> to gquit: 1

Decide whether you want to either extract the software onto the
system or just create symbolic links to the software. In this example,
the option to Extract scftware is selected.

Choose one of the following options:

1) Extract software from /mnt /EDG100/kit
2) Create symbolic link to /mnt/EDG100/kit

Enter your choice: 1
The ris utility lists all the subsets associated with the software kit.

Select the subsets you want to install. In this example, the EDG1C0 kit

contains only one subset.

The subsets listed below are optional:
There may be more optional subsets than can be presented
on a single screen. If this is the case, you can choose
subsets screen by screen or all at once on the last
screen. All of the choices you make will be collected
for your confirmation before any subsets are extracted.
1) EDG Graphics Device Driver Version 1

0r you may choose cne of the following options:

2} ALL of the above
3) CANCEL selections and redisplay menus
4) EXIT without extracting any subsets

Enter your choices or press RETURN Lo redisplay menus.

Choices (for example, 1 2 4-6}: 1

5-32 Hardware Product Kits

15. Confirm your software selection:

You are installing the following optional subsets:
EDG Graphics Device Driver Version 1
Is this correct? (y/nl: ¥

16. The ris utility integrates the hardware product kit software and the
base system. No user interaction is needed at this time.

Checking file system space required to extract selected
subsets:

File system space checked CK.
Extracting EDGBASE100. ..
Media extraction complete.

The following software now exists in the RIS product area

/var/adm/Iis/ris0.alpha:

1 *DIGITAL UNIX V4.0F Operating System | Rev nnn j*' with
*EDG Graphics Device Driver Version 1'

2 ‘EDG Graphics Device Driver Version 1

The hardware product has been extracted into the RIS area and installed
into a new version of the base operating system.

If you choose SHOW software products in remote installation
environments from the RIS Utility Main Menu, you will see that there
are now two products in the new RIS area: the current version of the
operating system with support for the EDGgraphics device driver and the
EDGBASEL100 hardware product kit.

5.4.4.1 Registering a Client for a RIS Area Containing a Hardware Product Kit

After adding the base operating system and hardware product kit to a RIS
area, the hardware product subsets are now available. However, before a
client can perform an installation from this RIS area, you must register the
client, as described in the following steps:

Log in to the RIS server.
2. Start the ris utility:

/usr/sbin/ris
3. Choose Add a client from the RIS Utility Main Menu.

x*+ RIS Utility Main Menu *

Choices without key letters are not available,

a) ADD a client
d} DELETE software products

Hardware Product Kits 5=33

i} INSTALL software preducts
) LIST registered clients
) MODIFY a client
) REMOVE a client
s) SHOW software products in remote installation
environments
x} EXIT

Enter yvour choice: a

Through a series of prompts, the ris utility lets you know what
information you need to enter and gives you the opportunity to exit
from the procedure.

4. Enter y to continue if you have the information you need:

You have chosen to add a client for remote installation
services.

The following conditions must be met to add a client:

1. You must know the client processor's hostname

2. The client's hostname must be in your system’s
host database(s).

3, You must know whether the client is on an
Ethernet, FDDI, or Token Ring network.

4. You must know the cllient’s hardware Ethernert,
FDDI, or Token Ring address if the client is
registering to install operating system software,

5. If the client and the server reside on different
subnets, vou will need the address of the
gateway (s) that the client can use to
communicate with the server.

Do you want to continue? {y/n) [v]: ¥

) 5. Enter the client’s host name. In this example, the host name is aruba:

Enter the client processor's hestname cor press RETURN
to quit: aruba

The existing environment is /usr/var/adm/ris/ris0.alpha

6. Enter the products you want the client system to be able to install. In
this example, the base system that includes kernel support for the
EDGgraphics device driver and the EDG product itself are selected:

Select one or more products for the client to install
from /usr/var/adm/ris/ris0.alpha:

Product Description
1 ‘DIGITAL UNIX V4.0F Operating System { Rev nnn }' w/
‘EDG CGraphics Device Driver Version 1'
2 'EDG graphics Device Driver Version 1°

Enter one or more choices as a space-separated list
(for example, 1 2 3): 1 2

7. Confirm your selection at the following prompt:

5-34 Hardware Product Kits

9.

¥ou chose the following products:

1 ‘DIGITAL UNIX V4.0F Operating System (Rev nnn)' w/
*EDG Graphics Device Driver Version 1°
2 ‘EDG Graphics Device Driver Version 1’

Is that correct? (y/n) [y]:¥

Enter the network type and the client processor’s hardware network
address:
Network type:
1} Ethernet or FDDI
2} Tcken Ring

Enter your choice: 1

Enter the client processor’'s hardware network address.
For example, 08-00-2b-02-67-el: 01-47-2b-e2-3a-43

Client registration is complete. You may exit from the ris utility.

The client system can now boot over the network from the RIS area, using
the kernel that contains the hardware product subsets. For example:

>>> boot -fl fa boot_device

In the previous example:

The -£1 fa defines boot flags £ for a hardware product kit and a for
multiuser mode.

The boot device represents the console network boot device name.
The device name depends on the processor type, but it is usually ewa0.
Use the show dev command at the console mode prompt to determine
the boot device for your processor.

The boot procedure installs the kernel from the RIS area and then
performs a Full Installation by loading the operating system subsets and
the subsets from the hardware product kit.

For more information about RIS, see the guide to Sharing Software on a
Local Area Network. For more information about booting a system over the
network, see the Installation Guide.

Hardware Product Kits 5-35

6

Producing Distribution Media for User
and Kernel Product Kits

After you have gathered product files into subsets, you can move the
subsets onte the distribution media.

Note

Procedures for creating distribution media for hardware product
kits is documented in Section 5.3.

You can create the kit in either tar or direct CD-ROM (DCD) format. If
your product kit does not access kernel modules during boot, you can use
the tar format to compress your kit and save space on the media. If your
product kit does access kernel modules during boot, you must use the DCD
format.

¢ User and kernel product kits can be distributed in tar format

In tar format, the product files belonging to the same subset are
dumped to the distribution media as a single file. During installation,
the setld utility uncompresses.the files, then moves them onto the
target system, preserving the files’ original directory structure.

¢ Hardware product kits must be distributed in direct CD-ROM (DCD)

format

In DCD format, the files are written to the distribution media as a
UNIX file system. Subsets distributed in DCD format cannot be
compressed.

You can distribute user and kernel product kits on tape, diskette, or
CD-RCM, as follows:
¢ Magnetic tape

You can distribute kits for user and kernel products on magnetic tape.

You cannot distribute hardware product kits on magnetic tape because
this media does not support DCD format. Use the gentapes utility to
produce kits for magnetic tape media.

e Diskette

Producing Distribution Media for User and Kernel Product Kits 6-1

Diskettes are a good media for testing purposes or for small products,
such as device drivers. However, the product must fit on a single
diskette; it cannot span multiple diskettes. Use the gendisk utility to
produce kits for diskette media.

¢ CD-ROM

CD-ROM media can support large kits or multiple kits on a single
media. The kit is first produced on the hard disk, then burned onto the
CD-ROM. Use the gendisk utility to produce the master kit on hard

* disk. Follow the CD-ROM manufacturer’s instructions for burning the
kit onto the CD-ROM media.

