
DIGITAL Visual Fortran

Programmer’s Guide

Date: September, 1997

Software Version: DIGITAL Visual Fortran Version 5.0

Operating Systems: Microsoft® Windows NT on Alpha Systems

Microsoft Windows NT on Intel® Systems

Microsoft Windows NT on Windows 95® Systems

Digital Equipment Corporation
Maynard, Massachusetts

1 of 1 9/4/97 3:15 PM

Copyright Page

Digital Equipment Corporation makes no representations that the use of its products in the manner
described in this publication will not infringe on existing or future patent rights, nor do the descriptions
contained in this publication imply the granting of licenses to make, use, or sell equipment or software in
accordance with the description.

Possession, use, or copying of the software described in this publication is authorized only pursuant to a
valid written license from Digital or an authorized sublicensor.

Copyright © 1997, Digital Equipment Corporation, All Rights Reserved.

Visual Fortran Home Page, Photographs: Copyright © 1997 PhotoDisc, Inc.

Visual Fortran Home Page, Image: CERN, European Laboratory for Particle Physics: ALICE detector on
CERN's future accelerator, the LHC, Large Hadron Collider.

AlphaGeneration, DEC, DEC Fortran, DIGITAL, OpenVMS, VAX, VAX FORTRAN, and the DIGITAL
logo are trademarks of Digital Equipment Corporation.

ActiveX, Excel, Internet Explorer, Microsoft, MS, Microsoft Developer Studio, Microsoft Press,
MS-DOS, NT, PowerPoint, Visual Basic, Visual C++, Visual J++, Win32, Win32s, Windows, Windows
95, and Windows NT are either registered trademarks or trademarks of Microsoft Corporation.

CRAY is a registered trademark of Cray Research, Inc.

IBM is a registered trademark of International Business Machines, Inc.

IEEE is a registered trademark of the Institute of Electrical and Electronics Engineers, Inc.

IMSL is a trademark of Visual Numerics, Inc.

Intel and Pentium are registered trademarks of Intel Corporation.

Sun Microsystems is a registered trademark of Sun Microsystems, Inc.; Java is a trademark of Sun
Microsystems, Inc.

UNIX is a registered trademark in the United States and other countries licensed exclusively through
X/Open Company Ltd.

All other trademarks and registered trademarks are the property of their respective holders.

1 of 1 8/22/97 11:29 AM

Introduction to the Programmer’s Guide Page 1 of 4

8/21/97 12:09:23 PM

Introduction to the Programmer’s Guide
The Programmer’s Guide contains the following information (this color denotes a link):

• Topics discussing Visual Fortran language elements (including language extensions to the
Fortran 90 Standard):

• Features of Fortran 95
• Features of Fortran 90
• Program Structure, Characters, and Source Forms
• Declaring and Using Data
• Arrays and Pointers
• Execution Control
• Program Units and Procedures
• Files, Devices, and I/O Hardware
• Input/Output Editing
• Input/Output Statements
• General Compiler Directives

• Topics discussing Run-Time Library procedures:
• Portability Library
• Using QuickWin
• Using Dialogs
• Drawing Graphics Elements
• Using Fonts from the Graphics Library

• Topics discussing how to build programs:
• Writing New Code: Design Considerations
• Building Programs and Libraries
• Advanced Applications
• Using COM and Automation Objects
• Using the Compiler and Linker from the Command Line
• Compiler and Linker Options
• Performance: Making Programs Run Faster
• Creating Multithread Applications
• Programming with Mixed Languages

• Topics discussing programming issues:
• Portability
• Using National Language Support Routines
• The Floating-Point Environment
• Handling Run-Time Errors
• Converting Unformatted Numeric Data
• Using Visual Fortran Tools
• PView and WinDiff

• Topics discussing how to use IMSL library routines:
• Using the IMSL Mathematical and Statistical Libraries

Introduction to the Programmer’s Guide Page 2 of 4

9/2/97 3:21:43 PM

• Several appendixes discussing the following topics:

• Compatibility Information
• FORTRAN 77 Syntax
• ASCII and Key Code Charts (WNT and W95)
• Hexadecimal-Binary-Octal-Decimal Conversion
• Data Representation
• Summary of Language Extensions

• A Glossary

Note: Visual Fortran contains many extensions to the full ANSI standard language. In this book, the
Visual Fortran extensions to the Fortran 90 standard appear in this color.

Programmer’s Guide Conventions
This section discusses the following:

• General typographic conventions
• Typographic conventions for data types
• Platform labels

General Typographic Conventions

The Programmer’s Guide uses the following general typographic conventions. (Text in this color
denotes a link.)

When you see this Here is what it means
Extensions to Fortran 90 Dark teal type indicates extensions to the Fortran 90 Standard. These

extensions may or may not be implemented by other compilers that
conform to the language standard.

OUT.TXT, ANOVA.EXE,
COPY,
LINK, FL32

Uppercase (capital) letters indicate filenames and MS-DOS®-level
commands used in the command console. Uppercase is also used for
command-line options (unless the application accepts only lowercase).

! Comment line
WRITE (*,*) 'Hello &
&World'

This kind of type is used for program examples, program output, and
error messages within the text. An exclamation point marks the
beginning of a comment in sample programs. Continuation lines are
indicated by an ampersand (&) after the code at the end of a line to be
continued and before the code on the following line.

AUTOMATIC,
INTRINSIC, WRITE

Bold capital letters indicate Fortran 90 statements, functions,
subroutines, and keywords. Keywords are a required part of statement
syntax, unless enclosed in brackets as explained below.
In the sentence, "The following steps occur when a DO WHILE
statement is executed," the phrase DO WHILE is a Fortran 90
keyword.

other keywords Bold lowercase letters are used for keywords of other languages.
In the sentence, "A Fortran 90 subroutine is the equivalent of a function
of type void in C," the word void is a keyword of C.

Introduction to the Programmer’s Guide Page 3 of 4

9/2/97 3:21:43 PM

expression Words in italics indicate placeholders for information that you must
supply. A file-name is an example of this kind of information. Italics
are also used to introduce new terms.

[optional item] Items inside single square brackets are optional.
[options] Bold square brackets indicate the square bracket characters are required

in the syntax.
{choice1 | choice2} Braces and a vertical bar indicate a choice among two or more items.

You must choose one of the items unless all of the items are also
enclosed in square brackets.

Repeating elements... Three dots following an item indicate that more items having the same
form may be entered.

CALL Num (i, *1O)
...
SUBROUTINE Num (i, *)

A row of three dots in an example indicates that part of the example has
been intentionally omitted.

KEY NAMES Small capital letters are used for the names of keys and key sequences,
such as ENTER and CTRL+C.
A plus (+) indicates a combination of keys. For example, CTRL+E means
to hold down the CTRL key while pressing the E key.
The carriage-return key, sometimes marked with a bent arrow, is
referred to as ENTER.
The cursor arrow keys on the numeric keypad are called DIRECTION
keys. Individual DIRECTION keys are referred to by the direction of
the arrow on the key top (LEFT ARROW, RIGHT ARROW, UP ARROW,
DOWN ARROW) or the name on the key top (PAGE UP, PAGE DOWN).
The key names used in this manual correspond to the names on the
IBM® Personal Computer keys. Other machines may use different
names.

Typographic Conventions for Data Types

The Programmer’s Guide uses the following typographic conventions for data types:

• Uppercase (capital) letters for data types indicate a specific data type, such as INTEGER(2),
REAL, CHARACTER(8), and so on. If a data type appears in uppercase without a kind
parameter, it is the default kind for that data type.

• Lowercase letters for data types indicate that any kind of that data type is allowed. For
example, if an argument is of type integer, the argument can be any of the following integer
data types: INTEGER, INTEGER(1), INTEGER(2), or INTEGER(4).

Elemental procedures accept array arguments as well as scalar arguments. The array arguments and
return values must all have the same shape, and the procedure is performed on an element by element
basis. For example:

REAL, DIMENSION (2) :: a, b
a(1) = 4; a(2) = 9
b = SQRT(a) !sets b(1) = SQRT(a(1)), and b(2) = SQRT(a(2))

The following example shows how this book's typographic conventions are used to indicate the
syntax of the PARAMETER statement:

Introduction to the Programmer’s Guide Page 4 of 4

9/2/97 3:21:43 PM

PARAMETER[(]
vname=const [, vname=const]...[)]

This syntax listing shows that when using the PARAMETER statement, you must first enter the
word PARAMETER. Then you can optionally enter a left parenthesis ((), followed by a vname that
you specify, followed by an equals sign (=) and a constant value. If you want to specify more
vname=const, you must enter a comma, followed by another vname=const sequence. Because the
vname=const [, vname=const] sequence is followed by three dots (...), you can enter as many of
those sequences (a comma, followed by a vname=const) as you want. The statement terminates with
an optional closing right parenthesis ()). The dark teal brackets ([and]) indicate the parentheses are
optional only as an extension to standard Fortran.

Platform Labels

A platform is a combination of operating system and central processing unit (CPU) that provides a
distinct environment in which to use a product (in this case, a language). For example, Windows
95® on Intel® is a platform.

Information applies to all supported platforms unless it is otherwise labeled for a specific platform
(or platforms), as follows:

VMS Applies to OpenVMSTM on Alpha processors.
U*X Applies to DIGITALTM UNIX on Alpha processors.
WNT Applies to Microsoft Windows NTTM on Alpha and Intel processors.
W95 Applies to Microsoft Windows 95 on Intel processors.
AlphaApplies to OpenVMS, DIGITAL UNIX, and Microsoft Windows NT on Alpha processors.

Only the Professional Edition of Visual Fortran supports Alpha processors (see System
Requirements and Optional Software).

x86 Applies to Microsoft Windows NT and Windows 95 on Intel processors (see System
Requirements and Optional Software).

Features of Fortran 95 Page 1 of 4

9/2/97 3:22:07 PM

Features of Fortran 95
Fortran 95 includes Fortran 90 and most features of FORTRAN 77.

This section briefly describes the Fortran 95 language features that have been implemented by Visual
Fortran:

• The FORALL statement and construct

In Fortran 90, you could build array values element-by-element by using array constructors
and the RESHAPE and SPREAD intrinsics. The Fortran 95 FORALL statement and
construct offer an alternative method.

FORALL allows array elements, array sections, character substrings, or pointer targets to be
explicitly specified as a function of the element subscripts. A FORALL construct allows
several array assignments to share the same element subscript control.

FORALL is a generalization of WHERE. They both allow masked array assignment, but
FORALL uses element subscripts, while WHERE uses the whole array.

DIGITAL Fortran previously provided the FORALL statement and construct as language
extensions.

• PURE user-defined procedures

Pure user-defined procedures do not have side effects, such as changing the value of a variable
in a common block. To specify a pure procedure, use the PURE prefix in the function or
subroutine statement. Pure functions are allowed in specification statements.

DIGITAL Fortran previously provided pure procedures as a language extension.

• ELEMENTAL user-defined procedures

An elemental user-defined procedure is a restricted form of pure procedure. An elemental
procedure can be passed an array, which is acted upon one element at a time. To specify an
elemental procedure, use the ELEMENTAL prefix in the function or subroutine statement.

• Pointer initialization

In Fortran 90, there was no way to define the initial value of a pointer or to assign a null value
to the pointer by using a pointer assignment operation. A Fortran 90 pointer had to be
explicitly allocated, nullified, or associated with a target during execution before association
status could be determined.

Fortran 95 provides the NULL intrinsic function that can be used to nullify a pointer.

• Derived-type structure default initialization

Fortran 95 lets you specify, in derived-type definitions, default initial values for derived-type
components.

Features of Fortran 95 Page 2 of 4

9/2/97 3:22:07 PM

• Automatic deallocation of allocatable arrays

Arrays declared using the ALLOCATABLE attribute can now be automatically deallocated in
cases where Fortran 90 would have assigned them undefined allocation status. For more
information, see Association Status and Definition under Arrays and Pointers.

DIGITAL Fortran previously provided this feature.

• CPU_TIME intrinsic subroutine

This new intrinsic subroutine returns a processor-dependent approximation of processor time.

• Enhanced CEILING and FLOOR intrinsic functions

KIND can now be specified for these intrinsic functions.

• Enhanced MAXLOC and MINLOC intrinsic functions

DIM can now be specified for these intrinsic functions. DIGITAL Fortran previously provided
this feature as a language extension.

• Enhanced SIGN intrinsic function

The SIGN function can now distinguish between positive and negative zero (if the processor
is capable of doing so).

• Printing of -0.0

A floating-point value of minus zero (-0.0) can now be printed if the processor can represent
it.

• Enhanced WHERE construct

The WHERE construct has been improved to allow nested WHERE constructs and a masked
ELSEWHERE statement. WHERE constructs can now be named.

• Generic identifier allowed in END INTERFACE statement

The END INTERFACE statement of an interface block defining a generic routine now can
specify a generic identifier.

• Zero-length formats

On output, when using I, B, O, Z, and F edit descriptors, the specified value of the field width
can be zero. In such cases, the compiler selects the smallest possible positive actual field width
that does not result in the field being filled with asterisks (*).

• Comments allowed in namelist input

Fortran 95 allows comments (beginning with !) in namelist input data. DIGITAL Fortran
previously provided this feature as a language extension.

• New obsolescent features

Features of Fortran 95 Page 3 of 4

9/2/97 3:22:07 PM

Fortran 95 deletes several language features that were obsolescent in Fortran 90, and identifies
new obsolescent features.

DIGITAL Fortran fully supports features deleted in Fortran 95.

Deleted Features in Fortran 95
Some language features, considered redundant in FORTRAN 77, are not included in Fortran 95.
However, they are still fully supported by DIGITAL Fortran:

• ASSIGN and assigned GO TO statements
• Assigned FORMAT specifier
• Branching to an END IF statement from outside its IF block
• H edit descriptor
• PAUSE statement
• Real and double precision DO control variables and DO loop control expressions

DIGITAL Fortran flags these features if you specify the /stand compiler option.

Obsolescent Features in Fortran 95
Some language features, considered redundant in Fortran 90 are identified as obsolescent in Fortran
95.

Fortran 90 offers other methods to achieve the functionality of the following obsolescent features:

• Alternate returns

The recommended method to replace this functionality is to use an integer variable to return a
value to the calling program, and let the calling program use a CASE construct to test the
value and perform operations.

• Arithmetic IF

The recommended method to replace this functionality is to use an IF statement or construct.

• Assumed-length character functions

The recommended methods to replace this functionality is to use one of the following:
• An automatic character-length function, where the length of the function result is

declared in a specification expression
• A subroutine whose arguments correspond to the function result and the function

arguments

Dummy arguments of a function can still have assumed character length; this feature is not
obsolescent.

• CHARACTER*(*) form of CHARACTER declaration

The recommended method to replace this functionality is to use the Fortran 90 forms of

Features of Fortran 95 Page 4 of 4

9/2/97 3:22:07 PM

specifying a length selector in CHARACTER declarations.

• Computed GO TO statement

The recommended method to replace this functionality is to use a CASE construct.

• DATA statements among executable statements

This functionality has been included since FORTRAN 66, but is considered to be a potential
source of errors.

• Fixed source form

Newer methods of entering data have made this source form obsolescent and error-prone.

The recommended method for coding is to use free source form.

• Shared DO termination and termination on a statement other than END DO or CONTINUE

The recommended method to replace this functionality is to use an END DO statement or a
CONTINUE statement.

• Statement functions

The recommended method to replace this functionality is to use an internal function.

DIGITAL Fortran flags these features if you specify the /stand compiler option.

Features of Fortran 90 Page 1 of 8

8/21/97 12:10:46 PM

Features of Fortran 90
Fortran 90 offers significant enhancements to FORTRAN 77. Some of the features of Fortran 90
were implemented in earlier versions of DIGITAL Fortran. This topic defines terms and concepts of
Fortran 90 and provides an overview of new features.

Certain features of FORTRAN 77 have been replaced by more efficient statements and routines in
Fortran 90. These features are listed in Obsolescent Features.

Each section includes tables that list statements, procedures, parameters, attributes, and other
features new to Fortran 90. Italicized terms are defined in the Glossary. Each topic includes a
cross-reference to other topics that contain more detailed information.

Although most FORTRAN 77 functionality remains unchanged in Fortran 90, some features need
special handling. For more information on building Fortran programs, refer to Compatibility
Information.

Organizing Programs in Fortran
Program units are the fundamental components of a Fortran program. A program unit can be a main
program, an external subprogram, a module, or a block data program unit. An executable program
consists of exactly one main program unit and any number of other kinds of program units. For more
information on main program units, see Program Units and Procedures.

A subprogram can be a function or a subroutine. An external subprogram is one which is not
contained within a main program, a module, or another subprogram. An internal subprogram is one
that is contained within a main program or another subprogram. A module subprogram is contained
in a module, but is not an internal subprogram. Subprograms, also referred to as procedures, are
discussed in Program Units and Procedures. The order of statement execution within a program is
described in Statements.

A module is a file containing definitions accessible to other program units. The definitions can be
data object declarations, type definitions, procedure definitions, or procedure interface blocks.
Modules can be used to:

• Replace include files or common blocks
• Contain data, definitions, or procedure libraries used by many programs
• Define new data types and operations allowed on that type
• Provide encapsulation (keeping data together with procedures that operate on them)

A module can exist as a separate file, or it can be combined with other distinct program units. For
more information on modules, see Program Units and Procedures.

New Fortran 90 statements that affect organization of program units are listed below.

New Statements in Fortran 90 Purpose
CONTAINS Declares internal procedures
INTERFACE Defines interface to procedures

Features of Fortran 90 Page 2 of 8

9/2/97 3:23:02 PM

MODULE Defines a module program unit
RECURSIVE Declares a procedure to be recursive
RESULT Defines a result variable for a function
USE Allows access to a module

Scope and Association
Scope defines the extent to which a variable or name is known in a program. The scope of a global
name (such as the name of a common block) is an entire program, and it includes any external
routines which also have access to that common block. The scope of a local variable name can be as
small as a statement or a DO loop.

Association refers to ways that extend the scope of a name. Association allows a named entity (such
as a data object or a procedure) to be known by different names in the same scoping unit, or by
different names in several scoping units. For example, the following code shows a subroutine that
defines an argument a, and a program that calls the subroutine, passing to it the variable n as an
argument:

PROGRAM SAMPLE
INTEGER n
CALL suba(n)
PRINT *, n
END

SUBROUTINE suba(a)
INTEGER a
. . .
END

The variable n has a scope of the main program only; the variable a has a scope of the subroutine
only. However, n and a are said to be associated. It is association that allows a’s value from suba to
be passed to n in program SAMPLE.

Names and variables can be associated by name association, pointer association, or storage
association. Name association is further broken down into argument association, host association,
and use association. The concepts of scope and association are covered in Program Units and
Procedures.

Program units are composed of separate and distinct scoping units. A scoping unit is a part of a
program in which a name has a fixed meaning. For example, an internal function is the scoping unit
for all dummy arguments it uses internally. A scoping unit can be:

• A derived-type definition
• A procedure interface body, excluding any derived-type definitions and procedure interface

bodies it contains
• A program unit or subprogram, excluding derived-type definitions, procedure interface bodies,

and subprograms it contains

Scoping units can contain other scoping units. In this case, the surrounding scoping unit is called the
host scoping unit. For more information on scoping units, as well as program structure and using
modules, see Program Units and Procedures.

Features of Fortran 90 Page 3 of 8

9/2/97 3:23:02 PM

Procedures in Fortran 90
A procedure contains a sequence of computations, and can be invoked during program execution. A
procedure can be either a function or a subroutine. Functions and subroutines both have the same
characteristics in Fortran 90. The characteristics of a procedure include:

• Classification of the procedure as either a function or a subroutine
• The characteristics of its arguments (such as attributes, type, type parameters, shape, and

intent)
• The characteristics of the result value, for functions

A function is invoked by reference within an expression, or by a defined operation within an
expression. The function computes a value which is then used in evaluating the expression. The
variable that returns the value of a function is the result variable. A subroutine is invoked with a
CALL statement or a defined assignment statement.

Arguments can be optional, or can be specified as keywords. Fortran 90 allows recursive procedures.

Procedures are classified as external, module, or internal. An external procedure is defined outside
of the main program unit or any of its modules or subprograms. External procedures can be invoked
by a main program or by any of its procedures. A module procedure is a procedure defined by a
module subprogram. An internal procedure is a procedure defined as an internal subprogram. The
program that contains the internal procedure is called the host. An internal procedure is local to its
host, meaning it is accessible to the host and other internal procedures, but not accessible elsewhere.
For detailed information on procedures, see Program Units and Procedures.

A procedure interface block describes the interface to a set of procedures. It can present a single
generic name (or may define an operator or an assignment) that invokes one of the procedures.

For a list of new intrinsics, see: New Intrinsic Procedures

New Intrinsic Procedures

Some intrinsic procedures that are new to Fortran 90 were implemented in earlier versions of
DIGITAL Fortran. The following tables list new Fortran 90 intrinsic procedures. See the Reference
for descriptions of each procedure.

New Intrinsic Subroutines in Fortran 90
DATE_AND_TIME MVBITS RANDOM_NUMBER
RANDOM_SEED SYSTEM_CLOCK

New Intrinsic Functions in Fortran 90
ADJUSTL ADJUSTR ALL
ANY ASSOCIATED BIT_SIZE
BTEST CEILING COUNT
DOT_PRODUCT FLOOR IAND
IACHAR IBCLR IBITS
IBSET IEOR IOR

Features of Fortran 90 Page 4 of 8

9/2/97 3:23:02 PM

ISHFT ISHFTC KIND
LEN_TRIM MATMUL MAXLOC
MAXVAL MINLOC MINVAL
NOT PRESENT PRODUCT
REPEAT SCAN SELECTED_INT_KIND
SELECTED_REAL_ KIND SUM TRANSFER
TRANSPOSE TRIM VERIFY

New Numeric Functions in Fortran 90
DIGITS EPSILON FRACTION
RADIX RANGE RRSPACING
SCALE SET_EXPONENT SPACING

Controlling Program Flow
A block construct is a sequence of statements treated as an integral unit, bounded by statements such
as IF or DO, and their corresponding END IF or END DO statements. Block constructs control the
flow of execution of statements in a Fortran program. The following block control constructs are part
of standard Fortran 90:

• CASE construct
• Block DO construct, DO WHILE, or iterative clause in a DO construct
• CYCLE statement in a DO construct
• EXIT statement in a DO construct

Fortran allows block control constructs to be named, as in the following example:

PROOF_DONE: DO
 READ (IUN, ’(1X,G14.7)’, IOSTAT = IOS) X
 IF (IOSTAT .NE.0) EXIT PROOF_DONE
 IF (X .GT. MAX) CYCLE PROOF_DONE
 CALL SUBA(X)
END DO PROOF_DONE

The DO construct in this example is named proof_done. Although the name is not required, it marks
the start and end of the block. In the example, the EXIT and CYCLE statements also name the
block construct. Block names can be particularly useful for controlling execution in nested loops.
Named block constructs are particularly useful for nested constructs. Block control constructs are
discussed in Execution Control.

Data Concepts
The data environment is defined by nonexecutable statements. A data type is a named category of
data characterized by a set of values, together with a way to denote the values. A data type also has a
set of operations that interpret and manipulate the values. Data types can be either intrinsic or
derived.

An intrinsic type is one that is defined in the ANSI Standard for Fortran 90 and is always accessible.
Intrinsic types are INTEGER, REAL, COMPLEX, CHARACTER, and LOGICAL. A derived type is

Features of Fortran 90 Page 5 of 8

9/2/97 3:23:02 PM

a data type defined in your program, composed of smaller units which can be either intrinsic or
derived types. A variable declared as a derived type is known as a structure. Structures are defined
and declared with TYPE statements. Derived type components are the individual elements that make
up a derived type.

Note: The statement STRUCTURE ... END STRUCTURE is a DIGITAL extension to
FORTRAN 77. It is equivalent to the Fortran 90 derived type declaration that uses the TYPE ...
END TYPE statement. When the word "structure" appears in lowercase and is not in bold type, it
refers to the Fortran 90 concept, not the Visual Fortran statement.

A variable declared as a derived type can be composed of any combination of the intrinsic types,
arrays, as well as other derived types. Earlier versions of DIGITAL Fortran offered the
STRUCTURE statement to declare and define compound variable types. It is still supported in
Visual Fortran and described in the Reference. However, new code should use the Fortran 90 TYPE
statement instead. For details on defining new data types, see Declaring and Using Data.

Attributes and kind or length type parameters further describe each intrinsic data type. The kind type
parameter KIND can be used with all intrinsic types and specifies the memory storage in bytes. Each
data type has a default KIND. The length type parameter LEN indicates the length of string.
Attributes such as ALLOCATABLE, POINTER and SEQUENCE specify other properties of the
data type.

Intrinsic numeric functions such as AINT(A) or CMPLX(X) also accept the KIND parameter to
qualify an argument. For example, AINT (A, KIND=1) specifies a result that is 1 byte long.

Scalar data is any data that is not an array. Scalars can be either intrinsic or derived types. A
structure is scalar even if it has arrays as components.

A data entity is a data object, the result of the evaluation of an expression, or a function result. A
data entity always has a type. The term data object refers to constants, variables, and subobjects. A
subobject is a part of a named object that can be referenced and defined independently. Examples of
subobjects are array elements and structure components. A constant subobject is a portion of a
constant. The referenced part may depend on the value of a variable. For example:

CHARACTER (LEN = 10), PARAMETER :: DIGITS = ’0123456789’
CHARACTER (LEN = 1) :: DIGIT
INTEGER = I
. . .
DIGIT = DIGITS(I:I)

DIGITS is a named constant and DIGITS (I:I) designates a constant subobject of DIGITS.

Intrinsic type attributes that are new with Fortran 90 are listed in the following table. You can use
them either as statements or as attributes in type declarations. More information on data types is in
Declaring and Using Data.

New Type Attributes in Fortran 90
ALLOCATABLE DIMENSION
EXTERNAL INTENT (IN, OUT, INOUT)
INTRINSIC PARAMETER
OPTIONAL PRIVATE

Features of Fortran 90 Page 6 of 8

9/2/97 3:23:02 PM

POINTER SAVE
PUBLIC TARGET
SEQUENCE

Array Operations in Fortran 90
An array is a set of scalar data, all of the same type and type parameters, whose elements are
arranged in a rectangular pattern. An array element, one of the individual elements in the array, is a
scalar. Arrays have extent (number of elements), rank (number of dimensions), and size (total
number of elements).

Fortran 90 includes many enhancements to the treatment of arrays. The main enhancements are:

• Entire arrays can be treated as a single object
• Arrays can be zero-size
• The result of a function can be an array
• Arrays can have the POINTER attribute

Dynamic storage allocation is a feature of standard ANSI Fortran 90. Arrays and Pointers discusses
arrays and dynamic storage allocation.

New Array Manipulation Functions
CSHIFT EOSHIFT LBOUND
MERGE PACK RESHAPE
SHAPE SIZE SPREAD
UBOUND UNPACK

Pointers
Pointers are variables with a POINTER attribute. Pointers allow a variable to be known by several
names, or allow one variable to point alternately to different objects. The POINTER attribute allows
association between a data object and a target. Pointers also allow data to be accessed and processed
dynamically. For more information on pointers, see Declaring and Using Data.

Note: A pointer in Fortran 90 is not the same as a pointer in C. Information on pointers is in
Arrays and Pointers.

Input and Output Facilities

Fortran 90 provides additional facilities for input and output. New clauses for the OPEN and
INQUIRE statements let you specify any of the following:

• File permissions
• Status of a file on opening or closing
• Whether input records are to be padded with blanks
• Delimiting character for list-directed or namelist-directed data

READ and WRITE statements offer connection specifiers that allow formatted sequential data

Features of Fortran 90 Page 7 of 8

9/2/97 3:23:02 PM

transfer to be either advancing or non-advancing. Other specifiers let you identify where in the
program to transfer control when an end-of-record is encountered.

The NAMELIST statement declares a group name for a set of variables so they can be read or
written with a single namelist-directed READ or WRITE statement. Although this is new to
standard ANSI Fortran 90, it was implemented in earlier versions of DIGITAL Fortran.

Input and output issues are discussed in Input/Output Statements; Files, Devices and I/O Hardware;
and Input/Output Editing.

Source Form
Program source code can be written in two formats: free form or fixed form. Fixed form conforms
exactly to the FORTRAN 77 standard. Free form is allowed in Fortran 90 and has the following
characteristics:

• Default line length is 132 characters
• All characters between an exclamation point (!) and the end of the line are comments;

comments can begin anywhere on a line
• Blanks are significant in some cases
• Position on the line has no special meaning
• Multiple statements can appear on one line, separated by semicolons

You can write code that satisfies rules for both fixed and free form. Program units with different
source formats can be compiled in the same project. For information on source code format, see
Source Forms.

Syntax and Usage
The ANSI standard for Fortran 90 requires that compilers detect and report syntax and usage that has
been designated obsolescent. Compilers must also detect and report non-standard syntax. You have
the option to turn off error reporting for both non-standard syntax and obsolescent features.

Obsolescent Features in Fortran 90
Although no processor-independent elements of previous versions of Fortran have been omitted from
Fortran 90, the ANSI standard has labeled certain features obsolescent since they have been replaced
by newer features. An obsolescent feature is one that is redundant, but is used frequently and still
supported in this version. These are:

• Nonblock DO construct
• ASSIGN statement
• Assigned GO TO statement
• Assigned FORMAT specifiers
• Arithmetic IF statement
• PAUSE statement
• Alternate RETURN

Features of Fortran 90 Page 8 of 8

9/2/97 3:23:02 PM

• H edit descriptors

DIGITAL Fortran flags these features if you specify the /stand compiler option.

Program Structure, Characters, and Source Forms Page 1 of 12

8/21/97 12:11:12 PM

Program Structure, Characters, and Source Forms
This section contains information on the following topics:

• An overview of program structure, including general information on statements and names
• Character sets
• Source forms

A program can contain any number of INCLUDE lines. An INCLUDE statement causes the
compiler to replace the line with source text from a separate file. For more information, see the
INCLUDE statement in the Reference.

Program Structure
A Fortran program consists of one or more program units. A program unit is usually a sequence of
statements that define the data environment and the steps necessary to perform calculations; it is
terminated by an END statement.

A program unit can be either a main program, an external subprogram, a module, or a block data
program unit. An executable program contains one main program, and, optionally, any number of the
other kinds of program units. Program units can be separately compiled.

An external subprogram is a function or subroutine that is not contained within a main program, a
module, or another subprogram. It defines a procedure to be performed and can be invoked from
other program units of the Fortran program. Modules and block data program units are not
executable, so they are not considered to be procedures. (Modules can contain module procedures,
though, which are executable.)

Modules contain definitions that can be made accessible to other program units: data and type
definitions, definitions of procedures (called module subprograms), and procedure interfaces.
Module subprograms can be either functions or subroutines. They can be invoked by other module
subprograms in the module, or by other program units that access the module.

A block data program unit specifies initial values for data objects in named common blocks. In
Fortran 90, this type of program unit can be replaced by a module program unit.

Main programs, external subprograms, and module subprograms can contain internal subprograms.
The entity that contains the internal subprogram is its host. Internal subprograms can be invoked only
by their host or by other internal subprograms in the same host. Internal subprograms must not
contain internal subprograms.

The following sections discuss Statements, Names, and Keywords.

Statements
Program statements are grouped into two general classes: executable and nonexecutable. An
executable statement specifies an action to be performed. A nonexecutable statement describes
program attributes, such as the arrangement and characteristics of data, as well as editing and
data-conversion information.

Program Structure, Characters, and Source Forms Page 2 of 12

9/2/97 3:23:27 PM

Order of Statements in a Program Unit

The following figure shows the required order of statements in a Fortran program unit. In this figure,
vertical lines separate statement types that can be interspersed. For example, you can intersperse
DATA statements with executable constructs.

Horizontal lines indicate statement types that cannot be interspersed. For example, you cannot
intersperse DATA statements with CONTAINS statements.

Required Order of Statements

PUBLIC and PRIVATE statements are only allowed in the scoping units of modules. The following
table shows other statements restricted from different types of scoping units.

Statements Restricted in Scoping Units

Scoping Unit Restricted Statements
Main program ENTRY and RETURN statements
Module [1] ENTRY, FORMAT, OPTIONAL, and INTENT statements, statement

functions, and executable statements
Block data
program unit

CONTAINS, ENTRY, and FORMAT statements, interface blocks, statement
functions, and executable statements

Internal
subprogram

CONTAINS and ENTRY statements

Interface body CONTAINS, DATA, ENTRY, SAVE, and FORMAT statements, statement
functions, and executable statements

[1] The scoping unit of a module does not include any module subprograms that the module contains.

Program Structure, Characters, and Source Forms Page 3 of 12

9/2/97 3:23:27 PM

Names
Names identify entities within a Fortran program unit (such as variables, function results, common
blocks, named constants, procedures, program units, namelist groups, and dummy arguments). In
FORTRAN 77, names were called "symbolic names".

A name can contain letters, digits, an underscore (_), and the dollar sign ($) special character. A
name can contain up to 31 characters; the first character must be a letter.

Note Be careful when defining names that contain dollar signs.

On OpenVMS systems, naming conventions reserve names containing dollar signs to those
created by DIGITAL. On DIGITAL UNIX, Windows NT, and Windows 95 systems, a dollar sign
can be a symbol for command or symbol substitution in various shell and utility commands.

In an executable program, the names of the following entities are global and must be unique in the
entire program:

• Program units

• External procedures

• Common blocks

• Modules

Examples

The following examples demonstrate valid and invalid names:
Valid
NUMBER
FIND_IT
X
Invalid Explanation
5Q Begins with a numeral.
B.4 Contains a special character other than _ or $.
_WRONG Begins with an underscore.

The following are all valid examples of using names:

 INTEGER (SHORT) K !K names an integer variable
 SUBROUTINE EXAMPLE !EXAMPLE names the subroutine
 LABEL: DO I = 1,N !LABEL names the DO block

Keywords

A keyword can either be a part of the syntax of a statement (statement keyword), or it can be the
name of a dummy argument (argument keyword). Examples of statement keywords are WRITE,
INTEGER, DO, and OPEN. Examples of argument keywords are arguments to the intrinsic
functions.

Program Structure, Characters, and Source Forms Page 4 of 12

9/2/97 3:23:27 PM

In the intrinsic function UNPACK (VECTOR, MASK, FIELD), for example, VECTOR, MASK,
and FIELD are argument keywords. They are dummy argument names, and any variable may be
substituted in their place. Dummy argument names and real argument names are discussed in
Program Units and Procedures.

Keywords are not reserved. The compiler recognizes keywords by their context. For example, a
program can have an array named IF, read, or Goto, even though this is not good programming
practice. The only exception is the keyword PARAMETER. If you plan to use variable names
beginning with PARAMETER in an assignment statement, you need to use the compiler option
/altparam.

Using keyword names for variables makes programs harder to read and understand. For readability,
and to reduce the possibility of hard-to-find bugs, avoid using names that look like parts of Fortran
statements. Rules that describe the context in which a keyword is recognized are discussed in
Program Units and Procedures.

Argument keywords are a feature of Fortran 90 that allow you to specify dummy argument names
when calling intrinsic procedures, or anywhere an interface (either implicit or explicit) is defined.
Using argument keywords can make a program more readable and easy to follow. This is described
more fully in Program Units and Procedures. The syntax statements in the Reference show the
dummy keywords you can use for each Fortran procedure.

Character Sets
DIGITAL Fortran supports the following characters:

• The Fortran 90 character set which consists of the following:

• All uppercase and lowercase letters (A through Z and a through z)

• The numerals 0 through 9

• The underscore (_)

• The following special characters:

Character Name Character Name
blank or <Tab> Blank (space) or tab : Colon
= Equal sign ! Exclamation point
+ Plus sign " Quotation mark
- Minus sign % Percent sign
* Asterisk & Ampersand
/ Slash ; Semicolon
(Left parenthesis < Less than
) Right parenthesis > Greater than
, Comma ? Question mark
. Period (decimal point)$ Dollar sign (currency symbol)
’ Apostrophe

Program Structure, Characters, and Source Forms Page 5 of 12

9/2/97 3:23:27 PM

• Other printable characters

Printable characters include the tab character (09 hex), ASCII characters with codes in the
range 20(hex) through 7E(hex), and characters in certain special character sets.

Printable characters that are not in the Fortran 90 character set can only appear in comments,
character constants, Hollerith constants, character string edit descriptors, and input/output
records.

Uppercase and lowercase letters are treated as equivalent when used to specify program behavior
(except in character constants and Hollerith constants).

For more detailed information on character sets and default character types, see Declaring and Using
Data and Using National Language Support Routines. For more information on the ASCII character
set, see ASCII and Key Code Charts.

Source Forms
Within a program, source code can be in free, fixed, or tab form. Fixed or tab forms must not be
mixed with free form in the same source program, but different source forms can be used in different
source programs.

All source forms allow lowercase characters to be used as an alternative to uppercase characters.

Several characters are indicators in source code (unless they appear within a comment or a Hollerith
or character constant). The following are rules for indicators in all source forms:

• Comment indicator

A comment indicator can precede the first statement of a program unit and appear anywhere
within a program unit. If the comment indicator appears within a source line, the comment
extends to the end of the line.

An all blank line is also a comment line.

Comments have no effect on the interpretation of the program unit.

For more information, see comment indicators in free source form, or fixed and tab source
forms.

• Statement separator

More than one statement (or partial statement) can appear on a single source line if a statement
separator is placed between the statements. The statement separator is a semicolon character
(;).

Consecutive semicolons (with or without intervening blanks) are considered to be one
semicolon.

If a semicolon is the last character on a line, or the last character before a comment, it is
ignored.

Program Structure, Characters, and Source Forms Page 6 of 12

9/2/97 3:23:28 PM

• Continuation indicator

A statement can be continued for more than one line by placing a continuation indicator on the
line. DIGITAL Fortran allows up to 511 continuation lines in a source program.

Comments can occur within a continued statement, but comment lines cannot be continued.

Within a program unit, the END statement cannot be continued, and no other statement in the
program unit can have an initial line that appears to be the program unit END statement.

For more information, see continuation indicators in free source form, or fixed and tab source
forms.

The following table summarizes characters used as indicators in source forms:

Indicators in Source Forms

Source Item Indicator [1]
Source
Form

Position

Comment ! All forms Anywhere in source code

Comment line ! Free
At the beginning of the source
line

!, C, or * Fixed In column 1
Tab In column 1

Continuation line [2] & Free At the end of the source line
Any character except zero or
blank

Fixed In column 6

Any digit except zero Tab After the first tab

Statement separator ; All forms
Between statements on the
same line

Statement label 1 to 5 decimal digits Free Before a statement
Fixed In columns 1 through 5
Tab Before the first tab

A debugging statement
[3]

D Fixed In column 1

Tab In column 1
[1] If the character appears in a Hollerith or character constant, it is not an indicator and is ignored.
[2] For all forms, up to 511 continuation lines are allowed.
[3] Fixed and tab forms only.

Source code can be written so that it is useable for all source forms.

Statement Labels

A statement label (or statement number) identifies a statement so that other statements can refer to it,

Program Structure, Characters, and Source Forms Page 7 of 12

9/2/97 3:23:28 PM

either to get information or to transfer control. A label can precede any statement that is not part of
another statement.

A statement label must be one to five decimal digits long; blanks and leading zeros are ignored. An
all-zero statement label is invalid, and a blank statement cannot be labeled.

Labeled FORMAT and labeled executable statements are the only statements that can be referred to
by other statements. FORMAT statements are referred to only in the format specifier of an I/O
statement or in an ASSIGN statement. Two statements within a scoping unit cannot have the same
label.

Fixed source form is the default for files with a .FOR extension. You can select free source form in
one of three ways:

• Use the file extension .F90 for your source file.
• Use the compiler option /free.
• Use the FREEFORM compiler directive in the source file.

Source form and line length can be changed at any time by using the FREEFORM, NOFREEFORM,
or FIXEDFORMLINESIZE directives. The change remains in effect until the end of the file, or until
changed again.

Free Source Form
In free source form, statements are not limited to specific positions on a source line, and a line can
contain from 0 to 132 characters.

Blank characters are significant in free source form. The following are rules for blank characters:

• Blank characters must not appear in lexical tokens, except within a character context. For
example, there can be no blanks between the exponentiation operator **. Blank characters can
be used freely between lexical tokens to improve legibility.

• Blank characters must be used to separate names, constants, or labels from adjacent keywords,
names, constants, or labels. For example, consider the following statements:

INTEGER NUM
GO TO 40
20 DO K=1,8

The blanks are required after INTEGER, TO, 20, and DO.

• Some adjacent keywords must have one or more blank characters between them. Others do not
require any; for example, BLOCK DATA can also be spelled BLOCKDATA. The following
list shows which keywords have optional or required blanks.

Optional Blanks Required Blanks
BLOCK DATA CASE DEFAULT
DOUBLE COMPLEX DO WHILE
DOUBLE PRECISIONIMPLICIT type- specifier

Program Structure, Characters, and Source Forms Page 8 of 12

9/2/97 3:23:28 PM

ELSE IF IMPLICIT NONE
END BLOCK DATA INTERFACE ASSIGNMENT
END DO INTERFACE OPERATOR
END FILE MODULE PROCEDURE
END FORALL RECURSIVE FUNCTION
END FUNCTION RECURSIVE SUBROUTINE
END IF RECURSIVE type-specifier FUNCTION
END INTERFACE type-specifier FUNCTION
END MODULE type-specifier RECURSIVE FUNCTION
END PROGRAM
END SELECT
END SUBROUTINE
END TYPE
END WHERE
GO TO
IN OUT
SELECT CASE

For information on statement separators (;) in all forms, see Source Forms.

Comment Indicator

In free source form, the exclamation point character (!) indicates a comment if it is within a source
line, or a comment line if it is the first character in a source line.

Continuation Indicator

In free source form, the ampersand character (&) indicates a continuation line (unless it appears in a
Hollerith or character constant, or within a comment). The continuation line is the first noncomment
line following the ampersand. Although Fortran 90 permits up to 39 continuation lines in free-form
programs, DIGITAL Fortran allows up to 511 continuation lines.

The following shows a continued statement:

TCOSH(Y) = EXP(Y) + & ! The initial statement line
 EXP(-Y) ! A continuation line

If the first nonblank character on the next noncomment line is an ampersand, the statement continues
at the character following the ampersand. For example, the preceding example can be written as
follows:

TCOSH(Y) = EXP(Y) + &
 & EXP(-Y)

If a lexical token must be continued, the first nonblank character on the next noncomment line must
be an ampersand followed immediately by the rest of the token. For example:

TCOSH(Y) = EXP(Y) + EX&
 &P(-Y)

Program Structure, Characters, and Source Forms Page 9 of 12

9/2/97 3:23:28 PM

If you indent the continuation line of a character constant, an ampersand must be the first character of
the continued line; otherwise, the blanks at the beginning of the continuation line will be included as
part of the character constant. For example:

ADVERTISER = "Davis, O’Brien, Chalmers & Peter&
 &son"

The ampersand cannot be the only nonblank character in a line, or the only nonblank character before
a comment; an ampersand in a comment is ignored.

For details on the general rules for all source forms, see Source Code Format.

Fixed and Tab Source Forms
In Fortran 95, fixed source form is identified as obsolescent.

In fixed and tab source forms, there are restrictions on where a statement can appear within a line.

By default, a statement can extend to character position 72. In this case, any text following position
72 is ignored and no warning message is printed. You can specify a compiler option to extend source
lines to character position 132.

Except in a character context, blanks are not significant and can be used freely throughout the
program for maximum legibility.

Some Fortran compilers use blanks to pad short source lines out to 72 characters. By default,
DIGITAL Fortran does not. If portability is a concern, you can use the concatenation operator to
prevent source lines from being padded by other Fortran compilers (see the example in "Continuation
Indicator" below) or you can force short source lines to be padded by using the /pad_source compiler
option.

Comment Indicator

In fixed and tab source forms, the exclamation point character (!) indicates a comment if it is within
a source line. (It must not appear in column 6 of a fixed form line; that column is reserved for a
continuation indicator.)

The letter C (or c), an asterisk (*), or an exclamation point (!) indicates a comment line when it
appears in column 1 of a source line.

Continuation Indicator

In fixed and tab source forms, a continuation line is indicated by one of the following:

• For fixed form: Any character (except a zero or blank) in column 6 of a source line

• For tab form: Any digit (except zero) after the first tab

The compiler considers the characters following the continuation indicator to be part of the previous
line. Although Fortran 90 permits up to 19 continuation lines in a fixed-form program, DIGITAL
Fortran allows up to 511 continuation lines.

Program Structure, Characters, and Source Forms Page 10 of 12

9/2/97 3:23:28 PM

If a zero or blank is used as a continuation indicator, the compiler considers the line to be an initial
line of a Fortran statement.

The statement label field of a continuation line must be blank (except in the case of a debugging
statement).

When long character or Hollerith constants are continued across lines, portability problems can
occur. Use the concatenation operator to avoid such problems. For example:

 PRINT *, ’This is a very long character constant ’//
 + ’which is safely continued across lines’

Use this same method when initializing data with long character or Hollerith constants. For example:

 CHARACTER*(*) LONG_CONST
 PARAMETER (LONG_CONST = ’This is a very long ’//
 + ’character constant which is safely continued ’//
 + ’across lines’)
 CHARACTER*100 LONG_VAL
 DATA LONG_VAL /LONG_CONST/

Hollerith constants must be converted to character constants before using the concatenation method
of line continuation.

Debugging Statement Indicator

In fixed and tab source forms, the statement label field can contain a statement label, a comment
indicator, or a debugging statement indicator.

The letter D indicates a debugging statement when it appears in column 1 of a source line. The initial
line of the debugging statement can contain a statement label in the remaining columns of the
statement label field.

If a debugging statement is continued onto more than one line, every continuation line must begin
with a D and a continuation indicator.

By default, the compiler treats debugging statements as comments. However, you can specify the
/d_lines option to force the compiler to treat debugging statements as source text to be compiled.

The following sections discuss Fixed-format lines and Tab-format lines.

For details on the general rules for all source forms, see Source Code Format.

Fixed-Format Lines

In fixed source form, a source line has columns divided into fields for statement labels, continuation
indicators, statement text, and sequence numbers. Each column represents a single character.

The column positions for each field follow:

Field Column

Program Structure, Characters, and Source Forms Page 11 of 12

9/2/97 3:23:28 PM

Statement label 1 through 5
Continuation indicator6
Statement 7 through 72 (or 132 with the /extend_source compiler option)
Sequence number 73 through 80

By default, a sequence number or other identifying information can appear in columns 73 through 80
of any fixed-format line in a DIGITAL Fortran program. The compiler ignores the characters in this
field.

If you extend the statement field to position 132, the sequence number field does not exist.

For details on the general rules for all source forms, see Source Code Format.

For details on the general rules for fixed and tab source forms, see Fixed and Tab Source Forms.

Tab-Format Lines

In tab source form, you can specify a statement label field, a continuation indicator field, and a
statement field, but not a sequence number field.

The following figure shows equivalent source lines coded with tab and fixed source form.

Line Formatting Example

The statement label field precedes the first tab character. The continuation indicator field and
statement field follow the first tab character.

The continuation indicator is any nonzero digit. The statement field can contain any Fortran
statement. A Fortran statement cannot start with a digit.

If a statement is continued, a continuation indicator must be the first character (following the first
tab) on the continuation line.

Program Structure, Characters, and Source Forms Page 12 of 12

9/2/97 3:23:28 PM

Many text editors and terminals advance the terminal print carriage to a predefined print position
when you press the <Tab> key. However, the DIGITAL Fortran compiler does not interpret the tab
character in this way. It treats the tab character in a statement field the same way it treats a blank
character. In the source listing that the compiler produces, the tab causes the character that follows to
be printed at the next tab stop (usually located at columns 9, 17, 25, 33, and so on).

Note: Do not use tabs to position sequence numbers, or the compiler may interpret the sequence
numbers as part of the statement fields in your program.

For details on the general rules for all source forms, see Source Code Format.

For details on the general rules for fixed and tab source forms, see Fixed and Tab Source Forms.

Source Code Useable for All Forms
Source code can be written so that it is useable for all source forms (free, fixed, or tab).

The following restrictions must be followed:

Blanks Treat as significant (see Free Source Form).
Statement labelsPlace in column positions 1 through 5 (or before the first tab character).
Statements Start in column position 7 (or after the first tab character).
Comment
indicator

Use only !. Place anywhere except in column position 6 (or immediately after the
first tab character).

Continuation
indicator

Use only &. Place in column position 73 of the initial line and each continuation
line, and in column 6 of each continuation line (no tab character can precede the
ampersand in column 6).

The following example is valid for all source forms:

Column:

12345678... 73

! Define the user function MY_SIN

 DOUBLE PRECISION FUNCTION MY_SIN(X)
 MY_SIN = X - X**3/FACTOR(3) + X**5/FACTOR(5) &
 & - X**7/FACTOR(7)
 CONTAINS
 INTEGER FUNCTION FACTOR(N)
 FACTOR = 1
 DO 10 I = N, 1, -1
 10 FACTOR = FACTOR * I
 END FUNCTION FACTOR
 END FUNCTION MY_SIN

Declaring and Using Data Page 1 of 53

8/21/97 12:11:45 PM

Declaring and Using Data
This chapter discusses intrinsic and derived data types, their attributes and storage. It also discusses
expressions and assignments that manipulate data, type declaration statements, data initialization,
and defining variables.

Overview of Data Types
A data type has four properties:

• A name. The names of intrinsic data types are predefined by the Fortran language; names of
derived types are set in type definition statements.

• A set of values. Each data type has a valid set of values. The logical type is limited to only two
values: .TRUE. and .FALSE.. Integer and real types have allowed ranges of values. Complex
and derived types have sets of values that are combinations of the values of their individual
components.

• A way of representing constant values for the type.
• A set of operations to manipulate and interpret the values. A variable's data type determines

the operations that can be used to manipulate it. You can augment the intrinsic set with
operations and operators that you define. This is discussed in Defined Operators and
Expressions.

Intrinsic data types are defined by the language, while derived data types are specific to the
application: you define them in your program. The Intrinsic Data Types section lists the name,
values, and way of representing each intrinsic data type. The valid operations for each data type are
covered in Intrinsic Operators.

The Derived Types section covers declaring a derived type, assigning values, and attributes.

Data objects are declared using the name of a data type. A data object is a constant, a variable, or
part of a constant or variable. Once you have defined a derived type, you can declare objects to be of
that type.

A subobject is a part of a named object that you refer to and define independently of the other
portions. A subobject can be an array element, one element of a structure, or a portion of a character
string. Arrays are more fully described in Arrays and Pointers.

Intrinsic Data Types
The intrinsic data types are:

• Integer
INTEGER, INTEGER(1), INTEGER(2), INTEGER(4), and INTEGER(8) (on Alpha only)

• Real
REAL, DOUBLE PRECISION, REAL(4), and REAL(8)

• Complex
COMPLEX, COMPLEX(4), DOUBLE COMPLEX, and COMPLEX(8)

Declaring and Using Data Page 2 of 53

9/2/97 3:24:07 PM

• Character
CHARACTER[*n,] where n is the length of the string

• Logical
LOGICAL, LOGICAL(1), LOGICAL(2), LOGICAL(4), and LOGICAL(8) (on Alpha only)

Each numeric type includes a zero value considered to be neither positive nor negative. The value of
a signed zero is the same as that of an unsigned zero.

Each intrinsic type also has a KIND parameter, which further describes the data type. Used with
numeric types, KIND describes precision and decimal exponent range. Each data type has a default
KIND. There is only one KIND for character types. The default KIND parameters are listed in the
following table. You can find valid KIND values for each intrinsic type in the sections that describe
that data type.

Memory Requirements and Default Kinds
Type Kind Bytes Notes

BYTE 1 1 Same as INTEGER(1).
INTEGER 2, 4,

or 8
2, 4,
or 8

Depending on default integer, INTEGER can have two, four,
or eight bytes. The default allocation is four bytes.

INTEGER(1) 1 1

INTEGER(2) 2 2

INTEGER(4) 4 4

INTEGER(8) 8 8 Alpha only.
REAL 4 or 8 4 or 8 Depending on default real, REAL can have four or eight bytes.

The default allocation is four bytes.
REAL(4) 4 4

DOUBLE
PRECISION

8 8 Same as REAL(8).

REAL(8) 8 8

COMPLEX 4 or 8 8 or 16Depending on default real, COMPLEX can have eight or
sixteen bytes. The default allocation is eight bytes.

COMPLEX(4) 4 8

DOUBLE
COMPLEX

8 16 Same as COMPLEX(8).

COMPLEX(8) 8 16

CHARACTER 1 1 CHARACTER and CHARACTER(1) are the same. (1) is the
KIND parameter, not the string length.

CHARACTER*len 1 len len is the string length; 1 to 65535 on Intel processors, 1 to
2**31-1 on Alpha processors.

LOGICAL 2, 4,
or 8

2, 4,
or 8

Depending on default integer, LOGICAL can have two, four,
or eight bytes. The default allocation is four bytes.

LOGICAL(1) 1 1

LOGICAL(2) 2 2

LOGICAL(4) 4 4

LOGICAL(8) 8 8 Alpha only.

Declaring and Using Data Page 3 of 53

9/2/97 3:24:08 PM

Integer Data Type

The INTEGER statement specifies that the named variables and functions are integer type. Integers
can be specified as INTEGER, INTEGER(1), INTEGER(2), INTEGER(4), or INTEGER(8) (on
Alpha only). You can also use the alternate specifications of INTEGER*1, INTEGER*2,
INTEGER*4, or INTEGER*8. You can change the result of a default specification by using the
/integer_size:size compiler option or the INTEGER compiler directive.

The syntax for the INTEGER type declaration statement is:

INTEGER [([KIND =] kind-value)] [[, attribute-list] ::] entity-list

The numbers 1, 2, 4, or 8 in parentheses represent the kind-value. The numbers following the asterisk
(*) of the alternate type specifications are length indicators, not kind-values.

If the kind type parameter is not included, the default kind-value is 4. The intrinsic inquiry function
KIND returns the kind type parameter, if you do not know it. You can use the intrinsic function
SELECTED_INT_KIND to find the kind values that provide a given range of integer values. The
decimal exponent range is returned by the intrinsic function RANGE.

An integer value is a binary representation of the corresponding integer. The following table shows
the different types of integers, how many bytes of memory each type occupies, and the range of each
type.

Table: Integer Value Ranges
Data type (kind) Bytes Range*

INTEGER(1) 1 Signed: -128 to 127
Unsigned: 0 to 255

INTEGER(2) 2 Signed: -32,768 to 32,767
Unsigned: 0 to 65535

INTEGER(4) 4 Signed: -2,147,483,648 to 2,147,483,647
Unsigned: 0 to 4,294,967,295

INTEGER(8) (Alpha only)8 Signed: -9,223,372,036,854,775,808 to
9,223,372,036,854,775,807

*: Unsigned ranges are allowed for assignment to variables of this type, but the data type is treated as
signed in arithmetic operations.

The examples which follow show ways an integer variable can be declared. An entity-oriented
example is:

 INTEGER, DIMENSION(:), POINTER :: days, hours
 INTEGER(2), POINTER :: k, limit
 INTEGER(1), DIMENSION(10) :: min

An attribute-oriented example is:

 INTEGER days, hours
 INTEGER(2) k, limit
 INTEGER(1) min
 DIMENSION days(:), hours(:), min (10)
 POINTER days, hours, k, limit

Declaring and Using Data Page 4 of 53

9/2/97 3:24:08 PM

An integer can be used in certain cases when a logical value is expected, such as in a logical
expression evaluating a condition, as in the following:

 INTEGER I, X
 READ (*,*) I
 IF (I) THEN
 X = 1
 END IF

For more information on the integer data type, see Integer Constants.

Integer Constants

An integer constant is represented by an optional plus (+) or minus (-) sign preceding the digits,
followed by an optional integer kind specifier.

Examples of signed and unsigned integer literal constants are:

123 +123 -123 12_2
-1234567890_4 12_SHORT

where SHORT is a named integer constant whose value is an integer kind.

Integer constants are interpreted as decimal values (base 10) by default. To specify a constant that is
not in base 10, use the following extension syntax:

[sign] [[base] #] constant

The optional sign is a plus or minus sign. The base can be any constant from 2 through 36. If base is
omitted but # is specified, the integer is interpreted in base 16. If both base and # are omitted, the
integer is interpreted in base 10. For bases 11 through 36, the letters A through Z represent numbers
greater than 9. For base 36, for example, A represents 10, B represents 11, C represents 12, and so
on, through Z, which represents 35. The case of the letters is not significant.

The following seven integers are all assigned a value equal to 3,994,575 decimal:

 I = 2#1111001111001111001111
 m = 7#45644664
 J = +8#17171717
 K = #3CF3CF
 n = +17#2DE110
 L = 3994575
 index = 36#2DM8F

Integer constants of any base must be in the ranges specified in this table. However, for numbers
with a radix other than 10, the compiler reads out-of-range numbers up to 232. They are interpreted
as the negative numbers with the corresponding internal representation. For example, 16#FFFFFFFF
results in an arithmetic value of -1.

In a DATA statement, you can use an unsigned binary, octal, or hexadecimal literal constant if it
corresponds to an integer scalar variable. The respective constants are entered in apostrophes (’) or
quotation marks (") following the character designator. The following are example cases:

 INTEGER i, j, k
 DATA i /B’110010’/ ! binary value of decimal 50

Declaring and Using Data Page 5 of 53

9/2/97 3:24:08 PM

 DATA j /O’62’/ ! octal value of decimal 50
 DATA k /Z’32’/ ! hexadecimal value of decimal 50

The following examples show valid and invalid integer (base 10) constants:

Valid
0
-127
+32123
47_2

Invalid Explanation
9999999999999999999 Number too large.
3.14 Decimal point not allowed; this is a valid REAL constant.
32,767 Comma not allowed.
33_3 3 is not a valid kind type for integers.

You can use integer constants to assign values to data. The following table shows assignments to
different data and lists the integer and hexadecimal values in the data:

Fortran Assignment Integer Value in Data Hexadecimal Value in Data

LOGICAL(1)X
INTEGER(1)X

X = -128 -128 Z’80’
X = 127 127 Z’7F’
X = 255 -1 Z’FF’

LOGICAL(2)X
INTEGER(2)X

X = 255 255 Z’FF’
X = -32768 -32768 Z’8000’
X = 32767 32767 Z’7FFF’
X = 65535 -1 Z’FFFF’

Real Data Type

The real type approximates mathematical real numbers using two approximation methods which are
single and double precision. These numbers are also referred to as floating-point numbers.

The REAL statement specifies that the named variables and functions are of real type. Single
precision is specified as REAL(4), double precision is specified either as REAL(8) or DOUBLE
PRECISION. You can also use the alternate specifications of REAL*4 for single-precision or
REAL*8 for double precision. The numbers 4 and 8 in parentheses represent the kind-value. The
numbers following the asterisk (*) of the alternate type specifications are length indicators, not
kind-values. A kind selector is not used with the DOUBLE PRECISION statement.

The syntax for the REAL type declaration statement is:

REAL [([KIND =] kind-value)] [[, attribute-list] ::] entity-list

Declaring and Using Data Page 6 of 53

9/2/97 3:24:08 PM

If the kind specifier is absent, the default kind-value is single-precision real (REAL(4)). You can use
the DOUBLE PRECISION statement to declare double-precision real (8 byte). You can change the
result of a default specification by using the /real_size:size compiler option or the REAL compiler
directive.

If your program names DOUBLE as a constant having the value of the kind parameter of the
double-precision real type (DOUBLE = 8), the statement REAL (DOUBLE) can also declare an
object to be double precision. REAL(KIND(0.0)) is also equivalent to REAL(4) (or REAL(8) if the
/real_size:64 option is in effect).

The intrinsic inquiry function KIND returns the kind type parameter. The intrinsic inquiry function
RANGE returns the decimal exponent range, and the intrinsic function PRECISION returns the
decimal precision. You can use the intrinsic function SELECTED_REAL_KIND to find the kind
values that provide a given precision and exponent range.

The examples that follow show how real variables can be declared. An entity-oriented example is:

 REAL (KIND = high), OPTIONAL :: testval
 REAL, SAVE :: a(10), b(20,30)

An attribute-oriented example is:

 REAL (KIND = high) testval
 REAL a(10), b(20,30)
 OPTIONAL testval
 SAVE a, b

For more information on real data types, see Real Constants.

Real Constants

A real constant approximates the value of a mathematical real number. The value of the constant can
be positive, zero, or negative.

Syntax

The following is the general form of a real constant with no exponent part:

[s]n[n...][_k]

A real constant with an exponent part has one of the following forms:

[s]n[n...]E[s]nn...[_k]
[s]n[n...]D[s]nn...

s
Is a sign; required if negative (-), optional if positive (+).

n
Is a decimal digit (0 through 9). A decimal point must appear if the real constant has no exponent
part.

k

Declaring and Using Data Page 7 of 53

9/2/97 3:24:08 PM

Is the optional kind parameter: 4 for REAL(4) or 8 for REAL(8). It must be preceded by an
underscore (_).

Leading zeros (zeros to the left of the first nonzero digit) are ignored in counting significant digits.
For example, in the constant 0.00001234567, all of the nonzero digits, and none of the zeros, are
significant. (See the following sections for the number of significant digits each kind type parameter
typically has).

The exponent represents a power of 10 by which the preceding real or integer constant is to be
multiplied (for example, 1.0E6 represents the value 1.0 * 10**6).

A real constant with no exponent part is (by default) a single-precision (REAL(4)) constant.

If the real constant has no exponent part, a decimal point must appear in the string (anywhere before
the optional kind parameter). If there is an exponent part, a decimal point is optional in the string
preceding the exponent part; the exponent part must not contain a decimal point.

The exponent letter E denotes a single-precision real (REAL(4)) constant, unless the optional kind
parameter specifies otherwise. For example, -9.E2_8 is a double-precision constant (which can also
be written as -9.D2).

The exponent letter D denotes a double-precision real (REAL(8)) constant.

A minus sign must appear before a negative real constant; a plus sign is optional before a positive
constant. Similarly, a minus sign must appear between the exponent letter (E or D) and a negative
exponent, whereas a plus sign is optional between the exponent letter and a positive exponent.

If the real constant includes an exponent letter, the exponent field cannot be omitted, but it can be
zero.

To specify a real constant using both an exponent letter and a kind parameter, the exponent letter
must be E, and the kind parameter must follow the exponent part.

The following table shows the different types of real values, how many bytes of memory each type
occupies, the decimal precision, and the range of each type.

Table: Real Value Ranges
Data type (kind) Bytes Precision Range

REAL(4) 4 leftmost 7
digits

Negative numbers from approximately -3.40282347E+38
to -1.17549435E-38

Zero

Positive numbers from approximately +1.17549435E-38
to +3.40282347E+38

REAL(8) or
DOUBLE
PRECISION

8 leftmost 15
digits

Negative numbers from approximately
-1.7976931348623158D+308 to
-2.2250738585072013D-308

Zero

Declaring and Using Data Page 8 of 53

9/2/97 3:24:08 PM

Positive numbers from approximately
+2.2250738585072013D-308 to
+1.7976931348623158D+308

REAL(4) Constants

A single-precision REAL constant occupies four bytes of memory. The number of digits is
unlimited, but typically only the leftmost seven digits are significant. IEEE® S_floating format is
used.

See Also: DOUBLE PRECISION, Programmer’s Guide: Real Data Type, The Floating-Point
Environment.

Examples

The following double-precision real constants all represent fifty-two one-thousandths (52/1000 or
.052):

 5.2D-2 +.00052E+2_8 .052D0 52D-3 .052_8 52.000E-3_dbl

In the preceding example, the named integer constant dbl must have been previously defined to
specify double precision (PARAMETER dbl = 8).

The following examples show valid and invalid REAL(4) constants:

Valid
3.14159
3.14159_4
621712._4
-.00127
+5.0E3
2E-3_4

Invalid Explanation
1,234,567. Commas not allowed.
325E-47 Too small for REAL; this is a valid DOUBLE PRECISION constant.
-47.E47 Too large for REAL; this is a valid DOUBLE PRECISION constant.
625._6 6 is not a valid kind for reals.
100 Decimal point missing; this is a valid integer constant.
$25.00 Special character not allowed.

Complex Data Type

The COMPLEX or COMPLEX(4) (COMPLEX*8) data type is an ordered pair of single-precision
real numbers. The DOUBLE COMPLEX or COMPLEX(8) (COMPLEX*16) data type is an ordered
pair of double-precision real numbers. For example:

 COMPLEX(4) c
 c = (3.0, 4.0)

The first number in the pair is the real part of a complex number, and the second number is the

Declaring and Using Data Page 9 of 53

9/2/97 3:24:08 PM

imaginary part. Both the real and imaginary components of a complex number are of the same kind.
Single-precision complex numbers occupy 8 bytes of memory. Double-precision complex numbers
occupy 16 bytes of memory.

Because a complex number is represented as an ordered pair of real or double precision values, you
must treat a complex number as two real or double-precision numbers in formatted I/O. If you write a
complex number with list-directed I/O, the output is the pair of values with parentheses around them
and a comma between them. Any other special formatting must be handled in the FORMAT
statement.

The syntax for the COMPLEX type declaration is:

COMPLEX [([KIND =] kind-value)] [[, attribute-list] ::] entity-list

An entity-oriented example is:

 COMPLEX (4), DIMENSION (8) :: cz, cq

An attribute-oriented example is:

 COMPLEX(4) cz, cq
 DIMENSION(8) cz, cq

For more information on complex data types, see Complex Constants.

Complex Constants

A complex constant approximates the value of a mathematical complex number. The constant is a
pair of real or integer values, separated by a comma, and enclosed in parentheses. The first constant
represents the real part of that number; the second constant represents the imaginary part.

A complex constant has the following form:

(c, c)

c
Is as follows:

• For complex constants, c is an integer or REAL(4) constant.
• For double complex constants, c is an integer, REAL(4) constant, or DOUBLE

PRECISION (REAL(8)) constant. At least one of the pair must be DOUBLE PRECISION.

The following are examples of complex constants:

 (1.0, -1.0) (4, 4.2E3) (5.0_8, 8.3E9_8)

For rules on forming real constants, see Real Constants.
See also COMPLEX in the Reference.

Character Data Type

The character type has a set of values composed of characters making up a string. The length of a

Declaring and Using Data Page 10 of 53

9/2/97 3:24:08 PM

string is the number of characters in the string, which is the declared length for a static string or the
actual length of a dynamic string. Character variables occupy 1 byte of memory for each character
and are assigned to continuous bytes, independent of word boundaries. The type specifier is the
keyword CHARACTER, as in the following example:

CHARACTER (LEN=20) last_name

The syntax for the CHARACTER type declaration statement is:

CHARACTER [type-parameter] [[, attribute-list] ::] variable-name

The type-parameter can take one of two forms:

[LEN =] value
*character-length

The value and character-length can be specified either as a constant value or as a named constant
whose value has been defined. The character-length can also be expressed as an (*). Sample
character declarations are shown in the examples that follow.

Attributes are described in the section entitled Data Attributes.

You do not need to specify a KIND parameter for a character data type since there is only one
character kind. Several Multi-Byte Character Set (MBCS) functions are available to manipulate
special non-English characters. These are described in Using National Language Support Routines.

You cannot allocate character strings unless they have a length fixed at zero. An array of character
strings is not the same as a single character string. You can declare an array of character strings, all
of the same length. Arrays of fixed-length strings can be used and accessed, allocated and
deallocated, like any other array as described in Arrays and Pointers.

In the following example, the character string last_name is given a length of 20:

 CHARACTER (LEN=20) last_name

In the following example, stri is given a length of 12, while the other two variables retain a length of
8.

 CHARACTER *8 strg, strh, stri*12

In the following example, as a dummy argument strh is given the length of an assigned string when it
is assigned, while the other two variables retain a length of 8:

 CHARACTER *8 strg, strh(*), stri

If you are declaring a character-type statement function, or a dummy argument of a statement
function, you must use a constant value instead of the asterisk (*) length indicator. An asterisk can be
used to indicate length only in the following cases:

• To declare the dummy argument of a procedure. The dummy argument takes the length of the
associated actual argument.

• To declare a named constant. The length is that of the constant value.
• To declare the result variable for an external function. In this case, any program unit invoking

Declaring and Using Data Page 11 of 53

9/2/97 3:24:08 PM

the function must declare the function name with a length type parameter value other than an
asterisk (*), or access the declaration by host or use association. When the function is invoked,
the length of the result variable in the function is the value specified in the type parameter.

The following examples show ways to specify strings of known length:

 CHARACTER*32 string
 CHARACTER string*32
 CHARACTER string*(const+5)

The following examples show ways to specify strings of unknown length:

 CHARACTER string*(*)
 CHARACTER*(*) string

For more information on the character data type, see:

• Substrings
• Character Constants
• C Strings
• Converting Characters to Numeric Data Types

Substrings

Even though a single character string is a scalar, you can still specify and use a part of the string,
called a substring. A substring is a contiguous portion of a character string. Substrings are defined
and accessed with notation similar to accessing sections of arrays. Instead of a first and second
dimension bound, however, you specify a start and end character position, separated by a colon (:).

The syntax for expressing a character substring is:

[first-position] : [end-position]

The default start position is one; the default end position is the length of the string. If the given start
position exceeds the end position, the substring has length zero (0). The following examples
demonstrate substrings:

 CHARACTER(10) string
 CHARACTER(5) substring
 CHARACTER(1) char
 string = "Jane Doe "
 substring = string(:5) ! returns ’Jane ’
 substring = string(6:) ! returns ’Doe ’
 substring = string(3:7) ! returns ’ne Do’
 substring = string(6:6) ! returns ’D ’
 n = 7
 char = ’abcdefghijk’(n:n) ! returns ’g’, the nth (7th) character
 ! of the string constant

The strings and the substrings taken from them can be arrays, in which case the way of specifying
arrays and array sections is the same, and substring specifiers follow the array specifiers. For
example:

 CHARACTER(8) A(5) ! A five-element array of strings
 ! containing 8 characters.
 CHARACTER(3) B(5) ! A five-element array of strings
 ! containing 3 characters.

Declaring and Using Data Page 12 of 53

9/2/97 3:24:08 PM

 CHARACTER(5) substring
 substring = A(3)(2:6) ! Returns the 2nd through 6th
 ! characters of A’s third element.
 B(1:2) = A(4:5)(1:3) ! Puts the 1st through 3rd
 ! characters of A’s 4th element
 ! into B’s 1st element, and puts
 ! the 1st through 3rd characters
 ! of A’s 5th element
 ! into B’s second element.

For more information on arrays, see Arrays and Pointers.

Character Constants

A character constant is a sequence of ASCII characters enclosed in a pair of apostrophes (’) or
quotation marks ("). The string delimiters are not stored with the string. Nonprintable characters can
be included by using the methods discussed in Special Characters.

The character constant can be immediately followed by a C to specify a C-type character string.

A character constant has the following form:

’ [char] ... ’ [C]

char
A character from the ASCII set in fixed-form source or a graphic character from the character set
in free-form source.

C
The C string specifier.

For compatibility with older Fortran code, Visual Fortran also supports the Hollerith notation for
assigning the value of a character string.

To represent an apostrophe within a string delimited by apostrophes, specify two consecutive
apostrophes with no blanks between them. To represent a quotation mark within a string delimited by
quotation marks, specify two consecutive quotation marks with no blanks between them.

A zero-length character string is specified by two consecutive apostrophes or quotation marks with
no blanks between them.

Blank characters and tab characters are permitted in character constants and are significant. The case
of alphabetic characters is also significant. You can use C strings to define strings with nonprintable
characters.

The length of a character constant is equal to the number of characters between the delimiters. (A
pair of apostrophes in a string delimited by apostrophes counts as a single character. A pair of
quotation marks in a string delimited by quotation marks counts as a single character.)

Some sample character constants are shown in the following table.

String Constant
’String’ String

Declaring and Using Data Page 13 of 53

9/2/97 3:24:08 PM

’1234!@#$’ 1234!@#$
’Blanks count’ Blanks count
’’’’’’ ’’
’Case Is Significant’ Case Is Significant
" ’’ " ’’
"""Double"" quotes count as one" "Double" quotes count as one

If a character constant extends across a line boundary, its value includes any blanks remaining in the
line. This result can be avoided by breaking the line as shown:

 Heading (secondcolumn) = ’Acceleration of particles ’//
 &’from Group A’

The same statement in free format would be as follows:

 Heading (secondcolumn) = ’Acceleration of particles ’ &
 & // ’from Group A’

C Strings

String values in the C language are terminated with null characters (CHAR(0)), and may contain
nonprintable characters (such as newline and backspace). Nonprintable characters are specified using
the backslash (\) as an escape character, followed by a single character indicating the nonprintable
character desired. This type of string is specified in Visual Fortran by using a standard string constant
followed by the character C. The standard string constant is then interpreted as a C-language constant.

Backslashes are treated as escapes, and a null character is automatically appended to the end of the
string (even if the string already ends in a null character). The following table shows the valid escape
sequences. If a string contains an escape sequence that isn’t in this table (such as \z), the backslash is
ignored.

Table: C String Escape Sequences
Sequence Character
\ a Bell
\ b Backspace
\ f Form feed
\ n Newline
\ r Carriage return
\ t Horizontal tab
\ v Vertical tab
\ xhh Hexadecimal bit pattern
\\ Backslash
\ ooo Octal bit pattern

A C string must also be a valid Fortran string. Therefore, if the string is delimited by apostrophes (’),
all apostrophes in the string itself must be represented by a pair of apostrophes. The escape sequence
\’string causes a compiler syntax error because Fortran interprets the apostrophe as the end of a
string. The correct form is \’’string. If the string is delimited with quotation marks ("), a quotation
mark can be entered by using a pair of quotation marks. C strings and ordinary strings differ only in
how you specify the value of the string. The compiler treats them identically.

Declaring and Using Data Page 14 of 53

9/2/97 3:24:08 PM

The sequences \ ooo and \ xhh allow any ASCII character to be given as a one- to three-digit octal or
a one- to two-digit hexadecimal character code. Each o octal digit must be in the range 0 - 7, and
each h hexadecimal digit must be in the range 0 - F. For example, the C strings ’\010’C and ’\x08’C
both represent a backspace character followed by a null character.

The C string ’\\abcd’C is equivalent to the string ’\abcd’ with a null character appended. The string ’’C
represents the ASCII null character.

Converting Characters to Numeric Data Types

You can use internal READ and WRITE statements to make type conversions from a string to a
numeric data type (such as integer, complex, or real) or from a numeric data type to a string. The
following example converts a string to a real number:

 PROGRAM testget
 REAL x
 CHARACTER (50) text
 text = "12345.67"
 READ (text,*) x
 WRITE (*,*) x
 END

More examples are in Using Dialogs.

Logical Data Type

The LOGICAL statement specifies that the named variables and functions are of logical type.
Logical variables can be specified as LOGICAL, LOGICAL(1), LOGICAL(2), LOGICAL(4), or
LOGICAL(8) (on Alpha only). You can also use the alternate specifications of LOGICAL*1,
LOGICAL*2, LOGICAL*4, or LOGICAL*8. If the kind specifier is absent, the default is KIND(4),
and the variables or functions are default logical type.

The syntax of the LOGICAL type declaration statement is:

LOGICAL [([KIND =] kind-value)] [[, attribute-list] ::] entity-list

An entity-oriented example is:

 LOGICAL, ALLOCATABLE :: flag1, flag2
 LOGICAL (KIND = byte), SAVE :: doit, dont

An attribute-oriented example is:

 LOGICAL flag1, flag2
 LOGICAL (KIND = byte) doit, dont
 ALLOCATABLE flag1, flag2
 SAVE doit, dont

Logical Constants

A logical constant represents only the logical values true or false, and takes one of the following
forms:

Declaring and Using Data Page 15 of 53

9/2/97 3:24:08 PM

.TRUE.[_k]

.FALSE.[_k]

k
Is the optional kind parameter: 1 for LOGICAL(1), 2 for LOGICAL(2), 4 for LOGICAL(4), or
8 for LOGICAL(8). It must be preceded by an underscore (_).

Logical data type ranges correspond to their comparable integer data type ranges. For example, the
LOGICAL(2) range is the same as the INTEGER(2) range.

Mixing Logicals and Numerics

Logical values, both variables and expressions, can be used with arithmetic operators, and can be
assigned to integer variables. When used with an arithmetic operator, the logical value is treated as
an identical integer value. Logical values cannot be used in any other place where arithmetic values
are expected, such as in a UNIT= specifier in an OPEN statement, or in a call to a procedure
expecting a real value.

You can use integer values as logical values in the following cases:

• IF statements and constructs
• DO WHILE statements and constructs
• Assignment to a logical variable

In these cases, the integer value is treated as an identical logical value (the bits which make up the
integer value are treated the same as bits in a logical value). Real, complex, and other numeric values
cannot be used as logical values in the three ways listed.

Conversely, integer values can be used in logical expressions, where a logical value is expected.
Integer variables cannot be used in relational expressions. For information on expressions, see
Expressions.

The following are all valid uses of logicals and integers:

 INTEGER a
 LOGICAL b
 b = 14
 a = b
 WRITE (*,*) a,b
 END
 !
 INTEGER c,x
 READ (*,*) c
 IF (c) THEN
 x = 0
 ELSE
 x = 15
 END IF
 WRITE (*,*) x
 END

Derived Types
You can create additional (derived) data types from intrinsic data types or previously defined derived

Declaring and Using Data Page 16 of 53

9/2/97 3:24:08 PM

types. You must provide a name for your derived type, which cannot be the name of an intrinsic data
type or the name of another accessible derived type. Once you have created a derived type, you can
declare variables or named constants to be of that derived type, so you can work with data objects
which themselves are complex structures. A scalar derived-type data object is called a structure.

The TYPE ... END TYPE statement defines a derived type, not a variable, while the TYPE
statement, followed by the name of the type, declares an object to be of that type.

The following example of a simple derived type defines member to consist of a 4-byte integer named
age and a 20-character string named name:

 TYPE member
 INTEGER age
 CHARACTER (LEN = 20) name
 END TYPE member

An example declaration for a variable, using the first example, is:

 TYPE (member) :: george

This establishes that the variable george has the characteristics of member, and consists of two
parts: age and name.

You identify a structure element by specifying the sequence of elements needed to reach it, separated
by a percent sign (%) or a period. In the example, the reference to the integer age element for george
can be either george%age, or george.age.

If you use a period to delimit record elements, an element cannot have the name of a relational or
logical operator (NOT, AND, OR, GE, EQ, and so on). If you use the name of a relational or logical
operator and a period as a separator, the name is interpreted as a relational operator.

The components that you list for the structure are not necessarily stored in that order unless the
declaration includes a SEQUENCE statement. For more information about data storage, see Storage
Association.

You can make a derived-type data object an array when you specify the derived type. You can use
DIMENSION with an array specification or place an array specification following the name of the
derived-type variable or named constant. In the following example, a and b are both variable arrays
of derived type pair:

 TYPE (pair)
 INTEGER i, j
 END TYPE
 TYPE (pair), DIMENSION (2, 2) :: a, b(3)

You can use derived-type objects as components of other derived-type objects. For example, you
could specify two derived types as:

 TYPE employee_name
 CHARACTER(25) last_name
 CHARACTER(15) first_name
 END TYPE
 TYPE employee_addr
 CHARACTER(20) street_name
 INTEGER(2) street_number
 INTEGER(2) apt_number

Declaring and Using Data Page 17 of 53

9/2/97 3:24:08 PM

 CHARACTER(20) city
 CHARACTER(2) state
 INTEGER(4) zip
 END TYPE

Objects of these derived types can then be used within a third derived-type specification, such as:

 TYPE employee_data
 TYPE (employee_name) :: name
 TYPE (employee_addr) :: addr
 INTEGER(4) telephone
 INTEGER(2) date_of_birth
 INTEGER(2) date_of_hire
 INTEGER(2) social_security(3)
 LOGICAL(2) married
 INTEGER(2) dependents
 END TYPE

Visual Fortran supports other user-defined structures that are not standard Fortran 90. These
structures are similar to derived types except that they are declared with a STRUCTURE block.
These structures can contain mapped elements. A map specifies that one or more variables are stored
contiguously in memory. The variables can be of any type, including other structures. A map can
only appear within a UNION block, and a UNION block can only appear within a STRUCTURE.
For example:

 STRUCTURE /test/
 UNION
 MAP
 INTEGER(4) j, k, m
 CHARACTER(21) name
 END MAP
 MAP
 REAL(4) a, b, c
 COMPLEX(8) z
 END MAP
 END UNION
 END STRUCTURE

In the preceding example, the 4-byte integers j, k, and m appear first in memory, followed
immediately by the 21-character variable name. The 4-byte real variables a, b, and c share the same
memory space as j, k, and m, respectively, while the 8-byte complex variable z shares the first 8
bytes of name’s memory storage.

When maps are combined in a union, the variables overlie each other as they do in an
EQUIVALENCE statement. In the following example, there are several definitions for a piece of
memory, each consisting of three contiguous variables. Because these sets of variables are not all the
same length, the shorter ones will not use all of the memory allocated for the longest MAP in the
UNION. Which bytes are unused depends upon the value of the PACK compiler directive.

The following is an example of a map from the DFLIB.F90 module file (in the \DF\INCLUDE
subdirectory):

 STRUCTURE /MTH$E_INFO/
 INTEGER*4 ERRCODE ! INPUT : One of the MTH$ values in DFLIB
 INTEGER*4 FTYPE ! INPUT : One of the TY$ values in DFLIB
 UNION
 MAP
 REAL*4 R4ARG1 ! INPUT: First argument

Declaring and Using Data Page 18 of 53

9/2/97 3:24:08 PM

 CHARACTER*12 R4FILL1
 REAL*4 R4ARG2 ! INPUT: Second argument (if any)
 CHARACTER*12 R4FILL2
 REAL*4 R4RES ! OUTPUT: Desired result
 CHARACTER*12 R4FILL3
 END MAP
 MAP
 REAL*8 R8ARG1 ! INPUT: First argument
 CHARACTER*8 R8FILL1
 REAL*8 R8ARG2 ! INPUT: Second argument (if any)
 CHARACTER*8 R8FILL2
 REAL*8 R8RES ! OUTPUT: Desired result
 CHARACTER*8 R8FILL3
 END MAP
 MAP
 COMPLEX*8 C8ARG1 ! INPUT: First argument
 CHARACTER*8 C8FILL1
 COMPLEX*8 C8ARG2 ! INPUT: Second argument (if any)
 CHARACTER*8 C8FILL2
 COMPLEX*8 C8RES ! OUTPUT: Desired result
 CHARACTER*8 C8FILL3
 END MAP
 MAP
 COMPLEX*16 C16ARG1 ! INPUT: First argument
 COMPLEX*16 C16ARG2 ! INPUT: Second argument (if any)
 COMPLEX*16 C16RES ! OUTPUT: Desired result
 END MAP
 END UNION
 END STRUCTURE

For details on creating derived types, see Derived Type in the Reference. The related derived-type
declarations are described in the TYPE entry in the Reference.

