
J U L Y 1 9 9 1

NSL
Technical Note TN-2

Using screend to
Implement IP/TCP
Security Policies

Jeffrey Mogul

d i g i t a l Network Systems Laboratory 250 University Avenue Palo Alto, California 94301 USA

The Network Systems Laboratory (NSL), begun in August 1989, is a research
laboratory devoted to components and tools for building and managing real-world net-
works. Our charter is to research and develop innovative internetworking systems. We
apply what we have learned to help open strategic new markets for Digital.

Our expertise is in open systems and in big networks, especially those that cross or-
ganizational boundaries. Our interest is in building real systems for real users, in order to
advance the state of the art. Sometimes we work on systems inside Digital; sometimes
we work directly on large revenue projects.

Our strategy, since we are a small group, is to leverage our work by using, whenever
we can, existing hardware and software systems. We do this by building on the large
existing body of widely-accepted networking technologies. We like to work in partner-
ship with other groups in Digital, including large account teams and engineering or-
ganizations.

Our deliverables are the communication of ideas to other parts of Digital by building
and releasing prototype systems, consulting within Digital, publishing technical reports,
and participation in external research and standards activities.

NSL is also a focal point for operating Digital’s internal IP research network (CRAnet)
and the Palo Alto Internet gateway. Ongoing experience with practical network opera-
tions provides an important basis for research on network management.

We publish the results of our work in a variety of journals, conferences, research
reports, and technical notes. This document is a technical note. We use this form for
rapid distribution of technical material. Usually this represents research in progress.
Research reports are normally accounts of completed research and may include material
from earlier technical notes.

You can order reports and technical notes by mail by sending a request to:

Technical Report Distribution
Digital Equipment Corporation
Network Systems Laboratory - WRL-1
250 University Avenue
Palo Alto, California 94301 USA

You can also order reports and technical notes by electronic mail or browse them on
the World Wide Web. Use one of the following addresses:

Internet mail:
NSL-Techreports@pa.dec.com

World Wide Web (outside of Digital):
http://www.research.digital.com/nsl/home.html

World Wide Web (Internal):
http://nsl.pa.dec.com/nsl/home.html

To obtain more details on ordering by electronic mail, send a message to one of these
mail addresses with the word ‘‘help’’ in the Subject line; you will receive detailed
instructions.

i

Using screend to Implement
IP/TCP Security Policies

Jeffrey Mogul

Digital Equipment Corporation
Western Research Laboratory

July, 1991

Abstract

True network security requires that all hosts attached to the network
are themselves made secure, but network administrators often find it
helpful to block certain kinds of packets at the routers. The screend
program was designed to provide this function for routers based on
the ULTRIX operating system. Although screend is a simple
program, creating a screend configuration that does not compromise
security can be a complex problem, requiring deep understanding of
how IP/TCP networks are used and abused. This technical note
provides some guidance.

Copyright 1991
Digital Equipment Corporation

d i g i t a l Network Systems Laboratory 250 University Avenue Palo Alto, California 94301 USA

USING SCREEND TO IMPLEMENT IP/TCP SECURITY POLICIES NSL TN-2

ii

NSL TN-2 USING SCREEND TO IMPLEMENT IP/TCP SECURITY POLICIES

iii

Table of Contents
1. Introduction 1

1.1. Better approaches to security 2
1.2. Other reading 2

2. IP/TCP Security Model 3
2.1. IP addressing 3
2.2. TCP and UDP port numbers 4
2.3. TCP connections 5
2.4. ICMP error messages 5
2.5. IP header options 5
2.6. Fragmentation 5
2.7. Reliability of information in packet headers 6

3. An Integrated Security Policy 7
3.1. Basic principles 7
3.2. Organizational trust model 7
3.3. Threats 8
3.4. Structural model 9
3.5. Meeting organizational requirements for communication 9

3.5.1. Electronic Mail and USENET 9
3.5.2. Telnet and FTP 10
3.5.3. NFS 11
3.5.4. R-commands 11
3.5.5. Name service 11
3.5.6. Time service 11
3.5.7. X service 12
3.5.8. ICMP 12
3.5.9. Finger 12
3.5.10. Other protocols 13

3.6. Exceptions 13
4. IP/TCP security rules 13
5. Implementing a policy using screend 15

5.1. Screend theory of operation 15
5.2. The screend configuration file 15
5.3. Grammar for the screend configuration file 16

5.3.1. Lexical structure 16
5.3.2. Syntax 16

5.4. Implementing the example of section 4 18
5.5. Use of symbolic names in configurations 21
5.6. Performance considerations 22
5.7. Logging of actions 22
5.8. Debugging a screend configuration file 23
5.9. Starting screend at boot time 24
5.10. Other helpful hints 24

6. Further examples 25
6.1. Limiting access to licensed software 25
6.2. Keeping junk packets off a slow link 27
6.3. A simpler mail gateway configuration 28

7. Acknowledgements 30
8. References 30

USING SCREEND TO IMPLEMENT IP/TCP SECURITY POLICIES NSL TN-2

iv

NSL TN-2 USING SCREEND TO IMPLEMENT IP/TCP SECURITY POLICIES

v

List of Figures
Figure 1: The Yoyodyne organization 14
Figure 2: Podunk University Biology department 25
Figure 3: Organization connected to Internet via slow link 27
Figure 4: The SmallTime organization 29

USING SCREEND TO IMPLEMENT IP/TCP SECURITY POLICIES NSL TN-2

vi

NSL TN-2 USING SCREEND TO IMPLEMENT IP/TCP SECURITY POLICIES

1

1. Introduction

Internetworking has greatly improved communication between administratively distinct or-
ganizations, linking businesses, schools, and government agencies to their common benefit. Un-
fortunately, internetworks that connect multiple organizations create potential security problems
that cannot be solved by the mechanisms used within organizations, such as restricting physical
access. In particular, interconnection at the datagram level is an ‘‘all or none’’ mechanism, al-
lowing outsiders access to all the hosts and applications of an organization on the internetwork.
The magnitude of this threat has been underscored by several incidents affecting large internet-
worked communities [19, 22, 24, 25].

To completely protect against penetration, every host within an organization must be made
secure, no small feat when it involves tens of thousands of poorly-managed workstations and
PCs. One alternative, perhaps less secure but certainly more feasible, is to block certain kinds of
packets at the routers that connect between organizations. Most commercial routers now support
this function, variously called ‘‘packet filtering’’ or ‘‘gateway screening,’’1 with varying degrees
of flexibility.

Although there are many excellent reasons why one might choose not to use a general-purpose
system as a router, in some cases that may be the most appropriate choice: budgets might not
allow the purchase of a special-purpose router, or available routers may not provide the required
functionality. Often, the performance demanded of routers interconnecting organizations is
lower than that required of routers used to connect LANs within an organization; this makes it
quite feasible to use a general-purpose system as an interorganizational router.

Routers based on the ULTRIX operating system (version 4.2 or later) support the use of the
screend program. Screend does gateway screening for the IP/TCP protocol family, and supports
a wide variety of security policies through the use of a flexible configuration mechanism.

Although screend is a simple program, creating a screend configuration that does not com-
promise security can be a complex problem, requiring deep understanding of how IP/TCP net-
works are used and abused. This technical note is meant to assist a network administrator in
using screend to implement network security policies.

I will assume that the reader is familiar with

• the basic concepts of the IP, TCP, UDP, and ICMP protocols

• the ULTRIX operating system

• the structure of his or her own network environment
and is generally aware of the kinds of threats that the network might be exposed to.

1The term ‘‘packet filtering,’’ which is perhaps more natural, had already been used for several years to name an
unrelated mechanism for implementing protocol software [14]. To avoid confusion, I will use the word ‘‘screen-
ing’’ in this document.

USING SCREEND TO IMPLEMENT IP/TCP SECURITY POLICIES NSL TN-2

2

1.1. Better approaches to security

The philosophy behind screend is not to provide full security. Rather, it is meant to allow
systems that provide their own security to be reachable from the outside world, while banning
connections to internal systems that are not known to be secure. In an ideal world, every internal
system would be secure, and screend would have no purpose.

It is generally accepted that security in distributed systems is best accomplished through the
use of encryption technology. Encryption may be employed not only to ensure the privacy of
data, but also to ensure the integrity of the systems involved through the use of authentication
mechanisms. One such mechanism is the Kerberos authentication system [23]; Kerberos has its
drawbacks, but if it or a similar system were ubiquitous, there would not be nearly so much need
for screend.

Since encryption-based security is not widely available, I’ll assume that the reader is not able
to employ it, and must depend on the more primitive methods described in this paper.

1.2. Other reading

To find out more about how screend works, its performance characteristics, and its application
in other areas, the reader should obtain a copy of the original paper on screend [11], or the WRL
Research Report2 that reprints the paper [12].

An excellent introduction to the concepts of the IP/TCP protocol family may be found in the
books by Douglas Comer [1, 2].

Internet protocols are defined by documents called ‘‘RFCs’’ (literally, RFC stands for ‘‘Re-
quest For Comments,’’ but many RFCs serve as standards documents). The most important
RFCs include:

RFC791
Internet Protocol (IP)

RFC792
Internet Control Message Protocol (ICMP)

RFC768
User Datagram Protocol (UDP)

RFC793
Transmission Control Protocol (TCP)

Additionally, one should obtain an up-to-date version of the ‘‘Assigned numbers’’ document,
which contains a variety of information but specifically indicates the assignments for TCP and
UDP port numbers. At this writing, the most recent version was RFC1060.