Figure 6~1 shows the types of file formats and distribution media that are
available for layered product kits.

Figure 6-1: File Formats for Layered Product Kits

Foreign device Y
kit

tar format ‘ DCD format I

ZK-1215U-Al

The gentapes and gendisk utilities refer to a file called /etc/kitcap, a
database of kit deseriptors. This database contains information about the
kits to be built on the system. Each record contains a product code and the
names of the directories, files, and subsets that make up the product kit.

This chapter describes how to edit the /etc/kitcap file and how to use
the gentapes and gendisk utilities to produce kits for each type of media.

6-2 Producing Distribution Media for User and Kernel Product Kits

6.1 Editing the /etc/kitcap File

Before you can build your kit, you must add a record to the /etc/kitcap
database to describe your kit. When you add a record to the file, use the
following conventions:

* Separate fields with colons (:).
¢ Indicate a continuation line with a backslash (\) at the end of the line.

* Begin a comment line with a number sign (#). The comment ends at the
end of the line.

® Delimit comments within a kitcap record with an opening number
sign (#) and a closing colon (:).

The contents of a kitcap record differ depending on whether you are
producing tape or disk media. You must add one record for each media type
on which you plan to distribute your kit,

The contents of the record also depends on the product type you are
delivering. For example, the kitcap record for a kernel product must
contain the kk=true flag and might require the use of the roctdd= option.
It is recommended that you refer to the kitcap(4) reference page for more
information about the contents of the /etc/kitcap file.

6.1.1 Tape Media kitcap Record Format

The kitcap record for tape media contains the following elements:

e Name of the product, which consists of the product code and version
number specified in the CODE and VERS fields of the key file (the key file
is the file with the . k suffix).

* A code that indicates the media type, either TK for TK50 tapes or MT for
9-track magnetic tapes.

* Product description. This entry usually is taken from the NAME field of
the key file.

e Name of the kit’s output directory, where the gentapes utility can find
the subsets.

* Three SPACE files, which are empty files used to ensure compatibility
with operating system kits. To create the SPACE file in the output area
of the kit directory structure, issue the following commands:

touch space
¥ tar -c¢f SPACE space

e The instctrl directory, relative to the output directory specification.

Producing Distribution Media for User and Kernel Preduct Kits 63

o The names of the subsets that make up the kit. Each subset listed must
be stored in one of the specified directories.

e An optional volume identifier. Multiple tapes are supported.

Refer to the kitcap(4) reference page for more detailed information about
the tape media record format.

Example 6-1 shows the record to be added to the /etc/kitcap file to
‘ produce the ODB kit on TK50 tapes:

Example 6—1: Sample /etc/kitcap Record for Magnetic Tape

OAT100TK | Orpheus Document Builder: \
/decb_tools/output:SPACE: SPACE: SPACE: N\
INSTCTRL: QATODB100 : OATODBDOC100

The product name, OAT100, is the same name that appears in the key file.
The product description, (Crpheus Document Builder) also appears in
the key file. The name of the output directory is specified as
/dcb_tools/output, and three SPACE files are included for compatibility
with operating system kits. The last line of the record contains the
INSTCTRL directory and the names of the two subsets that make up the kit
— DATODB100 and CATODBDOC100.

6.1.2 Disk Media kitcap Record Format

You create a disk media kitcap record when producing kits for
distribution on diskette or CD-ROM. The kitcap record for disk media
contains the following elements:

¢ Name of the product, which consists of the product code and version
number specified in the CODE and VERS fields of the key file.

e The code HD, which indicates disk media.

¢ The partition on the disk media where the product should be placed.
The partition is a letter between a and h. Partition c is used most
often, as it spans the entire disk.

e Product description, which must use underscores (_) in place of spaces.
This entry is usually taken from the NAME field of the key file.

¢ The destination directory for the subsets on the disk media. Allows a
hierarchical structure so you can put multiple products on one disk, or
put parts of one product on different areas of the same disk.

¢ Name of the kit’s output directory, where the gendisk utility can find
the product subsets.

6—4 Producing Distribution Media for User and Kernel Preduct Kits

* The instctrl directory, relative to the output directory specification.
* The names of the subsets that make up the kit.

Refer to the kitcap(4) reference page for more detailed information about
the disk media record format.

Example 6-2 shows the kitcap record for the /dev/none driver:

Example 6-2: Sample /etc/kitcap Record for CD-ROM or Diskette

ESALCOHD:c:/: \
dd=/kit:EasyDriver_none_driver: \
/easy/output:instctrl: ESANONESTATIC100

Based on the information shown in Example 6-2, the gendisk utility
places the kit on the ¢ partition, in the / (roct) directory of the disk
media. The product description is "EasyDriver none driver", the kit
output directory is named /easy/cutput, and subset control information
is in the instctrl directory. The kit consists of one subset, named
ESANONESTATIC100.

6.2 Building a User or Kernel Product Kit on Magnetic
Tape Media in tar Format

" When the product subsets are located in the output area of the kit directory
structure, use the gentapes utility to create the kit on magnetic tape. The
syntax of the gentapes command is as follows:

gentapes [-w -v] [hostname:] produci-code special

®* The —w option specifies that gentapes writes to the tape without
verifying it; the —v option specifies that the command verifies a tape
without writing to it first. If you specify neither option, gentapes
writes the tape, rewinds it, and verifies its contents.

¢ The optional hostname argument is the name of a remocte TCP/IP
network machine that contains the /etc/kitcap file. The gentapes
utility searches the /etc/kitcap file on the remote machine for the
product - code and uses it for creating the media. The colon (¢) is a
required delimiter for TCP/IP networks, and space is permitted
between the colon and the product -code. If you do not specify a
hostname, gentapes looks on your own system. You can use network
file system (NFS) file sharing to mount the kit files remotely on a
system with the required tape drive.

Producing Distribution Media for User and Kernel Product Kits 6-5

e The product -code is a user-defined code that describes the product. It
should match the product name specified in the kitcap record, which
is usually a concatenation of the NAME and VERS fields of the key file.

o The special argument is the name of the device special file for the
tape device, such as /dev/ntape.

The following command produces a kit for the ODB product on a magnetic
tape:

% gentapes OAT100 /dev/ntape

6.3 Building a User or Kernel Product Kit on Disk Media

When the product subsets are located in the output area of the kit directory
structure, use the gendisk utility to create the kit on a disk.

Note

The gendisk utility supports diskettes but does not support
creation of a chained diskette kit. A kit written to diskette must
fit on a single diskette or be packaged as a set of kits on
separate diskettes.

The syntax of the gendisk command is as follows:
gendisk [-w -v] [-d] [hostname:] product-code special

The —w option specifies that gendisk writes to the disk without verifying
it; the —v option specifies that the command verifies a disk without writing
to it first. If you specify neither option, gendisk writes the disk and
verifies its contents.

You can use the gendizk utility to produce kits in either tar or DCD
format, depending on whether or not you use the —d option.