The following is also discussed in this section:

• Default Initialization
• Determination of Derived Types
• Record Structures

Default Initialization

Default initialization occurs if initialization appears in a derived-type component definition. (This is
a Fortran 95 feature.)

The specified initialization of the component will apply even if the definition is PRIVATE.

Default initialization applies to dummy arguments with INTENT(OUT). It does not imply the
derived-type component has the SAVE attribute.

Explicit initialization in a type declaration statement overrides default initialization.

To specify default initialization of an array component, use a constant expression that includes one of
the following:

• An array constructor
• A single scalar that becomes the value of each array element

Pointers can have an association status of associated, disassociated, or undefined. If no default

Declaring and Using Data Page 19 of 53

9/2/97 3:24:08 PM

initialization status is specified, the status of the pointer is undefined. To specify disassociated status
for a pointer component, use =>NULL().

Examples

You do not have to specify initialization for each component of a derived type. For example:

 TYPE REPORT
 CHARACTER (LEN=20) REPORT_NAME
 INTEGER DAY
 CHARACTER (LEN=3) MONTH
 INTEGER :: YEAR = 1995 ! Only component with default
 END TYPE REPORT ! initialization

Consider the following:

 TYPE (REPORT), PARAMETER :: TODAYS_REPORT = REPORT (15, "NOV", 1996)

In this case, the explicit initialization in the type declaration statement overrides the YEAR
component of TODAYS_REPORT.

The default initial value of a component can also be overridden by default initialization specified in
the type definition. For example:

 TYPE MGR_REPORT
 TYPE (REPORT) :: STATUS = TODAYS_REPORT
 INTEGER NUM
 END TYPE MGR_REPORT

 TYPE (MGR_REPORT) STARTUP

In this case, the STATUS component of STARTUP gets its initial value from TODAYS_REPORT,
overriding the initialization for the YEAR component.

Determination of Derived Types

A derived data type can be defined only once in a program unit. The name can be used independently
in other units with the same or different structures, as long as there is no host or use association
between the program units.

Two entities have the same data type if they are declared with the same derived-type definition.

This agreement in type can be important in subroutine and function calls, as shown in the following
example:

 TYPE dual
 REAL y, z
 END TYPE dual
 TYPE (dual) :: x
 CALL NEXTSUB (x)
 . . .
 CONTAINS
 SUBROUTINE NEXTSUB (a)
 TYPE (dual) :: a
 . . .

Declaring and Using Data Page 20 of 53

9/2/97 3:24:08 PM

 END SUBROUTINE NEXTSUB

In this example, using a derived-type object as the calling argument assures consistent argument lists
to guard against a loss of data or the linker issuing an "unsatisfied external" error message because it
does not recognize the subroutine as matching the call statement.

In the example, the definition of derived-type dual is recognized in subroutine NEXTSUB because it
is contained within the main program. The variables x and a have the same type because they
reference the same type definition. They also would have the same type if the derived-type definition
was in a module and both NEXTSUB and the main program used that module.

If you do not have a host association and you are not using a module, you need to use the
SEQUENCE property to work with the same derived type in different procedures. For an example,
see the program DTYPEARG.F90 in the Tutorial subdirectory in /DF/Samples. For other examples,
see DTYPEMOD.F90 and DTYPECOM.F90, also in the Tutorial subdirectory in /DF/Samples.

Derived-Type Values

The allowed values of a specific derived type are based on the allowed values for its ultimate
intrinsic components. See Intrinsic Data Types for allowed values for intrinsic data types.

When you create a derived-type definition, you implicitly create a corresponding structure
constructor that allows a scalar value of derived type to be constructed from a series of values, one
for each defined component. This is a convenient alternative to using individual assignment
statements for each component, which is also a valid method.

Where n components have been defined, the structure constructor has the form:

type-name (expr1, expr2, ... , exprn)

Each of the expressions in the sequence specifies a component value. They must appear in the order
given in the derived-type definition and must be consistent with the values allowed for each
component. The derived type must be defined before you can use a structure constructor.

The following example shows a value assignment using a constructor corresponding to the
derived-type member:

george = member (33, ’George Brown’)

You can make a derived-type object a named constant by using the PARAMETER attribute or
statement with a structure constructor. An example is:

 TYPE pair
 INTEGER i, j
 END TYPE
 TYPE (pair) p
 PARAMETER (p = pair (9, 2))
 TYPE (pair), PARAMETER :: q = pair (7, 3)

The complete example is in DERIVED.F90 in the /DF/SAMPLES/TUTORIAL subdirectory.

If a derived-type component is an array, an array constructor is used to assign the component values.
Array constructors are described in Arrays and Pointers.

Declaring and Using Data Page 21 of 53

9/2/97 3:24:08 PM

Record Structures

The record structure was defined in earlier versions of DIGITAL Fortran as a language extension. It
is still supported in Visual Fortran, although its functionality has been replaced by standard Fortran
90 derived types. Record structures in existing code can be easily converted to Fortran 90 derived
type structures for portability, but can also be left in their old form. In most cases, a DIGITAL
Fortran record and a Fortran 90 derived type can be used interchangeably. The following section
describes conversion information.

For more information on record structures, see the Reference entries for STRUCTURE and
RECORD.

Conversion to Fortran 90 Derived Types

DIGITAL Fortran record structures, using only intrinsic types, easily convert to Fortran 90 derived
types. The conversion can be as simple as replacing the keyword STRUCTURE with TYPE and
removing slash (/) marks. An example conversion is shown in the following table.

Record Structure Fortran 90 Derived-Type

STRUCTURE /employee_name/
 CHARACTER*25 last_name
 CHARACTER*15 first_name
END STRUCTURE
STRUCTURE /employee_addr/
 CHARACTER*20 street_name
 INTEGER(2) street_number
 INTEGER(2) apt_number
 CHARACTER*20 city
 CHARACTER*2 state
 INTEGER(4) zip
END STRUCTURE

TYPE employee_name
 CHARACTER*25 last_name
 CHARACTER*15 first_name
END TYPE
TYPE employee_addr
 CHARACTER*20 street_name
 INTEGER(2) street_number
 INTEGER(2) apt_number
 CHARACTER*20 city
 CHARACTER*2 state
 INTEGER(4) zip
END TYPE

The record strcutures can be used as subordinate record variables within another record, such as the
employee_data record. The equivalent Fortran 90 derived type would use the derived-type objects
as components in a similar manner, as shown in the following table.

Record Structure Fortran 90 Derived-Type

STRUCTURE /employee_data/
 RECORD /employee_name/ name
 RECORD /employee_addr/ addr
 INTEGER(4) telephone
 INTEGER(2) date_of_birth
 INTEGER(2) date_of_hire
 INTEGER(2) social_security(3)
 LOGICAL(2) married
 INTEGER(2) dependents
END STRUCTURE

TYPE employee_data
 TYPE (employee_name) name
 TYPE (employee_addr) addr
 INTEGER(4) telephone
 INTEGER(2) date_of_birth
 INTEGER(2) date_of_hire
 INTEGER(2) social_security(3)
 LOGICAL(2) married
 INTEGER(2) dependents
END TYPE

Type Declaration Statements

To use a variable or named constant, you must explicitly declare its type or accept the implicit type
for that name. You can also specify other properties for these objects. A declaration provides the
type, attributes, and other properties of an object; a definition provides its value.

Declaring and Using Data Page 22 of 53

9/2/97 3:24:08 PM

The following is an example of a type declaration:

REAL real_val

The variable real_val is defined in a statement such as:

real_val = 25.44

The section Defining Variables discusses when a variable becomes defined and when it is undefined.

A type declaration statement has the general form:

type-spec [[, attributes] ... ::] entity-declaration-list [/c-list/]

type-spec
The data type, whether intrinsic or derived.

attributes
The set of attributes to be assigned to the data objects.

entity-declaration-list
The list of data object names and function names being declared.

c-list
A list of constants, as in a DATA statement. If entity-declaration-list is the name of a constant or
an initialization expression, c-list cannot be present.
The c-list cannot specify more than one value unless it initializes an array. When initializing an
array, the c-list must contain a value for every element in the array.

The type specification statement (type-spec) for each intrinsic type and for derived types is discussed
in the appropriate section for each data type.

An explicit declaration can specify attributes for data objects, in addition to their types. Attributes
describe the nature of the variable, and how it will be used. Data attributes are discussed in Data
Attributes. A type statement can also initialize variables.

Declaration and specification statements can be either entity-oriented, or attribute-oriented. An
entity-oriented specification is one where a data object’s type and all of its attributes are specified in a
single statement. An attribute-oriented specification is one which makes an attribute statement,
listing all objects having that attribute. Examples of each are shown in the appropriate sections.

Explicit and Implicit Declarations

Assigning a value to an object implicitly declares it, if it has not been previously explicitly declared
in a type statement. This is called implicit declaration. Explicit declaration statements are also called
type specification statements.

Examples of type explicit declaration statements are:

 REAL real_val
 INTEGER int_val
 TYPE reference
 character (len = 9) ssn
 character (len = 20) last_name

Declaring and Using Data Page 23 of 53

9/2/97 3:24:08 PM

 character (len=20) first_name
 END TYPE REFERENCE

 TYPE (reference) person

In the preceding example, int_val, real_val, and person are all examples of explicitly-declared
data objects. The data types in this example are REAL, INTEGER, and the derived type
REFERENCE.

Fortran provides default implicit typing. If a variable, constant, or other data entity is not explicitly
declared, and is not an intrinsic function, then its type and type parameters are determined implicitly
by the first letter of its name. An explicit specification overrides any implicit typing.

The IMPLICIT statement lists a range of letters and a type, and possibly type parameters, for data
objects whose names begin with one of those letters. You can also specify IMPLICIT NONE,
which requires that you explicitly declare each variable and constant used in your program. The
statement applies only in the program unit where it is used.

By default, a program unit is treated as if it had a host with the declaration:

 IMPLICIT INTEGER (I-N), REAL (A-H, O-Z)

This means that variables having names beginning with the letters I through N are integers, A
through H and O through Z are real numbers. For more information on default implicit assumptions,
see IMPLICIT in the Reference.

See Also: Declaration Statements for Noncharacter Types, Declaration Statements for Character
Types.

Declaration Statements for Noncharacter Types

The following table shows the data types that can appear in noncharacter type declaration statements.

Noncharacter Data Types

BYTE1
LOGICAL2
LOGICAL([KIND=]1) (or LOGICAL*1)
LOGICAL([KIND=]2) (or LOGICAL*2)
LOGICAL([KIND=]4) (or LOGICAL*4)
LOGICAL([KIND=]8) (or LOGICAL*8)3
INTEGER4
INTEGER([KIND=]1) (or INTEGER*1)
INTEGER([KIND=]2) (or INTEGER*2)
INTEGER([KIND=]4) (or INTEGER*4)
INTEGER([KIND=]8) (or INTEGER*8)3
REAL5
REAL([KIND=]4) (or REAL*4)
DOUBLE PRECISION (REAL([KIND=]8) or REAL*8)
REAL([KIND=]16) (or REAL*16)6
COMPLEX7

Declaring and Using Data Page 24 of 53

9/2/97 3:24:08 PM

COMPLEX([KIND=]4) (or COMPLEX*8)
DOUBLE COMPLEX (COMPLEX([KIND=]8) or COMPLEX*16)

1 Same as INTEGER(1).
2 This is treated as default logical.
3 Alpha only.
4 This is treated as default integer.
5 This is treated as default real.
6 VMS, U*X.
7 This is treated as default complex.

In noncharacter type declaration statements, you can optionally specify the name of the data object or
function as v*n, where n is the length (in bytes) of v. The length specified overrides the length
implied by the data type.

The value for n must be a valid length for the type of v. The type specifiers BYTE, DOUBLE
PRECISION, and DOUBLE COMPLEX have one valid length, so the n specifier is invalid for them.

For an array specification, the n must be placed immediately following the array name; for example,
in an INTEGER declaration statement, IVEC*2(10) is an INTEGER(2) array of 10 elements.

Examples

In a noncharacter type declaration statement, a subsequent kind parameter overrides any initial kind
parameter. For example, consider the following statements:

 INTEGER(KIND=2) I, J, K, M12*4, Q, IVEC*4(10)
 REAL(KIND=8) WX1, WXZ, WX3*4, WX5, WX6*4
 REAL(KIND=8) PI/3.14159E0/, E/2.72E0/, QARRAY(10)/5*0.0,5*1.0/

In the first statement, M12*4 and IVEC*4 override the KIND=2 specification. In the second
statement, WX3*4 and WX6*4 override the KIND=8 specification. In the third statement, QARRAY
is initialized with implicit conversion of the REAL(4) constants to a REAL(8) data type.

Declaration Statements for Character Types

A CHARACTER type specifier can be immediately followed by the length of the character object or
function. It takes one of the following forms:

Keyword Forms
CHARACTER [([LEN=]len)]
CHARACTER [([LEN=]len [,[KIND=]k])]
CHARACTER [(KIND=k [,LEN=len])]

Nonkeyword Form
CHARACTER*len[,]

len
Is one of the following:

• In keyword forms

Declaring and Using Data Page 25 of 53

9/2/97 3:24:08 PM

The len is a specification expression or an asterisk (*). If no length is specified, the default
length is 1.

If the length evaluates to a negative value, the length of the character entity is zero.

• In nonkeyword form
The len is a specification expression or an asterisk enclosed in parentheses, or a scalar
integer literal constant (with no kind parameter). The comma is permitted only if no double
colon (::) appears in the type declaration statement.

This form can also (optionally) be specified following the name of the data object or
function (v*len). In this case, the length specified overrides any length following the
CHARACTER type specifier.

The range for len in both forms is 1 to 2**31-1 for Windows NT systems on Alpha processors; 1
to 65535 for Windows NT systems on Intel processors.

k
Is a scalar integer initialization expression specifying a valid kind parameter. Currently the only
kind available is 1.

Rules and Behavior

An automatic object can appear in a character declaration. The object cannot be a dummy argument,
and its length must be declared with a specification expression that is not a constant expression.

The length specified for a character-valued statement function or statement function dummy
argument of type character must be an integer constant expression.

When an asterisk length specification *(*) is used for a function name or dummy argument, it
assumes the length of the corresponding function reference or actual argument. Similarly, when an
asterisk length specification is used for a named constant, the name assumes the length of the actual
constant it represents. For example, STRING assumes a 9-byte length in the following statements:

 CHARACTER*(*) STRING
 PARAMETER (STRING = ’VALUE IS:’)

A function name must not be declared with a * length, if the function is an internal or module
function, or if it is array-valued, pointer-valued, recursive, or pure.

Examples

The following example declares an array NAMES containing 100 32-character elements, an array
SOCSEC containing 100 9-character elements, and a variable NAMETY that is 10 characters long
and has an initial value of 'ABCDEFGHIJ'.

 CHARACTER*32 NAMES(100),SOCSEC(100)*9,NAMETY*10 /’ABCDEFGHIJ’/

The following example includes a CHARACTER statement declaring two 8-character variables,
LAST and FIRST.

 INTEGER, PARAMETER :: LENGTH=4

Declaring and Using Data Page 26 of 53

9/2/97 3:24:08 PM

 CHARACTER*(4+LENGTH) LAST, FIRST

The following example shows a CHARACTER statement declaring an array LETTER containing 26
one-character elements. It also declares a dummy argument BUBBLE that has a passed length
defined by the calling program.

 CHARACTER LETTER(26), BUBBLE*(*)

In the following example, NAME2 is an automatic object:

 SUBROUTINE AUTO_NAME(NAME1)
 CHARACTER(LEN = *) NAME1
 CHARACTER(LEN = LEN(NAME1)) NAME2

Data Initialization and the DATA Statement

Variables can be given initial values in type-declaration statements and by using DATA statements.

You can give initial values to the variables in your program by using a type declaration statement. An
entity-oriented declaration is one where a data object’s type and all of its attributes are specified in a
single statement. Initialization of a variable in an entity-oriented type declaration follows the same
rules as an assignment statement. For more information, see Assignment Statements.

You can also initialize variables using a DATA statement. The DATA statement has the form:

DATA data-object / data-value-list / [[,] data-object / data-value-list /] ...

data-object
A variable or data implied DO.

data-value-list
The data constants to be assigned, which can include the asterisk (*) repeat integer.

The non-negative repeat integer specifies how many times the following constant is used. The repeat
integer can be an integer constant or a named constant. The data constant can be any valid data type.

The variables become initialized with their corresponding constants in accordance with the rules of
intrinsic assignment.

When you construct a DATA statement, you must make sure that when the lists are expanded, the
combined length of the data objects matches the combined length of data values.

You must also be careful that corresponding data types in the lists are compatible. Character and
logical variables must have corresponding constants of their type. Real and complex variables must
have corresponding constants of integer, real, or complex type. Integer variables can have
corresponding constants of integer, real, or complex type, or binary, octal, or hexadecimal literal
constants. A derived-type variable must have a corresponding constant of the same type. If a variable
in a DATA statement is typed implicitly, then any subsequent type statements that include that
variable must agree with the implicit typing.

Declaring and Using Data Page 27 of 53

9/2/97 3:24:08 PM

If you assign values in a DATA statement to an array, or part of one, it must have had its array
properties defined earlier.

In the following examples, the character variable name is initialized with the value JOHN DOE with
two trailing blanks to fill out the declared length of the variable. The ten elements of miles are
initialized to zero. The two-dimensional array skew is initialized so that its lower triangle is zero and
its upper triangle is one. The structures myname and yours are declared using the derived type member
from Derived Types. The derived-type variable myname is initialized by a structure constructor. The
derived-type variable yours is initialized by supplying a separate value for each component.

 CHARACTER (LEN = 10) name
 INTEGER, DIMENSION (0:9) :: miles
 REAL, DIMENSION (100, 100) :: skew
 TYPE (member) myname, yours
 DATA name / ’JOHN DOE’ /, miles / 10*0 /
 DATA ((skew (k, j), j = 1, k), k = 1, 100) / 5050*0.0 /
 DATA ((skew (k, j), j = k + 1, 100), k = 1, 99) / 4950*1.0 /
 DATA myname / member (21, ’JOHN SMITH’) /
 DATA yours % age, yours % name / 35, ’FRED BROWN’ /

The DATA statement allows multiple data object and data value lists in a single statement. Such
repeated specifications can be a source of confusion and user errors. Using separate DATA
statements usually results in cleaner code and fewer coding errors. The first DATA statement in the
previous example could be written as:

 DATA name / ’JOHN DOE’ /
 DATA miles / 10*0 /

See also DATA in the Reference.

Data Attributes
Attributes, in general, describe properties that determine how a data object can be used in a program.
You can use one or more statements to assign attributes to data objects (For example, one statement
could declare a real type and another declare dimensions.) However, a particular attribute of the
object can be declared only once.

The Visual Fortran attributes are listed in the following table.

Attribute name Description Can be used with
ALLOCATABLE Specifies that the bounds for an array are to be

determined on execution of the ALLOCATE
statement.

Arrays

AUTOMATIC Declares a variable to be on the stack, rather than at a
static memory location.

Variables

DIMENSION Specifies an array. Constants or variables
EXTERNAL Declares a name to be an external function. Functions or subroutines
INTENT Specifies intended use of a procedure’s dummy

argument.
Function or subroutine
dummy arguments

INTRINSIC Declares a name to be an intrinsic function. Functions or subroutines
OPTIONAL Allows a procedure to be called without referring to Function or subroutine

Declaring and Using Data Page 28 of 53

9/2/97 3:24:08 PM

this dummy argument. dummy arguments
PARAMETER Declares a name to be a constant. Constant data objects
POINTER Declares a data object to be a pointer. Variables
PRIVATE Restricts access to an entity in a module to the module

itself.
Constants, variables, or
module procedures

PUBLIC Declares an entity in a module to be available outside
that module.

Constants, variables, or
module procedures

SAVE Retains a variables’s value, definition, association, and
allocation status after the routine in which they are
declared completes execution.

Variables or common
blocks

STATIC Specifies that a variable has a storage class of static. Variables
TARGET Declares a data object to be a target. Variables
VOLATILE Declares an object to be entirely unpredictable and

prevents the object from being optimized during
compilation.

Data objects or
/common-block/

The PARAMETER, PUBLIC, PRIVATE, SAVE, STATIC, and AUTOMATIC attributes are
discussed in the following sections. The POINTER, TARGET, and ALLOCATABLE attributes are
discussed in Arrays and Pointers. The EXTERNAL, INTRINSIC, INTENT, and OPTIONAL
attributes are discussed in Program Units and Procedures. The DIMENSION and VOLATILE
attributes are discussed in the Reference.

Components of a derived type can include only the DIMENSION and POINTER attributes in their
definition.

See also: Specifying Properties by Using a Compiler Directive.

The PARAMETER Attribute and Statement

Named constants are declared and defined in type declaration statements containing the
PARAMETER attribute and by using PARAMETER statements. The defined values cannot be
changed during program execution.

PARAMETER can be used in both attribute and statement form. The attribute-oriented
PARAMETER statement has the form:

PARAMETER [(] named-constant = initialization expression [, ...] [)]

If the named-constant in a PARAMETER statement is typed implicitly, any subsequent type
declaration statement that includes that constant must confirm the implied type and the values of any
implied type parameters.

Use of the optional parentheses can be controlled by using the /[no]altparam compiler option. The
default is /altparam, which allows the option.

 PARAMETER (xmax = 50.)
 PARAMETER y = 2.1*2.0

The form for using the PARAMETER attribute in an entity-oriented type declaration statement is:

Declaring and Using Data Page 29 of 53

9/2/97 3:24:08 PM

type-spec, PARAMETER [, attribute] :: named-constant = initialization expr

More than one named-constant can be specified in a single type declaration statement. For example:

 REAL, PARAMETER :: xmax = 50., y = 2.1*2.0

The named-constant must have already been defined in either the same statement or in a prior type
declaration statement, or it should be accessible through either host or use association. For
information on host and use association, see Program Units and Procedures.

 REAL, PARAMETER :: xmax = 50., y = 2.1*2.0

See also PARAMETER in the Reference.

The PUBLIC and PRIVATE Attributes and Statements

Entities with the PUBLIC attribute are accessible in other program units by the USE statement.
Entities with the PRIVATE attribute are not accessible outside the module. Entities without an
accessibility specification have the default accessibility, which is PUBLIC unless the default has
been changed by a PRIVATE statement. For more information about the USE statement and
modules, see Program Units and Procedures.

The form for using the access specification statement is:

PUBLIC | PRIVATE [[::] access-identification-list]

Examples of accessibility statements are:

 MODULE EX
 PRIVATE
 PRIVATE :: x, y, z
 PUBLIC :: a, b, c, assignment (=), operator (+)

The form for using the access specification in a type declaration statement is:

type-spec, PUBLIC | PRIVATE [, attribute-list] :: entity-list

The entity-list can be a named variable, procedure, derived type, named constant, or namelist group.
It can also be a generic name.

Some examples of specifying the PUBLIC and PRIVATE attribute are:

 REAL, PRIVATE :: x, y, z
 REAL, DIMENSION (10, 10), PUBLIC :: a, b

An object must not be given the PUBLIC attribute if its type already has the PRIVATE attribute.

Accessibility attributes can be used only in modules. If a PUBLIC or PRIVATE statement is used
without an access identifier list, the statement sets the default accessibility that applies to all
potentially accessible entities in the scoping unit. This means that every variable, constant, and
subprogram contained in the module has that attribute unless you explicitly declare specific ones to
have the nondefault attribute. Only one PUBLIC or PRIVATE statement without an access
identifier list is permitted in a program unit.

Declaring and Using Data Page 30 of 53

9/2/97 3:24:08 PM

For example, derived types defined in a module are by default accessible in any unit that uses the
module. The default can be changed to limit accessibility to the module itself. A particular derived
type can be declared private, or it can be public while some of its components are private.

See also PUBLIC and PRIVATE in the Reference.

The SAVE Attribute and Statement

You can use SAVE to preserve the values that variables have in procedures. Objects having the
SAVE attribute retain their association status, allocation status, definition status, and value following
execution of a RETURN or END statement in the scoping unit containing their declaration. Saved
objects in the scoping unit of a module retain their properties when any procedure that accesses the
module in a USE statement executes a RETURN or END statement. Objects declared with the
SAVE attribute in a subprogram are shared by all instances of the subprogram.

You can save all objects in a program unit by using SAVE without an entity list. If you do this, no
other explicit occurrence of the SAVE attribute or SAVE statement is allowed in the same scoping
unit. A SAVE statement with an empty entity list is treated as though it contained the names of every
allowed object in the same scoping unit.

The SAVE attribute cannot be used for an object in a common block, a dummy argument, a
procedure, a function result, or an automatic data object. The SAVE attribute has no effect in the
specification part of a main program.

You can save an entire common block even though you cannot specify the SAVE attribute for
individual items within a common block. All objects within a saved common block are saved. If a
common block is declared saved outside of the main program, it must be declared to have the SAVE
attribute in every scoping unit in which that common block appears except in the scoping unit of the
main program. The current values of objects in a saved common block when a RETURN or END
statement is executed are available to the next scoping unit in sequence that uses the common block.

If a named common block is given the SAVE attribute in the main program, the current values of the
common block are available to each scoping unit that specifies that named common block. The
definition status of each object in the common block depends on the association that has been
established for the common block storage sequence.

The SAVE attribute can be assigned in a type definition statement or in a SAVE statement. The form
of the statement is:

SAVE [[::] entity-list]

The entity-list includes object names and common block names delimited by slashes (/).

An example of a SAVE statement is:

 SAVE a, b, c, / blocka /, d

Specify the SAVE attribute in the following form:

type-spec, SAVE [[, attribute-spec] ::] entity-list

Declaring and Using Data Page 31 of 53

9/2/97 3:24:08 PM

An example of an SAVE attribute specification is:

 REAL, SAVE :: a, b

See also SAVE in the Reference.

The STATIC Attribute and Statement

The STATIC attribute specifies that a variable has a storage class of static, which means that the
variable remains in memory for the duration of program execution. Its value is retained between calls
to the containing procedure. This attribute is equivalent to the Fortran SAVE attribute and the C
static attribute. It can be expressed as either a statement or as an attribute. The STATIC statement
has the form:

STATIC [::] variable_name

The variable name list can include object names and common block names delimited by slashes (/).

An example of a STATIC statement is:

 STATIC :: a, b, c

Specify the STATIC attribute in the following form:

type-spec, STATIC [[, attribute-spec] ::] entity-list

An example of an STATIC attribute specification is:

INTEGER, STATIC :: d

See also STATIC in the Reference.

The AUTOMATIC Attribute and Statement

This attribute can be specified in a type declaration or as a statement. It declares variables to be on
the stack, rather than at a static memory location. In Visual Fortran, all variables are static by default.
A variable declared as automatic has no fixed memory location; a section of stack memory is
allocated for the variable as needed. Automatic variables within procedures are discarded when the
procedure completes execution. The AUTOMATIC statement has the following form:

AUTOMATIC [[::] entity-list]

The entity-list consists of variable names or array specifications. If no variable names follow the
AUTOMATIC statement, then all variables in that program unit are considered automatic.

An example of an AUTOMATIC statement is:

 AUTOMATIC :: e, f, g

Specify the AUTOMATIC attribute in the following form:

type-spec, AUTOMATIC [[, attribute-spec] ::] entity-list

Declaring and Using Data Page 32 of 53

9/2/97 3:24:08 PM

An example of an AUTOMATIC attribute specification is:

 INTEGER, AUTOMATIC :: h

See also AUTOMATIC in the Reference.

Specifying Properties by Using a Compiler Directive

The ATTRIBUTES compiler directive provides additional features beyond standard Fortran 90.
This directive allows your program, for example, to use the calling conventions of Microsoft C, and
to pass arguments by value or by reference. For more information on mixed-language programming,
see Programming With Mixed Languages.

The properties described in this section cannot be included in any entity-oriented type declarations.
They are specified by using the ATTRIBUTES directive, with the following syntax:

cDEC$ ATTRIBUTES attr-list :: object-list

c
Is a c, C, !, or *.

attr-list
The properties being specified; one or more of the following options: ALIAS, C, DLLEXPORT,
DLLIMPORT, EXTERN, REFERENCE, STDCALL, VALUE, or VARYING.

object-list
The data objects and procedures being declared to have the properties.

ATTRIBUTES options can be used in subroutine and function definitions, in type declarations, and
with the INTERFACE and ENTRY statements. These properties applied to entities available to a
procedure through host or use association are carried through the association. In the following
example, the call to happy within go uses the C option specified in the interface block.

 MODULE mod
 INTERFACE
 SUBROUTINE happy
 !DEC$ ATTRIBUTES C :: happy
 END SUBROUTINE
 END INTERFACE
 CONTAINS
 SUBROUTINE go
 CALL happy(12)
 END SUBROUTINE
 END MODULE

For more information, see ATTRIBUTES and General Compiler Directives.

Storage Association
Storage sequences describe relationships between variables, common blocks, and result variables.
Storage is associated when different data objects share the same storage units. Storage association is

Declaring and Using Data Page 33 of 53

9/2/97 3:24:08 PM

similar to name or pointer association in that the same value can be referenced by more than one
name. With storage association, however, variables can overlap one another, or their memory storage
can begin and end in different locations. The EQUIVALENCE, COMMON, SEQUENCE, and
ENTRY statements can cause variables to be storage associated.

The ENTRY statement causes the result variables of a function to be storage associated. All
subprogram entries are storage associated with the function result.

For more information on ENTRY, see Program Units and Procedures and ENTRY in the Reference.

Storage Units and Storage Sequence

Storage association is described in terms of storage units. A storage unit contains a single value, and
can be character, numeric, or unspecified. The table Memory Requirements and Default Kinds shows
variable types and their associated storage unit size.

An ordered sequence of storage units comprises a storage sequence. Several storage sequences can
be used consecutively to create a composite sequence. The order of units in a composite sequence is
that of its component sequences in succession, ignoring any zero-sized sequences. Common block
storage sequences are described in The COMMON Statement.

Two objects are said to be storage associated if the i th storage unit of one is the same as the j th
storage unit of the other. This causes the (i+k)th unit of the first to be the same as the (j+k)th unit of
the other, as long as (i+k) and (j+k) are less than or equal to the length of the first and second
objects, respectively. For example:

 REAL A (4), B
 COMPLEX C (2)
 DOUBLE PRECISION D
 EQUIVALENCE (C (2), A (2), B), (A, D)

The second storage unit of C (element C(2)) occupies the same memory location as the second and
third units of A (elements A(2) and A(3)) because a complex number is made of two real numbers.
The second unit of A (element A(2)) occupies the same location as all of B, and D occupies the same
location as the first two units of A (elements A(1) and A(2)).

Two entities are totally associated if they have the same storage sequence in memory, or partially
associated if they share only part of a storage sequence. In the previous example, A(2) and B are
totally associated. The following are partially associated:

• A(1) and C(1)
• A(2) and C(2)
• A(3) and C(2)
• B and C(2)
• A(1) and D
• A(2) and D
• B and D
• C(1) and D
• C(2) and D

Associated character entities can overlap, as in the following example:

Declaring and Using Data Page 34 of 53

9/2/97 3:24:08 PM

 CHARACTER A*4, B*2, C*3
 EQUIVALENCE (A(2:3), B, C)

A, B, and C are partially associated.

The COMMON Statement

The COMMON statement allows two or more program units to directly share variables, without
having to pass them as arguments. It allows for storage association among variables in different
program units.

The module feature of Fortran also allows different program units to share variables, but does not
cause storage association. Although common blocks can be used in modules, they cannot also be
declared in a program unit that uses that module. The association created by use of modules is use
association rather than storage association. See Program Units and Procedures for more information
on use association.

Data objects that are storage associated with an entity in a common block are considered to be in that
common block.

The syntax of the COMMON statement is:

COMMON [/ [block-name] /] object-list [[,] / [block-name] / object-list] ...

block-name
The name of the common block.

object-list
The names of the common block data objects.

Any blank or named common block can appear more than once in a program unit. Each time the
same common name is used in one program unit, it is treated as a continuation of the list for that
name. Similarly, each blank common block object list in a scoping unit is treated as a continuation of
blank common.

A variable can be used in only one common block within a program unit.

 COMMON / BLOCKA / A, B, C (10, 30)
 COMMON I, J, K

Common Block Storage Sequence

A storage sequence is formed for each common block, as follows:

1. A storage sequence is formed from the lists for the common block. The order is the same as
the order of the appearance of the object lists.

2. The storage sequence formed in (1) includes all storage units associated with it by
equivalence. The sequence can be extended only by adding storage units beyond the last
storage unit. Data objects associated with an entity in a common block are considered to be in
that common block.

You can place a derived-type object in a common block, but it must be a sequence type. If

Declaring and Using Data Page 35 of 53

9/2/97 3:24:08 PM

derived-type objects of numeric sequence type or character sequence type appear in common, it is as
if the individual components were enumerated directly in the common list.

Size of a Common Block

The size of a common block is the size of its common block storage sequence, including any
extensions resulting from equivalence association. A named common block must be the same size in
all program units that access it. Blank common blocks can be of different sizes, but both must start
with the same sequence of items.

Common Association

All common blocks with the same name (including blank common) have the same first storage unit.
If they are zero-sized, common blocks with the same name are storage associated with one another.
This results in the association of objects in different program units.

The variables that you place in common statements in different program units must be associated
with objects of the same type and kind. You cannot, for example, associate a logical type with a
double precision type.

The following example shows a valid association between subroutines in different program units.
The object lists agree in number, type, and kind of data objects:

 SUBROUTINE unit1
 REAL(8) x(5)
 INTEGER J
 CHARACTER str*12
 TYPE(member) club(50)
 COMMON / blocka / x, j, str, club
 ...

 SUBROUTINE unit2
 REAL(8) z(5)
 INTEGER m
 CHARACTER chr*12
 TYPE(member) myclub(50)
 COMMON / blocka / z, m, chr, myclub
 ...

The EQUIVALENCE Statement

The EQUIVALENCE statement causes all listed items to have the same first memory location. The
association is local to the program unit, unless one of the equivalenced entities is also in a common
block. If the EQUIVALENCE statement appears in a module used by the main program, then the
scope of the association extends to the main program. For more information on the concept of scope,
see Program Units and Procedures.

If the objects have differing types or type parameters, the association does not cause any type
conversion or imply mathematical equivalence.

When you create an EQUIVALENCE statement, you define a storage association between
variables. All of the nonzero-sized sequences in an equivalence set, if any, have the same first
storage unit, and all of the zero-sized sequences, if any, are storage associated with one another and
with the first storage unit of any nonzero-sized sequences.

Declaring and Using Data Page 36 of 53

9/2/97 3:24:08 PM

The syntax of the EQUIVALENCE statement is:

EQUIVALENCE (object, object-list) [, (object, object-list)] ...

object
One of the sharing objects, which can be a variable name, an array element, or a character
substring.

object-list
One or more additional objects which share the same storage unit.

When you construct equivalence lists in standard Fortran 90, you must have all items in the lists
correspond one-for-one in type and kind. You cannot, for example, equivalence a single precision
array with a double precision array because the storage units for the array elements have different
word lengths.

You cannot construct equivalences that contradict the storage units of variables. A variable cannot
occupy more than one storage unit, for example. Consecutive array elements must be stored in
sequence, so you cannot force the elements of arrays out of their storage sequence. For more
information, see the EQUIVALENCE statement in the Reference.

An example of an EQUIVALENCE statement is:

 CHARACTER (LEN = 4) :: a, b
 CHARACTER (LEN = 3) :: c(2)
 EQUIVALENCE (a, c(1)), (b, c(2))

This causes the following alignment:

 1 2 3 4 5 6 7
 a(1:1) a(2:2) a(3:3) a(4:4)
 b(1:1) b(2:2) b(3:3) b(4:4)
 c(1)(1:1) c(1)(2:2) c(1)(3:3) c(2)(1:1) c(2)(2:2) c(2)(3:3)

In this example, the fourth element of a, the first element of b, and the first element of c(2) share the
same storage unit.

The NAMELIST Statement

A NAMELIST statement groups named data objects so they can be referred to by a single group
name. The NAMELIST statement is used primarily for transferring data.

When entering data for namelist variables, enter the variables in any order. The variables are output
in the same order in which they are listed in the NAMELIST statement.

A namelist variable is like any other variable with regard to use or host association and data typing.
You can include a namelist variable in more than one namelist group, and you can use a namelist
group name more than once within a program unit. Each time you use the group name, the new
variable lists are appended to the original list.

A sample program, NAMELIST.F90, is included in the /DF/SAMPLES/TUTORIAL subdirectory.

Declaring and Using Data Page 37 of 53

9/2/97 3:24:08 PM

Namelists are more fully described in Input/Output Editing.
See also NAMELIST in the Reference.

Expressions
Individual units of meaning such as variables, constants, function references, and operators are
combined together to form expressions. An expression is a formula for computing a value. Operators
specify the actions to be performed on the operands. In the following expression, for example, the
slash (/) is an operator and chickens and coops are operands:

 chickens / coops

An expression can be part of an assignment statement, it can be the control part of an IF statement,
or it can be an argument to a procedure. In the following example, the entire line is an assignment
statement, and the portion to the right of the equal sign (=) is an expression:

 cost = 10.95 * chickens / coops

Intrinsic Operators

There are four categories of intrinsic operators, as shown in the following list.

Category
Intrinsic
operators

Used with

Numeric **, *, /, +, -
unary +, unary -

Integer, real, or complex values in any combination.

Character // Character of any length.
Relational .EQ., .NE., = =, / =

.GT., .GE., .LT.,

.LE.,
>, > =, <, < =

Both of integer or real type or both of character type; yields logical
value. .EQ. and .NE. also accept complex types.

Logical unary .NOT.,
.AND., .OR.,
.XOR., .EQV.,
.NEQV.

Logical or integer values.

A unary operator has a single operand; binary operators require two operands:

 -(a+b) ! - is unary, + is binary

You can create defined operations in addition to the intrinsic operations. You can make a defined
operation resolvable into one or more intrinsic operations, similar to the way that derived data types
can be resolved into intrinsic data types. A defined operation is defined by a function and an interface
block. See Defined Operators and Expressions, for more information on how to do this.

Evaluation of Operations

You must give a value to any variables used as operands before referring to them. You cannot use
undefined mathematical operations. The following operations are prohibited:

Declaring and Using Data Page 38 of 53

9/2/97 3:24:08 PM

• Division by zero
• Raising a zero-value operand to a negative or zero power
• Raising a negative-value operand to a non-integer power

The compiler does not necessarily evaluate all parts of expressions. For example, in an expression
that contains a multiplication by zero, the expression in parentheses might not be evaluated:

 (37.8 / scale**expo + factor) * 0.0

Similarly, if a false value is part of an expression including the .AND. operator, the expression might
not be evaluated. In the following example, the expression (switch .EQ. on) might not be evaluated:

 ((3 .LE. 1) .AND. (switch .EQ. on))

Precedence of Operators

When several operators appear in the same expression without controlling parentheses, their effects
are evaluated in a specific order. The following table shows the set of expression operators and their
precedence in descending order.

Table: Expression Operators and Precedence (in descending order)

Category of operator Operator Action with equal precedence

any user-defined unary operator N/A
Numeric ** Right-to-left
Numeric * or / Left-to-right
Numeric unary + or - N/A
Numeric binary + or - Left-to-right
Character // Left-to-right
Relational .EQ., .NE., .LT., .LE., .GT., .GE.,

= =, / =, <, < =, >, > =
N/A

Logical .NOT. N/A
Logical .AND. Left-to-right
Logical .OR. Left-to-right
Logical .XOR., .EQV., or .NEQV. Left-to-right

any user-defined binary operator Left-to-right

For example, the following two expressions are equivalent, since the unary minus has a lower
precedence than exponentiation:

 -a**2
 -(a**2)

Creating Expressions

An expression is formed from operands, operators, and parentheses. An expression can be enclosed
in parentheses and treated as a simple operand. More complex expressions can be made by including
operators, as in the following examples:

 a + b

Declaring and Using Data Page 39 of 53

9/2/97 3:24:08 PM

 (a - b) * c
 a ** b
 c .AND. d
 f // g

Any variable, array, array element, derived-type component, or function that is referred to in an
expression must be defined at the time the reference is made, or the results are undefined.

Expression Data Types and Conformability

The data type of an expression depends on its operators and operands. Its shape depends on the
operators and the shape of the arrays in the expression. The data type of the result of an expression
can be either an intrinsic type or a derived type.

If an expression contains two operands of the same type, but different kinds, the result is of the kind
having the greater precision. For example, if a single precision value is added to a double-precision
value, the result is a double precision real number. See Type Conversion of Numeric Operands for
more detail.

For all intrinsic binary operations, both operands must be the same shape if they are arrays, or must
both be scalar.

Scalar and Array Expressions

Expressions are classified as either scalar or array expressions.

An example scalar expression, where q and r are scalars, is:

 q + 2.3 + r

An example array expression, where a and b are arrays declared with dimension a(10) and b(10), is:

 a + b

In this example, the two arrays have the same shape. This is required for two array operands.

If one operand is a scalar and the other an array, the scalar is treated as though it is of the same shape
as the array, with each of its elements equal to the scalar. An example expression is:

 a + r

In this example, if r is a scalar and a is an array, the value of r is added to each element of a.

Numeric Expressions

A numeric expression produces an integer, a real number (single or double precision), a complex
number, or an array of those types. Numeric expressions are built from the following operands:

• Numeric constants
• Symbolic names for numeric constants
• Constant subobjects
• Variable references
• Array references

Declaring and Using Data Page 40 of 53

9/2/97 3:24:08 PM

• Array element references
• Function references
• Derived type references
• Structure component

The numeric operands can be mixed types and kinds: integer, real, double-precision real, and
complex. The nature of the result is determined by the type and kind of the variable being defined.
When the type or kind are mixed, the operands are converted to match that of the operand of greatest
precision before the operation is performed.

Table: Arithmetic Operators
Operator Operation Precedence
** Exponentiation 1 (highest)
/ Division 2
* Multiplication 2
- Subtraction (binary) or negation (unary) 3
+ Addition (binary) or identity (unary) 3

When consecutive operations are of equal precedence, the leftmost operation is often performed first.
For example, the expression first/second*third is equivalent to (first/second)*third. When there are
two consecutive exponentiation operations, the rightmost operation is performed first. For example,
the following expressions are equivalent:

 first**second**third
 first**(second**third)

Fortran does not allow two numeric operators to appear consecutively. For example, Fortran
prohibits first**-second, but permits first**(-second).

The following are examples of the precedence of numeric operators.

Expression Equivalent expression
3 * 7 + 5 (3 * 7) + 5
- one**two - (one**two)
+ x / y +(x / y)
area / g - qu**2**fact (area / g) - (qu**(2**fact))

Integer Division

When one integer is divided by another, the truncated quotient of the two operands is returned. Thus,
7/3 evaluates to 2, (-7)/3 evaluates to -2, and both 9/10 and 9/(-10) evaluate to zero. In general, the
expression a*i/j does not give the same result as a*(i/j) because of the different sequence of
operations in the expressions.

For example, look at the following assignment statement:

 i = 1/4 + 1/4 + 1/4 + 1/4

Division has higher precedence than addition, so the expression is equivalent to (1/4) + (1/4) + (1/4)
+ (1/4). The quotient of 1/4 is truncated, and the result is 0. The assignment, therefore, sets i equal to
zero.

Declaring and Using Data Page 41 of 53

9/2/97 3:24:08 PM

Type Conversion of Numeric Operands

When all operands of a numeric expression are of the same data type and kind, the value returned by
the expression is also of that type and kind. When the operands are of different data types and kinds,
the type and kind of the value returned by the expression are those of the highest-ranked operand.
The exception to the rule is operations involving both REAL(8) numbers and COMPLEX(4)
numbers, which yield COMPLEX(8) results.

The following table shows the ranking of each data type:

Rank Data Type
Highest COMPLEX(8)
 . COMPLEX(4)
 . REAL(16) (VMX, U*X)
 . REAL(8)
 . REAL(4)
 . INTEGER(8) (Alpha only)
 . INTEGER(4)
 . INTEGER(2)
 . INTEGER(1)
 . LOGICAL(8) (Alpha only)
 . LOGICAL(4)
 . LOGICAL(2)
Lowest LOGICAL(1) or BYTE

For example, when an operation is performed on an INTEGER(2) operand and a REAL(4) operand,
the INTEGER(2) operand is first converted to REAL(4). The result of the operation is also a value of
data type REAL(4). Similarly, in an operation on a real number and a complex number, the real
number is first converted to a complex number with a zero imaginary part, and the result of the
operation is also complex.

All intermediate numeric integer calculations are performed with INTEGER(4) precision and
therefore do not overflow INTEGER(2) precision.

The following table summarizes the data conversion rules for numeric assignment statements.

Scalar
Memory
Reference
(V)

Expression (E)

Integer or
Logical

REAL
(KIND=4)

REAL
(KIND=8)

REAL(KIND=16)
(VMS, U*X)

COMPLEX
(KIND=4)

COMPLEX
(KIND=8)

Integer or
logical

Assign E to
V

Truncate E
to integer
and assign to
V

Truncate E to
integer and
assign to V

Truncated E to
integer and assign to
V

Truncate real part
of E to integer and
assign to V;
imaginary part of E
is not used

Truncate real part
of E to integer and
assign to V;
imaginary part of E
is not used

REAL Append Assign E to Assign MS Assign MS portion of Assign real part of Assign MS portion

Declaring and Using Data Page 42 of 53

9/2/97 3:24:08 PM

(KIND=4) fraction (.0)
to E and
assign to V

V portion of E
to V; LS
portion of E is
rounded

E to V; LS portion of
E is rounded

E to V; imaginary
part of E is not used

of the real part of E
to V; LS portion of
the real part of E is
rounded;
imagininary part of
E is not used

REAL
(KIND=8)

Append
fraction (.0)
to E and
assign to V

Assign E to
MS portion
of V; LS
portion of V
is 0

Assign E to V Assign MS portion of
E to V; LS portion of
E is rounded

Assign real part of
E to MS of V; LS
portion of V is 0;
imaginary part of E
is not used

Assign real part of
E to V; imaginary
part of E is not used

REAL
(KIND=16)
(VMS, U*X)

Append
fraction (.0)
to E and
assign to V

Assign E to
MS portion
of V; LS
portion of V
is 0

Assign E to
MS portion of
V; LS portion
os V is 0

Assign E to V Assign real part of
E to MS of V; LS
portion of V is 0;
imaginary part of E
is not used

Assign real part of
E to MS portion of
V; LS portion of
real part of V is 0;
imaginary part of E
is not used

COMPLEX
(KIND=4)

Append
fraction (.0)
to E and
assign to
real part of
V;
imaginary
part of V is
0.0

Assign E to
real part of
V;
imaginary
part of V is
0.0

Assign MS
portion of E
to real part of
V; LS portion
of E is
rounded;
imaginary
part of V is
0.0

Assign MS portion of
E to real part of V;
LS portion of E is
rounded; imaginary
part of V is 0.0

Assign E to V Assign MS portion
of real part of E to
real part of V; LS
portion of real part
of E is rounded.
Assign MS portion
of imaginary part of
V; LS portion of
imaginary part of E
is rounded

COMPLEX
(KIND=8)

Append
fraction (.0)
to E and
assign to V;
imaginary
part of V is
0.0

Assign E to
MS portion
of real part
of V;
imaginary
part of V is
0.0

Assign E to
real part of V;
imaginary
part is 0.0

Assign MS portion of
E to real part of V;
LS portion of E is
rounded; imaginary
part of V is 0.0

Assign real part of
E to MS portion of
real part of V; LS
portion of real part
is 0. Assign
imaginary part of E
to MS portion of
imaginary part of V;
LS portions of
imaginary part is 0.

Assign E to V

MS = Most significant (high order) binary digits
LS = Least significant (low order) binary digits

In converting from single precision to double precision, either as real or complex types, the added
digits are generally nonzero digits. This means a conversion increases the precision, but not the
accuracy, of a converted number or the resultant of an operation. For example:

 PROGRAM datconv
 ! demonstrate data precision when converting types

 REAL(4) a
 REAL(8) c

Declaring and Using Data Page 43 of 53

9/2/97 3:24:09 PM

 a = 1.11
 c = a

 WRITE (*,10) a
 WRITE (*,20) c

 10 FORMAT (’ a:’, F9.7)
 20 FORMAT (’ c:’, F18.16)

 END

The output for this program is:

 a: 1.1100000
 c: 1.1100000143051150

In this example, although c is of greater precision than a, its accuracy is no better. If this is important
to you, you might have to work with double precision from the beginning of the program. You can
use either the cDEC$ REAL:8 compiler directive or a compiler option to declare all default real
variables double precision. You can also explicitly declare them using the KIND type parameter.

Character Expressions

A character expression produces a value that is of type CHARACTER. There are six operands used
in character expressions:

• Character constants
• Character variable references
• Character array-element references
• Character function references
• Character substrings
• Character structure component references

Character operands can be individual characters, printable or not, and strings of any lengths.

The only character operator is the concatenation operator (//).

The expression first // second produces a character string equal to the value of first concatenated on
the right with the value of second. For example, the expression 'AB '//'CDE' produces the string:

 ’AB CDE’

When two or more string variables are concatenated, the resulting string is as long as the declared
lengths of the string variables. Leading and trailing blanks are not discarded. For example:

 CHARACTER*10 first
 CHARACTER*6 second
 first = ’heaven’
 second = ’ sent’
 WRITE (*, *) first//second

The result is a 16-character string.

 heaven sent
 ---------1---------2

Declaring and Using Data Page 44 of 53

9/2/97 3:24:09 PM

Note that there are five spaces between ’heaven’ and ’sent’.

You can manipulate character strings using the functions LEN and LEN_TRIM, which determine
the length of a string and the length without trailing blanks, respectively.

If you concatenate C strings, remember a null character (\0) is automatically appended to each C
string. For example, the expression:

’hello ’C // ’world’C

is equivalent to the following C string:

’hello \0world’C

The C compiler and libraries treat this string as just ’hello’ because C strings are terminated by the
null character, \0’.

Special Characters

When you are building a character string, you can also include nonprinting or other special
characters. Special characters can be embedded in the string while viewing it in Microsoft Developer
Studio (see the Microsoft Developer Studio documentation for more information).

You can also use the intrinsic function CHAR to assign ASCII values (such as form feed, or printer
control sequences) to a character string.

For more discussion of special characters, see Using National Language Support Routines.

Evaluation of Character Expressions

A character expression might not be fully evaluated. For example:

 CHARACTER (LEN = 2) c1, c2, c3, cf ! cf is a character function
 c1 = c2 // cf (c3)

In this example, the function cf might not be evaluated since, because they are of equal lengths, c2
fully defines c1.

Relational Expressions

Relational expressions compare the values of two numeric or character expressions. You cannot
compare a numeric variable with a character or logical variable in standard Fortran 90.

In Visual Fortran, a numeric expression can be compared with a character expression. The numeric
expression is treated as if it were a character expression (that is, a sequence of byte values). The two
expressions must be identical on a byte-by-byte basis, or they are not equal.

For example, if ’A’ were assigned to a 4-byte integer, the ASCII value of the letter A (hex 41) would
be the variable’s least significant byte, and the other bytes would be zeros. If ’A’ were assigned to a
character variable four characters long, the ASCII value of the letter A (hex 41) would be the
variable’s most significant byte because character variables are left-justified. Therefore, the two
variables would not be equal, even though they held the same nominal value.

Declaring and Using Data Page 45 of 53

9/2/97 3:24:09 PM

A relational expression produces a result of type LOGICAL (.TRUE. or .FALSE.). Relational
expressions can use any of the operators shown in the following table to compare values. The
relational operators are not case sensitive.

Table: Relational Operators
Operator Relational operation
.LT., < Less than
.LE., < = Less than or equal to
.EQ., = = Equal to
.NE., / = Not equal to
.GT., > Greater than
.GE., > = Greater than or equal to

All relational operators are binary operators and appear between their operands. A relational
expression cannot contain another relational expression, so there is no relative precedence or
associativity among the relational operands. The following program fragment is therefore invalid:

 REAL(4) a, b, c, d
 IF ((a .LT. b) .NE. c) d = 12.0 ! Invalid expression

If a is less than b, then after the first part of the expression is evaluated, the expression is:

 .TRUE. .NE. c

However, c is a numeric expression, and you cannot compare a numeric expression to .TRUE.. To
compare relational expressions and logical values, use the logical operators described in Logical
Expressions. Visual Fortran allows logical values in relational expressions. This is described in
Logical Truth .

Relational expressions with numeric operands may have one operand that is an integer and one that
is a real number. In this case, the integer operand is converted to a real number before the relational
expression is evaluated. You can also have a complex operand, in which case the other operand is
first converted to complex. However, you can use only the .NE., / =, .EQ., and = = operators with
complex operands.

Relational expressions with character operands compare the position of their operands in the ASCII
collating sequence. One operand is less than another if it appears earlier in the collating sequence.
For example, the expression (’apple’.LT.’banana’) returns the value .TRUE., and the expression
(’Keith’.GE.’Susan’) returns the value .FALSE..

If operands of unequal length are compared, the shorter operand is extended to the length of the
longer operand by the addition of blanks on the right. As an example, the expression
(’Annette’.GT.’Ann’) is true because it is evaluated as (’Annette’.GT.’Ann’) .

Logical Truth

Since Visual Fortran allows integers and logicals to be used interchangeably, it is possible to include
logical values in relational expressions. A logical variable is considered equivalent to .TRUE. if and
only if at least one bit which makes up the variable has the value 1. All bits of a logical variable are
evaluated, not just the lower 8 bits. A logical variable is considered equivalent to .FALSE. if and

Declaring and Using Data Page 46 of 53

9/2/97 3:24:09 PM

only if all bits which make up the variable have the value 0.

The result of any logical operation is either .TRUE., represented by 1, or .FALSE., represented by 0.
The constant .TRUE. is represented by 1, and the constant .FALSE. is represented by 0.

Logical Expressions

A logical expression produces a logical value. There are seven operands used in logical expressions:

• Logical constants
• Logical variable references
• Logical array-element references
• Logical function references
• Relational expressions
• Integer constants or variables
• Logical structure component references

Other logical expressions are constructed from the operands in the preceding list by using
parentheses and the logical operators in the following table. When two consecutive operations are of
equal precedence, the operation is performed left-to-right.

Table: Logical Operators
Operator Operation Precedence
.NOT. Negation 1 (highest)
.AND. Conjunction 2
.OR. Inclusive disjunction 3
.XOR. Exclusive disjunction 4
.EQV. Equivalence 4
.NEQV. Nonequivalence 4

The .AND., .OR., .XOR., .EQV., and .NEQV. operators are binary operators and appear between
their logical expression operands. The .NOT. operator is unary and precedes its operand. If switch is
.TRUE., then (.NOT. switch) is .FALSE..

Standard logical operators allow only arguments of the LOGICAL type. Visual Fortran also permits
integer arguments, which can be integer constants, integer variables, integer structure components, or
integer expressions. Operations are "bitwise." For example, the expression k .XOR. m performs an
"exclusive-OR" comparison on matching bits in the operands, and sets or clears the corresponding
bit in the integer value it returns. If both operands are not of the same integer kind, the
lower-precision operand is converted to the higher-precision kind.

Note that the result of comparing two integer expressions with a logical operator is of INTEGER
type, not LOGICAL.

The .NOT. operator can appear next to any of the other logical operators, but two .NOT. operators
cannot be adjacent. The following statement, for example, is allowed:

 logvar = a .AND. .NOT. b

Declaring and Using Data Page 47 of 53

9/2/97 3:24:09 PM

Logical operators have the same meaning as in standard mathematical semantics. The .OR.
disjunction operator is inclusive, while the .XOR. operator is exclusive. For example:

 .TRUE. .OR. .TRUE.

evaluates to .TRUE.. However, with the exclusive operator:

 .TRUE. .XOR. .TRUE.

evaluates to .FALSE.. The .XOR. and .NEQV. operators yield the same result; .XOR. is an
extension.

The values of logical expressions are shown in Table 3.9.

Table: Values of Logical Expressions
If operands
a and b are:

Then the expressions below evaluate as shown:

a .AND. b a .OR. b a .EQV. b
a .XOR. b or
a .NEQV. b

Both true True True True False
One true, one false False True False True
Both false False False True False

The following examples demonstrate precedence in logical expressions:

 LOGICAL stop, go, wait, a, b, c, d, e

 ! The following two statements are equivalent:
 stop = a .AND. b .AND. c
 stop = (a .AND. b) .AND. c

 ! The following two statements are equivalent:
 go = .NOT. a .OR. b .AND. c
 go = (.NOT. a) .OR. (b .AND. c)

 ! The following two statements are equivalent:
 wait = .NOT. a .EQV. b .OR. c .NEQV. d .AND. e
 wait = ((.NOT. a) .EQV. (b .OR. c)) .NEQV. (d .AND. e)

The following example demonstrates the use of integers in logical expressions to perform byte
masking:

INTEGER(2) lowerbyte, dataval, mask
mask = #00FF ! mask the most-significant byte
dataval = #1234
lowerbyte = (dataval .AND. mask)
WRITE (*, ’(1x, 2Z4)’) dataval, lowerbyte

The output is:

1234 34

Defined Operators and Expressions

You can create functions to define custom operators, or you can extend the intrinsic operators to new

Declaring and Using Data Page 48 of 53

9/2/97 3:24:09 PM

data types, by using the INTERFACE OPERATOR () statement. These functions can use either
one or two operands and have a defined operation name or symbol. A function and an interface block
compose a defined operation. The operator can be an intrinsic operator, and the defined operation can
be either unary or binary. You can extend an intrinsic operator, allowing it to accept operands of
types and ranks otherwise incompatible with it.

For example, you can extend the definition of the intrinsic addition (+) symbol to operate on every
variable contained in a derived type.

The form of defined operator expressions is essentially the same as for intrinsic expressions:

op y (unary operator)
x op y (binary operator)

op
The operator name or symbol.

x
The first binary operand.

y
The unary operand or the second binary operand.

You can specify more than one function for an operator in an interface block.

The operators <, < =, >, > =, = =, and / = always have the same interpretations as the operators .LT.,
.LE., .GT., .GE., .EQ., and .NE., respectively. If you chose to redefine < =, for example, that same
redefinition would apply to .LE..

Defining Unary Operators

A function defining a unary operation must have the following features:

• The operation expression has the form: op y.
• The function is specified with a FUNCTION or ENTRY statement including one dummy

argument, which must have the INTENT(IN) attribute.
• An interface block provides the function with a generic specification.
• The type, type parameter, rank, and shape (if it is an array) of the operand y matches that of the

dummy argument.

Defining Binary Operators

A function defining a binary operation must have the following features:

• The operation expression has the form: x op y.
• The function is specified with a FUNCTION or ENTRY statement including two dummy

arguments, which must have the INTENT(IN) attribute.
• An interface block provides the function with a generic specification.
• The types, type parameters, ranks, and shapes (if they are arrays) of the operands x and y

match those of their respective dummy arguments.

The operands correspond to the dummy arguments, allowing the operands' values to be passed to the

Declaring and Using Data Page 49 of 53

9/2/97 3:24:09 PM

function for evaluation.

 INTERFACE OPERATOR (*)
 FUNCTION Boolean_And (b1, b2)
 LOGICAL, INTENT (IN) :: b1 (:), b2 (SIZE (b1))
 LOGICAL :: Boolean_And (SIZE (b1))
 END FUNCTION Boolean_And
 END INTERFACE

This allows you to use the asterisk (*) operator, for example:

 sensor (1:n) * action (1:n)

as an alternative to the function call:

 Boolean_And (sensor (1:n), action (1:n)) ! SENSOR and ACTION are
 ! of type LOGICAL

The following example of a defined operator is from PERCENT.F90 in the
/DF/SAMPLES/TUTORIAL subdirectory:

 INTERFACE OPERATOR (.c.)
 FUNCTION CENT (x)
 REAL, INTENT (IN) :: x
 REAL cent
 END FUNCTION CENT
 END INTERFACE

 FUNCTION CENT (x)
 REAL, INTENT (IN) :: x
 REAL cent
 cent = x * 100.
 END FUNCTION

Defining Assignments

You can extend assignments by using the INTERFACE ASSIGNMENT statement with a
subroutine you write. Each subroutine must have two nonoptional dummy arguments. The first
argument must have INTENT(OUT) or INTENT(INOUT) and the second must have INTENT(IN). A
defined assignment is treated as a reference to the subroutine, with the left-hand side as the first
argument and the right-hand side enclosed in parentheses as the second argument. The
ASSIGNMENT generic specification specifies that the assignment operation is extended or
redefined if both sides of the equal sign (=) are of the same derived type.

An example of the ASSIGNMENT generic specification is:

 INTERFACE ASSIGNMENT (=)

 SUBROUTINE Bit_To_Numeric (n, b)
 INTEGER, INTENT (OUT) :: n
 INTEGER, INTENT (IN) :: b (:)
 END SUBROUTINE Bit_To_Numeric

 SUBROUTINE Char_To_String (s, c)
 USE String_Module ! Contains definition of type
 STRING
 TYPE (STRING), INTENT (OUT) :: s ! A variable-length string
 CHARACTER (*), INTENT (IN) :: c
 END SUBROUTINE Char_To_String

Declaring and Using Data Page 50 of 53

9/2/97 3:24:09 PM

 END INTERFACE

Example assignments are:

 kount = sensor (j:k) ! Calls Bit_To_Numeric (kount, (sensor (j:k))
 note = ’89AB’ ! Calls Char_To_String (note, (’89AB’))

Assignment Statements
Variables are defined or redefined with assignment statements. The intrinsic assignment operator is
the equal sign (=). The general form of an assignment statement is:

variable = expression

The variable and the expression can both be intrinsic types, or they can be the same derived type. The
variable cannot be an assumed-size array. The variable and the expression must conform in shape.

The allowed combinations of types are listed in the following table.

Type of variable Type of expression
Integer Integer, real, complex
Real Integer, real, complex
Complex Integer, real, complex
Character Character
Logical Logical
Derived type Same derived type as the variable

Both the variable and the expression can contain references to any part of the variable. For example,
in the following character assignment:

string (2:5) = string (1:4)

there is no conflict in assigning the first character to the second character, assigning the second to the
third, and so on. For example, if the string originally had the value ABCDEF’, the assignment would
result in the value AABCDF’.

If a variable is a subobject, the assignment affects only that part of the object; it does not affect the
status or value of other parts. For example, assigning values to a section of an array does not alter the
remainder of the array.

Character Assignments

You can make character assignments where the variable and expression strings have different
lengths. If the variable string is longer than the expression, the expression string is extended to the
right with blank characters to match the length of the variable. If the variable is shorter than the
expression string, the expression string is truncated from the right to the length of the variable.

Differences in Kind in Assignments

Declaring and Using Data Page 51 of 53

9/2/97 3:24:09 PM

If you assign an integer variable the value of an integer of higher kind, you can lose useful
information if the value exceeds the limit of the lesser kind. For example:

 int4 = 123456 ! int4 is integer(4), int2 is integer(2)
 int2 = int4 ! int2 has a resulting value of -7616, not 123456

Assignments of real variables referencing constants or variables of a lesser kind will have the
precision of the variable being defined, but the accuracy of the lesser kind. For example:

 a = 1.11 ! a is double precision, constant is single
 b = 1.11d0 ! b is double precision, constant is double
 a: 1.1100000143051147 ! result is single precision accuracy
 b: 1.1100000000000001 ! result is double precision accuracy

Derived-Type Assignments

Assignments with derived-type data objects are done on a component by component basis. You
cannot use the intrinsic assignment if the variables are not of the same derived type. For example, if c
and d are of the same derived type composed of a pointer p, integer s, logical t, character u, and
another derived type v, consider the assignment:

 c = d

This results in assigning d.p to c.p, d.s to c.s, d.t to c.t, d.u to c.u, and d.v to c.v using the respective
intrinsic and derived-type assignments. If d is of a different derived type than c, you need to define a
custom assignment routine to handle it.

You can make assignments by individual components of derived-type objects. In the preceding
example, you could redefine the integer s with a value from d by using the statement:

 c.s = d.s

in:

 c = (p, s, t, u, v)

For more information on structure constructors, see Derived-Type Values.

Defined Assignment Statements

You can create a subroutine that defines assignment between operands of different type, in the same
way you can define new custom operations. A defined assignment is characterized by a subroutine
and an interface block that specifies ASSIGNMENT (=).

The two operands must not both be numeric, both be real, or both be character. If they are, the
assignment is intrinsic. Intrinsic assignment can only be extended, it cannot be redefined.

For examples of how to create a defined assignment operator, see Defined Operators and
Expressions.

Defining Variables

Declaring and Using Data Page 52 of 53

9/2/97 3:24:09 PM

During the course of a program, variables become defined, undefined, and redefined. The status of
other associated variables also changes with them. An object with subobjects, such as an array, can
only be defined when all of its subobjects are defined. Conversely, when at least one of its subobjects
are undefined, the object itself, such as an array or derived type, is undefined. This section describes
how variables are defined and how they become undefined or unpredictable.

A variable is defined when you give it a value. You can accomplish this through intrinsic assignment
statements, DATA statements, or any I/O statement. Dummy function arguments take on the value of
the corresponding actual argument when you reference a procedure; loop variables are defined during
the execution of a DO statement. Variables that are storage-associated with defined variables also
become defined.

Undefined Variables

Variables are undefined when their values are unpredictable. The most common ways variables
become undefined are the following:

• Reaching an end-of-file while trying to read data. In this case, all variables specified by the
input list or namelist-group of the statement become undefined.

• An allocatable array becomes undefined when it is either allocated or deallocated. (Allocatable
arrays are defined when values are stored into them.) See Arrays and Pointers, for information
on allocatable arrays.

• When a pointer's association status becomes undefined or disassociated, the pointer becomes
undefined. See Arrays and Pointers, for information on pointers.

• Certain error-reporting functions report only the value for the last error, not the status of the
last subroutine or function call. More information on handling errors can be found in Handling
Run-Time Errors and the IERRNO entry in the Reference.

• During an assignment statement, all or part of the variable that precedes the equal sign (=) may
be undefined. If part of the assignment expression is not evaluated, variables contained in that
part may become undefined.

• Execution of an ASSIGN statement causes the variable in the statement to become undefined
as an integer. Variables associated with that variable also become undefined.

When a variable becomes undefined, all variables associated by storage association also become
undefined.

When a function or subroutine is invoked, the following occurs:

• Optional dummy arguments that are not associated with real arguments are undefined.
• A dummy argument with INTENT(OUT) is undefined, and any actual arguments associated

with it become undefined.
• A subobject of a dummy argument is undefined if the corresponding subobject of the actual

argument is undefined.
• The result variable of a function is undefined.

When a RETURN or END statement in a subprogram is executed, all local variables become
undefined except for the following:

• Variables with the SAVE attribute.

Declaring and Using Data Page 53 of 53

9/2/97 3:24:09 PM

• Variables in blank (unnamed) common.
• Variables in a named common block that appears both in the subprogram and in at least one

other scoping unit that makes either a direct or indirect reference to the subprogram.
• Variables accessed from the host scoping unit.
• Variables accessed from a module that also is referenced directly or indirectly by at least one

other scoping unit that refers either directly or indirectly to the subprogram.
• Variables in a named common block that are initially defined and which have not been

subsequently defined or redefined.

Arrays and Pointers Page 1 of 22

8/21/97 12:13:56 PM

Arrays and Pointers
An array is a variable with at least one dimension. An array can be static or dynamic. If it is static, a
fixed amount of memory storage is set aside for it at compile time and is not released until the
program exits. The size of a static array cannot be changed while the program is running. If an array
is dynamic, its memory storage can be assigned, altered, and removed as a program executes.
Allocatable and automatic arrays are the only arrays that are dynamic.

All pointers are dynamic variables. Memory storage is allocated for them as your program runs. If a
pointer is also an array, the size of each dimension can be changed while the program is running, just
as with dynamic arrays. Pointers can point at arrays or at scalar variables (variables with no
dimensionality). No storage space is set aside for a pointer until it is allocated with an ALLOCATE
statement or until it is assigned to an allocated target.

Allocatable arrays are similar to pointer arrays except that they cannot point to another array.
Automatic arrays are similar to allocatable arrays, but differ in that they are automatically allocated
and deallocated for you, whenever you enter and leave (respectively) a procedure. The common
feature among pointers, allocatable and automatic arrays is that they are dynamic data objects in
Fortran 90.

This chapter discusses how to specify arrays , how to assign values to arrays, how to use arrays, and
how to specify pointers and targets.

It also describes array elements and sections, pointer assignments, dynamic association of arrays and
pointers, character strings, and DIGITAL Fortran pointers.

Array Properties and Specifications
The number of dimensions in an array is called its rank. The total number of elements in an array is
the size of the array. The total number of elements in a particular dimension is the extent of that
dimension.

The shape of an array is determined by its rank and the extent of each dimension. For example:

 REAL A(10, 3, 2)

A is an array of rank 3, with a size 10*3*2 = 60 and a shape that is ten by three by two, or (10, 3, 2).

Each dimension can be specified with a lower bound and an upper bound, separated by colons (:).
For example:

 REAL B(0:9, -1:1, 4:5)

The first number in a dimension specification is the lower bound and the second is the upper bound.
For all arrays, the lower bound can be omitted when the array is declared, and for certain arrays
(assumed-shape, assumed-size and deferred-shape) the upper bound can also be omitted.

By default, the lower bound is 1, but it can be set to any positive or negative integer, or zero. In the
preceding example, array B has the same rank, size, and shape as array A. However, the three

Arrays and Pointers Page 2 of 22

9/2/97 3:30:49 PM

dimensions of array A all have the default lower bound of 1, while array B has specified lower
bounds of 0 for the first dimension, -1 for the second dimension and 4 for the third dimension.

An array can be specified with a type declaration, a DIMENSION statement, a POINTER statement,
or an ALLOCATABLE statement. For example, the following are all valid array declarations:

 REAL A(10, 2, 3) ! Type declaration
 DIMENSION A(10, 2, 3) ! DIMENSION statement
 ALLOCATABLE B(:, :) ! ALLOCATABLE statement
 POINTER C(:, :, :) ! POINTER statement
 REAL, DIMENSION (2, 5) :: D ! Type declaration with
 ! DIMENSION attribute
 REAL, ALLOCATABLE :: E(:, :, :) ! Type declaration with
 ! ALLOCATABLE attribute
 REAL, POINTER :: F(:,:) ! Type declaration with
 ! POINTER attribute

An array’s rank (number of dimensions) must always be specified. If an array is neither allocatable, a
pointer nor a dummy argument, it must have its rank, size, and shape declared. There are four forms
of arrays:

• Explicit-shape arrays
This form of array has all its properties specified: a fixed rank, size, and shape.

• Assumed-shape arrays
This form of array is a dummy argument that takes its shape from the actual array passed to it.

• Assumed-size arrays
This form of array is a dummy argument that takes its size from the actual array passed to it.

• Deferred-shape arrays
This form of array is either an array pointer or an allocatable array whose shape and size are
determined when it is allocated or associated with an allocated target.

When a dynamic array is declared, one or more of its properties (size and shape) can be unspecified
and determined later in program execution.

Explicit-Shape Arrays

An explicit-shape array has an extent specified for each of its dimensions. In addition, it can have
optional lower bounds declared for some or all of its dimensions. For example, consider the
following:

 INTEGER M(10, 10, 10)
 INTEGER K(-3:6, 4:13, 0:9)

M and K are both explicit-shape arrays with a rank of 3, a size of 1000, and the same shape
(10,10,10). Array M uses the default lower bound of 1 for each of its dimensions. Hence, when it is
declared only the upper bound needs to be specified. Each of the dimensions of array K has a lower
bound other than the default, and the lower bounds as well as the upper bounds are declared.

The upper and lower bounds can be specified by variables or expressions in functions and
subroutines. The bounds are determined by evaluating the variables or expressions at the time of
entry into the subprogram. Subsequent changes in the expression variables in the subprogram have
no effect on the array bounds. For example:

Arrays and Pointers Page 3 of 22

9/2/97 3:30:49 PM

 SUBROUTINE EXAMPLE (N, R1, R2)
 DIMENSION A (N, 5), B(10*N)
 ...
 N = IFIX(R1) + IFIX(R2)

When the subroutine is called, the arrays A and B are dimensioned on entry into the subroutine with
the value of the passed variable N. Later changes to the value of N have no effect on the dimensions
of array A or B.

An explicit-shape array using variables or expressions must be a dummy argument, a function result,
or an automatic array. An automatic array is an explicit-shape array that is declared in a procedure
subprogram, is not a dummy argument, and has bounds that are nonconstant expressions. The arrays
A and B in the example are automatic arrays.

Assumed-Shape Arrays

An assumed-shape array is a dummy argument in a subroutine or function that takes its shape from
the actual array passed to it. Its rank is specified by colons (:), but the extent of each dimension is
undetermined. For example:

 SUBROUTINE ASSUMED(A)
 REAL A(:, :, :)

The array A has rank 3, indicated by the three colons (:) separated by commas (,). However, the
extent of each dimension is unspecified. When the subroutine is called, A takes its shape from the
array passed to it. For example, consider the following:

 REAL X (4, 7, 9)
 ...
 CALL ASSUMED(X)

This gives A the dimensions (4, 7, 9). The actual array and the assumed-shape array must have the
same rank.

An assumed-shape array can have optional lower bounds. In this case, the array has the shape of the
actual array passed to it, but different upper and lower bounds. For example:

 SUBROUTINE ASSUMED(A)
 REAL A(3:, 0:, -2:)
 ...

If the subroutine is called with the same actual array X(4, 7, 9), as in the previous example, the lower
and upper bounds of A would be:

A(3:6, 0:6, -2:6)

Subprograms that have assumed-shape arrays as dummy arguments must have explicit interfaces.

Assumed-Size Arrays

An assumed-size array is a dummy argument in a subroutine or function that takes its size from the
actual array passed to it. All the properties of an assumed-size array are specified (number of
dimensions, extent of dimensions and bounds) except for the upper bound of the last dimension.

Arrays and Pointers Page 4 of 22

9/2/97 3:30:49 PM

When an assumed-size array is declared, its last upper bound is an asterisk (*). For example:

 SUBROUTINE ASSUME(A)
 REAL A(2, 2, *)

An assumed-size array can differ in rank and shape from the actual array passed to it. Only its size is
determined by the actual array. The elements in the actual array are associated with those in the
assumed-size array in column-major order, varying the leftmost subscript fastest. The last dimension
of the assumed-size array is extended to accomodate all the elements of the actual array passed to it,
thus giving it the size of the actual array. For example, consider SUBROUTINE ASSUME above is
called with array X:

 REAL X(7)
 CALL ASSUME(X)

The elements of array X correspond to A in this order:

 X(1) = A(1, 1, 1)
 X(2) = A(2, 1, 1)
 X(3) = A(1, 2, 1)
 X(4) = A(2, 2, 1)
 X(5) = A(1, 1, 2)
 X(6) = A(2, 1, 2)
 X(7) = A(1, 2, 2)

As this example shows, the last dimension of A is not necessarily a complete dimension. The seven
elements of X will not make a complete third dimension because the size of X, seven, is not divisible
by the product of the specified extents of A, two-by-two. So, array A never has a determined shape.
Because assumed-size arrays have no shape, the whole array cannot be accessed by passing only its
name to a procedure, except in subroutines and functions that do not require shape, such as the
intrinsic function LBOUND.

For example, you cannot use the intrinsic function SIZE with an assumed-size array name only. You
can use SIZE to determine the extent along one of the fixed dimensions, in which case you must
pass the dimension number along with the array name. You cannot use SIZE to determine the extent
of the last dimension of an assumed-size array.

An assumed-size array can be broken into subsections that are entirely determined, but this is
sometimes awkward. To specify all the defined elements in the example array A above, you need
three subsections:

A(1:2, 1:2, 1) and A(1:2, 1, 2) and A(1, 2, 2)

Because of the undefined shape and awkward subscripts of assumed-size arrays, it is usually better to
use assumed-shape arrays.

The rank of an assumed-size array is the number of fully specified dimensions plus one for the last
dimension. In the above example, the rank of A is three, even though the third dimension is not
complete.

You can specify lower bounds for any of the dimensions of an assumed-size array, including the last.
For example:

 SUBROUTINE ASSUME(A)
 REAL A(-4:-2, 4:6, 3:*)

Arrays and Pointers Page 5 of 22

9/2/97 3:30:49 PM

Deferred-Shape Arrays

A deferred-shape array is an array pointer or an allocatable array. Its extent in each dimension is set
when the array or pointer is allocated, or when the pointer is associated with an allocated target.
When a deferred-shape array is declared, its rank is specified by colons (:), but the extent of each
dimension is undetermined. For example:

 REAL, ALLOCATABLE :: A(:, :, :)
 REAL, POINTER :: B(:,:)
 INTEGER, ALLOCATABLE, TARGET :: K(:)

Allocatable arrays and pointer arrays must be declared with deferred shape. An allocatable array is
declared with an ALLOCATABLE statement, a DIMENSION statement, a TARGET statement,
or the ALLOCATABLE attribute in a type declaration.

A pointer array is declared with a POINTER statement, a DIMENSION statement or the POINTER
attribute in a type declaration. If a deferred-shape array is declared in a DIMENSION or TARGET
statement, it must be given the ALLOCATABLE or POINTER attribute in another statement. For
example:

 DIMENSION P(:, :, :)
 POINTER P

 TARGET B(:,:)
 ALLOCATABLE B

Until the size, shape, and bounds of a deferred-shape array are specified, no part of it can be
referenced except as an argument to an intrinsic inquiry function that queries for argument presence,
association status, or type properties. If the deferred-shape array is an allocatable array, its size,
shape, and bounds are set in an ALLOCATE statement when the array is allocated. If the
deferred-shape array is an array of pointers, its size, shape, and bounds are set in an ALLOCATE
statement or in the pointer assignment statement when the pointer is associated with an allocated
target. A pointer and its target must have the same rank.

For example:

 REAL, POINTER :: A(:,:), B(:), C(:,:)
 INTEGER, ALLOCATABLE :: I(:)
 REAL, ALLOCATABLE, TARGET :: D(:, :), E(:)
 ...
 ALLOCATE (A(2, 3), I(5), D(SIZE(I), 12), E(98))
 C => D ! Pointer assignment statement
 B => E(25:56) ! Pointer assignment to a section
 ! of a target

Array Elements and Sections
A scalar is a single data object, such as a number or a derived type. An array is a collection of
scalars. The individual scalars in the array are called elements. A scalar has rank zero. An array has
at least one dimension (rank one). In DIGITAL Fortran, the maximum rank of an array is seven.

An array section is a subset of elements in an array. Array section elements can be any elements in an

Arrays and Pointers Page 6 of 22

9/2/97 3:30:49 PM

array; they do not need to be consecutive or follow a regular pattern. All elements and array sections
in an array have the same type and kind; for example, all INTEGER(2), all REAL(8), all character
strings of the same length, or all the same derived-type.

A whole array or any part of it can be referenced and used in your program. To reference a whole
array, use the array name. For example:

REAL A (10), B(10)
A = 3.0 ! Sets all ten values of A to 3.0
B = SQRT(A) ! Sets all ten values of B to the square root of 3.0

If you want to reference a particular element or array section in an array, you use subscripts to
indicate the part of the array you want. For example, A(1) refers to the first element of A, and B(3:4)
refers to the third and fourth elements of B. An array reference with no subscripts refers to the whole
array.

You can use subscripts to specify the elements or array sections you want. For example, B(1:10:2)
refers to elements 1, 3, 5, 7, and 9 of B.

See also Array Elements, Array Sections, Subscript Triplets, and Vector Subscripts.

Array Elements

Array elements are referenced by subscripts. For example:

 REAL A(12, 8, 4)
 A(1, 1, 1) = 0

This assigns the value 0 to the first element of array A.

In memory storage, array element n+1 follows array element n, n+2 follows n+1, and so on. The
elements are organized in a linear sequence, even with multidimensional arrays, because computer
memory has only one dimension. The leftmost array subscript is incremented first, then the next
subscript to the right, and so on to the rightmost subscript. This is called column-major order. For
example, the eight elements of an array dimensioned as A(2, 2, 2) are stored in memory in the
following order:

 A(1, 1, 1)
 A(2, 1, 1)
 A(1, 2, 1)
 A(2, 2, 1)
 A(1, 1, 2)
 A(2, 1, 2)
 A(1, 2, 2)
 A(2, 2, 2)

The subscripts of an array must be separated by commas. A subscript is an integer constant, variable,
or expression. A subscript can be positive, negative, or zero, but it must be within the bounds of the
dimension it references. The number of subscript expressions must equal the number of dimensions
in the array declaration. You can use functions and array elements as subscripts. For example:

 REAL A(3, 3)
 REAL B(3, 3), C(89), R
 B(2, 2) = 4.5 ! Assigns the value 4.5 to element B(2, 2)
 R = 7.0

Arrays and Pointers Page 7 of 22

9/2/97 3:30:49 PM

 C(INT(R)*2 + 1) = 2.0 ! Element 15 of C = 2.0
 A(1,2) = B(INT(C(15)), INT(SQRT(R))) ! Element A(1,2) = element B(2,2) = 4.5

Array Sections

You can access and use a subset of the elements of an array, called an array section. If you specify a
specific value for each dimension the result is an array element (or simply a scalar). If you specify a
triplet or vector subscript for one or more dimensions, the result is a collection of elements called a
section or sub-section.

An array section is itself an array. The elements of the array section do not have to be contiguous in
the array they are taken from or fit a regular pattern. A section of an array is defined by a list of
subscripts, by subscript triplets and by vector subscripts. For example, if array A is dimensioned as
follows:

 REAL A(2,3,4)

then A(1,2,3) and A(k,m,k) are array elements while A(1:2,2,2), A(1,1,4:2:-1), and A(1,2:3, (/2, 4/))
are array sections.

At least one subscript of the array section must be a triplet or a vector subscript. Subscript triplets
define an array section with a regular pattern. Vector subscripts can define an array section with any
pattern.

Subscript Triplets

A subscript triplet is a set of three values representing the lower bound of the array section, the upper
bound of the array section and the increment, called the stride, between them. For example:

 REAL A(10)
 A(3:5:2) = 1.0 ! Triplet subscript sets elements
 ! A(3)and A(5) to 1.0

The syntax for a subscript triplet is:

[lower-bound] : [upper-bound] [:stride]

The subscript triplet specifies a sequence of regularly spaced array elements. The sequence begins
with the lower bound and increments (or decrements) by the stride to the last integer not greater (or
less) than the upper bound. The separators between values in the triplet are colons (:). All the
subscripts are optional, except when referencing the last dimension of an assumed-size array where
you must include the second bound.