2For information on obtaining WRL Research Reports, send electronic mail to
WRL-Techreports@wrl.dec.com, with the word ‘‘help’’ in the Subject line.

NSL TN-2 USING SCREEND TO IMPLEMENT IP/TCP SECURITY POLICIES

3

RFCs are available from the Network Information Center (NIC) at SRI International.
Paper copies of all RFCs are available from the NIC, either individually or on a subscription

basis (for more information contact NIC@NIC.DDN.MIL). Online copies are available via
FTP or Kermit from NIC.DDN.MIL as RFC:RFC####.TXT or RFC:RFC####.PS (#### is the
RFC number without leading zeroes).

Additionally, RFCs may be requested through electronic mail from the automated NIC mail
server by sending a message to SERVICE@NIC.DDN.MIL with a subject line of ‘‘RFC ####’’
for text versions or a subject line of ‘‘RFC ####.PS’’ for PostScript versions. To obtain the
RFC index, the subject line of your message should read ‘‘RFC index’’

If you cannot send electronic mail to the NIC, they can be reached at:

Network Information Center
SRI International
333 Ravenswood Avenue
Menlo Park, CA 94025

(800) 235-3155

2. IP/TCP Security Model

The choice of which packets a router should be configured to block or accept is based not only
on the policies one is trying to enforce (which will be covered in sections 3 and 4) but also on a
model of how IP/TCP networks are used. This section covers the concepts that are important in
understanding how to use screend to enforce policies; without knowing what can and cannot be
enforced, one cannot devise a meaningful security policy.

Even if you think you know all about this, I encourage you to read section 2.7, or you may
find yourself vulnerable to forgeries.

2.1. IP addressing

Security policies must be expressed in terms of the active entities involved. Ideally, one
would like to know which people (or groups of people, or sometimes autonomous systems acting
on behalf of people) are involved in a communication, since ultimate responsibility does rest
with people. Unfortunately, absent the use of cryptographic authentication and sealing, IP pack-
ets are not tagged with the names of people.

Instead, we must rely on the addressing information present in the packet header when making
security decisions. IP packets can carry several levels of addressing information: host addresses
in the IP headers, and port numbers in the TCP or UDP headers. While IP routers are not sup-
posed to look at higher-layer headers (such as TCP or UDP headers), screend obtains most of its
flexibility and precision by such peeking.

IP host addresses originally formed a two-level hierarchy, being divided into ‘‘network num-
ber’’ and ‘‘host number.’’ This became unwieldy as the Internet grew, and an intermediate level
of hierarchy was introduced [13]. Addresses are now divided into ‘‘network number,’’ ‘‘subnet
number,’’ and ‘‘host number.’’

USING SCREEND TO IMPLEMENT IP/TCP SECURITY POLICIES NSL TN-2

4

There are several different IP address ‘‘classes,’’ each with a different size of the network
number field. The class of any given address, and thus the size of its network number field, can
be determined by examination. The choice of how to allocate address bits between subnet num-
ber and host number is left to local administration, however, and so additional information is
needed to parse the address. This is done using a 32-bit value known as an ‘‘address mask’’
(sometimes ‘‘subnet mask’’). The address mask indicates which bits of the IP address are used
to encode the host number, and which bits are used to encode together the network number and
subnet number.

In theory, one need only know the address masks for the networks that one is directly con-
nected to. A user of screend, however, might want to distinguish between subnets of a distant
network; thus, screend allows you to tell it the address mask for any given IP network. It is up to
you to get the value right.

Because of the relatively small IP address space, some organizations have started to use
variable-width subnet fields; that is, on a single IP network the allocation of address bits between
subnet number and host number may be different on different subnets. The current version of
screend does not support this concept; this is only a problem if you want to be able to distinguish
between different subnets of such a network. In our experience, there are few useful policies that
depend on distinguishing between subnets (but see the example in section 6.2).

In summary: every IP packet carries an IP source address and an IP destination address.
Screend can implement policies based on individual IP host addresses, on IP network numbers,
or on IP net+subnet identifiers.

One relatively new class of IP address is used for multicasting (transmission of a packet to a
designated group of recipients) [4]. Screend does not currently support the use of multicast ad-
dresses.

2.2. TCP and UDP port numbers

Every IP packet carries a Protocol number, which indicates how the next layer of header is to
be interpreted. The two most commonly-used protocols in this layer are TCP and UDP3. These
are often referred to as ‘‘transport protocols,’’ because they are used for transport of data be-
tween processes in the end hosts.

Because TCP and UDP are process-to-process protocols, they add another level to the address-
ing hierarchy; each TCP or UDP header includes source and destination ‘‘port’’ number fields.
A port is not exactly a process identifier; rather, it may identify a particular kind of service or a
party participating in a given connection.

Ports may be broken down into several classes:

• Well-known ports are those assigned to particular services, such as Telnet, File
Transfer (FTP), or Mail (SMTP). The well-known port assignments are an Internet
standard and are listed in the Assigned Numbers RFC. Ports numbered 0 through
255 are ‘‘well-known.’’

3Not every IP packet is a TCP packet!

NSL TN-2 USING SCREEND TO IMPLEMENT IP/TCP SECURITY POLICIES

5

• Reserved or Unix ports are those below 1024. These are ports that the 4.2BSD
Unix system (and its successors, including ULTRIX, SunOs, OSF/1, AIX, etc.)
reserve for use only by privileged processes. This might seem like a good thing for
security, but it actually provides at best a weak level of protection. Some reserved
ports, like well-known ports, have pre-assigned meanings, but they aren’t officially
assigned by the NIC.

• Other ports, in the range 1024 through 65535, are occasionally defined by conven-
tion for certain specific uses (see the Assigned Numbers RFC) but normally may be
assigned to arbitrary processes.

2.3. TCP connections

TCP connections are uniquely identified by a quadruple:

Source IP Address, Source Port, Destination IP Address, Destination Port

This means that several processes on machine host may have separate connections to a single
well-known port on a different host. The concept is subtle and understanding it might help you
avoid some confusion. However, screend does not distinguish among TCP connections.

2.4. ICMP error messages

The Internet Control Message Protocol (ICMP) is used for communicating certain kinds of
control information between hosts, or from a router to an end host. From the security point of
view, ICMP messages fall into two categories: ‘‘information’’ messages and others. ‘‘Infor-
mation’’ messages are those that we consider basically harmless; these include Echo, Times-
tamp, and Address Mask requests and replies. Other ICMP messages, such as Destination Un-
reachable or Redirect messages, could be used to cause problems for a host that receives them
(especially if the messages are forgeries).

Screend allows you to control ICMP access either on a per-message-type basis, or by the
Information/other distinction.

2.5. IP header options

The basic IP header contains fairly minimal information, but it may be extended through the
use of IP ‘‘Header Options’’. Some of the available options (specifically, the Source Route op-
tions) could be used to bypass the checks that screend performs on the basic header. Since
header options are virtually unused in current practice, screend does not currently allow any
packets with header options to be forwarded.

2.6. Fragmentation

IP datagrams may contain up to 64K bytes of data. Virtually all networking technologies
require packets to be smaller than this (for example, the Ethernet limits packets to about 1500
bytes), and in an internetwork it is likely that different subnetworks will have different ‘‘Max-
imum Transmission Units’’ (MTUs). This means that when a router forwards an IP packet, it
may find that the packet is too big to transmit on the outgoing link.

USING SCREEND TO IMPLEMENT IP/TCP SECURITY POLICIES NSL TN-2

6

In an attempt to make the MTU issue transparent to applications, IP systems can ‘‘fragment’’
packets that are too large to send in one piece. Each fragment has a copy of the original IP
header (more or less), but only the first fragment of a TCP or UDP packets contains the higher-
level protocol header. Thus, screend cannot look at subsequent fragments in isolation to extract
their TCP or UDP ports.

To get around this problem, screend keeps track of a number of recently-received ‘‘first frag-
ments,’’ which do contain the TCP and UDP headers. When a non-first fragment arrives,
screend checks to see if it has already seen the corresponding first fragment; if so, it forwards or
rejects the new fragment according to the information in the first fragment.

This works only when the fragments of a packet arrive in order at the system where screend is
running; this is likely to happen, given current Internet practices, but it is not guaranteed. Also,
if the volume of fragmented packets is too high, screend may lose track of them. Finally, if
packets can follow two or more paths that do not converge before (or at) a single
screend-equipped router, the fragment-matching algorithm will not work. (That means that in
principle you cannot put two screend-equipped routers in parallel, unless you don’t need to sup-
port fragmented datagrams. However, since most existing routers do not support split-path rout-
ing, in practice this has not been a problem.)

Fortunately, people have realized that fragmentation is usually not a good thing (it can cause
other problems), and so most TCP implementations attempt to avoid fragmentation. NFS, on the
other hand, uses fragmentation as a matter of course; if you want to run NFS over a
screend-equipped router (probably a bad idea anyway) you might want to adjust the NFS mount
options to reduce the read and write buffer sizes.

2.7. Reliability of information in packet headers

Screend makes all its decisions based on the contents of packet headers. Strictly speaking, this
is completely unsound, because any field in a packet header might be a forgery.