The optional hostname argument is the name of a remote TCP/IP network
machine that contains the /etc/kitcap file. The gendisk utility searches
/etc/kitcap on the remote machine for the product - code and uses it
for creating the media. The colon () is a required delimiter for TCP/IP
networks, and space is permitted between the colon and the

product -code, If you do not specify a hostname, gendisk looks on your
own system. You can use NFS file sharing to mount the kit files remotely
on a system with the required disk drive.

The product -code is a user-defined code that describes the product. It
.should match the product name specified in the kitcap record, which is
usually a concatenation of the NAME and VERS fields of the key file.

6-6 Producing Distribution Media for User and Kernel Product Kits

The special argument is the name of the device special file for the disk
device, such as /dev/rrzla.

6.3.1 Preparing a User or Kernel Product Kit in tar Format

To prepare a kit on disk for a user or kernel product, you use the gendisk
utility without the —d option. You specify the product name and the device
special file name. For example, the following command creates a kit in tar
format for the /dev/none driver on the ¢ partition of the disk named rz0:

% gendisk ESAl00 /dev/xrzlc

Producing Distribution Media for User and Kernel Product Kits 6-7

7

Testing a User or Kernel Product Kit

Before shipping a user or kernel product kit to customers, you should test
the installation of the kit by using the same procedures that your
customers will use. You should run these tests on hardware configurations
that resemble your customers’ systems. When you know that the
installation procedure works correctly, you should document it and ship it
as part of the product kit.

Note

Procedures for testing hardware product kits are documented in
Section 5.4.

There are several ways to test a user or kernel product kit:

¢ The setld utility can install a kit either during system installation or
after the system is running.

s During system installation, the set1d utility installs the kit so that it
is available for subsequent reboots of the system.

e The ris utility integrates a user or kernel product kit into a RIS
environment. Client systems can then install the kit from the RIS area
by calling the set1d utility.

This chapter describes how to test the installation of a user product or
kernel product kit and how to install a kit in a RIS environment.

7.1 Testing a User Product Kit

To test a user product kit, log in to the system as superuser or root and
run the s=tld utility. For example, the ODB product could be tested as
follows. In this example, the kit is distributed on CD-ROM.

1. Place the CD-ROM in the drive.

2. Create a directory to be the mount point for the CD-ROM, such as
/cdrom:

mkdir /cdrom

Testing a User or Kerne! Product Kit 7-1

3. Mount the CD-ROM on /cdrom. For example, if the CD-ROM device
were located on the ¢ partition of rz4, you would enter the following
command:

mount -r /dev/rzdc /cdrom

After mounting the CD-ROM, you can change to the /cdrom directory
and view the directories on the CD-ROM.

4. Install the user product subsets:

setld -1 /cdrom/OAT100/kit

The set1d utility displays prompts and messages to guide you
through the process of selecting the subsets you want to install. After
it loads the subsets, the setld utility calls the subset control program
for each subset. Figure 7-1 shows the links and dependencies that the
ODB subset control program creates.

Figure 7-1: Defining Links and Dependencies for the ODB User
Product .

Create links ,'
from product files 1

4 Create dependency between
to fusr/bin "

ODB product and base tools

ZK-1221U-Al
5. When the installation is complete, unmount the CD-ROM:

umount /cdrom

7-2 Testing a User or Kernel Product Kit

See the Installation Guide for more information on using the set1d utility
to install layered products.

7.2 Testing a Kernel Product Kit

To test a kernel product kit, log in {0 the system as superuser or root and
run the setld utility. If the driver is statically configured, you must also
reconfigure the kernel to incorporate the driver into the system.

For example, the edg driver would be installed as follows, if the kit were
distributed on CD-ROM:

1.
2,

Insert the CD-ROM in the drive.

Create a directory to be the mount point for the CD-ROM, such as
Jedrom:

i mkdir /cdrom

Mount the CD-ROM on /cdrom. For example, if the CD-ROM device
were located on the c partition of rz4, you would enter the following
command:

mount -r /dev/rzdc /cdrom

Install the device driver subsets:

setld -1 /cdrom/ESAl100/kit

The setld utility displays prompts and messages to guide you
through the process of selecting the subsets you want to install. After
it loads the subsets onto the system, set1d invokes the subset control
program to statically or dynamically configure the driver. Figure 7-2
shows the steps the subset control program takes to statically
configure the driver; Figure 7-3 shows the steps the subset control
program takes to dynamically configure the driver.

Unmount the CD-ROM when the installation is complete:
umount /edrom |

Restart the system with the new kernel:

/usr/sbin/shutdown -r now

When the system starts up, the edg device driver is available on the
system.

Testing a User or Kernel Product Kit 7-3

.product.list

krag adds the driver to
Jusr/eys/cont/ . products list

Figure 7-3:

g

ESA100

sysconfigtab

sysconfigtab

none, moed

files

~~ .
sysconfigdb adds the ™ "--I sysconfigtab

sysconfigtad file fragment
to /aete/sysconfigtab

I none.mod

files

]
B

™

1
/| sysconfigdb adds the
¢ sysconfigtal file fragment
- to the /elc/sysconfiglab
database

-
--—‘

ZK-1213U-Al

Dynamically Configuring a Priver

device.mth ~

1
I_I__ ‘I Creale a link to
none.mod § the driver's
§ method
! I

) ’l (.mth) fite
ri U
z none.mth

' .
¢ Copy module {.mod) filg
to fsubsys

4

ZK-12141)-Al

See the Installation Guide for more information on using the setld utility
to install layered products.

7-4 Testing a User or Kernel Product Kit

7.3 Testing a User or Kernel Product in a RIS Area

You can use the ris utility to test a kernel product kit on a RIS server to
be used by RIS client installations.

To install the product in the RIS area on the server, run the ris utility as

follows:
1. Leg onto the server as root and invoke the rigs utility:
/usr/sbin/ris
2. Choose INSTALL software products from the RIS Utility Main
Menu by entering i at the prompt:
*%% RTS Utility Main Menu ***
Cheices without key letters are not available.
a) ADD a client
d) DELETE software products
i} INSTALL software products
) LIST registered clients
) MODIFY a client
) REMOVE a client
8) SHOW software products in remcote installation
environments
x) EXIT
Enter your choice: i
The RIS Software Installation Menu is displayed.
3. Enter option 1, Install software into a new area or option 2,

Add software intc an existing area:

RIS Software Installation Menu:

1} Install scftware into a new area
2} Add software into an existing area
3} Return to previous menu

Enter your choice:

To install the product kit from the RIS server onto the client system,
register the client system with the RIS server, then use the setld utility,
as follows:

1.

Run the ris utility on the server, and choose 20D a client from the
main menu: '

/usr/sbin/ris

%x RIS Utility Main Menu *

Testing a User or Kernel Product Kit 7-5

Choices without key letters are not available.

a) ADD a client
d} DELETE software products
i} INSTALL software products
} LIST registered clients
) MODIFY a client
) REMOVE a client
) SHOW software products in remote installation
environments
x) EXIT
Enter your choice: a

5

Enter the client information requested by the prompts as described in
Sharing Software on a Local Area Network.

When the client is registered to the RIS server, log in to the client as
superuser or root.