If you leave out the first bound, it defaults to the lower bound of the corresponding dimension; if you
leave out the second bound, it defaults to the upper bound of the corresponding dimension; if you
leave out the stride, it defaults to 1. If you leave out all subscripts, the section defaults to the entire
extent in that dimension. For example:

 REAL A(10)
 A(1:5:2) = 3.0 ! Sets elements A(1), A(3), A(5) to 3.0
 A(:5:2) = 3.0 ! Same as the previous statement
 ! because the lower bound defaults to 1
 A(2::3) = 3.0 ! Sets elements A(2), A(5), A(8) to 3.0

Arrays and Pointers Page 8 of 22

9/2/97 3:30:49 PM

 ! The upper bound defaults to 10
 A(7:9) = 3.0 ! Sets elements A(7), A(8), A(9) to 3.0
 ! The stride defaults to 1
 A(:) = 3.0 ! Same as A = 3.0; sets all elements of
 ! A to 3.0

In an array section of a multidimensional array, each dimension of the section can be declared with
subscript triplets. If the array section is referenced in a statement or procedure, the array section must
contain as many subscript entries as there are declared dimensions in the array it is a section of. For
example:

 REAL A(8, 3, 5)
 A(1:2, 2:3, 4) = 3.0

There are three dimensions in A and three subscript entries in the array section A(1:2, 2:3, 4). The
first subscript triplet (1:2) specifies the first and second element space in the first dimension of A.
The second subscript triplet (2:3) specifies the second and third element space of the second
dimension of A, the third subscript (4) is not a triplet, so it refers to a single element space in the
third dimension. The elements of A(1:2, 2:3, 4) are:

element 1 = A(1,2,4) element 3 = A(1,3,4)
element 2 = A(2,2,4) element 4 = A(2,3,4)

This array section is a two-dimensional array with the shape (2, 2).

The triplet stride must not be zero. When the stride is positive, the array subsection sequence begins
with the first bound and increments by the stride to the last integer not greater than the second bound.
If the first bound is greater than the second bound, the sequence is empty (a zero-sized array).

When the triplet stride is negative, the sequence begins with the lower bound and decrements by the
stride to the last integer not less than the upper bound. For example, for an array declared B(10), the
section B(9:2:-2) is an array whose elements are: B(9), B(7), B(5), and B(3), in that order. If the
upper bound is less than the lower bound, the sequence is empty.

The selected elements must be within the declared bounds of the array, but triplet values can be
outside the bounds. For example, for the array B(10), the section B(3:15:6) is an array whose
elements are B(3) and B(9), in that order.

Vector Subscripts

Subscript triplets specify array elements in increasing or decreasing order at the given stride, while
vector subscripts specify elements in any order. A vector subscript is a one-dimensional array (a
vector) of integer values that selects a section of a whole array. For example:

 REAL A(10), B(5, 5)
 INTEGER I(4), J(3)
 ! Define vector I.
 I = (/5, 3, 8, 2/)
 ! Define vector J.
 J = (/3, 1, 5/)
 ! Sets elements A(5), A(3), A(8) and A(2) to 3.0
 A(I) = 3.0
 ! Sets elements B(2,3), B(2,1) and B(2,5) to 3.0
 B(2,J) = 3.0

Arrays and Pointers Page 9 of 22

9/2/97 3:30:49 PM

The values in a vector subscript must be within the declared bounds for the dimension referenced.

A many-one array section has a vector subscript with one or more repeated values. For example:

 REAL A(3, 3), B(4)
 INTEGER K(4)
 ! Vector K has repeated values
 K = (/3, 1, 1, 2/)
 ! Sets all elements of A to 5.0
 A = 5.0
 B = A(3, K)

The array section A(3,K) consists of the elements:

 A(3, 3) A(3, 1) A(3, 1) A(3, 2)

Because there are duplicate elements in A(3,K), it is a many-one array section. A many-one array
section cannot appear on the left side of the equal sign (=) in an assignment statement or as an input
item in a READ statement because the result depends on the the order of evaluation of the
subscripts, which is unpredictable.

An array section with a vector subscript cannot be an internal file, the target of a pointer, or the
actual argument of a dummy array if the dummy array is redefined within the subprogram. An array
section with a vector subscript can be the actual argument passed to a dummy argument that is
referenced only (has the INTENT(IN) attribute) and is not changed in value and does not become
undefined in the subprogram.

Assigning Values to Arrays
You can assign values to arrays with ordinary assignment statements or with array constructors. An
array constructor is a sequence of values or implied-DO expressions enclosed in parentheses () and
slashes (/). For example:

 INTEGER A(6)
 A(1) = 1
 A = (/1, 2, 3, 4, 5, 6 /) ! The array constructor assigns values
 ! to array A

The constructor sets all six elements of A to the constructor values in order: A(1)=1, A(2)=2,
A(3)=3, and so on. It takes six ordinary assignment statements to assign the same values.

An array constructor has the form:

(/value-list/)

Note that no spaces are allowed between a parenthesis and the slash.

The values in the value list can be scalars, implied-DO loops, or arrays of any rank. All values in the
list must have the same type and kind and be separated by commas. If an array appears in the value
list, its elements are taken in column-major order. If you want to assign values to an array that is not
a vector, you can use the function RESHAPE to put your data values into an array of the same shape.
For example:

 INTEGER B(2,3), C(8)

Arrays and Pointers Page 10 of 22

9/2/97 3:30:49 PM

 ! Assign values to a (2,3) array.
 B = RESHAPE((/1, 2, 3, 4, 5, 6/),(/2,3/))
 ! Convert B to a vector before assigning values to
 ! vector C.
 C = (/ 0, RESHAPE(B,(/6/)), 7 /)

The value list of an array constructor can also contain an implied-DO expression. For example:

 INTEGER A(6)
 REAL R(8)
 LOGICAL L(10)
 ! Implied-DO.
 A = (/(I, I = 1, 6)/)
 ! Implied-DO with COS function.
 R = (/(COS(REAL(K)*3.1416/180.0), K=1,8)/)
 ! Implied-DO used to assign logical values.
 L = (/(.TRUE., N=1,5), (.FALSE., N=6,10)/)

In this example, A(1)=1, A(2)=2, and so on. R(1)=cos(1.0*3.1416/180.0),
R(2)=cos(2.0*3.1416/180.0), and so on. The first five elements of L are set to .TRUE., and the last
five elements of L are set to .FALSE..

In an implied-DO, the control variable (I, K and N in the preceding example) must be a scalar
integer, but the implied-DO assignment can be any value or expression that is the same type as the
array. In the preceding example, integer variables are assigned to array A, real expressions are
assigned to array R, and logical constants are assigned to array L.

Implied-DO expressions and values can be mixed in the value list of an array constructor. For
example:

 INTEGER A(10)
 A = (/1, 0, (I, I = -1, -6, -1), -7, -8 /)
 !Mixed values and implied-DO in value list.

This example sets the elements of A to the values, in order, 1, 0, -1, -2, -3, -4, -5, -6, -7, -8.

Array constructors are one-dimensional. Multiple array constructors can be used to define a
multidimensional array, or the intrinsic function RESHAPE can be used. For example:

 INTEGER B(2, 3), D(3, 6)
 ! Implied-DO to assign values to first row.
 B(1,:) = (/(K, K = 1, 3)/)
 ! List of scalars to assign values to second row.
 B(2, :) = (/5, 81, 17/)
 ! Implied-DO plus reshaping.
 D = RESHAPE ((/(I, I= 1,18)/), (/3, 6/))

This example assigns B the values:

 1 2 3
 5 81 17

and assigns D the values:

 1 4 7 10 13 16
 2 5 8 11 14 17
 3 6 9 12 15 18

The following are alternative forms for array constructors:

Arrays and Pointers Page 11 of 22

9/2/97 3:30:49 PM

• Square brackets (instead of parentheses and slashes) to enclose array constructors; for
example, the following two array constructors are equivalent:

INTEGER C(4)
C = (/4,8,7,6/)
C = [4,8,7,6]

• A colon-separated triplet (instead of an implied-do loop) to specify a range of values and a
stride; for example, the following two array constructors are equivalent:

INTEGER D(3)
D = (/1:5:2/) ! Triplet form
D = (/(I, I=1, 5, 2)/) ! Implied-do loop form

You can control the application of an assignment statement to an array by using a masked array
assignment.

Masked Array Assignment

You can control the application of an assignment statement to an array by using a masked array
assignment. With it, you apply a logical test to an array on an element-by-element basis. When the
logical test is .TRUE., an assignment is made for that element. For example:

 REAL A (5)
 A = (/ 89.5, 43.7, 126.4, 68.3, 137.7 /)
 WHERE (A > 100.0) A = 100.0

In this example, the elements of A with values greater than 100.0 are set to 100.0. Elements with
values less than or equal to 100.0 remain unchanged. After the WHERE statement is executed, the
values of A are, in order:

89.5, 43.7, 100.0, 68.3, 100.0

The logical test in a WHERE statement, such as A > 100.0, is called a mask because it separates
those elements that meet the test from those that don't. You can think of the mask as an array that has
the same size and shape as the array in the test (array A in the example) containing true elements
wherever the test is true and false elements wherever the test is false. In the preceding example, the
mask would be:

 FALSE FALSE TRUE FALSE TRUE

A masked array assignment can also contain a WHERE block and an ELSEWHERE block, rather
than a single WHERE statement. The WHERE line contains the logical test. Assignments in the
WHERE block are made only to elements in positions where the test is true. ELSEWHERE
statements apply only to elements in positions that are not true in the WHERE block. The WHERE
block and optional ELSEWHERE block are terminated by an END WHERE statement. For
example:

 REAL A (5), B(5), C(5)
 A = (/ 89.5, 43.7, 126.4, 68.3, 137.7 /)
 B = 0.0
 C = 0.0
 WHERE (A > 100.0)
 A = 100.0
 B = 2.3

Arrays and Pointers Page 12 of 22

9/2/97 3:30:49 PM

 ELSEWHERE
 A = 50.0
 C = -4.6
 END WHERE

First, each assignment statement in the WHERE block is evaluated in order, then each assignment
statement in the ELSEWHERE is evaluated in order. In the WHERE block, elements of A with
values greater than 100.0 are set to 100.0. At the same time, elements in the same positions in B have
their values set to 2.3. In the ELSEWHERE block, only elements of A and C in positions that do
not correspond to true positions in the WHERE block are set to the new values. In the preceding
example, the arrays end up with these values:

Array Element 1 Element 2 Element 3 Element 4 Element 5
A 50.0 50.0 100.0 50.0 100.0
B 0.0 0.0 2.3 0.0 2.3
C -4.6 -4.6 0.0 -4.6 0.0

In the WHERE and ELSEWHERE blocks, all arrays assigned values must be the same size and
shape as the array in the logical test. Also, only the WHERE statement can be used as a labeled
statement that other statements can branch to.

For information on a generalized form of masked assignment, see FORALL.

Operations Using Arrays
Visual Fortran permits operations on whole arrays and array sections as a single object. For example,
every element in an array can be set to the same value by equating the array name to a constant, or
two conforming arrays can be added element-by-element with the addition operator (+) and their
array names without subscripts:

 REAL A (5), B(5), C(5)
 A = 4.0
 B = 17.0
 C = A + B

All the arithmetic operators (+, -, *, /, **), logical operators (such as .AND., .OR., .NOT.), and
relational operators (such as .LT., .EQ., .GT.), plus many intrinsic functions accept array-name
arguments and perform the operation on the array element-by-element. Intrinsic functions that
operate on array-name arguments are called elemental functions. For example:

 REAL A (5), B(5), C(5)
 INTEGER D(5)
 DATA PI /3.14159265/
 A = (/ ((REAL(I) * PI/180.0), I = 1, 5) /)
 B = COS(A)
 C = SQRT(A)
 D = CEILING (A * 180.0)

COS, SQRT and CEILING are elemental intrinsic functions.

When two or more arrays appear in an assignment statement or expression, such as B=COS(A), they
must have the same size and shape. Such arrays conform to each other. For example:

 REAL A (2, 3), B(2, 3), C(2:3, 6:8) ! All conform

Arrays and Pointers Page 13 of 22

9/2/97 3:30:49 PM

 REAL D (4, 5), E (5, 4), F(5, 2, 2) ! Do not conform

Arrays that conform have the same number of dimensions, and the extent in each dimension must be
the same. The result of any attempt to combine nonconforming arrays in numeric expressions or to
assign one to another is undefined.

When operating on arrays, an element-by-element assignment does not cause a conflict because the
right-hand side of the assignment statement is evaluated before the assignment is made. For example,
the elements of an array can be reversed without conflict:

 REAL X (10)
 X (1:10) = X (10:1:-1) ! Reversal of array elements using
 ! subscript triplet notation

Array sections can be used in expressions and assignments if the specified parts conform. In this
way, parts of nonconforming arrays can be used with each other. For example, a small whole array
can operate with a conforming section of another array having more dimensions and greater extents:

 REAL A (5), B(4, 7)
 A = 20.0 ! Whole array assignment
 B = 5.0 ! Whole array assignment
 A = A - B (2, 1:5) ! Whole array and conforming section
 ! in arithmetic expression

In the last statement, since the first dimension of B is a constant, it is treated as an array of rank one,
and the specified section conforms with A.

There are also a number of Fortran 90 intrinsic functions that perform array operations. They are
listed in the following table (square brackets [] denote optional arguments):

Intrinsic Functions for Array Operations
Name Description

ALL ALL(mask [, dim]). Determines whether all array values meet the conditions in
mask along (optional) dimension dim.

ANY ANY(mask [, dim]). Determines whether any array values meet the conditions in
mask along (optional) dimension dim.

COUNT COUNT(mask [, dim]). Counts the number of array elements that meet the
conditions in mask along (optional) dimension dim.

CSHIFT CSHIFT(array, shift [, dim]). Performs a circular shift along (optional)
dimension dim.

DOT_PRODUCT DOT_PRODUCT(vector_a, vector_b). Performs dot-product multiplication on
vectors (one-dimensional arrays).

EOSHIFT EOSHIFT(array, shift [, boundary] [, dim]). Shifts elements off one end of array
along (optional) dimension dim and copies (optional) boundary values in other
end.

LBOUND LBOUND(array [, dim]). Returns lower dimensional bound(s) of an array along
dimension dim (optional).

MATMUL MATMUL(matrix_a, matrix_b). Performs matrix multiplication on matrices
(two-dimensional arrays).

MAXLOC MAXLOC(array [, mask] [, dim]). Returns the location of the maximum value of
all elements in an array, a set of elements in an array, or elements in a specified

Arrays and Pointers Page 14 of 22

9/2/97 3:30:49 PM

dimension of an array, meeting conditions in (optional) mask.
MAXVAL MAXVAL(array [, dim] [, mask]). Returns the maximum value in an array along

(optional) dimension dim that meets conditions in (optional) mask.
MERGE MERGE(tsource, fsource, mask). Merges two arrays according to conditions in

mask.
MINLOC MINLOC(array [, mask] [, dim]). Returns the location of the minimum value of

all elements in an array, a set of elements in an array, or elements in a specified
dimension of an array, meeting conditions in (optional) mask.

MINVAL MINVAL(array [, dim] [, mask]). Returns the minimum value in an array along
(optional) dimension dim that meets conditions in (optional) mask.

PACK PACK(array, mask [,vector]). Packs an array into a vector (one-dimensional
array) of (optional) size vector using mask.

PRODUCT PRODUCT(array [, dim] [, mask]). Returns the product of elements of an array
along (optional) dimension dim that meet conditions in (optional) mask.

RESHAPE RESHAPE(source, shape [, pad] [, order]). Reshapes an array with subscript
order (optional), padded with array elements pad (optional).

SHAPE SHAPE(source). Returns the shape of an array.
SIZE SIZE(array [, dim]). Returns the extent of array along dimension dim (optional).
SPREAD SPREAD(source, dim, ncopies). Replicates an array by adding a dimension.
SUM SUM(array [, dim] [, mask]). Sums array elements along dimension dim

(optional) that meet conditions of mask (optional).
TRANSPOSE TRANSPOSE(matrix). Transpose a two-dimensional array.
UBOUND UBOUND(array [, dim]). Returns upper dimensional bounds of an array along

dimension dim (optional).
UNPACK UNPACK(vector, mask, field). Unpacks a vector (one-dimensional array) into an

array under mask padding with values from field.

Specifying Pointers and Targets
A pointer, like an allocatable array, permits data to be accessed and processed dynamically. It has no
storage space allocated for it initially and must not be referenced until memory is associated with it.
Memory is associated with it by assigning it to a target or by allocating memory to it. It can change
targets during execution of a program.

A pointer can be a scalar, an array, a derived-type component, or a whole derived type, and it can
point to scalars, arrays, derived-type components, and derived types. A pointer can also point at an
array element or array subsection, but an array element or array subsection cannot be a pointer.

A pointer has the POINTER attribute, and can only point to an object that has the TARGET attribute,
or to another pointer already associated with a target.

You can specify a pointer either with the POINTER attribute in a declaration or with a POINTER
statement. If the pointer is an array, it must be declared with a deferred-shape specification. For
example:

 REAL, POINTER :: A (:,:) ! Type declaration with
 ! POINTER attribute of
 ! deferred-shape array.

Arrays and Pointers Page 15 of 22

9/2/97 3:30:49 PM

 REAL B, X(:,:)
 POINTER B, X ! POINTER statement declaring
 ! scalar B and deferred-shape
 ! array X to be pointers.

Likewise, you can specify a target with the TARGET attribute in a declaration or with the TARGET
statement. The target can be an explicit-shape or deferred-shape array. If it is a deferred-shape array,
it must also have the ALLOCATABLE attribute. A target cannot be an array section with a vector
subscript. Some examples of specifying targets are:

 ! Type declaration with TARGET attribute of
 ! deferred-shape array.
 REAL, ALLOCATABLE, TARGET :: C (:,:)
 REAL D
 REAL, ALLOCATABLE :: Y(:,:)
 INTEGER K(33, 20)
 ! TARGET statement of scalar D, deferred-shape
 ! array Y and explicit-shape array K.
 TARGET D, Y, K

An object with the POINTER attribute can be in a common block, but every declaration of a
common block containing a pointer object must specify the same sequence of variables.

If an object has the POINTER attribute, it cannot have the INTENT, PARAMETER or TARGET
attributes. If an object has the TARGET attribute, it cannot have the PARAMETER or POINTER
attributes. Dummy arguments can have the TARGET attribute.

See also POINTER and TARGET in the Reference.

Pointer Assignments
Pointer assignment associates a pointer with an existing target. The pointer can be reassigned to other
targets and it can share a target with other pointers. The ALLOCATE statement can also be used to
create space for a pointer by creating a target for it.

A pointer’s target must have the same type, kind, and shape as the pointer. A pointer assignment has
the form of an ordinary assignment statement except the assignment symbol is =>. For example:

 REAL A, X(:,:), B, Y(5, 5)
 POINTER A, X
 TARGET B, Y
 A => B ! Scalar pointer assignment.
 X => Y ! Array pointer assignment.

The pointer must have the POINTER attribute, and the target must have the TARGET or POINTER
attribute. If the target has the TARGET attribute, the pointer variable is associated directly with the
target. If the target has the POINTER attribute, the pointer variable is associated with the same target
as the pointer points to, that is, with the second pointer’s target.

You can assign a pointer that is currently associated with a target to a new target. In this case, the
pointer is disassociated from the old target and associated with the new target. If a pointer’s target is
another pointer and the pointed-to pointer becomes disassociated, the pointing pointer remains
associated with the pointed-to pointer but has no link to the disassociated target.

Arrays and Pointers Page 16 of 22

9/2/97 3:30:49 PM

If a pointer’s target is another pointer that is not associated with a target and hence undefined, the
pointing pointer is also undefined. Multiple pointers can point to the same target. You can use the
intrinsic function ASSOCIATED to find out if a pointer is associated with a target or if two pointers
are associated with the same target. For example:

 REAL C (:), D(:), E(5)
 POINTER C, D
 TARGET E
 LOGICAL STATUS
 ! Pointer assignment.
 C => E
 ! Pointer assignment.
 D => E
 ! Returns TRUE; C is associated.
 STATUS = ASSOCIATED (C)
 ! Returns TRUE; C is associated with E.
 STATUS = ASSOCIATED (C, E)
 ! Returns TRUE; C and D are associated with the
 ! same target.
 STATUS = ASSOCIATED (C, D)

Pointers can be derived types or elements of a derived type. A pointer element within a derived type
can point to the derived type. This lets you create a branching system of indexed and subindexed
data, and to keep your data in hierarchical order. This data ordering is called a linked list. For
example:

 TYPE ORDER
 INTEGER INDEX
 TYPE(ORDER), POINTER :: NEXT
 END TYPE ORDER

This structure can be used to branch INDEX as follows:

 TYPE (ORDER), POINTER :: LIST
 ALLOCATE(LIST)
 LIST%INDEX = 1
 ALLOCATE(LIST%NEXT)
 LIST%NEXT%INDEX = 2
 ALLOCATE(LIST%NEXT%NEXT)
 LIST%NEXT%NEXT%INDEX = 3

The following adds a new entry to the top of this tree:

 TYPE (ORDER), POINTER :: NEW_TOP
 ALLOCATE(NEW_TOP)
 NEW_TOP = ORDER(0, TREE)

The old first index pointed to by LIST%INDEX is now pointed to by NEW_TOP%NEXT%INDEX.

Dynamic Association of Arrays and Pointers
When you allocate storage space dynamically, the size of a variable or array is set at run-time, rather
than during compilation. Dynamic allocation is done with allocatable arrays and pointers. Dynamic
association can be used with scalars and arrays of any type.

When you specify an array with the ALLOCATABLE attribute, memory is not set aside for it until
you specifically use an ALLOCATE statement. You can later use a DEALLOCATE statement to

Arrays and Pointers Page 17 of 22

9/2/97 3:30:49 PM

disassociate memory storage with the array and free the memory space or reuse the array with a
different shape for a different purpose.

When you specify a scalar or array with the POINTER attribute, it does not have memory set aside
until it is assigned to a target that has memory space, or until it is allocated its own memory, in which
case the memory space is its target. Dynamic control over the creation, association, and
disassociation of pointers is provided with pointer assignment statements and with the ALLOCATE,
NULLIFY, and DEALLOCATE statements.
Pointer assignment associates pointers with existing targets. The ALLOCATE statement creates
targets (memory space) for pointers. The NULLIFY statement disassociates pointers from targets,
and the DEALLOCATE statement deallocates targets.

Note: Dynamic memory allocation is limited by several factors, including swap file size and
memory requirements of other applications that are running. Dynamic allocations that are too
large or otherwise attempt to use the protected memory of other applications result in General
Protection Fault errors. If you encounter an unexpectedly low limit, you might need to reset your
virtual memory size through the Control Panel or redefine the swap file size.

Some programming techniques can help minimize memory requirements, such as using one large
array instead of two or more individual arrays. Allocated arrays that are no longer needed should
be deallocated.

For more information, see Association Status and Definition.

The ALLOCATE Statement

The ALLOCATE statement dynamically creates pointer targets and allocatable arrays, causing
memory to be allocated to the object. An allocated object can be any named variable that has been
assigned the POINTER or ALLOCATABLE attribute. For example:

 REAL A, B(:,:), C(:), D(:, :, :)
 POINTER A, B
 ALLOCATABLE C, D

 READ (*, *) N, M
 ALLOCATE (A, B(N, M), C(-2:40), D(3, 3, 3))

When a pointer is allocated, the pointer becomes associated with the newly created space, and that
space is the pointer target. Additional pointers can be associated with the same space by pointer
assignment.

You can allocate a pointer that is currently associated with a target. In this case, the pointer is
disassociated from the old target and associated with the new target. If you disassociate a previously
allocated pointer (through reassignment or the NULLIFY statement), the memory space allocated to
the pointer remains unavailable and is wasted.

To prevent problems, you should deallocate a pointer to disassociate it and free the memory before
reassigning it.

When an array is allocated, memory is set aside to hold the size of the array you specify. The rank in
the ALLOCATE statement must be the same as the rank of the pointer array or allocatable array

Arrays and Pointers Page 18 of 22

9/2/97 3:30:49 PM

being allocated. At the time of allocation, the values of the lower and upper bounds in the
ALLOCATE statement determine the size and shape of the array, which remain fixed as long as the
array remains defined. The bounds can be any positive or negative integer, or zero. The default lower
bound is 1. An allocatable array can be assigned values only after it has been allocated.

If the upper bound is less than the lower bound, the extent in that dimension is zero, and the array or
pointer has zero size. Specifying a zero or negative size causes an array to be allocated, but since it
has zero size, no values can be assigned to it.

You cannot allocate an array that is currently allocated. Doing so will cause a run-time error. The
error status is available with the STAT= specifier in the ALLOCATE statement. If it is present,
successful execution of the ALLOCATE statement returns zero; otherwise, it returns a positive
integer. For example:

 REAL, ALLOCATABLE :: A(:)
 INTEGER ERR_ALLOC
 ALLOCATE (A (5), STAT = ERR_ALLOC)
 IF (ERR_ALLOC .NE. 0) PRINT *, "ALLOCATION ERROR"

If the STAT= specifier is not present and an error occurs, program execution terminates. You can
use the intrinsic function ALLOCATED to find out if an array is already allocated. For example:

 REAL, ALLOCATABLE :: A(:)
 ...
 IF (.NOT. ALLOCATED(A)) ALLOCATE (A (5))

See also ALLOCATE, ALLOCATABLE, and ALLOCATED in the Reference.

The NULLIFY Statement

The NULLIFY statement disassociates a pointer from any target. You can disassociate a list of
pointer objects. Each pointer object must have the POINTER attribute. For example:

 INTEGER, POINTER :: A(:), B, C(:, :, :)
 ...
 NULLIFY (A, B, C)

Disassociating an unassociated pointer is not an error. Pointers initially have an undefined
association status. To initialize a pointer to point to no target, you can execute the NULLIFY
statement. If a function returns a pointer, the association status of the result pointer is undefined at
the start of execution. Before the function returns, it must either associate a target with this pointer or
specifically define this pointer as disassociated with the NULLIFY statement.

See also NULLIFY in the Reference.

The DEALLOCATE Statement

The DEALLOCATE statement frees memory space associated with allocatable arrays and pointer
targets and disassociates the pointers. Each object deallocated must be an allocated array or a pointer
to a memory space target created with the ALLOCATE statement. For example:

 REAL, POINTER :: A(:), B, C
 REAL, ALLOCATABLE, TARGET :: D(:)

Arrays and Pointers Page 19 of 22

9/2/97 3:30:49 PM

 REAL, TARGET :: E
 REAL, ALLOCATABLE :: F(:, :)
 ...
 ALLOCATE(B, D(5), F(4, 2))
 A => D
 C => E
 ...
 DEALLOCATE (B, D, F)

Only memory space that has been allocated with an ALLOCATE statement can be deallocated with
a DEALLOCATE statement. In the preceding example, the pointer B has a memory space target
created with the ALLOCATE statement and can be deallocated, while the pointer C is assigned to
the nonallocatable target E and cannot be deallocated. Deallocating a pointer associated with an
allocatable target also causes an error, for instance, if you were to attempt to deallocate the pointer A
in the example above. Instead, you deallocate the target the pointer points to, array D in this example,
which frees memory and disassociates the pointer.

Deallocating memory space that was not allocated with an ALLOCATE statement causes a run-time
error. You can determine if an array or target is allocated with the ALLOCATED function, and
determine the association status of a pointer with the ASSOCIATED function.

The error status is available with the STAT= specifier in the DEALLOCATE statement. If it is
present, successful execution of the DEALLOCATE statement returns zero; otherwise, it returns a
positive integer. For example:

 REAL, ALLOCATABLE :: A(:)
 INTEGER ERR_DEALL
 ...
 DEALLOCATE (A , STAT = ERR_DEALL)
 IF (ERR_DEALL .NE. 0) PRINT *, "DEALLOCATION ERROR"

See also ALLOCATE and Reference: DEALLOCATE.

Association Status and Definition

When the execution of a procedure is terminated by a RETURN or END statement, the allocation
status of allocatable arrays and the association status of pointers become undefined except in the
following cases:

• The array or pointer has the SAVE attribute.
• The pointer is the return value of a function declared to have the POINTER attribute.
• The array or pointer is defined in other program units or common blocks as described in

Defining Variables.

The RETURN and END statements do not release the memory allocated to an array or pointer.
Therefore, the memory storage allocated to an array or associated with a pointer should be
deallocated before exiting the subprogram.

If the allocation status of an allocatable array becomes undefined, it cannot be referenced, defined,
allocated, or deallocated. A pointer can always be nullified, allocated, or pointer assigned, but when
its association status becomes undefined, it cannot be referenced or deallocated. When a pointer
target becomes undefined, the pointer and the pointer association also become undefined.

Arrays and Pointers Page 20 of 22

9/2/97 3:30:49 PM

The allocation status of an allocatable array is one of the following:

• Currently allocated

The array allocated was allocated by an ALLOCATE statement. Such an array can be
referenced, defined, or deallocated.

• Not currently allocated

The array was never allocated or the last operation on it was a deallocation. Such an array
must not be referenced or defined.

An allocatable array is defined when values are put into it. For example:

 REAL, ALLOCATABLE :: A(:)
 ALLOCATE (A(100)) ! A is allocated but not defined. A’s
 ! allocation status is ALLOCATED.
 A(1:100) = 1 ! A is defined.
 DEALLOCATE (A) ! A is deallocated.
 ! A’s allocation status is .NOT. ALLOCATED.

Character Strings
Even though it is made of individual characters, a character string is considered a scalar and not an
array. A character string can be an automatic object, similar to an automatic array. For example:

 SUBROUTINE CALLCHAR (N)
 CHARACTER(N) string

Automatic character objects and character dummy arguments are the only character strings whose
length can be dynamically set.

An array of character strings is not the same as a single character string. You can declare an array of
character strings, all of the same length. Arrays of fixed-length strings can be used and accessed,
allocated and deallocated, like any other array as described in the preceding sections. However, even
though a character string is a scalar you can access and use substrings within it. For a description of
how to specify and use character substrings, see Substrings.

DIGITAL Fortran Pointers
DIGITAL Fortran pointers (also called integer pointers) differ from standard Fortran 90 pointers. An
integer pointer has three components: the pointer, the pointer-based variable, and the pointed-to
object.

The process of associating a pointer-based variable to the pointed-to object is two-fold. First, an
integer pointer is associated with a pointer-based variable. This is done with the DIGITAL Fortran
POINTER statement, which takes the following form:

POINTER (p, var) [, (p, var)]

The integer pointer (p above) cannot be explicitly typed. Its value is used as the address of var.
The pointer-based variable (var above) can be any type of variable, including arrays or character

Arrays and Pointers Page 21 of 22

9/2/97 3:30:49 PM

strings. The POINTER statement must be in the declarations section of the program or procedure.

The integer pointer is assigned memory storage associated with the pointed-to object. This is done
with the LOC or MALLOC intrinsic function:

REAL VAR, A
POINTER (P, VAR)
P = LOC(A)

The integer pointer then contains the address of the pointed-to object (A in the example). Values
assigned to the pointer-based variable (VAR in the example) are placed at the address held in the
pointer, and hence transferred to the pointed-to object. For example:

REAL VAR(5), A(5)
POINTER (P, VAR)
P = LOC(A)
VAR(2) = 0.0 ! Sets A(2) to 0.0.

Note: You cannot use the ALLOCATE or DEALLOCATE statements with an integer pointer.
You must allocate storage with MALLOC. After use, free the storage with the FREE intrinsic
subroutine.

The following rules apply to integer pointers:

• Two pointers can have the same value, so pointer aliasing is allowed.
• When used directly, a pointer is treated like an integer variable. On Windows NT and

Windows 95 systems, a pointer occupies one numeric storage unit, so it is a 32-bit quantity
(INTEGER(4)).

• A pointer cannot be a pointer-based variable.
• A pointer cannot appear in an ASSIGN statement and cannot have the following attributes:

ALLOCATABLE PARAMETER
EXTERNAL POINTER
INTRINSIC TARGET

• A pointer can appear in a DATA statement with integer literals only.
• Integers can be converted to pointers, so you can point to absolute memory locations.
• A pointer cannot be a function return value.

Since pointers are integer variables, normal integer arithmetic is allowed on them. They can be used
anywhere an integer variable can appear. Thus, you can use integer arithmetic to modify the address.
For example:

REAL A(10), VAR
POINTER (P, VAR)

P = LOC(A)
DO I = 1, 10
 VAR = 0.0
 P = P + 4
END DO

In this example, the 10 real variables in array A are set to zero by redefining the address value in the
integer pointer P. The elements of A are stored consecutively in memory. The address of each real

Arrays and Pointers Page 22 of 22

9/2/97 3:30:49 PM

number takes 4 bytes, so each increment of 4 to P points to the next element of A.

The following rules apply to pointer-based variables:

• A pointer-based variable is not allocated any storage. References to a pointer-based variable
look to the current contents of its associated pointer to find the pointer-based variable's base
address.

• A pointer-based variable cannot be data-initialized or have a record structure that contains
data-initialized fields.

• A pointer-based variable can appear in only one POINTER statement.
• A pointer-based array can have fixed, adjustable, or assumed dimensions.
• A pointer-based variable cannot appear in a COMMON, DATA, EQUIVALENCE, or

NAMELIST statement, and it cannot have the following attributes:

ALLOCATABLE POINTER
AUTOMATIC SAVE
INTENT STATIC
OPTIONAL TARGET
PARAMETER

• A pointer-based variable cannot be:
• A dummy argument
• A function return value
• A record field or an array element
• Zero-sized
• An automatic object
• The name of a generic interface block

• If a pointer-based variable is of derived type, it must be of sequence type.

See also POINTER -- Integer in the Reference.

Execution Control Page 1 of 11

9/2/97 3:24:45 PM

Execution Control
Fortran executes statements sequentially, from first to last. You can modify this sequence by using
blocks of executable procedures and by transferring control to other statements of a program.
Although in theory, any Fortran statement could be considered to control execution of a program,
this chapter deals primarily with statement blocks and block constructs, which include:

• Executable constructs such as IF, CASE, and DO
• Branching statements such as GOTO, CONTINUE, and STOP
• Methods of branching which are marked for obsolescence in Fortran 90, such as arithmetic IF,

ASSIGN, assigned GOTO, and PAUSE

Executable Constructs and Blocks

A construct, also called a block construct, is a sequence of statements starting with a CASE, DO, IF,
WHERE, or FORALL statement, and ending with an appropriate termination statement:

• CASE constructs are bounded by SELECT CASE and END SELECT statements.
• DO constructs are bounded by DO or DO WHILE and END DO statements.
• IF constructs are bounded by IF and END IF statements.
• WHERE constructs are bounded by WHERE and END WHERE statements.
• FORALL constructs are bounded by FORALL and END FORALL statements.

Constructs can be combined, or nested. For example, a DO loop can contain an IF construct. If you
nest one block construct within another, the outer block must contain the entire construct, not just a
part.

A block is a sequence of statements or constructs that is treated as one unit. A block can be a series
of nested constructs, or it can be a set of statements within a construct. A block need not contain any
executable statements.

This example shows how the terms construct and block are used:

 IF (A .gt. 0) THEN ! Marks the start of the outer IF construct.
 SELECT CASE (b) ! Marks the start of the inner CASE construct.
 CASE (:0)
 . . . ! Any statements here form one block.
 CASE (0:)
 . . . ! Any statements here form another block.
 END SELECT ! End of CASE construct.
 . . . ! Any code here, including the
 ! CASE construct, form a block within the IF construct.
 . . .
 END IF ! End of IF construct.

Everything between the IF and END IF form one block, including the CASE construct. Any
statements that follow each CASE statement also form one block.

Some general rules apply to block constructs:

• You can transfer control within a block, or you can branch out of a block, but you may not
transfer control into a block from a statement outside the block. You can exit the block from

Execution Control Page 2 of 11

9/2/97 3:24:45 PM

anywhere inside it.
• Statements are executed in sequential order unless another control statement changes the

order.
• You can call functions and subroutines from within a block.

For more information on constructs, see: Naming Constructs.

Naming Constructs

Naming a construct is a new concept in Fortran 90. If you name a construct, the name must appear on
the first statement of the construct and at the end of the construct. The name can also appear on
control statements within the construct, for example, on ELSE and ELSE IF statements in an IF
construct. The following example gives an IF construct the name DUTY:

 DUTY: IF (DAY .EQ. ’SATURDAY’) THEN
 CALL MOTHER(TIME, PHONE, NEWS)
 END IF DUTY

If you are using fixed source form, the name must be placed after column six.

IF Constructs

The IF construct selects at most one of its blocks for execution. If there is an ELSE statement, at
least one of the blocks within the construct is executed. Three types of IF clauses exist in Fortran:

• The IF construct is composed of blocks of code that are executed if a condition tests true
• The logical IF statement consists of only one statement that is executed if a condition tests true
• The arithmetic IF branches to other statement labels based on the value of an expression

The arithmetic IF is discussed in Obsolescent Branching Methods.

The form of the IF construct is:

IF [condition] THEN
block

[ELSE IF [condition]
block]

[ELSE
block]

END IF

The following example shows a named IF construct that contains another IF block:

 if_construct: IF (A > 0) then
 B = C/A
 if (B > 0) then
 D = 1.0
 end if
 ELSE IF (C > 0) then
 B = A/C
 D = -1.0
 ELSE

Execution Control Page 3 of 11

9/2/97 3:24:45 PM

 B = ABS (MAX (A, C))
 D = 0
 END IF if_construct

An IF construct can contain several ELSE IF statements, but only one ELSE statement. IF blocks
can be nested within one another. Each separate construct must be contained completely inside the
adjacent outer block.

A logical IF statement, which controls execution of a single statement, is not a construct. The
following example shows two logical IF statements:

 IF (a .LT. b) temp = a !Logical IF statement
 IF (c .EQ. b) goto 100 !Logical IF statement

See also IF -- Arithmetic, IF -- Logical, and IF Construct in the Reference.

CASE Constructs

The CASE construct offers program control similar to the IF construct. It presents an expression for
evaluation, followed by one or more blocks of code, one of which is selected to run. Value ranges to
be evaluated must not overlap. The form of the CASE construct is:

[case-construct name:] SELECT CASE (case-expression)
CASE (case-value [, case-value]...) [case-construct name]

block
[CASE DEFAULT [case-construct name]

block]
END SELECT [case-construct name]

The naming conventions that apply to the IF construct also apply to the CASE construct: if you
include a case construct name in the END SELECT statement, it must be the same as the name
given in the SELECT CASE statement. The same construct name can optionally appear in any
CASE statement in the construct.

The CASE DEFAULT block is optional. If the case index does not match any case values listed and
if there is no CASE DEFAULT statement, no action is taken and the program continues.

At most, one block is selected within a CASE construct. There is no fall-through from one block into
another. After completing the block, the program exits the CASE construct. You do not need to
explicitly exit from a block within a CASE construct.

When case-expression is evaluated, the result is called the case index. Values within the case selector
statements can take one of four forms:

• (case-value)
• (low-range:)
• (:high-range)
• (low-range:high-range)

Each case value must be the same data type as the case expression. Types are limited to integer,
character, and logical. For characters, the case values need not be the same length as the case

Execution Control Page 4 of 11

9/2/97 3:24:45 PM

expression. Value ranges using a colon (:) are not permitted for logical data types.

If the case value range is a single value without a colon, a match occurs if the case value is equal to
the case index. If only the low range is specified, a match occurs if the case index is greater than or
equal to the low value; if only the high range is specified, a match occurs if the case index is less
than or equal to the high range value.

A CASE statement cannot be the target of a branch statement. You can transfer control to an END
SELECT statement only from within the CASE construct.

The following example evaluates the case expression NET_INCOME and defines the variable
TAX_RATE based on its value:

 SELECT CASE (NET_INCOME)
 CASE (50000:)
 TAX_RATE=.28
 CASE (25000:49999)
 TAX_RATE=.14
 CASE DEFAULT
 TAX_RATE=.05
 END SELECT

In this example, the value of NET_INCOME is the case index. The first block is executed if the case
index is greater than or equal to 50000. The second is executed if it is between 25000 and 49999. If
the case index is less than 25000, the default block executes. For example, if NET_INCOME equals
75000, the tax rate is set to .28, and the program exits the block after the first CASE statement.

See also CASE and SELECT CASE in the Reference.

DO Constructs

The DO construct takes the form:

[name:] DO [label[,]] do-variable = lower bound, upper bound [, increment]
[do block]

[label] END DO or CONTINUE

A DO construct begins with a DO statement and ends with an END DO or CONTINUE. If you do
not specify a label, then the construct must end with ENDDO. If you do specify a label, then the
END DO or CONTINUE must be identified by the same label.

Statements between DO and END DO specify the actions that are executed in the loop. DO blocks
can contain other DO constructs as well as IF or CASE constructs, but any other construct must be
completely contained within the DO block. You can break out of a DO loop with an EXIT or
CYCLE statement.

Like other constructs, the DO loop can be named. If it is named, the same name must follow the
END DO. The following example shows a standard FORTRAN 77 DO loop and its Fortran 90
equivalent:

 DO 100 n = 0, stop, step
 WRITE (*,*) ’N=’,n
 100 CONTINUE

Execution Control Page 5 of 11

9/2/97 3:24:45 PM

 DO n = 0, stop, step
 WRITE (*,)) ’N=’",n
 END DO

Loop Control

Loop control is provided in one of three ways:

• An iteration count and a DO variable
• Test a logical condition before each execution of the loop (DO WHILE)
• DO forever

A DO forever construct is the same as a DO construct with no loop control variable and no iteration
variable. Use the CYCLE and EXIT statements to establish when to exit the DO forever loop.

A DO construct has three phases: initiation of the loop, execution of the loop range, and termination.
At the initiation of a loop, the following steps take place:

1. The lower bound, upper bound, and increment are established. They should all be integers.
The increment should not be zero. Data type conversion is performed, if necessary. If you do
not specify an increment, the default is 1. Using default real or double-precision real in a DO
construct is supported, but obsolescent. See Obsolescent Branching Methods for information
on other Fortran statements that have been marked for obsolescence.

2. The DO variable is initialized with the value of the initial parameter.

3. An iteration count (also known as the trip count) is established. The iteration count is zero if
the lower bound is greater than the upper bound and the increment is positive. The iteration
count is also zero if the lower bound is less than the upper bound and the increment is
negative.

The iteration count for the loop is calculated using the following formula:

MAX(INT((upper bound - lower bound + increment) / increment),0)

You can increment the iteration variable inside the loop if you have not specified upper bounds,
lower bounds, and an increment at the DO statement. Otherwise, the iteration variable cannot be
modified by statements within the loop.

During the execution cycle of a DO construct, the following steps are performed:

• The iteration count, if any, is tested. If it is zero, the loop terminates.
• If the iteration count is nonzero, the range of the loop is executed.
• The iteration count, if any, is decremented by one, and the DO variable is incremented by the

value of the incrementation parameter.

After the DO construct finishes executing, the loop control variable retains its last defined value.

For additional information on the DO construct, see the Reference.

Extended Range

Execution Control Page 6 of 11

9/2/97 3:24:45 PM

A DO construct has an extended range if both of the following are true:

• The DO construct contains a control statement that transfers control out of the construct.
• Another control statement returns control back into the construct after execution of one or

more statements.

The range of the construct is extended to include all executable statements between the destination
statement of the first transfer and the statement that returns control to the construct.
The following rules apply to a DO construct with extended range:

• A transfer into the range of a DO statement is permitted only if the transfer is made from the
extended range of that DO statement.

• The extended range of a DO statement must not change the control variable of the DO
statement.

The following figure illustrates valid and invalid extended range control transfers.

The CYCLE and EXIT Statements

The CYCLE and EXIT statements control how actions are performed within the loop. The CYCLE
statement increments the loop variable while preventing the remaining statements from executing. A
transfer of control to the END DO statement has the same effect as execution of a CYCLE
statement. The EXIT statement terminates the loop completely. An EXIT or CYCLE statement
within one DO construct can transfer control to another DO construct which surrounds the inner one.

Execution Control Page 7 of 11

9/2/97 3:24:45 PM

The following example, CYCLE.F90, available in the /DF/SAMPLES/TUTORIAL subdirectory,
shows the use of EXIT and CYCLE:

! CYCLE.F90 Demonstrate the CYCLE and EXIT Statements

 INTEGER i,j,k,n
 PARAMETER (n = 10) ! Upper limit for loops.

 write (*,’(/A, I2)’) &
 & ’ Controlling loops using CYCLE and EXIT, N = ’, n
 write (*,900)

 Loop1: DO i = 1, n
 if (i.gt.3) EXIT Loop1
 write (*,910) i

 Loop2: DO j = 1, n
 if (j.gt.2) CYCLE Loop2
 if (i.eq.2.and.j.gt.1) EXIT Loop2
 write (*,920) j

 Loop3: DO k = 1, n
 if (k.gt.2) CYCLE Loop3
 if (i.eq.1.and.j.gt.1) EXIT Loop2 ! Leave both inner loops.
 write (*,930) k

 END DO Loop3
 END DO Loop2
 END DO Loop1
 WRITE (*,’(/A)’) ’ Loops completed.’

900 FORMAT(/’ Loop: 1st 2nd 3rd’)
910 FORMAT(11x, i2)
920 FORMAT(21x, i2)
930 FORMAT(31x, i2)
 END

The DO WHILE Statement

The DO WHILE statement provides another form of loop control, as in the following example:

 DO WHILE (input .NE. ’n’)
 WRITE (*, ’(A)’) ’Enter y or n: ’
 READ (*, ’(A)’) input
 END DO

The logical expression (input .NE. ’n’ in the example) is evaluated before the program executes the
code within the block. The program continues within the loop as long as the condition is true, and
terminates once the condition becomes false. For example, this kind of loop control could be used to
read records from a file until the end-of-file marker is reached.

No incrementation is built into the DO WHILE statement; anything which causes the scalar logical
expression to change needs to be included in the block of code which follows. Use the CYCLE and
EXIT statements to control iteration.

The same syntax, execution and loop control rules discussed in DO Constructs also apply to the DO
WHILE construct.

See also DO WHILE in the Reference.

Execution Control Page 8 of 11

9/2/97 3:24:45 PM

Branching
Branching alters the normal top-to-bottom sequence of program execution. A branch transfers
control from one statement to a labeled target statement in the same program unit. Statement labels
can only refer to branch target statements, FORMAT statements, and DO terminations.

A branch can transfer control out of a loop, or within the same block of a construct, but may not
branch to within the range of a block construct from outside the range. Only a statement within a
CASE construct may branch to an END SELECT statement. Only a statement within an IF
construct may branch to an END IF statement. A branch to an END IF from outside the IF construct
is an obsolescent feature.

Other forms of branching are GOTO, and CONTINUE and STOP.

GOTO and Computed GOTO

A GOTO statement transfers control to a target statement identified by its label, using the following
syntax:

GOTO label

The label must appear in the same program unit as the GOTO statement.

Most GOTO statements can be replaced by other types of block construct, subroutines, or modular
programming.

See also GOTO -- Computed and GOTO -- Computed in the Reference.

CONTINUE and STOP

The CONTINUE statement has no effect on program execution. The CONTINUE statement has
been used as the terminating statement of a DO loop or IF block. The terminating statements END
DO and END IF eliminate the need for CONTINUE statements. Support for the CONTINUE
statement is still available for backwards compatibility, but new programs should use the block DO
construct that terminates with END DO.

A STOP statement terminates program execution. It allows use of either a character-string message
or an integer variable that provides more information about why the program ended. The default
message is "Program terminated," and the default error code is zero. Your program can define other
values.

In the following example, the variable ierror, set elsewhere in the program, detects errors; if an
error exists, the program stops execution with a message:

 IF (ierror .NE. 0) THEN
 STOP ’ERROR DETECTED!’
 END IF

See also STOP in the Reference.

Execution Control Page 9 of 11

9/2/97 3:24:45 PM

Obsolescent Branching Methods
Certain branching methods are obsolescent in the Fortran 90 standard and they may not be supported
in future revisions of the standard. These obsolescent branching methods are the nonblock DO,
assigned GOTO, arithmetic IF, and PAUSE.

Alternate returns have also been designated obsolescent. These are described in Program Units and
Procedures. For a complete list of obsolescent features, see Obsolescent Features in Fortran 90.

See also Deleted Features in Fortran 95, and Obsolescent Features in Fortran 95.

Nonblock DO

A nonblock DO construct is takes the form:

DO label[,] [loop-control]

label
A statement label identifying the terminal statement.

loop-control
A DO iteration or DO WHILE statement (see DO Constructs).

The nonblock DO construct does not terminate with a CONTINUE, GOTO, RETURN, STOP, or
EXIT statement. If the do-term-action-stmt (also called the DO termination) is one of these
statements, the construct is considered a block DO construct. For example, the DO termination of a
nonblock DO construct could be an assignment statement.

An example of a nonblock DO is:

 DO 100, i = 1, 100
 100 a(i) = 0

If several DO loops share a single label as their termination statement, they are considered nonblock
DO constructs. You cannot transfer control into the body of a nonblock DO construct or to the DO
termination statement from outside the range of the DO construct.

The following example shows a common use of nonblock DO constructs, which is nested loops
sharing a single termination statement:

 N = 0
 DO 100 i = 1,10
 J = i
 DO 100 k = 1,5
 L = k
 100 N = N + 1 ! This statement executes 50 times.

ASSIGN and Assigned GOTO

The ASSIGN statement assigns the value of a statement label to an integer variable. It takes the
form:

Execution Control Page 10 of 11

9/2/97 3:24:45 PM

ASSIGN label TO scalar-integer-variable

The label must be the label of a branch target statement or FORMAT statement in the same program
unit as the ASSIGN statement. You can reference the assigned variable only in an assigned GOTO
statement or as a format specifier of an I/O statement. The scalar-integer-variable is a named integer
of default type.

The assigned GOTO has the format:

GOTO scalar-integer-variable[,] (label-list)

It transfers control to the branch target statement identified by the label assigned to
scalar-integer-variable. The value of scalar-integer-variable determines which label in label-list
control transfers to. The labels listed in label-list need to be in the same program unit as the GOTO
statement.

The ASSIGN and assigned GOTO statements can be replaced with a CASE construct that examines
the value of a flag variable to indicate where to transfer control. In the case of assigned variables
used as format specifiers, Fortran 90 allows character strings to be used as format specifiers.

Arithmetic IF

The arithmetic IF statement transfers control to up to three target statements in the same scoping
unit. An example of an arithmetic IF statement is:

IF (n-10) 10,20,30

The branch target statements (10, 20, and 30 in the example) are executed depending on whether the
value of the numeric expression is less than zero, equal to zero, or greater than zero, respectively.

Arithmetic IF statements can be replaced by alternate branching methods such as an IF construct, as
in this example:

 IF (n-10 .LT. 0) THEN
 GOTO 10
 ELSE IF (n-10 .EQ. 0) THEN
 GOTO 20
 ELSE
 GOTO 30
 END IF

PAUSE

A PAUSE statement causes suspension of program execution. The PAUSE statement can take either
a character constant or an integer as an argument, such as:

 PAUSE ’Press the space bar to continue’

Enter a command or press Enter to return control to the program.

For more information, see PAUSE in the Reference.

Execution Control Page 11 of 11

9/2/97 3:24:45 PM

For alternate methods of pausing while reading from and writing to a device, see READ and WRITE
in the Reference.

Program Units and Procedures Page 1 of 35

8/21/97 12:17:01 PM

Program Units and Procedures
This chapter describes how you can build a Visual Fortran program from various parts known as
program units:

• Main Program
• Modules
• Procedures
• Block Data Program Units

It also discusses concepts that describe relationships between program units:

• Association, which is the mechanism that allows different program units to share variables yet
address them by different names without redeclaring them.

• Scope, which describes the extent to which a name, whether global or local, is known.

In Fortran 90, new features such as modules allow for easy sharing of procedures and data between
programs. One or more program units can use information specified in a separate module and can be
dependent on that module.

For example, you can build a common block or block data unit that describes constants and variables
used by a series of programs, set up a module containing commonly used functions and subroutines,
and link them all to a main program which performs specific calculations.

Overview of Program Units
A program unit does not need to contain executable statements; for example, it can be a module
containing interface blocks for subroutines. You can compile any of these units in separate source
files and link them together later. It is not necessary to compile or recompile them as a whole. A
program unit that contains internal subroutines or functions is called a host program. The following
table defines the four types of program units:

Program
Unit

Definition

Main
program

The program unit that marks the beginning of execution. A main program does not
have a SUBROUTINE, FUNCTION, MODULE, or BLOCK DATA statement as
its first statement. A main program can have a PROGRAM statement as its first
statement, but this is not required.

Procedure A program unit that is either a subroutine or a function.
Block-data
program

A program unit that provides initial values for variables in named common blocks.

Module A program unit that contains data object declarations, type definitions, function or
subroutine interfaces, and functions or subroutines accessible to other programs.

The PROGRAM, SUBROUTINE, BLOCK DATA, FUNCTION, and MODULE statements are
described in detail in the Reference. Related information is provided in the entries for the CALL,
CONTAINS, INTERFACE, RETURN, and USE statements.

Program Units and Procedures Page 2 of 35

9/2/97 3:25:05 PM

A procedure (also referred to as subprogram) is either a function or a subroutine. Procedures can be
internal, external, or module. Procedures make it easier to develop large, well-structured programs,
especially in the following situations:

When you... Procedures let you...
Have a large program Divide a large program into parts, making the program easier to

develop, test, maintain, and compile.
Intend to include certain
procedures in more than one
program

Create object files that contain these procedures and link them to
the programs in which they are used.

Anticipate altering a procedure’s
implementation

Place the procedure in its own file and compile it separately.
You can change the procedure, but the rest of your program
need not change.

Breaking a program up into procedures provides encapsulation, so that the implementation of one
routine is independent of the implementation of another. This allows changes in one routine to not
affect any other routine in your program.

A function is a procedure invoked in an expression. It returns a value that is used in the expression. A
function result is the value or set of values returned to the expression by the function. You invoke a
subroutine with a CALL statement; it does not return a value, although it may change the values of
some arguments.

Association describes how different program units share names of variables, constants, procedures,
and other entities. Association can be any of the following:

• Host association, which allows internal subprograms to have access to named entities in a host
program. These entities can be variables, constants, other procedures including interfaces,
derived types, type parameters, derived-type components, and namelist groups.

• Use association, which is a result of a USE statement. A program unit that uses a module has
access to all public entities in that module.

• Argument association, which establishes a connection between a dummy procedure argument
and the corresponding actual argument.

Scope refers to the extent in which a name is recognized. Examples of scope are: an entire program,
for global names; a module, for names with the PRIVATE attribute; or a single statement.

Main Program

A main program is a program unit whose first statement is not a SUBROUTINE, FUNCTION,
MODULE, or BLOCK DATA statement. Program execution always begins with the first
executable statement in the main program, so there must be exactly one main program unit in every
executable program.

This section also discusses program format and program execution.

Program Format

Program Units and Procedures Page 3 of 35

9/2/97 3:25:05 PM

A main program is composed of the following parts, in the described sequence:

[PROGRAM [program-name]]
[specification part]
[execution part]
[internal subprogram part]

END [PROGRAM [program-name]]

The PROGRAM statement takes the form:

 PROGRAM test

where test is the optional program name.

The END statement is the only required part of a program. If the END statement includes a program
name, it must be the same as the one stated in the PROGRAM statement.

 END PROGRAM test

The name of a main program is considered a global name, together with names of external
procedures and common blocks. Global names must be unique within a program. For more
information on global and local names, see Names and Scope of Names.

The following figure shows the modular structure of a Visual Fortran program. Each shaded box
represents a separate source file:

Figure: The Modular Structure of a Visual Fortran Program

The main program A1 contains internal subroutines, calls an external subroutine B, as well as
modular procedures contained in A. The functions and subroutines contained in module B are called
module procedures.

The specifications part of a program includes the USE statement, implicit declarations, parameter
statements, format statements, and other declarations of variables and constants. The specifications
part of a main program should not include automatic arrays and pointers. For more information on
automatic arrays and pointers, see Arrays and Pointers.

The specifications part of a main program cannot contain OPTIONAL, INTENT, PUBLIC, or
PRIVATE statements, although you can use these statements and their corresponding attributes in
external procedures, modules, or interface blocks. OPTIONAL and INTENT apply only to dummy
arguments, which do not appear in a main program. The PUBLIC and PRIVATE statements are

Program Units and Procedures Page 4 of 35

9/2/97 3:25:06 PM

appropriate only for modules. If you include a SAVE statement in a main program, it has no effect.
Attributes that apply to procedures, arguments, and function results are discussed in Declaring
Procedure Attributes.

Program Execution

The sequence of statements in the execution part of a main program continues from the first
executable construct until either a STOP or END PROGRAM statement is encountered. You cannot
include RETURN or ENTRY statements in the execution part of a main program.

A main program cannot be recursive, although functions and subroutines can call themselves
recursively.

The normal execution sequence can be changed by block control statements such as IF, CASE, or
DO constructs. For more information on block constructs and controlling the path of program
execution, see Execution Control.

Modules
A module is a new feature of Fortran 90, with many uses. Modules can:

• Contain commonly used procedures
• Declare global variables and derived types
• Declare interface blocks for external procedures
• Initialize global data and global allocatable arrays
• Encapsulate data and procedures which work with that data

Modules can serve as a library of routines specific to an operating system, for example, declaring
parameters unique to certain processors. Several modules could contain the same named set of
functions, which operate differently on different hardware, together with type declarations specific to
that hardware.

Variables formerly stored in COMMON blocks can be extracted and placed in named modules.
Programs which use those variables can be rewritten to use the module instead having to include the
COMMON block. This saves having multiple declarations in several program units, and ensures that
variables and constants are:

• Declared consistently in all program units that use them
• Initialized with the same value

If a program unit uses only some of the variables in the module, or needs to rename some of them,
that unit can specify those variables with the ONLY option, described in Public and Private Entities.

Using a module is similar to using the INCLUDE statement in a program. In each case, material
from a separate file provides information necessary for a program to run. The advantages of using
modules rather than INCLUDE statements are:

• Encapsulation of data and routines which operate on that data. Modules provide a convenient
means of packaging related definitions and operations. You can combine information from

Program Units and Procedures Page 5 of 35

9/2/97 3:25:06 PM

several different but related include files into one module, eliminating the need for several
INCLUDE statements.

• Control over naming of variables, constants, and module procedures. Using modules allows
you to temporarily rename constants, variables, and even procedures from program unit to
program unit. For more information, see the The USE Statement.

• Implicit interfaces. When you use modules, parameters and return values for module
procedures are known to the main program, and matched to the calling procedure.

• Defined data types, including defined operators. Modules allow you to define special operators
for derived types, and to extend intrinsic operators to other data types.

• Specifying information at a single place in the program ensures that different program units
using that information will translate it consistently. For example, an IMPLICIT or
EXPLICIT statement in a program unit could cause an included file to be interpreted in a
different way than another program unit that includes the same file.

For more information on modules, see:

• Module Format
• The USE Statement
• Module Names and File Names
• Uses of Modules
• Procedure Libraries

Module Format

The format of a module is similar to that of a main program. A module may begin with
specifications, followed by subprograms:

MODULE name
[specification part]

[CONTAINS
[module subprogram part]...]

END [MODULE [name]]

Modules contain no executable statements, only data declarations, interface blocks, and procedure
definitions. Module procedures, however, can contain executable statements.

The name of a module, like the name of a main program, is global. It must not duplicate the name of
another program unit, external procedure or common block, or any local name in the module. The
name of a module is limited only by the rules of Fortran and not by the names allowed in the file
system. If the end module statement includes the module name, the name should match the one
named initially, as in the following example:

 MODULE DATA_MODULE
 SAVE
 REAL A(10), B, C(20,20)
 COMPLEX D(5,6)
 END MODULE DATA_MODULE

The specification part of a module cannot contain statement function definitions, ENTRY
statements, or FORMAT statements. Subprograms contained in the module, however, can use these
statements in their specification part. The CONTAINS statement marks the delimiter between the

Program Units and Procedures Page 6 of 35

9/2/97 3:25:06 PM

specifications part of a module and its subprograms. The specifications part of a module can contain
the following statements:

ALLOCATABLE PRIVATE
COMMON PUBLIC
DATA SAVE
DIMENSION STATIC
EQUIVALENCE TARGET
EXTERNAL USE
IMPLICIT VOLATILE
INTRINSIC Derived type definition
NAMELIST Interface blocks
PARAMETER Type declaration statements
POINTER

See also MODULE in the Reference.

The USE Statement

A program unit refers to modules with the USE statement, which is a module reference. A module
may not reference itself, either directly or indirectly. You can control access to procedures and
variables in a module by using the PUBLIC and PRIVATE statements, and the ONLY option. (See
the following topic Public and Private Entities.)

Entities in modules can be accessed either through their given name, or through aliases declared in
the USE statement of the main program unit. For example:

USE MODULE_LIB, XTABS => CROSSTABS

This statement accesses the routine called CROSSTABS in MODULE_LIB by the name XTABS. This way,
if two modules have routines called CROSSTABS, one program can use them both simultaneously by
assigning a local name in its USE statement.

When a program or subprogram renames a module entity, the local name (XTABS, in the preceding
example) is accessible throughout the scope of the program unit that names it. This means that if the
USE statement in the preceding example appears in a subroutine, the name XTABS is local to the
subroutine only, and will not be understood by the main program. If the USE statement is located in
the main program, XTABS is valid in any of the main program’s internal procedures. For more
information on scope, see Scope.

Public and Private Entities

The ONLY option in a USE statement allows a program to specify access to certain functions or
variables in a module. When a program includes a USE statement, it declares access to those
parameters listed. The ONLY option also allows public variables to be renamed, as in the following
example:

USE MODULE_A, ONLY: VARIABLE_A => VAR_A

Program Units and Procedures Page 7 of 35

9/2/97 3:25:06 PM

In this case, the host program accesses only VAR_A from module A, and refers to it by the name
VARIABLE_A.

A module can restrict access to functions or variables by using the PRIVATE attribute in its
declarations. PUBLIC and PRIVATE may be specified as statements, or as attributes in a data
declaration statement. A host program can only access public entities through the USE statement.

The PRIVATE or PUBLIC statement, when used alone, applies to the entire module and not simply
to the variables following the statement. Consider the following example:

 MODULE FOO
 integer foos_integer
 PRIVATE
 integer foos_secret_integer
 END MODULE FOO

PRIVATE, in this case, makes the PRIVATE attribute the default for the entire module FOO. To
make foos_integer accessible to other program units, add the line:

PUBLIC :: foos_integer

Alternatively, to make only foos_secret_integer inaccessible outside the module, rewrite the
module as follows:

 MODULE FOO
 integer foos_integer
 integer, private::foos_secret_integer
 END MODULE FOO

The PRIVATE attribute causes variables and procedures to be internal to the module. A module
function might use a local routine and temporary variables to arrive at its result; for example, a
sorting function might use a swap routine. While the sort function itself is available to other
programs, the internal swap routine and its variables are needed only by the sort function, and are
therefore declared PRIVATE in the module.

The example in Keynames demonstrates the use of private variables in a module, and renaming of
functions by a host program.

See also in the Reference: PRIVATE, PUBLIC, and USE.

Module Names and File Names

The name of a module, as given in the MODULE statement, can be different from the name of the
source file. Consider the following module, contained in a file FOO.F90:

 MODULE DATA_MODULE
 SAVE
 REAL A(10), B, C(20,20)
 COMPLEX D(5,6)
 END MODULE DATA_MODULE

A program that uses this module will contain the line:

 USE DATA_MODULE

Program Units and Procedures Page 8 of 35

9/2/97 3:25:06 PM

When it compiles a module, the compiler creates a file whose prefix is the module name and whose
suffix is .MOD. In this example, the compiler creates a file called DATA_MODULE.MOD as well
as the object file named FOO.OBJ. The .MOD file needs to exist before you can build an application
that uses the module. Microsoft Developer Studio does this for you when you set up your project. For
information on building a project in the Microsoft Developer Studio environment, see Building
Programs and Libraries.

The compiler searches for modules in the same path it searches for include files. If a source file
accesses modules, the modules need to be compiled before the programs that use them. For
information on setting the search path, see Compiler and Linker Options and Building Programs and
Libraries.

Using Modules

This section discusses how you can use modules. Most of the topics include examples:

• Common Blocks
• Global Data
• Global Allocatable Arrays
• Procedure Libraries and Operator Extensions
• Sample Program Keynames

Common Blocks

Modules can contain one or more common blocks which are accessed by a USE statement without
renaming, as in the following example:

 USE MY_COMMON

This ensures that all references to the common block are identical.

Global Data

You can create modules that contain only data objects, including derived types:

 MODULE DATA_MODULE
 SAVE
 REAL A(10), B, C(20,20)
 INTEGER :: I = 0
 INTEGER, PARAMETER :: J = 10
 COMPLEX D (J,J)
 TYPE NONZERO
 INTEGER ONE, TWO
 REAL THREE
 END TYPE
 END MODULE

Data objects declared in a module become global. Programs can use all the variables and constants
contained in the module, or they can use some of them by specifying the ONLY option with the USE
statement. To avoid name conflicts, programs can assign a local name to some or all variables, as in
the following:

 USE DATA_MODULE, AMODULE => A, DMODULE => D

Program Units and Procedures Page 9 of 35

9/2/97 3:25:06 PM

Global Allocatable Arrays

If several programs need large global allocatable arrays whose size is not known until program
execution, the array declarations can be placed in a module, then accessed by any routine which
needs access to them. The following example shows the parts of this kind of program:

 PROGRAM GLOBAL_WORK
 CALL CONFIGURE_ARRAYS
 CALL COMPUTE
 END PROGRAM GLOBAL_WORK

 MODULE WORK_ARRAYS
 INTEGER N
 REAL, ALLOCATABLE, SAVE :: A (:), B (:,:), C (:, :, :)
 END MODULE WORK_ARRAYS

 SUBROUTINE CONFIGURE_ARRAYS
 USE WORK_ARRAYS
 READ (*,*) N
 ALLOCATE (A(N), B(N,N), C(N,N,2*N))
 END SUBROUTINE CONFIGURE_ARRAYS

 SUBROUTINE COMPUTE
 USE WORK_ARRAYS
 . . . ! COMPUTATIONS
 END SUBROUTINE COMPUTE

Procedure Libraries and Operator Extensions

Modules can contain interface blocks for external procedures in a library. This allows you to use
argument keywords, optional arguments, and static checking of the references. You could create
several modules, each containing a different version of the interface block for different applications.

Modules can also contain interface blocks which extend the use of intrinsic operator symbols
(INTERFACE OPERATOR). For example, you can extend the addition operator (+) to specify
matrix addition for type MATRIX, or interval arithmetic addition for type INTERVAL. You can
define operators in external functions, either in Fortran or another language, and place only the
procedure interface in the module.

For information on interface blocks, see Procedure Interfaces.

Sample Program Keynames

The following example demonstrates the use of modules. The main program requests information for
a database key field consisting of name and social security number. A module subroutine called
check_ssn verifies that the social security number entered is valid.

The module also contains variables used in the main program, which does not need to redeclare
them. These same variables could be used by any other program which accesses either the subroutine
check_ssn or the database by its key. Some variables such as sort_name are not used by the
program, but are available if needed. The module and main program are stored in two separate files,
and the module name_ssn is compiled before the main program, key_names. The main program
renames the routine check_ssn, calling it verify instead.

 PROGRAM key_names
 ! input last name, first name, social security number

Program Units and Procedures Page 10 of 35

9/2/97 3:25:06 PM

 ! verify SSN to be a number
 ! calculate ssn_key (let’s pretend it’s the key of a DB)
 ! print out our information, get verification from user.

 use name_ssn, verify => check_ssn

 print *, ’Enter last name’
 read *, in_lastn
 print *, ’Enter first name’
 read *, in_firstn
 msg = ’Social security number OK’
 do while (msg .NE. ’ ’)
 print *, ’Enter social security number’
 read *, in_ssn
 call verify (in_ssn,msg)
 end do
 full_name = trim(in_firstn)//’ ’//trim(in_lastn)
 print *, full_name
 file_key%ssn = in_ssn
 file_key%lname = in_lastn
 file_key%fname = in_firstn
 print *, ’Database key is ’,file_key
 end program key_names

 module name_ssn
 type ssn_key
 character (len = 9)::ssn
 character (len = 20)::lname
 character (len = 20)::fname
 end type ssn_key
 character (len = 40)::full_name
 character (len = 40)::sort_name
 type (ssn_key) :: file_key
 character (len = 1), private :: SN
 character (len = 20) :: in_lastn
 character (len = 20) :: in_firstn
 character (len = 9) :: in_ssn
 character (len = 80)::msg
 integer, private :: J,K
 !
 contains
 subroutine check_ssn (ssn, errmsg)
 character (len = 9) :: ssn
 character (len = 80)::errmsg
 errmsg = ’ ’
 do j = 1,9
 SN = ssn(j:j)
 K = ichar(SN)
 select case (K)
 case (48:57)
 errmsg = ’ ’
 case default
 errmsg = ’Invalid social security number’
 exit
 end select
 end do
 if (errmsg .NE. ’ ’) print *, errmsg
 end subroutine check_ssn
 end module name_ssn

Procedure Libraries

Visual Fortran includes several run-time library modules to assist you in special tasks:

Program Units and Procedures Page 11 of 35

9/2/97 3:25:06 PM

• Run-time functions and subroutines (modules DFLIB and DFLOGM)
• Procedures to aid in porting your programs to or from other systems (module DFPORT)
• Procedures to help write foreign language programs for international markets (module

DFNLS)
• Procedures to help write programs that use Component Object Model (COM) and Automation

servers (modules DFCOM, DFCOMTY, and DFAUTO)

These functions and subroutines are automatically linked to your program if called, when you include
the statement USE module name in your program.

You can use keywords with these procedures just as you can with the Fortran intrinsic functions. The
dummy argument names to use as keywords are shown in the Reference.

For more information on these procedures, see Portability Library, Using National Language Support
Routines, Using QuickWin, Using COM and Automation Objects, and Introduction to the Reference
in the Reference.

Procedures
Procedures can be either subroutines or functions. Fortran 90 includes the following types of
procedures:

• External procedures, which are defined in an external program unit.
• Internal procedures, which are defined within a program unit and accessible only to that unit.

The program containing the internal procedure is called the host. Internal procedures follow a
CONTAINS statement.

• Intrinsic procedures, which are defined within the compiler, that can be used without any
additional declaration or specification. (If you use an intrinsic procedure as an argument to
another procedure, you need to declare it with the INTRINSIC statement.)

• Module procedures, which are defined in a module, accessible to all program units which use
that module. The module containing the procedure is called the host.

A procedure reference is the method of invoking a procedure. A subroutine reference uses a CALL
statement or sometimes a defined assignment statement. A function reference is either an expression
using the name of the function or a defined operator.

Functions are invoked by reference within an expression. A function result is the value or set of
values returned to the expression by the function. For more information, see Functions and the
RESULT Keyword and FUNCTION in the Reference.

A subroutine is a program unit that can be called from other program units with a CALL statement.
A subroutine does not directly return a value. However, values can be passed back to the calling
program unit through arguments or variables known to the calling program. See the sections
Association and Scope for information on how variables are shared and transferred between program
units.

When invoked, a subroutine performs the set of actions defined by its executable statements. The
subroutine then returns control to the statement immediately following the one that called it, or to a

Program Units and Procedures Page 12 of 35

9/2/97 3:25:06 PM

statement specified as an alternate return. For more information, see SUBROUTINE in the Reference.

If you have defined special or extended operators, the subroutine or function that defines the
operation is invoked each time you use the special operator.

Alternate returns are arguments that direct execution to jump to a labeled statement rather than to the
statement immediately following the statement which called the subroutine. These have traditionally
been used for error exits, but IF blocks and CASE blocks can be better alternatives.

Arguments are the variables and constants in the argument list that carry data to or from a procedure.
Actual arguments are the entities used in the invoking procedure. Dummy arguments are dummy
names until they are associated with actual arguments. If one of the dummy arguments is a procedure
rather than a variable, it is called a dummy procedure.

A procedure interface determines the forms of reference through which it can be invoked. A
procedure interface consists of:

• The procedure name
• A statement declaring the procedure as a subroutine or a function
• The number and characteristics of the arguments
• The characteristics of the result value, if it is a function
• Any generic identifiers associated with the procedure

Interfaces can be either explicit or implicit. Internal, module, and external procedures as well as
statement functions all have explicit interfaces. External procedures have implicit interfaces by
default, unless you supply an interface block for that procedure. Procedure interfaces and interface
blocks are discussed in Procedure Interfaces; generic procedures are discussed in Generic Interfaces
and Generic Procedures.

A recursive procedure can reference itself directly or indirectly.

A pure procedure is a user-defined procedure that has no side effects. An elemental procedure is a
restricted form of pure procedure. It can be passed an array, which is acted upon one element at a
time.

A procedure can be declared with attributes. For more information, see Declaring Procedure
Attributes.

The RETURN Statement can be used to terminate a procedure, but the CASE construct offers a
better method of return.

External Procedures

External procedures are functions or subroutines that you write, which are located outside of the
main program. They can be stored in a separately compiled source file, or they can be included in the
main program's source code after the END statement, as in FORTRAN 77. External procedures can
themselves contain internal functions or subroutines, as long as the internal procedures fall between a
CONTAINS statement and the end of the procedure.

An external procedure or module procedure can contain one or more ENTRY statements, which

Program Units and Procedures Page 13 of 35

9/2/97 3:25:06 PM

allow you to enter at some point inside the procedure. In effect, this allows you to group several
related functions or subroutines that can be conditionally entered. Internal procedures cannot contain
ENTRY statements.

The ENTRY Statement

The ENTRY statement allows you to enter a subprogram at a particular executable statement. Its
form and use are similar for both a subroutine and a function. The statement includes a name for the
entry point, an optional argument list, and, in the case of a function, an optional RESULT parameter
and result name. A procedure can have one or more ENTRY statements.

ENTRY statements can only be used in external procedures or module procedures. Fortran 90 block
constructs such as CASE provide a better way of controlling the flow of execution through a
procedure.

See also ENTRY in the Reference.

Internal Procedures

Internal procedures are functions and subroutines that follow a CONTAINS statement in a program
unit. Only the program that contains them can use the procedure. (Procedures located after the
CONTAINS statement of a module are called module procedures.) Internal procedures are similar to
external procedures except:

• Names of internal procedures are local names, not global names.
• Internal procedures cannot have an ENTRY statement.
• You cannot use an internal procedure as an actual argument when calling another procedure.
• They have access to host entities by host association, which means that any names declared in

a main program are also known to internal functions or subroutines.

Internal procedures cannot be nested within one another. See the figure The Modular Structure of a
Visual Fortran Program for a diagram of program units.

The CONTAINS Statement

The CONTAINS statement marks the delimiter between the executable portion of a program and
any internal subprograms it may contain. It separates internal procedures from the host procedure,
and it separates the specification part of a module from the module procedures.

If a program contains internal subprograms, they must follow a CONTAINS statement. Any number
of internal functions or subroutines can follow the CONTAINS statement, but the internal
procedures themselves may not contain a CONTAINS statement.

In FORTRAN 77, one source file could contain a program followed by several function or subroutine
definitions. When it was compiled, the file made up one entire program with external functions and
subroutines. You can still do this in Visual Fortran. By using the CONTAINS statement, you can
include within a main program any procedure whose use is limited to that program. The procedure
then becomes internal to the program rather than external.

The following sample program contains an internal subroutine find, which performs calculations

Program Units and Procedures Page 14 of 35

9/2/97 3:25:06 PM

that the main program then prints. The variables a, b, and c declared in the host program are also
known to the internal subroutine. Sharing of data and variables between a host program and its
internal procedures is described in Association.

 program INTERNAL
 ! shows use of internal subroutine and CONTAINS statement
 real a,b,c
 call find
 print *, c
 contains
 subroutine find
 read *, a,b
 c = sqrt(a**2 + b**2)
 end subroutine find
 end

See also CONTAINS in the Reference.

Intrinsic Procedures

Intrinsic procedures are predefined by the Fortran 90 language and Visual Fortran extensions.
Intrinsic procedures are automatically linked to your program.

Among other things, intrinsic procedures carry out data type conversions and return information
about data types, perform operations on both numeric and character data, test for the end of the file,
return addresses, and perform bit manipulation.

There are four classes of intrinsic procedures, as follows:

• Elemental procedures
• Inquiry functions
• Transformational functions
• Nonelemental procedures

In the Reference, the section Introduction to the Reference lists intrinsic procedures by their function.
Each reference entry indicates whether the procedure is inquiry, elemental, transformational, or
nonelemental, and whether it is a function or a subroutine.

An inquiry function returns a result that is dependent on the properties of its argument. An elemental
procdure is specified for scalar arguments, but can be applied to array arguments. Almost all
transformational functions have one or more array-valued arguments or an array-valued result.
Nonelemental procedures must be called with only scalar arguments; they return scalar results. All
subroutines (except MVBITS) are nonelemental.

Some intrinsic functions have two names, a generic name and a specific name. Generic functions
accept arguments of more than one type, and the result type is the same as that of the arguments.
Specific functions accept only specified argument types and return specified result types.

If you write a routine or create a variable whose name duplicates that of an intrinsic procedure, any
reference to that name will invoke your routine (or your variable), not the intrinsic procedure.

This topic also discusses using intrinsic functions and elemental intrinsic procedures.

Program Units and Procedures Page 15 of 35

9/2/97 3:25:06 PM

The INTRINSIC statement is discussed in The INTRINSIC Attribute and Statement.

Using Intrinsic Functions

The data type of an intrinsic function is the same as the data type of its return value. For example, the
CEILING intrinsic function returns an integer; it is therefore an integer function. Some intrinsic
functions, such as INT, can take arguments of more than one type, but return a particular type.
Others, such as ABS, can return a value that has the same type as the argument.

An IMPLICIT statement cannot change the type of an intrinsic function. An intrinsic function name
can appear in a type statement, but only if the type is the same as the standard type for that intrinsic
function. If you use an intrinsic function name in a type statement that is not the same type as the
standard for that function, you are declaring a new local procedure or variable. For more information
on names, name duplication, and scope of names, see Scope and Duplicating Names of Intrinsic
Procedures.

If the arguments are of different types and kinds, or not of the type and kind specified, Visual Fortran
first attempts to convert the arguments to the correct type and kind. For example, if I and J in IDIM
(I, J) are real numbers, they are first converted to INTEGER type, and then the operation is
performed. Or, if I is of type INTEGER(2) and J is of type INTEGER(4), I is first converted to
INTEGER(4), and then the operation is performed. For more information on type conversion, see
Type Conversion of Numeric Operands.

All intrinsic procedures that take two or more integer arguments allow a mix of integer kinds. In this
case, all integer arguments are promoted to the largest integer kind of all arguments, and the result is
based on the larger kind values. For example:

 integer(1) a1, b1
 integer(2) a2, b2
 integer(4) a4, b4
 mod(a1,b4) !a1 promoted to integer(4), result is integer(4)
 mod(a2,b1) !b1 promoted to integer(2), result is integer(2)
 mod(a4,b2) !b2 promoted to integer(4), result is integer(4)

When logarithmic and trigonometric intrinsic functions act on a complex argument, they return the
principal value. The principal value of a complex number is the number whose argument (angle in
radians) is less than or equal to pi and greater than -pi.

Elemental Intrinsic Procedures

An elemental intrinsic procedure operates on an array element-by-element when you pass to it the
name of a whole array. Elemental procedures can simplify the way a program handles arrays. Many
algorithms involving arrays can now be written conveniently as a series of computations with whole
arrays. For example, if a, b, c, and s are all arrays of similar shape, then statements such as:

 a = b + c

or

 s = sum(a)

can replace entire DO loops. In the next example, since the SIN(X) function is an elemental

Program Units and Procedures Page 16 of 35

9/2/97 3:25:06 PM

procedure, it operates element-by-element on the array x when you pass it the name of the whole
array:

 real, dimension (5,5) x,y
 . . . !Assign values to x.
 y = sin(x) !Pass the entire array as an argument.

Many mathematical formulas can be translated directly into Fortran by use of array-processing
elemental procedures.

Module Procedures

A module procedure is a procedure declared and defined in a module, between its CONTAINS and
END statements. Any program that accesses the module by using the USE statement has access by
use association to public procedures in the module.

The MODULE PROCEDURE statement is an optional part of an interface block. It names module
procedures which can be identified by a generic name given in the INTERFACE statement. Generic
procedures are further discussed in Generic Interfaces and Generic Procedures.

See also MODULE PROCEDURE in the Reference.

Procedure Interfaces

Every subroutine or function has an interface, which consists of the characteristics of the procedure,
its name, the nature of each dummy argument, and the procedure’s generic identifiers, if any. A
procedure interface can be either explicit or implicit.

In FORTRAN 77, the interface to an external function or subroutine is deduced from the form of
reference to the procedure, as well as any declarations of the procedure name. Fortran 90 provides a
method of making information about a procedure available through explicit interfaces. Procedures
whose interfaces must be deduced, as in FORTRAN 77 are said to have implicit interfaces.
Procedures whose interface is fully known are said to have explicit interfaces.

Internal, module, and intrinsic procedures as well as statement functions all have explicit interfaces.
External procedures have implicit interfaces by default, unless you supply an interface block for that
procedure. Specifying an interface block for a procedure is equivalent to declaring it external.

An interface block allows the compiler to confirm the correctness of subprogram calls. The compiler
verifies that the number, types, and attributes of arguments in a subprogram call are consistent with
those in the interface.

This topic also discusses the INTERFACE statement and interface operator and interface assignment.

The INTERFACE Statement

An INTERFACE statement marks the beginning of an interface block. You must provide an explicit
INTERFACE statement in the following cases:

• If the procedure has any of the following:

Program Units and Procedures Page 17 of 35

9/2/97 3:25:06 PM

• An optional dummy argument
• A result that is array-valued or a pointer (functions only)
• A dummy argument that is an assumed-shape array, a pointer, or a target
• A result whose length is neither assumed nor a constant (character functions only)

• If a reference to the procedure appears as follows:
• With an argument keyword
• As a defined assignment (subroutines only)
• In an expression as a defined operator (functions only)
• As a reference by its generic name
• In a context that requires it to be pure

• If the procedure is elemental

An example of an interface block is:

 INTERFACE

 SUBROUTINE Ext1 (x, y, z)
 REAL, DIMENSION (100,100) :: x, y, z
 END SUBROUTINE Ext1

 SUBROUTINE Ext2 (x, z)
 REAL x
 COMPLEX (KIND = 2) z (2000)
 END SUBROUTINE Ext2

 FUNCTION Ext3 (p, q)
 LOGICAL Ext3
 INTEGER p (1000)
 LOGICAL q (1000)
 END FUNCTION Ext3
 END INTERFACE

See also INTERFACE in the Reference.