In practice, the situation is not so bleak, since it is pointless to ‘‘forge’’ certain of the fields in
the packet. For example, the destination IP address field is reliable, because once the packet
arrives at screend there is no question about where the packet will end up. Similarly, the IP
protocol type (e.g., TCP or UDP) and the destination port numbers are reliable.

On the other hand, any information about the source of the packet is suspect. One should not
base security upon policies that depend upon the validity of source addresses (or ports), unless
you can be sure that the source addresses cannot have been forged.

For example, one should not believe source addresses in packets that come from outside your
organization. On the other hand, if you trust the computers inside your organization, it might be
safe to trust source addresses for those hosts . . . but only in cases where the destination address
is outside your organization. To be on the safe side, we recommend that you not normally trust
source addresses; you should assume that some hosts inside your organization might have been
compromised.

NSL TN-2 USING SCREEND TO IMPLEMENT IP/TCP SECURITY POLICIES

7

3. An Integrated Security Policy

It makes no sense to think about a network security policy in isolation; you have to understand
how the individual systems in your organization are used, what their vulnerabilities are, what the
likely threats are, who is trustworthy and who isn’t. And, since security inevitably makes some
benign activities less convenient (or impossible), one must also consider the tradeoffs between
making an organization secure and allowing it to get its job done.

In this section, I will describe the general approach to security taken at the Digital Equipment
Corporation Western Research Laboratory. This is not the only reasonable policy, but we have
been relatively successful at balancing our security needs with our needs for communication.
Discussion of specific IP/TCP issues will be deferred until section 4.

3.1. Basic principles

Our basic principle is that there shall be no direct communication (especially TCP connec-
tions, but also other using kinds of datagrams) between hosts within our organization and hosts
outside our organization. There are exceptions to this policy, of course: certain of our hosts are
‘‘trusted’’ and these serve as relays for various functions. There are a few minor additional
exceptions, described later.

Another principle is ‘‘separation of function.’’ Because we cannot be sure that any single
function is actually secure, we create firewalls between functions so that if one is compromised,
the rest are still intact. This means, for example, that we have no ‘‘user accounts’’ on mail relay
machines, and the machine used as a screend-router has no other functions.

We are careful to log as much information as possible; this makes it much easier to detect
intrusion attempts, and to (if necessary) understand how they succeed.

One useful principle in designing any kind of security policy is that the default should be to
deny access; that is, everything which is not explicitly legal is illegal. While this may not be an
appropriate model for structuring human societies, it is the safest way to structure a computer
security system.

3.2. Organizational trust model

An important part of creating a security policy is to decide whom you trust. Each organization
will have to make its own decision, based on the nature of its business, legal considerations, and
its culture. Excessive paranoia causes resentment and inspires people to find ways around the
security model; excessive trust leads to breakins.

One also has to distinguish between trusting certain people, and trusting the computers that
they use. Most people are trustworthy, and most people are incompetent at securing their own
personal systems . . . so most computers are not trustworthy. That is, if an intruder can log in to
a computer, that computer could become the agent of an attack without the knowledge of its
owner.

USING SCREEND TO IMPLEMENT IP/TCP SECURITY POLICIES NSL TN-2

8

Our own model is that we trust no computers outside our organization. Inside our organiza-
tion, we assume that people are trustworthy but that their computers might have been com-
promised. This is why we do not allow direct TCP connections across the boundary.

A small set of computers within the organization are deemed trustworthy. These computers
must be actively and competently managed according to a set of security principles designed to
limit the possibility that they will be compromised. For more information on how keep an in-
dividual host secure, you should turn to the published literature pertaining to the operating sys-
tem you run. For example, Unix security has been covered fairly well [3, 5, 6, 15]. On the
other hand, it might be impossible to make an MS-DOS system secure enough, and so you
should not consider such a system ‘‘trustworthy.’’

It is important to understand that securing your connection to the Internet does not magically
protect your organization from all threats. For example, an employee of your organization might
mail a magnetic tape to an outsider, or an intruder might break into your building at night and
steal a disk drive. The point of enhanced network security is not to stop all security problems; it
is to make sure that someone outside your network administration takes the blame for them.

3.3. Threats

A security policy must be based on an estimate of the kinds of threats one is expecting. More
precisely, since one can never anticipate all potential threats, the policy should foreclose large
classes of threats, rather than being aimed at stopping only the ones you already know about.

We are most concerned about intruders breaking in to our systems via the network. Since we
may fail at that, we also want to prevent them from stealing large quantities of information via
the network. (It would be impossible to prevent an intruder from stealing small secrets, since
they could simply be printed on the intruder’s terminal.)

We would also like to prevent intruders from disrupting our internal communications. This
means, for example, that we do not want to allow someone to insert incorrect routing information
into our routing tables.

Other kinds of denial-of-service attacks are based on overloading our internal network (and
thus preventing legitimate uses). Screend by itself cannot rate-limit a packet flow, but by ban-
ning direct access to our network and by forcing all incoming traffic to flow through a relatively
low-bandwidth pipe, screend allows us to localize the potential for mischief.

Because a security policy is inevitably a compromise between security and convenience, it
would be a mistake to try to guard against every conceivable threat. Some threats might not be
serious enough to worry about; for example, a path for stealing files that does not provide much
bandwidth. Others may be so inconvenient that an intruder would not bother to use them.
Finally, one must remember that in most organizations, employees expect their communications
will remain private, and it would not be ethical (or legal) to monitor the contents of, say,
electronic mail messages without some probable cause for suspicion of a particular user.

NSL TN-2 USING SCREEND TO IMPLEMENT IP/TCP SECURITY POLICIES

9

3.4. Structural model

Our screening router divides the Internet, from our point of view, into two pieces: ‘‘inside’’
and ‘‘outside.’’ In general, outside hosts are assumed under the control of skillful and malicious
people. Inside hosts are generally assumed to be under the control of incompetent people, who
must be protected against the barbarians outside.

In addition to these two large classes of hosts, there is a small set of trusted hosts. Trusted
hosts are those that belong to our organization, and are carefully managed and monitored by
skilled and cautious administrators. Some of these trusted hosts are outside the screening router
(although still physically under our control); others may be inside. Between the trusted-but-
outside hosts and the actual Internet, there is at least one more router, so that the physical net-
work to which these hosts are connected to is also entirely under our physical control.

The trusted-but-outside machines serve as our relay machines. Since nothing stands between
these machines and the outside world, they are the weak link in our security scheme. But, since
they would have to be accessible from outside even if they were placed inside, they would be no
less vulnerable on the inside. We believe that it is safer to place them on the outside, so that we
can use screend to control how much access they have to internal hosts. Also, if one of them
were to be compromised, placing them outside means that the intruder would not have direct
access to one of our internal networks (where it might be possible to ‘‘snoop’’ for passwords and
the like).

It should be clear that to protect an organization using this model, there must be no ‘‘sneak
paths’’ around the screend router. Often, in a large organization, people are tempted to create
their own paths to the outside world, either through ignorance of the security model or through
frustration with the service they are getting. For example, someone with a home computer might
set up a SLIP or PPP link to their office system; this would be fine by itself, but if they also have
a SLIP link to, say, a neighboring University, their home computer would be a potential sneak
path. This problem must be solved through administrative mechanisms, although careful
monitoring of routing tables can help identify sneak paths.

Large organizations might require multiple connections to the Internet, for reasons of perfor-
mance or reliability. Screend should be used at all such points, with coordinated configuration
files, so that no inconsistencies arise.

3.5. Meeting organizational requirements for communication

The easiest way to secure a network against external threats is to disconnect it from the Inter-
net, but that would be pointless: we have internetworks so that we can communicate. What
functions are necessary to support our organization?

3.5.1. Electronic Mail and USENET

Electronic mail (carried by the SMTP protocol [16]) is the most important use of the Internet.
Many organizations get by with electronic mail access and nothing else (if only because they
cannot afford a direct connection).

USING SCREEND TO IMPLEMENT IP/TCP SECURITY POLICIES NSL TN-2

10

Electronic bulletin-board systems are quite similar to electronic mail. In the Internet, the
dominant bulletin-board system is called ‘‘USENET’’ or ‘‘netnews’’ or ‘‘news’’; articles are
exchanged over IP/TCP networks using the NNTP protocol [7]. USENET follows a ‘‘flooding
model’’: every participating server host ends up with the full set of articles. This is unlike cer-
tain other systems, where an article is stored by only one server, and the client must communi-
cate over the network to that server.

Since both electronic mail messages and USENET articles can be relayed through a trusted
machine, we do not need to let every host inside our organization exchange mail or articles with
every host outside the organization. So, we can support mail and USENET without violating our
policy of ‘‘no direct connections except through trusted relays.’’

This policy is particularly relevant because a bug in the original implementation of the
4.2BSD sendmail daemon creates a serious security hole (and was exploited by the ‘‘Morris
Worm’’ [19, 22].) Unless you are sure that none of the sendmail daemons within your organiza-
tion have this bug, it is best not to let anyone test this premise. Using a mail-relay host means
that you need only worry about the security of its sendmail daemon.

3.5.2. Telnet and FTP

IP supports a number of other services that people have come to depend upon. Within an
organization, these are certainly necessary; between organizations, we have found that they are
not. Or, rather, our organization has decided that we would rather not risk the security hazards.