Use the set1d utility to install the product subsets from the RIS area.
For example, if the RIS server was named visier, you would enter
the following command:

setld -1 vigier:

The setld utility displays prompts and messages to guide you
through the installation process. See the Installation Guide for more
information on using the set1d utility to install layered products.

7-6 Testing a User or Kernel Product Kit

A

Creating a Consolidated CD-ROM

A consolidated CD-ROM lets you upgrade your processor firmware at the
same time that you install the operating system. This appendix describes
how to create a consolidated CD-ROM.

This release includes the documentation and utilities that you need to build
a consolidated CD-ROM in ISO9660—compliant Rock Ridge format. This
documentation includes the disklabel(8) and mkisofs(8) reference pages.

To build a consolidated ‘CD-ROM, you need the following:

1. The operating system CD-ROM in UFS format
2. The appropriate Alpha System firmware update CD-ROM

The following information is included in this appendix:
* How to prepare for the build
s How to build the consolidated CD-ROM

e Sample sessions for both the build preparation and actual building of
the consolidated CD-ROM

A.1 Build Instructions

The following sections describe how to prepare ‘and build a consolidated
CD-ROM.

A.1.1 How to Prepare for the Build

After you receive a new kit, follow these steps to move the necessary files
from the CD-ROM to working directories on the build machine,

Note

The examples in this appendix use the C shell.

1. Use the disklabel utility to set up a 635 Mb partition on a spare
disk, starting at block 0, with a size of 1300480 512-byte blocks and a

Creating a Consolidated CD-ROM A-1

file system type of unused. Create a mount point for this partition
{such as /cdimage) to use later.

For example, to set partition ¢ of rz¢ starting at offset 0 with a size of
1300480, and create mount point /cdimege:
% disklabel -F -r -e rz6

write new label [yl ¥
% nkdir /cdimage

Mount the operating system CD-ROM to a temporary mount point
(such as /mnt) and use the tar command to copy the contents of the
CD-ROM onto a suitably large directory on the system (at least 1.5Gb).
After this is done, unmount the CD-ROM.

Note

This step may take as long as 60 minutes to complete.

For example, using /spare as the target directory and rz4 as the
CD-ROM drive:

mount -r /dev/rzdc /munt

cd /mnt

tar cf /spare/digital_unix v4Of.tar .
cd /

umount /mnt

of oP of P o

A.1.2 How to Build a Consolidated CD-ROM

After you have completed the steps in Section A.1.1, follow these steps to
consolidate the necessary data to a single CD-ROM in IS09660—compliant
format: ’

1.

Use the newfs command to initialize a file system on the partition
reserved in Step 1 of Section A.1.1 and mount it to the mount point
/cdimage. If you are prompted for confirmation, enter y. Use the tar
utility to copy the base operating system image created in Step 2 of
Section A.1.1 to /cdimage.

Note

This step may take as long as 60 minutes to complete.

For example, using /spare as the source and rzéc as the target
partition:

% newfs /dev/rzbec
% mount /dev/rz6c /cdimage

A-2 Creating a Consolidated CD-ROM

% cd /cdimage
% tar xpf /spare/digital unix v40f.tar
% ed /

Optionally use the following multiple step operation to copy the
firmware images to the target directory:

Note

You cannot repackage firmware or software unless you have
a specific licensing agreement with Compaq Computer
Corporation which allows you to do so.

a. Mount the appropriate Alpha System firmware update CD-ROM
to a temporary mount point such as /mnt. For example, using
/dev/rz4c as the CD-ROM drive:

% mount -t cdfs -r /dev/rzdc /mnt

b. Copy the System Marketing Model (SMM) table from the
appropriate Alpha System firmware update CD-ROM to the target
directory. The SSM table maps system models to firmware image
files.

% cp /mnt/SMMTABLE.TXT\;l /cdimags/smmtable.txt

Note

The target file name must be in lower case with the ;1
removed from the end.

¢. Look in the SMM table to find the name and locations of the
firmware images to be copied by entering the following command:

% more /mmt/SMMTABLE.TXT\;1

As an example, the entry for the EV5 AlphaServer 1000A platform
is similar to the following example (the actual table entry is on

one line):
27 5 1270,1311,1558,1580-1581\
[ALPHAIOQQDA] AS lOOOA_ES_VS_l CEXE; 1\
6 5.1 ! AlphaServer 1000A 5/xxx

In this example, the firmware file on the CD-ROM is
AS1000A_ES5_V5_1.EXE;1.

d. Create the appropriate firmware directories in the target directory,
and copy each of the platform firmware images that you want
from the appropriate Alpha System firmware update CD-ROM.

Creating a Consolidated CD-ROM A-3

Caution

The target file name must be in lower case with the
“:1” removed from the end. Otherwise, the fwupgrade
program cannot locate the firmware images. If the
source file is AS1000A_E5_V5.1.EXE; 1, the target file
is as1000a_e5_v5_1.exe.

For example, using the file names on the appropriate Alpha .
System firmware update CD-ROM:

mkdir /cdimage/alpha8(0

mkdir /cdimage/alphal00a

mkdir /cdimage/agdx00

cp /mnt/ALPHAS00/AS800_V5_1.EXE\;1l \
/edimage/alphas800/as800_v5_1.exe

% cp /mnt/ALPHAL1000A/AS1C000A_ES5_V5_1.EXE\;1 \

/cdimggelalphalooOa/a51000a,95_v5_1.exe
% op /mnt/AS4X00/AS4X00_IMAGE.EXE\;1 \
/cdimage/agdx00/as4x00_image.exe

o oP 90 oP

e. Unmount and remove the firmware CD-ROM.
% umount /mnt
Use the mkiscfs program to build the target CDFS file image of the

directory structure in /cdimage. For example, using /spare as the
target location for the image:

% /usr/hin/mkisofs -D -R -a -d -0 \
/spare/consolidate_digital unix.cdfs /cdimage/

Refer to the mkisofs(8) reference page for more information.

Use the disklabelcommand to insert a label into the file generated in
Step 3.

% disklabel -r -w -t cdfs -£ \
/apare/congolidate_digital unix.cdfs \
/mdec/rzhoot.cdfs /mdec/bootrz.cdfs

Refer to the disklabel(8) reference page for more information.

The CD image file /spare/consclidate digital unix.cdfs is ready
to be loaded onto a CD-ROM.

A.2 Sample Build Session

The following assumptions are made for the examples in this section:

The target partition is on /dev/rzsc.
The /spare directory has at least 1.5 Gb of free space.

A-4 Creating a Consolidated CD-ROM

e The CD-ROM drive is /dev/rz4.

| Note

The examples in this appendix use the C shell.