Interface Operator and Interface Assignment

The INTERFACE statement can also be used to define new operators, and to extend intrinsic
operators as well as the assignment operator (=). For a full discussion, see Defined Operators and
Expressions in Declaring and Using Data.

See also in the Reference: INTERFACE and Assignment(=) -- Defined Assignment.

Generic Interfaces and Generic Procedures

An interface defines a generic procedure if a name follows the INTERFACE statement, and the
interface block contains more than one procedure. For example:

 INTERFACE LINE_EQUATION

 SUBROUTINE REAL_LINE_EQ(X1,Y1,X2,Y2,M,B)
 REAL,INTENT(IN) :: X1,Y1,X2,Y2
 REAL,INTENT(OUT) :: M,B
 END SUBROUTINE REAL_LINE_EQ

 SUBROUTINE INT_LINE_EQ(X1,Y1,X2,Y2,M,B)
 INTEGER,INTENT(IN) :: X1,Y1,X2,Y2

Program Units and Procedures Page 18 of 35

9/2/97 3:25:06 PM

 INTEGER,INTENT(OUT) :: M,B
 END SUBROUTINE INT_LINE_EQ

 END INTERFACE

In this example, LINE_EQUATION is the generic name which can be used for either
REAL_LINE_EQ or INT_LINE_EQ. Fortran selects the appropriate subroutine according to the
nature of the arguments passed to LINE_EQUATION. Even when a generic name exists, you can
always invoke a procedure by its specific name. In the previous example, you can call
REAL_LINE_EQ by its specific name (REAL_LINE_EQ), or its generic name LINE_EQUATION.

Procedures identified with a generic name can be a mix of functions and subroutines, provided you
use the name consistently. In the preceding example, if REAL_LINE_EQ were a function instead of
a subroutine, you could call LINE_EQUATION as a function with real arguments, or as a subroutine
with integer arguments. A compile-time error would be generated if you used LINE_EQUATION as
a function with integer arguments.

When you are designing a set of procedures that can be referred to by one generic name, you should
make sure that the generic reference is unambiguous. You can do this by making sure one of the
following is true:

• At least one of the arguments is of a different type in each procedure
• The number of nonoptional arguments or their names is different for each procedure
• At least one of the arguments has a different kind type parameter for each procedure
• If the arguments are arrays, they are of a different rank (number of dimensions) in each

procedure

Resolving Procedure References discusses the issue of ambiguous name references.

Dummy Procedures

If a procedure definition contains an interface block, and a subroutine or function declared in the
interface block is also named as an argument to the procedure being defined, then the subroutine or
function in the interface block is called a dummy procedure.

The following example shows a dummy procedure used as a dummy argument:

 FUNCTION fnsam(fred,x)
 INTERFACE
 SUBROUTINE fred(a,b,c)
 END SUBROUTINE
 END INTERFACE
 REAL x, a1, b1
 !
 CALL fred(a1,b1,x)
 fnsam = a1
 END FUNCTION

Subroutine fred can be defined in any other program unit; it is treated as an external subroutine.
Since it is a dummy argument to fnsam, it is a dummy procedure. The rules of host and use
association apply to dummy procedures, as described in Association and Scope in this chapter.

Program Units and Procedures Page 19 of 35

9/2/97 3:25:06 PM

Recursive Procedures

A recursive procedure is a function or subroutine that references itself, either directly or indirectly.
You must specify RECURSIVE in the SUBROUTINE or FUNCTION statement to use this
feature.

Objects in recursive subprograms have, by default, the AUTOMATIC attribute. You can override
this by using the SAVE statement or the STATIC attribute, either on an object-by-object basis, or for
the entire subprogram (by specifying the SAVE statement with no object name). For more
information, see AUTOMATIC, STATIC, and SAVE in the Reference.

Local variables initialized with a DATA statement are defined only once, regardless of the number of
layers of recursion. This is equivalent to specifying SAVE for these variables, and so is referred to as
DATA-implied SAVE.

An example of recursion is shown in the following code:

 ! RECURS.F90
 !

 i = 0
 CALL Inc (i)
 END

 RECURSIVE SUBROUTINE Inc (i)
 i = i + 1
 CALL Out (i)
 IF (i.LT.20) CALL Inc (i) ! This also works in OUT
 END SUBROUTINE Inc

 SUBROUTINE Out (i)
 WRITE (*,*) i
 END SUBROUTINE Out

This example can be found in in the /DF/SAMPLES/TUTORIAL subdirectory as RECURS.F90.

See also RECURSIVE in the Reference.

Pure Procedures

A pure procedure is a user-defined procedure that is specified by using the prefix PURE (or
ELEMENTAL) in a FUNCTION or SUBROUTINE statement. Pure procedures are a feature of
Fortran 95.

A pure procedure has no side effects. It has no effect on the state of the program, except for the
following:

• For functions: It returns a value.
• For subroutines: It modifies INTENT(OUT) and INTENT(INOUT) parameters.

The following intrinsic and library procedures are implicitly pure:

• All intrinsic functions
• The elemental intrinsic subroutine MVBITS

Program Units and Procedures Page 20 of 35

9/2/97 3:25:06 PM

• The library routines in the HPF_LIBRARY (DIGITAL UNIX only)

A statement function is pure only if all functions that it references are pure.

For more information, see PURE in the Reference.

Elemental Procedures

An elemental procedure is a user-defined procedure that is a restricted form of pure procedure. An
elemental procedure can be passed an array, which is acted on one element at a time. Elemental
procedures are a feature of Fortran 95.

To specify an elemental procedure, use the prefix ELEMENTAL in a FUNCTION or
SUBROUTINE statement.

For more information, see Pure procedures and ELEMENTAL in the Reference.

Functions and the RESULT Keyword

A function is a subprogram that has a FUNCTION statement as its first statement and includes the
name of the function. The first statement can include an argument list, a type specification, the
keyword RECURSIVE, and the keyword RESULT and result name. The last statement is either
END or END FUNCTION.

A function result is usually the same name as the function itself, but you can specify a different name
by using the keyword RESULT and result name. This is particularly useful for recursive functions.
The function result variable has the function name unless a different result name is specified.

If RESULT is specified:

• The result of the function has the specified result name in place of the function name
• The result name cannot be the same as the function name
• The function name cannot appear in a specification statement within the function, but the

function type can be specified in the header

The type specification of the function result can be either in the FUNCTION statement or in a type
statement within the function using the result name, but both specifications cannot be used together.
If you do not specify a type, the implicit typing rules apply.

If the function result is array-valued or a pointer, you must specify the name of the result variable
within the function. If the function result is a pointer, the function either associates a target with the
variable or its association status is disassociated.

See also FUNCTION and RESULT in the Reference.

The RETURN Statement

The RETURN statement terminates execution of a procedure and transfers control back to the
calling program. It can be placed within the body of the procedure, such as in IF blocks for

Program Units and Procedures Page 21 of 35

9/2/97 3:25:06 PM

conditional returns, and can be used more than once to provide alternate points for leaving the
procedure. The statement is often placed immediately before the END statement, but this is not
necessary because END performs the same function.

In a subroutine, the RETURN statement can include a scalar integer expression for use with
alternate returns. Its value must be less than or equal to the number of asterisks (*) in the argument
list. Fortran 90 provides the CASE construct, which is a better method of directing the return.

See also RETURN in the Reference.

Declaring Procedure Attributes

Procedures as well as data objects have attributes. Attributes that specify properties of procedures
and their arguments are:

• OPTIONAL
• INTENT
• EXTERNAL
• INTRINSIC

SAVE affects variable values in procedures.

EXTERNAL and INTRINSIC are mutually exclusive, since a procedure is either an external or
intrinsic procedure, but not both.

All attributes can be expressed in two ways: either as a statement or as an attribute in a type
declaration statement. The sections which follow describe both ways of declaring the attribute.

Variable Values in Procedures

To make sure that variables you use in procedures retain their association status, allocation status,
definition status, and value following execution of a RETURN or END statement, you should use
the SAVE attribute in the module, subroutine, or function. The SAVE attribute has no effect when it
appears in a main program. For information on what happens to variable values after exiting, see
Defining Variables.

For more information on SAVE, see The SAVE Attribute and Statement.

The OPTIONAL Attribute and Statement

The OPTIONAL attribute specifies that a dummy argument need not be associated with an actual
argument in a reference to a procedure. You can use the PRESENT intrinsic function to determine if
an actual argument has been passed to the procedure. You can use the OPTIONAL attribute only in a
subprogram or an interface block, and only for dummy arguments.

The OPTIONAL attribute can be assigned by a type declaration statement or by an OPTIONAL
statement. The OPTIONAL statement has the form:

OPTIONAL [::] dummy-argument-name-list

Program Units and Procedures Page 22 of 35

9/2/97 3:25:06 PM

An example of an OPTIONAL statement is:

 SUBROUTINE EX (a, b)
 OPTIONAL :: a

The form of the OPTIONAL attribute specification is:

type-spec, OPTIONAL [[, attribute-spec] ::] dummy-argument-name-list

An example of an OPTIONAL attribute specification is:

 SUBROUTINE EX (a, b, c)
 REAL, OPTIONAL :: b,c

This subroutine could be called with any of these statements:

 CALL EX (x, y, z) !All 3 arguments are passed.

 CALL EX (x) !Only the first argument is passed.

 CALL EX (x, c=z) !The first optional argument is omitted.

Note that you cannot use a series of commas to indicate omitted optional arguments, as in the
following example:

 CALL EX (x,,z) !Malformed statement.

This results in a compile-time error.

For more information on how to call procedures with optional arguments, see Argument Keywords
and Optional Arguments.

See also OPTIONAL in the Reference.

The INTENT Attribute and Statement

You can specify the intended use of a dummy argument with the INTENT attribute to protect against
unintended actions. You cannot use the attribute for a dummy procedure. Dummy procedures are
discussed in Procedure Interfaces.

If you do not specify the INTENT attribute, the argument is subject to the limitations of the
associated actual argument.

An INTENT statement can appear only in the specification part of a subprogram or an interface
body. The form of the INTENT statement is:

INTENT (IN | OUT | INOUT) [::] dummy-argument-name-list

The INTENT (IN) attribute specifies that a dummy argument must not be redefined or become
undefined during execution of the procedure. If you attempt to redefine the dummy argument in the
procedure, a compile-time error results.

The INTENT (OUT) attribute specifies that a dummy argument must be defined before it is used in
the procedure. Any actual argument that becomes associated with it must be definable. On invocation

Program Units and Procedures Page 23 of 35

9/2/97 3:25:06 PM

of the procedure, such a dummy argument becomes undefined.

The INTENT (INOUT) attribute specifies that a dummy argument can receive data from and return
data to the invoking program unit. Any actual argument that becomes associated with the dummy
argument must be definable.

An example of an INTENT statement is:

 SUBROUTINE EX (a, b)
 INTENT (INOUT) :: a, b

The form of the INTENT attribute specification is:

type-spec, INTENT (IN | OUT | INOUT) [, attribute-list] :: entity-list

An example of an INTENT attribute specification is:

 SUBROUTINE MOVE (from, to)
 USE PERSON_MODULE
 TYPE (member), INTENT (IN) :: from
 TYPE (member), INTENT (OUT) :: to

See also INTENT in the Reference.

The EXTERNAL Attribute and Statement

The EXTERNAL attribute specifies that a procedure is an external function or subroutine, and
permits the name to be used as an actual argument. This attribute can be declared either as an
attribute parameter in a type declaration or as a statement.

The form of the EXTERNAL statement is:

EXTERNAL entity-list

An example of an EXTERNAL statement is:

EXTERNAL a, b

The form of the EXTERNAL attribute specification is:

type-spec, EXTERNAL [[, attribute-spec] ::] entity-list

An example of an EXTERNAL attribute specification is:

REAL, EXTERNAL :: a, b

If you include an interface block for an external procedure, you do not need to specify the
EXTERNAL attribute for it. For information on interface blocks, see Procedure Interfaces.

See also EXTERNAL in the Reference.

The INTRINSIC Attribute and Statement

The INTRINSIC attribute specifies that an object is the name of an intrinsic function, and lets you

Program Units and Procedures Page 24 of 35

9/2/97 3:25:06 PM

use the name of an intrinsic function as an actual argument in another procedure.

Only intrinsic functions with specific names can appear with the INTRINSIC attribute and be used as
actual arguments in calls to a procedure. The reference must be to the specific intrinsic name, not the
generic name.

The object cannot have been given the EXTERNAL attribute previously. This attribute can be
declared either as an attribute parameter in a type declaration or as a statement.

The form of the INTRINSIC statement is:

INTRINSIC entity-list

An example of an INTRINSIC statement is:

 INTRINSIC sin, cosine

The form of the INTRINSIC attribute specification is:

type-spec, INTRINSIC [[, attribute-spec] ::] entity-list

An example of an INTRINSIC attribute specification is:

 REAL, INTRINSIC :: sin, cosine

This declaration allows the sin and cosine intrinsic functions to be passed as an argument to another
procedure.

Certain specific function names cannot be used; these are indicated in Functions Not Allowed as
Actual Arguments in the Reference.

See also Intrinsic Procedures and INTRINSIC in the Reference.

Arguments

An argument is a means of passing data back and forth between the program unit invoking a
procedure, and the procedure itself.

This section also discusses argument keywords and optional arguments.

Host and use association features let you use variables in a procedure without having to pass them as
arguments. For more information, see Association and Scope.

You can also use modules to avoid having to pass arguments to a procedure. For more information,
see the example in Sample Program Keynames.

Argument Keywords

The concept of argument keywords is new with Fortran 90. An argument keyword is simply the
name of the dummy argument in the procedure argument list. Keywords can be used with dummy
arguments from the called procedure to explicitly associate a dummy argument with an actual
argument. They can be used to associate dummy and actual arguments that are not listed in the same

Program Units and Procedures Page 25 of 35

9/2/97 3:25:06 PM

sequence, or when optional arguments have been omitted from the argument list.

All procedures can be invoked with either positional arguments (arguments arranged in positional
sequence) or argument keywords. A keyword is required for an argument only if a preceding optional
argument is omitted or if the argument sequence is changed.

When you use a keyword in a procedure call, use an equal sign (=) between it and the constant or
variable actual argument. It has the same form as a simple assignment statement, as shown in the
next example.

All of the following references to the intrinsic function CMPLX are valid:

 ! Positional arguments.
 CMPLX (first, second, m)
 ! Keywords specified.
 CMPLX (y = second, kind = m, x = first)
 ! An optional argument is skipped.
 CMPLX (first, kind = m)

In the intrinsic function CMPLX, the dummy arguments are x, y, and kind, as shown in the
Reference. The arguments y and kind are optional for this function.

You can use the PRESENT intrinsic function to determine if an optional argument has been passed
to a procedure.

Entries in the Reference for intrinsic functions show the dummy variable names in the argument list.
Those names can be used as keywords.

Optional Arguments

Some dummy arguments can be optional. Every actual argument in the calling procedure must have a
corresponding dummy argument in the called procedure. However, you can include dummy
arguments in the dummy argument list that do not have corresponding actual arguments.
If any dummy arguments are optional, you must specify the OPTIONAL attribute when declaring the
argument. For more information, see The OPTIONAL Attribute and Statement.

Within a procedure, you can use the PRESENT intrinsic function to test whether or not an optional
argument has been specified.

An example of how to use optional arguments with a keyword follows:

 CALL SOLVE (fun, sol, print = 6)

 SUBROUTINE Solve (Funct, solution, method, strategy, print)
 INTERFACE
 FUNCTION Funct (x)
 REAL Funct, x
 END FUNCTION Funct
 END INTERFACE
 REAL solution
 INTEGER, OPTIONAL :: method, strategy, print
 . . .

In this example, when the interface is specified by an interface block, the name of the last argument
must be PRINT. (Note also that Funct in this example is a dummy procedure.)

Program Units and Procedures Page 26 of 35

9/2/97 3:25:06 PM

Block Data Program Units
A block-data subprogram is a program unit that defines initial values for variables in named common
blocks. It contains no executable statements, only data specifications and initial values. The format
of a block data program unit is:

BLOCK DATA [name]
[specifications]

END [BLOCK DATA [name]]

Variables are normally initialized with DATA statements. Variables in named common blocks can
be initialized once in the block-data subprogram or in one routine, or they can be initialized exactly
the same way in all routines. Variables in the blank (unnamed) common block cannot be initialized
in block-data subprograms. A better programming practice is to use modules rather than block data
program units to declare variables and their initial values.

A block data module can contain the following statements:

COMMON PARAMETER USE
DATA POINTER Derived-type definitions
DIMENSION RECORD Record structure declarations
EQUIVALENCE SAVE Type declaration statements
IMPLICIT STATIC

INTRINSIC TARGET

Type declaration statements in a block data program unit must not contain the following attribute
specifiers:

• ALLOCATABL E
• AUTOMATI C
• EXTERNAL
• INTENT
• OPTIONAL
• PRIVATE
• PUBLIC
• VOLATIL E

Even if you do not initially define all objects in a named common block, you must specify them if
you are defining at least one object in that common block. You can initialize objects in more than
one common block in one block data program unit.

A block data program unit can initially define only nonpointer objects. Any object associated with an
object in a common block is considered to be in that common block.

An example of a block data program unit is:

 BLOCK DATA WORK
 COMMON /WRKCOM/ A, B, C (10,10)
 DATA A /1.0/, B /2.0/, C /100*0.0/
 END BLOCK DATA WORK

Program Units and Procedures Page 27 of 35

9/2/97 3:25:06 PM

See also BLOCK DATA in the Reference.

Association
Association allows different program units to access the same value through different names. There
are three kinds of association:

• Name association
• Pointer association
• Storage association

Pointer association is discussed in Dynamic Association of Arrays and Pointers. Storage association
is discussed in Storage Association.

This section discusses name association. Names can be associated by argument, use, or host
association.

Argument Association

Arguments are the values passed to and from functions and subroutines through calling argument
lists. An actual argument is the specific variable, expression, array, function name, or other item
passed to a subroutine or function when it is called. Within the called procedure, the argument is a
dummy argument.

The reference to a procedure establishes an association between a dummy argument and an actual
argument with a different name. If a subroutine has three dummy arguments X, Y, and Z, it can be
called in several ways:

 ! Conventional method.
 CALL EXT1 (A, B, C)
 ! One dummy name is specified.
 CALL EXT1 (A, B, Z=C)

 ! Arguments can be passed out of order, but must be
 ! associated with the correct dummy argument.
 CALL EXT1 (Z=C, X=A, Y=B)
 . . .
 END

 SUBROUTINE EXT1(X,Y,Z)
 REAL X, Y
 REAL, OPTIONAL :: Z
 . . .
 END SUBROUTINE

Argument A is associated with dummy argument X either by its location within the parentheses, or
by explicit assignment, as in the fifth line of the example. Once EXT1 executes and returns, A is no
longer associated with X, B is no longer associated with Y, and C is no longer associated with Z.

If an actual argument is a constant, a function reference, or an expression other than a single variable,
you cannot assign a value to the corresponding dummy argument. If you do, the result is
unpredictable.

Program Units and Procedures Page 28 of 35

9/2/97 3:25:06 PM

If an actual argument is an expression, it is evaluated first, before association of the dummy and
actual arguments. If an actual argument is an array element, its subscript expressions are evaluated
before the association. The subscript expressions remain constant throughout the execution of the
subroutine or function, even if they contain variables that receive new values during the execution.

The following table shows how actual and dummy arguments can be associated:

When the actual argument is The dummy argument is
A variable, an array element, a derived-type
component, or an expression

A variable name

An array or an array element An array name
An array A variable
An alternate-return specifier (*label) in the
CALL statement

An asterisk (*)

The name of an external or intrinsic procedure Any unique name that is used in a subroutine call or
function reference within the procedure

When the actual argument is an array or array element, the number and size of its dimensions can be
different from those of the dummy argument, but any reference to the dummy array must be within
the limits of the memory sequence in the actual array. A reference to an out-of-bounds element is not
detected as an error, and has unpredictable results.

When the argument is an array, each element is passed to the procedure one element at a time, and
the procedure is executed once for each element. The procedure must be declared in an
INTERFACE statement, or it must be an intrinsic function, if arrays will be passed to a scalar
dummy argument.

When the argument is an external procedure or an intrinsic one, the actual argument must be
declared with the EXTERNAL statement, or it must be an intrinsic function declared with an
INTRINSIC statement. (Certain intrinsic functions cannot be used this way; see Functions Not
Allowed as Actual Arguments in the Reference.)

Use Association

The sharing of named entities between a module and the program using it is called use association.
Through use association, procedures and data object that are public in the module are known and
definable in the program using the module.

The USE statement allows a program to access entities defined in modules, such as the following:

• Named data objects
• Derived types
• Interface blocks
• Procedures
• Generic identifiers
• Namelist groups

Because use association expands the constants, variables, and procedures available to a using
program, it is possible to encounter duplication of names. If a program uses several modules, and

Program Units and Procedures Page 29 of 35

9/2/97 3:25:06 PM

entities in some modules duplicate names of entities in another module, then the using program must
do one of the following:

• Not refer to either entity which shares a duplicate name
• Rename one or both entities so there is no longer any name duplication

The local name of a module entity (such as a variable or procedure name) used in a program must not
duplicate another local name accessible to the program. If a function or subroutine in a module
duplicates the name of an intrinsic Fortran procedure, then the intrinsic procedure is not available.

For more information on local and global names, see Scope. For information on how to rename
module entities, see The USE Statement.

Host Association

Any program unit that contains an internal procedure is said to be the host for that internal procedure.
Host association allows a host program, its internal procedures, module subprograms, and
derived-type definitions to access the same entities. Host association remains in effect throughout the
execution of the program.

The following example shows how a host and an internal procedure can use host-associated entities:

 program INTERNAL
 ! shows use of internal subroutine and CONTAINS statement
 real a,b,c
 call find
 print *, c
 contains
 subroutine find
 read *, a,b
 c = sqrt(a**2 + b**2)
 end subroutine find
 end

In this example, the variables a, b, and c are available to the internal subroutine find through host
association. They do not have to be passed as arguments to the internal procedure. In fact, if they are,
they become local variables to the subroutine and hide the variables declared in the host program.

Conversely, the host program knows the value of c, when it returns from the internal subroutine that
has defined c.

Scope
The Fortran 90 standard defines names in terms of scoping units. A scoping unit is a program or part
of a program in which a name is defined and known. It can be an entire program, a program unit, a
single statement, or a part of a statement. Scope defines the extent to which a name is recognized,
whether the name is a constant, a variable, a procedure, an operator, or any other kind of name.

If a variable is used outside of its scope, it is undefined. See Undefined Variables for other instances
of when variables become undefined.

The following sections discuss the concept of scope as it applies to:

Program Units and Procedures Page 30 of 35

9/2/97 3:25:06 PM

• Global, local, and statement names
• Resolving references to names

Scope of Names

Program Structure, Characters, and Source Forms introduced the concept of names. A name can be
applied to a program, subprogram, variable, array, dummy argument, named constant, derived type,
or block construct. There are three kinds of names: global, local, and statement.

This section also discusses duplicating names of intrinsic procedures, common block names,
function result names, derived-type component names, the scope of argument keywords, and the
scope of other entities: labels, I/O units, operators and assignment symbols.

Global Names

Global names identify program units, common blocks, and external procedures. They are recognized
anywhere in a program, so they can be defined only once within a program. For example, if you use a
subroutine named Sort in one program, you cannot also have a common block or a function named
Sort in that program.

Local Names

Local names identify variables (both scalar and array), constants, named constructs, statement
functions, internal procedures, module procedures, dummy procedures, intrinsic procedures, generic
identifiers, derived types, and namelist group names. Components of a derived data type and
argument keywords (dummy arguments) are also examples of local names. Local names hide global
names and other local names in the same program unit. (Exceptions are argument keywords, generic
names, and common block names.) The following example shows local names in a module:

 MODULE test1
 CHARACTER (len=1), private :: S
 CHARACTER (len=9) SSN

 CONTAINS

 SUBROUTINE print_part
 DO j = 1,9
 S = ssn(j:j)
 print *, S
 END DO
 END SUBROUTINE

 END MODULE

The following line declares S and SSN as dummy arguments in:

 print_part:

 SUBROUTINE print_part (S, SSN)

In this case, S and SSN become variables local to the subroutine, and hide the variables S and SSN
declared in the rest of the module. In order to recognize the variables of the declarations part of the
module, they cannot be stated as arguments to the subroutine.

If a name is local to one program unit, the same name can be used as either a local or a global entity

Program Units and Procedures Page 31 of 35

9/2/97 3:25:06 PM

in other program units. Resolving Procedure References explains how the compiler resolves
duplicate or ambiguous name references.

Duplicating Names of Intrinsic Procedures

Since Fortran does not reserve keywords as in other languages, you can create variables, constants, or
procedures that have the same name as Fortran intrinsic procedures. Once you do this, however, the
original intrinsic function is no longer accessible. For example, the following code defines a new
function sin:

 SUBROUTINE sub
 . . .
 CONTAINS
 FUNCTION sin(x)
 . . .
 END FUNCTION sin
 END SUBROUTINE sub

Any references to sin in subroutine sub invokes the internal function, not the intrinsic function of
the same name.

Similarly, any type declaration that names an intrinsic procedure, giving it a different type than the
intrinsic procedure’s standard type, creates a new local name. The following example declares a
variable called sin:

CHARACTER (len = 10) sin

Any program or internal procedure that has access to this character variable can no longer use the
intrinsic function of the same name. If this variable is declared in a module with the PRIVATE
attribute, however, then any program unit outside the module still can use the intrinsic SIN function.

Statement Names

A statement name is a name whose scope is one statement. Statement names can appear in statement
function statements, or in an implied-DO of a DATA statement or an array constructor. The name of
a variable that appears as a dummy argument in a statement function statement has a scope of the
statement in which it appears. The scope of the DO variable, which must be of integer type, is the
implied-DO list.

 DIMENSION x(10)
 Add (a,b) = a + b
 DO n = 1,10
 x(n) = add(y,z)
 END DO

In this example, the scope of a and b is limited to the statement function itself. The scope of n is the
DO loop.

Common Block Names

A common block name is a global name. Since local names may duplicate global names, any
reference to that name identifies the local entity, except when the reference occurs in a COMMON
or SAVE statement. When a common block is named in a SAVE statement, it should be enclosed in
slashes (/) to distinguish it from any local variables with the same name, as in the following

Program Units and Procedures Page 32 of 35

9/2/97 3:25:06 PM

example:

COMMON /ralph/ fred, ethel, lucy
character(20) ralph
SAVE /ralph/ !Common block is saved, not the variable

The name may not be used for named constants, intrinsic procedures, or a local variable that is also
an external function in a function subprogram. If two program units do not reference one another, the
same name can be used for a common block in one, and an intrinsic procedure name in the other.

Function Result Names

The other instance when duplicate names are allowed occurs with function results. For each
FUNCTION statement or ENTRY statement in a function subprogram, there is a result variable. If
there is no RESULT clause specifying a different variable name, the result variable has the same
name as the function being defined.

Derived-Type Component Names

If a variable is a component of another name, it has the same scope as its parent variable. A derived
type declared in a module, for example, has the scope of the module itself and any program units that
use it. The components of the derived type are recognized in the same program units the entire
derived type is. The same is true for a component of an array; it has a valid, recognized value only in
the same program units as the original array of which it is a part.

Components of a derived type can duplicate the name of other local variables, since the type
components never appear without a qualifier. For example:

 TYPE FOO
 INTEGER IJK
 CHARACTER L
 END TYPE FOO
 REAL IJK
 TYPE (FOO) :: SAMPLE

In this example, the integer component of SAMPLE is referred to as SAMPLE%IJK. Any references
to IJK alone, outside of the TYPE...END TYPE declaration, refer to the real variable, not the
derived type, and there is no ambiguity.

Scope of Argument Keywords

Argument keywords are local entities. A dummy argument name is known only to its host, which can
be an internal procedure, module procedure, or procedure interface block that defines the argument.
If the procedure or procedure interface block becomes accessible to another program unit through the
USE or CONTAINS statements, the argument keyword is also accessible to the same program unit.

Dummy arguments of intrinsic procedures are local keywords in the program units that make
reference to the procedure. Dummy arguments of internal procedures, module procedures, or
procedure interface blocks have a scope of the host program unit, or other program units accessible
by use or host association. As a keyword, the dummy argument name can only appear in the
procedure reference.

For information on how to invoke procedures using keywords, see Argument Keywords.

Program Units and Procedures Page 33 of 35

9/2/97 3:25:06 PM

Other Special Cases

Other entities such as labels, I/O units, operators and assignment symbols have scope as well. The
following rules apply:

• Labels are always considered to be local. No two statements in the same scoping unit can have
the same label.

• Intrinsic operators (such as +, -, *, **, or /) are global, but user-defined operators are local
entities. The scope of the special operator is the same as the scope of the procedure that
defines it. You can make a user-defined operator either global or generic by using a procedure
interface block. For information on creating procedure interface blocks, see Defined Operators
and Expressions.

• The assignment symbol (=) is a global entity. You can identify additional generic assignment
operations in an interface block, as described in Defined Operators and Expressions.

Resolving Procedure References

Because Fortran allows duplication of names, you must make sure that references to names are
unambiguous. The compiler takes the following steps to determine the correct reference for a name:

1. It looks for an interface block. If there is one, it looks for a generic name for the interface
block. If the generic name matches, the procedure is generic (see below, Resolving Generic
References).

2. If the generic name does not match, or if the interface block does not have one, the compiler
looks for procedures defined in the interface block. If it finds a matching procedure, it is
specific, not generic.

3. Does the procedure have the INTRINSIC attribute? If so, then the intrinsic procedure
definition tells whether the reference is generic or specific.

4. Is the name declared as an EXTERNAL procedure? If so, the procedure is specific (see below,
Resolving Specific References).

If a match has not yet been found, steps 1 through 4 are repeated for any module the program uses,
and for any containing host program. If a match still has not been found, the compiler continues with
the following steps:

• It looks for a dummy argument to match the name of the procedure
• It looks for an intrinsic procedure with that name

If the procedure still has not been identified, the compiler assumes it is an external procedure.

Resolving Generic References

Once a procedure is determined to be generic, the compiler checks the interface block to find the
specific one that matches by checking:

• Whether it is a subroutine or a function
• The number and characteristics of the arguments
• The characteristics of the result value, if it is a function

To insure that a generic reference is unambiguous, you need to make sure that every procedure which
uses that generic name satisfies at least one of the following:

Program Units and Procedures Page 34 of 35

9/2/97 3:25:06 PM

• One procedure is a subroutine, and the other is a function, making the calling method different
• There is a different number of non-optional arguments for each procedure
• Corresponding dummy arguments for each procedure are of different type, have different kind

type parameters, or ranks (if they are arrays)

The following example shows how a module can define three separate procedures, and a main
program give them a generic name DUP through an interface block. Although the main program calls
all three by the generic name, there is no ambiguity since the arguments are of different data types,
and DUP is a function rather than a subroutine. The module UN_MOD must give each procedure a
different name.

 MODULE UN_MOD
 !

 CONTAINS
 subroutine dup1(x,y)
 real x,y
 print *, ’ Real arguments’, x, y
 end subroutine dup1

 subroutine dup2(m,n)
 integer m,n
 print *, ’ Integer arguments’, m, n
 end subroutine dup2

 character function dup3 (z)
 character(len=2) z
 dup3 = ’String argument ’// z
 end function dup3

 END MODULE

 program unclear
 !
 ! demonstrates how to use generic procedure references

 USE UN_MOD
 INTERFACE DUP
 MODULE PROCEDURE dup1, dup2, dup3
 END INTERFACE

 real a,b
 integer c,d
 character (len=2) state

 a = 1.5
 b = 2.32
 c = 5
 d = 47
 state = ’WA’

 call dup(a,b)
 call dup(c,d)
 print *, dup(state) !actual output is ’S’only
 END

Note that the function DUP3 only prints one character, since module UN_MOD specifies no length
parameter for the function result.

Program Units and Procedures Page 35 of 35

9/2/97 3:25:06 PM

If the dummy arguments x and y for DUP were declared as integers instead of reals, then any calls to
DUP would be ambiguous. If this is the case, a compile-time error results.

The subroutine definitions, DUP1, DUP2, and DUP3, must have different names. The generic name is
specified in the first line of the interface block, and in the example is DUP.

Resolving Specific References

Only a generic name can refer to more than one procedure. If two separate non-generic procedures
have the same name, then they must have a different scope. For more information, see Scope of
Names.

Files, Devices, and I/O Hardware Page 1 of 11

9/2/97 3:25:18 PM

Files, Devices, and I/O Hardware
This chapter discusses Visual Fortran files and devices, and using your input/output (I/O) hardware.
Together with the sections on I/O statements and I/O editing, these sections explain where and how
Fortran data is input and output. Files and devices are where data is stored and retrieved, I/O editing
determines how the data is organized when it is read or written, and I/O statements determine what
input/output operations are performed on the data. This section is organized as follows:

• Devices and Files
• I/O Hardware

Devices and Files
In Fortran's I/O system, data is stored and transferred among files. All I/O data sources and
destinations are considered files. Devices such as the screen, keyboard and printer are external files,
as are data files stored on a device such as a disk.

Variables in memory can also act as a file on a disk, and are typically used to convert ASCII
representations of numbers to binary form. When variables are used in this way, they are called
internal files.

The discussion of I/O files is divided into two sections:

• Logical Devices
• Files

Logical Devices

Every file, internal or external, is associated with a logical device. You identify the logical device
associated with a file by a unit specifier (UNIT=). The unit specifier for an internal file is the name
of the character variable associated with it. The unit specifier for an external file is either a number
you assign with the OPEN statement, a number preconnected as a unit specifier to a device, or an
asterisk (*).

External unit specifiers that are preconnected to certain devices do not have to be opened. External
units that you connect are disconnected when program execution terminates or when the unit is
closed by a CLOSE statement.

A unit must not be connected to more than one file at a time, and a file must not be connected to
more than one unit at a time. You can OPEN an already opened file but only to change some of the
I/O options for the connection, not to connect an already opened file or unit to a different unit or file.
See Changing I/O Specifications with OPEN for a description and example.

You must use a unit specifier for all I/O statements except in the following three cases:

• PRINT, which always writes to standard output (UNIT= 6)
• READ statements that contain only an I/O list and format specifier, which read from standard

input (UNIT= 5)
• INQUIRE by file, which specifies the filename, rather than the unit with which the file is

Files, Devices, and I/O Hardware Page 2 of 11

9/2/97 3:25:18 PM

associated

External Files

A unit specifier associated with an external file must be either an integer expression or an asterisk
(*). The integer expression must be in the range 0 (zero) to a maximum value of 2,147,483,640. The
following example connects the external file UNDAMP.DAT to unit 10 and writes to it:

 OPEN (UNIT = 10, FILE = ’undamp.dat’)
 WRITE (10, ’(A18,\)’) ’ Undamped Motion:’

The asterisk (*) unit specifier specifies the keyboard when reading and the screen when writing. The
following example uses the asterisk specifier to write to the screen:

 WRITE (*, ’(1X, A30,\)’) ’ Write this to the screen.’

Visual Fortran has four units preconnected to external files (devices), as shown in the following
table.

External Unit Specifier Description
Asterisk (*) Always represents the keyboard and screen
0 Initially represents the keyboard and screen
5 Initially represents the keyboard
6 Initially represents the screen

The asterisk (*) specifier is the only unit specifier that cannot be reconnected to another file, and
attempting to close this unit causes a compile-time error. Units 0, 5, and 6, however, can be
connected to any file with the OPEN statement. If you close unit 0, 5, or 6, it is automatically
reconnected to its respective device the next time an I/O statement attempts to use that unit.

The following example writes to the preconnected unit 6 (the screen), then reconnects unit 6 to an
external file and writes to it, and finally reconnects unit 6 to the screen and writes to it:

 REAL a, b
! Write to the screen (preconnected unit 6).
 WRITE(6, ’(’’ This is unit 6’’)’)
! Use the OPEN statement to connect unit 6
! to an external file named ’COSINES’.
 OPEN (UNIT = 6, FILE = ’COSINES’, STATUS = ’NEW’)
 DO a = 0.1, 6.3, 0.1
 b = COS (a)
! Write to the file ’COSINES’.
 WRITE (6, 100) a, b
100 FORMAT (F3.1, F5.2)
 END DO
! Close it.
 CLOSE (6)
! Reconnect unit 6 to the screen, by writing to it.
 WRITE(6,’ (’’ Cosines completed’’)’)
 END

Internal Files

The unit specifier associated with an internal file is a character string or character array. There are
two types of internal files:

Files, Devices, and I/O Hardware Page 3 of 11

9/2/97 3:25:18 PM

• An internal file that is a character variable, character array element, or noncharacter array
element that has exactly one record, which is the same length as the variable, array element, or
noncharacter array element.

• An internal file that is a character array, a character derived type, or a noncharacter array that
is a sequence of elements, each of which is a record. The order of records is the same as the
order of array elements or type elements, and the record length is the length of one array
element or the length of the derived-type element.

Follow these rules when using internal files:

• Use only formatted I/O, including I/O formatted with a format specification and list-directed
I/O. (List-directed I/O is treated as sequential formatted I/O.) Namelist formatting is not
allowed.

• If the character variable is an allocatable array or array part of an allocatable array, the array
must be allocated before use as an internal file. If the character variable is a pointer, it must be
associated with a target.

• Use only READ and WRITE statements. You cannot use file connection (OPEN, CLOSE),
file positioning (REWIND, BACKSPACE) or file inquiry (INQUIRE) statements with
internal files.

You can read and write internal files with FORMAT I/O statements or list-directed I/O statements
exactly as you can external files. Before an I/O statement is executed, internal files are positioned at
the beginning, before the first record.

With internal files, you can use the formatting capabilities of the I/O system to convert values
between external character representations and Fortran internal memory representations. That is,
reading from an internal file converts the ASCII representations into numeric, logical, or character
representations, and writing to an internal file converts these representations into their ASCII
representations.

This feature makes it possible to read a string of characters without knowing its exact format,
examine the string, and interpret its contents. It also makes it possible, as in dialog boxes, for the
user to enter a string and for your application to interpret it as a number.

If less than an entire record is written to an internal file, the rest of the record is filled with blanks.

In the following example, x and fname specify internal files:

 CHARACTER(10) str
 INTEGER n1, n2, n3
 CHARACTER(14) fname
 INTEGER i

 str = " 1 2 3"
! List-directed READ sets n1 = 1, n2 = 2, n3 = 3.
 READ(str, *) n1, n2, n3
 i = 4
! Formatted WRITE sets fname = ’FM004.DAT’.
 WRITE (fname, 200) i
200 FORMAT (’FM’, I3.3, ’.DAT’)

Files

Files, Devices, and I/O Hardware Page 4 of 11

9/2/97 3:25:18 PM

Fortran supports two methods of file access (sequential and direct) and three kinds of file structure
(formatted, unformatted, and binary). Sequential-access and direct-access files can have any of the
three file structures. The following kinds of files are possible:

• Formatted Sequential
• Formatted Direct
• Unformatted Sequential
• Unformatted Direct
• Binary Sequential
• Binary Direct

Each kind of file has advantages and the best choice depends on the application you are developing:

• Formatted Files

You create a formatted file by opening it with the FORM='FORMATTED' option, or by
omitting the FORM parameter when creating a sequential file. The records of a formatted file
are stored as ASCII characters; numbers that would otherwise be stored in binary form are
converted to ASCII format. Each record ends with the ASCII carriage return (CR) and line
feed (LF) characters.

If you need to view a data file's contents, use a formatted file. You can load a formatted file
into a text editor and read its contents directly, that is, the numbers would look like numbers
and the strings like character strings, whereas an unformatted or binary file looks like a set of
hexadecimal characters.

• Unformatted Files

You create an unformatted file by opening it with the FORM='UNFORMATTED' option, or
by omitting the FORM parameter when creating a direct-access file. An unformatted file is a
series of records composed of physical blocks. Each record contains a sequence of values
stored in a representation that is close to that used in program memory. Little conversion is
required during input/output.

The lack of formatting makes these files quicker to access and more compact than files that
store the same information in a formatted form. However, if the files contain numbers, you
will not be able to read them with a text editor.

• Binary Files

You create a binary file by specifying FORM='BINARY'. Binary files are the most compact,
and good for storing large amounts of data.

• Sequential-Access Files

Data in sequential files must be accessed in order, one record after the other (unless you
change your position in the file with the REWIND or BACKSPACE statements). Some
methods of I/O are possible only with sequential files, including nonadvancing I/O,
list-directed I/O, and namelist I/O. Internal files also must be sequential files. You must use
sequential access for files associated with sequential devices.

Files, Devices, and I/O Hardware Page 5 of 11

9/2/97 3:25:18 PM

A sequential device is a physical storage device that does not allow explicit motion (other than
reading or writing). The keyboard, screen, and printer are all sequential devices.

• Direct-Access Files

Data in direct-access files can be read or written to in any order. Records are numbered
sequentially, starting with record number 1. All records have the length specified by the
RECL= option in the OPEN statement. Data in direct files is accessed by specifying the
record you want within the file. If you need random access I/O, use direct-access files. A
common example of a random-access application is a database.

All files are composed of records. Each record is one entry in the file. It can be a line from a terminal
or a logical record on a magnetic tape or disk file. All records within one file are of the same type.

In Fortran, the number of bytes written to a record must be less than or equal to the record length.
One record is written for each unformatted READ orWRITE statement. A formatted READ or
WRITE statement can transfer more than one record using the slash (/) edit descriptor.

For binary files, a single READ or WRITE statement reads or writes as many records as needed to
accommodate the number of bytes being transferred. On output, incomplete formatted records are
padded with spaces. Incomplete unformatted and binary records are padded with undefined bytes
(zeros).

Formatted Sequential Files

A formatted sequential file is a series of formatted records written sequentially and read in the order
in which they appear in the file. Records can vary in length and can be empty. They are separated by
carriage return (0D) and line feed (0A) characters as shown in the following figure.

Figure: Formatted Records in a Formatted Sequential File

An example of a program writing three records to a formatted sequential file is given below. The
resulting file is shown in the following figure.

 OPEN (3, FILE=’FSEQ’)
! FSEQ is a formatted sequential file by default.
 WRITE (3, ’(A, I3)’) ’RECORD’, 1
 WRITE (3, ’()’)
 WRITE (3, ’(A11)’) ’The 3rd One’
 CLOSE (3)
 END

Figure: Formatted Sequential File

Files, Devices, and I/O Hardware Page 6 of 11

9/2/97 3:25:19 PM

Formatted Direct Files

In a formatted direct file, all of the records are the same length and can be written or read in any
order. The record size is specified with the RECL= option in an OPEN statement and should be
equal to or greater than the number of bytes in the longest record.

The carriage return (CR) and line feed (LF) characters are record separators and are not included in
the RECL= value. Once a direct-access record has been written, you cannot delete it, but you can
rewrite it.

During output to a formatted direct file, if data does not completely fill a record, the compiler pads
the remaining portion of the record with blank spaces. The blanks ensure that the file contains only
completely filled records, all of the same length. During input, the compiler by default also pads the
input if the input list and format require more data than the record contains.

You can override the default blank padding on input by setting PAD=’NO’ in the OPEN statement
for the file. If PAD=’NO’, the input record must contain the amount of data indicated by the input list
and format specification. Otherwise, an error occurs. PAD=’NO’ has no effect on output.

An example of a program writing two records, record one and record three, to a formatted direct file
is given below. The result is shown in the following figure.

 OPEN (3,FILE=’FDIR’, FORM=’FORMATTED’, ACCESS=’DIRECT’,RECL=10)
 WRITE (3, ’(A10)’, REC=1) ’RECORD ONE’
 WRITE (3, ’(I5)’, REC=3) 30303
 CLOSE (3)
 END

Figure: Formatted Direct File

Files, Devices, and I/O Hardware Page 7 of 11

9/2/97 3:25:19 PM

Unformatted Sequential Files

Unformatted sequential files are organized slightly differently on different platforms. This section
describes unformatted sequential files created by Visual Fortran. If you are accessing files from
another platform that organizes them differently, see Converting Unformatted Numeric Data or you
can use the conversion utility in the \DF\SAMPLES\TUTORIAL subdirectory called UNFSEQ.F90.

The records in an unformatted sequential file can vary in length. Unformatted sequential files are
organized in chunks of 130 bytes or less called physical blocks. Each physical block consists of the
data you send to the file (up to 128 bytes) plus two 1-byte "length bytes" inserted by the compiler.
The length bytes indicate where each record begins and ends.

A logical record refers to an unformatted record that contains one or more physical blocks. (See the
following figure.) Logical records can be as big as you want; the compiler will use as many physical
blocks as necessary.

When you create a logical record consisting of more than one physical block, the compiler sets the
length byte to 129 to indicate that the data in the current physical block continues on into the next
physical block. For example, if you write 140 bytes of data, the logical record has the structure
shown in the following figure.

Figure: Logical Record in Unformatted Sequential File

The first and last bytes in an unformatted sequential file are reserved; the first contains a value of 75,
and the last holds a value of 130. Fortran uses these bytes for error checking and end-of-file
references.

The following program creates the unformatted sequential file shown in the following figure:

! Note: The file is sequential by default
! -1 is FF FF FF FF hexadecimal.
!
 CHARACTER xyz(3)
 INTEGER(4) idata(35)
 DATA idata /35 * -1/, xyz /’x’, ’y’, ’z’/

!
! Open the file and write out a 140-byte record:
! 128 bytes (block) + 12 bytes = 140 for IDATA, then 3 bytes for XYZ.
 OPEN (3, FILE=’UFSEQ’,FORM=’UNFORMATTED’)
 WRITE (3) idata
 WRITE (3) xyz
 CLOSE (3)
 END

Figure: Unformatted Sequential File

Files, Devices, and I/O Hardware Page 8 of 11

9/2/97 3:25:19 PM

Unformatted Direct Files

An unformatted direct file is a series of unformatted records. You can write or read the records in any
order you choose. All records have the same length, given by the RECL= specifier in an OPEN
statement. No delimiting bytes separate records or otherwise indicate record structure.

You can write a partial record to an unformatted direct file. Visual Fortran pads these records to the
fixed record length with ASCII NULL characters. Unwritten records in the file contain undefined
data.

The following program creates the sample unformatted direct file shown in the following figure:

 OPEN (3, FILE=’UFDIR’, RECL=10,&
 & FORM = ’UNFORMATTED’, ACCESS = ’DIRECT’)
 WRITE (3, REC=3) .TRUE., ’abcdef’
 WRITE (3, REC=1) 2049
 CLOSE (3)
 END

Figure: Unformatted Direct File

Binary Sequential Files

A binary sequential file is a series of values written and read in the same order and stored as binary
numbers. No record boundaries exist, and no special bytes indicate file structure. Data is read and
written without changes in form or length. For any I/O data item, the sequence of bytes in memory is
the sequence of bytes in the file.

The next program creates the binary sequential file shown in the following figure:

! NOTE: 07 is the bell character
! Sequential is assumed by default.

Files, Devices, and I/O Hardware Page 9 of 11

9/2/97 3:25:19 PM

!
 INTEGER(1) bells(4)
 CHARACTER(4) wys(3)
 CHARACTER(4) cvar
 DATA bells /4*7/
 DATA cvar /’ is ’/,wys /’What’,’ you’,’ see’/

 OPEN (3, FILE=’BSEQ’,FORM=’BINARY’)
 WRITE (3) wys, cvar
 WRITE (3) ’what ’, ’you get!’
 WRITE (3) bells
 CLOSE (3)
 END

Figure: Binary Sequential File

Binary Direct Files

A binary direct file stores records as a series of binary numbers, accessible in any order. Each record
in the file has the same length, as specified by the RECL= argument to the OPEN statement. You
can write partial records to binary direct files; any unused portion of the record will contain
undefined data.

A single read or write operation can transfer more data than a record contains by continuing the
operation into the next records of the file. Performing such an operation on an unformatted direct file
would cause an error. Valid I/O operations for unformatted direct files produce identical results when
they are performed on binary direct files, provided the operations do not depend on zero padding in
partial records.

The following program creates the binary direct file shown in the following figure:

 OPEN (3, FILE=’BDIR’,RECL=10,FORM=’BINARY’,ACCESS=’DIRECT’)
 WRITE (3, REC=1) ’abcdefghijklmno’
 WRITE (3) 4,5
 WRITE (3, REC=4) ’pq’
 CLOSE (3)
 END

Figure: Binary Direct File

Files, Devices, and I/O Hardware Page 10 of 11

9/2/97 3:25:19 PM

I/O Hardware
Most of your hardware configuration and setup is done through your computer’s operating system. To
connect and communicate with your printer, for example, you should read your system and printer
manuals. This section describes how Visual Fortran refers to physical devices and shortcuts for
printing text and graphics from Microsoft Developer Studio.

For more information, see:

• Printing
• Physical Devices

Printing

The simplest way to print a file while you are in Microsoft Developer Studio is to choose File/Print
from the file menu. You are prompted for the file name and the file is printed on the printer
connected to your computer.

You can also print files with the extension .F90, .FOR, .FD, .FI, or .RC by dragging the file from
Windows Explorer and dropping it on the Print Manager icon.

If you have drawn graphics on the screen and want to print the screen, the simplest way is to press
the key combination ALT+PRINT SCREEN. This copies the active window (the one with graphical
focus) onto the Clipboard. (If you only press PRINT SCREEN, it prints your entire screen including any
background applications.)

Once you have copied your screen onto the Clipboard, open Paintbrush and select Edit/Paste to paste
the image from the Clipboard into Paintbrush, then select File/Print to print it to the printer
connected to your computer. You can also save the image as a bitmap (.BMP) file.

Physical Devices

I/O statements that do not refer to a specific file or I/O device read from standard input and write to
standard output. Standard input is the keyboard, and standard output is the screen (console). To
perform input and output on a physical device other than the keyboard or screen, you specify the
device name as the filename to be read from or written to.

Some physical device names are determined by the host operating system; others are recognized by
Visual Fortran. Extensions on most device names are ignored.

Table: Filenames for Device I/O

Device Description
CON Console (standard output)
PRN Printer
COM1 Serial port #1
COM2 Serial port #2
COM3 Serial port #3

Files, Devices, and I/O Hardware Page 11 of 11

9/2/97 3:25:19 PM

COM4 Serial port #4
LPT1 Parallel Port #1
LPT2 Parallel Port #2
LPT3 Parallel Port #3
LPT4 Parallel Port #4
NUL NULL device. Discards all output; contains no input
AUX Serial port #1

LINE 1 Serial port #1

USER 1 Standard output

ERR 1 Standard error

CONOUT$ Standard output
CONIN$ Standard input

1 If you use one of these names with an extension -- for example, LINE.TXT -- Fortran will write to
a file rather than to the device.

Examples of opening physical devices as units are:

 OPEN (UNIT = 4, FILE = ’PRN’)
 OPEN (UNIT = 7, FILE = ’COM2’, ERR = 100)

Input/Output Editing Page 1 of 34

8/21/97 12:17:50 PM

Input/Output Editing
This chapter discusses the following input/output (I/O) editing topics:

• I/O Lists, which provide information about data to be transferred.
• Methods of I/O Editing, which tells the I/O system how to transfer data between variables in

memory and external devices or internal files.
• Formatted I/O, which provides formatting information.
• List-Directed I/O, which lets you read and write data in an I/O list without using a FORMAT

statement; the I/O is controlled by using the number and type of data items in the list.
• Namelist I/O, which lets you specify one or more data items in a namelist group, so that the

values can be read or written with a single I/O statement.

This chapter, as well as Input/Output Statements and Files, Devices, and I/O Hardware explain where
and how Fortran data is input and output. Files and devices are where data is stored and retrieved,
I/O editing determines how the data is organized when it is read or written, and I/O statements
determine what input/output operations are performed on the data.

Input/Output Lists

Data transfer statements (READ, WRITE and PRINT) need information about how to transfer data
and which data to transfer. Specifying how data is transferred is described in Methods of I/O Editing.
The data to be transferred is specified by listing the items to be read or written in an I/O list (iolist).
You can specify an iolist by using the following:

• No entry

An iolist can be empty. The resulting record is either of zero length or contains only padding
characters. This is useful if you need to write a record as a placeholder. If you use a format that
contains a string but has no iolist, the resulting record will contain the string. For instance:

 WRITE (UNIT=7, FMT=’(2I8)’)
 WRITE (4, "(’string’)")

• A variable name, an array-element name, a derived type name, a derived-type element name,
or a character-substring name.

 ! A variable and array element in iolist:
 REAL b(99)
 READ (*, 300) n, b(n) ! n and b(n) are the iolist
 300 FORMAT (I2, F10.5) ! FORMAT statement telling what form the input data

 ! A derived type and type element in iolist:
 TYPE YOUR_DATA
 REAL a
 CHARACTER(30) info
 COMPLEX cx
 END TYPE YOUR_DATA
 TYPE (YOUR_DATA) yd1, yd2
 yd1.a = 2.3
 yd1.info = "This is a type demo."
 yd1.cx = (3.0, 4.0)

Input/Output Editing Page 2 of 34

9/2/97 3:25:34 PM

 yd2.cx = (4.5, 6.7)
 ! The iolist follows the WRITE (*,500).
 WRITE (*, 500) yd1, yd2.cx
 ! The format statement tells how the iolist will be output.
 500 FORMAT (F5.3, A21, F5.2, ’,’, F5.2, ’ yd2.cx = (’, F5.2,
 ’,’,F5.2, ’)’)
 ! The output looks like:
 ! 2.300This is a type demo 3.00, 4.00 yd2.cx = (4.50, 6.70)

• An array name or array section specification.

An unsubscripted array name specifies in column-major order all the elements of the array.
Assumed-size dummy arrays that do not reference a specific array element cannot appear in
the list of an input/output statement, but allocatable arrays and assumed-size dummy arrays
can appear in an iolist.

 ! An array in the iolist:
 INTEGER handle(5)
 DATA handle / 5*0 /
 WRITE (*, 99) handle
 99 FORMAT (5I5)
 ! An array section in the iolist.
 WRITE (*, 100) handle(2:3)
 100 FORMAT (2I5)

• Any expression.

Output lists in WRITE and PRINT statements can contain any expression, either numeric,
logical, character or derived-type (operators can be defined for derived types).

PRINT *,’(I5)’, 2*3 ! The iolist is the expression 2*3.

• A namelist.

By specifying a namelist, you can read or write all the variables in it with one I/O statement.

 ! Namelist I/O:
 INTEGER int1
 LOGICAL log1
 REAL r1
 CHARACTER (20) char20
 NAMELIST /mylist/ int1, log1, r1, char20
 int1 = 1
 log1 = .TRUE.
 r1 = 1.0
 char20 = ’NAMELIST demo’
 OPEN (UNIT = 4, FILE = ’MYFILE.DAT’, DELIM = ’APOSTROPHE’)
 WRITE (UNIT = 4, NML = mylist)
 ! Writes the following:
 ! &MYLIST
 ! INT1 = 1,
 ! LOG1 = T,
 ! R1 = 1.000000 ,
 ! CHAR20 = ’NAMELIST demo ’
 ! /
 REWIND(4)
 READ (4, mylist)

For detailed information about namelists, see Namelist I/O.

Input/Output Editing Page 3 of 34

9/2/97 3:25:34 PM

• An implied-DO list.

An implied-DO list is like an ordinary DO loop. The start, stop, and inc parameters determine
the number of iterations, and dovar (where appropriate) can be used as an array element
specifier.

In the following example, the iolist tells Visual Fortran to put the input data into elements 6
through 10 of the array called mydata. The third value in the implied-DO loop, the increment,
is optional. If you leave it out, the increment value defaults to 1. (For more on implied-DO
lists, see DATA in the Reference.)

 INTEGER mydata(25)
 READ (10, 9000) (mydata(I), I=6,10,1)
 9000 FORMAT (5I3)

Methods of I/O Editing
I/O editing tells the Visual Fortran I/O system how to transfer data between variables in memory and
external devices or internal files. There are three methods of specifying how data is transferred with
READ, WRITE, and PRINT statements: explicit formatting, list-directed I/O, and namelist I/O.

• Formatted I/O

In explicitly formatted I/O, you specify exactly how you want the data organized. The format
specifier used by the I/O statement is either a character expression of the desired format or a
label associated with a FORMAT statement containing the format. For example:

 WRITE (*, ’(I3)’) int1
 WRITE (*, 9000) int2
 9000 FORMAT (I5)

• List-directed I/O

In list-directed I/O, you read and write data items in an I/O list without an explicit format or
reference to a FORMAT statement. Instead, the format specifier in the I/O statement is an
asterisk (*). For example:

 WRITE (6,*) int1

• Namelist I/O

In namelist I/O, you read and write data by specifying one or more variables in a namelist
group you create with the NAMELIST statement. The format specifier is the namelist name.
For example:

 NAMELIST /example/ int1, int2
 WRITE (*, example)

Formatted I/O

Format information is contained in a format list and used by PRINT, READ, and WRITE
statements. These statements can contain a format list themselves, or contain the label of a

Input/Output Editing Page 4 of 34

9/2/97 3:25:34 PM

FORMAT statement with a format list, or contain a variable whose value is set to an edit list or
statement label.

A format list is a series of formatting descriptors, separated by commas (,), which describes the data
to be transferred, such as the number, data types and lengths of variables to be read or written. The
following are examples of a format list in a FORMAT and a WRITE statement:

 ! The format list in this FORMAT statement is below the
 ! hyphens: ---------------------------
 100 FORMAT (’ A = ’, I5, ’B = ’, F7.2)
 !
 ! The format list in this WRITE statement is below the
 ! hyphens: -------------------
 WRITE(*, ’(F8.5, 2I3, A20)’) REAL1, INT1, INT2, "format list example"

The format list (including the outer parentheses) is a character constant, and is enclosed in single or
double quotation marks when it appears in a READ or WRITE statement. There are no quotation
marks around the entire format list when it appears in a FORMAT statement. An edit list can also
contain another format list. Up to 8 levels of nested parentheses are permitted within the outermost
level of parentheses in a format list.

Format lists are made up of repeatable and nonrepeatable edit descriptors. Repeatable edit descriptors
describe data items. For example, 2I3 specifies that the edit descriptor I3 is repeated twice, so two
three-digit integer numbers are written. Nonrepeatable edit descriptors modify the data format. For
example, SP causes a plus sign (+) to be output with positive numbers. For more information, see
Repeatable Edit Descriptors and Nonrepeatable Edit Descriptors.

You can designate the format containing a format list by using any of the following:

• A FORMAT statement label

If you specify the label of a FORMAT statement in your I/O, the format list in the FORMAT
statement formats the data.

 WRITE (*, 9000) int1, real1(3), char1
 9000 FORMAT (I5, 3F4.5, A16)
 ! I5, 3F5.2, A16 is the format list.

• An integer-variable name

You can use an ASSIGN statement to associate an integer variable with the label of a
FORMAT statement, and then use the variable to refer to the FORMAT statement. In this
example, the integer-variable name MYFMT refers to the FORMAT statement 9000, as
assigned just before the FORMAT statement. (For more information, see ASSIGN in the
Reference.)

 ASSIGN 9000 TO MYFMT
 9000 FORMAT (I5, 3F4.5, A16)
 ! I5, 3F5.2, A16 is the format list.
 WRITE (*, MYFMT) iolist

• A character expression or variable

You can write a format list as a character expression and use it in a READ, WRITE, or
PRINT statement. For example:

Input/Output Editing Page 5 of 34

9/2/97 3:25:34 PM

 WRITE (*, ’(I5, 3F5.2, A16)’)iolist
 ! I5, 3F4.5, A16 is the format list.

In the following example, the format list is put into an 80-character variable called MYLIST:

 CHARACTER(80) MYLIST
 MYLIST = ’(I5, 3F5.2, A16)’
 WRITE (*, MYLIST) iolist

• An array or array element

If you write a format list as a character expression and assign it to an array, you can use the
array as the format specifier. The array is interpreted as all the elements of the array
concatenated in column-major order. For instance, consider the following two-dimensional
array:

 1 2 3
 4 5 6

In this case, the elements are stored in memory in this order: 1, 4, 2, 5, 3, 6:

 CHARACTER(6) array(3)
 DATA array / ’(I5’, ’,3F5.2’, ’,A16)’ /
 WRITE (*, array) iolist

If you write a format list as a character expression and assign it to a character array element,
you can use the character array element as the format specifier. In the following example, the
WRITE statement uses the character array element array(2) as the format specifier for data
transfer:

 CHARACTER(80) array(5)
 array(2) = ’(I5, 3F5.2, A16)’
 WRITE (*, array(2)) iolist

A noncharacter array can also be specified where the elements of the array are treated as
equivalent character variables of the same length.

You use repeatable and nonrepeatable edit descriptors to tell the Visual Fortran I/O system exactly
how to organize your data in formatted I/O. Repeatable edit descriptors tell the I/O system how to
interpret a given data item. Nonrepeatable edit descriptors tell the Fortran I/O system how to perform
the I/O statement, for example, position within a record, interpretation of blanks, and sign
suppression.

This section also discusses variable format expressions and the interaction between format
specifications and I/O lists.

Repeatable Edit Descriptors

To transfer data with input and output operations, you must list the data items to be transferred and
specify how they are transferred. The data items are specified with an input/output list, or iolist, and
their transfer is specified with an I/O format. Repeatable edit descriptors tell the Visual Fortran I/O
system how to interpret data items with the FORMAT statement.

Repeatable edit descriptors are used as many times as needed to describe all data items in an iolist.

Input/Output Editing Page 6 of 34

9/2/97 3:25:34 PM

You can also indicate that a given data format is repeated some number of times. For example, 5I3
repeats a three-digit integer edit descriptor five times.

 ! This WRITE outputs three integers, each in a five-space field
 ! and four reals in pairs of F7.2 and F5.2 values.
 INTEGER(2) int1, int2, int3
 REAL(4) r1, r2, r3, r4
 DATA int1, int2, int3 /143, 62, 999/
 DATA r1, r2, r3, r4 /2458.32, 43.78, 664.55, 73.8/
 WRITE (*,9000) int1, int2, int3, r1, r2, r3, r4
 9000 FORMAT (3I5, 2(1X, F7.2, 1X, F5.2))

The following output is produced:

 143 62 999 2458.32 43.78 664.55 73.80

A repeat specification is a nonzero, unsigned integer constant or an integer expression enclosed by
angle brackets (< and >) that tells the Visual Fortran I/O system how many of the repeatable items
there are. For example, 2I5 says that there are two five-digit integer data items, and <J+K>I5 causes
the expression J+K to be evaluated as the number of I5 data items.

Repeatable edit descriptors are:

• Integer Editing (I)
• Binary (B), Octal (O), and Hexadecimal (Z) Editing
• Real Editing Without Exponents (F)
• Real Editing With Exponents (E)
• Double-Precision Real Editing (D)
• Engineering-Notation Editing (EN)
• Scientific-Notation Editing (ES)
• Logical Editing (L)
• Character Editing (A)
• Generalized Editing (G)

The I (integer), B (binary), O (octal) Z (hexadecimal), F (single-precision real), E (real with
exponent), EN (engineering notation real), ES (scientific notation real), G (general [integer, logical
or real] with optional exponent), and D (double-precision real) edit descriptors are used for I/O of
numeric data. The following rules apply to numeric edit descriptors:

• On input, fields that are all blanks are always interpreted as zero. The interpretation of trailing
and interspersed blanks is controlled by the BN and BZ edit descriptors and by the BLANK=
option in an OPEN statement. Plus signs (+) are optional, except in exponents. The blanks
supplied by the file system to pad a record to the required size are not significant.

• On input with F, E, EN, ES, G, and D editing, an explicit decimal point in the input field
overrides any edit-descriptor specification of the decimal-point position. On output, the
decimal position given in the edit descriptor is followed. Consider the following:

 READ (*, 100) x
 100 FORMAT(F4.2)

If x = 123.4 is specified, the decimal in the input overrides the specification in the F edit
descriptor in the FORMAT statement. So, the number is read correctly as 123.4, not 23.40 as
specified by the descriptor. Consider the following:

Input/Output Editing Page 7 of 34

9/2/97 3:25:34 PM

 WRITE(*, 200) x
 200 FORMAT (F6.2)

In this case, if x = 123.4 is specified, the decimal in x does not override the FORMAT
statement. So, the program outputs 123.40.

• On output, if the number of characters produced exceeds the field width or if the exponent
exceeds its specified width, the entire field is filled with asterisks (*). If a real number
contains more digits after the decimal point than are allowed in the field, the number is
rounded. Consider the following:

 WRITE(*, 200) x
 200 FORMAT (F4.1)

If x = 123.4 is specified, the program will write **** because there are five characters in
123.4.

• On output, the characters generated are right-justified in the field and padded by leading
blanks, if necessary.

• When reading with I, B, O, Z, F, E, EN, ES, G, D, or L (logic) edit descriptors, the input
field may contain a comma (,), that terminates the field. The next field starts at the character
following the comma. The missing characters are not significant. Do not use this feature when
you use explicit positional editing (the T, TL, TR, or nX edit descriptors) because it changes
the character positions of the data.

• Two successively interpreted edit descriptors of the types F, E, G, and D are required to
format complex numbers. Two different descriptors can be used. The first edit descriptor
specifies the real part of the complex number, and the second specifies the imaginary part.

• Nonrepeatable edit descriptors can appear between repeatable edit descriptors.

Integer Editing (I)

Syntax

Iw[.m]

The field of the integer edit descriptor is w characters wide, including a sign if one is present. For
example, an integer identified as I5 is five characters wide, including the sign. Optionally, m
specifies the minimum number of digits in the output. For example, a number identified as I5.3 has a
field width of five characters on input, and on output a maximum width of five characters with a
minimum of three digits. Numbers associated with the I descriptor must be integers; they cannot
have a decimal point or an exponent. If a noninteger number is input or output with the I descriptor,
a run-time error occurs.

The m parameter has no effect on input and must be less than or equal to w. If m is not given, the
minimum number of output digits defaults to 1. If the input or output is less than w characters wide,
it is padded with leading blanks. If the output is less than m digits, leading zeroes are added up to the
width m. For example, consider the statement:

 WRITE (*, ’(I5, I5.3, I5.3)’) 4, -4, 4567

The following output is produced:

Input/Output Editing Page 8 of 34

9/2/97 3:25:34 PM

 4 -004 4567

Binary (B), Octal (O), and Hexadecimal (Z) Editing

Syntax

Bw[.m], Ow[.m], Zw[.m]

Binary (B), Octal (O), and Hexadecimal (Z) edit descriptors cannot contain a decimal point or a sign
(plus or minus). Data corresponding to these edit descriptors consist solely of blanks and digits in the
binary, octal, or hexadecimal base: digits 0 and 1 for the B descriptor; digits 0-7 for the O descriptor;
digits 0-9 and letters A-F (uppercase or lowercase) for the Z descriptor. The B, O, and Z edit
descriptor data can be of type integer, character, real, or logical.

Because there is no minus sign (-), negative B, O, and Z values are represented according to the
coding convention used (for instance, two’s complement). Encoding of binary, octal, and
hexadecimal numbers, especially negative numbers, is processor-dependent. Programs that use the B,
O, and Z edit descriptors and B, O, and Z stored data may not port directly to other computers.

The field is w characters wide, and m specifies the minimum number of digits in the output. The m
parameter must be less than or equal to w. If m is not given, the minimum defaults to 1. If the output
is less than w characters wide, it is padded with leading blanks. If the output is less than m digits,
leading zeros are added up to the width m. Binary numbers in particular are often easier to read with
leading zeros. For example, 00010101 shows all eight bits unlike 10101. You can force leading zeros
with B8.8, B16.16, B32.32 and so on.

With B, O, and Z editing, you can convert between external data in binary, octal, or hexadecimal
form and the internal numeric representation. Each byte of internal data corresponds to eight (1-bit)
binary characters, three octal characters, and two (4-bit) hexadecimal characters. For example, the
number 255 is output as the binary characters 11111111, the octal characters 377, and the
hexadecimal characters FF. Similarly, an INTEGER(4) value is output as the thirty-two binary
characters, twelve octal characters or eight hexadecimal characters in which the number was stored.

The field width, w, specifies the number of characters to be read or written. If w is omitted, the field
width defaults to 8*n binary characters, 3*n octal characters, or 2*n hexadecimal characters, where n
is the length in bytes of the item in the I/O list. For example, an INTEGER(2) value is represented
internally by four hexadecimal characters.

For numeric and logical types, bytes are output in order of significance, from the most significant on
the left to the least significant on the right. The INTEGER(2) value 10, for example, will be output in
hexadecimal format as three blanks followed by A (assuming m is not specified).

The following rules of truncation and padding apply. In this table, the value n is the length of the
iolist variable in bytes:

Operation Rule
Output If w > 8*n (binary), 3*n (octal), or 2*n (hexadecimal), the characters are right-justified

and leading blanks are added to make the external field width equal to w.

If w <= 8*n (binary), 3*n (octal), or 2*n (hexadecimal), the field is filled with asterisks

Input/Output Editing Page 9 of 34

9/2/97 3:25:34 PM

(*).

If m > 8*n (binary), 3*n (octal), or 2*n (hexadecimal), the characters are right-justified
and leading zeroes are added to make the number of digits equal to m.

If m < 8*n (binary), 3*n (octal), or 2*n (hexadecimal), m has no effect.
Input If w >= 8*n (binary), 3*n (octal), or 2*n (hexadecimal), the rightmost 8*n (binary), 3*n

(octal), or 2*n (hexadecimal) characters are taken from the input field.

If w < 8*n (binary), 3*n (octal), or 2*n (hexadecimal), the first w characters are read
from the input field. Enough leading blanks are added to make the width equal to 8*n
(binary), 3*n (octal), or 2*n (hexadecimal).

The m parameter has no effect on input.

Leading blanks are never significant. Blanks embedded in an input field are ignored unless the
BLANK= ’ZERO’ specifier is set during an OPEN statement, or the BZ edit descriptor is in effect.
(A description of the BZ and BN edit descriptors is given in Blank Interpretation (BN, BZ) within
the Nonrepeatable Edit Descriptors topic.)

To edit complex numbers, two Z edit descriptors must be used. The first edit descriptor specifies the
real part of the complex number, and the second specifies the imaginary part.

The following example demonstrates hexadecimal editing for output:

 CHARACTER(2) alpha
 INTEGER(2) num

 alpha = ’YZ’
 num = 3035

 WRITE (*, ’(Z4.4, 1X, Z2, 1X, Z6)’) alpha, alpha, alpha
 WRITE (*, ’(Z4.4, 1X, Z2, 1X, Z6)’) num, num, num
 WRITE (*, ’(B16.16, 1X, B2, 1X, B6)’) num, num, num
 WRITE (*, ’(O5.5, 1X, O2, 1X, O6)’) num, num, num

This example produces the following output:

5A59 ** 5A59
0BDB ** BDB
0000101111011011 ** ******
05733 ** 5733

As an example of input, suppose the input record is 5A59 (hexadecimal for "YZ"), and the iolist
variable has been declared as a CHARACTER(2) type. The record would be read as follows:

Edit descriptor Value read
Z YZ
Z2 Z
Z6 YZ

Real Editing Without Exponents (F)

Syntax

Input/Output Editing Page 10 of 34

9/2/97 3:25:34 PM

Fw.d

The F edit descriptor tells Fortran to treat a number as a simple decimal floating-point value. On
output, the I/O list item associated with an F edit descriptor must be a single- or double-precision
real, or the real or imaginary part of a complex number; otherwise, a run-time error occurs.

On input, the number entered may have any real or complex form as long as its value is within the
range of the associated variable. Each complex number requires two F edit descriptors. For example:

 COMPLEX c1
 READ(10, 100) c1
100 FORMAT(2F8.3)

The field is w characters wide, with a fractional part d decimal digits wide. The input field begins
with an optional sign followed by a string of digits that may contain an optional decimal point. If the
decimal point is present in the input, it overrides the d specified in the edit descriptor; otherwise, the
rightmost d digits of the string are interpreted as following the decimal point (with leading blanks
converted to zeros, if necessary).

Values input with the F descriptor can also be expressed in exponent form. In this case, the field
continues with either a plus (+) or minus (-) sign followed by an integer, or the E or D exponent
designator followed by zero or more blanks, followed by an optional sign, followed by an integer,
e.g. F8.3E-03.

An example is the following READ statement:

READ (*, ’(F8.3)’) xnum

This statement reads a given input record as follows:

Input Number read
5 .005
2468 2.468
-24680 -24.680
-246801 -246.801
5678 5.678
-28E2 -2.800

The output field occupies w characters. One character is a decimal point, leaving w-1 characters
available for digits. If the sign is negative, it must be included, leaving only w-2 characters available.
Out of these w-1 or w-2 characters, d characters will be used for digits to the right of the decimal
point. The remaining characters will be blanks or digits, as needed, to represent the digits to the left
of the decimal point.

The value of the number being output is controlled both by the iolist item and the current scale
factor. The number being output using F editing is rounded rather than truncated.

 REAL(4) g, h, e, r, k, i, n
 DATA g /12345.678/, h /12345678./, e /-4.56E+1/, r /-365/
 WRITE (*, 100) g, h, e, r
 100 FORMAT (F8.2)
 WRITE (*, 200) g, h, e, r
 200 FORMAT (4F10.1)

The preceding program produces the following output:

Input/Output Editing Page 11 of 34

9/2/97 3:25:34 PM

 12345.68

 -45.60
 -365.00
 12345.712345680.0 -45.6 -365.0

Real Editing With Exponents (E)

Syntax

Ew.d [Ee]

An E edit descriptor tells Visual Fortran that there is an exponent in the syntax of the value. The I/O
list item associated with the E edit descriptor for an output item must be a single- or
double-precision real, or the real or imaginary part of a complex number; otherwise, a run-time error
occurs.

A number input to a variable described with an E edit descriptor can have any real or complex form,
as long as its value is within the range of the associated variable. Note that each complex number
requires two E edit descriptors.

The field is w characters wide. The e parameter is ignored in input statements. The input field for the
E edit descriptor is identical to that described by an F edit descriptor with the same w and d.

The form of the output field depends on the scale factor (set by the P edit descriptor) in effect. For a
scale factor of 0, the output field is a minus sign (if necessary), followed by a decimal point,
followed by a string of digits, followed by an exponent field for exponent e, having one of the forms
shown in the following table:

Table: Forms of Exponents for the E Edit Descriptor
Edit

descriptor
Absolute value of

exponent
Form of exponent

Ew.d | exp | <= 99 E followed by plus or minus, followed by the 2-digit exponent.
Example: E8.3E-22

Ew.d 99 < | exp | <= 999 Plus or minus, followed by the 3-digit exponent. Example:
E8.3+102

Ew.d Ee | exp | <= (10e) -1 E followed by plus or minus, followed by e digits, which are the
exponent (with possible leading zeros). Example: E8.3E-22

The scale factor controls the decimal normalization of the printed E field. If the scale factor k is
greater than -d and less than or equal to 0, then the output field contains exactly k leading zeros after
the decimal point and d+k significant digits after this. If (0<k<d+2), the output field contains exactly k
significant digits to the left of the decimal point and (d-k-1) places after the decimal point. Other
values of k are errors.

The Ew.d [De] descriptor is equivalent to Ew.d [Ee] except that a ’D’ is printed instead of ’E’ on
output.

Double-Precision Real Editing (D)

Input/Output Editing Page 12 of 34

9/2/97 3:25:34 PM

Syntax

Dw.d

On output, the I/O list item associated with a D edit descriptor must be a single- or double-precision
real, or the real or imaginary part of a complex number; otherwise, a run-time error occurs.

On input, the number entered can have any real or complex form, as long as its value is within the
range of the associated variable. All parameters and rules for the E descriptor apply to the D
descriptor.

The field is w characters wide. The input field for the D edit descriptor is identical to that described
by an F edit descriptor with the same w and d.

The form of the output field depends on the scale factor (set by the P edit descriptor) in effect. For a
scale factor of 0, the output field is a minus sign (if necessary), followed by a decimal point,
followed by a string of digits, followed by an exponent field for exponent e, in one of the forms
shown in the following table:

Table: Forms of Exponents for the D Edit Descriptor
Edit

descriptor
Absolute value of

exponent
Form of exponent

Dw.d | exp | <= 99 D followed by plus or minus, followed by the two-digit
exponent

Dw.d 99 < | exp | <= 999 Plus or minus, followed by the three-digit exponent

The form Dw.d must not be used if the absolute value of the exponent to be printed exceeds 999.

The scale factor controls the decimal normalization of the printed D field. If the scale factor, k, is
greater than -d and less than or equal to 0, then the output field contains exactly k leading zeros after
the decimal point and d+k significant digits after this. If (0<k<d+2), then the output field contains
exactly k significant digits to the left of the decimal point and (d-k-1) places after the decimal point.
Other values of k are errors.

Engineering-Notation Editing (EN)

Syntax

ENw.d [Ee]

The EN edit descriptor is the same as the E descriptor, except that the absolute value of the
nonexponential part of the output data (the significand) is constrained to be between 1 and 1000 (
1<= |significand| < 1000) and the exponent is divisible by 3.

The field, including exponent, is w characters wide, with d characters after the decimal, and an
optional exponent width of e. The exponent takes the same forms shown in the exponent table Forms
of Exponents for the E Edit Descriptor.

 REAL x, y, z
 DATA x /-12345.678/, y /0.456789/, z /7.89123E+23/
 WRITE (*, 100) x, z

Input/Output Editing Page 13 of 34

9/2/97 3:25:35 PM

 100 FORMAT (EN13.5,1X,EN13.5)
 WRITE (*, 200) y, z
 200 FORMAT (EN13.2E4,1X,EN13.2E4)

This produces the following output:

 -12.34568E+03 789.12300E+21
 456.79E-0003 789.12E+0021

Scientific-Notation Editing (ES)

Syntax

ESw.d [Ee]

The ES edit descriptor is the same as the same as E descriptor, except that the absolute value of the
nonexponential part of the output data (the significand) is constrained to be between 1 and 10 (1 <=
|significand| < 10).

The field, including exponent, is w characters wide, with d characters after the decimal, and an
optional exponent width of e. The exponent takes the same forms shown in the exponent table Forms
of Exponents for the E Edit Descriptor.

Logical Editing (L)

Syntax

Lw

The field is w characters wide.

On input, the field consists of optional blanks, followed by an optional decimal point, followed by T
(for true) or F (for false). Any further characters in the field are ignored, but accepted on input; so,
for example, .TR., .TRU, TCX, .TRUE., .FA., and .FALSE. are all valid inputs. Note that either
upper- or lower-case letters can be used.

The iolist element associated with an L edit descriptor for output must be of type logical or integer,
or a run-time error occurs. On output, w-1 blanks are followed by either T or F, as appropriate.

Character Editing (A)

Syntax

A[w]

If the field width (w) is omitted, it defaults to the number of characters in the iolist associated item.
The iolist item can be of any type.

If the corresponding I/O list item is of type character, character data is transferred. If the list item is
of any other type, Hollerith data is transferred.

Input/Output Editing Page 14 of 34

9/2/97 3:25:35 PM

If the number of characters input is less than w, the input field is padded with blanks. If the number
of characters input is greater than w, the input field is truncated on the right to the length of w. After
these adjustments have been made, the input field is put into the iolist item. For example, using the
following program fragment:

 CHARACTER(10) char
 READ (*, ’(A15)’) char

Assume the following 13 characters are typed in at the keyboard:

 ABCDEFGHIJKLM

The following two steps occur:

1. Spaces are added to pad the input field to 15 characters:

 ’ABCDEFGHIJKLM ’

2. The rightmost 10 characters are transmitted to the iolist element char:

 ’FGHIJKLM ’

On output, if w exceeds the number of characters produced by the iolist item, leading spaces are
provided. Otherwise, the leftmost w characters of the iolist item are output.

Generalized Editing (G)

Syntax

Gw.d [Ee]

The G edit descriptor can be used with any intrinsic data type. For integer input/output the Gw.d
generalized edit descriptor is the same as the Iw edit descriptor. For logical data the Gw edit
descriptor is the same as Lw, and for character data the Gw descriptor is the same as the Aw
descriptor.

For real numerical data, the Gw.d [Ee] descriptor is useful and flexible. With F editing of wide-range
reals numbers, significant digits can be lost if the number becomes too large or too small for the
field. However, F descriptor data is often easier to read; for example, 123.45 is more readable than
0.12345E+03. The G descriptor switches automatically from F format to E or D format, depending
on the magnitude of the data.

When Gw.d [Ee] is used as a real edit descriptor, the input field is w characters wide, with a
fractional part consisting of d digits. If an exponent is specified, it consists of e digits. When G is
used as a real edit descriptor, G input editing is the same as F input editing.

The form in which a G edit descriptor value is written is a function of the magnitude of the value, as
described in the following table:

Table: Effect of Data Magnitude on G Format Conversions
Data Magnitude Effective Conversion

Input/Output Editing Page 15 of 34

9/2/97 3:25:35 PM

0 < m < 0.1 - 0.5 x 10-d-1 Ew.d[Ee]

m = 0 F(w - n).(d -1), n(’b’)

0.1 - 0.5 x 10-d-1 <= m < 1 - 0.5 x 10-d F(w - n).d, n(’b’)

1 - 0.5 x 10-d <= m < 10 - 0.5 x 10-d+1 F(w - n).(d -1), n(’b’)

10 - 0.5 x 10-d+1 <= m < 100 - 0.5 x 10-d+2 F(w - n).(d -2), n(’b’)

. .

. .

. .
10d-2 - 0.5 x 10-2 <= m < 10d-1 - 0.5 x 10-1 F(w - n).1, n(’b’)

10d-1 - 0.5 x 10-1 <= m < 10d - 0.5 (w - n).0, n(’b’)

m >= 10d - 0.5 Ew.d[Ee]

The ’b’ is a blank following the numeric data representation. For Gw.d, n(’b’) is 4 blanks. For
Gw.dEe, n(’b’) is e +2 blanks.

The Gw.d [De] descriptor is equivalent to Gw.d [Ee] except that a ’D’ is printed instead of ’E’ on
output.

Nonrepeatable Edit Descriptors

Nonrepeatable edit descriptors modify the way the repeatable edit descriptors are interpreted, and can
also change or modify the way I/O is performed. The following table summarizes the nonrepeatable
edit descriptors. The following sections discuss each nonrepeatable edit descriptor.