The most prominent of these services are Telnet [18], FTP [17], and NFS [20, 26] Telnet
provides direct interactive access to a remote system, and we believe that it is too dangerous to
allow outsiders such access to our systems. We use a relay machine for Telnet access, which
means that only people authorized to use the relay machine can make telnet connections. We
monitor the relay machine closely, to ensure that it is not compromised. We believe that this is
much safer than trying to ensure the security of the thousands of machines inside our organiza-
tion, although it does cause some administrative hassles for those people who want accounts on
the relay machine.

Our approach to FTP is similar; we only allow FTP access via the relay machine, for specifi-
cally authorized users. The relay machine does not run an FTP server (except for read-only
‘‘anonymous’’ access to a restricted-root file system, containing public information). This
means that a user must first log in to the relay machine, and then invoke the FTP client twice, in
order to transfer files from outside to inside (or vice versa). This is cumbersome, but it guaran-
tees that if the relay machine is secure, no unauthorized FTP can take place.

Many members of our organization, outside the set of authorized relay users, would like to
have access to the many ‘‘anonymous FTP’’ sites throughout the Internet. We don’t dare to
provide them direct FTP access to these sites, and we don’t want to give everyone an account on
the relay machine, but fortunately there are a number of ‘‘FTP by email’’ services running on the
Internet. To use this service, one sends a mail message asking it to retrieve a specific file from a
specific anonymous FTP site, and the server returns the file via electronic mail.

Because FTP-by-email cannot be used to steal files from within our organization, it does not
reduce our security.

NSL TN-2 USING SCREEND TO IMPLEMENT IP/TCP SECURITY POLICIES

11

We also run an anonymous FTP site for use from hosts both inside and outside our organiza-
tion. Just as every such service should be, ours is set up so that the files are read-only, and a user
cannot see any files (such as /etc/passwd) outside the publicly readable file system. We do
not let even authorized users of the FTP relay host add files to this archive, in case someone
(accidentally or on purpose) tries to export a confidential file through this service. Instead, each
exported file must be approved by the administration of our anonymous FTP service.

3.5.3. NFS

We do not allow any direct file access protocols to run across our screening router. Current
protocols, such as NFS, are simply too insecure to be trusted in an inter-organizational environ-
ment.

There is one exception to this rule: we allow certain inside-hosts to be NFS clients of the
anonymous FTP server, which exports its public files as a read-only file system. We believe this
is safe because it does not expose any secret files, does not allow any files to be modified, and
does not depend on validating IP addresses that are not under our control.

3.5.4. R-commands

Although not described by any IP standards, the so-called ‘‘r-commands’’ introduced by
4.2BSD have become quite popular in certain circles. These commands, including rlogin, rsh,
rcp, and rdist allow remote access between systems without any passwords being required. This
makes them quite convenient, and completely insecure. We do not allow these services to cross
our screening router, and we do not run the corresponding servers on our trusted systems.

3.5.5. Name service

Name service (translation between host names and addresses) in the Internet is provided by
the Domain Name System (DNS) [9, 10]. DNS is a distributed, hierarchically-organized system
in which each organization runs a set of DNS servers for its subtree of the name space.

Because it is useful for insiders to be able to translate names for outside hosts, and vice versa,
we allow DNS lookup packets to transit the screening router (UDP packets only; DNS allows
lookups to be done via TCP connections, but this is not a necessary service and we do not like to
allow direct TCP connections).

We do not allow so-called ‘‘zone transfers’’ to hosts outside of our organization. These would
allow someone to obtain a list of all the hosts in our organization, which might be useful infor-
mation to someone trying to find a vulnerable host (or to someone trying to discover the or-
ganizational structure of our company, which is considered proprietary information). This
prohibition cannot be entirely enfored by screend; if you choose to run a DNS server that is
reachable from the Internet, that DNS server software must also reject such transfers.

3.5.6. Time service

We are increasingly dependent on the accuracy of the clocks in our computers, not just be-
cause our applications care what time it is, but because many aspects of security depend on the
reliability of clocks. For example, the Kerberos authentication system requires that clocks be

USING SCREEND TO IMPLEMENT IP/TCP SECURITY POLICIES NSL TN-2

12

kept reasonably synchronous, and many similar systems depend upon clock monotonicity (i.e.,
that the clocks never run backward).

It is now common practice to synchronize clocks using a network-based protocol. The stan-
dard protocol in the Internet is the Network Time Protocol (NTP) [8], although several other
time protocols are in use or have been proposed.

NTP includes several mechanisms to avoid being misled by malicious (or simply malfunction-
ing) clocks. The most robust of these is the use of encryption to provide authentication, but for
various reasons many NTP servers do not take advantage of this feature. NTP is also careful to
combine data from several sources in such a way as to ignore servers that are significantly out of
synch. We believe that by taking care in selecting the servers at the top of our NTP distribution
tree, we can avoid being plagued by the insertion of incorrect time information into our network.
Thus, although we allow free flow of NTP packets across our screening router, we configure our
NTP systems to trust only a small set of hosts.

3.5.7. X service

The X Window System [21] uses TCP to allow client programs on one system to use an X
server (display) on another. We often get requests to allow X connections across the screening
router, since these would allow demonstrations and powerful forms of collaboration. We do not
allow X connections, however, because of the lack of any useful security mechanism in X.

For example, if we were to allow X clients (applications) from outside hosts to create win-
dows on X servers (displays) on inside hosts, a miscreant might set up a display that looks like a
standard login window, and thereby obtain passwords from unwitting users. If we allowed X
clients on inside hosts access to X servers on outside hosts, an intruder could obtain interactive
access to one of our hosts through the use, for example, of a Trojan horse program that simply
starts an xterm process. In any event, to allow X connections in either direction would mean
violating our rule against allowing direct TCP connections.

3.5.8. ICMP

Certain ICMP messages (such as Destination Unreachable, Redirect, and Source Quench) are
considered necessary to the proper operation of a connection. Since we do not allow direct con-
nections across our screening router, however, we need not allow ICMP messages. In fact, since
some ICMP messages can actually be dangerous (bogus Redirects, for example, could create
problems) we find it safest to prohibit all of them.

3.5.9. Finger

‘‘Finger’’ is a protocol used for finding out information about remote users (such as their
phone number, address, and perhaps a short ‘‘plan’’ file giving additional information) [27]. The
main reason to disallow the use of Finger is that a bug in the original implementation of the
4.2BSD Finger daemon creates a serious security hole (and was exploited by the ‘‘Morris
Worm’’ [22, 19].) Unless you are sure that none of the Finger daemons within your organization
have this bug, it is best not to let anyone test this premise.

NSL TN-2 USING SCREEND TO IMPLEMENT IP/TCP SECURITY POLICIES

13

Another reason to avoid direct Finger connections is that the protocol provides an easy way to
steal large files. An intruder who has penetrated one of your machines could put a file to be
stolen in place of the finger ‘‘plan’’ file of a legitimate user, and then finger that user from
outside; the finger daemon would blindly transfer the entire file. (It would be possible to modify
your finger daemon to allow only short transfers, but you probably would not be able to update
all the vulnerable hosts.)

We use a ‘‘finger relay’’ mechanism that allows our users to finger people in other organiza-
tions. It also allows us to control, from a single point, incoming finger transactions; we can limit
the set of fingerable users, and we can limit how much information can flow.

3.5.10. Other protocols

Many other protocols are in use in the Internet. We prohibit them all.

3.6. Exceptions

Because security and convenience always conflict, there are times when exceptions to these
rules are necessary. (A security system that is too inflexible inspires people to work around it,
and so it becomes ineffectual.) Exceptions, when made, should be as narrow as possible;
screend supports this.

For example, one might decide that a particular external host, even one belonging to another
organization, is trustworthy enough to allow connections to its FTP server. Or, for the purposes
of a particular demonstration, one might temporarily allow X clients on a specific internal host
access to the X server on certain external hosts. One should then make sure that the internal host
in question is carefully managed and monitored.

4. IP/TCP security rules

In this section, I will give a set of rules that describe how packets are allowed to flow across
the screening gateway, given the security policy described in section 3. To make the rules con-
crete, I will use as an example the Yoyodyne, Inc. organization shown in figure 1.

In figure 1, screend is running on Router-B. Both Subnet-A and Subnet-B are subnets of
Yoyodyne-net, as are the ‘‘other internal networks.’’ The Internet is full of malicious characters
(as the frowny-face suggests). Subnet-A is ‘‘outside’’ the screening router, but is still under the
control of Yoyodyne.

We will allow hosts on Subnet-B to mount a read-only NFS file system from
Telnet-FTP-Relay, but we will not allow other hosts in Yoyodyne to do so. We also do not allow
Host-D to mount this NFS file system (this is a contrived example, whose purpose will become
clear later on).

Yoyodyne has decided to allow its employees to finger people at other organizations, but not
to allow anyone to finger its own users except for those who have accounts on
Telnet-FTP-Relay.

USING SCREEND TO IMPLEMENT IP/TCP SECURITY POLICIES NSL TN-2

14

Router-A

Router-C

Screening
Router-B

Telnet/FTP
Relay

Mail
Relay

The
Internet

Other
Internal
Networks

S
u

b
n

et-A

S
u

b
n

et
-B

Host
A

Host
B

Host
C

Host
D

Figure 1: The Yoyodyne organization

Since one of our principles is that the default is to deny access, and we allow relatively few
kinds of access across the screening router, we need only a few rules to describe our screening
policy.