A.2.1 Preparing for the Build Session
Follow these steps to prepare for the CD-ROM build session:

1. Login as root, and enter the following commands:

% od /

% disklabel -F -r -e rzé
write new label? [v] ¥
% mkdir /cdimage

2. Place the operating system CD-ROM into the CD-ROM drive, and
enter the following commands:

mount ~-r /dev/rzdc /mnt

ed /mnt

tar cf /spare/digital unix v40f.car .
ed /

umount /mnt

3. Remove the operating system CD-ROM from the drive. The
preparatory steps are complete.

9f 0P of oP of

A.2.2' Building a Consolidated CD-ROM
Follow these steps to build a consolidated CD-ROM:

1. Login as root, and enter the following commands:

ed /

newfs /dev/rzéc

mount /dev/rzéc /cdimage

cd /cdimage

tar xpf /spare/digital unix v40f.tar
cd /

off of Of of of oP

2. Place the appropriate Alpha System firmware update CD-ROM into
the CD-ROM drive, and enter the following:

% mount -t <dfs -r /dev/rzda /mnt
% cp /mnt/SMMTABLE.TXT\;l1 /cdimage/smmtable.txt
% more /cdimage/pmmtable,txt

3. Review the output to determine the appropriate directory and file
‘names for the firmware images that you want.

Creating a Consolidated CD-ROM A-5

Note

This example uses the same firmware images as Step 2d of
Section A.1.2:

mkdir /cdimage/alpha800

mkdir /cdimage/alphalC00a

nkdir /cdimage/asdx00

cp /mnt/ALPHAS00/AS800 V5 1.EXE\;1 \

fedimage /alphaB00/ag800_v5_1l.exe

% ¢p /mot/ALPHALQQQA/AS1000A_ES5_VS_1.EXE)\;1 \ -
/edimage/alphalO00a/asl000a_e5_v5_1.exe

%2 cp /mnt/AS4X00/AS4AX00_IMAGE.EXE\;1 \
/cdinmage/asdx00/as4x00_image.exe

% umount /mnt

o P de op

4. Remove the appropriate Alpha System firmware update CD-ROM, and
enter the following commands:

% /usr/bin/mkisofs -D -R -a -4 -0
/spare/congolidate_digital unix.cdfs /cdimage/

Output is similar to the following:

Note

The backslashes (\} in this example indicate line
continuation and are not present in the output.

Using OSFMANWO.000;1 for \
/cdimage/ALPHA/BASE/instctr 1 /OSFMANWOS440 . scp 1\
(OSFMANWOP440 . scp)

Using OSFMANWO.001;1 for \
/cdimage/ALPHA/BASE/instctr L/OSFMANWOS4A40 . inv \
{OSFMANWOP440 . inv)

Using OSFMANWO.002;1 for \
/cdimage/ALPHA/BASE/instctr]l /OSFMANWOS440. . ctrl \
{CSFMANWOP440 ,.ctrl)

Using PROCFS_V.000;1 for \
/edimage/usr/sys/procfs/procfs_vnops stubs.c \
(procts _vfsops_stubs.c)
3.92% done, estimate finish Fri Oct 22 15:36:5%9
5.87% done, estimate finish Pri Oct 22 15:39:24

99.74% done, estimate finish Fri Oct 22 15:41:52
Total extents actually written = 255673
Total tramnslation table size: 0
Total rockridge attributes bytes: 2066594
Total directory bytes: 4239360

A-6 Creating a Consolidated CD-RCM

Path table size{(bytes): 10130
Max brk space used bSecel
255673 extents written (499 Mb)

5. Enter the following commands:
% disklabel -r -w -t cdfs -£ \

/spare/consolidate_digital unix.cdfs \
/mdec/rzboot.cdfs /mdec/bootrz.cdfs

The information is consolidated, and the file can be burned onto a CD-ROM.

Creating a Consolidated CD-ROM A-7

Standard Directory Structure

It is recommended that you install files for layered products in the /opt,
/ust/opt, and /usr/var/opt directories. Most UNIX based systems use
the standard directory structure shown in this appendix. Placing your
product within this standard directory structure can help to ensure that
your produect installs successfully on most customer systems.

Figure B-1 and Figure B-2 show the directories in the standard directory
structure. These are the directories that you should use to ensure that your
product is portable to other systems.

Note

Some of the illustrated directories are actually symbolic links.

Standard Directory Structure B-1

Figure B-1: Base System Directory Structure

/ ——dev
— eic nls
— lost+found — init.d
— opt = rc0.d
— shin — rc2.d
— tmp L rc3.d
— usr — bin bin
— 0CS lib
; — include — mach
— machine
— net
— netinet
— netns
— subsys — nfs
- protocols
— pc
— servers
— SYS
— tii
— ufs
— examples
= SYS
y L BINARY
— Ibin spell
— lib uucp
— opt
— sbin
— share — dict
— shlib — lib
— man
— sys —— BINARY
— conf
— include
—var adm —crash
— vmunix — opt cron
— Tun sendmail
syslog
— spool Ind
mail
mqueue
— subsys uuep
— tmp

—me

— ms

— tabset
— terminfo
— tmac

— m@n1

—~ mang

— cat1

— ca.la

ZK-D473U-Al

Table B-1 describes the contents and purpose of the directories shown in

Figure B-1.

B-2 Standard Directory Structure

Table B—-1: Contents and Purpose of Base System Directories

Directory Description
/ The root directory of the file system
/dev/ Block and character device special files
fetc/ System configuration files and databases; nonexecutable files
nls/ National language support databases
/lost+found/ Files located by f=ck
/opt/ Optional for layered products, such as applications and device
drivers
/sbin/ Commands essential to boot the system (most of these
commands depend on shared libraries or the loader and have
other versions in /usr/bin or /usr/sbin)
init.d/ System state rc files
rc0.d/ The re files executed for system-state 0
rez2.d/ The rc files executed for system-state 2
rc3. d/ The rc files executed for system-state 3
/subsys/ Dynamically configured kernel modules required in
single-user mode
/emp/ System-generated temporary files, usually not preserved
across a system reboot,
Jjusr/ Most user utilities and applications
bin/ Common utilities and applications
ces/ C compilation system; tools and libraries used to generate C
programs
bin/ Development binaries such as cc, 1d, and make
lib/ Development libraries and back ends
include/ Program header (include) files; not all subdirectories are
listed in this appendix
mach/ Mach-specific C include files
machine/ Machine-specific C include files
net/ Miscellaneous network C include files
netinet/ C include files f'dr Internet standard protocols
netns/ C include files for XNS standard protocols
nfs/ C include files for Network File System
protocels/ C include files for Berkeley service protocols

Standard Directory Structure B-3

Table B-1: Contents and Purpose of Base System Directories (cont.)

Directory

Description

rpc/
servers/
sys/
tli/
ufs/
examples/
1bin/
spell/
uucp/

lib/

opt/

skin/
share/
dict/
lib/
me/
ms/

tabset/

terminfo/
tmac/
man/
manl/
man2/
man3/
mand /
mans /

man?7/

C include files for remate procedure calls

C include files for servers

System C include files (kernel data structures)
C include files for Transport Layer Interface

C include files for UNIX File System
Subdirectories of programming examples
Back-end ekecutable files

Spell back-end

UNTIX-to-UNIX Copy (UUCP) programs

Links to libraries located elsewhere (/usr/ccs/1ib),
{(/usr/libin), (/usr/share/1ib), (/X11/1ib); included for
compatibility

Optional layered preducts, such as applications and device
drivers

System administration utilities and system utilities
Architecture-independent ASCII text files

Word lists

Various libraries

Macros for use with the me macro package

Macros for use with the ms macro package

Tab description files for a variety of terminals; used in
/etc/termcap

Terminal information database
Text-processing macros

Online reference pages

Source for user command reference pages
Source for system call reference pages
Source for library routine reference pages
Source for file format reference pages
Source for miscellaneous reference pages

Source for device reference pages

B—4 Standard Directory Structure

Table B%1: Contents and Purpose of Base System Directories (cont.)