Table: Nonrepeatable Edit Descriptors

Form Name Use
Used for

Input
Used for
Output

’string’ or
"string"

Character string
editing

Transmits string to output unit No Yes

nH Hollerith editing Transmits next n characters to output unit No Yes
Q Character count

editing
Returns remaining number of characters
in record

Yes No

Tc, TLc,
TRc

Positional editing
(Tabs)

Specifies position in record Yes Yes

nX Positional editing
(X)

Specifies position in record Yes Yes

SP, SS, S Optional-plus
editing

Controls output of plus signs No Yes

/ Slash editing Positions to next record or writes
end-of-record mark

Yes Yes

\ Backslash editing Continues same record No Yes
$ Dollar-sign editing Same as backslash No Yes
: Format control

termination
If no more items in iolist, terminates
statement

No Yes

kP Scale-factor editing Sets scale for exponents in subsequent F Yes Yes

Input/Output Editing Page 16 of 34

9/2/97 3:25:35 PM

and E (repeatable) edit descriptors
BN, BZ Blank interpretation Specifies interpretation of blanks in

numeric fields
Yes No

The comma (,) used to separate list items can be omitted before or after several nonrepeatable edit
descriptors as follows:

• Between a P edit descriptor and an immediately following F, E, EN, ES, D, or G edit
decriptor; for example: I3,2PF8.6,4F4.3

• Before or after an apostrophe ('), double-quotation mark ("), backslash (\), dollar sign ($), or
colon (:) edit descriptor; for example: A14,A35,I5$

• Before a slash (/) edit descriptor when the optional repeat specification is not present, and after
a slash (/) edit descriptor in all cases

• After an nH or X edit descriptor; for example: 2I3,8HF5.3,A12

Character String Editing

Apostrophe (') and quotation mark (") edit descriptors can be used to specify how character data is
output. A format specifier containing a character constant is transmitted to the output unit as the
format to be followed during output. For example, consider the following '(3I5)' format in the
WRITE statement:

 WRITE (10, ’(3I5)’) I1, I2, I3

This is equivalent to:

 WRITE (10, 100) I1, I2, I3
 100 FORMAT(3I5)

Embedded blanks in character-constant formats are significant. Apostrophe and quote delimited
character strings cannot be used as input formats, such as for READ statements.

If a character constant delimited by an apostrophe contains an apostrophe, or a character constant
delimited by quotation marks contains quotation marks, the embedded delimiting character must be
doubled to show that it is being used as a character, not a delimiter. For example, two adjacent
apostrophes (single quotation marks) must be used to represent an apostrophe within a character
constant.

Each additional level of nested apostrophes requires twice as many apostrophes as the previous level
to resolve the ambiguity of the apostrophe's meaning. Note how in the second WRITE statement in
the example following, the set of apostrophes that delimit the output string within the FORMAT
statement is doubled, and four apostrophes are required within the output string itself to specify a
single output apostrophe.

 ! These WRITE statements both output ABC’DEF
 ! (The leading blank is a carriage-control character).
 WRITE (*, 970)
 970 FORMAT (’ ABC’’DEF’)
 WRITE (*, ’(’’ ABC’’’’DEF’’)’)
 ! The following WRITE also outputs ABC’DEF. No carriage-
 ! control character is necessary for list-directed I/O.
 WRITE (*,*) ’ABC’’DEF’

Input/Output Editing Page 17 of 34

9/2/97 3:25:35 PM

Alternatively, if the delimiter is quotation marks, the apostrophe in the character constant ABC’DEF
requires no special treatment:

 WRITE (*,*) "ABC’DEF"

Hollerith Editing (H)

You can use Hollerith editing to read or write a text string of known length to a file or device. The nH
edit descriptor transmits the next n characters, including blanks, to the output unit. On input, the nH
edit descriptor transfers n characters from the external field to the edit descriptor. Hollerith editing
can be used in every context where character constants can be used. It is most useful when you want
to write a character string containing many double and single quotation marks, because you don’t
have to insert additional apostrophes and quotation marks into the string.

As with apostrophe and quotation mark editing, Hollerith descriptors can only be used in output
formats, not in input formats.

The n characters transmitted are called a Hollerith constant.

 ! These WRITE statements both print "Don’t misspell ’Hollerith’"
 ! (The leading blanks are carriage-control characters).
 ! Hollerith formatting does not require you to embed additional
 ! single quotation marks as shown in the second example.
 !
 WRITE (*, 960)
 960 FORMAT (27H Don’t misspell ’Hollerith’)
 WRITE (*, 961)
 961 FORMAT (’ Don’’t misspell ’’Hollerith’’’)

Character Count Editing (Q)

The Q edit descriptor obtains the number of characters in an input record remaining to be transferred
during a read operation. The I/O list element corresponding to the Q descriptor must be integer or
logical type. The following demonstrates the use of the Q descriptor:

 CHARACTER ICHAR(80)
 READ (4, 1000) XRAY, K, NCHAR, (ICHAR(I), I= 1, NCHAR)
 1000 FORMAT (E15.7, I4, Q, 80A1)

The preceding input statement reads the variables XRAY and K. The number of characters remaining
in the record is NCHAR, specified by the Q edit descriptor. The array ICHAR is then filled by
reading exactly the number of characters left in the record. (Note that this instruction will fail if
NCHAR is greater than 80, the length of the array ICHAR.) By placing Q in the format specification,
you can determine the actual length of an input record.

Note that the length returned by Q is the number of characters left in the record, not the number of
reals or integers or other data types. The length returned by Q can be used immediately after it is read
and can be used later in the same format statement or in a variable format expression. (See the
section Variable Format Expressions.)

Assume the file Q.DAT contains:

1234.567Hello, Q Edit

Input/Output Editing Page 18 of 34

9/2/97 3:25:35 PM

The following program reads in the number REAL1, determines the characters left in the record, and
reads those into STR:

 CHARACTER STR(80)
 INTEGER LENGTH
 REAL REAL1
 OPEN (UNIT = 10, FILE = ’Q.DAT’)
 READ (10, 100) REAL1, LENGTH, (STR(I), I=1, LENGTH)
 100 FORMAT (F8.3, Q, 80A1)
 WRITE(*,’(F8.3,2X,I2,2X,<LENGTH>A1)’) REAL1, LENGTH, (STR(I), &
 & I= 1, LENGTH)
 END

The output on the screen is:

1234.567 13 Hello, Q Edit

A READ statement that contains only a Q edit descriptor advances the file to the next record. For
example, consider that Q.DAT contains the following data:

abcdefg
abcd

Consider it is then READ with the following statements:

 OPEN (10, FILE = "Q.DAT")
 READ(10, 100) LENGTH
 100 FORMAT(Q)
 WRITE(*,’(I2)’) LENGTH
 READ(10, 100) LENGTH
 WRITE(*,’(I2)’) LENGTH
 END

The output to the screen would be:

7
4

Positional Editing: Tab, Tab Left, Tab Right (T, TL, TR)

The T, TL, and TR edit descriptors specify the position in the record to which or from which the
next character will be transmitted. The new position may be in either direction from the current
position. This allows a record to be processed more than once on input.

The Tc edit descriptor specifies absolute tabbing; the transmission of the next character is to occur at
the character position c. The TRc edit descriptor specifies relative tabbing to the right; the
transmission of the next character is to occur c characters beyond the current position. The TLc edit
descriptor specifies relative tabbing to the left; the transmission of the next character is to occur c
characters prior to the current position.

If TLc specifies a position before the first position of the current record, TLc editing causes
transmission to or from position 1.

Left tabbing is legal within records written to devices. However, if the record that is written is longer
than the buffer associated with the device, you cannot left-tab to a position corresponding to the

Input/Output Editing Page 19 of 34

9/2/97 3:25:35 PM

previous buffer.

For example, if the buffer associated with the console is 132 bytes, and a record of 140 bytes is
written to the console, left tabbing is allowed for only eight bytes. The first 132 bytes of the record
have been sent to the device and are no longer accessible.

If one of these edit descriptors is used to move to a position to the right of the last data item
transmitted and another data item is then written, the space between the previous end of data in the
record and the new position is filled with spaces. The following code fragment writes three adjacent
copies of the number ruler string for a reference, and then demonstrates how tab editing works. The
following FORMAT statement specifies to write 5 as a 5-byte integer, skip forward 20 spaces, back
up 10 spaces, and then write 9 as a 5-byte integer.

 WRITE (*, ’(’’ ’’, 3(’’1234567890’’))’)
 WRITE (*, 100) 5, 9
 100 FORMAT (I5, 20X, TL10, I5)

This example produces the following output:

 123456789012345678901234567890
 5 9

Be careful when using these edit descriptors if you read data from files that use commas (,) as field
delimiters. If you move backward in a record using TLc or Tc (where c is less than the current
position in the record), commas are disabled as field delimiters. If the format controller encounters a
comma after you have moved backward in a record with TLc or Tc, a run-time error occurs. If you
want to move backward in a record without disabling commas as field delimiters, advance to the
end-of-record mark, and then use the BACKSPACE statement to move to the beginning of the
record.

Positional Editing (X)

The nX edit descriptor advances the file position n characters. On output, if the nX edit descriptor
moves past the end of data in the record, and if there are further items in the iolist, blanks are output,
as described for the Tc and TRc edit descriptors. If n is absent, the X edit descriptor defaults to 1X.

 ! This example writes the following to the screen:
 ! 1 2
 ! ----+----+----+----+
 WRITE (*, 100)
 WRITE (*, 200)
 100 FORMAT (9X, ’1’, 9X, ’2’)
 200 FORMAT (’-------------------’, TL15, ’+’, 3(4X, ’+’))

Optional-Plus Editing (SP, SS, S)

The SP, SS, and S edit descriptors control the printing of optional leading plus (+) signs in numeric
output fields. SP causes output of the plus sign in all subsequent positions that the processor
recognizes as optional-plus fields. SS causes plus sign suppression in all subsequent positions that
the processor recognizes as optional-plus fields. S restores SS, the default.

 INTEGER i
 REAL r

Input/Output Editing Page 20 of 34

9/2/97 3:25:35 PM

 ! The following statements write:
 ! 251 +251 251 +251 251
 i = 251
 WRITE (*, 100) i, i, i, i, i
 100 FORMAT (I5, SP, I5, SS, I5, SP, I5, S, I5)

 ! The following statements write:
 ! 0.673E+4 +.673E+40.673E+4 +.673E+40.673E+4
 r = 67.3E2
 WRITE (*, 200) r, r, r, r, r
 200 FORMAT (E8.3E1, 1X, SP, E8.3E1, SS, E8.3E1, 1X, SP, &
 & E8.3E1, S, E8.3E1)

Slash Editing (/)

The r/ (slash) edit descriptor indicates the end of data transfer on the current record. The r is a repeat
specification. It must be a positive default integer literal constant.

On input, the file is positioned to the beginning of the next record. On output, an end-of-record mark
is written, and the file is positioned to write at the beginning of the next record.

 ! The following statements write spreadsheet column and row labels:
 WRITE (*, 100)
 100 FORMAT (’ A B C D E’ &
 & /,’ 1’,/,’ 2’,/,’ 3’,/,’ 4’,/,’ 5’)

This example generates the following output:

 A B C D E
 1
 2
 3
 4
 5

Multiple slashes cause the system to skip input records or to output blank records, as follows:

• When n consecutive slashes appear between two edit descriptors, n - 1 records are skipped on
input, or n - 1 blank records are output. The first slash terminates the current record. The
second slash terminates the first skipped or blank record, and so on.

• When n consecutive slashes appear at the beginning or end of a format specification, n records
are skipped or n blank records are output, because the opening and closing parentheses of the
format specification are themselves a record initiator and terminator, respectively. For
example, suppose the following statements are specified:

 WRITE (6,99)
99 FORMAT (’1’,T51,’HEADING LINE’//T51,’SUBHEADING LINE’//)

The following lines are written:

 Column 50, top of page
 |
 HEADING LINE
(blank line)
 SUBHEADING LINE

Input/Output Editing Page 21 of 34

9/2/97 3:25:35 PM

(blank line)
(blank line)

Note that the first character of the record printed was reserved as a control character (see
Carriage Control Specifier).

Backslash (\) and Dollar-Sign ($) Editing

The backslash (\) and dollar sign ($) edit descriptors prevent Visual Fortran from writing an
end-of-record mark after all items in the iolist and editlist have been processed. They are typically
used for formatted output to terminal devices, such as the screen or a printer.

When the format controller terminates a transmission to an output device, it writes an end-of-record
mark (typically carriage return and line feed for consoles). If the last edit descriptor encountered by
the format controller is a backslash or dollar sign, no end-of-record mark is written, so the next I/O
statement continues writing on the same line.

For units connected to terminal devices, the end-of-record mark is not written until the next record is
written to the unit. If the device is the screen, you can use the backslash or dollar sign to suppress the
end-of-record mark. This mechanism can be used to write a prompt to the screen and then read a
response from the same line, as in the following example:

 ! This example advances two lines, prompts for console input,
 ! awaits input on the same line as the prompt,
 ! and prints the input.
 CHARACTER(20) MYNAME
 WRITE (*,9000)
 9000 FORMAT (’Please type your name:’,\)
 READ (*,9001) MYNAME
 9001 FORMAT (A20)
 WRITE (*,9002) ’ ’,MYNAME
 9002 FORMAT (A20)

Terminating Format Control (:)

The colon (:) edit descriptor terminates format control if there are no more items in the iolist. This
feature is used to suppress output when some of the edit descriptors in the format do not have
corresponding data in the iolist.

 ! The following example writes a= 3.20 b= .99
 REAL a, b, c, d
 DATA a /3.2/, b /.9871515/
 WRITE (*, 100) a, b
 100 FORMAT (’ a=’, F5.2, :, ’ b=’, F5.2, :, &
 & ’ c=’, F5.2, :, ’ d=’, F5.2)
 END

Scale-Factor Editing (P)

The kP edit descriptor sets the scale factor for all subsequent F and E edit descriptors and G edit
descriptors with real variables, until another kP edit descriptor is encountered. (For information on F,
E, and G edit descriptors, see Repeatable Edit Descriptors.) At the start of each I/O statement, the
scale factor is initialized to zero. The scale factor affects format editing in the following ways:

Input/Output Editing Page 22 of 34

9/2/97 3:25:35 PM

• On input, with F and E editing, if there is no explicit exponent, the value read in is divided by
10k before it is assigned to a variable. If there is an explicit exponent, the scale factor has no
effect.

• On output, with F editing, the value to be written out is multiplied by 10k before it is
displayed.

• On output, with E editing, the real part of the value to be displayed is multiplied by 10k, and
its exponent is reduced by k. This alters the column position of the decimal point but not the
value of the number.

The following code uses scale-factor editing when reading:

 READ (*, 100) a, b, c, d
 100 FORMAT (F10.6, 1P, F10.6, F10.6, -2P, F10.6)

 WRITE (*, 200) a, b, c, d
 200 FORMAT (4F11.3)

If the following data is entered:

 12340000 12340000 12340000 12340000
 12.34 12.34 12.34 12.34
 12.34e0 12.34e0 12.34e0 12.34e0
 12.34e3 12.34e3 12.34e3 12.34e3

The program's output is:

 12.340 1.234 1.234 1234.000
 12.340 1.234 1.234 1234.000
 12.340 12.340 12.340 12.340
 12340.000 12340.000 12340.000 12340.000

The next code shows scale-factor editing when writing:

 a = 12.34

 WRITE (*, 100) a, a, a, a, a, a
 100 FORMAT (1X, F9.4, E11.4E2, 1P, F9.4, E11.4E2, &
 & -2P, F9.4, E11.4E2)

This program's output is:

 12.3400 0.1234E+02 123.4000 1.2340E+01 0.1234 0.0012E+04

Blank Interpretation (BN, BZ)

The edit descriptors BN and BZ control the interpretation of blanks in numeric input fields.

The BN edit descriptor ignores blanks; it takes all of the nonblank characters in the field and
right-aligns them. For example, if an input field formatted as a six-digit integer (I6) contains '2 3 4', it
is interpreted as ' 234'.

The BZ edit descriptor makes trailing blanks and interspersed blanks identical to zeros, while leading
blanks remain blanks. For example, the input field ' 23 4 ' would be interpreted as ' 23040'. If ' 23 4'
were entered, the formatter would add one blank to pad the input to the six-digit integer format (I6),
but this extra space would be ignored, and the input would be interpreted as ' 2304 '. Note that the

Input/Output Editing Page 23 of 34

9/2/97 3:25:35 PM

blanks following the E or D in real-number input are ignored, regardless of the form of blank
interpretation in effect.

The default, BN, is set at the beginning of each I/O statement, unless the BLANK=ZERO option was
specified in the OPEN statement (in which case each I/O statement on that unit begins with the
setting BZ). If you specify a BZ edit descriptor, BZ editing is in effect until the BN edit descriptor is
specified. Both BN and BZ override the BLANK= option setting.

For example, consider the following code:

 READ (*, 100) n
 100 FORMAT (BN, I6)

If you enter any one of the following three records and terminate by pressing Enter, the READ
statement interprets that record as the value 123:

 123
 123
 123 456

Because the repeatable edit descriptor associated with the I/O list item n is I6, only the first six
characters of each record are read (three blanks followed by 123 for the first record, and 123
followed by three blanks for the last two records). Because blanks are ignored, all three records are
interpreted as 123.

The following example shows the effect of BN editing with an input record that has fewer characters
than the number of characters specified by the edit descriptors and iolist. Suppose you enter 123 and
press Enter in response to the following READ statement:

 READ (*, ’(I6)’) n

The I/O system is looking for six characters to interpret as an integer number. You have entered only
three, so the first thing the I/O system does is to pad the record 123 on the right with three blanks. If
BZ editing were in effect, those three blanks would be interpreted as zeros, and the record would be
equal to 123000. However, with BN editing in effect (the default), the nonblank characters (123) are
right-aligned, so the record is equal to 123.

Variable Format Expressions

Wherever an integer constant is required by an edit descriptor, you can specify a numeric expression
in a FORMAT statement. If the expression is not of type integer, it is converted to integer type
before being used. The numeric expression must be enclosed by angle brackets (< and >). The
following are valid format specifications:

 WRITE(6,20) INT1
 20 FORMAT(I<MAX(20,5)>)

 WRITE(6,FMT=30) REAL2(10), REAL3
 30 FORMAT(<J+K>X, <2*M>F8.3)

The numeric expression can be any valid Visual Fortran expression, including function calls and
references to dummy arguments, with the following restrictions:

Input/Output Editing Page 24 of 34

9/2/97 3:25:35 PM

• The H edit descriptor cannot use variable format expressions.
• Expressions cannot contain graphical relational operators (i.e, cannot contain < or >, but can

contain .LT. or .GT.).

A variable format expression may not appear in an assigned-expression format statement such as:

 CHARACTER(80) S
 S = ’(I<J+K>)’
 WRITE(6, S) N

But can be used in statements such as:

WRITE(6, ’(I<J+K>)’) N

The value of the expression is reevaluated each time an input/output item is processed during the
execution of the READ, WRITE, or PRINT statement. For example:

 INTEGER width, value
 width=2
 READ (*,10) width, value
 10 FORMAT(I1, I <width>)
 PRINT *, value
 END

When given input 3123 will print 123 and not 12.

Interaction Between Format Specifications and I/O Lists

If an iolist contains one or more items, at least one repeatable edit descriptor must appear in the
format specification. The empty edit specification, (), can be used only if no items are specified in
the iolist. A formatted WRITE statement with an empty edit specification writes a carriage return
and line feed. A READ statement with an empty edit specification skips to the next record, unless
I/O is set to be non-advancing (with the ADVANCE='NO' option), in which case the file position
remains unchanged.

A record with fewer characters than the length specified by its edit descriptor is automatically padded
on the right with blanks, unless you specify PAD='NO' in an OPEN statement. By default
PAD='YES'. Any blanks entered by the user are interpreted according to the blank-editing descriptor
in effect (BN or BZ) or the BLANK= option in an OPEN statement. BN and BZ override the
BLANK= option.

As an example, consider the following READ statement that uses BZ editing (PAD='YES', the
default):

 READ (*, ’(BZ, I5)’) n

Consider you enter the following in response:

 5

The total number of characters in the input record is two (a blank followed by a 5). The record is
padded on the right with three blanks, but these additional blanks added by the formatter are ignored.
The input record is thus interpreted as 5, rather than 5000. Alternatively, if you had entered a blank,
followed by a 5, followed by three blanks, your blanks, unlike formatter-added blanks, would be

Input/Output Editing Page 25 of 34

9/2/97 3:25:35 PM

interpreted as zeroes, and the result would be 5000.

Each item in the iolist is associated with a repeatable edit descriptor during the I/O statement
execution. Each COMPLEX item in the iolist requires two edit descriptors in the FORMAT
statement or format descriptor. Nonrepeatable edit descriptors are not associated with items in the
iolist, except for the Q edit descriptor.

During the formatted I/O process, the format controller scans and processes the format items from
left to right. Following is a list detailing situations the format controller might encounter and their
explanations:

• If a repeatable edit descriptor is encountered and a corresponding item appears in the iolist, the
item and the edit descriptor are associated, and I/O of that item proceeds under the format
control of the edit descriptor.

• If a repeatable edit descriptor is encountered and no corresponding item appears in the iolist,
the format controller terminates I/O. For example, consider the following statements:

 i = 5
 WRITE (*, 100) i
 100 FORMAT (’I= ’, I5, ’ J= ’, I5, ’ K= ’, I5)

In this case, the output would look like this:

 I= 5 J=

The output terminates after J= because no corresponding item for the second I5 appears in the
iolist.

• If a colon (:) edit descriptor (terminate format control) is encountered and there are no further
items in the iolist, the format controller terminates I/O.

• If a colon (:) edit descriptor is encountered but there are further items in the iolist, the colon
edit descriptor is ignored.

• If the matching final right parenthesis of the format specification is encountered and there are
no further items in the iolist, the format controller terminates I/O.

• If the matching final right parenthesis of the format specification is encountered and there are
further items in the iolist, the file is positioned at the beginning of the next record and the
format controller starts over at the beginning of the format specification terminated by the last
preceding right parenthesis.

• If there is no such preceding right parenthesis, the format controller rescans the format from
the beginning. Within the portion of the format rescanned, there must be at least one
repeatable edit descriptor.

• If the rescan of the format specification begins with a repeated nested format specification, the
repeat factor indicates the number of times to repeat that nested format specification. The
rescan does not change the previously set scale factor or the BN or BZ blank control in effect.

In advancing I/O, when the format controller terminates on input, any remaining characters of the
record are ignored. When the format controller terminates on output, an end-of-record mark is
written. Nonadvancing I/O leaves the file positioned after the last character read or written. No
end-of-record mark is written.

Note: For units connected with CARRIAGECONTROL='FORTRAN' (typically terminals and

Input/Output Editing Page 26 of 34

9/2/97 3:25:35 PM

printers), the end-of-record mark is not written until the next record is written to the unit. You can
use the backslash (\) or dollar-sign ($) edit descriptor to suppress the end-of-record mark.

List-Directed I/O
When you use formatted I/O, you specify how the data is represented on the external device. With
list-directed I/O, you can read and write data items in an iolist without a FORMAT statement. I/O is
controlled by the number and type of data items in the iolist. For example:

 INTEGER(2) INT1, INT2
 REAL(8) REAL1, REAL2
 CHARACTER CHAR(7)
 READ (10, *) INT1, INT2, REAL1, REAL2, CHAR(7)

The READ statement expects two 2-byte integer numbers, two 8-byte real numbers and seven
characters.

List-directed I/O can be used to read and write external or internal files. (For a discussion of internal
and external files, see Logical Devices.) List-directed I/O statements include an asterisk (*) in place
of the FORMAT number. For more about iolists, see Input/Output Lists.

List-directed input is most useful in situations where the data is error-free and provided in a fixed
and known form. List-directed output is most useful when you are more interested in what the data is
than how it is formatted.

Note: Unformatted I/O (list-directed and namelist I/O) does not use explicit formatting or a
FORMAT statement. When you perform unformatted I/O, Visual Fortran dumps the contents of
the memory to the output device instead of formatting the data in the I/O list. If you consistently
use unformatted I/O statements (and avoid mixing with formatted I/O), fewer run-time routines
will be added to your program, and you will create smaller executable files.

When you use list-directed formatting to read or write data, the data items must match the internal
representations to which they are mapped. To perform list-directed input, you must provide an iolist
and a matching data stream. To perform list-directed output, you provide the iolist and Visual
Fortran provides the formatting.

List-directed I/O is described in detail in the following sections:

• List-Directed Input
• List-Directed Output

List-Directed Input

To perform list-directed input, you provide an iolist containing the names of the variables into which
the data is to be read. A list-directed input data record is a sequence of values separated by commas (
,) or blanks. Each item in a list-directed data record must be either a value or a null (placeholder).

A null has no effect on the variable to which it is mapped: variables with values retain them, and
those without values remain empty. A slash (/) terminates the input stream. Any further items in the
input list are treated as if they were null values and have no effect. For example:

Input/Output Editing Page 27 of 34

9/2/97 3:25:35 PM

 INTEGER I1, I2, I3
 I1 = 1
 I2 = 2
 READ (*, *) I1, I2, I3

If the user inputs the following:

 8, , / 9

I1 is assigned the value 8, I2 corresponds to an input null so its value remains 2, then the input record
is terminated with the slash before a value for I3 is read, so I3’s value remains null (zero).

Only string constants can contain embedded blanks. Blanks between two numeric values are
interpreted as a value separator. Blanks next to value separators (commas, slashes, or other blanks)
are ignored. For example:

 5 , 6 / 7

This is equivalent to:

 5,6/7

Repeated input values can be indicated by multiplying the value by the number of repetitions. For
instance, the entry 3*5 tells Visual Fortran to read the value 5 three times. Consider the following:

 REAL R(10)
 READ (5,*) R

If the input record contains 10*3.1416, the ten elements of array R are set to 3.1416.

Most of the input forms available for formatted I/O are also available for list-directed formatting.
The following rules apply to list-directed input for all values:

• The form of the input value must be acceptable for the type of input list item.
• Blanks are always treated as separators and never as zeros.
• Embedded blanks can appear only within character constants.

The end-of-record mark has the same effect as a blank, except when it appears within a character
constant.

In addition to these rules, the following restrictions apply to the specified values:

Type of Value Restrictions
Single- or
double-precision real
constants

A real or double-precision constant must be a numeric input field (a field
suitable for F editing). It is assumed to have no fractional digits unless there
is a decimal point within the field.

Complex constants A complex constant is an ordered pair of real or integer constants separated
by a comma and surrounded by opening and closing parentheses. The first
constant of the pair is the real part of the complex constant, and the second is
the imaginary part.

Logical constants A logical constant must not include either slashes or commas among the
optional characters permitted for L editing.

Character constants A character constant is a nonempty string of characters enclosed in single
quotation marks. Each single quotation mark within a character constant

Input/Output Editing Page 28 of 34

9/2/97 3:25:35 PM

delimited by single quotation marks must be represented by two single
quotation marks, with no intervening blanks.

Character constants can be continued from the end of one record to the
beginning of the next; the end of the record doesn’t cause a blank or other
character to become part of the constant. The constant can be continued on as
many records as needed and can include the blank, comma, and slash
characters.

If the length n of the list item is less than or equal to the length m of the
character constant, the leftmost n characters of the latter are transmitted to the
list item.

If n is greater than m, the constant is transmitted to the leftmost m characters
of the list item. The remaining n minus m characters of the list item are filled
with blanks. The effect is the same as if the constant were assigned to the list
item in a character assignment statement.

Derived types A derived type in an input list is equivalent to putting all the elements of the
derived type in the input list, in the same order they have in the derived-type
declaration.

Null values Null values indicate the absence of a data item for a given variable. You can
specify a null value in one of three ways:

• No characters between successive value separators. For example, in a
data record containing 54.23, , , 141, the two values after 54.23
are empty.

• No characters preceding the first value separator in the first record read
by each execution of a list-directed input statement.

• You can also indicate a group of nulls using the asterisk form. For
example, 10* is equivalent to 10 null values, or a piece of a data stream
containing 16, , , , , , , , , , , 23.8.

A null value has no effect on the current definition of the corresponding input
list item. If the input list item is defined, it retains its previous value; if it is
undefined, it remains so.

A slash encountered as a value separator during execution of a list-directed
input statement stops execution of that statement after the assignment of the
previous value. Any further items in the input list are treated as if they were
null values.

Blanks All blanks in a list-directed input record are considered to be part of some
value separator, except for the following:

• Blanks embedded in a character constant.
• Leading blanks in the first record read by each execution of a

list-directed input statement unless immediately followed by a slash or
comma.

The following example uses list-directed input and output:

 REAL a
 INTEGER i

Input/Output Editing Page 29 of 34

9/2/97 3:25:35 PM

 COMPLEX c
 LOGICAL up, down
 DATA a /2358.2E-8/, i /91585/, c /(705.60,819.60)/
 DATA up /.TRUE./, down /.FALSE./
 OPEN (UNIT = 9, FILE = ’listout’, STATUS = ’NEW’)
 WRITE (9, *) a, i
 WRITE (9, *) c, up, down
 REWIND (9)
 READ (9, *) a, i
 READ (9, *) c, up, down
 WRITE (*, *) a, i
 WRITE (*, *) c, up, down
 END

The preceding program produces the following output:

 2.3582001E-05 91585
 (705.6000,819.6000) T F

List-Directed Output

In list-directed output, you provide the iolist and Visual Fortran provides the formatting. The
formatting is the same as that required for input, except as noted in this section.

New records are created as necessary, but neither the end of a record nor blanks can occur within a
constant (except in character constants). To provide carriage control when the record is printed, each
output record automatically begins with a blank character.

The following table shows the default output formats for each intrinsic data type:

Default Formats for List-Directed Output
Data Type Output Format

BYTE I5
LOGICAL(1) L2
LOGICAL(2) L2
LOGICAL(4) L2

LOGICAL(8) 1 L2

INTEGER(1) I5
INTEGER(2) I7
INTEGER(4) I12

INTEGER(8) 1 I22

REAL(4) 1PG15.7E2
REAL(8) T_floating 1PG24.15E3
REAL(8) D_floating 1PG24.16E2
REAL(8) G_floating 1PG24.15E3

REAL(16) 2 1PG43.33E4

COMPLEX(4) ’(’,1PG14.7E2, ’, ’,1PG14.7E2, ’) ’
COMPLEX(8) T_floating ’(’,1PG23.15E3, ’, ’,1PG23.15E3, ’) ’
COMPLEX(8) D_floating ’(’,1PG23.16E2, ’, ’,1PG23.16E2, ’) ’
COMPLEX(8) G_floating ’(’,1PG23.15E3, ’, ’,1PG23.15E3, ’) ’

Input/Output Editing Page 30 of 34

9/2/97 3:25:35 PM

CHARACTER Aw 3

1Alpha only.
2VMS, U*X.
3Where w is the length of the character expression.

A derived type in an output list is equivalent to putting all the elements of the derived type in the
output, in the same order they have in the derived-type declaration.

The following example uses list-directed output:

 INTEGER i, j
 REAL a, b
 LOGICAL on, off
 CHARACTER(20) c
 DATA i /123456/, j /500/, a /28.22/, b /.0015555/
 DATA on /.TRUE./, off/.FALSE./
 DATA c /’Here’’s a string’/
 WRITE (*, *) i, j
 WRITE (*, *) a, b, on, off
 WRITE (*, *) c
 END

The preceding example produces the following output:

 123456 500
 28.22000 1.555500E-03 T F
Here’s a string

Namelist I/O
Namelist I/O is a powerful method for reading data in or writing data out to a file (or the terminal).
By specifying one or more variables in a namelist group, you can read or write the values of all of
them with a single I/O statement.

A namelist group is created with the NAMELIST statement. It takes the form:

NAMELIST / namelist / variable-list

The namelist is an identifying name for the group, and variable-list is a list of variables, derived
types and/or array names.

Namelist I/O is described in the following sections:

• Namelist Input
• Namelist Output
• Namelist READ

See also NAMELIST in the Reference.

Namelist Input

Input/Output Editing Page 31 of 34

9/2/97 3:25:35 PM

A namelist input statement scans the input file for the group name. After it finds the group name, the
statement then scans for assignment statements that give values to one or more of the variables in the
group. Namelist input starts with an ampersand (&) or dollar sign ($).

Namelist input is terminated with a slash (/), ampersand (&), or dollar sign ($). The word END in
uppercase, lowercase or mixed-case can appear after the terminating ampersand (&) or dollar sign ($)
with no intervening spaces, but cannot appear after a terminating slash (/). For example:

 INTEGER a, b
 NAMELIST /mynml/ a, b
 ...
 ! The following are all valid namelist variable assignments:
 &mynml a = 1 /
 $mynml a = 1 $
 $mynml a = 1 $end
 &mynml a = 1 &
 &mynml a = 1 $END
 &mynml
 a = 1
 b = 2
 /

Comments (beginning with ! only) can appear anywhere in namelist input. The comment extends to
the end of the source line.

Namelist Output

A namelist output statement writes the name of the namelist group, followed by the name of each
variable in the namelist, an equal sign (=), and the variable’s current value. Namelist output is
terminated with a slash (\). The values of the namelist variables are written to a file or the screen
with a WRITE statement in which the namelist group name appears instead of a format specifier.
Note that no iolist is needed or permitted.

WRITE (*, [NML=] namelist)

NML= is optional and is required only if other keywords (such as END=) are used.

The first output record is an ampersand (&), immediately followed by the namelist group name, in
uppercase. Succeeding records list all variable names in the group and their values. Each output
record begins with a blank character to provide carriage control if the record is printed. The last
output record is a slash.

Values take the output format they would have in list-directed I/O. Unless DELIM= ’QUOTE’ or
’APOSTROPHE’ when the output file is opened, character constants will not be delimited, and the
file created cannot be read by a namelist READ statement, which requires string delimiters.

The following example declares a number of variables, which are placed in a namelist, initialized,
and then written to the screen with namelist I/O:

 INTEGER(1) int1
 INTEGER int2, int3, array(3)
 LOGICAL(1) log1
 LOGICAL log2, log3
 REAL real1
 REAL(8) real2

Input/Output Editing Page 32 of 34

9/2/97 3:25:35 PM

 COMPLEX z1, z2
 CHARACTER(1) char1
 CHARACTER(10) char2

 NAMELIST /example/ int1, int2, int3, log1, log2, log3, &
 & real1, real2, z1, z2, char1, char2, array

 int1 = 11
 int2 = 12
 int3 = 14
 log1 = .TRUE.
 log2 = .TRUE.
 log3 = .TRUE.
 real1 = 24.0
 real2 = 28.0d0
 z1 = (38.0,0.0)
 z2 = (316.0d0,0.0d0)
 char1 = ’A’
 char2 = ’0123456789’
 array(1) = 41
 array(2) = 42
 array(3) = 43
 WRITE (*, example)

Output of the preceding example is:

 &EXAMPLE
 INT1 = 11,
 INT2 = 12,
 INT3 = 14,
 LOG1 = T,
 LOG2 = T,
 LOG3 = T,
 REAL1 = 24.00000 ,
 REAL2 = 28.0000000000000 ,
 Z1 = (38.00000,0.0000000E+00),
 Z2 = (316.0000,0.0000000E+00),
 CHAR1 = A,
 CHAR2 = 0123456789,
 ARRAY = 41, 42, 43
 /

Namelist READ

The operation of a namelist READ statement is almost the reverse of a WRITE operation. The
statement first scans the file (either at the terminal or on disk) from its current position until it finds
an ampersand (&) immediately followed by the namelist group name, or until it reaches the end of
the file. (Ampersands followed by other names are ignored.) There must be at least one blank or
carriage return following the group name to separate it from the following value-assignment pairs.

A value-assignment pair consists of a variable name, array element, or substring followed by an
equal sign (=) and one or more values and value separators. The equal sign can be preceded or
followed by any number of blanks (including no blanks). A value separator is a single comma (,), one
or more blanks, or a tab. A comma that is not preceded by a value is treated as a null value, and the
corresponding variable or array element is not altered.

Variables can appear in any order. The same variable can appear in more than one assignment pair.
Its final value is the value it received in its last assignment. All the variables in a namelist do not

Input/Output Editing Page 33 of 34

9/2/97 3:25:35 PM

need to be assigned values; those that do not appear, or that are associated with null values, keep
their current values. A variable name in the input file that is not in the namelist group causes a
run-time error.

If a derived-type name appears in the input list, the first value in the record is given to the first
element in the derived-type definition, the second value to the second element and so on. The input
data types must match the element types. An individual derived-type element can also appear in an
input list, like any other variable.

If an array name appears without a qualifying subscript, the first value in the input record is given to
the first array element, the second to the second element, and so forth. Assignment to arrays is by
row-major order.

You cannot assign more values than there are elements in an array. For example, you cannot specify
101 values for a 100-element array. However, an array need not have values assigned to all its
elements. Any missing values are treated as nulls, and the corresponding array elements are not
altered. Individual values can also be assigned to subscripted array elements.

A value can be repeated by placing a repeat factor and an asterisk (*) in front of the value. For
example, 7*’Hello’ assigns ’Hello’ to the next seven elements in an array or variable list. A repeat
factor and asterisk without a value indicates multiple null values. The corresponding variables are
not altered. Consider the following array matrix(0:101):

 matrix = 10, 50*25, 50*, -101
 matrix(42) = 63

These statements assign 10 to element 0, assign 25 to the elements 1 through 50, leave 51 through
100 alone, assign -101 to element 101, and then change the value of matrix(42) to 63.

Character strings must be delimited by apostrophes or quotation marks to be read.

A namelist READ statement is terminated by a slash (/) or when the end of the file is reached. If the
READ statement reaches the end of the file, an error occurs. Don’t use slashes as value separators
unless you want to end the read prematurely.

Suppose you wanted the preceding program to read new values for some of the variables in namelist
group example. Consider that a file connected to unit four contains the following namelist specifier
and assignment statements:

 &example
 Z1 = (99.0,0.0)
 INT1=99
 array(1)=99
 REAL1 = 99.0
 CHAR1=’Z’
 CHAR2(4:9) = ’Inside’
 LOG1=.FALSE.
 /

In this case, the following namelist READ statement would assign new values to the specified
variables:

 READ (UNIT = 4, example)

Input/Output Editing Page 34 of 34

9/2/97 3:25:35 PM

A second WRITE (*, example) statement would display their changed values, as follows:

 &example
 INT1 = 99,
 INT2 = 12,
 INT3 = 14,
 LOG1 = F,
 LOG2 = T,
 LOG3 = T,
 REAL1 = 99.00000 ,
 REAL2 = 28.0000000000000 ,
 Z1 = (99.00000,0.0000000E+00),
 Z2 = (316.0000,0.0000000E+00),
 CHAR1 = Z,
 CHAR10 = 012Inside9,
 ARRAY = 99, 42, 43
 /

Input/Output Statements Page 1 of 20

9/2/97 3:25:59 PM

Input/Output Statements
In the input/output (I/O) system, data is stored in and retrieved from devices and files. I/O editing
determines how that data is organized when it is read from the files and devices or written to them.
I/O statements determine what I/O operations are performed on the data. This topic describes Visual
Fortran I/O statements and discusses the specifiers you can use to modify the operations they perform.

The I/O statements are listed in a table. The I/O statement specifiers are also listed in a table.

See also Improve Overall I/O Performance.

Overview of I/O Statements

The following are data transfer statements: READ, ACCEPT, WRITE, PRINT (or TYPE), and
REWRITE.

The following are file connection, inquiry, and positioning statements: BACKSPACE, CLOSE,
DELETE, ENDFILE, INQUIRE, OPEN, REWIND, and UNLOCK.

The following table gives a brief description of the Visual Fortran I/O statements. For more detailed
descriptions of each statement, see the Reference.

Table: I/O Statements
Statement Function

ACCEPT Inputs data. Similar to a formatted, sequential READ statement.
BACKSPACE Positions a file at the beginning of the preceding record
CLOSE Disconnects a unit
DELETE Deletes a record from a relative file.
ENDFILE Writes an end-of-file record
INQUIRE Returns the properties of a unit or external file
OPEN Associates a unit number with a file or device
PRINT (or TYPE) Outputs data to the asterisk (*) unit
READ Inputs data
REWIND Repositions a file to the beginning
REWRITE Rewrites the current record.
UNLOCK Frees a record in a relative or sequential file that was previously locked.
WRITE Outputs data

The EOF intrinsic function can be used to determine whether there is data remaining in the file after
the current position.

I/O Statement Specifiers

I/O statements can be modified with optional parameters. For example, consider the following OPEN
statement:

Input/Output Statements Page 2 of 20

9/2/97 3:26:00 PM

 OPEN (UNIT= 4, FILE= ’BESSEL.DAT’, POSITION= ’APPEND’)

This OPEN statement associates the file BESSEL.DAT with unit number 4. It also uses the optional
POSITION=’APPEND’ to position the opened file at the end. Any subsequent WRITE to the file
will append data to the end, and not overwrite existing data.

Optional I/O parameters let you designate file structure, position and access, data delimiters and
blank interpretation, error handling and many other I/O features. With I/O specifiers, you can modify
I/O operations to fit your needs. The following table lists the specifiers, the values they can take,
what they do, and the I/O statements they are used in. Further information about the options can be
found in the Reference under the I/O statements that use them.

Table: I/O Specifiers

Specifier Values Description
Used
with:

ACCESS=access ’SEQUENTIAL’,
’DIRECT’, or ’APPEND’

Specifies the method of file
access.

INQUIRE,
OPEN

ACTION=permission ’READ’, ’WRITE’ or
’READWRITE’ (default
is ’READWRITE’)

Specifies file I/O mode. INQUIRE,
OPEN

ADVANCE=ad_switch ’NO’ or ’YES’ (default is
’YES’)

Specifies formatted sequential
data input as advancing, or
non-advancing.

READ

ASSOCIATEVARIABLE=var Integer variable Specifies a variable to be
updated to reflect the record
number of the next sequential
record in the file.

INQUIRE,
OPEN

BINARY=bin ’NO’ or ’YES’ Returns whether file format is
binary.

INQUIRE

BLANK=blank_control ’NULL’ or ’ZERO’
(default is ’NULL’)

Specifies whether blanks are
ignored in numeric fields or
interpreted as zeros.

INQUIRE,
OPEN

BLOCKSIZE=blocksize Positive integer variable
or expression

Specifies or returns the
internal buffer size used in I/O.

INQUIRE,
OPEN

BUFFERCOUNT=bc Numeric expression Specifies the number of
buffers to be associated with
the unit for multibuffered I/O.

OPEN

CARRIAGECONTROL=
control

’FORTRAN’, ’LIST’, or
’NONE’

Specifies carriage control
processing.

INQUIRE,
OPEN

CONVERT=form ’LITTLE_ENDIAN’,
’BIG_ENDIAN’,
’CRAY’, ’FDX’, ’FGX’,
’IBM’, ’VAXD’, ’VAXG’,
or ’NATIVE’ (default is
’NATIVE’)

Specifies a numeric format for
unformatted data.

INQUIRE,
OPEN

DEFAULTFILE=var Character expression Specifies a default file
pathname string.

INQUIRE,
OPEN

Input/Output Statements Page 3 of 20

9/2/97 3:26:00 PM

DELIM=delimiter ’APOSTROPHE’,
’QUOTE’ or ’NONE’
(default is ’NONE’)

Specifies the delimiting
character for list-directed or
namelist data.

INQUIRE,
OPEN

DIRECT=dir ’NO’ or ’YES’ Returns whether file is
connected for direct access.

INQUIRE

DISPOSE=dis (or DISP=dis) ’KEEP’, ’SAVE’,
’DELETE’, ’PRINT’,
’PRINT/DELETE’,
’SUBMIT’, or
’SUBMIT/DELETE’
(default is ’DELETE’ for
scratch files; ’KEEP’ for
all other files)

Specifies the status of a file
after the unit is closed.

OPEN,
CLOSE

formatlist Character variable or
expression

Lists edit descriptors. Used in
FORMAT statements and
format specifiers (the
FMT=formatspec option) to
describe the format of data.

FORMAT,
PRINT,
READ,
WRITE

END=endlabel Integer between 1 and
99999

When an end of file is
encountered, transfers control
to the statement whose label is
specified.

READ

EOR=eorlabel Integer between 1 and
99999

When an end of record is
encountered, transfers to the
statement whose label is
specified.

READ

ERR=errlabel Integer between 1 and
99999

Specifies the label of an
executable statement where
execution is transferred after
an I/O error.

All except
PRINT

EXIST=ex .TRUE. or .FALSE. Returns whether a file exists
and can be opened.

INQUIRE

FILE=file (or NAME=name) Character variable or
expression. Length and
format of the name are
determined by the
operating system

Specifies the name of a file INQUIRE,
OPEN

[FMT=]formatspec Character variable or
expression

Specifies an editlist to use to
format data.

PRINT,
READ,
WRITE

FORM=form ’FORMATTED’,
’UNFORMATTED’, or
’BINARY’

Specifies a file’s format. INQUIRE,
OPEN

FORMATTED=fmt ’NO’ or ’YES’ Returns whether a file is
connected for formatted data
transfer.

INQUIRE

IOFOCUS=iof .TRUE. or .FALSE. Specifies whether a unit is the INQUIRE,

Input/Output Statements Page 4 of 20

9/2/97 3:26:00 PM

(default is .TRUE.
unless unit ’*’ is
specified)

active window in a QuickWin
application.

OPEN

iolist List of variables of any
type, character
expression, or
NAMELIST

Specifies items to be input or
output.

PRINT,
READ,
WRITE

IOSTAT=iostat Integer variable Specifies a variable whose
value indicates whether an I/O
error has occurred.

All except
PRINT

MAXREC=var Numeric expression Specifies the maximum
number of records that can be
transferred to or from a direct
access file.

OPEN

MODE=permission ’READ’, ’WRITE’ or
’READWRITE’ (default
is ’READWRITE’)

Same as ACTION. INQUIRE,
OPEN

NAMED=var .TRUE. or .FALSE. Returns whether a file is
named.

INQUIRE

NEXTREC=nr Integer variable Returns where the next record
can be read or written in a file.

INQUIRE

[NML=]nmlspec Namelist name Specifies a namelist group to
be input or output.

PRINT,
READ,
WRITE

NUMBER=num Integer variable Returns the number of the unit
connected to a file.

INQUIRE

OPENED=od .TRUE. or .FALSE. Returns whether a file is
connected.

INQUIRE

ORGANIZATION=org ’SEQUENTIAL’ or
’RELATIVE’ (default is
’SEQUENTIAL’)

Specifies the internal
organization of a file.

INQUIRE,
OPEN

PAD=pad_switch ’YES’ or ’NO’ (default is
’YES’)

Specifies whether an input
record is padded with blanks
when the input list or format
requires more data than the
record holds, or whether the
input record is required to
contain the data indicated.

INQUIRE,
OPEN

POSITION=file_pos ’ASIS’, ’REWIND’ or
’APPEND’ (default is
’ASIS’)

Specifies position in a file. INQUIRE,
OPEN

READ=rd ’NO’ or ’YES’ Returns whether a file can be
read.

INQUIRE

READONLY Specifies that only READ
statements can refer to this
connection.

OPEN

Input/Output Statements Page 5 of 20

9/2/97 3:26:00 PM

READWRITE=rdwr ’NO’ or ’YES’ Returns whether a file can be
both read and written to.

INQUIRE

REC=rec Positive integer variable
or expression

Specifies the first (or only)
record of a file to be read
from, or written to.

READ,
WRITE

RECL=length (or
RECORDSIZE=length)

Positive integer variable
or expression

Specifies the record length in
direct access files, or the
maximum record length in
sequential files.

INQUIRE,
OPEN

RECORDTYPE=typ ’FIXED’, ’VARIABLE’,
’SEGMENTED’,
’STREAM’,
’STREAM_LF’, or
’STREAM_CR’

Specifies the type of records
in a file.

INQUIRE,
OPEN

SEQUENTIAL=seq ’NO’ or ’YES’ Returns whether file is
connected for sequential
access.

INQUIRE

SHARE=share ’COMPAT’,
’DENYNONE’,
’DENYWR’, ’DENYRD’,
or ’DENYRW’ (default
is ’DENYNONE’)

Controls how other processes
can simultaneously access a
file on networked systems.

INQUIRE,
OPEN

SHARED Specifies that a file is
connected for shared access
by more than one program
executing simultaneously.

OPEN

SIZE=size Integer variable Returns the number of
characters read in a
nonadvancing READ before
an end-of-record condition
occurred.

READ

STATUS=status ’OLD’, ’NEW’,
’UNKNOWN’ or
’SCRATCH’ (default is
’UNKNOWN’)

Specifies the status of a file
on opening and/or closing.

CLOSE,
OPEN

TITLE=name Character expression Specifies the name of a child
window in a QuickWin
application.

OPEN

UNFORMATTED=unf ’NO’ or ’YES’ Returns whether a file is
connected for unformatted
data transfer.

INQUIRE

[UNIT=]unitspec Integer variable or
expression

Specifies the unit to which a
file is connected.

All except
PRINT

USEROPEN=fname Name of a user-written
function

Specifies an external function
that controls the opening of a
file.

OPEN

Input/Output Statements Page 6 of 20

9/2/97 3:26:00 PM

WRITE=rd ’NO’ or ’YES’ Returns whether a file can be
written to.

INQUIRE

Format and Namelist Specifiers

The format and namelist specifiers are: FMT= and NML=.

These specifiers indicate how I/O statements interpret data. The format specifier (FMT=) can be a
character expression containing edit descriptors or the label of a FORMAT statement containing edit
descriptors. For information on formats see Formatted I/O. The namelist specifier (NML=) directs
I/O statements to use a namelist, a group of variables in a certain order, as the template for input and
output. For more information on namelists, see Namelist I/O.

Only one of these I/O descriptors (FMT= or NMT=) can be used in a single I/O statement.

Format Specifier (FMT=)

The FMT= specifier is used in PRINT, READ, and WRITE statements to specify the format itself
or to refer to the label of a FORMAT statement. The FMT= syntax can be omitted, but if it is, the
format specifier must be the second parameter in READ and WRITE statements (after the unit
specifier). If the FMT= syntax is used, the format specifier can appear anywhere in the I/O
statement’s argument list.

 ! FMT= omitted, formatting must come after unit specifier.
 READ (8, ’(2I5)’) int1, int2

 ! FMT= present, formatting can appear anywhere in the argument list.
 WRITE (8, ERR= 200, IOSTAT= ios, FMT= 800) int1, int2
 800 FORMAT(2I5)

Namelist Specifier (NML=)

The NAMELIST specifier in WRITE or READ statements replaces a FORMAT specifier. If
NML= (like FMT=) is absent, a namelist specifier must be the second parameter after the unit
specifier. If NML= is present, the namelist can appear anywhere in the I/O statement’s argument list.
With a namelist, you can read or write the values of all the variables in the namelist with a single I/O
statement. The following is a sample namelist:

 INTEGER a, b
 NAMELIST /exnml / a, b
 a = 1
 b = 2
 WRITE (*, exnml)

Outputs the following:

 &EXNML
 A = 1,
 B = 2
 /

Errors, End-of-File, and End-of-Record Handling Specifiers

The errors, end-of-file, and end-of-record handling specifiers are: ERR=, END=, EOR=, and

Input/Output Statements Page 7 of 20

9/2/97 3:26:00 PM

IOSTAT=.

When you use these specifiers, your program can recover from conditions that would otherwise
terminate execution. These specifiers control how your program responds to errors, end-of-file, and
end-of-record conditions encountered during I/O operations:

• ERR= identifies a statement label to which control should transfer if an error occurs. ERR=
can be used with any I/O statement except PRINT.

• END= identifies a statement label to which control should transfer if an end of file is
encountered. END= can only be used in a sequential access READ statement. If you WRITE
to a file after reaching the end of file, the data will be appended to the file.

• EOR= identifies a statement label to which control should transfer if an end of record is
encountered during a READ statement with ADVANCE='NO'. EOR= can only be used with
a non-advancing READ statement. A non-advancing READ can only be performed on a file
opened as formatted sequential (the default).

• IOSTAT= sets the value of iostat to -1 if end-of-file is encountered, to -2 if an end-of-record
is encountered, and to the run-time error number (a positive integer) if an error occurs. (See
Run-time Errors for a list of error numbers and their meaning.) If none of these conditions
occurs, iostat is set to 0. IOSTAT= can be used with any I/O statement except PRINT.

If none of these options has been used and there is a run-time error during the I/O operation, the
program will terminate with a run-time error message. Because you cannot specify ERR=, END=,
EOR=, and IOSTAT= specifiers with the PRINT statement, an error during execution of a PRINT
statement always causes a run-time error.

The following table indicates the action taken when an error or end-of-file marker is encountered by
a READ statement. Any time an error occurs during a READ statement, all items in the iolist
become undefined.

Table: Errors and End-of-File Markers When Reading
IOSTAT=

set
END=

set
ERR=

set
End-of-file occurs Run-time error occurs

No No No Run-time error occurs Program termination with run-time
error message

No No Yes Go to errlabel Go to errlabel
No Yes No Go to endlabel Program termination with run-time

error message
No Yes Yes Go to endlabel Go to errlabel
Yes No No Set iostat = -1 and execute

next statement
Set iostat = run-time error number and
execute next statement

Yes Yes Yes Set iostat = -1 and go to
endlabel

Set iostat = run-time error number and
go to errlabel

An advancing READ statement reads a file that has been opened without an ADVANCE= specifier
or with ADVANCE='YES'. When an advancing READ statement encounters an end-of-record
marker, the file is positioned after the current record and execution continues. A nonadvancing
READ statement, one reading a file opened with ADVANCE='NO', is character-oriented, not
record-oriented, and when it encounters an end-of-record marker an error occurs. For example,

Input/Output Statements Page 8 of 20

9/2/97 3:26:00 PM

consider the following:

 CHARACTER(8) string
 INTEGER ios

 OPEN (4, FILE= "Mydat.dat")
 WRITE(4, *) ’abc’
 REWIND(4)
 READ(4, ’(A8)’, ADVANCE= ’NO’, EOR= 200, IOSTAT = ios) string

The READ statement attempts to input eight characters (the A8 edit descriptor), but the record holds
only three characters. So, at the READ statement, the program will set ios to -2 and branch to the
statement at label 200, specified by the EOR=200 option.

The following table shows the action taken when a nonadvancing READ statement encounters an
end-of-record marker, if no other error condition occurs. (An error or end-of-file condition takes
precedence over an end-of-record condition, and the program behaves as described in Table 9.3.)

Table 9.4 End-of-Record Markers With Nonadvancing Reads (ADVANCE=’NO’)
IOSTAT

set
EOR
set

End-of-Record occurs

No No Program termination with run-time error message
No Yes Set SIZE=, if specified, to the number of characters read and go to eorlabel
Yes No Set iostat = -2 and execute next statement
Yes Yes Set iostat= -2, set SIZE=, if specified, to the number of characters read, and

go to eorlabel

The following table shows what happens when an error occurs during any I/O statement other than
READ or PRINT:

Situation Result
Neither errlabel nor iostat
is present

The program is terminated, and a run-time error message is given

Only errlabel is present Control is transferred to the statement at errlabel
Only iostat is present The value of iostat is set to the run-time error number and control is

returned as if the statement had executed without error
Both errlabel and iostat
are present

The value of iostat is set to the run-time error number and control is
transferred to the statement at errlabel

If an I/O statement terminates without encountering an error, end-of-file record, or an end-of-record
marker, and if iostat is specified, iostat is set to zero.

In the following example, no available specifiers (ERR=, END=, EOR=, or IOSTAT=) are set. So,
if an invalid value is entered for i (for example, the user enters a character string, such as abc), a
run-time error occurs:

 INTEGER i
 WRITE (*, *) ’Please enter i’
 READ (*, *) i
 ! If the user has entered abc the program will terminate
 ! with error "list-directed I/O syntax error" and doesn’t execute the WRITE below.
 WRITE (*, *) ’This is i:’, i

Input/Output Statements Page 9 of 20

9/2/97 3:26:00 PM

 END

The following example uses the ERR= option to prompt the user to enter a valid number:

 INTEGER i
 WRITE (*, *) ’Please enter i:’
 50 READ (*, *, ERR = 100) i
 WRITE (*, *) ’This is i:’, i
 STOP ’ ’
 100 WRITE (*, *) ’Invalid value. Please enter new i:’
 GOTO 50
 END

This example uses both the ERR= and IOSTAT= specifiers to handle invalid input:

 INTEGER i, j
 WRITE (*, *) ’Please enter i:’
 50 READ (*, *, ERR = 100, IOSTAT = j) i
 WRITE (*, *) ’This is i:’, i, ’ iostat = ’, j
 STOP ’ ’
 100 WRITE (*, *) ’Failed with error #’, j
 WRITE (*, *) ’Please enter new i:’
 GOTO 50
 END

You can also control end-of-file with the ENDFILE statement. ENDFILE inserts an end-of-file
record at the file’s current position, then positions the file after the end-of-file record. Any data past
this position is lost.

Record Specifiers

The record specifiers are: REC=, RECL= (or RECORDSIZE=), DELIM=, BLANK=, PAD=,
RECORDTYPE=, MAXREC=, and ASSOCIATEVARIABLE= .

The REC=recnum option specifies a record number in a direct access file. In READ and WRITE
statements, recnum specifies the first record to be read or written. The first record in a file is record
number 1.

The RECL=length specifies the record length in bytes for direct access files, and the maximum
record length in bytes for sequential access files. RECL= is optional when opening a file for
sequential access, but required for direct access files. The RECL= value unit for formatted files is
always 1-byte units. For unformatted files, the RECL= unit is 4-byte units, unless you specify the
compiler option /assume:byterecl to request 1-byte units.

RECORDSIZE= is a nonstandard synonym for RECL=.

The DELIM= specifier sets the record delimiter in list-directed and namelist formatted output.
DELIM= is ignored on input. The options are DELIM=’APOSTROPHE’, ’QUOTE’, and ’NONE’.
The default is ’NONE’. If the DELIM= specifier is set to ’APOSTROPHE’ each occurrence of an
apostrophe (’) within a character constant is doubled. If the DELIM= specifier is set to ’QUOTE’
each occurrence of a quote within a character constant is doubled. In namelist input, character strings
must be delimited by apostrophes or quotes or they will not be interpreted as strings. Unless you
specify DELIM=’QUOTE’ or ’APOSTROPHE’ when a output file is opened, character constants

Input/Output Statements Page 10 of 20

9/2/97 3:26:00 PM

written to the file will not be delimited, and the file created cannot be read by a namelist READ
statement.

The BLANK= specifier controls the interpretation of blanks within numeric data in formatted I/O. If
BLANK=’NULL’ blanks are ignored in numeric fields. If BLANK=’ZERO’ all blanks are interpreted
as zeros except leading blanks. The default is ’NULL’.

The PAD= specifier determines whether input will be blank padded if the input record contains less
data than the input list or format requires. If PAD=’YES’, blanks will be added. This is the default. If
PAD=’NO’, blanks will not be added, and the input record must contain the data indicated by the
input list or format. PAD= has no effect on output.

The RECORDTYPE= specifier indicates the type of records in a file. The options are ’FIXED’,
’VARIABLE’, ’SEGMENTED’, ’STREAM’, ’STREAM_LF’, AND ’STREAM_CR’. When you open a
file, the defaults are ’FIXED’ for relative files and direct access sequential files, ’STREAM_LF’ for
formatted sequential access files, and ’VARIABLE’ for unformatted sequential access files.

The MAXREC= specifier indicates the maximum number of records that can be transferred to or
from a direct access file while the file is connected. The default is an unlimited number of records.

The ASSOCIATEVARIABLE= specifier indicates a variable that is updated after each direct
access I/O operation, to reflect the record number of the next sequential record in the file. The
argument cannot be a dummy argument to the routine in which the OPEN statement appears. Direct
access READs, direct access WRITEs, and the FIND, DELETE, and REWRITE statements can
affect the value of the argument. This specifier is only valid for direct access; it is ignored for other
access modes.

Input/Output Buffer Size Specifiers

The input/output buffer size specifiers are: BLOCKSIZE= and BUFFERCOUNT=.

The BLOCKSIZE= specifier indicates the input/output buffer size in bytes. In Windows NT and
Windows 95, I/O operations are buffered by the operating system, which makes BLOCKSIZE= far
less important than it used to be. Under older operating systems, the speed of I/O operations could be
improved by increasing the I/O buffer size, because a large buffer reduced the total number of reads
and writes needed to transfer a given amount of data. However, with virtual memory, the amount of
memory accessible to a process is usually not an issue, except that memory swapping can cause a
program to execute more slowly as memory use increases.

Increasing the size of the I/O buffers will not have much effect on I/O execution speed. The default
buffer size is 1024 bytes. Because the buffers are only allocated when the file is opened, using the
option BLOCKSIZE= does not affect the size of the program’s executable file.

The BUFFERCOUNT= specifier indicates the number of buffers to be associated with the unit for
multibuffered I/O. The BLOCKSIZE= specifier determines the size of each buffer. For example, if
BUFFERCOUNT=3 and BLOCKSIZE=2048, the total number of bytes allocated for buffers is
3*2048 or 6144 bytes. If you do not specify BUFFERCOUNT= or you specify zero for the
argument, the default is 1.

Input/Output Statements Page 11 of 20

9/2/97 3:26:00 PM

Carriage Control Specifier

The carriage control specifier is: CARRIAGECONTROL=.

This specifier indicates the type of carriage control used when a file is displayed at a terminal. The
options are ’FORTRAN’ (normal Fortran interpretation of first character), ’LIST’ (one line feed
between records), and ’NONE’ (no carriage-control processing).

The default for unformatted and binary files is ’NONE’. The default for formatted files is ’LIST’.
However, if you specify /vms or /fpscomp=general, and the unit is connected to a terminal, the
default is ’FORTRAN’.

On output, if a file was opened with CARRIAGECONTROL=’FORTRAN’ in effect or the file was
processed by the fortpr format utility, the first character of a record transmitted to a line printer or
terminal is typically a character that is not printed, but is used to control vertical spacing.

The following table lists the valid control characters for printing:

Table: Carriage-Control Characters
Character Effect

space Outputs the record (at the current position in the current line) and a carriage return.
0 Advances two lines. Outputs the record and a carriage return.
1 Advances to top of next page. Outputs the record and a carriage return.
+ Does not advance. Outputs the record and a carriage return. Permits overprinting.
$ Advances to top of next line. Outputs the record, but no carriage return. Permits

prompting.

ASCII NUL 1 Does not advance. Outputs the record, but no carriage return. Permits overprinting.

1 Specify as CHAR(0).

Any other character is interpreted as a blank and is deleted from the print line. If you do not specify a
control character for printing, the first character of the record is not printed.

See also /fpscomp, for information on how this compiler option can affect carriage control.

QuickWin Specifiers

The QuickWin specifiers are: IOFOCUS= and TITLE=.

The IOFOCUS= specifier indicates whether the unit is the active window in a QuickWin
application. The default is .TRUE. A value of .TRUE. causes a call to SETFOCUSQQ immediately
before any READ, WRITE, or PRINT statement to that window. See also Giving a Window Focus
and Setting the Active Window in Using QuickWin.

The TITLE= specifier indicates the name of a child window in a QuickWin application.

File Property Specifiers

You can specify the following file properties by using I/O specifiers:

Input/Output Statements Page 12 of 20

9/2/97 3:26:00 PM

• Filenames
• File Status and Disposition
• File Structure
• File Access Methods
• File Access Privileges
• File Sharing
• File Data Transfer Methods
• File Position
• File Numeric Format

Specifying Filenames

The filenames specifiers are: FILE= (or NAME=) and DEFAULTFILE=.

The name of an internal file is the name of the character variable, character array, or noncharacter
array that makes up the file. The name of an external file must be a character string that the operating
system recognizes as a filename (including device names). If you do not specify a path, the operating
system uses the current working directory. External filenames must follow the filenaming
conventions of the host operating system. Wildcards are not permitted.

In Windows NT and Windows 95, a filename can be longer than eight characters and have an
extension longer than three characters. The filename specified with FILE= can take these forms:

• filename
• path\filename
• drive:\path\filename
• \\server\path\filename

The filename specification (including the path, drive, or share) can be up to $MAXPATH in length.
$MAXPATH is defined in module DFLIB.

Visual Fortran provides the following possible ways of specifying all or part of a file specification
(full pathname), such as \proj\testdata:

• The FILE= keyword in an OPEN statement typically specifies only a file name (such as
testdata) or a pathname that contains both a directory and file name (such as \proj\testdata).

• The DEFAULTFILE= keyword in an OPEN statement typically specifies a pathname that
contains only a directory (such as d:\proj) or both a directory and file name (such as
d:\proj\testdata).

• If you used an implied OPEN or if the FILE= keyword in an OPEN statement did not specify
a file name, you can use an environment variable to specify a file name or a pathname that
contains both a directory and file name.

Visual Fortran recognizes environment variables for each logical I/O unit number, in the form of
FORTn, where n is the logical I/O unit number. If a file name is not specified in the OPEN statement
and the corresponding FORTn environment variable is not set for that unit number, Visual Fortran
generates a file name in the form FORT.n, where n is the logical unit number.

Certain Fortran environment variables are recognized and preconnected files exist for certain unit
numbers.

Input/Output Statements Page 13 of 20

9/2/97 3:26:00 PM

Performing an implied OPEN means that the FILE= and DEFAULTFILE= keyword values are not
specified and an environment variable is used, if present.

Rules for Applying Default File Specifications

Visual Fortran determines file name and the pathname based on certain rules. It determines a file
name string as follows:

• If the FILE= keyword is present, its value is used.
• If the FILE= keyword is not present, Visual Fortran examines the corresponding environment

variable.
• If the corresponding environment variable is set, that value is used.
• If the corresponding environment variable is not set, a file name in the form fort.n is

used.

Once Visual Fortran determines the resulting file name string, it determines the directory (which
optionally precedes the file name) as follows:

• If the resulting file name string contains an absolute pathname, it is used and the
DEFAULTFILE= keyword, environment variable, and current directory values are ignored.

• If the resulting file name string does not contain an absolute pathname, Visual Fortran
examines the DEFAULTFILE= keyword and current directory value:

• If the corresponding environment variable is set and specifies an absolute pathname,
Visual Fortran uses that value.

• The DEFAULTFILE= keyword value is examined and, if present, Visual Fortran uses
its value.

• If the DEFAULTFILE= keyword is not present, Visual Fortran uses the current
directory as an absolute pathname.

Examples of Applying Default File Specifications

For example, for an implied OPEN of unit number 3, Visual Fortran would check the environment
variable FORT3. If the environment variable FORT3 was set, its value is used. If it was not set, the
system supplies the file name FORT.3.

In the following table assume the current directory is c:\users\smith and the I/O uses unit 1, as in the
statement:

 READ (1,100)

OPEN FILE
Value

OPEN DEFAULTFILE
Value

FORT1 Environment
Variable Value

Resulting Pathname

not specified not specified not specified c:\users\smith\fort.1
not specified not specified test.dat c:\users\smith\test.dat

not specified not checked c:\temp\t.dat c:\temp\t.dat
not specified d:\temp not specified d:\temp\fort.1
not specified d:\temp testdata d:\temp\testdata
not specified d:\stable lib\testdata d:\stable\lib\testdata
file.dat c:\user\group not checked c:\user\group\file.dat

Input/Output Statements Page 14 of 20

9/2/97 3:26:00 PM

d:\temp\file.dat not checked not checked d:\temp\file.dat

The current directory is used and the unit number determines the file name.

The current directory is used and the environment variable provides the file name.

The environment variable provides both the directory and file name.

The directory is provided by the OPEN DEFAULTFILE= keyword value and the unit number
determines the file name.

The directory is provided by the OPEN DEFAULTFILE= keyword value and the environment
variable provides the file name.

The directory is provided by the OPEN DEFAULTFILE= keyword value and the environment
variable provides a subdirectory and file name.

The directory is provided by the OPEN DEFAULTFILE= keyword value and the file name is
provided by the OPEN FILE= keyword value.

The directory and file name are provided by the OPEN FILE= keyword value.

See I/O Hardware in Files, Devices and I/O Hardware, for a list of devices. See also /fpscomp, for
information on how this compiler option can affect files and file names.

Specifying File Status and Disposition

The file status and disposition specifiers are: STATUS= and DISPOSE= (or DISP=).

A file can be opened with STATUS=’OLD’, ’NEW’, ’REPLACE’, ’SCRATCH’, or ’UNKNOWN’. A
file can be closed with STATUS=’KEEP’ or ’DELETE’. If STATUS= is absent in an OPEN
statement, OPEN searches first for an existing file of the given name, and if such a file doesn’t exist,
creates a new one. If STATUS= is absent in a CLOSE statement, CLOSE defaults to KEEP unless
the file was opened as a SCRATCH file, in which case CLOSE defaults to DELETE. For further
information, see OPEN and CLOSE in the Reference.

The DISPOSE= specifier indicates the status of a file after the unit closes. The options are ’KEEP’ or
’SAVE’, ’DELETE’, ’PRINT’ (which prints and then saves the file), ’PRINT/DELETE’ (which prints
and then deletes the file), ’SUBMIT’ (which forks a process to execute the file), and
’SUBMIT/DELETE’ (which forks a process to execute the file, then deletes it after the fork is
completed). ’PRINT’ and ’PRINT/DELETE’ can only be used on sequential files. The default is
’DELETE’ for scratch files and ’KEEP’ for all other files.

Specifying File Structure

The file structure specifier is: FORM=.

The data is stored and retrieved in a file according to the file’s access (set by the ACCESS= option

Input/Output Statements Page 15 of 20

9/2/97 3:26:00 PM

described in the section File Access Methods) and the form of the data the file contains. Files are
structured in one of three ways: formatted, unformatted, or binary. These formats are specified by
setting FORM=’FORMATTED’, ’UNFORMATTED’, or ’BINARY’.

• A formatted file is a sequence of formatted records. Formatted records are a series of ASCII
characters terminated by an end-of-record mark (a carriage return and line feed sequence). The
records in a formatted direct-access file must all be the same length. The records in a
formatted sequential file can have varying lengths. All internal files must be formatted.

• An unformatted file is a sequence of unformatted records. An unformatted record is a
sequence of values. Unformatted direct files contain only this data, and each record is padded
to a fixed length with undefined bytes. Unformatted sequential files contain the data plus
information that indicates the boundaries of each record.

• Binary sequential files are sequences of bytes with no internal structure. There are no records.
The file contains only the information specified as I/O list items in WRITE statements
referring to the file.

Binary direct files have very little structure. A record length is assigned by the RECL= option
of the OPEN statement. This establishes record boundaries, which are used only for
repositioning and padding before and after read and write operations and during
BACKSPACE operations. Record boundaries do not restrict the number of bytes that can be
transferred during a read or write operation. If an I/O operation attempts to read or write more
values than are contained in a record, the read or write operation is continued on the next
record.

The FORM defaults are as follows:

• If a file has been opened for sequential access, FORM defaults to 'FORMATTED'. If a file has
been opened for direct access, FORM defaults to 'UNFORMATTED'.

• If neither the access nor the format specifiers are set, the file defaults to sequential and
'FORMATTED'.

Specifying File Access Methods

The file access methods specifiers are: ACCESS= and ORGANIZATION=.

Visual Fortran supports two methods of file access: sequential and direct. Sequential files,
ACCESS='SEQUENTIAL', contain data recorded in the order in which it was written to the file.
Direct files, ACCESS='DIRECT', are random-access files. Sequential access files have no fixed
record size and are not positionable. Direct files have a fixed record size and can be positioned to any
record. If no ACCESS= specifier is set, ACCESS= defaults to 'SEQUENTIAL'. An existing file of
either type can be opened with ACCESS='APPEND' to add new records after the last record in the
file.

The following statements read the third and fourth records of the direct-access file xxx:

 OPEN (1, FILE = ’xxx’, ACCESS = ’DIRECT’, RECL = 15, &
 & FORM = ’FORMATTED’)
 READ (1, ’(3I5)’, REC = 3) i, j, k
 READ (1, ’(3I5)’) l, m, n

Input/Output Statements Page 16 of 20

9/2/97 3:26:00 PM

The ORGANIZATION= specifier can also be used to indicate ’SEQUENTIAL’ or ’RELATIVE’
internal organization of a file. The default is ’SEQUENTIAL’.

Specifying File Access Privileges

The file access privileges specifiers are: ACTION= (or MODE=) and READONLY.

Use the ACTION option to declare which I/O operations you intend to perform on a file while you
have it open. The value of ACTION= can be ’READ’, ’READWRITE’, or ’WRITE’. The default is
’READWRITE’. If you try to write to a file that you opened with ACTION=’READ’ or read a file
opened with ACTION=’WRITE’, you will get an error message. The MODE= option has the same
effect as ACTION=.

The READONLY specifier indicates the file can only be read. This is the same as specifying
ACTION=’READ’.

Use the INQUIRE statement to determine the access permissions for a file.

The compiler option /fpscomp can affect ACTION= and MODE=.

Specifying File Sharing

The file sharing specifiers are: SHARE= and SHARED=.

In systems that use networking or allow multitasking, more than one program can try to access the
same file at the same time. When this happens, the new user’s program compares the intended I/O
operations (declared in the OPEN statement’s ACTION= option) to the file-sharing privileges given
to other users by the program that opened the file first. If the intended use is permitted, the file can be
opened. Otherwise, an error message is produced. File-sharing privileges established by the first user
remain in force until all users have closed the shared file.

Concurrent users of a given file can be prevented from writing (’DENYWR’), reading (’DENYRD’),
neither (’DENYNONE’), or both (’DENYRW’). ’COMPAT’ is accepted for compatibility with
previous versions. It is equivalent to ’DENYNONE’.

Use the INQUIRE statement to determine the access permission for a file.

Be careful not to permit other users to perform operations that might cause problems. For example, if
you open a file intending only to read from it, and want no other user to write to it while you have it
open, you could open it with ACTION=’READ’ and SHARE=’DENYRW’. Other users would not be
able to open it with ACTION=’WRITE’ and change the file.

Suppose you want several users to read a file, and you want to make sure no user updates the file
while anyone is reading it. First, determine what type of access to the file you want to allow the
original user. Because you want the initial user to read the file only, that user should open the file
with ACTION=’READ’. Next, determine what type of access the initial user should allow other
users; in this case, other users should be able only to read the file. The first user should open the file
with SHARE=’DENYWR’. Other users can also open the same file with ACTION=’READ’ and
SHARE=’DENYWR’.

Input/Output Statements Page 17 of 20

9/2/97 3:26:00 PM

The SHARED= specifier indicates the file is connected for shared access by more than one program
executing simultaneously.

Specifying File Data Transfer Methods

The file data transfer method specifier is: ADVANCE=.

READ and WRITE operations on sequential files are by default advancing. This means that a file is
automatically positioned at the beginning of the next record before data transfer and at the end of the
record when input/output is completed. Advancing I/O can be set explicitly by setting
ADVANCE=’YES’. If you omit the ADVANCE= specifier, it defaults to ’YES’.

Nonadvancing READ and WRITE operations make it possible to read or write only part of a record.
They leave the file positioned after the last character read or written instead of skipping to the end of
the record upon completion. Nonadvancing I/O is selected by setting ADVANCE=’NO’ and can be
used only for formatted sequential data transfer to external files or devices.

Nonadvancing input continues within the current record until an end-of-record condition occurs. If a
nonadvancing READ attempts to input more data than a record holds and encounters an
end-of-record marker, a run-time error will be generated. The program will terminate unless this
condition is handled with an EOR, ERR, or IOSTAT specifier. If an end-of-record condition is
encountered and the error is handled through one of the error specifiers, the READ can return the
record length through the SIZE= specifier.

You cannot use the ADVANCE= specifier for I/O operations with NAMELIST or list-directed
formatting. You also cannot use the ADVANCE= specifier for I/O operations on internal files. These
I/O operations are all advancing, but you cannot use any ADVANCE= specifier with them, not even
ADVANCE=’YES’.

 ! Non-advancing READ example.
 INTEGER recsize
 CHARACTER(45) string
 READ (UNIT=4, FMT= ’(A45)’, ADVANCE=’NO’, SIZE=recsize, &
 & EOR=300) string
 WRITE (*,*) string
 STOP
 ! If the record size is less than 45 characters, the READ will
 ! encounter an END-OF-RECORD marker and branch to the statement at
 ! label 300, returning the true record size in recsize. A new READ
 ! of recsize characters then generates no error.
 300 READ(4, ’(A<recsize>)’, ADVANCE= ’NO’) string

Specifying File Position

The file position specifier is: POSITION=.

You can control file position either by opening a file with an explicit position specifier
(POSITION=), or by using one of the I/O file position statements.

If you open a sequential file without a POSITION= specifier, the file is positioned at its beginning
(unless the file was opened with ACCESS=’APPEND’). If you then write to the file, all records after

Input/Output Statements Page 18 of 20

9/2/97 3:26:00 PM

the current record are discarded. With the POSITION= specifier you can control where the file is
positioned on opening. Setting POSITION=’APPEND’ positions the file at its terminal point but just
before an end-of-file record, if it exists.

Data written to the file will be appended to the end and will not erase previous records.
POSITION=’REWIND’ positions the file at its initial point. POSITION=’ASIS’ means the file
position of an opened file remains unchanged. This lets a new OPEN statement change connection
options of an already opened file, without changing its position. If an unopened file is opened with
POSITION=’ASIS’, it is positioned at the beginning. New files are always positioned at the
beginning, regardless of the POSITION= specifier. ’ASIS’ is the default position value.

In addition to the POSITION= specifier, you can use position statements. The BACKSPACE
statement positions a file back one record. The REWIND statement positions a file at its initial point.
The ENDFILE statement writes an end-of-file record at the current position and positions the file
after it. Note that ENDFILE does not go the end of an existing file, but creates an end-of-file where
it is.

Specifying File Numeric Format

The file numeric format specifier is: CONVERT=.

You can use CONVERT= to control whether numeric data in unformatted files is converted or not.
This functionality can also be specified by using a compiler option. The conversion options are:

• 'LITTLE_ENDIAN' - Little endian integer and IEEE® floating-point data
• 'BIG_ENDIAN' - Big endian integer and IEEE® floating-point data
• 'CRAY' - Big endian integer and CRAY® floating-point data
• 'FDX' - Little endian integer and DIGITALTM VAX TM F_floating, D_floating, and IEEE

X_floating data
• 'FGX' - Little endian integer and DIGITAL VAX F_floating, G_floating, and IEEE X_floating

data
• 'IBM' - Little endian integer and IBM® System\370 floating-point data
• 'VAXD' - Little endian integer and DIGITAL VAX F_floating, D_floating, and H_floating

data
• 'VAXG' - Little endian integer and DIGITAL VAX F_floating, G_floating, and H_floating

data
• 'NATIVE' - No data conversion. This is the default.

You can use CONVERT= to specify multiple formats in a single program, usually one format for
each specified unit number.

When reading a nonnative format, the nonnative format on disk is converted to native format in
memory. If a converted nonnative value is outside the range of the native data type, a run-time
message appears.
There are other ways to specify numeric format for unformatted files: you can specify an
environment variable, the compiler option /convert, or OPTIONS/CONVERT. The following shows
the order of precedence:

Method Used Precedence

Input/Output Statements Page 19 of 20

9/2/97 3:26:00 PM

An environment variable Highest (1)
OPEN(CONVERT=convert) 2
OPTIONS/CONVERT 3
The /convert:keyword compiler option Lowest (4)

The /convert compiler option and OPTIONS/CONVERT affect all unit numbers used by the
program, while environment variables and OPEN (CONVERT=) affect specific unit numbers.
The following example shows how to code the OPEN statement to read unformatted CRAY®
numeric data from unit 15, which might be processed and possibly written in native little endian
format to unit 20:

 OPEN (CONVERT=’CRAY’, FILE=’graph3.dat’, FORM=’UNFORMATTED’,
1 UNIT=15)
 ...
 OPEN (FILE=’graph3_native.dat’, FORM=’UNFORMATTED’, UNIT=20)

See Also: Environment Variables Used with the DF Command, Run-Time Environment Variables

Using An External User-Written Function To Open A File

The external user-written function specifier is: USEROPEN=.

The USEROPEN=function-name specifier passes control to a user-written external function that
directly opens a file. The called routine can use system calls or library routines to open the file and
establish a special context that changes the effect of subsequent I/O statements.

The Visual Fortran Run-Time Library I/O support routines call the USEROPEN= function in place
of the system calls usually used when the file is first opened for I/O. The called function must open
the file (or pipe) and return the file descriptor of the file when it returns control to the calling
program.

The function-name is the name of a user-written external open function. Although the called function
can be written in other languages (such as Fortran), C is usually the best choice for making system
calls, such as open or create.

In the calling Visual Fortran program, the function must be declared external. For example, the
following statements could be used to call the USEROPEN= procedure UOPEN (known to the
linker as uopen_):

EXTERNAL UOPEN
INTEGER UOPEN
...
OPEN (UNIT=10, FILE=’/usr/test/data’, STATUS=’NEW’, USEROPEN=UOPEN)

After the OPEN statement, the uopen_ function receives control. The function opens the file, may
perform other operations, and subsequently returns control (with the file descriptor) to the calling
Visual Fortran program.

If the USEROPEN= function is written in C, declare it as a C function that returns a 4-byte integer
(int) result to contain the file descriptor. For example:

int uopen_ (/* function is declared as a 4-byte integer */

Input/Output Statements Page 20 of 20

9/2/97 3:26:00 PM

 char *file_name, /* 1st arg is the pathname (includes filename) to be opene
 int *open_flags, /* flags are described in header file /usr/include/sys/fi
 int *create_mode, /* the create mode protection */
 int *lun, /* the logical unit number */
 int file_length); /* the pathname length (hidden length argument of the path

Of the arguments, the open system call requires the passed pathname, the open flags (which define
the type access needed, whether the file exists, and so on), and the create mode. The logical unit
number specified in the OPEN statement is passed in case the called function needs it. The hidden
length of the pathname is also passed.

Changing I/O Specifications with OPEN

You can change some I/O specifications by opening a unit that has already been connected to a file
and indicating different values for the specifiers. The specifiers that can be modified in this way are
BLANK=, DELIM=, PAD=, ERR=, and IOSTAT=. For example:

 OPEN(4, DELIM=’QUOTE’)

New values for BLANK=, DELIM=, and PAD= are used in all subsequent data transfer statements.
New values for ERR= and IOSTAT= affect only the OPEN statement being executed.

You cannot change the file association of a currently open unit or file.

General Compiler Directives Page 1 of 7

9/2/97 3:26:19 PM

General Compiler Directives
A compiler directive is a special statement that tells the compiler to take certain actions while
compiling a program. You can also control compilation with compiler options, selected from the
Options/Project/Compiler menu in Microsoft Developer Studio or specified when you compile from
the command line.

All these methods modify the way the compiler compiles your program, but unlike compiler options,
compiler directives can be turned on and off and modifed as often as you like within your program. If
there is a conflict between a compiler option and a compiler directive, the compiler directive takes
precedence.

Compiler directives affect everything in a program after the point they appear in the code. Some
compiler directives have a matching opposite compiler directive (for instance, DECLARE and
NODECLARE) or can be set to different values (for instance, !DEC$ REAL:8 sets the default real
type to eight bytes and !DEC$ REAL:4 sets it back to the standard four bytes). So, one section of
the code can be compiled according to a compiler directive, then the compiler directive can be turned
off or modified, and other code in the program can be compiled differently.