1. The host Mail-Relay is allowed to be client or server for SMTP and NNTP connec-
tions with any host.

2. The host Telnet-FTP-Relay is allowed to be client or server for Telnet and FTP
connections with any host.

3. The host Telnet-FTP-Relay is allowed to be server, but not client, for Finger con-
nections with any host.

4. The host Telnet-FTP-Relay is allowed to exchange UDP packets to or from its NFS
server port with hosts on Subnet-B, except for Host-D.

5. Any UDP packets to or from the DNS (name server) port are allowed between any
hosts.

NSL TN-2 USING SCREEND TO IMPLEMENT IP/TCP SECURITY POLICIES

15

6. Any UDP packets to or from the NTP (time service) port are allowed between any
hosts.

7. All other packets are prohibited.

These few rules are sufficient to formalize the screening-router’s responsibilities in enforcing
the security policies described in section 3. They are not, of course, sufficient to enforce the
responsibilities of the hosts Mail-Relay and Telnet-FTP-Relay. It is our hope that, if these
responsibilities are enforced, no amount of incompetence in the administration of hosts on
Subnet-B or the other internal networks of Yoyodyne, Inc., will expose the company to attack.

5. Implementing a policy using screend

In this section, I will show how to use screend to implement the rules listed in section 4.

5.1. Screend theory of operation

The mechanisms used in the screend system are documented in great detail
elsewhere [11, 12]. The underlying idea, however, is quite simple.

Normally (i.e., without screend), forwarding of IP packets is done entirely in the ULTRIX
kernel. When a packet is received, and it is not destined for one of the local host addresses, the
kernel attempts to forward it. Forwarding means finding a route for the packet to follow, and
transmitting the packet.

When screend is in use, the forwarding process starts with one new step. The kernel passes
the packet header to the screend process, which examines the header and decides if the packet
should be forwarded (‘‘accepted’’) or not (‘‘rejected’’). Screend returns its decision to the ker-
nel, which then either continues with the normal forwarding process or discards the packet, ac-
cording to screend’s instruction. Optionally, screend may instruct the kernel to send an ICMP
Destination Unreachable message to the source of a rejected packet; this is done to try to sup-
press additional attempts to send forbidden packets.

5.2. The screend configuration file

The screend program is instructed to enforce a particular policy by the rules it finds in its
configuration file, /etc/screend.conf. To change the policy, you simply edit this file, kill
the /usr/etc/screend process currently running, and restart /usr/etc/screend.

The configuration file is a text file; this makes it easy to edit, but after editing the file you
should make sure that screend parses it without complaint, since it is possible that you might
have introduced syntax errors.

USING SCREEND TO IMPLEMENT IP/TCP SECURITY POLICIES NSL TN-2

16

5.3. Grammar for the screend configuration file

This is a guide to the grammar of the screend configuration file. Syntax rules are expressed in
BNF notation (sometimes called Backus-Naur Form). If you don’t know what this is, you should
turn to a textbook on programming languages or compilers.

If you are confused by this notation, try turning to section 5.4, which shows examples of
specific rules.

5.3.1. Lexical structure

• Comments can either be ‘‘C-style’’ comments, delimited by ‘‘/*’’ and ‘‘*/’’, or
‘‘csh-style’’ comments begun with ‘‘#’’ and terminated by the end of a line. Com-
ments do not nest.

• Case is significant in reserved words (all are lower-case). This is actually a benefit,
because if a host name happens to conflict with a reserved word, you can use the
host name in upper-case.

• Host names begin with alphabetics but may contain digits, ‘-’, ‘.’, and ‘_’. The
same is true of network, subnet, and netmask names. All can also be entered in
dotted quad notation (for example, ‘‘10.1.0.11’’).

• Numbers may be in decimal or in hex (0x0 notation). Octal notation is not allowed
because nobody uses it in this context. (Actually, hex is almost as useless).

• Protocol names and port names (for TCP or UDP) are as in /etc/protocols
and /etc/services, respectively. These can also be given as numbers (host
byte order).

• ICMP type codes must be chosen from this list, or given as numbers:

echoreply
unreachable
sourcequench
redirect
echo
timeexceeded
parameterproblem

timestamp
timestampreply
informationrequest
informationrreply
addressmaskrequest
addressmaskreply

• All white space is the same (including newlines).

5.3.2. Syntax

General syntax rules:
1. The configuration file consists of ‘‘specifications’’ terminated by semicolons.

2. There are three kinds of specifications:
a. default action specification: There should only be one of these (the last

one is the one that counts); it specifies what action to take if no action
specification matches a packet.

b. subnet mask specifications: specifies the subnet mask used for a given
network.

NSL TN-2 USING SCREEND TO IMPLEMENT IP/TCP SECURITY POLICIES

17

c. action specifications: specifies a class of packets and the action to take
when such a packet is received.

3. Specifications can appear in any order, but the evaluation order of action specifica-
tions is the order in which they appear in the file.

In BNF, this is:

<configuration-file> ::= { <specification> | <configuration-file> <specification> }
<specification> ::= { <default-action> | <subnet-spec> | <action-spec> }

The syntax for a default action specification is:

<default-action> ::= default {accept | reject} [notify] [log] ;

Note that ‘‘default accept notify;’’ is legal but the ‘‘notify’’ in this case is a no-op. If not
specified, the default action is ‘‘reject’’.

The syntax for subnet mask specifications is:

<subnet-spec> ::= for <network> netmask is <maskval> ;

The <network> is either a network name or a dotted-quad address, such as ‘‘36.0.0.0’’. ‘‘36’’ is
not a reasonable value. <Maskval> is either a name (treated as a hostname) or a dotted-quad
address, such as ‘‘255.255.255.0’’ (bits are on for the network and subnet fields.)

The syntax for action specifications is:

<action-spec> ::= from <object> to <object> {accept | reject} [notify] [log] ;

Such a specification says that packets flowing this way between this pair of ‘‘objects’’ (defined
below) should either be accepted or rejected. If ‘‘notify’’ is specified, when a packet is rejected
an ICMP error message is returned to the source. If ‘‘log’’ is specified, this packet and its dis-
position are logged.

Conceptually, for each packet the action specifications are searched in the order they appear in
the configuration file, until one matches. The specified action is then performed. If no specifica-
tion matches, the default action is performed.

To simplify the configuration file, the syntax

<action-spec> ::= between <object> and <object> {accept | reject} [notify] [log] ;

may be used to indicate that the same action should be performed on packets flowing in either
direction between the specified pair of ‘‘objects.’’ Note that this is simply syntactic sugar; it has
the same effect as specifying the two unidirectional rules, with the ‘‘forward’’ direction listed
first.

An ‘‘object’’ is a specification of the source or destination of a packet. The syntax for object
specifications is somewhat complex, since certain fields are optional:

<object> ::= { <address-spec> | <port-spec> | <address-spec> <port-spec> }

If the <address-spec> is not given, ‘‘any host’’ is assumed. If the <port-spec> is not given,
‘‘any protocol and port’’ is assumed.

<address-spec> ::= { <net-spec> | <subnet-spec> | <host-spec> | any }

USING SCREEND TO IMPLEMENT IP/TCP SECURITY POLICIES NSL TN-2

18

<net-spec> ::= { net <name-or-addr> | net-not <name-or-addr> }
<subnet-spec> ::= { subnet <name-or-addr> | subnet-not <name-or-addr> }
<host-spec> ::= { host <name-or-addr> | host-not <name-or-addr> }

The ‘‘-not’’ convention means that the object specification matches if the specified field does not
have the specified value. For example, ‘‘from host-not sri-nic.arpa to host
any reject’’ means that packets not from sri-nic.arpa are dropped. The ‘‘subnet’’ and
‘‘subnet-not’’ forms match against the entire address under the subnet mask (for example, if the
netmask for net 36 is 255.255.0.0, then ‘‘subnet 36.8.0.0’’ matches a packet address of
36.8.0.1).

<name-or-addr> ::= { <name> | <dotted-quad> | any }

<port-spec> ::= { proto <proto-name-or-number>
| icmp type <type-name-or-number> | icmp type-not <type-name-or-number>
| tcp port <port-name-or-number> | tcp port-not <port-name-or-number>
| udp port <port-name-or-number> | udp port-not <port-name-or-number> }

<proto-name-or-number> ::= { <name> | <number> }
<type-name-or-number> ::= { <name> | <number> | any | infotype }
<port-name-or-number> ::= { <name> | <number> | any | reserved }

‘‘Reserved’’ ports are those reserved by 4.2BSD Unix for privileged processes. ‘‘Infotype’’
ICMP packets are those that are purely ‘‘informational’’: echo, timestamp, information, and ad-
dressmask requests, and the corresponding replies.

5.4. Implementing the example of section 4

The first step in creating a screend.conf file is to tell screend the subnet structure of
Yoyodyne’s network. I will assume that yoyodyne-net is a Class-B network with an 8-bit wide
subnet field

for yoyodyne-net netmask is 255.255.255.0;

Now I will create screend rules corresponding to the informal rules in section 4. Note that
screend interprets the rules in the order that they appear in the configuration file, so if two rules
conflict I will put the more specific rule first.