Directory

Description

mang/

catl-cats

shlib/

sys/
BINARY
conf/
include/

Jfvar/

adm/
crash/
cron/
sendmail/
syslog/

opt/

run/

spocl/
lpd/
mail/
maueue/
uucp/ ‘

subsys/

Source for administrator command reference pages
Formatted versions of files in manl — mang

Binary-loadable shared libraries; shared versions of libraries
in /usr/ccs/lib

System configuration files

Object files

Kernel configuration control files

Header files

Multipurpose log, temporary, varying, and spool files
Common administrative files and databases

For saving kernel crash dumps

Files used by cron

Configuration and database files for sendmail

Files generated by syslog

Optional layered products, such as applications and device
drivers

Files created when daemons are running

Miscellaneous printer and mail-system spooling directories
Line printer spooling directories

Incoming mail messages

Undelivered mail queue

UUCP spool directory

Loadable kernel modules required in multiuser mode

Standard Directory Structure B-5

Table B-1: Contents and Purpose of Base System Directories (cont.)

Directory Description
tmp/ Application-generated temporary files that are kept between
system reboots .
/vmunix Pure kernel executable (the operating system loaded into

memory at boot time)

Figure B-2: X Directory Structure

! —usr ——bin X11
— examples dxpaint
—E motif
— include —— DPS
— DXm
— Mrm bitmaps
— uil extensions
=~ X11 Xaw
— Xm Xserver
— lib — cda — bin
— dxbook |—etc
—emacs —— info
— lisp
— lock
— X11 ———— app-defaults _ 19qqpi
— bitmaps — 75dpi
— appdata — decwin ...
— config — misc
L DPS — Speedo
— fonts ———{— 1YPe!
|t tType1Adobe
L help ... user ...
- keymaps
— twm
— uid
— x11perfcomp
hlip — X Tam
— shili 11
null
ZK-0915U-Al

B—6 Standard Directory Structure

Table B~2 describes the contents and purpose of the directories shown in

Figure B-2.

Table B-2: Contents and Purpose of X Directories

Directory Description
Just/ Most user utilities and applications
bin/ Common utilities and applications
X11/ X applications
demos / Miscellaneous demo programs
examples/ Example programs
dxpaint/ Sample Paint image
motif/ Motif example programs
include/ Header files
DPS/ Files for DPS
DXm/ Files for 1ibDXm
Mrm/ Files for libMrm
uil/ UIL header files
¥11/ X C header files
bitmaps/ X bitmaps
extensions/ Header files for use with X extensions
Xaw/ Files for libXaw
Xzerver/ Header files used for loadable X server libraries
X/ Header files for libXm
lib/ Static archive X libraries
cda/ CDA style guides
dxbook/ Default Bookreader bookshelf
emacs/ Emacs directory base
X11

app-defaults/
bitmaps/
appdata/
config/

DPS/

System-wide resource files for X client applications
Program-specific bitmaps

(ieneric program-specific data

Imake configuration files

Display Postscript files

Standard Directory Structure B-7

Table B-2: Contents and Purpose of X Directories (cont.)

Directory Desctription
fonts/ Font files
100dpi/ 100 dpi fonts from X Consortium
75dpi/ 75 dpi fonts from X Consortium
decwin/ DECwindows fonts
100dpi/ 100 dpi fonts
75dpi/ 75 dpi fonts
misc/ Fonts from X Consortium
Speedo/ Speedo scalable fonts
Typel/ Typel scalable fonts
Typeladobe/ Adobe Typel scalable fonts
afm/ Adobe font metrics
user Fonts from layered products and local installations
100dpi/ 100 dpi .fonts
75dpi/ 75 dpi fonts
misc/ Other fonts
fs/ Fontserver config and error log files
help/ Help files for X client applications; subdirectories as
applicable
keymaps/ Keymaps for various keyboards
Lwm/ Default configuration for twm window manager
uid/ User Interface Definitions for X client applications
x1llperfcomp/ Seripts for analyzing x11perf output
xdm/ X Display Manager configuration and resource files, and
error log
shlib/ Shareable libraries
X11/ Shareable libraries loaded by X server

B-8 Standard Directory Structure

Glossary

This glossary defines terms used in this book.

attribute-value pair

In a product kit’s key file, attribute-value pairs specify the names and
values of the attributes of the kit, such as the name and version of the
product. Attribute-value pairs control how the kits utility builds the kit
and how the set1d utility installs it.

backward link

A backward link is a symbolic link from the directories-in a layered product
area to files in the standard hierarchy. The subset control program for a
product creates backward links during installation.

control files .

The collection of files that the kits utility places in the instctrl
directory are referred to as control files. These files include the compression
flag file, image data file, subset control file, subset inventory file, and
subset control programs.

data hierarchy

In the kit-building directory structure, the data hierarchy contains the files
that direct the set1d utility in making subsets for the kit, such as the
master inventory and key files. An scps subdirectory contains subset
control programs written by the kit developer.

dependency expression

A dependency expression is a postfix logical expression consisting of subset
identifiers and relational operators to describe the current subset’s

Glossary-1

relationship to the named subsets. Subset control programs evaluate
dependency expressions under control of the set1d utility. See also
locking and subset dependency.

distribution media

The distribution media for a product kit may be diskette, CD-ROM, or tape.
A hard disk is sometimes referred to as a distribution media because it is
used as the master copy for a CD-ROM kit. Hardware products can only be
distributed on CD-ROM in Direct CD-ROM format.

/etc/sysconfigtab database

The sysconfigtab database contains information about the attributes of
subsystems, such as device drivers. Device drivers supply attributes in
sysconfigtab file fragments, which get appended to the
/etc/sysconfigtab database when the subset control program calls the
systonfigdb utility during the installation of a kit. See also sysconfigdb
utility.

forward link ‘

A forward link is a symbolic link that connects a product file in the /opt,
/usr/opt, or /var/opt directory to a standard UNIX directory, such as
/usr/bin. Forward links allow layered products to be installed in a
central location (the opt directories) and still be accessible to users
through the standard directory structure.

hardware product kit

A hardware product kit contains a hardware product, such as a device
driver, that can be installed during the initial installation and bootstrap
linking of the operating system. See also kernel product, user product
and layered product.

kernel

The kernel is a software entity that runs in supervisor mode and does not
communicate with a device except through calls to a device driver.