The following general compiler directives are available:

• Directives that assure your code follows strict forms, and is therefore transferable to other
compilers: STRICT and NOFREEFORM (and their converses, NOSTRICT and
FREEFORM), and FIXEDFORMLINESIZE.

• Directives that specify conditional compilation. If the condition in the compiler directive is
true, the statements in the compiler directive block are compiled; otherwise they are not. These
compiler directives include DEFINE and UNDEFINE, IF and IF DEFINED, ELSE, ELSEIF,
and ENDIF.

• Directives that control debugging features: DECLARE and NODECLARE, and MESSAGE.
• Directives that change default data types: INTEGER and REAL.
• Directives that affect headers in source code listings: TITLE and SUBTITLE.
• A directive that assigns certain properties to a variable: ATTRIBUTES.
• A directive that specifies an alternate external name to be used when referring to external

objects such as subroutines and functions: ALIAS.
• A directive that specifies an identifier for an object module: IDENT.
• A directive that specifies a library search path in the object file: OBJCOMMENT.
• A directive that controls whether fields in records and data items in common blocks are

naturally aligned or packed on arbitrary byte boundaries: OPTIONS.
• A directive that controls the beginning storage address of derived-type components: PACK.
• A directive that modifies certain characteristics of a common block: PSECT.

This section also discusses:

• Rules for General Directives
• Compiler Directives and Compiler Options
• Using the ATTRIBUTES Directive
• Using Conditional-Compilation Directives

General Compiler Directives Page 2 of 7

9/2/97 3:26:19 PM

Rules for General Directives
The following general syntax rules apply to all general compiler directives. You must follow these
rules precisely to compile your program properly and obtain meaningful results.

A general directive prefix (tag) takes the following form:

cDEC$

c
Is one of the following: C (or c), !, or *.

The following are source form rules for directive prefixes:

• Prefixes beginning with C (or c) and * are only allowed in fixed or tab source forms.

In these source forms, the prefix must appear in columns 1 through 5; column 6 must be a
blank or tab. From column 7 on, blanks are insignificant, so the directive can be positioned
anywhere on the line after column 6. A directive ends in column 72 (or column 132, if a
compiler option is specified).

• Prefixes beginning with ! are allowed in all source forms.

In fixed and tab source forms, a prefix beginning with ! must follow the same rules for
prefixes beginning with C, c, or * (see above).

In free source form, the prefix need not start in column 1, but it cannot be preceded by any
nonblank characters on the same line. It can only be preceded by whitespace.

General directives cannot be continued.
Additional Fortran statements (or directives) cannot appear on the same line as the general directive.
General directives cannot appear within a continued Fortran statement.
If a blank common is used in a general compiler directive, it must be specified as two slashes (/ /).

Compiler directives apply to the file they are in until overridden by another compiler directive or
until the end of the file. This gives you the flexibility to enable and disable compilation features for
various parts of your source code. The INTEGER, REAL, STRICT, and NOSTRICT compiler
directives can appear only at the top of a program unit, which includes main programs, external
subroutines and functions, modules, and block data program units.

Compiler directives apply to any INCLUDE files, and an included file can contain its own compiler
directives. Compiler directives inside an included file generally apply both to the file and to the rest
of the host file. However, if compiler directives within an INCLUDE file change the source form or
line length (FREEFORM, NOFREEFORM, or FIXEDFORMLINESIZE), those changes are
local to the included file and do not affect the host file.

Compiler directives in effect when a module is compiled affect the module. But compiler directives
within a program that invokes a module with the USE statement have no effect on the module.

You cannot place the PACK compiler directive inside control blocks or structures (for example, IF
blocks and derived-type definition blocks) because PACK affects memory locations.

General Compiler Directives Page 3 of 7

9/2/97 3:26:19 PM

Compiler directive IF blocks can include ordinary Visual Fortran statements. You may need to
modify those statements when porting your code to other systems.

While the STRICT compiler directive is in effect, all compiler directives are interpreted as
comments and ignored, producing no warning or error message.

You can add comments at the end of compiler directive lines, but they must begin with an
exclamation point (!). For example:

 !DEC$ DEFINE test ! Defines the symbol test.
 cDEC$ MESSAGE:’Compiling Subroutine ERF’ ! Prints a message to the screen.

The form !MS$ is also allowed as a general directive prefix; for example: !MS$DEFINE.

For more information, see General Compiler Directives.

Compiler Directives and Compiler Options
Some compiler directives and compiler options have the same effect (see the following table).
However, compiler directives can be turned on and off throughout a program, while compiler options
remain in effect for the whole compilation unless overridden by a compiler directive.

Compiler directive Equivalent command-line compiler option
DECLARE /warn:declarations or /4Yd
NODECLARE /warn:nodeclarations or /4Nd
DEFINE symbol /define:symbol or /Dsymbol
FIXEDFORMLINESIZE:option /extend_source[:option] or /4Loption
FREEFORM /free or /nofixed, or /4Yf
NOFREEFORM /nofree, /fixed, or /4Nf
INTEGER:option /integer_size:option or /4Ioption
OBJCOMMENT /libdir
PACK:option /alignment[:option] or /Zpoption
REAL:option /real_size:option or /4Roption
STRICT /warn:stderrors with /stand:f90 or /4Ys
NOSTRICT /4Ns

Note that any of the compiler directive names above can be specified using the prefix !MS$; for
example, !MS$NOSTRICT is allowed.

For rules on using compiler directives, see Rules for General Directives.

Using the ATTRIBUTES Directive
Fortran 90 has attributes, such as ALLOCATABLE, INTENT and SAVE, specifying properties that
can be assigned to a variable in a separate statement or when the variable is declared. For example:

 REAL, ALLOCATABLE:: A(:) ! Assigns the attribute in a
 ! declaration.

General Compiler Directives Page 4 of 7

9/2/97 3:26:19 PM

 ALLOCATABLE B(:) ! Assigns the attribute in a
 ! statement.

In addition to using the Fortran 90 attributes, you can use the ATTRIBUTES compiler directive to
specify properties. Many of these properties can be used to simplify passing variables and procedures
between Visual Fortran and another language, such as C. The properties are not assigned the way
standard Fortran 90 attributes are; for example:

 INTERFACE
 SUBROUTINE My_Sub (I)
 !DEC$ ATTRIBUTES C, ALIAS:’_My_Sub’ :: My_Sub
 INTEGER I
 END SUBROUTINE My_Sub
 END INTERFACE

In this example, the ATTRIBUTES compiler directive gives the subroutine the C property, which
changes the way arguments are passed and referenced, and preserves the mixed-case letters in the
name _My_Sub with the ALIAS property.

The properties assigned with the ATTRIBUTES compiler directive are:

• ALIA S
• C
• DLLEXPORT
• DLLIMPORT
• EXTERN
• REFERENCE
• STDCALL
• VALU E
• VARYIN G

These properties are described within ATTRIBUTES in the Reference. For a detailed description of
their use in mixed-language programming, see Programming with Mixed Languages.

You can assign more than one property to multiple variables with the same compiler directive. The
properties are separated from each other by commas (,), the property are separated from the variables
by a double colon (::), and the variables are separated from each other by commas. All properties
apply to all the specified variables. For example:

 !DEC$ ATTRIBUTES REFERENCE, VARYING :: A, B, C

In this case, the variables A, B, and C are assigned the REFERENCE and VARYING properties. The
only restriction on the number of properties and variables is that the entire compiler directive must fit
on one line.

The identifier of the variable or procedure assigned properties must be a simple name. It cannot
include initialization or array dimensions. For instance, the following is not allowed:

 !DEC$ ATTRIBUTES C :: A(10) ! This is illegal.

The ATTRIBUTES compiler directive can be used for any identifier in a program unit, but it must
appear within the program unit that defines it.

For rules on using compiler directives, see Rules for General Directives.

General Compiler Directives Page 5 of 7

9/2/97 3:26:19 PM

Using Conditional-Compilation Directives
The conditional-compilation compiler directives (IF or IF DEFINED, ELSE, ELSEIF, and ENDIF)
control the compilation of source code. These compiler directives let you do the following:

• Include or omit test code.
• Customize code for specific applications or different operating system platforms by

controlling which sections are included.
• Bypass incomplete code during development.

For example:

 !DEC$ DEFINE a = 4
 !DEC$ DEFINE b = 5
 ...
 !DEC$ IF a .LT. b
 WRITE(*,*) "Compiling Section 1" ! This is compiled if a .LT. b.
 !DEC$ ELSE
 WRITE(*,*) "Compiling Section 2" ! This is compiled if a .GE. b.
 !DEC$ ENDIF

The IF and ELSEIF compiler directives include a logical expression. At compilation, this
expression is evaluated, and if it is true the code within the IF or ELSEIF block is compiled.
Otherwise, the code is not compiled. For example:

 !DEC$ IF logical expression #1
 block of code to be compiled if logical expression #1 is true
 !DEC$ ELSEIF logical expression #2
 block of code to be compiled if logical expression #1 is false and
 logical expression #2 is true
 !DEC$ ELSE
 block of code to be compiled if both logical expressions #1 and #2
 are false
 !DEC$ ENDIF

You can use any Visual Fortran logical or relational operator in the logical expression of the
compiler directive, including: .LT., <, .GT., >, .EQ., = =, .LE., <=, .GE., >=, .NE., /=, .EQV.,
.NEQV., .NOT., .AND., .OR., and .XOR.. Logical expressions within conditional-compilation
compiler directives can be as complex as you like, except that the whole directive must fit on one
line.

The rules of precedence and logical association in the logical expressions are the same as in standard
Visual Fortran logical expressions. However, within conditional-compilation expressions, the logical
operators .EQV., .NEQV., .NOT., .AND., .OR., and .XOR. can only operate on logical values. For
a discussion of logical operators see Expressions.

Symbols in the logical expressions of conditional compiler directives must be defined with the
DEFINE compiler directive and must be assigned an integer value or no value. These compiler
directive symbols are not declared in your Visual Fortran program and are not available to it. So, they
can have the same names as your program variables and identifiers and will not conflict with them.
Your Visual Fortran program cannot use these symbols, nor can a compiler directive test the value or
existence of a variable or constant defined in your program.

General Compiler Directives Page 6 of 7

9/2/97 3:26:19 PM

The following example shows how to define and use compiler directive defined symbols:

 CDEC$ DEFINE a = 10
 CDEC$ DEFINE b = 8
 CDEC$ IF a < b
 WRITE(*,*) "Compiling Section 1" ! This is compiled if a < b.
 CDEC$ ELSEIF a == 1 .AND. DEFINED(b)
 WRITE(*,*) "Compiling Section 2" ! This is compiled if a equals 1
 ! AND b is defined.
 CDEC$ ElSE
 WRITE(*,*) "Compiling Section 3" ! This is compiled if both logical
 ! expressions above were false.
 CDEC$ ENDIF

Another way to perform conditional compilation is to use the IF DEFINED compiler directive to
test whether or not a symbol has been defined; for example:

!DEC$ IF DEFINED (symbol)

This statement is .TRUE. if symbol was defined in a previous DEFINE compiler directive or if the
/define compiler option was specified on the command line.

The UNDEFINED compiler directive cancels the DEFINE compiler directive. For example:

 !DEC$ DEFINE sym ! sym is now defined.
 ...
 !DEC$ IF DEFINED (sym)
 WRITE(*,*) "About to compile the Hankel code"
 ...
 !DEC$ ELSE
 WRITE(*,*) "About to compile the Bessel code"
 ...
 !DEC$ ENDIF
 ...
 !DEC$ UNDEFINE sym ! sym is now undefined.

You can define as many compiler directive symbols as you want anywhere in a program. If the
DEFINE compiler directive gives an integer value to a symbol, the value can be assigned to another
symbol with another DEFINE compiler directive. For example:

 !DEC$DEFINE firstsym = 100000
 !DEC$ DEFINE receiver = firstsym
 ...
 !DEC$ IF receiver .NE. 100000
 WRITE(*,*) "Compile this part of the code"
 ...
 !DEC$ ELSE
 WRITE(*,*) "Compile alternative part of the code"
 ...
 !DEC$ ENDIF

Note that the assignment of receiver to firstsym is not permitted unless firstsym has already
been given an integer value.

You can use conditional compilation commands within a module, but you cannot use conditional
compilation compiler directives to compile modules conditionally within Microsoft Developer
Studio, because the proper dependencies cannot be determined in the project structure before
compiling. For example, the following is incorrect:

General Compiler Directives Page 7 of 7

9/2/97 3:26:19 PM

 CDEC$ IF DEFINED debug
 MODULE mod
 REAL b
 END MODULE
 CDEC$ END IF

However, the following is correct:

 MODULE mod
 CDEC$ IF DEFINED debug
 b = 3.0
 CDEC$ END IF
 END MODULE

For rules on using compiler directives, see Rules for General Directives.

See also the /define compiler option.

Portability Library Page 1 of 8

8/21/97 12:19:02 PM

Portability Library
Visual Fortran includes functions and subroutines that ease porting of code from a different platform
to a PC, or allow you to write code on a PC that is compatible with other platforms. Frequently used
functions are included in a module called DFPORT.

This chapter describes how to use the portability module, and describes routines available in the
following categories:

• Using the Portability Library
• Routines for Information Retrieval
• Device and Directory Information Routines
• Process Control Routines
• Numeric Routines
• Input and Output With Portability Routines
• Date and Time Routines
• Error Handling Routines
• Miscellaneous String and Sorting Routines
• Other Compatibility Routines

Fortran 90 contains intrinsic procedures for many of these functions. New code should use standard
Fortran 90 procedures whenever possible.

Using the Portability Library
You can use the portability library in one of two ways:

• Add the statement USE DFPORT to your program
• Call portability routines using the correct parameters and return value, which requires that you

specify the /[no]fpscomp option or otherwise pass the DFPORT.LIB library to the linker
during linking.

The portability library is available to your program by default. Using the DFPORT module provides
interface blocks and parameter definitions for the routines, as well as compiler verification of calls.

For more information, see: The DFPORT Module

The DFPORT Module

Some routines in this library can be called with different sets of arguments, and sometimes even as a
function instead of a subroutine. In these cases, the arguments and calling mechanism determine the
meaning of the routine. The DFPORT module contains generic interface blocks that give procedure
definitions for these routines.

If you do not include the statement USE DFPORT, you must take care to do the following:

• Declare parameters and return values for all portability routines you use. If you do not do this,
the execution stack may not be correctly maintained, causing your program to experience
problems. For example, to use the ACCESS routine, declare it as "INTEGER(4) ACCESS".

Portability Library Page 2 of 8

9/2/97 3:26:37 PM

problems. For example, to use the ACCESS routine, declare it as "INTEGER(4) ACCESS".

• Be consistent with all calls to portability procedures. When it is possible to call a portability
routine in two different ways, only one way can be used in the same source file. For example,
if your program calls DATE as a subroutine, the same program may not use DATE again as a
function.

• Specify the /[no]fpscomp option or otherwise pass the DFPORT.LIB library to the linker
during linking.

Routines for Information Retrieval
Functions classified as information retrieval functions return information about system commands,
command-line arguments, environment variables, and process or user information.

All portability routines that take path names also accept long file names or UNC (Universal Naming
Convention) file names. A forward slash in a path name is treated as a backslash. All path names can
contain drive specifications as well as MBCS (multiple-byte character set) characters. For
information on MBCS characters, see Using National Language Support Routines.

Portability routine Description
IARGC Returns the index of the last command-line argument
GETENV Searches the environment for a given string, and returns its value if found
GETGID Returns the group ID of the user
GETLOG Get user's login name
GETPID Returns the process ID of the process
GETUID Returns the user ID of the user of the process
HOSTNAM Returns the name of the user's host

Group, user, and process ID are INTEGER(4) variables. Login name and host name are character
variables. The functions GETGID and GETUID are provided for portability, but always return 1.

IARGC is best used with GETARG. GETARG, which returns command line arguments, is
available in the standard Visual Fortran library; you do not have to specify USE DFPORT in your
program unit.

For more information, see Device and Directory Information.

Device and Directory Information Routines

You can retrieve information about devices, directories, and files with the functions listed below.
File names can be long file names or UNC file names. A forward slash in a path name is treated as a
backslash. All path names can contain drive specifications.

Portability routine Description
CHDIR Changes the current working directory
FSTAT Returns information about a logical file unit
GETCWD Returns the current working directory path name

Portability Library Page 3 of 8

9/2/97 3:26:37 PM

RENAME Renames a file
STAT, LSTAT Returns information about a named file
UNLINK Removes a directory entry from the path

Standard Fortran 90 provides the INQUIRE statement, which returns detailed file information either
by file name or unit number. Use INQUIRE as an equivalent to FSTAT, LSTAT or STAT. LSTAT
and STAT return the same information; STAT is the preferred function.

Process Control Routines
Process control functions control the operation of a process or subprocess. You can wait for a
subprocess to complete with either SLEEP or ALARM, monitor its progress and send signals via
KILL, and stop its execution with ABORT.

In spite of its name, KILL does not necessarily stop execution of a program. Rather, the routine
signaled could include a handler routine that examines the signal and takes appropriate action
depending on the code passed.

Portability
routine

Description

ABORT Stops execution of the current process, clears I/O buffers, and writes a string to
external unit 0

ALARM Executes an external subroutine after waiting a specified number of seconds
KILL Sends a signal code to a process ID
SIGNAL Changes the action for a signal
SLEEP Suspends program execution for a specified number of seconds
SYSTEM Executes a command in a separate shell

Note that when you use SYSTEM, commands are run in a separate shell. Defaults set with the
SYSTEM function, such as current working directory or environment variables, do not affect the
environment the calling program runs in.

The portability library does not include the FORK routine. On U*X systems, FORK creates a
duplicate image of the parent process. Child and parent processes each have their own copies of
resources, and become independent from one another. In Windows NT or Windows 95, you can
create a child process (called a thread), but both parent and child processes share the same address
space and share system resources. If you need to create another process, use the CreateProcess call
through the Win32 API.

For information on how to implement threading, see Creating Multithread Applications.

Numeric Routines
Numeric functions are available for calculating Bessel functions, data type conversion, and
generating random numbers:

Portability routine Description

Portability Library Page 4 of 8

9/2/97 3:26:37 PM

BESJ0, BESJ1, BESJN, BESY0,
BESY1, BESYN

Computes the single precision values of Bessel functions of the
first and second kind of orders 1, 2, and n, respectively

DBESJ0, DBESJ1, DBESJN,
DBESY0, DBESY1, DBESYN

Computes the double-precision values of Bessel functions of the
first and second kind of orders 1, 2, and n, respectively

LONG Converts an INTEGER(2) variable to an INTEGER(4) type
SHORT Converts an INTEGER(4) variable to an INTEGER(2) type
IRAND, IRANDM Returns a positive integer in the range 0 through (2**31)-1, or

(2**15)-1 if called without an argument
RAN Returns random values in the range 0 through 1.0
RAND, DRAND Returns random values in the range 0 through 1.0
DRANDM, RANDOM Returns random values in the range 0 through 1.0
SRAND Seeds the random number generator used with IRAND and

RAND.
BIC, BIS, BIT Perform bit level clear, set, and test for integers

Some of these functions have equivalents in standard Fortran 90. Object conversion can be
accomplished by using the INT intrinsic function instead of LONG or SHORT. The intrinsic
subroutines RANDOM_NUMBER and RANDOM_SEED perform the same functions as the random
number functions listed in the previous table.

Other bit manipulation functions such as AND, XOR, OR, LSHIFT, and RSHIFT are intrinsic
functions. You do not need the DFPORT module to access them. Standard Fortran 90 includes many
bit operation procedures; these are listed in the Bit Operation Procedures table in the Reference.

Input and Output With Portability Routines
The portability library contains routines that change file properties, read and write characters and
buffers, and change the offset position in a file. These input and output routines can be used with
standard Fortran input or output statements such as READ or WRITE on the same files, provided
that you take into account the following:

• When used with direct files, after an FSEEK, GETC, or PUTC operation, the record number is
the number of the next whole record. Any subsequent normal Fortran I/O to that unit occurs at
the next whole record. For example, if you seek to absolute location 1 of a file whose record
length is 10, the NEXTREC= returned by an inquire would be 2. If you seek to absolute
location 10, NEXTREC= would still return 2.

• Doing a PUTC (writing to unit 6) clears the input buffer for GETC (reading from unit 5). This
is because the I/O library treats 5 and 6 as aliases for the same stream: "con". If either unit is
redirected from the command line, this is no longer true.

• On units with CARRIAGECONTROL='FORTRAN' (the default), PUTC and FPUTC
characters are treated as carriage control characters if they appear in column 1.

• On sequentially formatted units, the C string "\n"c, which represents the carriage return/line
feed escape sequence, is written as CHAR(13) (carriage return) and CHAR(10) (line feed),
instead of just line feed, or CHAR(10). On input, the sequence 13 followed by 10 is returned
as just 10. (The length of character string "\n"c is 1 character, whose ASCII value, indicated by

Portability Library Page 5 of 8

9/2/97 3:26:37 PM

ICHAR(’\n’c), is 10.)

• Reading and writing is in a raw form for direct files. Separators between records can be read
and overwritten. Therefore, be careful if you continue using the file as a direct file.

I/O errors arising from the use of these routines result in a Visual Fortran run-time error.

Portability routine Description
ACCESS Checks a file for accessibility according to mode
CHMOD Changes file attributes
FGETC Reads a character from an external unit
FLUSH Flushes the buffer for an external unit to its associated file
FPUTC Writes a character to an external unit
FSEEK Repositions a file on an external unit
FTELL Returns the offset, in bytes, from the beginning of the file
GETC Reads a character from unit 5
PUTC Writes a character to unit 6

All path names can include drive specifications, forward slashes, or backslashes.

Some portability file I/O routines have equivalents in standard Fortran 90. The ACCESS function
checks a file specified by name for accessibility according to mode. It tests a file for read, write, or
execute permission, as well as checking to see if the file exists. It works on the file attributes as they
exist on disk, not as a program's OPEN statement specifies them. You can use the INQUIRE
statement, with the ACTION= parameter, to arrive at the same information. (The ACCESS function
always returns 0 for read permission on FAT files, meaning that all files have read permission.)

Date and Time Routines
Various date and time functions are available to determine system time, or convert it to local time,
Greenwich Mean Time, arrays of date and time elements, or an ASCII character string.

The sample output column of the following table assumes the current date to be 2/24/97 7:11 pm
Pacific Daylight Time. The third column shows what each routine returns, either when reporting the
current time or when that date and time is passed to it in an appropriate argument. Full details of
parameters and output are given in the Reference.

Portability
routine

Description Sample output

CLOCK Current time in "hh:mm:ss" format using a
24-hour clock

19:11:00

CTIME Converts a system time to a 24-character
ASCII string

"Wed Feb 24 19:11:00 1997"

DATE A string representation of the current date As a subroutine: "24-Feb-97"

As a function: "02/24/97"

DTIME1 Elapsed CPU time since later of (1) start of
program, or (2) most recent call to DTIME

(/0.0, 0.0/)
(Actual results depend on the

Portability Library Page 6 of 8

9/2/97 3:26:37 PM

program and the system)

ETIME1 Elapsed CPU time since the start of program
execution

(/0.0, 0.0/)
(Actual results depend on the
program and the system)

FDATE The current date and time as an ASCII string "Wed Feb 24 19:11:00 1997"
GMTIME Greenwich Mean Time as a 9-element integer

array
(/0,12,03,24,2,97,3,55,0/)

IDATE Current date either as one 3-element array or
three scalar parameters (month, day, year)

(1) (/24,2,1997/)
(2) month=2, day=24, year=97

ITIME Current time as a 3-element array (hour,
minute, second)

(/7,11,00/)

JDATE Current date as an 8-character string with the
Julian date

"97055 "

LTIME Local time as a 9-element integer array (/0,11,7,24,2,97,3,55,0/)
RTC Number of seconds

since 00:00:00 GMT,
Jan 1, 1970

762145860

SECNDS The number of seconds since midnight, less
the value of its argument

0.00

TIME As a subroutine, returns the time formatted as
hh:mm:ss

As a function, returns the time in seconds
since midnight GMT Jan 1, 1970

Subroutine: "07:11:00"
Function: 762145860

TIMEF The number of seconds since the first time
this function was called (or zero)

0.0

1 WNT only

TIME and DATE are available as either a function or subroutine. Because of the name duplication,
if your programs do not include the USE DFPORT statement, each separately compiled program
unit can use only one of these versions. For example, if a program calls the subroutine TIME once, it
cannot also use TIME as a function.

Standard Fortran 90 includes new date and time intrinsic subroutines. For more information, see
DATE_AND_TIME in the Reference.

Error Handling Routines
The following routines are available for detecting and reporting errors:

Portability routine Description
IERRNO Returns the last error code
GERROR Returns the IERRNO error code as a string variable
PERROR Sends an error message, preceded by a string, for the last error detected

IERRNO error codes are analogous to errno on U*X systems. The DFPORT module provides

Portability Library Page 7 of 8

9/2/97 3:26:37 PM

parameter definitions for many of U*X’s errno names, found typically in errno.h on U*X systems.

IERRNO is updated only when an error occurs. For example, if a call to the GETC function results
in an error, but two subsequent calls to PUTC succeed, a call to IERRNO returns the error for the
GETC call. Examine IERRNO immediately after returning from one of the portability library
routines. Other standard Fortran 90 routines might also change the value to an undefined value.

If your application uses multithreading, remember that IERRNO is set on a per-thread basis.

Miscellaneous String and Sorting Routines
The following routines perform miscellaneous string and sorting operations:

Portability
routine

Description

LNBLNK Returns the index of the last non-blank character in a string.
QSORT Sorts a one-dimensional array of a specified number of elements of a named

size.
RINDEX Returns the index of the last occurrence of a substring in a string.

Other Compatibility Routines
If you need to call a routine not listed in the portability library, you might find it in the standard
Visual Fortran library. Routines implemented as intrinsic or in the DFLIB module are:

Procedure Description
AND Bitwise AND
OR Bitwise OR
XOR Bitwise XOR
FREE Frees dynamic memory
GETARG Returns command line arguments
MALLOC Allocates dynamic memory
LSHIFT Left bitwise shift
RSHIFT Right bitwise shift
EXIT Exits program with a return code

Visual Fortran does not support certain other functions, such as:

Routine Description
Similar Visual Fortran

Functionality
CMVGM, CMVGN, CMVGP,
CMVGT, CMVGZ

Conditional merge MERGE intrinsic function

FORK Creates an identical process CreateProcess, System
LINK Creates a hard link between

two files
none

SYMLNK Creates a symbolic link
between two files

none

Portability Library Page 8 of 8

9/2/97 3:26:37 PM

Note: CreateProcess is a Win32 API call described in Creating Multithread Applications.

Replace conditional merge routines with the standard Fortran 90 intrinsic MERGE routine, using the
following arguments:

Routine Fortran 90 Replacement
CVMGP(tsrc, fsrc, mask) MERGE(tsrc, fsrc, mask >= 0)
CVMGM(tsrc, fsrc, mask) MERGE(tsrc, fsrc, mask < 0)
CVMGZ(tsrc, fsrc, mask) MERGE(tsrc, fsrc, mask = 0)
CVMGN(tsrc, fsrc, mask) MERGE(tsrc, fsrc, mask /= 0)
CVMGT(tsrc, fsrc, mask) MERGE(tsrc, fsrc, mask = .TRUE.)

There is no analogy to U*X’s file system links or soft links under Windows.

There is also no analogy to the U*X FORK routine, since FORK creates a duplicate image of the
parent process which is independent from the parent process. In Windows NT and Windows 95, both
parent and child processes share the same address space and share system resources. For more
information on creating child processes, see Creating Multithread Applications.

Using QuickWin Page 1 of 28

8/27/97 3:57:15 PM

Using QuickWin
The Visual Fortran QuickWin run-time library helps you turn graphics programs into simple
Windows applications. Though the full capability of Windows is not available through QuickWin,
QuickWin is simpler to learn and to use. QuickWin applications do support pixel-based graphics,
real-coordinate graphics, text windows, character fonts, user-defined menus, mouse events, and
editing (select/copy/paste) of text, graphics, or both.

A program using the QuickWin features must explicitly access the QuickWin graphics library
routines with the statement USE DFLIB, and you must choose your project type as QuickWin
Graphics or Standard Graphics.

In Visual Fortran, graphics programs must be either QuickWin, Standard Graphics, Windows, or
OpenGL applications. Standard Graphics applications are a subset of QuickWin that support only
one window. You can choose the QuickWin or Standard Graphics application type from the
drop-down list of available project types when you create a new project in Developer Studio. Or you
can use the /libs:qwin compiler option for QuickWin or the /libs:qwins compiler option for Standard
Graphics.

Note that QuickWin and Standard Graphics applications cannot be DLLs, and QuickWin and
Standard Graphics cannot be linked with run-time routines that are in DLLs. This means that the
/libs=qwin option and the /libs=dll with /threads options cannot be used together.

This chapter introduces the major categories of QuickWin library routines. It gives an overview of
QuickWin features and their use in creating and displaying graphics, and customizing your
QuickWin applications with custom menus and mouse routines. Drawing Graphics Elements, and
Using Fonts from the Graphics Library cover graphics and fonts in more detail.

You can access the QuickWin library from Visual Fortran as well as other languages that support the
Fortran calling conventions. The graphics package supports all video modes supported by Windows
NT and Windows 95.

Any program using the QuickWin features must include the statement USE DFLIB to access the
QuickWin graphics library. The DFLIB.MOD module file contains subroutine and function
declarations in INTERFACE statements, derived-type declarations, symbolic constant declarations,
and EXTERNAL declarations for each QuickWin routine.

Because INTERFACE statements must appear outside the body of a program, the USE DFLIB
statement must appear outside the body of a program unit. This usually means putting USE DFLIB
before any other statement.

If a graphics routine does not have a PROGRAM statement, then USE DFLIB must appear in each
subprogram that makes graphics calls, before any declaration statements (such as IMPLICIT NONE
or INTEGER) or any other modules containing declaration statements.

This section includes the following topics:

• Capabilities of QuickWin
• Comparing QuickWin with Windows-Based Applications

Using QuickWin Page 2 of 28

8/27/97 3:57:15 PM

• Types of QuickWin Programs
• The QuickWin User Interface
• Creating QuickWin Windows
• Using Graphics and Character-Font Routines
• Defining Graphics Characteristics
• Working with Screen Images
• Enhancing QuickWin Applications
• Customizing QuickWin Applications
• QuickWin Programming Precautions
• Simulating Nonblocking I/O

Capabilities of QuickWin
You can use the QuickWin library to do the following:

• Compile console programs into simple applications for Windows.
• Minimize and maximize QuickWin applications like any Windows-based application.
• Call graphics routines.
• Load and save bitmaps.
• Select, copy and paste text, graphics, or a mix of both.
• Detect and respond to mouse clicks.
• Display graphics output.
• Alter the default application menus or add programmable menus.
• Create custom icons.
• Open multiple child windows.

Comparing QuickWin with Windows-Based Applications
QuickWin does not provide the total capability of Windows. Although you can call many Win32
APIs (Application Programming Interface) from QuickWin and console programs, many other
Win32 APIs (such as GDI functions) should be called only from a full Windows application. You
need to use Windows-based applications, not QuickWin, if any of the following applies:

• Your application has an OLE (Object Linking and Embedding) container.
• You want direct access to GDI (Graphical Data Interface) functions.
• You want to add your own customized Help information to QuickWin Help.
• You want to create something other than a standard SDI (Single Document Interface) or MDI

(Multiple Document Interface) application. (For example, if you want your application to have
a dialog such as Windows' Calculator in the client area.)

Types of QuickWin Programs
The QuickWin library creates a Standard Graphics application or a QuickWin Graphics application,
depending on the project type you choose. Standard Graphics applications support only one window
and do not support programmable menus. QuickWin Graphics applications support multiple
windows and user-defined menus. Any Fortran program, whether it contains graphics or not, can be
compiled as a QuickWin application. You can use Microsoft Developer Studio to create, debug, and
execute Standard Graphics programs and QuickWin Graphics programs.

Using QuickWin Page 3 of 28

9/2/97 3:26:53 PM

To build a QuickWin application in Developer Studio, select QuickWin Application from the
drop-down list of available project types you see when you create a new project.

To build a Standard Graphics application in Developer Studio, select Standard Graphics Application
from the drop-down list of available project types.

To build a QuickWin application from the command line, use the /libs:qwin option. For example:

 DF /libs=qwin qw_app.f90

To build a Standard Graphics application from the command line, use the /libs:qwins option. For
example:

 DF /libs=qwins stdg_app.f90

Complete details on how to build projects in Developer Studio are available in see Working With
Projects in the Developer Studio Environment User’s Guide.

The following sections discuss the two types of QuickWin applications:

• Standard Graphics Application
• QuickWin Graphics Application

Standard Graphics Applications

A standard graphics application is a window with a single maximized application window covering
the whole available area. The application window can contain both text and graphics input and
output, and it defaults to a scrollable text window. The frame window has only the border, title bar,
and scroll bars. Programmable menus and multiple child windows cannot be created in this mode.

The following figure shows a typical Standard Graphics application, which resembles an MS-DOS
application running in a window.

Figure: MTRX.F90 Compiled as a Standard Graphics Application

QuickWin Graphics Applications

Using QuickWin Page 4 of 28

9/2/97 3:26:53 PM

The following shows a typical QuickWin Graphics application. The frame window has a border, title
bar, scroll bars, and default menu bar. You can modify, add, or delete the default menu items,
respond to mouse events, and create multiple child windows within the frame window using
QuickWin enhanced features. Routines to create enhanced features are listed in Enhancing
QuickWin Applications. Using these routines to customize your QuickWin application is described
in Customizing QuickWin Applications.

Figure: MTRX.FOR Compiled as a QuickWin Application

The QuickWin User Interface
All QuickWin applications create an application window; child windows are optional. Standard
Graphics applications and QuickWin Graphics applications have these general characteristics:

• Window contents can be copied as bitmaps or text to the Clipboard for printing or pasting to
other applications. In Standard Graphics applications, the entire window is copied since there
is no Edit menu. In QuickWin Graphics applications, any portion of the window can be
selected and copied.

• Vertical and horizontal scroll bars appear automatically, if needed.
• The base name of the application's .EXE file appears in the window's title bar.
• Closing the application window terminates the program.

In addition, the QuickWin Graphics application has a status bar and menu bar. The status bar at the
bottom of the window reports the current status of the window program (for example, running or
input pending).

Default QuickWin Menus shows the default QuickWin menus.

Default QuickWin Menus

The default MDI (Multiple Document Interface) menu bar has six menus: File, Edit, View, State,
Window, and Help.

Using QuickWin Page 5 of 28

9/2/97 3:26:53 PM

Figure: File Menu

Figure: Edit Menu

For instructions on using the Edit options within QuickWin see Editing Text and Graphics from the
QuickWin Edit Menu.

Figure: View Menu

The resulting graphics might appear somewhat distorted whenever the logical graphics screen is
enlarged or reduced with the Size to Fit and Full Screen commands. While in Full Screen or Size To
Fit mode, cursors are not scaled.

Figure: State Menu

Figure: Window Menu

Figure: Help Menu

Using QuickWin Page 6 of 28

9/2/97 3:26:54 PM

For instructions on replacing the About default information within the Help menu with your own text
message, see Defining an About Box.

For instructions on how to create custom QuickWin menus, see Customizing QuickWin Applications.

Creating QuickWin Windows
The QuickWin library contains many routines to create and control your QuickWin windows. These
routines are discussed in the following topics:

• Accessing Window Properties
• Creating Child Windows
• Giving a Window Focus and Setting the Active Window
• Keeping Child Windows Open
• Controlling Size and Position of Windows

Accessing Window Properties

SETWINDOWCONFIG and GETWINDOWCONFIG set and get the current window properties.
These properties are stored in the windowconfig derived type defined in DFLIB.MOD, which
contains the following parameters:

 TYPE windowconfig
 INTEGER(2) numxpixels ! Number of pixels on x-axis.
 INTEGER(2) numypixels ! Number of pixels on y-axis.
 INTEGER(2) numtextcols ! Number of text columns available.
 INTEGER(2) numtextrows ! Number of scrollable text lines available.
 INTEGER(2) numcolors ! Number of color indexes.
 INTEGER(4) fontsize ! Size of default font. Set to
 ! QWIN$EXTENDFONT when using multibyte
 ! characters, in which case
 ! extendfontsize sets the font size.
 CHARACTER(80) title ! Window title, where title is a C string.
 INTEGER(2) bitsperpixel ! Number of bits per pixel. This value
 ! is calculated by the system and is an
 ! output-only parameter.
 ! The next three parameters support multibyte
 ! character sets (such as Japanese)
 CHARACTER(32) extendfontname ! Any non-proportionally spaced font
 ! available on the system.
 INTEGER(4) extendfontsize ! Takes same values as fontsize, but
 ! used for multiple-byte character sets
 ! when fontsize set to QWIN$EXTENDFONT.
 INTEGER(4) extendfontattributes ! Font attributes such as bold and
 ! italic for multibyte character sets.
 END TYPE windowconfig

If you use SETWINDOWCONFIG to set the variables in windowconfig to -1, the highest
resolution will be set for your system, given the other fields you specify, if any. You can set the
actual size of the window by specifying parameters that influence the window size -- the number of x
and y pixels, the number of rows and columns, and the font size. If you do not call
SETWINDOWCONFIG, the window defaults to the best possible resolution and a font size of 8 by
16. The number of colors depends on the video driver used. In the following example, the number of
x and y pixels is specified and the system calculates the number of rows and columns for the

Using QuickWin Page 7 of 28

9/2/97 3:26:54 PM

window:

 USE DFLIB
 TYPE (windowconfig) wc
 LOGICAL status
 ! Set the x & y pixels to 800X600 and font size to 8x12.
 wc.numxpixels = 800
 wc.numypixels = 600
 wc.numtextcols = -1
 wc.numtextrows = 302
 wc.numcolors = -1
 wc.title = " "C
 wc.fontsize = #0008000C
 status = SETWINDOWCONFIG(wc)

In this example, the variable wc.numtextrows is set to 302 to allow 300 lines of scollable text (n-2 is
used).

If the requested configuration cannot be set, SETWINDOWCONFIG returns .FALSE. and
calculates parameter values that will work and best fit the requested configuration. Another call to
SETWINDOWCONFIG establishes these values:

 IF(.NOT.status) status = SETWINDOWCONFIG(wc)

Creating Child Windows

The FILE=’USER’ option in the OPEN statement opens a unit that Visual Fortran treats like any
other unit. However, Windows NT and Windows 95 treat the unit as a child window. The child
window defaults to a scrollable text window, 30 rows by 80 columns. If the OPEN statement
contains FILE=’ ’, Visual Fortran displays a Windows File Open dialog box that prompts for a
filename to open. You can open up to 40 child windows.

Opening a window displays the frame window, but not the child window. You must call
SETWINDOWCONFIG or execute an I/O statement or a graphics statement to display the child
window. The window receives output by its unit number, as in:

 OPEN (UNIT= 12, FILE= ’USER’, TITLE= ’Product Matrix’)
 WRITE (12, *) ’Enter matrix type: ’

Child windows opened with FILE=’USER’ must be opened as sequential-access formatted files (the
default). Other file specifications (direct-access, binary, or unformatted) result in run-time errors.

Giving a Window Focus and Setting the Active Window

When a window is made active, it receives graphics output (from ARC, LINETO, and
OUTGTEXT, for example) but is not brought to the foreground and thus does not have the focus.
When a window acquires focus, either by a mouse click, I/O to it, or by a FOCUSQQ call, it also
becomes the active window.

If a window needs to be brought to the foreground, it must be given focus. The window that has the
focus is always on top, and all other windows have their title bars grayed out. A window can have the
focus and yet not be active and not have graphics output directed to it. Graphical output is
independent of focus.

Using QuickWin Page 8 of 28

9/2/97 3:26:54 PM

Under most circumstances, focus and active should apply to the same window. This is the default
behavior of QuickWin and a programmer must consciously override this default.

Certain QuickWin routines (such as GETCHARQQ, PASSDIRKEYSQQ, and
SETWINDOWCONFIG) that do not take a unit number as an input argument usually effect the active
window whether or not it is in focus.

If another window is made active but is not in focus, these routines effect the window active at the
time of the routine call. This may appear unusual to the user since a GETCHARQQ under these
circumstances will expect input from a grayed, background window. The user would then have to
click on that window before input could be typed to it.

To use these routines (that effect the the active window), either do I/O to the unit number of the
window you wish to put in focus (and also make active), or call FOCUSQQ (with a unit number
specified). If only one window is open then that window is the one effected. If several windows are
opened, then the last one opened is the one effected since that window will get focus and active as a
side effect of being opened.

The OPEN (IOFOCUS=) parameter also can determine whether a window receives the focus when
a I/O statement is executed on that unit. For example:

 OPEN (UNIT = 10, FILE = ’USER’, IOFOCUS = .TRUE.)

IOFOCUS= defaults to .TRUE., except for child windows opened as Unit 0, 5, or 6 and directed at
a terminal device, in which case IOFOCUS= defaults to .FALSE.. If IOFOCUS= .TRUE., the
child window receives focus prior to each READ, WRITE, or PRINT. Calls to OUTTEXT or
graphics functions (for example, OUTGTEXT, LINETO, and ELLIPSE) do not cause the focus to
shift. If you use IOFOCUS= with any unit other than a QuickWin child window, a run-time error
occurs.

The focus shifts to a window when it is given the focus with FOCUSQQ, when it is selected by a
mouse click, or when an I/O operation other than a graphics operation is performed on it, unless the
window was opened with IOFOCUS=.FALSE.. INQFOCUSQQ determines which unit has the
focus. For example:

 USE DFLIB
 INTEGER(4) status, focusunit
 OPEN(UNIT = 10, FILE = ’USER’, TITLE = ’Child Window 1’)
 OPEN(UNIT = 11, FILE = ’USER’, TITLE = ’Child Window 2’)
 !Give focus to Child Window 2 by writing to it:
 WRITE (11, *) ’Giving focus to Child 2.’
 ! Give focus to Child Window 1 with the FOCUSQQ function:
 status = FOCUSQQ(10)
 ...
 ! Find out the unit number of the child window that currently has focus:
 status = INQFOCUSQQ(focusunit)

SETACTIVEQQ makes a child window active without bringing it to the foreground.
GETACTIVEQQ returns the unit number of the currently active child window. GETHWNDQQ
converts the unit number into a Windows handle for functions that require it.

Keeping Child Windows Open

Using QuickWin Page 9 of 28

9/2/97 3:26:54 PM

A child window remains open as long as its unit is open. The STATUS= parameter in the CLOSE
statement determines whether the child window remains open after the unit has been closed. If you
set STATUS=’KEEP’, the associated window remains open but no further input or output is
permitted. Also, the Close command is added to the child window’s menu and the word Closed is
appended to the window title. The default is STATUS=’DELETE’, which closes the window.

A window that remains open when you use STATUS=’KEEP’ counts as one of the 40 child windows
available for the QuickWin application.

Controlling Size and Position of Windows

SETWSIZEQQ and GETWSIZEQQ set and get the size and position of a window. The positions
and dimensions of child windows are expressed in units of character height and width. The position
and dimensions of the frame window are expressed in screen pixels. The position and dimensions are
returned in the the derived type qwinfo defined in DFLIB.MOD as follows:

 TYPE QWINFO
 INTEGER(2) TYPE ! Type of action performed by SETWSIZEQQ.
 INTEGER(2) X ! x-coordinate for upper left corner.
 INTEGER(2) Y ! y-coordinate for upper left corner.
 INTEGER(2) H ! Window height.
 INTEGER(2) W ! Window width.
 END TYPE QWINFO

The options for the element qwinfo type are listed under SETWSIZEQQ in the Reference.

GETWSIZEQQ returns the position and the current or maximum window size of the current frame
or child window. To access information about a child window, specify the unit number associated
with it. Unit numbers 0, 5, and 6 refer to the default startup window if you have not explicitly opened
them with the OPEN statement. To access information about the frame window, specify the unit
number as the symbolic constant QWIN$FRAMEWINDOW. For example:

 USE DFLIB
 INTEGER(4) status
 TYPE (QWINFO) winfo
 OPEN (4, FILE=’USER’)
 ...
 ! Get current size of child window associated with unit 4.
 status = GETWSIZEQQ(4, QWIN$SIZECURR, winfo)
 WRITE (*,*) "Child window size is ", winfo.H, " by ", winfo.W
 ! Get maximum size of frame window.
 status = GETWSIZEQQ(QWIN$FRAMEWINDOW, QWIN$SIZEMAX, winfo)
 WRITE (*,*) "Max frame window size is ", winfo.H, " by ", winfo.W

SETWSIZEQQ is used to set window position and size. For example:

 USE DFLIB
 INTEGER(4) status
 TYPE (QWINFO) winfo
 OPEN (4, FILE=’USER’)
 winfo.H = 30
 winfo.W = 80
 winfo.TYPE = QWIN$SET
 status = SETWSIZEQQ(4, winfo)

Using QuickWin Page 10 of 28

9/2/97 3:26:54 PM

Using Graphics and Character-Font Routines
Graphics routines are functions and subroutines that draw lines, rectangles, ellipses, and similar
elements on the screen. Font routines create text in a variety of sizes and styles. The QuickWin
graphics library provides routines that:

• Change the window's dimensions.
• Set coordinates.
• Set color palettes.
• Set line styles, fill masks, and other figure attributes.
• Draw graphics elements.
• Display text in several character styles.
• Display text in fonts compatible with Microsoft Windows.
• Store and retrieve screen images.

Defining Graphics Characteristics
The following topics discuss groups of routines that define the way text and graphics are displayed:

• Selecting Display Options
• Setting Graphics Coordinates
• Using Color
• Setting Figure Properties

Selecting Display Options

The QuickWin run-time library provides a number of routines that you can use to define text and
graphics displays. These routines determine the graphics environment characteristics and control the
cursor.

SETWINDOWCONFIG is the command you use to configure window properties. You can use
DISPLAYCURSOR to control whether the cursor will be displayed. The cursor becomes invisible
after a call to SETWINDOWCONFIG. To display the cursor you must explicitly turn on cursor
visibility wit h DISPLAYCURSOR($GCURSORON).

SETGTEXTROTATION sets the current orientation for font text output, and
GETGTEXTROTATION returns the current setting. The current orientation is used in calls to
OUTGTEXT.

For more information on these routines, see the Reference.

Setting Graphics Coordinates

The coordinate-setting routines control where graphics can appear on the screen. Visual Fortran
graphics routines recognize the following sets of coordinates:

• Fixed physical coordinates, which are determined by the hardware and the video mode used
• Viewport coordinates, which you can define in the application
• Window coordinates, which you can define to simplify scaling of floating-point data values

Using QuickWin Page 11 of 28

9/2/97 3:26:54 PM

Unless you change it, the viewport-coordinate system is identical to the physical-coordinate system.
The physical origin (0, 0) is always in the upper-left corner of the display. For QuickWin, display
means a child window’s client area, not the actual monitor screen (unless you go to Full Screen
mode). The x-axis extends in the positive direction left to right, while the y-axis extends in the
positive direction top to bottom. The default viewport has the dimensions of the selected mode. In a
QuickWin application, you can draw outside of the child window’s current client area. If you then
make the child window bigger, you will see what was previously outside the frame.

You can also use coordinate routines to convert between physical-, viewport-, and
window-coordinate systems. (For more detailed information on coordinate systems, see Drawing
Graphics Elements.)

You can set the pixel dimensions of the x- and y-axes with SETWINDOWCONFIG. You can access
these values through the wc.numxpixels and wc.numypixels values returned by
GETWINDOWCONFIG. Similarly, GETWINDOWCONFIG also returns the range of colors
available in the current mode through the wc.numcolors value.

You can also define the graphics area with SETCLIPRGN and SETVIEWPORT. Both of these
functions define a subset of the available window area for graphics output. SETCLIPRGN does not
change the viewport coordinates, but merely masks part of the screen. SETVIEWPORT resets the
viewport bounds to the limits you give it and sets the origin to the upper-left corner of this region.

The origin of the viewport-coordinate system can be moved to a new position relative to the physical
origin with SETVIEWORG. Regardless of the viewport coordinates, however, you can always locate
the currrent graphics output position with GETCURRENTPOSITION and
GETCURRENTPOSITION_W. (For more detailed information on viewports and clipping regions,
see Drawing Graphics Elements.)

Using the window-coordinate system, you can easily scale any set of data to fit on the screen. You
define any range of coordinates (such as 0 to 5000) that works well for your data as the range for the
window-coordinate axes. By telling the program that you want the window-coordinate system to fit
in a particular area on the screen (map to a particular set of viewport coordinates), you can scale a
chart or drawing to any size you want. SETWINDOW defines a window-coordinate system bounded
by the specified values. See SINE.F90 in the \DF\SAMPLES\TUTORIAL subdirectory for an
example of this technique.

GETPHYSCOORD converts viewport coordinates to physical coordinates, and GETVIEWCOORD
translates from physical coordinates to viewport coordinates. Similarly, GETVIEWCOORD_W
converts window coordinates to viewport coordinates, and GETWINDOWCOORD converts
viewport coordinates to window coordinates.

For more information on these routines, see the Reference.

Using Color

If you have a VGA machine, you are restricted to displaying at most 256 colors at a time. These 256
colors are held in a palette. You can choose the palette colors from a range of 262,144 colors (256K),
but only 256 at a time. The palette routines REMAPPALETTERGB and
REMAPALLPALETTERGB assign Red-Green-Blue (RGB) colors to palette indexes.

Using QuickWin Page 12 of 28

9/2/97 3:26:54 PM

Functions and subroutines that use color indexes create graphic outputs that depend on the mapping
between palette indexes and RGB colors. REMAPPALETTERGB remaps one color index to an
RGB color, and REMAPALLPALETTERGB remaps the entire palette, up to 236 colors, (20
colors are reserved by the system). You cannot remap the palette on machines capable of displaying
20 colors or fewer.

SVGA and true color video adapters are capable of displaying 262,144 (256K) colors and 16.7
million colors respectively. If you use a palette, you are restricted to the colors available in the palette.

To access the entire set of available colors, not just the 256 or fewer colors in the palette, you should
use functions that specify a color value directly. These functions end in RGB and use
Red-Green-Blue color values, not indexes to a palette. For example, SETCOLORRGB,
SETTEXTCOLORRGB, and SETPIXELRGB specify a direct color value, while SETCOLOR,
SETTEXTCOLOR, and SETPIXEL each specify a palette color index. If you are displaying more
than 256 colors simultaneously, you need to use the RGB direct color value functions exclusively.

For more information on setting colors, see Adding Color in Drawing Graphics Elements.

Setting Figure Properties

The output routines that draw arcs, ellipses, and other primitive figures do not specify color or
line-style information. Instead, they rely on properties set independently by other routines.

GETCOLORRGB (or GETCOLOR) and SETCOLORRGB (or SETCOLOR) obtain or set the
current color value (or color index), which FLOODFILLRGB (or FLOODFILL), OUTGTEXT, and
the shape-drawing routines all use. Similarly, GETBKCOLORRGB (or GETBKCOLOR) and
SETBKCOLORRGB (or SETBKCOLOR) retrieve or set the current background color.

GETFILLMASK and SETFILLMASK return or set the current fill mask. The mask is an 8-by-8-bit
array with each bit representing a pixel. If a bit is 0, the pixel in memory is left untouched: the mask
is transparent to that pixel. If a bit is 1, the pixel is assigned the current color value. The array acts as
a template that repeats over the entire fill area. It "masks" the background with a pattern of pixels
drawn in the current color, creating a large number of fill patterns. These routines are particularly
useful for shading.

GETWRITEMODE and SETWRITEMODE return or set the current logical write mode used when
drawing lines. The logical write mode, which can be set to $GAND, $GOR, $GPRESET, $GPSET,
or $GXOR, determines the interaction between the new drawing and the existing screen and current
graphics color. The logical write mode affects the LINETO, RECTANGLE, and POLYGON
routines.

GETLINESTYLE and SETLINESTYLE retrieve and set the current line style. The line style is
determined by a 16-bit-long mask that determines which of the five available styles is chosen. You
can use these two routines to create a wide variety of dashed lines that affect the LINETO,
RECTANGLE, and POLYGON routines.

For more information on these routines, see their description in the Reference.

Using QuickWin Page 13 of 28

9/2/97 3:26:54 PM

Displaying Graphics Output
The run-time graphics library routines can draw geometric features, display text, display font-based
characters, and transfer images between memory and the screen. These capabilities are discussed in
the following topics:

• Drawing Graphics
• Displaying Character-Based Text
• Displaying Font-Based Characters

Drawing Graphics

If you want anything other than the default line style (solid), mask (no mask), background color
(black), or foreground color (white), you must call the appropriate routine before calling the drawing
routine. Subsequent output routines employ the same attributes until you change them or open a new
child window.

The following is a list of routines that ask about the current graphics settings, set new graphics
settings, and draw graphics:

Routine Use
ARC, ARC_W Draws an arc
CLEARSCREEN Clears the screen, viewport, or text window
ELLIPSE, ELLIPSE_W Draws an ellipse or circle
FLOODFILL, FLOODFILL_W Fills an enclosed area of the screen with the current

color index using the current fill mask
FLOODFILLRGB, FLOODFILLRGB_W Fills an enclosed area of the screen with the current

RGB color using the current fill mask
GETARCINFO Determines the endpoints of the most recently drawn

arc or pie
GETCURRENTPOSITION,
GETCURRENTPOSITION_W

Returns the coordinates of the current graphics-output
position

GETPIXEL, GETPIXEL_W Returns a pixel's color index
GETPIXELRGB, GETPIXELRGB_W Returns a pixel's Red-Green-Blue color value
GETPIXELS Gets the color indices of multiple pixels
GETPIXELSRGB Gets the Red-Green-Blue color values of multiple

pixels
GRSTATUS Returns the status (success or failure) of the most

recently called graphics routine
INTEGERTORGB Convert a true color value into its red, green, and blue

components
LINETO, LINETO_W Draws a line from the current graphics-output position

to a specified point
MOVETO, MOVETO_W Moves the current graphics-output position to a

specified point
PIE, PIE_W Draws a pie-slice-shaped figure
POLYGON, POLYGON_W Draws a polygon

Using QuickWin Page 14 of 28

9/2/97 3:26:54 PM

RECTANGLE, RECTANGLE_W Draws a rectangle
RGBTOINTEGER Convert a trio of red, green, and blue values to a true

color value for use with RGB functions and subroutines
SETPIXEL, SETPIXEL_W Sets a pixel at a specified location to a color index
SETPIXELRGB, SETPIXELRGB_W Sets a pixel at a specified location to a Red-Green-Blue

color value
SETPIXELS Set the color indices of multiple pixels
SETPIXELSRGB Set the Red-Green-Blue color value of multiple pixels

Most of these routines have multiple forms. Routine names that end with _W use the
window-coordinate system and REAL(8) argument values. Routines without this suffix use the
viewport-coordinate system and INTEGER(2) argument values.

Curved figures, such as arcs and ellipses, are centered within a bounding rectangle, which is
specified by the upper-left and lower-right corners of the rectangle. The center of the rectangle
becomes the center for the figure, and the rectangle’s borders determine the size of the figure. In the
following figure, the points (x1, y1) and (x2, y2) define the bounding rectangle.

Figure: Bounding Rectangle

For more information on these routines, see the Reference.

Displaying Character-Based Text

The routines in the following table ask about screen attributes that affect text display, prepare the
screen for text and send text to the screen. To print text in specialized fonts, see Displaying
Font-Based Characters and Using Fonts from the Graphics Library.

In addition to these general text routines, you can customize the text in your menus with
MODIFYMENUSTRINGQQ. You can also customize any other string that QuickWin produces,
including status bar messages, the state message (for example, "Paused" or "Running"), and dialog
box messages, with SETMESSAGEQQ. Use of these customization routines is described in
Customizing QuickWin Applications.

The following routines recognize text-window boundaries:

Routine Use
CLEARSCREEN Clears the screen, viewport, or text window
DISPLAYCURSOR Sets the cursor on or off
GETBKCOLOR Returns the current background color index
GETBKCOLORRGB Returns the current background Red-Green-Blue color value
GETTEXTCOLOR Returns the current text color index

Using QuickWin Page 15 of 28

9/2/97 3:26:54 PM

GETTEXTCOLORRGB Returns the current text Red-Green-Blue color value
GETTEXTPOSITION Returns the current text-output position
GETTEXTWINDOW Returns the boundaries of the current text window
OUTTEXT Sends text to the screen at the current position
SCROLLTEXTWINDOW Scrolls the contents of a text window
SETBKCOLOR Sets the current background color index
SETBKCOLORRGB Sets the current background Red-Green-Blue color value
SETTEXTCOLOR Sets the current text color to a new color index
SETTEXTCOLORRGB Sets the current text color to a new Red-Green-Blue color value
SETTEXTPOSITION Changes the current text position
SETTEXTWINDOW Sets the current text-display window
WRAPON Turns line wrapping on or off

These routines do not provide text-formatting capabilities. If you want to print integer or
floating-point values, you must convert the values into a string (using an internal WRITE statement)
before calling these routines. The text routines specify all screen positions in character-row and
column coordinates.

SETTEXTWINDOW is the text equivalent of the SETVIEWPORT graphics routine, except that it
restricts only the display area for text printed with OUTTEXT, PRINT, and WRITE.
GETTEXTWINDOW returns the boundaries of the current text window set by
SETTEXTWINDOW. SCROLLTEXTWINDOW scrolls the contents of a text window.
OUTTEXT, PRINT, and WRITE display text strings written to the current text window.

Warning: The WRITE statement sends its carriage return (CR) and line feed (LF) to the screen
at the beginning of the first I/O statement following the WRITE statement. This can cause
unpredictable text positioning if you mix the graphics routines SETTEXTPOSITION and
OUTTEXT with the WRITE statement. To minimize this effect, use the backslash (\) or dollar
sign ($) format descriptor (to suppress CR-LF) in the associated FORMAT statement.

For more information on these routines, see the Reference.

Displaying Font-Based Characters

Because the Visual Fortran Graphics Library provides a variety of fonts, you must indicate which
font to use when displaying font-based characters. After you select a font, you can make inquiries
about the width of a string printed in that font or about font characteristics. The following functions
control the display of font-based characters:

Routine Use
GETFONTINFO Returns the current font characteristics
GETGTEXTEXTENT Determines the width of specified text in the current font
GETGTEXTROTATION Gets the current orientation for font text output in 0.1º increments
INITIALIZEFONTS Initializes the font library
OUTGTEXT Sends text in the current font to the screen at the current graphics output

position
SETFONT Finds a single font that matches a specified set of characteristics and

Using QuickWin Page 16 of 28

9/2/97 3:26:54 PM

makes it the current font used by OUTGTEXT
SETGTEXTROTATION Sets the current orientation for font text output in 0.1º increments

Characters may be drawn ("mapped") in one of two ways: as bitmapped letters (a "picture" of the
letter) or as TrueType characters. See Using Fonts from the Graphics Library, for detailed
explanations and examples of how to use the font routines from the QuickWin Library.

For more information on these routines, see the Reference.

Working With Screen Images
The routines described in the following sections offer the following ways to store and retrieve
images:

• Transfer images between memory buffers and the screen

Transferring images from buffers is a quick and flexible way to move things around the
screen. Memory images can interact with the current screen image; for example, you can
perform a logical AND of a memory image and the current screen or superimpose a negative
of the memory image on the screen.

• Transfer images between the screen and Windows bitmap files

Transferring images from files gives access to images created by other programs, and saves
graphs and images for later use. However, images loaded from bitmap files overwrite the
portion of the screen they are pasted into and retain the attributes they were created with, such
as the color palette, rather than accepting current attributes.

• Transfer images between the screen and the Clipboard from the QuickWin Edit menu

Editing screen images from the QuickWin Edit menu is a quick and easy way to move and
modify images interactively on the screen, retaining the current screen attributes, and also
provides temporary storage (the Clipboard) for transferring images among applications.

These routines allow you to cut, paste, and move images around the screen.

Transferring Images in Memory

The GETIMAGE and PUTIMAGE routines transfer images between memory and the screen and
give you options that control the way the image and screen interact. When you hold an image in
memory, the application allocates a memory buffer for the image. The IMAGESIZE routines
calculate the size of the buffer needed to store a given image.

Routines that end with _W use window coordinates; the other functions use viewport coordinates.

Routine Use
GETIMAGE, GETIMAGE_W Stores a screen image in memory
IMAGESIZE, IMAGESIZE_W Returns image size in bytes
PUTIMAGE, PUTIMAGE_W Retrieves an image from memory and displays it

Using QuickWin Page 17 of 28

9/2/97 3:26:54 PM

For more information on these routines, see the Reference.

Loading and Saving Images to Files

The LOADIMAGE and SAVEIMAGE routines transfer images between the screen and Windows
bitmap files:

Routine Use
LOADIMAGE,
LOADIMAGE_W

Reads a Windows bitmap file (.BMP) from disk and displays it as
specified coordinates

SAVEIMAGE,
SAVEIMAGE_W

Captures a screen image from the specified portion of the screen and
saves it as a Windows bitmap file

You can use a Windows format bitmap file created with a graphics program as a backdrop for
graphics that you draw with the Visual Fortran graphics functions and subroutines.

For more information on these routines, see the Reference.

Editing Text and Graphics from the QuickWin Edit Menu

From the QuickWin Edit menu you can choose the Select Text, Select Graphics, or Select All
options. You can then outline your selection with the mouse or the keyboard arrow keys. When you
use the Select Text option, your selection is highlighted. When you use the Select Graphics or Select
All option, your selection is marked with a box whose dimensions you control.

Once you have selected a portion of the screen, you can delete it with the DEL key and/or copy it onto
the Clipboard by using the Edit/Copy option or by using the CTRL+INS key combination. If the screen
area you have selected contains only text, it is copied onto the Clipboard as text. If the selected
screen area contains graphics, or a mix of text and graphics, it is copied onto the Clipboard as a
bitmap.

The Edit menu’s Paste option will only paste text. Bitmaps can be pasted into other Windows
applications from the Clipboard (with the CTRL+V or SHIFT+INS key combinations).

Remember the following when selecting portions of the screen:

• If you have chosen the Select All option from the Edit menu, the whole screen is selected and
you cannot then select a portion of the screen.

• Text selections are not bounded by the current text window set with SETTEXTWINDOW.

• When text is copied to the Clipboard, trailing blanks in a line are removed.

• Text that is written to a window can be overdrawn by graphics. In this case, the text is still
present in the screen text buffer, though not visible on the screen. When you select a portion of
the screen to copy, you can select text that is actually present but not visible, and that text will
be copied onto the Clipboard.

• When you chose Select Text or Select Graphics from the Edit menu, the application is paused,
a caret (^) appears at the top left corner of the currently active window, all user-defined

Using QuickWin Page 18 of 28

9/2/97 3:26:54 PM

callbacks are disabled, and the window title changes to "Mark Text - windownam "or "Mark
Graphics - windowname ", where windowname is the name of the currently active window.

As soon as you begin selection (by pressing an arrow key or a mouse button), the Window title
changes to "Select Text - windowname " or "Select Graphics - windowname " and selection
begins at that point. If you do not want selection to begin in the upper-left corner, your first
action when "Mark Text" or "Mark Graphics" appears in the title is to use the mouse to place
the cursor at the position where selection is to be begin.

Enhancing QuickWin Applications
In addition to the basic QuickWin features, you can optionally customize and enhance your
QuickWin applications with the features described in the following table. The use of these features to
create customized menus, respond to mouse events, and add custom icons is described in the section
Customizing QuickWin Applications.

Category QuickWin Function Description
Initial
settings

INITIALSETTINGS Controls initial menu settings and/or initial frame
window

Display/add
box

MESSAGEBOXQQ Displays a message box
ABOUTBOXQQ Adds an About Box with customized text

Menu items CLICKMENUQQ Simulates the effect of clicking or selecting a menu
item

APPENDMENUQQ Appends a menu item
DELETEMENUQQ Deletes a menu item
INSERTMENUQQ Inserts a menu item
MODIFYMENUFLAGSQQ Modifies a menu item’s state
MODIFYMENUROUTINEQQ Modifies a menu item’s callback routine
MODIFYMENUSTRINGQQ Changes a menu item’s text string
SETWINDOWMENUQQ Sets the menu to which a list of current child window

names are appended
Directional
keys

PASSDIRKEYSQQ Enables (or disables) use of the arrow directional keys
and page keys as input (see DIRKEYS.F90 in the
\DF\SAMPLES\ADVANCED\DIRKEYS
subdirectory)

QuickWin
messages

SETMESSAGEQQ Changes any QuickWin message, including status bar
messages, state messages and dialog box messages

Mouse
actions

REGISTERMOUSEEVENT Registers the application defined routines to be called
on mouse events

UNREGISTERMOUSEEVENT Removes the routine registered by
REGISTERMOUSEEVENT

WAITONMOUSEEVENT Blocks return until a mouse event occurs

Customizing QuickWin Applications
The QuickWin library is a set of routines you can use to create graphics programs or simple

Using QuickWin Page 19 of 28

9/2/97 3:26:54 PM

applications for Windows. For a general overview of QuickWin and a description of how to create
and size child windows, see the beginning of this section. For information on how to compile and
link QuickWin applications, see Building Programs and Libraries.

The following topics describe how to customize and fine-tune your QuickWin applications:

• Program Control of Menus
• Changing Status Bar and State Messages
• Displaying Message Boxes
• Defining an About Box
• Using Custom Icons
• Using a Mouse

Program Control of Menus

You do not have to use the default QuickWin menus. You can eliminate and alter menus, menu item
lists, menu titles or item titles. The QuickWin functions that control menus are described in the
following sections:

• Controlling the Initial Menu and Frame Window
• Deleting, Inserting, and Appending Menu Items
• Modifying Menu Items
• Creating a Menu List of Available Child Windows
• Simulating Menu Selections

Controlling the Initial Menu and Frame Window

You can change the initial appearance of an application's default frame window and menus by
defining an INITIALSETTINGS function. If no user-defined INITIALSETTINGS function is
supplied, QuickWin calls a predefined INITIALSETTINGS routine to control the default frame
window and menu appearance. Your application does not need to call INITIALSETTINGS. If you
supply the function in your project, QuickWin calls it automatically.

If you supply it, INITIALSETTINGS can call QuickWin functions that set the initial menus and the
size and position of the frame window. Besides the menu functions, SETWSIZEQQ can be called
from your INITIALSETTINGS function to adjust the frame window size and position before the
window is first drawn.

The following is a sample of INITIALSETTINGS:

 LOGICAL(4) FUNCTION INITIALSETTINGS()
 USE DFLIB
 LOGICAL(4) result
 TYPE (qwinfo) qwi
 ! Set window frame size.
 qwi.x = 0
 qwi.y = 0
 qwi.w = 400
 qwi.h = 400
 qwi.type = QWIN$SET
 i = SetWSizeQQ(QWIN$FRAMEWINDOW, qwi)
 ! Create first menu called Games.
 result = APPENDMENUQQ(1, $MENUENABLED, ’&Games’C, NUL)

Using QuickWin Page 20 of 28

9/2/97 3:26:54 PM

 ! Add item called TicTacToe.
 result = APPENDMENUQQ(1, $MENUENABLED, ’&TicTacToe’C, WINPRINT)
 ! Draw a separator bar.
 result = APPENDMENUQQ(1, $MENUSEPARATOR, ’’C, NUL)
 ! Add item called Exit.
 result = APPENDMENUQQ(1, $MENUENABLED, ’E&xit’C, WINEXIT)
 ! Add second menu called Help.
 result = APPENDMENUQQ(2, $MENUENABLED, ’&Help’C, NUL)
 result = APPENDMENUQQ(2, $MENUENABLED, ’&QuickWin Help’C, WININDEX)
 INITIALSETTINGS= .true.
 END FUNCTION INITIALSETTINGS

This is an example of the interface for INITIALSETTINGS:

 PROGRAM MENUS
 USE DFLIB
 LOGICAL(4) res
 INTERFACE
 LOGICAL(4) FUNCTION INITIALSETTINGS
 END FUNCTION
 END INTERFACE
 OPEN (10, FILE="User")
 WRITE(10, *) "Hello, child window"
 END

QuickWin executes your INITIALSETTINGS function during initialization, before creating the
frame window. When your function is done, control returns to QuickWin and it does the remaining
initialization. The control then passes to the Visual Fortran application.

Your function should return .TRUE. if it succeeds, and .FALSE. otherwise. The QuickWin default
function returns a value of .TRUE. only.

Note that default menus are created after INITIALSETTINGS has been called, and only if you do
not create your own menus. Therefore, using DELETEMENUQQ, INSERTMENUQQ,
APPENDMENUQQ, and the other menu configuration QuickWin functions while in
INITIALSETTINGS affects your custom menus, not the default QuickWin menus.

Deleting, Inserting, and Appending Menu Items

Menus are defined from left to right, starting with 1 at the far left. Menu items are defined from top
to bottom, starting with 0 at the top (the menu title itself). Within INITIALSETTINGS, if you
supply it, you can delete, insert, and append menu items in custom menus. Outside
INITIALSETTINGS, you can alter the default QuickWin menus as well as custom menus at any
point in your application. (Default QuickWin menus are not created until after INITIALSETTINGS
has run and only if you do not create custom menus.)

To delete a menu item, specify the menu number and item number in DELETEMENUQQ. To
delete an entire menu, delete item 0 of that menu. For example:

 USE DFLIB
 LOGICAL status
 status = DELETEMENUQQ(1, 2) ! Delete the second menu item from
 ! menu 1 (the default FILE menu).
 status = DELETEMENUQQ(5, 0) ! Delete menu 5 (the default Windows
 ! menu).

INSERTMENUQQ inserts a menu item or menu and registers its callback routine. QuickWin

Using QuickWin Page 21 of 28

9/2/97 3:26:54 PM

supplies several standard callback routines such as WINEXIT to terminate a program, WININDEX
to list QuickWin Help, and WINCOPY which copies the contents of the current window to the
Clipboard. A list of available callbacks is given in the Reference for INSERTMENUQQ and
APPENDMENUQQ. Often, you will supply your own callback routines to perform a particular
action when a user selects something from one of your menus.

In general, you should not assign the same callback routine to more than one menu item because a
menu item’s state might not be properly updated when you change it (put a check mark next to it,
gray it out, or disable, or enable it). You cannot insert a menu item or menu beyond the existing
number; for example, inserting item 7 when 5 and 6 have not been defined yet. To insert an entire
menu, specify menu item 0. The new menu can take any position among or immediately after
existing menus.

If you specify a menu position occupied by an existing menu, the existing menu and any menus to
the right of the one you add are shifted right and their menu numbers are incremented.

For example, the following code inserts a fifth menu item called Position into menu 5 (the default
Windows menu):

 USE DFLIB
 LOGICAL(4) status
 status = INSERTMENUQQ (5, 5, $MENUCHECKED, ’Position’C, WINPRINT)

The next code inserts a new menu called My List into menu position 3. The menu currently in
position 3 and any menus to the right (the default menus View, State, Windows, and Help) are
shifted right one position:

 USE DFLIB
 LOGICAL(4) status
 status = INSERTMENUQQ(3,0, $MENUENABLED, ’My List’C, WINSTATE)

You can append a menu item with APPENDMENUQQ. The item is added to the bottom of the
menu list. If there is no item yet for the menu, your appended item is treated as the top-level menu
item, and the string you assign to it appears on the menu bar. The following code appends the menu
item called Cascade Windows to the first menu (the default File menu):

 USE DFLIB
 LOGICAL(4) status
 status = APPENDMENUQQ(1, $MENUCHECKED, ’Cascade Windows’C, &
 & WINCASCADE)

The $MENUCHECKED flag in the example puts a check mark next to the menu item. To remove
the check mark, you can set the flag to $MENUUNCHECKED in the MODIFYMENUFLAGSQQ
function. Some predefined routines (such as WINSTATUS) take care of updating their own check
marks. However, if the routine is registered to more than one menu item, the check marks might not
be properly updated. See APPENDMENUQQ or INSERTMENUQQ in the Reference for the list
of callback routines and other flags.

Modifying Menu Items

MODIFYMENUSTRINGQQ can modify the string identifier of a menu item,
MODIFYMENUROUTINEQQ can modify the callback routine called when the item is selected,
and MODIFYMENUFLAGSQQ can modify a menu item’s state (such as enabled, grayed out,

Using QuickWin Page 22 of 28

9/2/97 3:26:54 PM

checked, and so on).

The following example code uses MODIFYMENUSTRINGQQ to modify the menu string for the
fourth item in the first menu (the File menu by default) to Tile Windows, it uses
MODIFYMENUROUTINEQQ to change the callback routine called if the item is selected to
WINTILE, and uses MODIFYMENUFLAGSQQ to put a check mark next to the menu item:

 status = MODIFYMENUSTRINGQQ(1, 4, ’Tile Windows’C)
 status = MODIFYMENUROUTINEQQ(1, 4, WINTILE)
 status = MODIFYMENUFLAGSQQ(1, 4, $MENUCHECKED)

Creating a Menu List of Available Child Windows

By default, the Windows menu contains a list of all open child windows in your QuickWin
applications. SETWINDOWMENUQQ changes the menu which lists the currently open child
windows to the menu you specify. The list of child window names is appended to the end of the
menu you choose and deleted from any other menu that previously contained it. For example:

 USE DFLIB
 LOGICAL(4) status
 ...
 ! Append list of open child windows to menu 1 (the default File menu)
 status = SETWINDOWMENUQQ(1)

Simulating Menu Selections

CLICKMENUQQ simulates the effect of clicking or selecting a menu command from the Window
menu. The QuickWin application behaves as though the user had clicked or selected the command.
The following code fragment simulates the effect of selecting the Tile item from the Window menu:

 USE DFLIB
 INTEGER(4) status
 status = CLICKMENUQQ(QWIN$TILE)

Only items from the Window menu can be specified in CLICKMENUQQ.

Changing Status Bar and State Messages

Any string QuickWin produces can be changed by calling SETMESSAGEQQ with the appropriate
message ID. Unlike other QuickWin message functions, SETMESSAGEQQ uses regular Fortran
strings, not null-terminated C strings. For example, to change the PAUSED state message to I am
waiting:

 USE DFLIB
 CALL SETMESSAGEQQ(’I am waiting’, QWIN$MSG_PAUSED)

This function is useful for localizing your QuickWin applications for countries with different native
languages. A list of message IDs is given in SETMESSAGEQQ in the Reference.

Displaying Message Boxes

MESSAGEBOXQQ causes your program to display a message box. You can specify the message
the box displays and the caption that appears in the title bar. Both strings must be null-terminated C

Using QuickWin Page 23 of 28

9/2/97 3:26:54 PM

strings. You can also specify the type of message box. Box types are symbolic constants defined in
DFLIB.MOD, and can be combined by means of the IOR intrinsic function or the .OR. operator. The
available box types are listed under MESSAGEBOXQQ in the Reference. For example:

 USE DFLIB
 INTEGER(4) response
 response = MESSAGEBOXQQ(’Retry or Cancel?’C, ’Smith Chart &
 & Simulator’C, MB$RETRYCANCELQWIN .OR. MB$DEFBUTTON2)

Defining an About Box

The ABOUTBOXQQ function specifies the message displayed in the message box that appears
when the user selects the About command from a QuickWin application’s Help menu. (If your
program does not call ABOUTBOXQQ, the QuickWin run-time library supplies a default string.)
The message string must be a null-terminated C string. For example:

 USE DFLIB
 INTEGER(4) status
 status = ABOUTBOXQQ (’Sound Speed Profile Tables Version 1.0’C)

Using Custom Icons

The QuickWin run-time library provides default icons that appear when the user minimizes the
application’s frame window or its child windows. You can add custom-made icons to your
executable files, and Windows will display them instead of the default icons.

To add a custom child window icon to your QuickWin program:

1. Select Resource from the Insert menu in Developer Studio. Select Icon from the list that
appears. The screen will become an icon drawing tool.

2. Draw the icon. (For more information about using the Graphics Editor in Microsoft Developer
Studio, see "Resource Editors, Graphics Editor" in the Developer Studio Environment User’s
Guide.)

-or-

If your icon already exists (for example, as a bitmap) and you want to import it, not draw it,
select Resource from the Insert menu, then select Import from the buttons in the Resource
dialog. You will be prompted for the file containing your icon.

3. Name the icon. The frame window’s icon must have the name "frameicon," and the child
window’s icon must have the name "childicon." These names must be entered as strings into
the Icon Properties dialog box.

To display the Icon Properties dialog box, double-click in the icon editor area outside the
icon’s grid or press ALT+ENTER.

In the ID field on the General tab of Icon Properties dialog box, type over the default icon
name with "frameicon" or "childicon." You must add the quotation marks to the text you type
in order to make the name be interpreted as a string.

Your icon will be saved in a file with the extension .ICO.

Using QuickWin Page 24 of 28

9/2/97 3:26:54 PM

4. Create a script file to hold your icons. Select File/Save As. You will be prompted for the name
of the script file that will contain your icons. Name the script file. It must end with the
extension .RC; for example, myicons.rc. Using this method, the icons and their string values
will be automatically saved in the script file. (Alternatively, you can create a script file with
any editor and add the icon names and their string values by hand.)

5. Add the script file to the project that contains your QuickWin application. Select Build and the
script file will be built into the application’s executable. (The compiled script file will have the
extension .RES.)

When you run your application, the icon you created will take the place of the default child or frame
icon. Your custom icon appears in the upper-left corner of the window frame. When you minimize
the window, the icon appears on the left of the minimized window bar.

Using a Mouse

Your applications can detect and respond to mouse events, such as left mouse button down, right
mouse button down, or double-click. Mouse events can be used as an alternative to keyboard input or
for manipulating what is shown on the screen.

QuickWin provides two types of mouse functions:

• Event-based functions, which call an application-defined callback routine when a mouse click
occurs

• Blocking (sequential) functions, which provide blocking functions that halt an application until
mouse input is made

The mouse is an asynchronous device, so the user can click the mouse anytime while the application
is running (mouse input does not have to be synchronized to anything). When a mouse-click occurs,
Windows sends a message to the application, which takes the appropriate action. Mouse support in
applications is most often event-based, that is, a mouse-click occurs and the application does
something.

However, an application can use blocking functions to wait for a mouse-click. This allows an
application to execute in a particular sequential order and yet provide mouse support. QuickWin
performs default processing based on mouse events.

Event-Based Functions

The QuickWin function REGISTERMOUSEEVENT registers the routine to be called when a
particular mouse event occurs (left mouse button, right mouse button, double-click, and so on). You
define what events you want it to handle and the routines to be called if those events occur.
UNREGISTERMOUSEEVENT unregisters the routines so that QuickWin doesn't call them but uses
default handling for the particular event.

By default, QuickWin typically ignores events except when mouse-clicks occur on menus or dialog
controls. Note that no events are received on a minimized window. A window must be restored or
maximized in order for mouse events to happen within it.

For example:

Using QuickWin Page 25 of 28

9/2/97 3:26:54 PM

 USE DFLIB
 INTEGER(4) result
 OPEN (4, FILE= ’USER’)
 ...
 result = REGISTERMOUSEEVENT (4, MOUSE$LBUTTONDBLCLK, CALCULATE)

This registers the routine CALCULATE, to be called when the user double-clicks the left mouse button
while the mouse cursor is in the child window opened as unit 4. The symbolic constants available to
identify mouse events are:

Mouse event1 Description
MOUSE$LBUTTONDOWN Left mouse button down
MOUSE$LBUTTONUP Left mouse button up
MOUSE$LBUTTONDBLCLK Left mouse button double-click
MOUSE$RBUTTONDOWN Right mouse button down
MOUSE$RBUTTONUP Right mouse button up
MOUSE$RBUTTONDBLCLK Right mouse button double-click
MOUSE$MOVE Mouse moved

1 For every BUTTONDOWN and BUTTONDBLCLK event there is an associated BUTTONUP
event. When the user double-clicks, four events happen: BUTTONDOWN and BUTTONUP for the
first click, and BUTTONDBLCLK and BUTTONUP for the second click. The difference between
getting BUTTONDBLCLK and BUTTONDOWN for the second click depends on whether the
second click occurs in the double-click interval, set in the system’s CONTROL PANEL/MOUSE.

To unregister the routine in the preceding example, use the following code:

 result = UNREGISTERMOUSEEVENT (4, MOUSE$LBUTTONDBLCLK)

If REGISTERMOUSEEVENT is called again without unregistering a previous call, it overrides the
first call. A new callback routine is then called on the specified event.

The callback routine you create to be called when a mouse event occurs should have the following
prototype:

 INTERFACE
 SUBROUTINE MouseCallBackRoutine (unit, mouseevent, keystate, &
 & MouseXpos,MouseYpos)
 INTEGER unit
 INTEGER mouseevent
 INTEGER keystate
 INTEGER MouseXpos
 INTEGER MouseYpos
 END SUBROUTINE
 END INTERFACE

The unit parameter is the unit number associated with the child window where events are to be
detected, and the mouseevent parameter is one of those listed in the preceding table. The MouseXpos
and the MouseYpos parameters specify the x and y positions of the mouse during the event. The
keystate parameter indicates the state of the shift and control keys at the time of the mouse event,
and can be any ORed combination of the following constants:

Keystate parameter Description

Using QuickWin Page 26 of 28

9/2/97 3:26:54 PM

MOUSE$KS_LBUTTON Left mouse button down during event
MOUSE$KS_RBUTTON Right mouse button down during event
MOUSE$KS_SHIFT Shift key held down during event
MOUSE$KS_CONTROL Control key held down during event

QuickWin callback routines for mouse events should do a minimum of processing and then return.
While processing a callback, the program will appear to be non-responsive because messages are not
being serviced, so it is important to return quickly. If more processing time is needed in a callback,
another thread should be started to perform this work; threads can be created by calling the Win32
API CreateThread. (For more information on creating and using threads, see Creating Multithread
Applications.) If a callback routine does not start a new thread, the callback will not be re-entered
until it is done processing.

Note: In event-based functions there is no buffering of events. Therefore, issues such as
multithreading and synchronizing access to shared resources must be addressed. To avoid
multithreading problems, use blocking functions rather than event-based functions. Blocking
functions work well in applications that proceed sequentially. Applications where there is little
seqential flow and the user jumps around the application are probably better implemented as
event-based functions.

Blocking (Sequential) Functions

The QuickWin blocking function WAITONMOUSEEVENT blocks execution until a specific mouse
input is received. This function is similar to INCHARQQ, except that it waits for a mouse event
instead of a keystroke.