1. The host Mail-Relay is allowed to be client or server for SMTP and NNTP connec-
tions with any host.

between host mail-relay tcp port smtp
and any accept;

between host mail-relay
and any tcp port smtp accept;

between host mail-relay tcp port nntp
and any accept;

between host mail-relay
and any tcp port nntp accept;

2. The host Telnet-FTP-Relay is allowed to be client or server for Telnet and FTP
connections with any host.

NSL TN-2 USING SCREEND TO IMPLEMENT IP/TCP SECURITY POLICIES

19

between host telnet-ftp-relay tcp port telnet
and any accept;

between host telnet-ftp-relay
and any tcp port telnet accept;

between host telnet-ftp-relay tcp port ftp
and any accept;

between host telnet-ftp-relay
and any tcp port ftp accept;

between host telnet-ftp-relay tcp port 20
and any accept;

between host telnet-ftp-relay
and any tcp port 20 accept;

Note that if one wants to allow FTP data transfers, one must allow access to the
FTP-Data port, because of the way that the FTP protocol works. Since the FTP-
Data port is not normally listed in /etc/services, we must give its numeric
value. (See section 5.5 for more about using numbers instead of symbolic names.)

3. The host Telnet-FTP-Relay is allowed to be server, but not client, for Finger con-
nections with any host.

between host telnet-ftp-relay tcp port finger
and any accept;

4. The host Telnet-FTP-Relay is allowed to exchange UDP packets to or from its NFS
server port with hosts on Subnet-B, except for Host-D.

Since the rule about Host-D is an exception to the rule about Subnet-B, we must
put it first.

between host telnet-ftp-relay udp port nfs
and host host-d reject;

between host telnet-ftp-relay udp port nfs
and subnet subnet-b accept;

A NFS client must also be able to contact the mountd process on the server host.
Normally, the mountd process does not used a fixed port number (it registers itself
with the portmap process, which does have a fixed port number.) In order to have
a specific port number to put into the screend configuration file, we need a special
version of the mountd program that binds to specified port number. We have ar-
bitrarily chosen port number 3210 for this purpose.

between host telnet-ftp-relay udp port 3210
and host host-d reject;

between host telnet-ftp-relay udp port 3210
and subnet subnet-b accept;

5. Any UDP packets to or from the DNS (name server) port are allowed between any
hosts.

between any udp port domain
and any accept;

6. Any UDP packets to or from the NTP (time service) port are allowed between any
hosts.

between any udp port ntp
and any accept;

USING SCREEND TO IMPLEMENT IP/TCP SECURITY POLICIES NSL TN-2

20

7. All other packets are prohibited.
default reject;

Screend rules let one specify more than simply whether to accept or reject the packet. In most
cases, if we reject a packet we want to have screend notify the sender (via an ICMP message).
We probably want to log most, but not all, of the rejected attempts, and we might want to log
some of the accepted packets (see section 5.7).

The following example shows the same rules as above, collected together into a single com-
mented screend.conf file, with notify and log sprinkled throughout. I have added a few
extra rules to suppress logging of rejections of uninteresting, but common, broadcast packets.
Note: some earlier versions of the screend software only accepted the default rule if it comes
as the first rule in the file; that is why it appears first in this example.

All packets not covered by an explicit rule
are prohibited, and logged.
default reject notify log;

Specify any necessary network masks
for yoyodyne-net netmask is 255.255.255.0;

The host Mail-Relay is allowed to be client or server
for SMTP and NNTP connections with any host.
between host mail-relay tcp port smtp

and any accept;
between host mail-relay

and any tcp port smtp accept;
between host mail-relay tcp port nntp

and any accept;
between host mail-relay

and any tcp port nntp accept;

The host Telnet-FTP-Relay is allowed to be client or
server for Telnet and FTP connections with any host.
between host telnet-ftp-relay tcp port telnet

and any accept;
between host telnet-ftp-relay

and any tcp port telnet accept;

between host telnet-ftp-relay tcp port ftp
and any accept;

between host telnet-ftp-relay
and any tcp port ftp accept;

Note that if one wants to allow FTP data transfers,
one must allow access to the FTP-Data port, because
of the way that the FTP protocol works.
between host telnet-ftp-relay tcp port 20

and any accept;
between host telnet-ftp-relay

and any tcp port 20 accept;

The host Telnet-FTP-Relay is allowed to be server, but
not client, for Finger connections with any host.
between host telnet-ftp-relay tcp port finger

and any accept;

NSL TN-2 USING SCREEND TO IMPLEMENT IP/TCP SECURITY POLICIES

21

The host Telnet-FTP-Relay is allowed to exchange UDP
packets to or from its NFS server port with hosts on
Subnet-B, except for Host-D.
between host telnet-ftp-relay udp port nfs

and host host-d reject notify log;
between host telnet-ftp-relay udp port nfs

and subnet subnet-b accept;
A special version of mountd, running on port 3210, is
used to allow us to list a specific port number here.
between host telnet-ftp-relay udp port 3210

and host host-d reject;
between host telnet-ftp-relay udp port 3210

and subnet subnet-b accept;

Any UDP packets to or from the DNS (name server) port
are allowed between any hosts.
between any udp port domain

and any accept;

Any UDP packets to or from the NTP (time service) port
are allowed between any hosts.
between any udp port ntp

and any accept;

Reject high-volume broadcast junk without wasting
log space
from any to any udp port whod reject notify;
from any to any udp port timed reject notify;

5.5. Use of symbolic names in configurations

In the Yoyodyne example, I used symbolic names for hosts, networks, subnets, and ports;
although screend allows either symbolic names or numbers for all these objects, it is much easier
to understand the example if names are used.

Using names has its pitfalls, however. The most important is that it depends upon the security
of your name service. If someone has compromised your name server (or a non-local name serv-
er, if you are brave enough to include the name of a non-local host in one of your rules) then they
may be able to fool your screend. For this reason, we translate all names into numbers by hand,
and put only numbers into the screend.conf file. (This does run the risk of human error, of
course, and it can lead to problems when a name-to-address binding is changed.)

Another problem is that some host names are bound to more than one address. If you specify
the rules using names, rather than numbers, screend does not know what you mean. It will pick
the primary host address, and issue a warning message. If you use host numbers, no ambiguity is
possible.

USING SCREEND TO IMPLEMENT IP/TCP SECURITY POLICIES NSL TN-2

22

5.6. Performance considerations

In order to provide consistent and understandable behavior when screend.conf contains
conflicting rules, for each packet screend searches the rule database in the order that the rules
appear. This means that you should put the rules most likely to match an incoming packet at the
front of the configuration file. It also means that you should not put more rules than necessary
into the file, since that will lengthen the search process.

Screend avoids some of the searching by keeping a cache of a small number of recent deci-
sions. You cannot do much to affect the performance of this cache, except for keeping your
rules as simple as possible.

Since the screend process is invoked for every packet received for forwarding, it is not a good
idea to run other active jobs on the system. You should, of course, continue to run the normal
bookkeeping jobs (such as syslog, cron, update, etc.) but you should refrain from running
nameservers or user applications. It is probably more important to run screend alone on a dedi-
cated system than it is to run screend on a fast CPU, because switching between processes is one
of the least efficient functions of modern computers.

5.7. Logging of actions

We log all failed access attempts; this allows us to detect intrusions, or problems arising from
incorrect configuration (such as incorrect use of MX records). Screend can be set up to log via
the syslog service, or directly to a file. The latter mechanism is much more efficient, and
produces slightly less log output; the former includes timestamps on every log record. In most
cases, the timestamps can be inferred from the hourly summary records written to the log.

If screend were to log a record for every packet, it would run like molasses and your disks
would fill up. One can limit the log volume by not logging accepted packets (since those should
be far more common than rejected packets), and by not logging certain common kinds of
rejected packets (see the example in section 5.4).

Screend also helps out by suppressing duplicate log records. Since repeated attempts to com-
municate over a given path would give rise to identical log entries (except for the timestamp),
screend immediately issues the first of a series of identical records, and then simply counts the
number of repetitions. Every 10 minutes or so, screend logs a summary entry showing how
many superfluous entries have been suppressed. The program has limited buffer space to keep
suppressed log entries, so if this space overflows then additional summary entries will be
generated as necessary, in least-recently-used order. The net effect is that you can tell exactly
how many packets of each sort would have been logged, although not until a few minutes after
the fact and not in precise time-order.

Our screend router is on a fairly busy path, and we find that it generates on the order of
360000 log entries (20 megabytes) every day. We use a script similar to /usr/adm/syslog
to compress and rename the log file once a night, keeping the last 7 days of logs. (Compression
can reduce the size of the old logs by a factor of 10 or more.) Screend, unlike sendmail, does not
need to be sent a signal to cause it to use a new log file; it simply reopens its log file (in append-
mode) once an hour. The script we use is:

NSL TN-2 USING SCREEND TO IMPLEMENT IP/TCP SECURITY POLICIES

23

#! /bin/sh
cd /usr/spool/log
/bin/rm screend.7.Z
/bin/mv screend.6.Z screend.7.Z
/bin/mv screend.5.Z screend.6.Z
/bin/mv screend.4.Z screend.5.Z
/bin/mv screend.3.Z screend.4.Z
/bin/mv screend.2.Z screend.3.Z
/bin/mv screend.1.Z screend.2.Z
/bin/mv screend.0 screend.1
/bin/mv screend screend.0
/bin/cp /dev/null screend
/bin/chmod 644 screend
/etc/chown root screend
/bin/chgrp system screend
We cannot yet compress screend.0 because it is still
open for writing by the screend process
/usr/ucb/compress screend.1

This script is invoked once a day from /etc/crontab.