Glossary-2

kernel product

A kernel product is a layered product that runs in kernel space. Users do
not directly run kernel products, but the operating system and utilities
access them to perform their work. See also layered product hardware
product kit and user product.

key file

A key file identifies the product that the kit represents. You create t}us file
in the data directory before running the kits utility.

kit
A kit is a collection of files and directories that represent one or more
layered products. It is the standard mechanism by which layered product

modifications are delivered and maintained on the operating system. See
also layered product.

kits utility
The kits utility creates subsets according to the specifications you define
in the master inventory file and key file. See also key file, master
inventory file, and subset,

layered product

A layered product is an optional software product designed to be installed
as an added feature of the operating system. See also hardware product
kit, kernel product, and user product.

locking

In products installed by the setld utility, locking inserts a subset name in
the lock file of another subset. Any attempt to remove the latter subset
warns the user of the dependency. The user can choose whether to remove
the subset in spite of the dependency.

master inventory file

A master inventory file lists all the product files and the subsets in which
they belong. You create this file in the data directory by running the
newinv utility. The file must exist before you can create the product
subsets. See also data directory, newinv utility, and subset.

Glossary-3

newinv utility

The newinv utility creates the master inventory file from the list of files in
the current working directory. The list does not contain all the information
needed in the master inventory file. You must edit this file to include
information about the subsets to which the files belong. See also master
inventory file.

output hierarchy

The output hierarchy contains the result of the kit-building process,
including the subsets that make up the kit and installation control files to
direct the set1d utility during the installation of the product.

osf_boot utility
The osf_boot utility performs the initial installation and bootstrap of the
operatmg system.

RIS

Remote Installation Services. Lets administrators install software kits into
a RIS area for subsequent installation onto client systems over a network.
Using a RIS server makes installation of layered products faster and easier
for all the clients on the network.

Remote Installation Services
See RIS.

SCP

Subset control program. A program written by the kit developer to perform
installation operations that the set1d utility would not otherwise perform.
The setld utility invokes the subset control program several times during
the installation of the Kkit.

setld utility

The setld utility allows the transfer of the contents of a layered product
kit to a customer’s system.

Glossary—4

source hlerarchy

In the kit-building directory structure, the source hierarchy contains the
files that make up the product. These files are grouped into subsets by the
kits utility.

subset
A subset is the smallest installable component of a product kit for the
setld utility. It contains files of any type, usually related in some way.

subset control program
See SCP,

subset dependency

A subset dependency is the condition under which a given subset requires
the presence (or absence) of other subsets in order to function properly. See
also dependency expression and locking.

sysconfigdb utility

The sysconfigdb utility is a system management tool that maintains the
sysconfigtab database. See also /etc/sysconfigtab database.

user product

A user product is a layered product that runs in user space. Commands,
utilities, and user applications fall into this category. See also layered
product and kernel product.

Glossary—5

A

ACT environment variable , 3-3

backup file

for master inventory file, 4-5
backward link, 3-10

{ See also link) ,
BitTest shell routine, 3-15
bootlink testing

hardware product kit, 522
bootstrap files, 2-3

c

C DELETE phase, 3-13
.c (source) files , 2-11
C INSTALL phase, 3-12
CD-ROM .
consolidated
(See consolidated CD-ROM)
compression flag file, 4-10
consolidated CD-ROM
build instructions, A-1
definition, A-1
sample build session, A—4
preparation, A-5
procedure, A-5
.ctrl installation control file, 4-9

D

data hierarchy, 2-2
dataless environment
defined, 3-5
scp routines for, 3—6

Index

subset control program for, 3-5
DCD format :
defined, 1-3
layered product files, 6-1
preparing a kit in, 5-16
dependency expression, 3-8
dependency list, 4-12
dependency lock
creating, 3-8
removing, 3-13
/dev/mone device driver, 1-6
kit directory structure, 2-8
device driver
(See also kernel product)
kit directory structure, 2-8
Direct CD-ROM format
(See DCD format)
directory structure, 2-1
hardware product kit, 5-2
kernel product kit, 2-8
kit-building, 2-1
standard, 2-3, B-1
user product, 2-7
disk media
building a kit on, 66
kitcap record, 64
distribution format
for hardware product kits, 6-1
for user and kernel products, 6-1
dot-relative pathnames
in master inventory records, 4-4t
in subget inventory records, 4-14t
dynamic configuration, 2-9

E

edg graphics driver, 1-6
fete/kiteap file, 6-2

Index—1

fetc/sysconfigtab database, 2-11,
5-3, 5-16

F ,

file
- lock, 3-11

file permissions, 2-3
file system _

standard directory structure,

B-1, B-2

X directory structure, B-7

files file fragment, 2--10

G

overview of steps to create, 5-1
preparing a kit in DCD format,
5-16

.root file, 5-3

subset control program, 5-12

testing, 5-20

testing in RIS area, 5-29

testing update installation, 5-26
hardware product kits

compressing .mod file, 2-11
hardware support file, 5-10

gendisk utility
preparing a kit in DCD format,
5-16
preparing a kit in tar format,
- B8-7
syntax, 6-6
gentapes utility
preparing a kit on magnetic
tape, 6-5
global variables
setting in subset control
program, 3—4

H

.h (header) files, 2-11
hardware product
defined, 1-2
fictitcious product used to
illustrate, 1-6
hardware product kit
additional files required for, 5-2
bootlink testing, 5-22
kit directory structure, 5-2
kitcap record, 5-17
kiteap record for mulitple kits,
5-17
Xk file, 5-3

Index—2

image data file, 4-11
field descriptions, 4-11
instetrl file, 4-9
instetr]l subdirectory, 2--2
moving files into, 4-9
.inv installation control file, 4-9

K

(See key file)
kernel
dynamic configuration, 2-9
static configuration, 2-9
kernel kit file, 5-3
kernel product
defined, 1-2
fictitcious product used to
llustrate, 16
kit directory structure, 2-8
subset control program, 3-18
kernel product kit
building on disk, 6-6
in tar format, 6-7
kitecap record, 6-3
producing distribution media,
6-1
testing, 7-3
testing in a RIS area, 7-5
key file
attribute descriptions, 4-6

contents, 4—6
defined, 4-5
in kit-building directory
structure, 2-2
product attributes section, 4-6
sample, 4-5
subset descriptor section, 4-6
kit building process, 1-4
kit formats, 1-3
kit structure, 1-4
file permissions, 2-3
kiteap record, 6-2
CD-ROM or disk, 65
disk media, 64
" for kernel product kit, 6-3
for tape media, 6-3
hardware product kit, 5-17
syntax of, 6-3
kits utility, 4-8
Xk file, 5-3

L

M

M phase, 3-6
master inventory file
creating, 4-2
defined, 4-2
field descriptions, 4-3
in kit-building directory
structure, 2-2
sample, 4-4
media '
tape
building a kit on, 6-5
method file
kernel product, 2-11
(See master inventory file)
mkdir command, 2-2
compressing with objZ utility, 2-11
module database file, 5-7
.mth method file, 2-11

N

layered product
(See also kernel product, user
product, hardware product)
assigning product version
number, 2—4
defined, 1-1
obtaining product code, 2-3
physical location of files , 24
types of products, 1-2
layered product files
in DCD format, 6-1
in tar format, 6-1
library routines in scps, 3-2
link
creating backward, 3-10
removing, 3-13
lock file, 3-11
removing, 3-13

newinv utility, 4-2
NFS file sharing, 6-5

0o

object module file

kernel product kit, 2-11
ODB user product, 1-6

subset control program, 3-15
/opt directory, 2-3
osf_boot utility, 5-6
output hierarchy, 2-2