For example:

 USE DFLIB
 INTEGER(4) mouseevent, keystate, x, y, result
 ...
 mouseevent = MOUSE$RBUTTONDOWN .OR. MOUSE$LBUTTONDOWN
 result = WAITONMOUSEEVENT (mouseevent, keystate, x , y) ! Wait
 ! until right or left mouse button clicked, then check the keystate
 ! with the following:
 if ((MOUSE$KS_SHIFT .AND. keystate) == MOUSE$KS_SHIFT) then &
 & write (*,*) ’Shift key was down’
 if ((MOUSE$KS_CONTROL .AND. keystate) == MOUSE$KS_CONTROL) then &
 & write (*,*) ’Ctrl key was down’

Your application passes a mouse event parameter, which can be any OR ed combination of mouse
events, to WAITONMOUSEEVENT. The function then waits and blocks execution until one of the
specified events occurs. It returns the state of the SHIFT and CTRL keys at the time of the event in the
parameter keystate, and returns the position of the mouse when the event occurred in the parameters
x and y.

A mouse event must happen in the window that had focus when WAITONMOUSEEVENT was
initially called. Mouse events in other windows will not end the wait. Mouse events in other
windows cause callbacks to be called for the other windows, if callbacks were previously registered
for those windows.

Default QuickWin Processing

Using QuickWin Page 27 of 28

9/2/97 3:26:54 PM

QuickWin performs some actions based on mouse events. It uses mouse events to return from the
FullScreen mode and to select text and/or graphics to copy to the Clipboard. Servicing the mouse
event functions takes precedence over return from FullScreen mode. (ALT+ENTER can always be used
to return from FullScreen mode.) Servicing mouse event functions does not take precedence over
Cut/Paste selection modes. Once selection mode is over, processing of mouse event functions
resumes.

QuickWin Programming Precautions
Two features of QuickWin programming need to applied thoughtfully to avoid non-responsive
programs that halt an application while waiting for a process to execute or input to be entered in a
child window. The two features are described in the topics:

• Blocking Procedures
• Callback Routines

Blocking Procedures

Procedures that wait for an event before allowing the program to proceed, such as READ or
WAITONMOUSEEVENT, both of which wait for user input, are called blocking procedures
because they block execution of the program until the awaited event occurs. QuickWin child
processes can contain multiple callback routines; for example, a different routine to be called for
each menu selection and each kind of mouse-click (left button, right button, double-click, and so on).

Problems can arise when a process and its callback routine, or two callback routines within the same
process, both contain blocking procedures. This is because each QuickWin child process supports a
primary and secondary thread.

As a result of selecting a menu item, a menu procedure may call a blocking procedure, while the
main thread of the process has also called a blocking procedure. For example, say you have created a
file menu, which contains an option to LOAD a file. Selecting the LOAD menu option calls a
blocking function that prompts for a filename and waits for the user to enter the name. However, a
blocking call such as WAITONMOUSEEVENT can be pending in the main process thread when
the user selects the LOAD menu option, so two blocking functions are initiated.

When QuickWin has two blocking calls pending, it displays a message in the status bar that
corresponds to the blocking call first encountered. If there are further callbacks with other blocking
procedures in the two threads, the status bar may not correspond to the actual input pending,
execution can appear to be taking place in one thread when it is really blocked in another, and the
application can be confusing and misleading to the user.

To avoid this confusion, you should try not to use blocking procedures in your callback routines.
QuickWin will not accept more than one READ or INCHARQQ request through user callbacks from
the same child window at one time. If one READ or INCHARQQ request is pending, subsequent
READ or INCHARQQ requests will be ignored and -1 will be returned to the caller.

If you have a child window that in some user scenario might call multiple callback routines
containing READ or INCHARQQ requests, you need to check the return value to make sure the
request has been successful, and if not, take appropriate action, for example, request again.

Using QuickWin Page 28 of 28

9/2/97 3:26:54 PM

This protective QuickWin behavior does not guard against multiple blocking calls through mouse
selection of menu input options. As a general rule, using blocking procedures in callback routines is
not advised, since the results can lead to program flow that is unexpected and difficult to interpret.

Callback Routines

All callback routines run in a separate thread from the main program. So, all multithread issues are in
full force. In particular, sharing data, drawing to windows, and doing I/O must be properly
coordinated and controlled. The sample application POKER.F90 (in the
\DF\SAMPLES\GENERAL\POKER subdirectory) is a good example of how to control access to
shared resources.

QuickWin callback routines, both for menu callbacks and mouse callbacks, should do a minimum of
processing and then return. While processing a callback, the program will appear to be
non-responsive because messages are not being serviced. This is why it is important to return quickly.

If more processing time is needed in a callback, another thread should be started to perform this
work; threads can be created by calling the Win32 API CreateThread. (For more information on
creating and using threads, see Creating Multithread Applications.) If a callback routine does not
start a new thread, the callback will not be reentered until it is done processing.

Simulating Nonblocking I/O
QuickWin does not accept unsolicited input. You get beeps if you type into an active window if no
READ or GETCHARQQ has been done. Because of this, it is necessary to do a READ or
GETCHARQQ in order for a character to be accepted. But this type of blocking I/O puts the
program to sleep until a character has been typed.

In Console applications, PEEKCHARQQ can be used to see if a character has already been typed.
However, PEEKCHARQQ does not work under QuickWin, since QuickWin has no console buffer
to accept unsolicited input. Because of this limitation, PEEKCHARQQ cannot be used as it is with
Console applications to see whether a character has already been typed.

One way to simulate PEEKCHARQQ with QuickWin applications is to use a multithread
application. One thread does a READ or GETCHARQQ and is blocked until a character typed. The
other thread is in a loop doing useful work and checking in the loop to see if the other thread has
received input.

For more information, see PEEKAPP.F90 in the \DF\SAMPLES\ADVANCED\PEEKAPP
subdirectory.

Using Dialogs Page 1 of 21

8/21/97 12:20:02 PM

Using Dialogs
Dialogs are a user-friendly way to solicit application control. As your application executes, you can
make a dialog box appear on the screen and the user can click on a button or scroll bar to enter data
or choose what happens next. With the dialog functions provided with Visual Fortran and Developer
Studio, you can add dialog boxes to your Windows (Win32), QuickWin (multiple doc.), Standard
Graphics (QuickWin single doc.), Console, DLL, and Library project. These functions define dialog
boxes and their controls (scroll bars and buttons), and call your subroutines to respond to user
selections.

There are two steps to making a dialog:

1. Specify the appearance of the dialog box and the names and properties of the controls it
contains.

2. Write an application that activates those controls by recognizing and responding to user
selections.

This section covers the following topics:

• Using the Resource Editor to Design a Dialog
• Writing a Dialog Application
• Dialog Functions
• Dialog Controls
• Using Dialog Controls

Using the Resource Editor to Design a Dialog
You design the appearance of the dialog box, choose and name the controls within it, and set other
control properties with the Resource Editor. This section goes through the design of a dialog box,
and uses as an example a dialog that converts temperatures between Celsius and Fahrenheit.

To open the dialog editor

1. From the Insert menu, choose Resource.
2. From the list of possible resources, choose Dialog.
3. Click the New button. The dialog editor appears on the screen as shown below.

A blank dialog box appears at the left and a toolbar of available controls appears on the right.
If you place the cursor over a control on the toolbar, the name of the control appears.

Figure: Dialog Editor Sample 1

Using Dialogs Page 2 of 21

9/2/97 3:27:07 PM

To add controls to the dialog box

1. Point at one of the available controls on the toolbar, hold down the left mouse button and drag
the control to the dialog box.

2. Place the control where you want it to be on the dialog box and release the mouse button. You
can delete controls by selecting them with the mouse, then pressing the DEL key

The following figure shows a Horizontal Scroll bar, two Edit boxes, two Static text lines, and
a Group box added to the dialog box. The OK and CANCEL buttons were added for you by the
Resource Editor, but they are not in any way special and can be deleted, moved, resized, or
renamed.

Figure: Dialog Editor Sample 2

Using Dialogs Page 3 of 21

9/2/97 3:27:07 PM

To specify the names and properties of the added controls

1. Click twice on one of the controls in your dialog box with the left mouse button. A Properties
box appears showing the default name and properties for that control.

The following figure shows the Properties box for the Horizontal Scroll bar with the default
values.

2. Change the control name by typing over the default name (IDC_SCROLLBAR1 in the following
figure).

3. Check or uncheck the available options to change the control’s properties. (The Visible option
in the following figure is checked by default.)

4. Click the left mouse button in the upper-right corner of the window Properties box to save the
control’s properties and to close the box.

Repeat the same process for each control and for the dialog box itself.

Figure: Dialog Editor Sample 3

Using Dialogs Page 4 of 21

9/2/97 3:27:07 PM

To use the controls from within a program, you need symbolic names for each of them. In this
example, the Horizontal Scroll bar symbolic name is changed in the Properties box to
IDC_SCROLLBAR_TEMPERATURE. This is how the control will be referred to in your program; for
example, when you get the slide position:

 INTEGER slide_position
 retlog = DLGGET (dlg, IDC_SCROLLBAR_TEMPERATURE, &
 slide_position, DLG_POSITION)

The top Edit box is named IDC_EDIT_CELSIUS. The Static text next to it is named
IDC_TEXT_CELSIUS and set to the left-aligned text "Celsius". The lower Edit box is named
IDC_EDIT_FAHRENHEIT, and the Static text next to it is named IDC_TEXT_FAHRENHEIT and set to the
left-aligned text "Fahrenheit".

The Group box is named IDC_BOX_TEMPERATURE, and its caption is set to &Temperature (the
ampersand (&) underlines the letter "T" and makes it a Windows hotkey, activated with ALT+T). The
dialog itself is named IDD_TEMP and its caption is set to Temperature Conversion. All other control
properties are left at the default values. The resulting dialog box is shown in the following figure:

Figure: Dialog Editor Sample 4

Using Dialogs Page 5 of 21

9/2/97 3:27:07 PM

To save the dialog box as a resource file

1. From the File menu, choose Save As.
2. Enter a resource filename for your file.

In this example, the resource file is given the name TEMP.RC. Developer Studio saves the
resource file and creates an include file with the name RESOURCE.FD.

At this point the appearance of the dialog box is finished and the controls are named, but the box
can’t function on its own. An application must be created to run it.

For further information on control properties, see:

• Setting Control Properties
• The Include (.FD) File

Setting Control Properties

Help is available within the Resource Editor to explain the options for each of the dialog controls.

Some of the controls have two Properties sets: General and Styles. Click the mouse on the name of
the Properties set you want to view or modify. You can change the dialog box itself by
double-clicking the left mouse button in any clear area in the box. The Properties box opens for the
dialog.

To change where your dialog appears on the screen, change the x and y values in the Properties box.
These specify the screen pixel position of the dialog box's upper-left corner. You can change the size

Using Dialogs Page 6 of 21

9/2/97 3:27:08 PM

of the dialog box by holding down the left mouse button as you drag the right or lower perimeter of
the box.

You can use the scroll bars to move the view region if you have sized your dialog window to be
larger than the edit window. If you want to edit the appearance of the dialog box later, you can open
the resource file (.RC) from the File menu, and click on the dialog icon. Alternatively, you can select
the Resource View pane. The Resource Editor is automatically invoked and the dialog box is opened.

The Include (.FD) File

Each control in a dialog box has a unique integer identifier. When the Resource Editor creates the
include file (.FD), it assigns the PARAMETER attribute to each control and to the dialog box itself,
so they become named constants. It also assigns each control and the dialog box an integer value.
You can read the list of names and values in your dialog boxes include file (for example, TEMP.FD).

When your application uses a control, it can refer to the control or dialog box by its name (for
example, IDC_SCROLLBAR_TEMPERATURE or IDD_TEMP), or by its integer value. If you want to rename
a control or make some other change to your dialog box, you should make the change through the
Resource Editor in Developer Studio. Do not use a text editor to alter your .FD include file because
the dialog resource will not be able to access the changes.

Writing a Dialog Application
When creating a dialog box with the Resource Editor, you specify the types of displays and controls
that are to be included in the box. You then must provide procedures to make the dialog box active.
These procedures use both dialog functions and your subroutines to control your program’s response
to the user’s dialog box input.

You give your application access to your dialog resource file by adding the .RC file to your project,
giving your application access to the dialog include file, and associating the dialog properties in these
files with the dialog type (see Initializing and Activating the Dialog Box).

Your application must include the statement USE DFLOGM to access the dialog functions, and it
must include the .FD file the Resource Editor created for your dialog. For example:

PROGRAM TEMPERATURE
USE DFLOGM
IMPLICIT NONE
INCLUDE ’TEMP.FD’
CALL DoDialog()
END PROGRAM

The following sections describe how to code a dialog application:

• Initializing and Activating the Dialog Box
• Callback Routines

Initializing and Activating the Dialog Box

Each dialog box has an associated variable of the derived type dialog. The dialog derived type is

Using Dialogs Page 7 of 21

9/2/97 3:27:08 PM

defined in the DFLOGM.F90 module; you access it with USE DFLOGM. When you write your
dialog application, refer to your dialog box as a variable of type dialog. For example:

USE DFLOGM
INCLUDE ’TEMP.FD’
TYPE (dialog) dlg
LOGICAL return
return = DLGINIT(IDD_TEMP, dlg)

This code associates the dialog type with the dialog (IDD_TEMP in this example) defined in your
resource and include files (TEMP.RC and TEMP.FD in this example).

You give your application access to your dialog resource file by adding the .RC file to your project.
You give your application access to the dialog include file by including the .FD file in each
subprogram. You associate the dialog properties in these files with the dialog type by calling
DLGINIT with your dialog name.

An application that controls a dialog box should perform the following actions:

1. Call DLGINIT to initialize the dialog type and associate your dialog and its properties with
the type.

2. Initialize the controls with the dialog set functions, such as DLGSET.
3. Set the callback routines to be executed when a user manipulates a control in the dialog box

with DLGSETSUB.
4. Run the dialog with DLGMODAL.
5. Retrieve control information with the dialog get functions, such as DLGGET.
6. Free resources from the dialog with DLGUNINIT.

As an example of activating a dialog box and controls, the following code initializes the temperature
dialog box and controls created in the previous example. It also sets the callback routine as
UpdateTemp, displays the dialog box, and releases the dialog resources when done:

 SUBROUTINE DoDialog()
 USE DFLOGM
 IMPLICIT NONE
 INCLUDE ’TEMP.FD’

 INTEGER retint
 LOGICAL retlog
 TYPE (dialog) dlg
 EXTERNAL UpdateTemp
! Initialize.
 IF (.not. DlgInit(idd_temp, dlg)) THEN
 WRITE (*,*) "Error: dialog not found"
 ELSE
! Set up temperature controls.
 retlog = DlgSet(dlg, IDC_SCROLLBAR_TEMPERATURE, 200, DLG_RANGE)
 retlog = DlgSet(dlg, IDC_EDIT_CELSIUS, "100")
 CALL UpdateTemp(dlg, IDC_EDIT_CELSIUS, DLG_CHANGE)
 retlog = DlgSetSub(dlg, IDC_EDIT_CELSIUS, UpdateTemp)
 retlog = DlgSetSub(dlg, IDC_EDIT_FAHRENHEIT, UpdateTemp)
 retlog = DlgSetSub(dlg, IDC_SCROLLBAR_TEMPERATURE, UpdateTemp)
! Activate the dialog.
 retint = DlgModal(dlg)
! Release dialog resources.
 CALL DlgUninit(dlg)
 END IF
 END SUBROUTINE DoDialog

Using Dialogs Page 8 of 21

9/2/97 3:27:08 PM

The dialog functions, such as DLGSET and DLGSETSUB, refer to the dialog controls by the names
you assigned to them in the Properties box while creating the dialog box in the Resource Editor. For
example:

retlog = DlgSet(dlg, IDC_SCROLLBAR_TEMPERATURE, 200, DLG_RANGE)

In this statement, the dialog function DLGSET assigns the control named
IDC_SCROLLBAR_TEMPERATURE a value of 200. The index DLG_RANGE specifies that this value is a
scroll bar range. Consider the following:

retlog = DlgSet(dlg, IDC_EDIT_CELSIUS, "100")
CALL UpdateTemp(dlg, IDC_EDIT_CELSIUS, DLG_CHANGE)

The preceding statements set the dialog’s top Edit box, named IDC_EDIT_CELSIUS in the Resource
Editor, to an initial value of 100, and calls the routine UpdateTemp to write this initial value to the
screen. Consider the following:

retlog = DlgSetSub(dlg, IDC_EDIT_CELSIUS, UpdateTemp)
retlog = DlgSetSub(dlg, IDC_EDIT_FAHRENHEIT, UpdateTemp)
retlog = DlgSetSub(dlg, IDC_SCROLLBAR_TEMPERATURE,UpdateTemp)

The preceding statements associate the callback routine UpdateTemp with the three controls.

Routines are assigned to the controls with the function DLGSETSUB. Its first argument is the dialog
variable, the second is the control name, the third is the name of the routine you have written for the
control, and the optional fourth argument is an index to select between multiple routines. You can set
the callback routines for your dialog controls anywhere in your application: before opening your
dialog with DLGMODAL or from within another callback routine.

Dialog Callback Routines

All callback routines should have the following interface:

SUBROUTINE callback (dlg, control_name, callbacktype)

dlg
Refers to the dialog box and allows the callback to change values of the dialog controls.

control_name
Is the name of the control that caused the callback.

callbacktype
Indicates what callback is occuring (for example, DLG_CLICKED, DLG_CHANGE, DLG_DBLCLICK).

The last two parameters let you write a single subroutine that can be used with multiple callbacks
from more than one control. Typically, you do this for controls comprising a logical group. For
example, all the controls in the temperature dialog in the previous example are associated with the
same callback routine, UpdateTemp. You can also associate more than one callback routine with the
same control, but you must then provide an index parameter to indicate which callback is to be used.

The following is an example of a callback routine:

Using Dialogs Page 9 of 21

9/2/97 3:27:08 PM

 SUBROUTINE UpdateTemp(dlg, control_name, callbacktype)
 USE DFLOGM
 IMPLICIT NONE
 TYPE (dialog) dlg
 INTEGER control_name
 INTEGER callbacktype
 INCLUDE ’TEMP.FD’
 CHARACTER(256) text
 INTEGER cel, far, retint
 LOGICAL retlog
! Suppress compiler warnings for unreferenced arguments.
 INTEGER local_callbacktype
 local_callbacktype = callbacktype

 SELECT CASE (control_name)
 CASE (IDC_EDIT_CELSIUS)
 ! Celsius value was modified by the user so
 ! update both Fahrenheit and Scroll bar values.
 retlog = DlgGet(dlg, IDC_EDIT_CELSIUS, text)
 READ (text, *, iostat=retint) cel
 IF (retint .eq. 0) THEN
 far = (cel-0.0)*((212.0-32.0)/100.0)+32.0
 WRITE (text,*) far
 retlog = DlgSet(dlg, IDC_EDIT_FAHRENHEIT, &
 & TRIM(ADJUSTL(text)))
 retlog = DlgSet(dlg, IDC_SCROLLBAR_TEMPERATURE, cel, &
 & DLG_POSITION)
 END IF
 CASE (IDC_EDIT_FAHRENHEIT)
 ! Fahrenheit value was modified by the user so
 ! update both celsius and Scroll bar values.
 retlog = DlgGet(dlg, IDC_EDIT_FAHRENHEIT, text)
 READ (text, *, iostat=retint) far
 IF (retint .eq. 0) THEN
 cel = (far-32.0)*(100.0/(212.0-32.0))+0.0
 WRITE (text,*) cel
 retlog = DlgSet(dlg, IDC_EDIT_CELSIUS, TRIM(ADJUSTL(text)))
 retlog = DlgSet(dlg, IDC_SCROLLBAR_TEMPERATURE, cel, &
 & DLG_POSITION)
 END IF
 CASE (IDC_SCROLLBAR_TEMPERATURE)
 ! Scroll bar value was modified by the user so
 ! update both Celsius and Fahrenheit values.
 retlog = DlgGet(dlg, IDC_SCROLLBAR_TEMPERATURE, cel, &
 & DLG_POSITION)
 far = (cel-0.0)*((212.0-32.0)/100.0)+32.0
 WRITE (text,*) far
 retlog = DlgSet(dlg, IDC_EDIT_FAHRENHEIT, TRIM(ADJUSTL(text)))
 WRITE (text,*) cel
 retlog = DlgSet(dlg, IDC_EDIT_CELSIUS, TRIM(ADJUSTL(text)))
 END SELECT
 END SUBROUTINE UpdateTemp

Each control in a dialog box, except a pushbutton, has a default callback that performs no action. The
default callback for a pushbutton’s click event sets the return value of the dialog to the pushbutton’s
name and then exits the dialog. This makes all pushbuttons exit the dialog by default, and gives the
OK and CANCEL buttons good default behavior. The routine that calls DLGMODAL can then test to
see which pushbutton caused the dialog to exit.

Callbacks for a particular control are called after the value of the control has been changed by the
user’s action. Calling DLGSET does not cause a callback to be called for the changing value of a
control. In particular, when inside a callback, performing a DLGSET on a control will not cause the

Using Dialogs Page 10 of 21

9/2/97 3:27:08 PM

associated callback for that control to be called.

Calling DLGSET before or after DLGMODAL has been called also does not cause the callback to
be called. If the callback needs to be called, it can be called manually with CALL callbackroutine
after the DLGSET is performed.

Dialog Functions
You can use dialog functions as you would any intrinsic or run-time function. They are compatible
with Standard Graphics, QuickWin, and Windows (Win32) project types. The dialog functions can:

• Initialize and close the dialog box
• Retrieve user input from a dialog box
• Display data in the dialog box
• Modify the dialog box controls

The include file (.FD) of the dialog box contains the names of the dialog controls that you specified
in the Properties box of the Resource Editor when you created the dialog box. The module
DFLOGM.MOD contains predefined variable names and type definitions. These control names,
variables, and type definitions are used in the dialog function argument lists to manage your dialog
box.

The dialog functions are listed in the following table:

Dialog function Purpose
DLGEXIT Closes an open dialog
DLGGET Gets the value of a control variable
DLGGETCHAR Gets the value of a character control variable
DLGGETINT Gets the value of an integer control variable
DLGGETLOG Gets the value of a logical control variable
DLGINIT Initializes the dialog
DLGMODAL Displays a dialog box
DLGSET Assigns a value to a control variable
DLGSETCHAR Assigns a value to a character control variable
DLGSETINT Assigns a value to an integer control variable
DLGSETLOG Assigns a value to a logical control variable
DLGSETRETURN Sets the return value for DLGMODAL
DLGSETSUB Assigns a defined callback routine to a control
DLGUNINIT Deallocates memory for an initialized dialog

These functions are described in the Reference (see also Dialog Procedures: table).

Dialog Controls
Each control in a dialog box has a unique integer identifier and name. You specify the name in the
Properties box for each control within the Resource Editor, and the Resource Editor assigns the

Using Dialogs Page 11 of 21

9/2/97 3:27:08 PM

PARAMETER attribute and an integer value to each control name. You can refer to a control by its
name, for example IDC_SCROLLBAR_TEMPERATURE, or by its integer value, which you can read from
the include (.FD) file.

Each control has one or more variables associated with it, called control indexes. These indexes can
be integer, logical, character, or external. For example, a plain Button has three associated variables:
one is a logical value associated with its current state, one is a character variable that determines its
title, and the third is an external variable that indicates the subroutine to be called if a mouse click
occurs.

Controls can have multiple variables of the same type. For example, the scroll bar control has four
integer variables associated with it: scroll bar position, scroll bar range, position change taken if the
user clicks the scroll bar arrow (small step) , and the position change if the user clicks on the scroll
bar space next to the slide (big step).

Controls and their indexes are discussed in:

• Control Indexes
• Available Indexes for Each Dialog Control
• Specifying Control Indexes

Control Indexes

The value of a dialog control's index is set with the DLGSET functions: DLGSET, DLGSETINT,
DLGSETLOG, DLGSETCHAR, and DLGSETSUB. The control name and control index name
are arguments to the DLGSET functions and specify the particular control index being set. For
example:

retlog = DlgSet(dlg, IDC_SCROLLBAR_TEMPERATURE, 45, DLG_POSITION)

The index DLG_POSITION specifies the scroll bar position is to be set to 45. Consider the following:

retlog = DlgSet(dlg, IDC_SCROLLBAR_TEMPERATURE, 200, DLG_RANGE)

In this statement, the index DLG_RANGE specifies the scroll bar range is to be set to 200. The
DLGSET functions have the following syntax:

return = DLGSET (dlg, control_name, value, control_index_name)

The control_index_name determines what the value in the DLGSET function means.

The control index names are declared in the module DFLOGM.MOD and should not be declared in
your routines. Available control indexes and how they specify the interpretation of the value
argument are listed in the following table.

Table: Control Indexes
Control index How the value is interpreted

DLG_BIGSTEP The amount of change that occurs in a Scroll bar's position when the user
clicks beside the Scroll bar slide (default = 10)

DLG_CHANGE A subroutine called after the user has modified a control and the control has
been updated on the screen

Using Dialogs Page 12 of 21

9/2/97 3:27:08 PM

DLG_CLICKED A subroutine called when the control receives a mouse-click
DLG_DBLCLICK A subroutine called when a control is double-clicked
DLG_DEFAULT Same as not specifying a control index
DLG_ENABLE The enable state of the control (value = .TRUE. means enabled, value =

.FALSE. means disabled)
DLG_NUMITEMS The total number of items in a list box or combo box
DLG_POSITION The current position of the Scroll bar
DLG_RANGE The maximum value of a Scroll bar position (default = 100); the minimum is

always 1
DLG_SELCHANGE A subroutine called when the selection in a list box or combo box changes
DLG_SMALLSTEP The amount of change that occurs in a Scroll bar’s position when the user

clicks on a scroll bar arrow
DLG_STATE The user changeable state of a control
DLG_TITLE The title text associated with a control
DLG_UPDATE A subroutine called after the user has modified the control state but before the

control has been updated on the screen

The index names associated with dialog controls do not need to be used unless there is more than one
variable of the same type for the control and you do not want the default variable. For example:

retlog = DlgSet(dlg, IDC_SCROLLBAR_TEMPERATURE, 45, DLG_POSITION)
retlog = DlgSet(dlg, IDC_SCROLLBAR_TEMPERATURE, 45)

These statements both set the Scroll bar position to 45, because DLG_POSITION is the default control
index for the scroll bar.

For more information on dialog controls, see Available Indexes for Each Dialog Control.

Available Indexes for Each Dialog Control

The available indexes and defaults for each of the controls are listed in the following table:

Table: Dialog Controls and Their Indexes
Control

Type
Integer index name

Logical index
name

Character index
name

Subroutine index
name

Static text DLG_ENABLE DLG_TITLE

Group box DLG_ENABLE DLG_TITLE

Button DLG_ENABLE DLG_TITLE DLG_CLICKED
Check box DLG_STATE

(default)
DLG_ENABLE

DLG_TITLE DLG_CLICKED

Radio
button

 DLG_STATE
(default)
DLG_ENABLE

DLG_TITLE DLG_CLICKED

Edit box DLG_ENABLE DLG_STATE DLG_CHANGE
(default)
DLG_UPDATE

Scroll bar DLG_POSITION (default) DLG_ENABLE DLG_CHANGE

Using Dialogs Page 13 of 21

9/2/97 3:27:08 PM

DLG_RANGE
DLG_BIGSTEP
DLG_SMALLSTEP

List box DLG_NUMITEMS
Sets or returns the total
number of items in a list,
or you can include an
index, 1 to n, to determine
which list items have been
selected and their order

DLG_ENABLE DLG_STATE
By default, sets or
returns the text of the
first selected item, or
you can include an
index, 1 to n, to set
or return the text of a
particular item

DLG_SELCHANGE
(default)
DLG_DBLCLICK

Combo
box

DLG_NUMITEMS
Sets or returns the total
number of items in a list,
or you can include an
index, 1 to n, to determine
which list item has been
selected

DLG_ENABLE DLG_STATE
By default, sets or
returns the text of the
selected item or first
item in the list, or
you can include an
index, 1 to n, to set
or return indicates
the text of a
particular item

DLG_SELCHANGE
(default)
DLG_DBLCLICK
DLG_CHANGE
DLG_UPDATE

Drop-down
list box

DLG_NUMITEMS
(default)
Sets or returns the total
number of items in a list,
or you can include an
index, 1 to n, to determine
which list item has been
selected

DLG_STATE
Sets or returns the index
of the selected item

DLG_ENABLE DLG_STATE
By default, sets or
returns the text of the
selected item or first
item in the list, or
you can include an
index, 1 to n, to set
or return indicates
the text of a
particular item

DLG_SELCHANGE
(default)
DLG_DBLCLICK

For an overview on control indexes, see Control Indexes.

Specifying Control Indexes

Where there is only one possibility for a particular dialog control’s index type (integer, logical,
character, or subroutine), you do not need to specify the control index name in an argument list. For
example, you can set the Static text control IDC_TEXT_CELSIUS to a new value with either of the
following statements:

 retlog = DLGSETCHAR (dlg, IDC_TEXT_CELSIUS, "New Celsius Title", &
& DLG_TITLE)
 retlog = DLGSET (dlg, IDC_TEXT_CELSIUS, "New Celsius Title")

You do not need the control index DLG_TITLE because there is only one character index for a Static
text control. The generic function DLGSET chooses the control index to change based on the

Using Dialogs Page 14 of 21

9/2/97 3:27:08 PM

argument type, in this case CHARACTER.

For each type of index, you can use the generic DLGSET function or the specific DLGSET function
for that type: DLGSETINT, DLGSETLOG, or DLGSETCHAR. For example, you can disable the
Static text control IDC_TEXT_CELSIUS by setting its logical value to .FALSE. with either DLGSET
or DLGSETLOG:

retlog = DLGSETLOG (dlg, IDC_TEXT_CELSIUS, .FALSE., DLG_ENABLE)
retlog = DLGSET (dlg, IDC_TEXT_CELSIUS, .FALSE., DLG_ENABLE)

In both these cases, the control index DLG_ENABLE can be omitted because there is only one logical
control index for Static text controls.

You can query the value of a particular control index with the DLGGET functions, DLGGET,
DLGGETINT, DLGGETLOG, and DLGGETCHAR. For example:

INTEGER current_val
LOGICAL are_you_enabled
 retlog = DLGGET (dlg, IDC_SCROLLBAR_TEMPERATURE, current_val, &
 & DLG_RANGE)
 retlog = DLGGET (dlg, IDC_SCROLLBAR_TEMPERATURE, are_you_enabled, &
 & DLG_ENABLE)

This code returns the range and the enable state of the scroll bar. The arguments you declare
(current_val and are_you_enabled in the preceding example) to hold the queried values must be
of the same type as the values retrieved. If you use specific DLGGET functions such as
DLGGETINT or DLGGETCHAR, the control index value retrieved must be the appropriate type.
For example, you cannot use DLGGETCHAR to retrieve an integer or logical value. The DLGGET
functions return .FALSE. for illegal type combinations. You cannot query for the name of an
external callback routine.

In general, it is better to use the generic functions DLGSET and DLGGET rather than their
type-specific variations because then you do not have to worry about matching the function to type of
value set or retrieved. DLGSET and DLGGET perform the correct operation automatically, based
on the type of argument you pass to them.

For more information on these routines, see the Reference.

Using Dialog Controls
The dialog controls provided in the Resource Editor are versatile and flexible and when used
together can provide a sophisticated user-friendly interface for your application. This section
discusses the available dialog controls.

Any control can be disabled by your application at any time, so that it no longer changes or responds
to the user. This is done by setting the control index DLG_ENABLE to .FALSE. with DLGSET or
DLGSETLOG. For example:

LOGICAL retlog
retlog = DLGSET (dlg, IDC_CHECKBOX1, .FALSE., DLG_ENABLE)

This example disables the control named IDC_CHECKBOX1.

Using Dialogs Page 15 of 21

9/2/97 3:27:08 PM

When you create your dialog box in the Resource Editor, the dialog controls are given a tab order.
When the user hits the TAB key, the dialog box focus shifts to the next control in the tab order. By
default, the tab order of the controls follows the order in which they were created. This may not be
the order you want.

You can change the order by opening the Layout menu and choosing Tab Order (or by pressing the
key combination CTRL+D) in the Resource Editor. A tab number will appear next to each control.
Click the mouse on the control you want to be first, then on the control you want to be second in the
tab order and so on. Tab order also determines which control gets the focus if the user presses the
Group box hotkey. (See Using Group Boxes.)

The following sections describe the function and use of the dialog controls:

• Using Static Text
• Using Edit Boxes
• Using Group Boxes
• Using Check Boxes and Radio Buttons
• Using Buttons
• Using List Boxes and Combo Boxes
• Using Scroll Bars
• Setting Return Values and Exiting

Using Static Text

Static text is an area in the dialog that your application writes text to. The user cannot change it.
Your application can modify the Static text at any time, for instance to display a current user
selection, but the user cannot modify the text. Static text is typically used to label other controls or
display messages to the user.

Using Edit Boxes

An Edit box is an area that your application can write text to at anytime. However, unlike Static
Text, the user can write to an Edit box by clicking the mouse in the box and typing. The following
statements write to an Edit box:

CHARACTER(20) text /"Send text"/
retlog = DLGSET (dlg, IDC_EDITBOX1, text)

The next statement reads the character string in an Edit box:

retlog = DLGGET (dlg, IDC_EDITBOX1, text)

The values a user enters into the Edit box are always retrieved as character strings, and your
application needs to interpret these strings as the data they represent. For example, numbers entered
by the user are interpreted by your application as character strings. Likewise, numbers you write to
the Edit box are sent as character strings. You can convert between numbers and strings by using
internal read and write statements to make type conversions.

To read a number in the Edit box, retrieve it as a character string with DLGGET or
DLGGETCHAR, and then execute an internal read using a variable of the numeric type you want
(such as integer or real). For example:

Using Dialogs Page 16 of 21

9/2/97 3:27:08 PM

REAL x
LOGICAL retlog
CHARACTER(256) text
retlog = DLGGET (dlg, IDC_EDITBOX1, text)
READ (text, *) x

In this example, the real variable x is assigned the value that was entered into the Edit box, including
any decimal fraction.

Complex and double complex values are read the same way, except that your application must
separate the Edit box character string into the real part and imaginary part. You can do this with two
separate Edit boxes, one for the real and one for the imaginary part, or by requiring the user to enter a
separator between the two parts and parsing the string for the separator before converting. If the
separator is a comma (,) you can read the string with two real edit descriptors without having to parse
the string.

To write numbers to an Edit box, do an internal write to a string, then send the string to the Edit box
with DLGSET. For example:

INTEGER j
LOGICAL retlog
CHARACTER(256) text
WRITE (text,’(I4)’) j
retlog = DLGSET (dlg, IDC_EDITBOX1, text)

Visual Fortran does not support multiline Edit boxes.

Using Group Boxes

A Group box visually organizes a collection of controls as a group. When you select Group box in
Resource Editor, you create an expanding (or shrinking) box around the controls you want to group
and give the group a title. You can add a hotkey to your group title with an ampersand (&). For
example, consider the following group title:

&Temperature

This causes the "T" to be underlined in the title and makes it a hotkey. When the user presses the key
combination ALT+T, the focus of the dialog box shifts to the next control after the Group box in the
tab order. This control should be a control in the group. (You can view and change the tab order from
the Layout/Tab Order menu option in the Resource Editor.)

Disabling the Group box disables the hotkey, but does not disable any of the controls within the
group. As a matter of style, you should generally disable the controls in a group when you disable the
Group box.

Using Check Boxes and Radio Buttons

Check boxes and Radio Buttons present the user with an either-or choice. A Radio Button is pushed
or not, and a Check box is checked or not. You use DLGGET or DLGGETLOG to check the state
of these controls. Their state is a logical value that is .TRUE. if they are pushed or checked, and
.FALSE. if they are not. For example:

Using Dialogs Page 17 of 21

9/2/97 3:27:08 PM

LOGICAL pushed_state, checked_state, retlog
retlog = DLGGET (dlg, IDC_RADIOBUTTON1, pushed_state)
retlog = DLGGET (dlg, IDC_CHECKBOX1, checked_state)

If you need to change the state of the button, for initialization or in response to other user input, you
use DLGSET or DLGSETLOG. For example:

LOGICAL retlog
retlog = DLGSET (dlg, IDC_RADIOBUTTON1, .FALSE.)
retlog = DLGSET (dlg, IDC_CHECKBOX1, .TRUE.)

Using Buttons

Unlike Check Boxes and Radio Buttons, Buttons do not have a state. They do not hold the value of
being pushed or not pushed. When the user clicks on a Button with the mouse, the Button’s callback
routine is called. Thus, the purpose of a Button is to initiate an action. The external procedure you
assign as a callback determines the action initiated. For example:

LOGICAL retlog
EXTERNAL DisplayTime
retlog = DlgSetSub(dlg, IDC_BUTTON_TIME, DisplayTime)

Visual Fortran does not support user-drawn Buttons.

Using List Boxes and Combo Boxes

List boxes and Combo boxes are used when the user needs to select a value from a set of many
values. They are similar to a set of Radio buttons except that List boxes and Combo boxes are
scrollable and can contain more items than a set of Radio buttons which are limited by the screen
display area. Also, unlike Radio buttons, the number of entries in a List box or Combo box can
change at run-time.

The difference between a List box and a Combo box is that a List box is simply a list of items, while
a Combo box is a combination of a List box and an Edit box. A List box allows the user to choose
multiple selections from the list at one time, while a Combo box allows only a single selection, but a
Combo box allows the user to edit the selected value while a List box only allows the user to choose
from the given list.

A Drop-down list box looks like a Combo box since it has a drop-down arrow to display the list.
Like a Combo box, only one selection can be made at a time in a Drop-down list box, but, like a List
box, the selected value cannot be edited. A Drop-down list box serves the same function as a List
box except for the disadvantage that the user can choose only a single selection, and the advantage
that it takes up less dialog screen space.

Visual Fortran does not support user-drawn List boxes or user-drawn Combo boxes. You must create
List boxes and Combo boxes with the Resource Editor.

The following sections describe how to use List boxes and Combo boxes:

• Using List boxes
• Using Combo boxes
• Using Drop-down List boxes

Using Dialogs Page 18 of 21

9/2/97 3:27:08 PM

Using List Boxes

For both List boxes and Combo boxes, the control index DLG_NUMITEMS determines how many items
are in the box. Once this value is set, you set the text of List box items by specifying a character
string for each item index. Indexes run from 1 to the total number of list items set with
DLG_NUMITEMS. For example:

LOGICAL retlog
retlog = DlgSet (dlg, IDC_LISTBOX1, 3, DLG_NUMITEMS)
retlog = DlgSet (dlg, IDC_LISTBOX1, "Moe", 1)
retlog = DlgSet (dlg, IDC_LISTBOX1, "Larry", 2)
retlog = DlgSet (dlg, IDC_LISTBOX1, "Curly", 3)

These statements puts three items in the List box. The initial value of each List box entry is a blank
string and the value becomes nonblank after it has been set.

You can change the list length and item values at any time, including from within callback routines.
If the list is shortened, the set of entries is truncated. If the list is lengthened, blank entries are added.
In the preceding example, you could extend the list length and define the new item with the
following:

retlog = DLGSET (dlg, IDC_LISTBOX1, 4)
retlog = DLGSET (dlg, IDC_LISTBOX1, "Shemp", 4)

Since List boxes allow selection of multiple entries, you need a way to determine which entries are
selected. When the user selects a List box item, it is assigned an integer index equal to the order in
which the item was selected. You can test which list items are selected by reading the selection
indexes in order until a zero value is read. For example, if in the previous List box the user selected
Moe and then Curly, the List box selection indexes would have the following values:

Selection index Value
1 1 (for Moe)
2 3 (for Curly)
3 0 (no more selections)

If Larry alone had been selected, the List box selection index values would be:

Selection index Value
1 2 (for Larry)
2 0 (no more selections)

To determine the items selected, the List box values can be read with DLGGET until a zero is
encountered. For example:

INTEGER j, num, test
INTEGER, ALLOCATABLE :: values(:)
LOGICAL retlog

retlog = DLGGET (dlg, IDC_LISTBOX1, num, DLG_NUMITEMS)
ALLOCATE (values(num))
j = 1
test = -1
DO WHILE (test .NE. 0)
 retlog = DLGGET (dlg, IDC_LISTBOX1, values(j), j)

Using Dialogs Page 19 of 21

9/2/97 3:27:08 PM

 test = values(j)
 j = j + 1
END DO

In this example, j is the selection index and values(j) holds the list numbers, in order, of the items
selected by the user, if any.

To read a single selection, or the first selected item in a set, you can use DLG_STATE, since for a List
Box DLG_STATE holds the character string of the first selected item (if any). For example:

! Get the string for the first selected item.
retlog = DLGGET (dlg, IDC_LISTBOX1, str, DLG_STATE)

Alternatively, you can first retrieve the list number of the selected item, and then get the string
associated with that item:

INTEGER value
CHARACTER(256) str
 ! Get the list number of the first selected item.
 retlog = DLGGET (dlg, IDC_LISTBOX1, value, 1)
 ! Get the string for that item.
 retlog = DLGGET (dlg, IDC_LISTBOX1, str, value)

In these examples, if no selection has been made by the user, str will be a blank string.

In the Properties/Styles box in the Resource Editor, List boxes can be specified as sorted or unsorted.
The default is sorted, which causes List box items to be sorted alphabetically starting with A. If a List
box is sorted, before each callback is called or when DLGMODAL returns, the items in the List box
are sorted in alphabetical order.

The alphabetical sorting follows the ASCII collating sequence, and uppercase letters come before
lowercase letters. For example, if the List box in the example above with the list "Moe," "Larry,"
"Curly," and "Shemp" were sorted, before a callback or after DLGMODAL returned, index 1 would
refer to "Curly," index 2 to "Larry," index 3 to "Moe," and index 4 to "Shemp." For this reason, when
using sorted List boxes, indexes should not be counted on to be the same before, during, and after a
call to DLGMODAL.

Using Combo Boxes

A Combo box is a combination of a List box and an Edit box. The user can make a selection from
the list that is then displayed in the Edit box part of the control, or enter text directly into the Edit
box.

All dialog values a user enters are character strings, and your application must interpret these strings
as the data they represent. For example, numbers entered by the user are returned to your application
as character strings.

Because user input can be given in two ways, selection from the List box portion or typing into the
Edit box portion directly, you need to register two callback types with DLGSETSUB for a Combo
box. These callback types are dlg_selchange to handle a new list selection by the user, and
dlg_update to handle text entered by the user directly into the Edit box portion. For example:

retlog = DlgSetSub(dlg, IDC_COMBO1, UpdateCombo, dlg_selchange)
retlog = DlgSetSub(dlg, IDC_COMBO1, UpdateCombo, dlg_update)

Using Dialogs Page 20 of 21

9/2/97 3:27:08 PM

A Combo box list is created the same way a List box list is created, as described in the previous
section, but the user can select only one item from a Combo box at a time. When the user selects an
item from the list, Windows automatically puts the item into the Edit box portion of the Combo box.
Thus, there is no need, and no mechanism, to retrieve the item list number of a selected item.

If the user is typing an entry directly into the Edit box part of the Combo box, again Windows
automatically displays it and you do not need to. You can retrieve the character string of the selected
item or Edit box entry with the following statement:

! Returns the character string of the selected item or Edit box entry as str.
retlog = DLGGET (dlg, IDC_COMBO1, str)

You have three choices for Combo box Type in the Styles tab of Combo box Properties: Simple,
Drop list, and Drop-down. Simple and Drop list are the same, except that a simple Combo box
always displays the Combo box choices in a list, while a drop list Combo box has a drop-down
button and displays the choices in a drop-down list, conserving screen space. The Drop-down type is
halfway between a Combo box and a List box and is described below.

Using Drop-Down List Boxes

To create a Drop-down list box, choose a Combo box from the control toolbar place it in your dialog.
Double-click the left mouse button on the Combo box to open the Properties box. On the Styles Tab
choose Drop-down as the control type.

A Drop-down list box has a drop-down arrow to display the list. Like a Combo box, only one
selection can be made at a time in the list, but like a List Box, the selected value cannot be edited. A
Drop-down list box serves the same function as a List box except for the disadvantage that the user
can choose only a single selection, and the advantage that it takes up less dialog screen space.

A Drop-down list box has the same control indexes as a Combo box with the addition of another
INTEGER index to set or return the list number of the item selected in the list. For example:

INTEGER num
 ! Returns index of the selected item.
 retlog = DLGGET (dlg, IDC_DROPDOWN1, num, DLG_STATE)

Using Scroll Bars

With a Scroll bar, the user determines input by manipulating the slide up and down or right and left.
Your application sets the range for the Scroll bar, and thus can interpret a position of the slide as a
number. If you want to display this number to the user, you need to send the number (as a character
string) to a Static text or Edit Box control.

The Scroll bar range always starts at 1. You set the upper limit of the range by setting the control
index DLG_RANGE with DLGSET or DLGSETINT. The default value is 100. For example:

LOGICAL retlog
retlog = DLGSET (dlg, IDC_SCROLLBAR1, 212, DLG_RANGE)

You get the slide position by retrieving the control index DLG_POSITION with DLGGET or
DLGGETINT. For example:

INTEGER slide_position

Using Dialogs Page 21 of 21

9/2/97 3:27:08 PM

retlog = DLGGET (dlg, IDC_SCROLLBAR1, slide_position, DLG_POSITION)

You can also set the increment taken when the user clicks on the arrow buttons of the Scroll bar by
setting the control index DLG_SMALLSTEP. You set the increment taken when the user clicks in the
blank area above or below the slide in a vertical Scroll bar, or to the left or right of the slide in a
horizontal Scroll bar, by setting the control index DLG_BIGSTEP. For example:

retlog = DLGSET (dlg, IDC_SCROLLBAR1, 4, DLG_SMALLSTEP)
retlog = DLGSET (dlg, IDC_SCROLLBAR1, 20, DLG_BIGSTEP)

Setting Return Values and Exiting

When the user selects the dialog’s OK or CANCEL button, your dialog procedure is exited and the
dialog box is closed. DLGMODAL returns the control name (associated with an integer identifier in
your include (.FD) file) of the control that caused it to exit; for example, IDOK or IDCANCEL. If you
want to exit your dialog box on a condition other than the user selecting the OK or CANCEL button,
you need to include a call to the dialog subroutine DLGEXIT from within your callback routine. For
example:

SUBROUTINE EXITSUB (dlg, exit_button_id, callbacktype)
USE DFLOGM
TYPE (DIALOG) dlg
INTEGER exit_button_id, callbacktype
...
 CALL DLGEXIT (dlg)

The only argument for DLGEXIT is the dialog derived type. The dialog box is exited after
DLGEXIT returns control back to the dialog manager, not immediately after calling DLGEXIT.
That is, if there are other statements following DLGEXIT within the callback routine that contains
it, those statements are executed and the callback routine returns before the dialog box is exited.

If you want DLGMODAL to return with a value other than the control name of the control that
caused the exit, (or -1 if DLGMODAL fails to open the dialog box), you can specify your own
return value with the subroutine DLGSETRETURN. For example:

TYPE (DIALOG) dlg
INTEGER altreturn
...
altreturn = 485
CALL DLGSETRETURN (dlg, altreturn)
CALL DLGEXIT(dlg)

To avoid confusion with the default failure condition, use return values other than -1.

If you want the user to be able to close the dialog from the system menu or by pressing the ESC key,
you need a control that has the ID of IDCANCEL. When a system escape or close is performed, it
simulates pressing the dialog button with the ID IDCANCEL. If no control in the dialog has the ID
IDCANCEL, then the close command will be ignored (and the dialog can not be closed in this way).

If you want to enable system close or ESC to close a dialog, but don’t want a cancel button, you can
add a button with the ID IDCANCEL to your dialog and then remove the visible property in the
button’s Properties box. Pressing ESC will then activate the default click callback of the cancel button
and close the dialog.

Drawing Graphics Elements Page 1 of 19

8/21/97 12:20:23 PM

Drawing Graphics Elements
The graphics routines provided with Visual Fortran set points, draw lines, draw text, change colors,
and draw shapes such as circles, rectangles, and arcs. This section assumes you have read the
overview in Using QuickWin.

This section uses the following terms:

• The origin (point 0, 0) is the upper-left corner of the screen or the client area (defined user
area) of the child window being written to. The x-axes and y-axes start at the origin. You can
change the origin in some coordinate systems.

• The horizontal direction is represented by the x-axis, increasing to the right.
• The vertical direction is represented by the y-axis, increasing down.
• Some graphics adapters offer a color palette that can be changed.
• Some graphics adapters (VGA and SVGA) allow you to change the color that a color index

refers to by providing a color value that describes a new color. The color value indicates the
mix of red, green, and blue in a screen color. A color value is always an INTEGER(4) number.

The sections on drawing graphics are organized as follows:

• Working with Graphics Modes
• Adding Color
• Understanding Coordinate Systems

Working with Graphics Modes
To display graphics, you need to set the desired graphics mode using SETWINDOWCONFIG, and
then call the routines needed to create the graphics.

These sections explain each step:

• Checking the Current Graphics Mode
• Setting the Graphics Mode
• Writing a Graphics Program

Checking the Current Graphics Mode

Call GETWINDOWCONFIG to get the child window settings. The DFLIB.F90 module in the
\DF\INCLUDE subdirectory defines a derived type, windowconfig, that GETWINDOWCONFIG
uses as a parameter:

 TYPE windowconfig
 INTEGER(2) numxpixels ! Number of pixels on x-axis
 INTEGER(2) numypixels ! Number of pixels on y-axis
 INTEGER(2) numtextcols ! Number of text columns available
 INTEGER(2) numtextrows ! Number of text rows available
 INTEGER(2) numcolors ! Number of color indexes
 INTEGER(4) fontsize ! Size of default font
 CHARACTER(80) title ! window title
 INTEGER(2) bitsperpixel ! Number of bits per pixel
 END TYPE windowconfig

Drawing Graphics Elements Page 2 of 19

9/2/97 3:27:27 PM

By default, a QuickWin child window is a scrollable text window 640x480 pixels, has 30 lines and
80 columns, and a font size of 8x16. Also by default, a Standard Graphics window is Full Screen.
You can change the values of window properties at any time with SETWINDOWCONFIG, and
retrieve the current values at any time with GETWINDOWCONFIG.

Setting the Graphics Mode

Use SETWINDOWCONFIG to configure the window for the properties you want. By assigning a -1
value for numxpixels, numypixels, numtextcols, and numtextrows in the windowconfig derived type,
you set the highest possible resolution available with your graphics driver. This causes Standard
Graphics applications to start in Full Screen mode.

If you specify less than the largest graphics area, the application starts in a window. You can use
ALT+ENTER to toggle between Full Screen and windowed views. If your application is a QuickWin
application and you do not call SETWINDOWCONFIG, the child window defaults to a scrollable
text window with the dimensions of 640x480 pixels, 30 lines, 80 columns, and a font size of 8x16.
The number of colors depends on the video driver used.

If SETWINDOWCONFIG returns .FALSE., the video driver does not support the options
specified. The function then adjusts the values in the windowconfig derived type to ones that will
work and are as close as possible to the requested configuation. You can then call
SETWINDOWCONFIG again with the adjusted values, which will succeed. For example:

 LOGICAL statusmode
 TYPE (windowconfig) wc
 wc.numxpixels = 1000
 wc.numypixels = 300
 wc.numtextcols = -1
 wc.numtextrows = -1
 wc.numcolors = -1
 wc.title = "Opening Title"C
 wc.fontsize = #000A000C ! 10 X 12
 statusmode = SETWINDOWCONFIG(wc)
 IF (.NOT. statusmode) THEN statusmode = SETWINDOWCONFIG(wc)

If you use SETWINDOWCONFIG, you should specify a value for each field (-1 or your own
number for numeric fields, and a C string for the title). Calling SETWINDOWCONFIG with only
some of the fields specified can result in useless values for the other fields.

Writing a Graphics Program

Like many programs, graphics programs work well when written in small units. Using discrete
routines aids debugging by isolating the functional components of the program. The following
example program and its associated subroutines show the steps involved in initializing, drawing, and
closing a graphics program.

The SINE program draws a sine wave. Its procedures call many of the common graphics routines.
The main program, following, calls five subroutines that carry out the actual graphics commands
(also located in the SINE.F90 file).

 ! SINE.F90 - Illustrates basic graphics commands.
 !

Drawing Graphics Elements Page 3 of 19

9/2/97 3:27:27 PM

 USE DFLIB
 CALL graphicsmode()
 CALL drawlines()
 CALL sinewave()
 CALL drawshapes()
 END
 .
 .
 .

For information on the subroutines in the SINE program, see:

• graphicsmode in section Activating a Graphics Mode
• drawlines in section Drawing Lines on the Screen
• sinewave in section Drawing a Sine Curve
• drawshapes in sectionAdding Shapes

The SINE program's output appears in the following figure. The SINE routines are in the
\DF\SAMPLES\TUTORIAL subdirectory. The project is built as a Standard Graphics application.

Figure: Sine Program Output

Activating a Graphics Mode

If you call a graphics routine without setting a graphics mode with SETWINDOWCONFIG,
QuickWin automatically sets the graphics mode with default values.

SINE selects and sets the graphics mode in the subroutine graphicsmode, which selects the highest
possible resolution for the current video driver:

 SUBROUTINE graphicsmode()
 USE DFLIB
 LOGICAL modestatus
 INTEGER(2) maxx, maxy
 TYPE (windowconfig) myscreen

Drawing Graphics Elements Page 4 of 19

9/2/97 3:27:27 PM

 COMMON maxx, maxy

 ! Set highest resolution graphics mode.

 myscreen.numxpixels=-1
 myscreen.numypixels=-1
 myscreen.numtextcols=-1
 myscreen.numtextrows=-1
 myscreen.numcolors=-1
 myscreen.fontsize=-1
 myscreen.title = " "C ! blank

 modestatus=SETWINDOWCONFIG(myscreen)

 ! Determine the maximum dimensions.

 modestatus=GETWINDOWCONFIG(myscreen)
 maxx=myscreen.numxpixels - 1
 maxy=myscreen.numypixels - 1
 END

Pixel coordinates start at zero, so, for example, a screen with a resolution of 640 horizontal pixels
has a maximum x-coordinate of 639. Thus, maxx (the highest available x-pixel coordinate) must be 1
less than the total number of pixels. The same applies to maxy.

To remain independent of the video mode set by graphicsmode, two short functions convert an
arbitrary screen size of 1000x1000 pixels to whatever video mode is in effect. From now on, the
program assumes it has 1000 pixels in each direction. To draw the points on the screen, newx and
newy map each point to their physical (pixel) coordinates:

 ! NEWX - This function finds new x-coordinates.

 INTEGER(2) FUNCTION newx(xcoord)

 INTEGER(2) xcoord, maxx, maxy
 REAL(4) tempx
 COMMON maxx, maxy

 tempx = maxx / 1000.0
 tempx = xcoord * tempx + 0.5
 newx = tempx
 END

 ! NEWY - This function finds new y-coordinates.
 !
 INTEGER(2) FUNCTION newy(ycoord)

 INTEGER(2) ycoord, maxx, maxy
 REAL(4) tempy
 COMMON maxx, maxy

 tempy = maxy / 1000.0
 tempy = ycoord * tempy + 0.5
 newy = tempy
 END

You can set up a similar independent coordinate system with window coordinates, described in
Understanding Coordinate Systems.

Drawing Lines on the Screen

Drawing Graphics Elements Page 5 of 19

9/2/97 3:27:27 PM

SINE next calls the subroutine drawlines, which draws a rectangle around the outer edges of the
screen and three horizontal lines that divide the screen into quarters. (See Figure: Sine Program
Output.)

 ! DRAWLINES - This subroutine draws a box and
 ! several lines.

 SUBROUTINE drawlines()

 USE DFLIB

 EXTERNAL newx, newy
 INTEGER(2) status, newx, newy, maxx, maxy
 TYPE (xycoord) xy
 COMMON maxx, maxy
 !
 ! Draw the box.

 status = RECTANGLE($GBORDER, INT2(0), INT2(0), maxx, maxy)
 CALL SETVIEWORG(INT2(0), newy(INT2(500)), xy) ! This sets
 ! the new origin to 0 for x and 500 for y. See comment after subroutine

 ! Draw the lines.

 CALL MOVETO(INT2(0), INT2(0), xy)
 status = LINETO(newx(INT2(1000)), INT2(0))
 CALL SETLINESTYLE(INT2(#AA3C))
 CALL MOVETO(INT2(0), newy(INT2(-250)), xy)
 status = LINETO(newx(INT2(1000)),newy(INT2(-250)))
 CALL SETLINESTYLE(INT2(#8888))
 CALL MOVETO(INT2(0), newy(INT2(250)), xy)
 status = LINETO(newx(INT2(1000)),newy(INT2(250)))
 END

The first argument to RECTANGLE is the fill flag, which can be either $GBORDER or
$GFILLINTERIOR. Choose $GBORDER if you want a rectangle of four lines (a border only, in the
current line style), or $GFILLINTERIOR if you want a solid rectangle (filled in with the current
color and fill pattern). Choosing the color and fill pattern is discussed in Adding Color and Adding
Shapes.

The second and third RECTANGLE arguments are the x- and y-coordinates of the upper-left corner
of the rectangle. The fourth and fifth arguments are the coordinates for the lower-right corner.
Because the coordinates for the two corners are (0, 0) and (maxx, maxy), the call to
RECTANGLE frames the entire screen.

The program calls SETVIEWORG to change the location of the viewport origin. By resetting the
origin to (0, 500) in a 1000x1000 viewport, you effectively make the viewport run from (0, -500) at
the top left of the screen to (1000, 500) at the bottom right of the screen:

CALL SETVIEWORG(INT2(0), newy(INT2(500)), xy)

Changing the coordinates illustrates the ability to alter the viewport coordinates to whatever
dimensions you prefer. (Viewports and the SETVIEWORG routine are explained in more detail in
Understanding Coordinate Systems.)

The call to SETLINESTYLE changes the line style from a solid line to a dashed line. A series of 16
bits tells the routine which pattern to follow. A "1" indicates a solid pixel and "0" an empty pixel.

Drawing Graphics Elements Page 6 of 19

9/2/97 3:27:27 PM

Therefore, 1111 1111 1111 1111 represents a solid line. A dashed line might look like 1111 1111
0000 0000 (long dashes) or 1111 0000 1111 0000 (short dashes). You can choose any combination
of ones and zeros. Any INTEGER(2) number in any base is an acceptable input, but binary and
hexadecimal numbers are easier to envision as line-style patterns.

In the example, the hexadecimal constant #AA3C equals the binary value 1010 1010 0011 1100.
You can use the decimal value 43580 just as effectively.

When drawing lines, first set an appropriate line style. Then, move to where you want the line to
begin and call LINETO, passing to it the point where you want the line to end. The drawlines
subroutine uses the following code:

 CALL SETLINESTYLE(INT2(#AA3C))
 CALL MOVETO(INT2(0), newy(INT2(-250)), xy)
 dummy = LINETO(newx(INT2(1000)), newy(INT2(-250)))

MOVETO positions an imaginary pixel cursor at a point on the screen (nothing appears on the
screen), and LINETO draws a line. When the program called SETVIEWORG, it changed the
viewport origin, and the initial y-axis range of 0 to 1000 now corresponds to a range of -500 to +500.
Therefore, the negative value -250 is used as the y-coordinate of LINETO to draw a horizontal line
across the center of the top half of the screen, and the value of 250 is used as the y-coordinate to
draw a horizontal line across the center of the bottom half of the screen.

Drawing a Sine Curve

With the axes and frame in place, SINE is ready to draw the sine curve. The sinewave routine
calculates the x and y positions for two cycles and plots them on the screen:

 ! SINEWAVE - This subroutine calculates and plots a sine
 ! wave.
 !
 SUBROUTINE sinewave()
 USE DFLIB

 INTEGER(2) dummy, newx, newy, locx, locy, i
 INTEGER(4) color
 REAL rad
 EXTERNAL newx, newy

 PARAMETER (PI = 3.14159)
 !
 ! Calculate each position and display it on the screen.
 color = #0000FF ! red
 !
 DO i = 0, 999, 3
 rad = -SIN(PI * i / 250.0)
 locx = newx(i)
 locy = newy(INT2(rad * 250.0))
 dummy = SETPIXELRGB(locx, locy, color)
 END DO
 END

SETPIXELRGB takes the two location parameters, locx and locy, and sets the pixel at that position
with the specified color value (red).

Drawing Graphics Elements Page 7 of 19

9/2/97 3:27:27 PM

Adding Shapes

After drawing the sine curve, SINE calls drawshapes to put two rectangles and two ellipses on the
screen. The fill flag alternates between $GBORDER and $GFILLINTERIOR:

 ! DRAWSHAPES - Draws two boxes and two ellipses.
 !
 SUBROUTINE drawshapes()

 USE DFLIB

 EXTERNAL newx, newy
 INTEGER(2) dummy, newx, newy
 !
 ! Create a masking (fill) pattern.
 !
 INTEGER(1) diagmask(8), horzmask(8)
 DATA diagmask / #93, #C9, #64, #B2, #59, #2C, #96, #4B /
 DATA horzmask / #FF, #00, #7F, #FE, #00, #00, #00, #CC /
 !
 ! Draw the rectangles.
 !
 CALL SETLINESTYLE(INT2(#FFFF))
 CALL SETFILLMASK(diagmask)
 dummy = RECTANGLE($GBORDER,newx(INT2(50)),newy(INT2(-325)), &
 & newx(INT2(200)),newy(INT2(-425)))
 dummy = RECTANGLE($GFILLINTERIOR,newx(INT2(550)), &
 & newy(INT2(-325)),newx(INT2(700)),newy(INT2(-425)))
 !
 ! Draw the ellipses.
 !
 CALL SETFILLMASK(horzmask)
 dummy = ELLIPSE($GBORDER,newx(INT2(50)),newy(INT2(325)), &
 & newx(INT2(200)),newy(INT2(425)))
 dummy = ELLIPSE($GFILLINTERIOR,newx(INT2(550)), &
 & znewy(INT2(325)),newx(INT2(700)),newy(INT2(425)))
 END

The call to SETLINESTYLE resets the line pattern to a solid line. Omitting this routine causes the
first rectangle to appear with a dashed border, because the drawlines subroutine called earlier
changed the line style to a dashed line.

ELLIPSE draws an ellipse using parameters similar to those for RECTANGLE. It, too, requires a
fill flag and two corners of a bounding rectangle. The following figure shows how an ellipse uses a
bounding rectangle:

Figure: Bounding Rectangle

The $GFILLINTERIOR constant fills the shape with the current fill pattern. To create a pattern,
pass the address of an 8-byte array to SETFILLMASK. In drawshapes, the diagmask array is
initialized with the pattern shown in the following table:

Drawing Graphics Elements Page 8 of 19

9/2/97 3:27:27 PM

Table: Fill Patterns

Bit pattern Value in diagmask
Bit No.7 6 5 4 3 2 1 0
 x o o x o o x x diagmask(1) = #93
 x x o o x o o x diagmask(2) = #C9
 o x x o o x o o diagmask(3) = #64
 x o x x o o x o diagmask(4) = #B2
 o x o x x o o x diagmask(5) = #59
 o o x o x x o o diagmask(6) = #2C
 x o o x o x x o diagmask(7) = #96
 o x o o x o x x diagmask(8) = #4B

Adding Color
The Visual Fortran QuickWin Library supports color graphics. The number of total available colors
depends on the current video driver and video adapter you are using. The number of available colors
you use depends on the graphics functions you choose. The different color modes and color functions
are discussed and demonstrated in the following sections:

• Color Mixing
• VGA Color Palette
• Using Text Colors

Color Mixing

If you have a VGA machine, you are restricted to displaying at most 256 colors at a time. These 256
colors are held in a palette. You can choose the palette colors from a range of 262,144 colors (256K),
but only 256 at a time. Some display adapters (most SVGAs) are capable of displaying all of the
256K colors and some (true color display adapters) of displaying 256 * 256 * 256 = 16.7 million
colors.

If you use a palette, you are restricted to the colors available in the palette. In order to access all
colors available on your system, you need to specify an explict Red-Green-Blue (RGB) value, not a
palette index.

When you select a color index, you specify one of the colors in the system's predefined palette.
SETCOLOR, SETBKCOLOR, and SETTEXTCOLOR set the current color, background color, and
text color to a palette index. SETCOLORRGB, SETBKCOLORRGB, and SETTEXTCOLORRGB
set the colors to a color value chosen from the entire available range. When you select a color value,
you specify a level of intensity with a range of 0 - 255 for each of the red, green, and blue color
values. The long integer that defines a color value consists of 3 bytes (24 bits) as follows:

 MSB LSB
 BBBBBBBB GGGGGGGG RRRRRRRR

where R, G, and B represent the bit values for red, green, and blue intensities. To mix a light red
(pink), turn red all the way up and mix in some green and blue:

10000000 10000000 11111111

In hexadecimal notation, this number equals #8080FF . You can use the function:

Drawing Graphics Elements Page 9 of 19

9/2/97 3:27:27 PM

 i = SETCOLORRGB (#8080FF)

to set the current color to this value.

You can also pass decimal values to this function. Keep in mind that 1 (binary 00000001, hex 01)
represents a low color intensity and that 255 (binary 11111111, hex FF) equals full color intensity.
To create pure yellow (100-percent red plus 100-percent green) use this line:

 i = SETCOLORRGB(#00FFFF)

For white, turn all of the colors on:

 i = SETCOLORRGB(#FFFFFF)

For black, set all of the colors to 0:

 i = SETCOLORRGB(#000000)

RGB values for example colors are in the following table.

Table: RGB Color Values
Color RGB Value Color RGB Value

Black #000000 Bright White #FFFFFF
Dull Red #000080 Bright Red #0000FF
Dull Green #008000 Bright Green #00FF00
Dull Yellow #008080 Bright Yellow #00FFFF
Dull Blue #800000 Bright Blue #FF0000
Dull Magenta #800080 Bright Magenta #FF00FF
Dull Turquoise #808000 Bright Turquoise #FFFF00
Dark Gray #808080 Light Gray #C0C0C0

If you have a 64K-color machine and you set an RGB color value that is not equal to one of the 64K
preset RGB color values, the system approximates the requested RGB color to the closest available
RGB value. The same thing happens on a VGA machine when you set an RGB color that is not in
the palette. (You can remap your VGA color palette to different RGB values. See VGA Color
Palette.)

However, although your graphics are drawn with an approximated color, if you retrieve the color
with GETCOLORRGB, GETBKCOLORRGB, or GETTEXTCOLORRGB, the color you specified
is returned, not the actual color used. This is because the SETCOLORRGB functions do not
execute any graphics, they simply set the color and the approximation is made when the drawing is
made (by ELLIPSE or ARC, for example). GETPIXELRGB and GETPIXELSRGB do return the
approximated color actually used, because SETPIXELRGB and SETPIXELSRGB actually set a
pixel to a color on the screen and the approximation, if any, is made at the time they are called.

VGA Color Palette

A VGA machine is capable of displaying at most 256 colors at a time. In QuickWin, VGA can
display 256 colors with a resolution of 320x200 pixels, but can display 2 or 16 colors at higher
resolutions (up to 640x480 pixels). The number of colors you select for your VGA palette depends

Drawing Graphics Elements Page 10 of 19

9/2/97 3:27:27 PM

on your application, and is set by setting the wc.numcolors variable in the windowconfig derived
type to 2, 16, or 256 with SETWINDOWCONFIG.

An RGB color value must be in the palette to be accessible to your VGA graphic displays. You can
change the default colors and customize your color palette by using REMAPPALETTERGB to
change a palette color index to any RGB color value. The following example remaps the color index
1 (default blue color) to the pure red color value given by the RGB value #0000FF. After this is
executed, whatever was displayed as blue will appear as red:

 USE DFLIB
 INTEGER(4) status
 status = REMAPPALETTERGB(1, #0000FF) ! Reassign color index 1
 ! to RGB red

REMAPALLPALETTERGB remaps one or more color indexes simultaneously. Its argument is an
array of RGB color values that are mapped into the palette. The first color number in the array
becomes the new color associated with color index 0, the second with color index 1, and so on. At
most 236 indexes can be mapped, because 20 indexes are reserved for system use.

If you request an RGB color that is not in the palette, the color selected from the palette is the closest
approximation to the RGB color requested. If the RGB color was previously placed in the palette
with REMAPPALETTERGB or REMAPALLPALETTERGB, then that exact RGB color is
available.

Remapping the palette has no effect on 64K-color machines, SVGA, or true-color machines, unless
you limit yourself to a palette by using color index functions such as SETCOLOR. On a VGA
machine, if you remap all the colors in your palette and display that palette in graphics, you cannot
then remap and simultaneously display a second palette.

For instance, in VGA 256-color mode, if you remap all 256 palette colors and display graphics in one
child window, then open another child window, remap the palette and display graphics in the second
child window, you are attempting to display more than 256 colors at one time. The machine cannot
do this, so whichever child window has the focus will appear correct, while the one without the focus
will change color.

Note: Machines that support more than 256 colors will not be able to do animation by remapping
the palette. Windows 95 and Windows NT create a logical palette that maps to the video
hardware palette. On video hardware that supports a palette of 256 colors or less, remapping the
palette maps over the current palette and redraws the screen in the new colors.

On large hardware palettes that support more than 256 colors, remapping is done into the unused
portion of the palette. It does not map over the current colors nor redraw the screen. So, on
machines with large palettes (more than 256 colors), the technique of changing the screen through
remapping, called palette animation, cannot be used. See the Win32 SDK Manual for more
information.

Symbolic constants (names) for the default color numbers are supplied in the graphics modules. The
names are self-descriptive; for example, the color numbers for black, yellow, and red are represented
by the symbolic constants $BLACK, $YELLOW, and $RED.

All of the VGA display modes operate with any VGA (analog) monitor. Colors appear as shades of

Drawing Graphics Elements Page 11 of 19

9/2/97 3:27:27 PM

gray on compatible analog monochrome monitors.

Using Text Colors

SETTEXTCOLORRGB (or SETTEXTCOLOR) and SETBKCOLORRGB (or SETBKCOLOR) set
the foreground and background colors for text output. All use a single argument specifying the color
value (or color index) for text displayed with OUTTEXT and WRITE. For the color index functions,
colors are represented by the range 0-31. Index values in the range of 16-31 access the same colors as
those in the range of 0-15.

You can retrieve the current foreground and background color values with GETTEXTCOLORRGB
and GETBKCOLORRGB or the color indexes with GETTEXTCOLOR and GETBKCOLOR. Use
SETTEXTPOSITION to move the cursor to a particular row and column. OUTTEXT and WRITE
print the text at the current cursor location.

For more information on these routines, see the Reference.

Understanding Coordinate Systems
Several different coordinate systems are supported by the Visual Fortran QuickWin Library. Text
coordinates work in rows and columns; physical coordinates serve as an absolute reference and as a
starting place for creating custom window and viewport coordinates. Conversion routines make it
simple to convert between different coordinate systems.

The coordinate systems are demonstrated and discussed in the following sections:

• Text Coordinates
• Graphics Coordinates
• Real Coordinates Sample Program

Text Coordinates

The text modes use a coordinate system that divides the screen into rows and columns as shown in
the following figure:

Figure: Text Screen Coordinates

Text coordinates use the following conventions:

• Numbering starts at 1. An 80-column screen contains columns 1-80.
• The row is always listed before the column.

If the screen displays 25 rows and 80 columns (as in the above Figure 14.3), the rows are numbered
1-25 and the columns are numbered 1-80. The text-positioning routines, such as
SETTEXTPOSITION and SCROLLTEXTWINDOW, use row and column coordinates.

Drawing Graphics Elements Page 12 of 19

9/2/97 3:27:27 PM

Graphics Coordinates

Three coordinate systems describe the location of pixels on the screen: physical coordinates,
viewport coordinates, and window coordinates. In all three coordinate systems, the x-coordinate is
listed before the y-coordinate.

Physical Coordinates

Physical coordinates are integers that refer to pixels in a window’s client area. By default, numbering
starts at 0, not 1. If there are 640 pixels, they are numbered 0-639.

Suppose your program calls SETWINDOWCONFIG to set up a client area containing 640 horizontal
pixels and 480 vertical pixels. Each individual pixel is referred to by its location relative to the x-axis
and y-axis, as shown in the following figure:

Figure: Physical Coordinates

The upper-left corner is the origin. The x- and y-coordinates for the origin are always (0, 0).

Physical coordinates refer to each pixel directly and are therefore integers (that is, the window’s
client area cannot display a fractional pixel). If you use variables to refer to pixel locations, declare
them as integers or use type-conversion routines when passing them to graphics functions. For
example:

ISTATUS = LINETO(INT2(REAL_x), INT2(REAL_y))

If a program uses the default dimension of a window, the viewport (drawing area) is equal to
640x480. SETVIEWORG changes the location of the viewport’s origin. You pass it two integers,
which represent the x and y physical screen coordinates for the new origin. You also pass it an
xycoord type that the routine fills with the physical coordinates of the previous origin. For example,
the following line moves the viewport origin to the physical screen location (50, 100):

 TYPE (xycoord) origin
 CALL SETVIEWORG(INT2(50), INT2(100), origin)

The effect on the screen is illustrated in the following figure:

Figure: Origin Coordinates Changed by SETVIEWORG

Drawing Graphics Elements Page 13 of 19

9/2/97 3:27:27 PM

The number of pixels hasn’t changed, but the coordinates used to refer to the points have changed.
The x-axis now ranges from -50 to +589 instead of 0 to 639. The y-axis now covers the values -100
to +379.

All graphics routines that use viewport coordinates are affected by the new origin, including
MOVETO, LINETO, RECTANGLE, ELLIPSE, POLYGON, ARC, and PIE. For example, if
you call RECTANGLE after relocating the viewport origin and pass it the values (0, 0) and (40, 40),
the upper-left corner of the rectangle would appear 50 pixels from the left edge of the screen and 100
pixels from the top. It would not appear in the upper-left corner of the screen.

SETCLIPRGN creates an invisible rectangular area on the screen called a clipping region. You can
draw inside the clipping region, but attempts to draw outside the region fail (nothing appears outside
the clipping region).

The default clipping region occupies the entire screen. The QuickWin Library ignores any attempts
to draw outside the screen.

You can change the clipping region by calling SETCLIPRGN. For example, suppose you entered a
screen resolution of 320x200 pixels. If you draw a diagonal line from (0, 0) to (319, 199), the
upper-left to the lower-right corner, the screen looks like the following figure:

Figure: Line Drawn on a Full Screen

You could create a clipping region by entering:

 CALL SETCLIPRGN(INT2(10), INT2(10), INT2(309), INT2(189))

With the clipping region in effect, the same LINETO command would put the line shown in the
following figure on the screen. The dashed lines indicate the outer bounds of the clipping region and
do not actually print on the screen.

Figure: Line Drawn Within a Clipping Region

Viewport Coordinates

The viewport is the area of the screen displayed, which may be only a portion of the window’s client
area. Viewport coordinates represent the pixels within the current viewport. SETVIEWPORT
establishes a new viewport within the boundaries of the physical client area. A standard viewport has
two distinguishing features:

Drawing Graphics Elements Page 14 of 19

9/2/97 3:27:27 PM

• The origin of a viewport is in the upper-left corner.
• The default clipping region matches the outer boundaries of the viewport.

SETVIEWPORT has the same effect as SETVIEWORG and SETCLIPRGN combined. It
specifies a limited area of the screen in the same manner as SETCLIPRGN, then sets the viewport
origin to the upper-left corner of the area.

Window Coordinates

Functions that refer to coordinates on the client-area screen and within the viewport require integer
values. However, many applications need floating-point values--for frequency, viscosity, mass, and
so on. SETWINDOW allows you to scale the screen to almost any size. In addition, window-related
functions accept double-precision values.

Window coordinates use the current viewport as their boundaries. A window overlays the current
viewport. Graphics drawn at window coordinates beyond the boundaries of the window--the same as
being outside the viewport--are clipped.

For example, to graph 12 months of average temperatures on the planet Venus that range from -50 to
+450, add the following line to your program:

 status = SETWINDOW(.TRUE., 1.0D0, -50.0D0, 12.0D0, 450.0D0)

The first argument is the invert flag, which puts the lowest y value in the lower-left corner. The
minimum and maximum x- and y-coordinates follow; the decimal point marks them as floating-point
values. The new organization of the screen is shown in the following figure:

Figure: Window Coordinates

January and December plot on the left and right edges of the screen. In an application like this,
numbering the x-axis from 0.0 to 13.0 provides some padding space on the sides and improves
appearance.

If you next plot a point with SETPIXEL_W or draw a line with LINETO_W, the values are
automatically scaled to the established window.

To use window coordinates with floating-point values:

1. Set a graphics mode with SETWINDOWCONFIG.
2. Use SETVIEWPORT to create a viewport area. This step is not necessary if you plan to use

the entire screen.
3. Create a real-coordinate window with SETWINDOW, passing a LOGICAL invert flag and

four DOUBLE PRECISION x- and y-coordinates for the minimum and maximum values.
4. Draw graphics shapes with RECTANGLE_W and similar routines. Do not confuse

RECTANGLE (the viewport routine) with RECTANGLE_W (the window routine for

Drawing Graphics Elements Page 15 of 19

9/2/97 3:27:27 PM

drawing rectangles). All window function names end with an underscore and the letter W (_W
).

Real-coordinate graphics give you flexibility and device independence. For example, you can fit an
axis into a small range (such as 151.25 to 151.45) or into a large range (-50000.0 to +80000.0),
depending on the type of data you graph. In addition, by changing the window coordinates, you can
create the effects of zooming in or panning across a figure. The window coordinates also make your
drawings independent of the computer’s hardware. Output to the viewport is independent of the
actual screen resolution.

Real Coordinates Sample Program

The program REALG.F90 shows how to create multiple window-coordinate sets, each in a separate
viewport, on a single screen. REALG.F90 is in the \DF\SAMPLES\TUTORIAL subdirectory.

 ! REALG.F90 (main program) - Illustrates coordinate graphics.
 !
 USE DFLIB
 LOGICAL statusmode
 TYPE (windowconfig) myscreen
 COMMON myscreen
 !
 ! Set the screen to the best resolution and maximum number of
 ! available colors.
 myscreen.numxpixels = -1
 myscreen.numypixels = -1
 myscreen.numtextcols = -1
 myscreen.numtextrows = -1
 myscreen.numcolors = -1
 myscreen.fontsize = -1
 myscreen.title = " "C
 statusmode = SETWINDOWCONFIG(myscreen)
 IF(.NOT. statusmode) statusmode = SETWINDOWCONFIG(myscreen)

 statusmode = GETWINDOWCONFIG(myscreen)
 CALL threegraphs()
 END
 .
 .
 .

The main body of the program is very short. It sets the window to the best resolution of the graphics
driver (by setting the first four fields to -1) and the maximum number of colors (by setting
numcolors to -1). The program then calls the threegraphs subroutine that draws three graphs. The
program output is shown in the following figure:

Figure: REALG Program Output

Drawing Graphics Elements Page 16 of 19

9/2/97 3:27:27 PM

The gridshape subroutine, which draws the graphs, uses the same data in each case. However, the
program uses three different coordinate windows. The two viewports in the top half are the same size
in physical coordinates, but have different window sizes. Each window uses different maximum and
minimum values. In all three cases, the graph area is two units wide. The window in the upper-left
corner has a range in the x-axis of four units (4 units wide); the window in the upper-right corner has
a range in the x-axis of six units, which makes the graph on the right appear smaller.

In two of the three graphs, one of the lines goes off the edge, outside the clipping region. The lines
do not intrude into the other viewports, because defining a viewport creates a clipping region.

Finally, the graph on the bottom inverts the data with respect to the two graphs above it.

The next section describes and discusses the subroutine invoked by REALG.F90:

Drawing the Graphs

The main program calls threegraphs, which prints the three graphs.

 SUBROUTINE threegraphs()
 USE DFLIB
 INTEGER(2) status, halfx, halfy
 INTEGER(2) xwidth, yheight, cols, rows
 TYPE (windowconfig) myscreen
 COMMON myscreen

 CALL CLEARSCREEN($GCLEARSCREEN)
 xwidth = myscreen.numxpixels
 yheight = myscreen.numypixels
 cols = myscreen.numtextcols
 rows = myscreen.numtextrows
 halfx = xwidth / 2
 halfy = (yheight / rows) * (rows / 2)
 !
 ! First window
 !
 CALL SETVIEWPORT(INT2(0), INT2(0), halfx - 1, halfy - 1)

Drawing Graphics Elements Page 17 of 19

9/2/97 3:27:28 PM

 CALL SETTEXTWINDOW(INT2(1), INT2(1), rows / 2, cols / 2)
 status = SETWINDOW(.FALSE., -2.0_8, -2.0_8, 2.0_8, 2.0_8)
 ! The 2.0_8 notation makes these constants REAL(8)

 CALL gridshape(rows / 2)
 status = RECTANGLE($GBORDER,INT2(0),INT2(0),halfx-1,halfy-1)
 !
 ! Second window
 !
 CALL SETVIEWPORT(halfx, INT2(0), xwidth - 1, halfy - 1)
 CALL SETTEXTWINDOW(INT2(1), (cols/2) + 1, rows/2, cols)
 status = SETWINDOW(.FALSE., -3.0D0, -3.0D0, 3.0D0, 3.0D0)
 ! The 3.0D0 notation makes these constants REAL(8)

 CALL gridshape(rows / 2)
 status = RECTANGLE_W($GBORDER, -3.0_8,-3.0_8,3.0_8, 3.0_8)

 !
 ! Third window
 !
 CALL SETVIEWPORT(0, halfy, xwidth - 1, yheight - 1)
 CALL SETTEXTWINDOW((rows / 2) + 1, 1_2, rows, cols)
 status = SETWINDOW(.TRUE., -3.0_8, -1.5_8, 1.5_8, 1.5_8)
 CALL gridshape(INT2((rows / 2) + MOD(rows, INT2(2))))
 status = RECTANGLE_W($GBORDER, -3.0_8, -1.5_8, 1.5_8, 1.5_8)
 END

Although the screen is initially clear, threegraphs makes sure by calling the CLEARSCREEN
routine to clear the window:

 CALL CLEARSCREEN($GCLEARSCREEN)

The $GCLEARSCREEN constant clears the entire window. Other options include $GVIEWPORT
and $GWINDOW, which clear the current viewport and the current text window, respectively.

After assigning values to some variables, threegraphs creates the first window:

 CALL SETVIEWPORT(INT2(0), INT2(0), halfx - 1, halfy - 1)
 CALL SETTEXTWINDOW(INT2(1), INT2(1), rows / 2, cols / 2)
 status = SETWINDOW(.FALSE., -2.0_8, -2.0_8, 2.0_8, 2.0_8)

The first instruction defines a viewport that covers the upper-left quarter of the screen. The next
instruction defines a text window within the boundaries of that border. Finally, the third instruction
creates a window with both x and y values ranging from -2.0 to 2.0. The .FALSE. constant causes
the y-axis to increase from top to bottom, which is the default. The _8 notation identifies the
constants as REAL(8).