Log entries come in several forms:

• REOPEN: Fri Apr 19 05:23:18 1991
Indicates that the program has reopened the log file

• REJECTN: TCP [8.0.0.1]->[16.99.1.2](1044->25)
A TCP packet from 8.0.0.1, port 1044, to 16.99.1.2, port 25, was rejected.

• SUMMARY: 4 of TCP [8.0.0.1]->[16.99.1.2](1044->25)
4 TCP packets from 8.0.0.1, port 1044, to 16.99.1.2, port 25, were rejected. (The
SUMMARY entry does not say what action was taken, but that can be inferred from a
previous log entry for the same path.

• REJECTN: ICMP Quench [192.5.25.7]->[16.99.1.2]
An ICMP Source Quench message from 192.5.25.7 to 16.99.1.2 was rejected.

• STATS: 14492592 pkts (51% hits), 10555 drops:
Fri Apr 19 14:23:18 1991

STATS entries are issued once an hour. Since the program was started, 14492592
packets were processed. 51% of the decisions were made based on cached data,
rather than a complete search through the rule database. 10555 packets were
dropped (rejected) by the kernel because the screend program was too slow to keep
up.

5.8. Debugging a screend configuration file

It is not always clear why screend is preventing communication that you thought it should
allow (or allowing communication that you thought it should prevent). Often, running tail
-f on the log file, while you try to send the problematic packets, will show what is going on.
(Remember that the log-compression mechanism might delay some entries.)

USING SCREEND TO IMPLEMENT IP/TCP SECURITY POLICIES NSL TN-2

24

If you are confused about which rule in the configuration file is responsible for rejecting a
packet, you can ask screend to log the ‘‘rule number’’ of the rule that was used to decide the
disposition of each packet, using the -r option when you start the program. Rules are numbered
starting at zero; the default action does not have a rule number, but is distinguished in the log
entries.

Because lines using the between syntax actually generate two rules, it can be confusing to
figure out the rule numbers simply by reading the configuration file. One easy way to generate a
listing of the rules with their rule numbers is to give the command

/usr/etc/screend -c -d

The -c option says ‘‘check the configuration file but do not start the screend daemon’’; the -d
option says to dump debugging information. In this case, the debugging information consists of
the list of rules, with their numbers.

If you turn on logging of rule numbers, you will also get information about cache hits. Log
entries with + before the rule number represent cache hits; those with - represent cache misses.

5.9. Starting screend at boot time

By default, when an ULTRIX system boots it does not pass packets through screend. To be
secure, your system should require screend approval as soon as possible after booting. You
should edit your /etc/rc.local file to contain commands similar to these at the very begin-
ning:

[-f /usr/etc/screend -a -f /usr/etc/screenmode -a -f /etc/screend.conf] && {
/etc/screenmode on && {

echo ’screenmode on - no forwarding until screend starts’>/dev/console
} || {

echo ’cannot set screenmode on, reboot failed’ >/dev/console
exit 1

}
} || {

echo "cannot start screend, reboot failed" >/dev/console
}

Later on in the file, after /etc/syslog has been started, you should put the commands:
[-f /usr/etc/screend -a -f /usr/etc/screenmode -a -f /etc/screend.conf] && {

/usr/etc/screend -L /usr/spool/log/screend & echo -n ’ screend’>/dev/console
}

You may, of course, choose a different location for the log file.

5.10. Other helpful hints

We try to make sure that the configuration file contains a comment showing who last edited it
and when; this helps us when several people are authorized to make changes to the file and
someone gets confused.

Comments in the configuration file do not affect the performance of screend; you should take
advantage of this and use them to make it clear what your rules are there for.

We also use RCS (Revision Control System) to track changes to our configuration file. This
provides information about who made changes in the past, and why. It also lets us recover older
(working) versions of the file, if necessary.

NSL TN-2 USING SCREEND TO IMPLEMENT IP/TCP SECURITY POLICIES

25

We also keep the contents of the configuration file as confidential as possible. Nobody with-
out a need to know has access to the file. ‘‘Security through obscurity’’ should not be the
primary protection for your systems, but it is a useful backstop to other methods. For example, if
you accidentally create a configuration file with a security hole in it, do you want to make it easy
for an intruder to exploit the hole?

6. Further examples

In this section, I give some additional examples in which screend may be employed to en-
hance network security.

6.1. Limiting access to licensed software

The Biology department at Podunk University has licensed some expensive source code from
a software company. Before the software vendor will deliver the source code, the department
must demonstrate to the vendor’s satisfaction that the security precautions are adequate. They
wish to be able to read mail on the protected network, and to make remote terminal connections
in or out. They do not want to allow file transfer between the department and the rest of the
campus. Because this is the Biology department and not the Computer Science department, they
do not expect their users to be competent at securing their individual hosts.

The structure chosen to provide security is shown in figure 2. The Biology department has
one subnet, connected to the rest of the campus (and the rest of the world) via a screening router.
One machine in the department (App-server) has been designated the Application Server, which
is then managed as carefully as possible. The screening router is configured to allow only that
machine to communicate with the rest of the campus.

Screening
Router

Host
A

Host
B

Host
C

Host
D

Rest of
campus
and the
outside
world App-server

B
io

lo
gy

de
pa

rt
m

en
t

ne
tw

or
k

Figure 2: Podunk University Biology department

Every member of the department has an account on App-server. All mailboxes are on this
server; all incoming and outgoing mail flows via this server. Telnet connections are allowed

USING SCREEND TO IMPLEMENT IP/TCP SECURITY POLICIES NSL TN-2

26

between the server and the rest of the world. This allows department members to access external
machines (or access their own machine from outside) but forces them to log in to App-server
along the way. rlogin connections are allowed from App-server to the outside world, but not in
the opposite direction. Name service (but not ‘‘zone transfer’’) and time service packets are
allowed ubiquitously.

Since the original purpose was to protect the licensed software, this scheme by itself is insuf-
ficient. It allows a user of a Biology department host to send anything out via mail. Screend
cannot distinguish between ‘‘good’’ mail messages and ‘‘bad’’ ones, so by itself it cannot solve
this problem. The restriction that mail must flow via the Application Server, however, means
that a variety of methods might be used on that machine. For example, the mail system keeps
logs of all message traffic; these logs could be checked to discover any unusually large mes-
sages. Of course, a software thief need not use the network to transfer stolen software, so ul-
timately the problem depends on careful administration of the machine where the software is
stored.

The following screend configuration file is used in this situation:
All packets not covered by an explicit rule
are prohibited, and logged.
default reject notify log;

Specify any necessary network masks
for podunk-net netmask is 255.255.255.0;

The host App-server is allowed to be client or server
for SMTP and Telnet
between host app-server tcp port smtp

and any accept;
between any tcp port smtp

and host app-server accept;
between host app-server tcp port telnet

and any accept;
between any tcp port telnet

and host app-server accept;

The host App-server is allowed to be client, but
not server, for rlogin connections with any host.
between host telnet-ftp-relay

and any tcp port rlogin accept;

Any UDP packets to or from the DNS (name server) port
are allowed between any hosts.
between any udp port domain

and any accept;

Any UDP packets to or from the NTP (time service) port
are allowed between any hosts.
between any udp port ntp

and any accept;

NSL TN-2 USING SCREEND TO IMPLEMENT IP/TCP SECURITY POLICIES

27

6.2. Keeping junk packets off a slow link

This example shows how screend might be used to improve performance, instead of security.
Figure 3 depicts the Lollipop General company, a large organizational internetwork connected to
the Internet via a low-speed link (the company isn’t selling as many lollipops as it used to, and
cannot afford a T1 line). Suppose that the slow link is a subnet of Lollipop General’s network.

External
Router

Screening
Router

The
Internet

Internal
Router

Internal
Router

Internal
Router

Internal
Router

Internal
Router

Slow
link

Figure 3: Organization connected to Internet via slow link

The various routers belonging to Lollipop General exchange routing information about the
structure of the internal network, but they do not know the structure of the Internet. Instead, they
have a default route to the External Router, which maintains a complete routing table for the
Internet. The External router does not have a complete routing table for the internal network, but
knows that the router at the other end of the slow link (marked ‘‘Screening Router’’ in figure 3)
has the internal routing table.

The problem with this configuration is what happens when some host on the internal network
attempts to send a packet to a non-existent subnet of Lollipop General’s network (lollipop-net).
The internal routers, not knowing a route to this subnet, will forward the packet to the External
Router. The External Router, knowing that that the destination is a subnet of lollipop-net, for-
wards the packet to the Screening Router. These two routers then bounce the packet back and
forth until its Time-To-Live field reaches 0, at which point it is dropped. By then, of course, the
original host has probably sent another packet to the same destination, and the process repeats.
The slow link is thus consumed by these useless packets, and valid external connections start to
suffer.

USING SCREEND TO IMPLEMENT IP/TCP SECURITY POLICIES NSL TN-2

28

The proper solution to this problem is either to provide the External Router with a complete
routing table for lollipop-net, or to modify the lollipop-net internal routers to reject packets to
non-existent subnets, or both. But let us suppose that, for technical and administrative reasons,
neither approach is possible.