P

POST_D phase, 3-14
POST_L phase, 3-9
PRE_D phase, 3-13
PRE_L phase, 3-7
product code
obtaining, 2-3
product subdirectories

index-3

naming, 2-3
product version number
assigning, 2-4

R

RIS

considerations in subset control
program, 3-7

installing a kernel product, 7-5

kk file, 5-7

registering client for hardware
product kit, 5-33

testing hardware product kit,

5-29
root file, 5-3
S
SCP

(See subset control program)
.scp installation centrol file, 4-9
scps subdirectory]

in kit-building directory

structure, 2-2
location of subset control files,
3-2
setld utility

ACT environment variable, 3-3

C DELETE phase, 3-13

C INSTALL phase, 3-12

invoking subset control

program, 3-3

lock files, 3-11

M phase, 3-6

POST_D phase, 3-14

POST_L phase, 3-9

PRE_D phase, 3-13

PRE_L phase, 3-7

testing a hardware product kit,

5-20

testing a kernel product, 7-3

testing a user product, 7-1

V phase, 3-13

Index—4

SMM table, A-3
software subsets for kits, 4-1
source file

kernel product, 2-11

subset control program, 3-2
source hierarchy, 2-1

file permissions, 2-3
SPACE file, 6-3
standard directory structure, 2-3,

B-1

static configuration, 2-9
STL_DepEval shell routine, 3-9
STL_Deplnit shell routine, 3-9
STL_DeplL.ock shell routine, 3-12

. STL_DepUnLock shell routine, 3-14

STL_IsDataless shell routine, 3-6
STL_LinkBack shell routine, 3-10
STL_LinkInit shell routine, 3-10
STIL. LinkRemove shell routine,
3-14

STL_LocklInit shell routine, 3-12
STL_NoDataless shell routine, 3-6
STL._Scplnit shell routine, 3-5
subset

compressing, 4-8

creating with kits utility, 4-8

dependencies, 4-12

dependency, 3-8

locking, 3-8, 3-11

moving onto distribution media,

6-1

subset control file

field descriptions, 4-11

using control flag bits, 3-14
subset control files for kits, 4-1
subset control flag bit, 3-14
subset control progam

for dataless environment, 3-5
subset control program

checking machine architecture,

3-7

common characteristics, 3-1

control flag bits, 3-14

creating source files, 3-2

for /dev/none device driver, 3-18

hardware product kit, 5-12
including library routines, 3-2
invoking, 3-3
kernel product, 3-18
managing subset dependencies,
3-8
ODB user product, 3-15
RIS support, 3-7
setld phase
C DELETE, 3-13
C INSTALL, 3-12
POST D, 3-14
POST_L, 3-9
PRE_D, 3-13
PRE_L, 3-7
Vv, 3-13
setld tasks, 3-6
M phase, 3-6
setting global variables, 3—4
stopping the program, 34
user product, 3-15
subset control programs, 3-1
subset inventory file, 4-12
sysconfigtab file fragment
kernel product, 2-10

T

hardware product kit in RIS
area, 5-29

kernel product in RIS area, 7-5

kernel product kit, 7-3

update installation of hardware
product kit, 5-26

user product kit, 7-1

U

tape media
building a kit on, 6-5
kitcap record, 6-3
tar format '
layered product files, 6-1
preparing a kit in, 6-7
producing kits in, 1-3
testing
bootlink of hardware product
kit, 5-22
hardware product kit, 520

update installation
testing hardware product kit,
5-26
user product
defined, 1-2
fictitcious product used to
illustrate, 1-6
subset control program, 3-15
user product kit
building on disk, 66
in tar format, 6-7
producing distribution media,
6-1
testing, 7-1
/usr/opt directory, 2-3
fusr/share/lib/shell/BitTest library,
3-15
fusr/share/lib/shell/libsep library,
3-2
fusy/.smdb. directory, 3-14
/asr/sys/conf/.product.list file, - 5-16
/usr/var/opt directory, 2-3

v

V phase, 3-13
verification
subset installation, 3-13

Index-5

How to Order Tru64 UNIX Documentation

You can order documentation for the Tru64 UNIX operating system and related
products at the following Web site:

http://www.businesslink.digital.com

If you need help deciding which documentation best meets your needs, see the Trub4
UNIX Documentation Overview or call 800-344.4828 in the United States and
Canada. In Puerto Rico, call 787-781-0505. In other countries, contact your local
Compaq subsidiary.

To place an internal order, go to the following Web site:
http://asmorder.ngo.dec.com

The following table provides the order numbers for the Tru64 UNIX operating)
system documentation kits. For additional information about ordering this and
related documentation, see the Documentation Overview or contact Compag.

Name . Order Number
Tru64 UNIX Documentation CD-ROM QA-MT4AA-G8
Tru64 UNIX Documentation Kit QA-MT4AA-GZ
End User Documentation Kit QA-MT4AB-GZ
Startup Documentation Kit QA-MT4AC-GZ
General User Documentation Kit QA-MT4AD-GZ
System and Network Management Documentation Kit QA-MT4AE-GZ
Developer’s Documentation Kit QA-MT5AA-GZ
General Programming Documentation Kit QA-MT5AB-GZ
Windows Programming Documentation Kit QA-MT5AC-GZ
Reference Pages Documentation Kit QA-MT4AG-GZ

Device Driver Kit ' QA-MT4AV-G8

Reader’s Comments

Trué4 UNIX
Guide to Preparing Product Kits
AA-QYW7C-TE

Compag welcomes your comments and suggestions on this manual. Your input will help us to write
documentation that meets your needs. Please send your suggestions using one of the following methods:

* This postage-paid form
* Internet electronic mail: readers_comment@zk3.dec.com

s Fax: (603) 884-0120, Attn: UBPG Publications, ZKO3-3/Y32

If you are not using this form, please be sure you include the name of the document, the page number,
and the product name and version.

Please rate this manual:

Excellent Good Fair Poor
Accuracy (software works as manual says) O O O]
Clarity (easy to understand) O [} O O
Organization (structure of subject matter) [O d]
Figures (useful) O m|] O
Examples (useful) O d O O
Index (ability to find topic) [O 0 O
Usability (ability to access information quickly) O O [} O

Please list errors you have found in this manual:

Page Description

Additional comments or suggestions to improve this manual:

What version of the software described by this manual are you using?

Name, title, department

Mailing address

Electronic mail

Telephone

Date

-

COMPAQ

NO POSTAGE
NECESSARY IF
MAILED N THE
UNITED STATES

BUSINESS REPLY MAIL

FIRST CLASS MAIL PERMIT NO. 33 MAYNARD MA

POSTAGE WILL BE PAID BY ADDRESSEE

COMPAQ COMPUTER CORPORATION
UBPG PUBLICATIONS MANAGER
ZKO3 3/Y32

110 SPIT BROOK RD

NASHUA NH 03062 9987

”IIIIIIIII”IIII”IIII|I||l|l||I|IIIII|IIIIIIIIIII”IIIIII'II

QUII S1U1 U0 11