It turns out that screend, running at the Screening Router, can be configured to block the use-
less packets from ever crossing the slow link. This is done by banning packets between hosts on
lollipop-net from being forwarded by the Screening Router, unless they start or end on the slow
link itself. A packet to a non-existent subnet of lollipop-net will not fit this exception (unless its
original source is the External Router; we will assume that this router does not make this mis-
take).

A screend configuration to keep junk packets off of the slow link might look like:
All packets not covered by an explicit rule
are allowed
default accept;

Specify any necessary network masks
for lollipop-net netmask is 255.255.255.0;

Packets between lollipop-net hosts and hosts
on the slow-link subnet are allowed
between net lollipop-net and subnet slow-link accept;

Other packets between lollipop-net hosts are not
allowed to cross this router
between net lollipop-net

and net lollipop-net reject notify log;

In this example, the order in which the rules appear is quite important. If the rule allowing
packets to and from hosts on the slow-link subnet appeared after the rule banning packets be-
tween hosts on the entire lollipop-net, it would be impossible for an internal host to communicate
directly with the External Router.

Note that by sending notification (i.e., ICMP Destination Unreachable messages) to the sour-
ces of bogus packets, we will probably prevent them from sending more than one at a time. The
log of bad packets is useful in determining which hosts are improperly configured.

6.3. A simpler mail gateway configuration

In section 4, I explained a configuration for Yoyodyne, Inc., that included a mail gateway
along with a lot of other gateway functions. If the only external access one wants to provide is
electronic mail, then a simpler and somewhat more secure system can be configured, using two
screening routers.

Figure 4 shows the network organization for the SmallTime company. The company’s
Mail-Relay is attached to Subnet-X, and is isolated from the Internet by Screening-Router-A and
from the rest of SmallTime’s network by Screening-Router-B. The Mail-Relay host needs
SMTP, ICMP, and DNS access to both the Internet and SmallTime’s network. One probably
wants telnet access to the Mail-Relay from the internal network (for management purposes), but
no other access needs to be allowed.

NSL TN-2 USING SCREEND TO IMPLEMENT IP/TCP SECURITY POLICIES

29

Screening
Router-B

Mail
Relay

The
Internet

Internal
Networks

Screening
Router-A

Subnet-X

Figure 4: The SmallTime organization

To implement this policy, two screend configuration files are used. On Screening-Router-A,
one would use:

All packets not covered by an explicit rule
are prohibited, and logged.
default reject notify log;

The host Mail-Relay is allowed to be client or server
for SMTP
between host mail-relay tcp port smtp

and any accept;
between any tcp port smtp

and host mail-relay accept;

The host Mail-Relay is allowed to send and receive ICMP
messages.
between host mail-relay

and any icmp type any accept;

The host Mail-Relay is allowed to send and receive DNS
UDP messages.
between host mail-relay udp port domain

and any accept;
between any udp port domain

and host mail-relay accept;

On Screening-Router-B, one would use:
All packets not covered by an explicit rule
are prohibited, and logged.
default reject notify log;

USING SCREEND TO IMPLEMENT IP/TCP SECURITY POLICIES NSL TN-2

30

The host Mail-Relay is allowed to be client or server
for SMTP
between host mail-relay tcp port smtp

and any accept;
between any tcp port smtp

and host mail-relay accept;

The host Mail-Relay is allowed to send and receive ICMP
messages.
between host mail-relay

and any icmp type any accept;

The host Mail-Relay is allowed to send and receive DNS
UDP messages.
between host mail-relay udp port domain

and any accept;
between any udp port domain

and host mail-relay accept;

Note that the combination of these two configuration files prohibit any direct exchanges of
packets between Internet and the internal network, since all the rules require at least one of the
endpoints to be the Mail-Relay host. This should make it impossible for an outsider to break in
to an internal host (provided that the screening routers are secure).

In practice, one might want to elaborate slightly on this configuration, for example to allow
DNS zone transfers and FTP access to the Mail-Relay from the internal network, and perhaps to
provide NTP access.

7. Acknowledgements

I would like to thank Paul Vixie and Brian Reid, both for reading early drafts of this document
and also for their work on the DECWRL gateway complex. The expertise they have developed
over the years in creating a security policy for the DECWRL gateway, in evolving a screend
configuration to implement that policy, and in devising ways of dealing with screend, forms the
basis for this document.

I thank Brad Chen and Win Treese for their help in proofreading the final draft.

8. References

Note: Many of the protocols described in ‘‘RFC’’ documents are evolving. The RFCs cited
are the most up-to-date versions available at the time of writing, but you should check to make
sure that they have not been updated.

[1] Douglas Comer. Internetworking with TCP/IP: Volume I, Principles, Protocols and
Architectures. Prentice-Hall, Inc., Englewood Cliffs, NJ, 1990.

[2] Douglas Comer and David L. Stevens. Internetworking with TCP/IP: Volume II, Design,
Implementation, and Internals. Prentice-Hall, Inc., Englewood Cliffs, NJ, 1990.

NSL TN-2 USING SCREEND TO IMPLEMENT IP/TCP SECURITY POLICIES

31

[3] David A. Curry. Improving The Security Of Your Unix System. Technical Report
ITSTD-721-FR-90-21, SRI International, April, 1990.

[4] Steve Deering. Host Extensions for IP Multicasting. RFC 1112, Network Information
Center, SRI International, August, 1989.

[5] Simson Garfinkel and Gene Spafford. Practical UNIX Security. O’Reilly & Associates,
Inc., Newton, MA, 1991.

[6] F. T. Grammp and R. H. Morris. UNIX Operating System Security. AT&T Bell
Laboratories Technical Journal 63(8):1649-1672, October, 1984.

[7] B. Kantor and P. Lapsley. Network News Transfer Protocol. RFC 977, Network Infor-
mation Center, SRI International, February, 1986.

[8] David L. Mills. Internet time synchronization: The Network Time Protocol. RFC 1129,
Network Information Center, SRI International, October, 1989.

[9] Paul V. Mockapetris. Domain names - concepts and facilities. RFC 1034, Network In-
formation Center, SRI International, November, 1987.

[10] Paul V. Mockapetris. Domain names - implementation and specification. RFC 1035,
Network Information Center, SRI International, November, 1987.

[11] Jeffrey C. Mogul. Simple and Flexible Datagram Access Controls for Unix-based
Gateways. In Proc. Summer 1989 USENIX Conference, pages 203-221. Baltimore, MD, June,
1989.

[12] Jeffrey C. Mogul. Simple and Flexible Datagram Access Controls for Unix-based
Gateways. Research Report 89/4, Digital Equipment Corporation Western Research Laboratory,
March, 1989.

[13] Jeffrey Mogul and Jon Postel. Internet Standard Subnetting Procedure. RFC 950, Net-
work Information Center, SRI International, August, 1985.

[14] Jeffrey C. Mogul, Richard F. Rashid, Michael J. Accetta. The Packet Filter: An Efficient
Mechanism for User-Level Network Code. In Proc. 11th Symposium on Operating Systems
Principles, pages 39-51. Austin, Texas, November, 1987.

[15] Robert Morris and Ken Thompson. Password Security: A Case History.
Communications of the ACM 22(11):594-597, November, 1979.

[16] Jonathan B. Postel. Simple Mail Transfer Protocol. RFC 821, Network Information
Center, SRI International, August, 1982.

[17] Jon Postel. File Transfer Protocol. RFC 959, Network Information Center, SRI Inter-
national, October, 1985.

[18] Jonathan B. Postel and Joyce K. Reynolds. Telnet Protocol specification. RFC 854,
Network Information Center, SRI International, May, 1983.

[19] Jon A. Rochlis and Mark W. Eichin. With Microscope and Tweezers: The Internet
Worm from MIT’s Perspective. Communications of the ACM 32(6):689-698, June, 1989.

USING SCREEND TO IMPLEMENT IP/TCP SECURITY POLICIES NSL TN-2

32

[20] Russel Sandberg, David Goldberg, Steve Kleiman, Dan Walsh, and Bob Lyon. Design
and Implementation of the Sun Network Filesystem. In Proc. Summer 1985 USENIX
Conference, pages 119-130. Portland, OR, June, 1985.

[21] Robert W. Scheifler, James Gettys, and Ron Newman. X Window System: C Library and
Protocol Reference. Digital Press, Bedford, MA, 1988.

[22] Eugene H. Spafford. The Internet Worm: Crisis and Aftermath. Communications of the
ACM 32(6):678-687, June, 1989.

[23] J. Steiner, C. Neuman, and J. I. Schiller. Kerberos: An Authentication Service for Open
Network Systems. In Proc. Winter 1988 USENIX Conference, pages ?-?. Dallas, ?, 1988.

[24] Clifford Stoll. Stalking The Wily Hacker. Communications of the ACM 31(5):484-497,
May, 1988.

[25] Clifford Stoll. The Cuckoo’s Egg. Doubleday, New York, 1989.

[26] Sun Microsystems, Inc. NFS: Network File System Protocol specification. RFC 1094,
Network Information Center, SRI International, March, 1989.

[27] D. Zimmerman. The Finger User Information Protocol. RFC 1196, Network Infor-
mation Center, SRI International, December, 1990.