Next, the function gridshape inserts the grid and plots the data, and a border is added to the
window:

 CALL gridshape(rows / 2)
 status = RECTANGLE($GBORDER,INT2(0),INT2(0),halfx-1,halfy-1)

This is the standard RECTANGLE routine, which takes coordinates relative to the viewport, not the
window.

The gridshape subroutine plots the data on the screen.

Drawing Graphics Elements Page 18 of 19

9/2/97 3:27:28 PM

 ! GRIDSHAPE - This subroutine plots data for REALG.F90
 !
 SUBROUTINE gridshape(numc)
 !
 USE DFLIB
 INTEGER(2) numc, i, status
 INTEGER(4) rgbcolor, oldcolor
 CHARACTER(8) str
 REAL(8) bananas(21), x
 TYPE (windowconfig) myscreen
 TYPE (wxycoord) wxy
 TYPE (rccoord) curpos
 COMMON myscreen
 !
 ! Data for the graph:
 !
 DATA bananas / -0.3, -0.2, -0.224, -0.1, -0.5, 0.21, 2.9, &
 & 0.3, 0.2, 0.0, -0.885, -1.1, -0.3, -0.2, &
 & 0.001, 0.005, 0.14, 0.0, -0.9, -0.13, 0.31 /
 !
 ! Print colored words on the screen.
 !

 IF(myscreen.numcolors .LT. numc) numc = myscreen.numcolors-1
 DO i = 1, numc
 CALL SETTEXTPOSITION(i, INT2(2), curpos)
 rgbcolor = 12**i -1
 rgbcolor = MODULO(rgbcolor, #FFFFFF)
 oldcolor = SETTEXTCOLORRGB(rgbcolor)
 WRITE (str, ’(I8)’) rgbcolor
 CALL OUTTEXT(’Color ’ // str)
 END DO
 !
 ! Draw a double rectangle around the graph.
 !
 oldcolor = SETCOLORRGB(#0000FF) ! full red
 status = RECTANGLE_W($GBORDER, -1.00_8, -1.00_8, 1.00_8,1.00_8)
 ! constants made REAL(8) by appending _8
 status = RECTANGLE_W($GBORDER, -1.02_8, -1.02_8, 1.02_8, 1.02_8)
 !
 ! Plot the points.
 !
 x = -0.90
 DO i = 1, 19
 oldcolor = SETCOLORRGB(#00FF00) ! full green
 CALL MOVETO_W(x, -1.0_8, wxy)
 status = LINETO_W(x, 1.0_8)
 CALL MOVETO_W(-1.0_8, x, wxy)
 status = LINETO_W(1.0_8, x)
 oldcolor = SETCOLORRGB(#FF0000) ! full blue
 CALL MOVETO_W(x - 0.1_8, bananas(i), wxy)
 status = LINETO_W(x, bananas(i + 1))
 x = x + 0.1
 END DO

 CALL MOVETO_W(0.9_8, bananas(i), wxy)
 status = LINETO_W(1.0_8, bananas(i + 1))
 oldcolor = SETCOLORRGB(#00FFFF) ! yellow
 END

The routine names that end with _W work in the same way as their viewport equivalents, except that
you pass double-precision floating-point values instead of integers. For example, you pass
INTEGER(2) to LINETO, but REAL(8) values to LINETO_W.

Drawing Graphics Elements Page 19 of 19

9/2/97 3:27:28 PM

The two other windows are similar to the first. All three call the gridshape function, which draws a
grid from location (-1.0, -1.0) to (1.0, 1.0). The grid appears in different sizes because the
coordinates in the windows vary. The second window ranges from (-3.0, -3.0) to (3.0, 3.0), and the
third from (-3.0, -1.5) to (1.5, 1.5), so the sizes change accordingly.

The third window also contains a .TRUE. inversion argument. This causes the y-axis to increase
from bottom to top, instead of top to bottom. As a result, this graph appears upside down with
respect to the other two.

After calling gridshape, the program frames each window, using a statement such as the following:

 status = RECTANGLE_W($GBORDER, -3.0_8, -1.5_8, 1.5_8, 1.5_8)

The first argument is a fill flag indicating whether to fill the rectangle’s interior or just to draw its
outline. The remaining arguments are the x and y coordinates for the upper-left corner followed by
the x and y coordinates for the lower-right corner. RECTANGLE takes integer arguments that refer
to the viewport coordinates. RECTANGLE_W takes four double-precision floating-point values
referring to window coordinates.

After you create various graphics elements, you can use the font-oriented routines to polish the
appearance of titles, headings, comments, or labels. Using Fonts from the Graphics Library describes
in more detail how to print text in various fonts with font routines.

Using Fonts from the Graphics Library Page 1 of 4

8/21/97 12:20:54 PM

Using Fonts from the Graphics Library
The Visual Fortran Graphics Library includes routines that print text in various sizes and type styles.
These routines provide control over the appearance of your text and add visual interest to your screen
displays.

This section assumes you have read Drawing Graphics Elements and that you understand the general
terminology it introduces. You should also be familiar with the basic properties of both the
SETWINDOWCONFIG and MOVETO routines. Also, remember that graphics programs containing
graphics routines must be built as QuickWin or Standard Graphics applications.

The project type is set in Developer Studio when you select New from the File menu, then click on
the Projects tab, and select either QuickWin Application or Standard Graphics Application from the
application types listed. Graphics applications can also be built with the /libs:qwin or /libs:qwins
compiler option.

Font types and the use of fonts are described in the following sections:

• Available Typefaces
• Using Fonts
• SHOWFONT.F90 Example

Available Typefaces
A font is a set of text characters of a particular size and style. A typeface (or type style) refers to the
style of the displayed text --Arial, for example, or Times New Roman.

Type size measures the screen area occupied by individual characters. The term comes from the
printer's lexicon, but uses screen pixels as the unit of measure rather than the traditional points. For
example, "Courier 12 9" denotes the Courier typeface, with each character occupying a screen area of
12 vertical pixels by 9 horizontal pixels. The word "font", therefore implies both a typeface and a
type size.

The QuickWin Library's font routines use all Windows operating system installed fonts. The first
type of font used is a bitmap (or raster-map) font. Bitmap fonts have each character in a binary data
map. Each bit in the map corresponds to a screen pixel. If the bit equals 1, its associated pixel is set
to the current screen color. Bit values of 0 appear in the current background color.

The second type of font is called a TrueType font. Some screen fonts look different on a printer, but
TrueType fonts print exactly as they appear on the screen. TrueType fonts may be bitmaps or soft
fonts (fonts that are downloaded to your printer before printing), depending on the capabilities of
your printer. TrueType fonts are scalable and can be sized to any height. It is recommended that you
use TrueType fonts in your graphics programs.

Each type of font has advantages and disadvantages. Bitmapped characters appear smoother on the
screen because of the predetermined pixel mapping. However, they cannot be scaled. You can scale
TrueType text to any size, but the characters sometimes don't look quite as solid as the bitmapped
characters on the screen. Usually this screen effect is hardly noticable, and when printed, TrueType
fonts are as smooth or smoother than bitmapped fonts.

Using Fonts from the Graphics Library Page 2 of 4

9/2/97 3:28:46 PM

The bitmapped typefaces come in preset sizes measured in pixels. The exact size of any font depends
on screen resolution and display type.

Using Fonts
QuickWin’s font routines can use all the Windows operating system installed fonts. To use fonts in
your program, you must:

1. Initialize the fonts.
2. Select a current font from the initialized fonts.
3. Display font text with OUTGTEXT

Initializing Fonts

A program that uses fonts must first organize the fonts into a list in memory, a process called
initializing. The list gives the computer information about the available fonts.

Initialize the fonts by calling the INITIALIZEFONTS routine:

 USE DFLIB
 INTEGER(2) numfonts
 numfonts = INITIALIZEFONTS()

If the computer successfully initializes one or more fonts, INITIALIZEFONTS returns the number
of fonts initialized. If the function fails, it returns a negative error code.

Setting the Font and Displaying Text

Before a program can display text in a particular font, it must know which of the initialized fonts to
use. SETFONT makes one of the initialized fonts the current (or "active") font. SETFONT has the
following syntax:

SETFONT(options)

The function’s argument consists of letter codes that describe the desired font: typeface, character
height and width in pixels, fixed or proportional, and attributes such as bold or italic. These options
are discussed in detail in the SETFONT entry in the Reference. For example:

 USE DFLIB
 INTEGER(2) index, numfonts
 numfonts = INITIALIZEFONTS ()
 index = SETFONT(’t’’Cottage’’h18w10’)

This sets the typeface to Cottage, the character height to 18 pixels and the width to 10 pixels.

The following example sets the typeface to Arial, the character height to 14, with proportional
spacing and italics (the pi codes):

 index = SETFONT(’t’’Arial’’h14pi’)

Using Fonts from the Graphics Library Page 3 of 4

9/2/97 3:28:46 PM

If SETFONT successfully sets the font, it returns the font’s index number. If the function fails, it
returns a negative integer. Call GRSTATUS to find the source of the problem; its return value
indicates why the function failed. If you call SETFONT before initializing fonts, a run-time error
occurs.

SETFONT updates the font information when it is used to select a font. GETFONTINFO can be
used to obtain information about the currently selected font. SETFONT sets the user fields in the
fontinfo type (a derived type defined in DFLIB.MOD), and GETFONTINFO returns the
user-selected values. The following user fields are contained in fontinfo:

TYPE fontinfo
 INTEGER(2) type ! 1 = truetype, 0 = bit map
 INTEGER(2) ascent ! Pixel distance from top to baseline
 INTEGER(2) pixwidth ! Character width in pixels, 0=prop
 INTEGER(2) pixheight ! Character height in pixels
 INTEGER(2) avgwidth ! Average character width in pixels
 CHARACTER(32) facename ! Font name
END TYPE fontinfo

To find the parameters of the current font, call GETFONTINFO. For example:

 USE DFLIB
 TYPE (fontinfo) font
 INTEGER(2) i, numfonts
 numfonts = INITIALIZEFONTS()
 i = SETFONT (’ t ’ ’Arial ’)
 i = GETFONTINFO(font)
 WRITE (*,*) font.avgwidth, font.pixheight, font.pixwidth

After you initialize the fonts and make one the active font, you can display the text on the screen.

To display text on the screen after selecting a font
1. Select a starting position for the text with MOVETO.
2. Optionally, set a text display angle with SETGTEXTROTATION.
3. Send the text to the screen (in the current font) with OUTGTEXT.

MOVETO moves the current graphics point to the pixel coordinates passed to it when it is invoked.
This becomes the starting position of the upper-left corner of the first character in the text.
SETGTEXTROTATION can set the text’s orientation in one-degree increments.

SHOWFONT.F90 Example
The program SHOWFONT.F90 in the \DF\SAMPLES\TUTORIAL subdirectory displays text in the
fonts available on your system. (Once the screen fills with text, press ENTER to display the next
screen.) An abbreviated version follows. SHOWFONT calls SETFONT to specify the typeface.
MOVETO then establishes the starting point for each text string. The program sends a message of
sample text to the screen for each font initialized:

! Abbreviated version of SHOWFONT.F90.
 USE DFLIB

 INTEGER(2) grstat, numfonts,indx, curr_height
 TYPE (xycoord) xyt
 TYPE (fontinfo) f
 CHARACTER(6) str ! 5 chars for font num

Using Fonts from the Graphics Library Page 4 of 4

9/2/97 3:28:46 PM

 ! (max. is 32767), 1 for ’n’

! Initialization.
 numfonts=INITIALIZEFONTS()
 IF (numfonts.LE.0) PRINT *,"INITIALIZEFONTS error"
 IF (GRSTATUS().NE.$GROK) PRINT *,’INITIALIZEFONTS GRSTATUS error.’
 CALL MOVETO (0,0,xyt)
 grstat=SETCOLORRGB(#FF0000)
 grstat=FLOODFILLRGB(0, 0, #00FF00)
 grstat=SETCOLORRGB(0)
! Get default font height for comparison later.
 grstat = SETFONT(’n1’)
 grstat = GETFONTINFO(f)
 curr_height = f.pixheight
! Done initializing, start displaying fonts.
 DO indx=1,numfonts
 WRITE(str,10)indx
 grstat=SETFONT(str)
 IF (grstat.LT.1) THEN
 CALL OUTGTEXT(’SetFont error.’)
 ELSE
 grstat=GETFONTINFO(f)
 grstat=SETFONT(’n1’)
 CALL OUTGTEXT(f.facename(:len_trim(f.facename)))
 CALL OUTGTEXT(’ ’)
! Display font.
 grstat=SETFONT(str)
 CALL OUTGTEXT(’ABCDEFGabcdefg12345!@#$%’)
 END IF
! Go to next line.
 IF (f.pixheight .GT. curr_height) curr_height=f.pixheight
 CALL GETCURRENTPOSITION(xyt)
 CALL MOVETO(0,INT2(xyt.ycoord+curr_height),xyt)
 END DO
10 FORMAT (’n’,I5.5)
 END

Writing New Code: Design Considerations Page 1 of 12

8/21/97 12:21:23 PM

Writing New Code: Design Considerations
Before you can start to write new programs or port existing ones to Visual Fortran, you must decide
what to build and how to build it. This section covers the following topics:

• Choosing Your Development Environment with Visual Fortran.
• Selecting a Program Type that you can build.
• Structuring Your Program.
• Special Design Considerations.
• Using the Special Features of Microsoft Windows with your programs.
• Development Environments, which provides a graphic overview of the development process.

Choosing Your Development Environment
With Visual Fortran, you can build programs either from a console window (which allows you to
enter text commands directly into a command prompt) or from Microsoft Developer Studio, the
integrated development environment. For information on using Microsoft Developer Studio, see the
Developer Studio Environment User's Guide.

Developer Studio offers a number of ways to simplify the task of compiling and linking programs.
For example, a dialog box presents compiler and linker options in logical groupings, with descriptive
names and simple mouse or keyboard selection methods. (If you need assistance using this or any
other dialog box, choose the Help button in the dialog box.)

Developer Studio also provides a default editor, which is integrated with Help, the debugger, and
error tracking features. Developer Studio allows many types of editors, and is customizable. For
example, Emacs is a preset type of editor, which is integrated with both Help and the debugger. You
can use your favorite ASCII text editor within Developer Studio. If you do, however, you may not be
able to use the integrated Help, debugger, and error tracking features.

Because software development is an iterative process, it is important to be able to move quickly and
efficiently to various locations in your source code. If you use Developer Studio to compile and link
your programs, you can call up both the description of the error message and the relevant source code
directly from the error messages in the output window.

You also use the Developer Studio editor to view and control execution of your program with the
integrated source level debugger. Finally, when you use the project browser to locate routines, data
elements, and references to them, Developer Studio uses its editor to go directly to the source code.

When you build programs from the console, you are in complete control of the build tools. If you
choose to, you can customize how your program is built by your selection of compiler and linker
options. Compiler and linker options are described in Compiler and Linker Options.

Even if you choose to edit and build your program from the command console, you can still use the
Developer Studio debugger and browser after your program has compiled and linked cleanly. Finally,
you can run the profiler to produce a text report of your program's execution statistics either from the
command console or from Developer Studio.

Writing New Code: Design Considerations Page 2 of 12

9/2/97 3:29:07 PM

Selecting a Program Type
You select the program type in the Project Type dialog box when you create a new project file. You
can build four basic kinds of executable programs (as well as DLLs and static libraries):

• Console applications (.EXE)
• Standard graphics applications (.EXE)
• QuickWin graphics applications (.EXE)
• Windows applications (.EXE)

Code that works in one application may not work in others. For example, graphics calls are not
appropriate in a console application.

Console applications are the most portable to other systems because they are text-only and do not
support graphics. With standard graphics applications, you can add graphics to your text without the
additional overhead of menus and other interface features of typical programs for Windows.
QuickWin graphics applications provide a simple way to use some features of Windows in a Visual
Fortran program with graphics.

Windows applications give users full access to the Win32 Application Programming Interface (API),
giving you a larger set of functions than QuickWin offers. With Windows applications, you can
access low-level system services directly, or access higher level system services such as OpenGL.

None of the graphics functions in Visual Fortran, except for those in the OpenGL library, are directly
portable to operating systems offered by other vendors. A graphical interface does, however, offer
certain advantages to the application designer and to the person who will use the program. The
choice of what kind of program to build is a trade-off between performance, portability, ease of
coding, and ease of use. The advantages and disadvantages of each type of application are
summarized in the following sections.

All four kinds of applications can be maximized, minimized, resized, and moved around the screen
when displayed in a window. If the drawing area of a window in your application is larger than the
window in which it is displayed, scroll bars are automatically added to the bottom and right edges of
the window.

You can write any of the applications with one section of the program beginning execution before
another has completed. These threads of execution run either concurrently on a computer with one
processor or simultaneously on a computer with multiple processors. (See Creating Multithread
Applications.)

Console Applications

A console application (.EXE) is a character-based Visual Fortran program that runs in a command
console. It looks similar to a program running on a UNIX workstation or a terminal connected to a
mainframe computer.

Console applications can be faster than standard graphics or QuickWin graphics applications,
because of the time required to display graphical output. Console applications are better suited to
problems that require pure numerical processing rather than graphical output or a graphical user

Writing New Code: Design Considerations Page 3 of 12

9/2/97 3:29:07 PM

interface. This type of application is also more transportable to other platforms than the other types
of application.

As with all Windows command consoles, you can toggle between viewing the console in a window
or in full-screen mode by using the ALT+ENTER key combination.

Standard Graphics Applications

A standard graphics application (.EXE) is a Visual Fortran program with graphics that runs in a
single window. A standard graphics application looks similar to an MS-DOS program when
manipulating the graphics hardware directly, without Windows. You can select displayed text either
as a bitmap or as text. Windows provides APIs for loading and unloading bitmap files. Standard
graphics applications can be written as either single-threaded or multithreaded applications under
Windows NT or Windows 95. (For information about multithreaded programs, see Creating
Multithread Applications.)

Standard graphics applications are normally presented in full-screen mode. If the resolution selected
matches the screen size, the application covers the entire screen; otherwise, it is a resizable window
with scroll bars. You cannot open additional windows in a standard graphics application. Standard
graphics applications have neither a menu bar at the top of the window, nor a status bar at the
bottom.

Standard graphics applications are appropriate for problems that require numerical processing and
graphics, and that do not require a sophisticated user interface.

QuickWin Graphics Applications

QuickWin is a library that lets you build applications with a simplified version of the Windows
interface with Visual Fortran. The QuickWin library provides a rich set of Windows features, but it
does not include the complete Windows Applications Programming Interface (API). If you need
additional capabilities, you must set up a Windows application to call the Win32 API directly rather
than using QuickWin to build your program. For more information on QuickWin programming, see
Using QuickWin.

QuickWin graphics applications (.EXE) have a multiple-document interface (MDI). Applications
that use MDI have a menu bar at the top of the window and a status bar at the bottom. The QuickWin
library provides a default set of menus and menu items that you can customize with the QuickWin
APIs. An application that uses MDI creates many "child" windows within an outer application
window. The user area in an MDI application is a child window that appears in the space between the
menu bar and status bar of the application window. Your application can have more than one child
window open at a time.

QuickWin applications can also use the DFLOGM.F90 module to access functions to control dialog
boxes. These functions allow you to display, initialize, and communicate with special dialog boxes in
your application. They are a subset of Win32 API functions, which Windows applications can call
directly. For more information on using dialog boxes, see Using Dialogs.

If you build a QuickWin application from the command console, you can use the /libs:qwins option
to indicate standard graphics applications. A QuickWin application that uses the compiler option is

Writing New Code: Design Considerations Page 4 of 12

9/2/97 3:29:08 PM

similar to a standard graphics application in that it has no menu bar or status bar. (In fact, a standard
graphics application is a QuickWin application with a set of preset options. It is offered in the
program types list for your convenience.) As with a standard graphics application, the application
covers the entire screen if the resolution selected matches the screen size; otherwise, it is a resizable
window with scroll bars.

Windows Applications

A windows application ("Application" project type; .EXE program type) calls the Windows APIs
directly from Visual Fortran. The DFWIN.F90 module contains interfaces to the most common
Win32 APIs. If you include the USE DFWIN statement in your program, all routines are available to
you. The DFWIN.F90 module gives you access to a full range of routines including window
management, graphic device interface, system services, multimedia, and remote procedure calls.

Window management gives your application the means to create and manage a user interface. You
can create windows to display output or prompt for input. Graphics device interface functions
provide ways for you to generate graphical output for displays, printers, and other devices. Win32
system functions allow you to manage and monitor resources such as memory, access to files,
directories, and I/O devices. System service functions provide features that your application can use
to handle special conditions such as errors, event logging, and exception handling.

Using multimedia functions, your application can create documents and presentations that
incorporate music, sound effects, and video clips as well as text and graphics. Multimedia functions
provide services for audio, video, file I/O, media control, joystick, and timers.

Remote Procedure Calls (RPC) gives you the means to carry out distributed computing, letting
applications tap the resources of computers on a network. A distributed application runs as a process
in one address space and makes procedure calls that execute in an address space on another
computer. You can create distributed applications using RPC, each consisting of a client that
presents information to the user and a server that stores, retrieves, and manipulates data as well as
handling computing tasks. Shared databases and remote file servers are examples of distributed
applications.

Advanced Applications includes information on how to create a windows application in the section
entitled Creating Windows Applications.

If you are using the CD version of Visual Fortran, you can access the Windows API help file directly.
You can also obtain information through the Microsoft Developer Network. Developer Network
membership includes a development library and a quarterly CD containing technical information for
Windows programming.

The full Win32 API set is documented in the Win32 Application Programming Interface for
Windows NT Programmer’s Reference, available from Microsoft Press and also distributed as part of
the Windows NT Software Development Kit. For information on joining the Developer Network, see
the Microsoft Support Network help file.

Note: Windows projects are much more complex than other kinds of Visual Fortran projects.
Before attempting to use the full capabilities of Windows programming, you should be
comfortable writing C applications and familiarize yourself with the Windows Software

Writing New Code: Design Considerations Page 5 of 12

9/2/97 3:29:08 PM

Development Kit (SDK).

Structuring Your Program
There are several ways to organize your project and the applications that you build with Visual
Fortran. This section introduces several of these options, and offers suggestions for when you might
want to use them.

For more information, see:

• Creating Fortran Executables
• Advantages of Modules
• Advantages of Internal Procedures
• Storing Object Code in Static Libraries
• Storing Routines in Dynamic-Link Libraries

Creating Fortran Executables

The simplest way to build an application is to compile all of your Visual Fortran source files (.FOR)
and then link the resulting object files (.OBJ) into a single executable file (.EXE). You can build
single-file executables either with Microsoft Developer Studio or by using the DF (or FL32)
command from the console command line.

The executable file you build with this method contains all of the code needed to execute the
program, including the run-time library. Because the program resides in a single file, it is easy to
copy or install. However, the project contains all of the source and object files for the routines that
you used to build the application. If you need to use some of these routines in other projects, you
must link all of them again.

Advantages of Modules

One way to reduce potential confusion when you use the same source code in several projects is to
organize the routines into modules. There are two main uses for modules in Visual Fortran:

• Internal encapsulation--A single complex program can be made up of many modules. Each
module can be a self-contained entity, incorporating all the procedures and data required for
one of your program's tasks. When a task is encapsulated, it is easy to share the code between
two different projects.

In this case, all the modules should be included in the main project directory. If many projects
all share the same module, the module should reside in only one directory. All projects that
use it should specify the /I compiler option to indicate the location of the module.

• External modules--If you use a module provided from an outside source, you need only the
.MOD file at compile time, and the .OBJ file at link time. Use the /[no]include[path] (or
/Ipath) command line option (or the INCLUDE environment variable) to specify the location
of these files, which will probably not be the same as your project directory.

During the building of a project, the compiler scans the project files for dependencies. If you specify

Writing New Code: Design Considerations Page 6 of 12

9/2/97 3:29:08 PM

the /[no]include[path] (or /Ipath) command line option or the INCLUDE environment variable, the
compiler is able to find the external modules.

Store precompiled module files, with the extension .MOD, in a directory included in the path. When
the compiler sees the USE statement in a program, it finds the module based on the name given in
the USE statement, and there is no need to maintain several copies of the same source or object code.

Modules are excellent ways to organize programs. You can set up separate modules for:

• Commonly used routines
• Data definitions specific to certain operating systems
• System-dependent language extensions

Advantages of Internal Procedures

Functions or subroutines that are used in only one program can be organized as internal procedures,
following the CONTAINS statement of a program or module.

Internal procedures have the advantage of host association, that is, variables declared and used in the
main program are also available to any internal procedure it may contain. For more information on
procedures and host association, see Program Units and Procedures.

Internal procedures, like modules, provide a means of encapsulation. Where modules can be used to
store routines commonly used by many programs, internal procedures separate functions and
subroutines whose use is limited or temporary.

Storing Object Code in Static Libraries

Another way to organize source code used by several projects is to build a static library (.LIB)
containing the object files for the reused procedures. You can create a static library either by building
a project of that type from Microsoft Developer Studio or by using the LIB command from the
console. After you have created a static library, you can use it to build any of the other types of
Visual Fortran projects.

If you use a static library, only those routines actually needed by the program are incorporated into
the executable image (.EXE). This means that your executable image will be smaller than if you
included all the routines in the library in your executable image. Also, you do not have to worry
about exactly which routines you need to include -- the link program takes care of that for you.

Because applications built with a static library all contain the same version of the routines in the
library, you can use static libraries to help keep applications current. When you revise the routines in
a static library, you can easily update all the applications that use it by relinking the applications.

Storing Routines in Dynamic-Link Libraries

Another method of organizing the code in your application involves storing the executable code for
certain routines in a separate file called a Dynamic-Link Library (DLL), and building your
applications so that they call these routines from the DLL. When routines in a DLL are called, the
routines are loaded into memory at run-time, as they are needed. This is most useful when several

Writing New Code: Design Considerations Page 7 of 12

9/2/97 3:29:08 PM

applications use a common group of routines. By storing these common routines in a DLL, you
reduce the size of each application that calls the DLL. In addition, you can update the routines in the
DLL without having to rebuild any of the applications that call the DLL.

With Visual Fortran, you can use DLLs in two ways. First, you can build a DLL with your own
routines. In Microsoft Developer Studio, select dynamic-link library as your project type; from the
command line use the /DLL option with DF. As stated earlier, Visual Fortran also lets you build
applications with the run-time library stored in a separate DLL instead of in the main application file.
DLL run-time routines can be selected with a compiler option.

For more information on compiler and linker options and how to build a project, see Win32
Dynamic-Link Library Projects.

Special Design Considerations
You can write your code any way you want if you plan to run it on a single computer, use only one
variation of one programming language, and never hand your code to anyone else. If any of these
assumptions changes, there are several other issues to consider when you design your program.

For more information, see:

• Porting Fortran Source Between Systems
• Mixed-Language Issues
• Porting Data Between Systems

Porting Fortran Source Code Between Systems

In general, Visual Fortran is a portable language. One of the main advantages of the language is the
availability of large and well-tested libraries of Fortran code. You also might have existing code
addressing your problem that you want to reuse. Math and scientific code libraries from most
vendors should port to Visual Fortran with virtually no problems.

You might also want to use Visual Fortran as a development platform for code that can later be
ported to another system, such as mainframe-class Alpha systems running the DIGITAL UNIX® or
the OpenVMStm operating system.

Whether you are bringing code from another system or planning to export it to another system, you
will need to do the following:

• Isolate system-dependent code into separate modules. Maintain distinct modules with similar
functionality for each separate platform.

• In your main program, use only language extensions that will compile on both platforms,
putting system-dependent code into modules.

• Place language extension subsets into modules.
• If you use Microsoft compiler directives, replace the older $directive format with the !DEC$

directive format, because this will be ignored by other systems.
• Specify data precision, for integers and logicals as well as for floating-point numbers when the

size matters. If you do not explicitly specify KIND for variables, this could be the source of
problems if one system uses a default of (KIND=2) for integers, while your program assumes

Writing New Code: Design Considerations Page 8 of 12

9/2/97 3:29:08 PM

(KIND=4).
• Conversely, if the size of a variable is not significant, avoid specifying data precision. Code

that does specify precision will run slower on systems that do not use the same default integer
and real sizes.

• Avoid using algorithms that exhibit floating-point instability. For information on handling
floating-point numbers, see The Floating-Point Environment.

• Specify equivalent floating-point precision on each platform.
• Specify the appropriate attributes when defining routines and data that will be interacting with

code written in Microsoft® Visual C/C++® or assembly language.

For more information on porting code between systems, see Portability.

Choosing a Language Extension Subset

The Visual Fortran compiler supports extensions used on a variety of platforms, plus some that are
specific to Visual Fortran. Because there are Fortran compilers for many different computers, you
might need to move your source code from one to another. If the trip is one-way and it is permanent,
you can simply change the code to work on the second platform. But if you need to make sure you
can move the code whenever needed, you must be aware of the extensions to Fortran that are
supported on each platform.

You can use some of the Visual Fortran compiler options to help you write portable code. For
example, by specifying ANSI syntax adherence in the Compiler Options dialog box or on the
command line, you can have the compiler enforce Fortran 90 syntax. Code that compiles cleanly
with this option set is very likely to compile cleanly on any other computer with a Fortran compiler
that obeys strict Fortran syntax.

If you choose to use platform-specific extensions, you need to note whether there are any differences
in how those extensions are implemented on each computer, and use only those features that are
identical on both. (For more information, see Portability.) The default is to compile with the full set
of extensions available.

Because Visual Fortran compiler directives look like standard Fortran comments (!DEC$directive),
programs that use directives can compile on other systems. They will, however, lose their function as
compiler directives.

Floating-Point Issues

Floating-point answers can differ from system to system, because different systems have different
precisions and treat rounding errors in different ways.

One programming practice that can be a serious source of floating-point instability is performing an
IF test (either obvious or implied) that takes some action if and only if a floating-point number
exactly equals a particular value. If your program contains code like this, rewrite the code to a
version that is stable in the presence of rounding error. For more details, see The Floating-Point
Environment and Portability.

Another source of floating-point instability is the use of mathematical algorithms that tend to
diminish precision. Incorrect answers can result when the code is moved to a system with less
precision. For more information, see The Floating-Point Environment.

Writing New Code: Design Considerations Page 9 of 12

9/2/97 3:29:08 PM

One way of making all REAL variables on one system DOUBLE PRECISION on another is to use
modules to declare explicit data types for each system. Specify a different KIND parameter in each
module. Another way is to add an include file that declares explicit data types on each system in all
source files.

Mixed-Language Issues

You can combine object modules generated by Visual Fortran with object files from compilers for
32-bit Windows that compile other languages (such as Microsoft Visual C++, or Microsoft®

MASM), so long as the compilers use the COFF object module format used by Microsoft.

You need to respect certain calling, naming, and argument-passing conventions when combining
object modules from different languages. These conventions are discussed in Programming with
Mixed Languages.

Porting Data Between Systems

The easiest way to port data to or from the Visual Fortran environment is as a formatted, sequential,
8-bit ASCII character file that can be read using Fortran formatted input statements; if you do this,
you should have no trouble.

If you try to transfer unformatted binary data between systems, you need to be aware of the different
orders (low-order byte first or high-order byte first) in which different systems store bytes within
words. If you need to transfer unformatted binary data, review Portability and Converting
Unformatted Numeric Data. You can avoid these problems by using a formatted ASCII file.

Using the Special Features of Microsoft Windows
One of the greatest advantages to building applications for Windows is the power and security
provided by the operating system. By simply recompiling your old source code and building a
(text-only) console application, you can run your program in a protected address space where it
cannot damage other applications, hang the processor, or cause the computer to crash.

If you choose to take advantage of the power of Windows NT or Windows 95, your programs can
run more efficiently on single-processor computers. Window NT also supports multi-processor
computers.

For more information, see:

• Built-in Benefits of Windows
• Single or Multithread Program Execution
• QuickWin and Windows Programs

Built-in Benefits of Windows

Windows executes your application in a secure environment that includes the support services your
application needs to execute efficiently and with a minimum of problems. This environment is a flat
virtual address space that can be as large as 2 gigabytes, providing you have enough available disk

Writing New Code: Design Considerations Page 10 of 12

9/2/97 3:29:08 PM

space. While executing, your program is protected by Windows from damaging other applications
and from being damaged by other applications.

The operating system uses preemptive multitasking to control how much processor time each
application uses. Instead of waiting for an application to voluntarily yield control of the computer
back to the operating system, Windows allocates a period of processor time to the application and
regains control when that period has expired. This prevents a program with an infinite loop from
hanging the computer. If your program hangs, you can easily and safely stop it by using the Windows
task manager. (For information about using this or any other feature of Windows, see the manuals
that came with the operating system.)

Because you can use one application while another continues to execute, you can make better use of
your own time. For example, you can use Microsoft Developer Studio to edit the source for one
project while another project is building, or use Microsoft Excel to prepare a graph for data that your
program is busy producing. And if your computer has multiple processors and you are using
Windows NT, the computation-intensive program producing your data might be executing on an
otherwise idle processor, making it less likely that your other work will slow it down.

Single or Multithread Program Execution

You can take further advantage of preemptive multitasking by designing your program so that
portions of it, called threads, can be executed in parallel. For example, one thread can perform a
lengthy input/output operation while another thread processes data. All of the threads in your
application share the same virtual address space. Both Windows 95 and Windows NT support
multithreading.

When running Windows NT on a symmetric multiprocessor machine (sometimes called an "SMP
machine") you can achieve a substantial speedup on numerically intensive problems by dividing the
work among different threads; the operating system will assign the different threads to different
processors. Even if you have a single processor machine, multiple-window applications might
benefit from multithreading because threads can be associated with different windows; one thread
can be calculating while another is waiting for input.

Multithreaded code must be written so that the threads do not interfere with each other and overwrite
each other’s data. Creating Multithread Applications describes how to do this. If your multithreaded
code calls functions from the run-time library or does input/output, you must also link your code to
the multithreaded version of the run-time libraries instead of the regular single-threaded ones. This is
described in in Compiling and Linking Multithread Programs and Building Programs and Libraries.

While you might gain execution speed by having a program executed in multiple threads, there is
overhead involved in managing the threads. You need to evaluate the requirements of your project to
determine whether you should run it with more than one thread.

QuickWin and Windows Programs

One decision you must make when designing a program is how it will be used. If the person using
your program must interact with it, the method of interaction can be important. For example, anytime
the user must supply data, that data must be validated or it could cause errors. One way to minimize

Writing New Code: Design Considerations Page 11 of 12

9/2/97 3:29:08 PM

data errors is to change how the data is provided. In this example, if the data is one of several values
that are known when the program is executed, the user can select a menu item instead of typing on
the keyboard.

When you design programs to be interactive, you use a different structure than if you design them to
be run in unattended batches. Interactive applications behave more like state machines than
numerical algorithms, because they perform the actions you request when you request them. You
may also find that once you can change what your program is doing while it runs, you will be more
likely to experiment with it.

The QuickWin library lets you build simple Windows applications. Because QuickWin is a wrapper
around a subset of the Windows API, there are limitations to what you can do, but it can fulfill the
requirement of most users. If you need additional capabilities, you can call the Windows API directly
rather than using QuickWin to build your program. (For more information, see Using QuickWin).
You can also build a graphic user interface in either Microsoft®C or Visual Basic® that calls your
Fortran code.

Development Environments
Whether you choose to use Microsoft Developer Studio or the console command line to build your
programs, the process that you use is constant.

However, your choice of development environment determines what you can do at each stage. The
following diagram illustrates the development process for both choices.

Writing New Code: Design Considerations Page 12 of 12

9/2/97 3:29:08 PM

note 1: Building Programs and Libraries

note 2: Using the Compiler and Linker from the Command Line and Using Visual Fortran Tools

note 3: Advanced Applications

note 4: The Floating-Point Environment

note 5: Profiling Code from the Command Line

Building Programs and Libraries Page 1 of 19

8/21/97 12:21:51 PM

Building Programs and Libraries
Microsoft Developer Studio makes it easy for you to create, debug, and execute your programs. It
includes a full-feature editor and interactive help. For complete details on how to use the
development environment, see the Developer Studio Environment User’s Guide.

You can build your source code into several types of programs and libraries, either using Developer
Studio or working from the command line. This section covers the general issues involved in
building projects with Developer Studio:

• Overview of Building Projects
• Types of Projects you can build
• Defining Your Project and selecting project features with Developer Studio
• Errors During the Build Process
• Running Fortran Applications
• Porting Projects Between x86 and Alpha Platforms

For information on building programs and libraries at the command line, see:

• Using the Compiler and Linker from the Command Line
• Using Visual Fortran Tools

Overview of Building Projects
Microsoft Developer Studio organizes development into projects. A project consists of the source
files required for your application, along with the specifications for building the project. The build
process involves defining your project, setting options for it, and building the program or library.

Each project can specify one or more configurations to build from its source files. A configuration
specifies such things as the type of application to build, the platform on which it is to run, and the
tool settings to use when building. Having multiple configurations allows you to extend the scope of
a project but still maintain a consistent source code base from which to work.

When you create a new project, Developer Studio automatically creates Debug and Release
configurations for you. To specify the configuration, from the Build menu select Set Active
Configuration.

The development environment includes a FileView pane, which displays the files contained in the
project, and lets you examine visually the relationships among the files in your project. Modules,
include files, or special libraries your program uses are automatically listed as dependencies. The
output window displays information produced by the compiler, linker, Find in Files utility, and the
profiler.

You can specify build options in the Project menu Settings dialog box, for one of the following:
• The entire project
• For certain configurations
• For certain files

For example, you can specify certain kinds of compiler optimizations for your project in general, but

Building Programs and Libraries Page 2 of 19

9/2/97 3:29:25 PM

turn them off for certain configurations or certain files.

Once you have specified the files in your project, the configurations that your project is to build, and
the tool settings for those configurations, you can build the project with the commands on the Build
menu.

For more information, see:

• How Information Is Displayed
• Menu Options
• Using the Shortcut Menu

How Information Is Displayed

Microsoft Developer Studio displays information in windows, panes, and folders. One window can
contain several panes, and each pane can display one or more folders. A pane is a separate and
distinct area of a window; a folder is a visual representation of files in a project. Folders show the
order in which Visual Fortran compiles the files, and the relationship of source files to their
dependent files, such as modules.

When you initially create a project, the Project Workspace window contains some default panes,
accessible through tabs at the bottom of the window, to display information about the content of the
project. You can also open an output window, which has panes that display build output, debug
output, Find in Files output, and profiler output. In addition to the default panes, you can create
customized panes to organize and display project information in ways most useful to you.

You can access information about components of the project from the panes in the project window.
Double-clicking any item in a pane displays that item in an appropriate way: source files in a text
editor, dialog boxes in the dialog editor, help topics in the information window, and so on.

Be sure to select the appropriate pane when using the menu commands, in particular the Save and
Save As commands. Commands on the File menu affect only the window that currently has the
focus.

Menu Options

Menu options that are available to you may look different, depending on which window or pane has
current focus. The Debug menu, for example, is only visible when you are debugging. Microsoft
Developer Studio has the following menu bars and toolbars:

• Standard menu bar
• Standard toolbar
• Build toolbar
• Build minibar
• Resource toolbar
• InfoViewer toolbar
• Edit toolbar
• Debug toolbar
• Browse toolbar
• Fortran toolbar (format editor)

Building Programs and Libraries Page 3 of 19

9/2/97 3:29:25 PM

You can select or deselect the menu bars and toolbars from the Tools menu Customize item, Toolbar
tab.

Using the Shortcut Menu

The project window has a shortcut menu that lists commands appropriate for the current selection in
the window. This is a quick method to display commands that are also available from the main menu
bar.

To display the shortcut menu:

• Move the mouse pointer into the project window and click the right mouse button.

You can now select project commands that are appropriate for your current selection in the project
window.

Types of Projects
Each project has a type, which you choose when you create the project. You need to create a project
for each binary executable file to be created. For example, the main Fortran program and a Fortran
dynamic-link library (DLL) would each reside in the same workspace as separate projects.

The project type specifies what to generate and determines some of the options that Microsoft
Developer Studio sets by default for the project. It determines, for instance, the options that the
compiler usesto compile the source files, the static libraries that the linker uses to build the project,
the default locations for output files, defined constants, and so on.

You can build six kinds of projects with Visual Fortran. You specify the project type when you
create a new project. They are summarized in the following table:

Project type Key features
Win32 Console
Application (.EXE)

Single window main projects without graphics (resembles character-cell
applications). Requires no special programming expertise. For a sample of a
Console Application, see \MYPROJECTS\CELSIUS, as described in Opening
an Existing Project.

Standard Graphics
Application (.EXE)

Single window main projects with graphics. The programming complexity is
simple to moderate, depending on the graphics and user interaction used.
Samples of Standard Graphics Application (QuickWin single window),
resemble those for QuickWin Applications.

QuickWin
Application(.EXE)

Multiple window main projects with graphics. The programming complexity
is simple to moderate, depending on the graphics and user interaction used.
Samples of QuickWin Applications (QuickWin multiple window) are in
\DF\SAMPLES\GENERAL, such as QWPIANO and QWPAINT.

Win32 (Windows)
Application (.EXE)

Multiple window main projects with full graphical interface and Win32 API
functions. Requires advanced programming expertise and knowledge of the
Win32 API. Samples of Win32 Applications are in
\DF\SAMPLES\ADVANCED\WIN32, such as PLATFORM or
POLYDRAW.

Building Programs and Libraries Page 4 of 19

9/2/97 3:29:25 PM

Win32 Static library
(.LIB)

Library routines to link into .EXE files.

Win32
Dynamic-Link
Library (.DLL)

Library routines to associate during execution.

The first four projects listed in the preceding table are main project types, requiring main programs.
The next two are library projects, without main programs. The project types are discussed in detail in:

• Win32 Console Application
• Standard Graphics Application
• QuickWin Application
• Win32 (Windows) Application
• Win32 Static library
• Win32 Dynamic-Link Library

Other sections related to project types include:

• Selecting a Program Type
• Advanced Applications
• Specifying Project Types with DF Command Options

Win32 Console Application Projects

Console projects are suitable for character-based applications not requiring screen graphics output.
These projects operate in a single window, and allow you to interact with your program through
normal read and write commands.

Any graphics routine that your program calls will produce no output, but will return error codes. A
program will not automatically exit if such an error occurs, so your code should be written to handle
this condition.

With a console project, you can use static libraries, DLLs, and dialog boxes, but you cannot use the
QuickWin functions. You can select the multithreaded libraries with this and all of the other project
types.

Standard Graphics Application Projects

Standard graphics applications (.EXE) operate in a single window that allows graphics output (such
as drawing lines and basic shapes) and other screen functions, such as clearing the screen. Standard
Graphics is a subset of Quickwin, sometimes called Quickwin single window. You can use all of the
QuickWin graphics functions in these projects. You can use dialog boxes with these and all other
project types (see Using Dialogs).

When you select the standard graphics project type, Microsoft Developer Studio includes the
QuickWin library automatically, enabling you to use the graphics functions. When building from the
command line, you must specify the /libs:qwins option. You cannot use the run-time functions meant
for multiple-window projects if you are building a standard graphics project. You cannot make a
Standard Graphics application a DLL.

Building Programs and Libraries Page 5 of 19

9/2/97 3:29:25 PM

The single window can be either full-screen or have window borders and controls available. You can
change between these two modes by using ALT+ENTER.

For more information about Standard Graphics (QuickWin single window) applications, see Using
Quickwin.

QuickWin Application Projects

QuickWin graphics applications (.EXE) are more versatile than standard graphics applications
because you can open multiple windows while your project is executing. For example, you might
want to generate several graphic plots and be able to switch between them while also having a
window for controlling the execution of your program. These windows can be full screen or reduced
in size and placed in various parts of the screen.

When you select the QuickWin graphics project type, Microsoft Developer Studio includes the
QuickWin library automatically, enabling you to use the graphics functions. When building from the
command line, you must specify the /libs:qwin compiler option. You cannot make a QuickWin
application a DLL.

For information on how to use QuickWin functions, including how to open and control multiple
windows, see Using Quickwin.

Win32 (Windows) Application Projects

Win32 (Windows) applications (.EXE) are main programs selected by choosing the Win32
Application project type. This type of project lets you have full access to the Win32 APIs, giving you
a larger (and different) set of functions to work with than QuickWin. You can call some of the
Win32 APIs from the other project types. The full set of Win32 functions available for Win32
(Windows) applications allows use of certain system features not available for the other project
types.

For more information, see Creating Windows Applications.

Note: Windows projects are much more complex than other kinds of Visual Fortran projects.
Before attempting to use the full capabilities of Windows programming, you should be
comfortable with writing C applications and should familiarize yourself with the Windows
Software Development Kit (SDK).

Win32 Static Library Projects

Static libraries (.LIB) are blocks of code compiled and kept separate from the main part of your
program; you would usually keep them in their own directories. They offer important advantages in
organizing large programs and in sharing routines between several programs. These libraries contain
only subprograms, not main programs. When you associate a static library with a program, any
necessary routines are linked from the library into your executable program when it is built.

A static library is a collection of source and object code defined in the FileView pane. The source
code is compiled when you build the project. The object code is assembled into a .LIB file without

Building Programs and Libraries Page 6 of 19

9/2/97 3:29:25 PM

going through a linking process. The name of the project is used as the name of the library file by
default.

If you have a library of substantial size, you should maintain it in a dedicated directory. Projects
using the library access it at linking time.

When you link a project that uses the library, selected object code from the library is linked into that
project’s executable code to satisfy calls to external procedures. Unnecessary object files are not
included.

When compiling a static library from the command line, include the /c option to suppress linking.
Without this option, the compiler generates an error because the library does not contain a main
program.

To debug a static library, you must use a main program that calls the library routines. Both the main
program and the static library should have been compiled using the debug option. After compiling
and linking is completed, open the Debug menu and choose Go to reach breakpoints, use Step to
Cursor to reach the cursor position, or use the step controls on the Debug toolbar.

Using Static Libraries

You add static libraries to a main project in Microsoft Developer Studio with the Insert Files into
Project dialog box. Enter the path and library name in the Insert Files into Project box with a .LIB
extension on the name. If you are using a foreign makefile, you must add the library by editing the
makefile for the main project. If you are building your project from the command line, add the library
name with a .LIB extension and include the path specification if necessary.

For more information about static libraries, see:
• Storing Object Code in Static Libraries

Win32 Dynamic-Link Library Projects

A dynamic-link library (.DLL) is a source-code library that is compiled and linked to a unit
independently of the applications that use it. A DLL shares its code and data address space with a
calling application. A DLL contains only subprograms, not main programs.

A DLL offers the organizational advantages of a static library, but with the advantage of a smaller
executable file at the expense of a slightly more complex interface. Object code from a DLL is not
included in your program's executable file, but is associated as needed in a dynamic manner while
the program is executing. More than one program can access a DLL at a time.

For more information about DLLs, see:
• Storing Routines in Dynamic-Link Libraries
• Building Dynamic-Link Library Projects
• DLLs in Advanced Applications

Defining Your Project
To create a new project, use the File menu and select New. A dialog box opens that has the following
tabs:

Building Programs and Libraries Page 7 of 19

9/2/97 3:29:25 PM

• Files
• Projects
• Workspaces
• Other Documents

The Projects tab displays various project types. Specify the project name and location. Click the type
of Fortran project to be created. If you have other Visual tools installed, make sure you select a
Fortran project type (see Types of Projects).

You can set the Create New Workspace check box to create a new Workspace.

Click OK to create the new project.

You can add files to the project by selecting Add To Project from the Project menu:

• To add an existing file to the project:
1. Select Files... from the submenu.
2. The Insert Files into Project dialog box appears. Use this dialog box to select the

Fortran files to be added to the Project. To add more than one file to the project, hold
down the CTRL key as you select each file name.

• To add a new file to the project:
1. Select Add to Project New...
2. The New dialog box appears. Specify the file name and its location.
3. Click the type of file (Fortran Fixed Format Source or Fortran Free Format Source).
4. Click OK. The editor appears allowing you to type in source code. The file name

appears in the FileView pane.

For information on:
• How to use icon files, see Using QuickWin.
• Using binary files, see Files, Devices, and I/O Hardware.
• Creating and adding to a new project, see the "How Do I ..." section of Working With Projects

in the Developer Studio Environment User's Guide.
• Using the Resource Editor, Dialog Editor, or Graphics Editor, see the Developer Studio

Environment User's Guide.

You need to add these kinds of files to your project:

• Program files with .FOR, .F or .F90 extension
• Resource files with .RC extension

Include files (extension .FI, or any file your program refers to with an INCLUDE statement) do not
need to be added to the list of files.

To define a project from a set of existing or new source files:

• On the File menu, click New...
• Click the Projects tab.
• Select the type of project and name it.
• To add an existing file to the project:

1. Select Files... from the submenu.
2. The Insert Files into Project dialog box appears. Use this dialog box to select the

Building Programs and Libraries Page 8 of 19

9/2/97 3:29:25 PM

Fortran files to be added to the Project. To add more than one file to the project, hold
down the CTRL key as you select each file name.

• To add each new file to the project:
1. Select Add to Project New...
2. The New dialog box appears. Specify the file name and its location.
3. Click the type of file (Fortran Fixed Format Source or Fortran Free Format Source).
4. Click OK. The editor appears allowing you to type in source code. The file name

appears in the FileView pane.
• You can now select "Build filename" from the Build Menu to build your application.

For more information on projects, see:

• Files in a Project
• Selecting Project Features
• Selecting a Configuration
• Setting Build Options
• Creating the Executable Program
• Building Dynamic-Link Library Projects

Files in a Project

When you create a project, Microsoft Developer Studio always creates the following files:

• Project workspace file - Has the extension .DSW. It stores project workspace information.
• Project file - Has the extension .DSP. It is used to build a single project or subproject.
• Workspace options file - Has the extension .OPT. It contains environment settings for Visual

Fortran, such as window sizes and positions, insertion point locations, state of project
breakpoints, contents of the Watch window, and so on.

Directly modifying the DSW and DSP files with a text editor is not supported.

For information on creating (exporting) a makefile, see The Project Makefile.

When you create a project, you also identify a project subdirectory. If the subdirectory does not exist,
Microsoft Developer Studio creates it. Project files that Developer Studio creates are put into this
directory.

When you create a project, Developer Studio also specifies subdirectories for intermediate and final
output files for the various configurations that you specify. These subdirectories allow you to build
configurations without overwriting intermediate and final output files with the same names. The
General tab in the Project Settings dialog box allows you to modify the subdirectories, if you choose.

If you have existing source code, you should organize it into directories before building a project,
although it is easy to move files and edit your project definitions if you should later decide to
reorganize your files.

If your program uses modules, you do not need to explicitly add them to your project, they appear as
dependencies. Developer Studio scans the file list for modules and compiles them before program
units that use them. Developer Studio automatically scans the added project files recursively for
modules specified in USE statements, as well as any INCLUDEs. It scans both source files (.FOR,
.F, .F90) and resource files (.RC), and adds all the files it finds to a Dependencies folder. You cannot

Building Programs and Libraries Page 9 of 19

9/2/97 3:29:25 PM

directly add or delete the files listed in this folder.

The Project Makefile

Developer Studio speeds and simplifies the task of building programs and libraries outside of
Developer Studio by allowing you to export a makefile, which is a set of build instructions for each
project. Makefiles contain the names of the source, object, and library files needed to build a
program or library, plus the compiler and linker options selected in the Project Settings dialog boxes.

Developer Studio updates the build instructions in internal makefiles when you add or remove
project files in the project window, and when you make changes to the compiler or linker options in
the Project Settings dialog boxes. To get an updated version of a makefile, from the Project menu,
select Export Makefile. The makefile is used by the external program maintenance utility,
NMAKE.EXE.

You can edit the makefile generated by Developer Studio if you need to perform unusual or
exceptional builds. Remember, however, that once you have edited a makefile, exporting the
makefile again from Developer Studio will overwrite your changes.

If you use a foreign makefile for a project, Developer Studio calls NMAKE to perform the build.
You can run NMAKE from the console command line to perform builds either with makefiles
exported by Developer Studio or with foreign makefiles that you have edited. For more about the the
external program maintenance utility, see Building Projects with NMAKE.

Note: When you use a foreign makefile, the project is considered to be foreign. You cannot use
the Project Settings dialog box to make changes to the build options, or use the Add to Project
dialog box to add files.

Selecting Project Features

Before you can build a project, you must:

• Select a configuration type
• Select build settings, such as dependencies, compile and link options

Selecting a Configuration

A configuration defines the final binary output file that you create within a project. A configuration
has the following characteristics:

• Project type--Specifies the type of application to build, such as a static library, console
application, QuickWin application, and so on. The word Win32 Application alone means a
Windows application.

• Build options--Specifies the build options.

When you create a new project, Developer Studio creates the following configurations:

• Debug configuration

By default, the debug configuration sets project options to include the debugging information
in the debug configuration. It also turns off optimizations. Before you can debug an

Building Programs and Libraries Page 10 of 19

9/2/97 3:29:25 PM

application, you must build a debug configuration for the project.

• Release configuration

The release configuration does not include the debugging information, and it uses any
optimizations that you have chosen.

Select the configuration in the Build menu, Set Active Configuration item.

You can define new configurations within your project. These configurations can use the existing
source files in your project, the existing project settings, or other characteristics of existing
configurations. A new configuration does not have to share any of the characteristics or content of
existing configurations, however.

You could, for instance, create an initial project with debug and release configurations specifying an
application for the Win32 environment, and add source files to the project. Later, within the project,
you could create debug and release configurations specifying a DLL for the Win32 environment, add
an entirely disjoint set of files to this configuration, and make these configurations dependencies of
the application configurations.

Platform Types

The platform type specifies the operating environment for a project. The platform type sets options
required specifically for a given platform, such as options that the compiler uses for the source files,
the static libraries that the linker uses for the platform, the default locations for output files, defined
constants, and so on. Visual Fortran supports the Win32 platform type.

Setting Build Options

When you create a new configuration, you specify options for file creation and build settings by
selecting the Settings item in the Project menu. These options can include compile and link options,
optimization, or browse information.

Configurations have a hierarchical structure of options. The options set at the configuration level
apply to all files within the configuration. Setting options at the configuration level is sufficient for
most configurations. For instance, if you set default optimizations for the configuration, all files
contained within the configuration use default optimizations.

However, you can set different options for files within a configuration, such as specific optimization
options -- or no optimization at all -- for any individual files in the configuration. The options that
you set at the file level in the configuration override options set at the configuration level.

You can set some types of options, such as linking, only at the configuration level.

You can set options at the following levels within a configuration:

• Configuration level--Options set at this level apply to all actions. Any options set for the
configuration apply to every file in the configuration unless overridden at the file level.

• File level--Options set at this level apply to file-level actions, such as compiling. Any options
set for the file apply only to that file and override any options set at the configuration level.

Building Programs and Libraries Page 11 of 19

9/2/97 3:29:25 PM

You can insert both source (.FOR, .F90, .F, .FI, .FD) and object (.OBJ) files by using the Project
menu Add to Project, Files item. It is usually better to insert all source files for your programs. That
way, if you update a source file, Developer Studio can create a new object file and links it into your
project. Also insert the names of any necessary static libraries and DLLs with .LIB extensions to be
linked with your project. Use only the library names, not the names of any files within the libraries.

You can include C source code files only if you have Microsoft Visual C++ Version 5.0 installed,
but you can include C object code without Visual C++ being present.

Compile and Link Options

You can set any of the compiler or linker options described in Compiler and Linker Options in the
Project menu, Settings dialog box. The Fortran tab of this dialog box presents several categories of
options to set. The options are grouped under different categories. Select the category from the
Category drop-down list (see Categories of Compiler Options). You can choose compiler and linker
options through the various dialog boxes. If a compiler option is not available in the dialog boxes,
you can enter the option in the lower part of the window just as you would at the command line.

You can also compile, link, and set options at the command line if you choose. For information on
how to do this, see Using the Compiler and Linker from the Command Line.

The linker builds an executable program (.EXE), static library (.LIB), or dynamic-link library (.DLL)
file from Common Object File Format (COFF) object files and other libraries identified in the linker
options. You direct the linker by setting linker options either in Microsoft Developer Studio, in a
build instructions file, or on the console command line. For example, you can use a linker option to
specify what kind of debug information to include in the program or library.

For more information on compiler and linker options, see Compiler and Linker Options.

Source Browser Information

The Source Browser generates a listing of all symbols in your program; information that can be
useful when you need to debug it, or simply to maintain large volumes of unwieldy code. It keeps
track of locations in your source code where your program declares, defines, and uses names. You
can find references to variables or procedures in your main program and all subprograms it calls by
selecting one of the files in your project, then using the Go to Definition or Go to Reference button
on the Browse toolbar. Source Browser information is available only after you achieve a successful
build.

Browser information is off by default for projects, but you can turn it on if you wish. You can set the
browse option:

• In Developer Studio:
1. In the General category of the Fortran tab, set the Generate Source Browse Information

check box.
2. Click the BrowseInfo tab and set the Build Browse info check box.

• On the command line:
1. Specify the /browser option.
2. Use the Browse Information File Maintenance Utility (BSCMAKE) utility to generate a

browse information file (.BSC) that can be examined in browse windows in Developer

Building Programs and Libraries Page 12 of 19

9/2/97 3:29:25 PM

Studio.

When the browse option is on, the compiler creates intermediate .SBR files when it creates the .OBJ
files; at link time, all .SBR files in a project are combined into one .BSC file. These files are binary,
not readable, but they are used when you access them through the Browser menu.

Creating the Executable Program

Once you are ready to create an executable image of your application, select the Build menu. You
can:

• Compile a file without linking
• Build a project
• Rebuild all parts of a project
• Batch build several configurations of a project
• Clean extra files created by project builds
• Execute the program, either in debug mode or not
• Update program dependencies
• Select the active project and configuration
• Edit the project configuration
• Define and perform profiling

Once you have completed your project definition, you can build the executable program.

When you select Build projectname from the Build menu (or one of the Build toolbars), Developer
Studio automatically updates dependencies, compiles and links all files in your project. When you
build a project, Developer Studio processes only the files in the project that have changed since the
last build.

The Rebuild All mode forces a new compilation of all source files listed for the project.

You either can choose to build a single project, the current project, or you can choose multiple
projects (requires batch build) to build in one operation.

You can execute your program from Microsoft Developer Studio using Ctrl+F5 or Execute from the
Build menu (or Build toolbar), or from the command prompt.

Compiling Files In a Project

You can select and compile individual files in any project in your project workspace. To do this,
select the file in the project workspace window (FileView tab). Then, do one of the following:

• Press Ctrl+F7.
-or-

• Choose Compile from the Build menu (or Build toolbar).
-or-

• Click the right mouse button to display the pop-up menu and select Compile.

You can also use the Ctrl+F7 or Compile from the Build menu (or Build toolbar) options when the
source window is active (input focus).

Building Programs and Libraries Page 13 of 19

9/2/97 3:29:25 PM

Building Dynamic-Link Library Projects

A dynamic-link library is a collection of source and object code in the same manner as a static
library. The differences between the two libraries are that the DLL requires an interface specification
and it is associated with a main project during execution, not during linking.

When a DLL is built, two library files are created. One is an import library (.LIB), which the linker
uses to associate a main program with the DLL. The other is the .DLL file containing the library’s
executable code. Both files have the same basename as the library project by default.

Data is by default not shared between instances of the same DLL, which is a change from the 16-bit
applications, but there are ways to share data between instances. For more details, see the DLL
samples in the ...\DF\SAMPLES\ subdirectories.

The DLL must reside either in the same directory as the program using it, or in a directory listed in
the PATH environment variable.

For more information, see:

• Using Microsoft Developer Studio to Build DLLs
• Organization and Behavior of DLLs
• Importing and Exporting Data with DLLs
• Building the DLL
• The DLL Build Output
• Using DLLs
• QuickWin Restrictions

Using Microsoft Developer Studio to Build DLLs

To build a DLL with Microsoft Developer Studio, select Dynamic-Link Library as the project type
when you create a new project.

To debug a DLL, you must use a main program that calls the library routines. From the Project
Settings menu, choose the Debug tab. A dialog box is available for you to specify the executable for
a debug session.

Organization and Behavior of DLLs

Windows calls the DLLMain entry-point function in a DLL to initialize and to terminate execution
of the DLL. If you don't include a DLLMain function in your source, Visual Fortran provides one
that returns .TRUE. when it is called. Windows also makes calls to DLLMain on both a per-process
and per-thread basis, so several initialization calls can be made to the DLL if a process is
multithreaded. Fortran code written for a DLL must be re-entrant if you want to allow multiple
threads of execution to use the DLL simultaneously. (For information about writing reentrant code,
see Creating Multithread Applications.)

DLLMain returns .TRUE. to indicate success. If the function returns .FALSE. during per-process
initialization, the system cancels the process. DLLMain is called with a parameter that indicates the
reason it was called: initialization or termination, for a process or a thread. The following table
describes the meaning of the four possible values:

Building Programs and Libraries Page 14 of 19

9/2/97 3:29:25 PM

Value of passed
parameter

Description

DLL_PROCESS_ATTACH A new process is attempting to access the DLL; one thread is assumed.
DLL_THREAD_ATTACH A new thread of an existing process is attempting to access the DLL;

this call is made beginning with the second thread of a process
attaching to the DLL.

DLL_PROCESS_DETACH A process is detaching from the DLL.
DLL_THREAD_DETACH One of the additional threads (not the first thread) of a process is

detaching from the DLL.

Each time a new process attempts to use the DLL, the operating system performs what is called a
process attach, which means it creates a separate copy of the DLL’s data. The run-time library code
for the DLL then calls the DLLMain function with process attach selected. The opposite situation is
process detach: the run-time library code calls DLLMain with process detach selected. Note that the
order of events in process detach is the reverse of that in process attach.

Importing and Exporting Data with DLLs

Data and code in a dynamic-link library is loaded into the same address space as the data and code of
the program that calls it. However, variables and routines declared in the program and in the DLL are
not shared unless you use the DLLIMPORT and DLLEXPORT compiler directives. These directives
enable the compiler and linker to map to the correct portions of the address space so that the data and
routines can be shared.

You can use DLLEXPORT to declare that a common block in a DLL is owned by one routine and is
being exported to a program or another DLL. Similarly, you can use DLLIMPORT within a calling
routine to tell the compiler that a common block is being imported from the routine in a program or
DLL that owns it. One DLLEXPORT-DLLIMPORT link must be established for each common
block shared between a program and a DLL or between DLLs.

The DLLEXP2 sample shows how to use DLLIMPORT and DLLEXPORT with shared COMMON
data. To build the DLL Sample DLLEXP2 from the command line, see the makefile.

To find out how to declare the DLLEXPORT and DLLIMPORT attributes, see DLLs and cDEC$
ATTRIBUTES.

Building the DLL

When you first create a DLL, you follow the general steps described in Defining Your Project. For
the project type, choose Dynamic-Link Library (.DLL). Microsoft Developer Studio automatically
selects the correct linker instructions for loading the proper run-time library routines (located in a
DLL themselves). Your DLL is created as a multithread-enabled library.

Developer Studio takes the following actions in building a DLL:

• Looks for the DLLMain entry-point function in the source code
• Links with DLL start-up code that performs some initialization for you
• Produces an import library, projectname.LIB, to be linked to applications that call your DLL
• If you do not specify /dll, it interprets /exe:file (or /Fe) or /link /out:file as naming a .DLL

rather than an .EXE file; the default file extension becomes projectname.DLL instead of

Building Programs and Libraries Page 15 of 19

9/2/97 3:29:25 PM

projectname.EXE
• Selects as the default the DLL run-time libraries to support multithreaded operation

If you build a DLL from the console command line or using a foreign makefile, you must include the
/dll option.

The DLL Build Output

Your library routines are contained in the file projectname.DLL located in the default directory for
your project, unless you specified another name and location. Your import library file is
projectname.LIB, located in the default directory for your project.

Using DLLs

Add the import .LIB file with its path and library name to your main project. The file contains
information that your program needs to work with the DLL.

For an application to access your dynamic-link library, projectname.DLL, it must be located in a
directory on the search path or in the same directory as the main project. If you have more than one
program accessing your DLL, you can keep it in a convenient directory identified in the environment
path. If you have several DLLs, you can place them all in the same directory to avoid numerous
revisions to the path specification.

Remember, when changing your path specification in Windows 95, you must restart the operating
system for the change to take effect. In the Windows NT system, you should log out and back in after
modifying the system path.

QuickWin Restrictions

You cannot make a QuickWin application into a DLL (see Using QuickWin) and QuickWin
applications cannot be used with Fortran run-time routines in a DLL.

Errors During the Build Process

Compiler and linker errors are displayed in the Build pane of the output window. To quickly locate
the source line causing the error, follow these steps:

1. Select (click) the error message text in the Build pane of the output window.
2. Press F4.

The editor window appears with a marker in the left margin that identifies the line causing the
error.

If you need to set different compiler options for some of your source files, you can highlight the
source file name and select the Project menu, Settings item. Options set in this manner are valid only
for the file you selected.

After you have corrected any compiler errors reported during the previous build, choose Build from
the Build menu. The build engine recompiles only those files that have changed, or which refer to
changed include or module files. If all files in your project compile without errors, the build engine
links the object files and libraries to create your program or library.

Building Programs and Libraries Page 16 of 19

9/2/97 3:29:25 PM

You can force the build engine to recompile all source files in the project by selecting Rebuild All
from the Build menu. This is useful to verify that all of your source code is clean, especially if you
are using a foreign makefile, or if you use a new set of compiler options for all of the files in your
project.

To view the include file and library directory paths in Developer Studio:

• In the Tools menu, click Options.
• Click the Directories tab.
• In the drop-down list for Show Directories For, select Include files and view the include file

paths.
• In the drop-down list for Show Directories For, select Library files and view the library paths.
• Click OK if you have changed any information.

To view the libraries being passed to the linker in Developer Studio:

• If not already open, open your Project Workspace (File menu, Open Workspace).
• In the Project menu, click on Settings.
• Click on the Link tab to view the list of Object/Library modules (General category).
• Click OK if you have changed any information.

With the Professional Edition, if you have trouble linking IMSL libraries, see also Using the
Libraries from Visual Fortran.

Running Fortran Applications

You can execute programs built with this version of Visual Fortran only on a computer running the
Microsoft Windows 95® or Windows NTTM operating system (see the release notes for the Windows
NT version number). You can run the programs from the command console, Start ... Program ...
group, Windows Explorer, and Microsoft Developer Studio. Each program is treated as a protected
user application with a private address space and environment variables. Because of this, your
program cannot accidentally damage the address space of any other program running on the
computer at the same time.

Environment variables defined for the current user are part of the environment that Windows sets up
when you open the command console. You can change these variables and set others within the
console session, but they are only valid during the current session.

If you run a program from the console, the operating system searches directories listed in the PATH
user environment variable to find the executable file you have requested. You can also run your
program by specifying the complete path of the .EXE file. If you are also using DLLs, they must be
in the same directory as the .EXE file or in one specified in the path.

You can easily recover from most problems that may arise while executing your program. You can
use the just-in-time debugging feature to debug your programs as they run outside of Developer
Studio, if both of the following items have been set:

• In the Tools menu Options item, the Debug tab has the checkbox for Just-In Time debugging
set.

• The FOR_IGNORE_EXCEPTIONS environment variable is set to TRUE.

Building Programs and Libraries Page 17 of 19

9/2/97 3:29:25 PM

If your program is multithreaded, Windows NT starts each thread on whichever processor is
available at the time. On a computer with one processor, the threads all run in parallel, but not
simultaneously; the single processor switches among them. On a computer with more than one
processor, the threads can run simultaneously.

If you specified the /fpscomp:filesfromcmd option (Compatibility category in Project Settings,
Fortran tab), the command line that executes the program can also include additional filenames to
satisfy OPEN statements in your program in which the filename field has been left blank. The first
filename on the command line is used for the first such OPEN statement executed, the second
filename for the second OPEN statement, and so on. In Developer Studio, you can provide these
filenames in the Project menu Settings item, Debug tab, in the Program Arguments text box.

Each filename on the command line (or in a Developer Studio dialog box) must be separated from
the names around it by one or more spaces or tab characters. You can enclose each name in double
quotation marks ("filename"), but this is not required unless the argument contains spaces or tabs. A
null argument consists of an empty set of double quotation marks with no filename enclosed ("").

The following example runs the program MYPROG.EXE from the console:

 MYPROG "" OUTPUT.DAT

Because the first filename argument is null, the first OPEN statement with a blank filename field
produces the following message:

 File name missing or blank - please enter file name<R>
 UNIT number ?

The number is the unit number specified in the OPEN statement. The filename OUTPUT.DAT is
used for the second such OPEN statement executed. If additional OPEN statements with blank
filename fields are executed, you will be prompted for more filenames. Programs built with the
QuickWin library prompt for a file to open by presenting a dialog box in which you can browse for
the file or type in the name of a new file to be created.

Run-time error messages are displayed in the console or in a dialog box depending upon the type of
application you build. If you need to capture these messages, you can redirect stderr to a file. For
example, to redirect run-time error messages from a program called BUGGY.EXE to a file called
BUGLIST.TXT, you would use the following syntax:

 BUGGY.EXE > BUGLIST.TXT

The redirection portion of the syntax must appear last on the command line. You can append the
output to an existing file by using two greater-than signs (>>) instead of one. If the file does not
exist, one is created.

For more information about:
• Locating the source of exceptions, see Locating Run-Time Errors
• Handling run-time errors with source changes, see Methods of Handling Errors
• Environment variables recognized during run-time, see Run-Time Environment Variables
• Each Visual Fortran run-time message, see Run-Time Errors
• Debugging, see "Debugger" in the Developer Studio Environment User's Guide.

Porting Projects Between x86 and Alpha Platforms

Building Programs and Libraries Page 18 of 19

9/2/97 3:29:25 PM

To move an existing Visual Fortran project to another platform:

1. Copy all project files to the new platform

Keep the folder/directory hierarchy intact by copying the entire project tree to the new
computer. For example, if a project resides in the folder \MyProjects\Projapp on one
computer, you can copy the contents of that directory, and all subdirectories, to the
\MyProjects\Projapp directory on another computer. After copying all of the files, delete
any *.opt files. These files are computer specific and should not be copied.

2. Specify new configurations

After you copy the files, opening the project reveals that the target platform is still set to the
original platform. Although this is not obvious, you can tell this is so because the Build,
Compile, and Execute options are grayed out in the Build menu. Before you can build the
application on the new platform, you must first specify one or more new configurations for the
project on the new platform.

To create Debug and Release targets for this project, you create a new configuration while
running Visual Fortran on the new platform. The platform for a new configuration is assumed
to be the current platform. For example, if you copy an x86 project to an Alpha system, and
create a new configuration, the target platform can only be Alpha. You cannot specify another
platform. This same behavior applies when moving projects between any two platforms.

To create a new project configuration:

a. In the Configurations dialog box, click the Add button. The Add Project Configuration
dialog box appears.

b. In the Configuration box, type a new configuration name. The names do not matter, as
long as they differ from existing configuration names.

c. Select the configuration from which to copy the settings for this configuration and click
OK. Usually, you will want to copy the settings from a similar configuration. For
example, if this new configuration is a release configuration, you will usually copy
settings from an existing release configuration.

d. The Projects dialog box appears with the new project configuration.
Repeat the process as necessary to create as many configurations as you need.

3. Reset project options

Because not all settings are transportable across platforms, you should verify your project
settings on the new platform. To verify your project settings:

a. From the Project menu, choose Settings. The Project Settings dialog box appears.
b. Review the tabs and categories to ensure that the project settings you want are selected.

Pay special attention to the following items:
• General Tab: Review the directories for intermediate and output files.
• Custom Build Tab: Review for any custom commands that might change

between platforms.
• Fortran and Linker tabs - Nonstandard options in the original configurations must

be replicated (as applicable) in the new configurations. As listed in Compiler

Building Programs and Libraries Page 19 of 19

9/2/97 3:29:25 PM

Options, certain options are supported only on x86 or Alpha systems.
• Pre-link and Post-build Step tabs -- Review for any custom commands that might

change between platforms.

Advanced Applications Page 1 of 7

8/21/97 12:22:06 PM

Advanced Applications
With Visual Fortran, you can create full Windows applications. You can create the familiar Windows
interface for your programs, complete with tool bars, pull-down menus, dialog boxes, and other
features. You can include data entry and mouse control, and interaction with programs written in
other languages or commercial programs such as Microsoft® Excel.

This section describes how you turn your Fortran programs into Windows applications. It covers the
following topics:

• Creating Windows Applications
• Dialog Boxes
• OpenGL Graphics
• DLLs

Creating Windows Applications
With Visual Fortran, you can build Fortran applications that are also fully-featured Windows
applications. The Win32 Application Programming Interface (API) provides sophisticated window
management, memory management, graphics support, threading, security and networking. QuickWin
allows you to easily build Windows applications, but accesses only a small subset of the available
Win32 API features.

With full Windows programming you can:

• Package Fortran applications with a Windows Graphical User Interface (GUI).
• Access all available Windows Graphic Device Interface (GDI) calls with your Fortran

applications. Win32 GDI uses a 32-bit coordinate system, allowing coordinates in the +/-2 GB
range, and performs skewing, reflection, rotation and shearing.

• Access low-level system services, such as the registry, and virtual and shared memory
functions, and access high-level system services, such as network functions, mailslots, and the
MIDI Mapper.

When you access the Windows module, DFWIN.F90 with the USE DFWIN statement, all
parameters and interfaces to Windows routines are made available to your Visual Fortran program.
Specify the /winapp option to search the commonly used link libraries. If unresolved link references
occur when using /winapp, consider adding the \DF\INCLUDE\FULLAPI.F90 file to your project.
This file contains search directives for almost all of the libraries needed.

To build your application as a Windows application in Microsoft Developer Studio, choose Win32
Application from the list of Project types when you open a new project. However, you can access
Win32 APIs from any Fortran application, including console and QuickWin.

The following Windows application topics are discussed:

• The Visual Fortran Windows Module
• Writing a Windows GDI Program
• Using Win32 with QuickWin
• Sample Fortran Windows Applications

Advanced Applications Page 2 of 7

9/2/97 3:29:39 PM

• Getting Help with Windows Programming

The Visual Fortran Windows Module

DFWIN.F90 is a Fortran version (a subset) of the Win32 WINDOWS.H header file. The
correspondence of data types is given in the following table:

Win32 Data Type Equivalent Fortran Data Type
BOOL, BOOLEAN LOGICAL(4)
BYTE BYTE
CHAR, CCHAR, UCHAR CHARACTER
COLORREF INTEGER(4)
DWORD, INT, LONG, ULONG INTEGER(4)
SHORT, USHORT, WORD INTEGER(2)
FLOAT REAL(4)
All Handles INTEGER(4)
All Pointers (LP*, P*) INTEGER(4) (Integer Pointers)

The structures in WINDOWS.H have been converted to derived types in DFWIN.F90. Unions in
structures are converted to union/maps within the derived type. Names of components are
unchanged. Bit fields are converted to Fortran's INTEGER(4). Functions accessing bit fields are
contained in the DFWIN.F90 module with names of the form:

 structurename$bitfieldname

These functions take an integer argument and return an integer. All bit fields are unsigned integers.
The following is an example of the translation from Win32 structures to Fortran derived types.

WINDOWS.H Definition Fortran Definition

typedef struct _LDT_ENTRY { type LDT_ENTRY$HIGHWORD_BYTES
 WORD LimitLow; BYTE BaseMid
 WORD BaseLow; BYTE Flags1
 union { BYTE Flags2
 struct { BYTE BaseHi
 BYTE BaseMid; end type
 BYTE Flags1;
 BYTE Flags2; type LDT_ENTRY$HIGHWORD
 BYTE BaseHi; union
 } Bytes; map
 struct { type(LDT_ENTRY$HIGHWORD_BYTES) Bytes
 DWORD BaseMid : 8; end map
 DWORD Type : 5; map
 DWORD Opl : 2; INTEGER(4) Bits
 DWORD Pres : 1; end map
 DWORD LimitHi : 4; end union
 DWORD Sys : 1; end type
 DWORD Reserved_0 : 1;
 DWORD Default_Big : 1; type LDT_ENTRY
 DWORD Granularity : 1; INTEGER(2) LimitLow
 DWORD BaseHi : 8; INTEGER(2) BaseLow
 } Bits; type(LDT_ENTRY$HIGHWORD) HighWord
 } HighWord; end type
 } LDT_ENTRY, *PLDT_ENTRY;
 INTEGER(4) function LDT_ENTRY$BaseMid(Bits)

Advanced Applications Page 3 of 7

9/2/97 3:29:39 PM

 INTEGER(4) Bits
 LDT_ENTRY$BaseMid = IAND(Bits, #ff
 end
 INTEGER(4) function LDT_ENTRY$Type(Bits)
 INTEGER(4) Bits
 LDT_ENTRY$Type = IAND(ISHFT(Bits, -8), #1f)
 end
 ...

Note that _LDT_ENTRY and PLDT_ENTRY do not exist in the Fortran definition. Also note that
Bits.xxx is not the same as the C version. In the Fortran case, the bit field functions must be used.
For example, the C variable:

 yyy.HighWord.Bits.BaseHi

is replaced with the Fortran variable:

 LDT_ENTRY$BaseHi(yyy.HighWord.Bits)

All macros in the WINDOWS.H file are converted to functions in the DFWIN.F90 module. The
object modules that this conversion creates are in DFWIN.LIB in the LIB directory.

Writing a Windows GDI Program

To write a Windows GDI (Graphic Device Interface) subsystem program, the following function
must be defined by the user:

 INTEGER(4) function WinMain (hInstance, hPrevInstance,
 & lpszCmdLine, nCmdShow)
!DEC$ ATTRIBUTES STDCALL, ALIAS:’_WinMain@16’ :: WinMain
 INTEGER(4), INTENT(IN) :: hInstance, hPrevInstance
 INTEGER(4), INTENT(IN) :: lpszCmdLine
 INTEGER(4), INTENT(IN) :: nCmdShow

In a program that includes a WinMain function, no program unit can be identified as the main
program with the PROGRAM statement.

Using Win32 with QuickWin

You can convert the unit numbers of QuickWin windows to Win32 handles with the GETHWNDQQ
QuickWin function. You should not use Windows GDI to draw on QuickWin windows because
QuickWin keeps a window buffer and the altered window would be destroyed on redraw. You can
use Windows subclassing to intercept graphics messages bound for QuickWin before QuickWin
receives them.

See the sample program POKER in the \DF\SAMPLES\GENERAL\POKER subdirectory for a
demonstration of this technique.

Sample Fortran Windows Applications

The \DF\SAMPLES subdirectory contains many Fortran Windows applications that demonstrate
Windows functionality or a particular Win32 function. Each sample application is in separate folder.

Advanced Applications Page 4 of 7

9/2/97 3:29:39 PM

Users unfamiliar with Windows programming should start by looking at the programs in
\DF\SAMPLES.

Getting Help with Windows Programming

In InfoViewer, you can access the folder "Platform, SDK, and DDK Documentation." For
information about using InfoViewer, see Using InfoViewer.

The full Win32 API set is documented in the Win32 Application Programming Interface for
Windows NT Programmer’s Reference, available from Microsoft Press and also distributed as part of
the Windows NT Software Development Kit.

Dialog Boxes
Visual Fortran gives you an easy way to create simple dialog boxes that can be used for data entry
and application control. Dialogs are a user-friendly way to get and process input. As your application
executes, you can make a dialog box appear on the screen and the user can click on a button or scroll
bar to enter data or choose what happens next. You can add dialog boxes to any Fortran application,
including Windows, QuickWin, and console applications.

You design your dialog with the Resource Editor, and drive them with a combination of the dialog
functions, such as DLGSET, and your own subroutines. A complete discussion of how to design and
use dialog boxes is given in Using Dialogs.

OpenGL Graphics
OpenGL is a library of graphic functions that create sophisticated graphic displays such as 3-D
images and animation. OpenGL is commonly available on workstations. Writing to this standard
allows your program to be ported easily.

OpenGL windows are used independently of and in addition to any console, QuickWin and regular
Windows windows your application uses. Every window in OpenGL uses a pixel format, and the
pixels carry, among other things, RGB values, opacity values, and depth values so that pixels with a
small depth (shallow) overwrite deeper pixels. The basic steps in creating OpenGL applications are:

• Specify the pixel format
• Specify how the pixels will be rendered on the video device
• Call OpenGL commands

OpenGL programming is straightforward, but requires a particular initialization and order, like other
software tools. References to get you started are:

• OpenGL Programming Guide, The Official Guide to Learning OpenGl, Release 1, OpenGL
Architecture Review Board, Addison Wesley, 1992, ISBN 0201-63274-8.

• OpenGL documentation in the Windows NT and Windows 95 Platform SDK in InfoViewer.
• The OpenGL description from Microsoft Visual C++ manuals.

Visual Fortran provides an OpenGL module, DFOPNGL.MOD, invoked with the USE statement.

Advanced Applications Page 5 of 7

9/2/97 3:29:39 PM

When you use this module, all constants and interfaces that bind Fortran to the OpenGL routines
become available. Any link libraries required to link with an OpenGL program are automatically
searched if USE DFOPNGL is present in your Fortran program.

An OpenGL window can be opened from a console, Windows, or QuickWin application. The
OpenGL window uses OpenGL calls exclusively, not normal Graphic Device Interface (GDI) calls.
Likewise, OpenGL calls cannot be made within an ordinary Windows window or QuickWin child
window, because special initialization is required for OpenGL calls.

The Fortran OpenGL identifiers are the same as the C identifiers, except that the gl prefix is changed
to fgl, and the GL prefix is changed to FGL. The data types in the OpenGL C binding are translated
to Fortran types as shown in the following table:

OpenGL/C Type Fortran Data Type
GLbyte INTEGER(1)
GLshort INTEGER(2)
GLint, GLsizei INTEGER(4)
GLfloat, GLclampf REAL(4)
GLdouble, GLclampd REAL(8)
GLubyte INTEGER(1)
GLboolean LOGICAL
GLushort INTEGER(2)
GLuint, GLenum, GLbitfield INTEGER(4)
GLvoid not needed
pointers INTEGER

OpenGL sample programs are available in the \DF\SAMPLES\ADVANCED subdirectory.

DLLs
A dynamic-link library (DLL) is an executable file, but is usually used as a library for applications. A
DLL contains one or more functions that are compiled, linked and stored separately from the
applications using them. The advantages of DLLs include:

• Multiple applications can access the same DLL--This reduces the overall amount of memory
needed in the system, which results in fewer memory swaps to disk and improves
performance.

• When general functions are placed in DLLs, the applications that share the DLLs can have
very small executables.

• You can change the functions in a DLL without recompiling or relinking the applications that
use them, as long as the functions' arguments and return types do not change. This allows you
to upgrade your applications easily. For example, a display driver DLL can be modified to
support a display that was not available when your application was created.

• Programs written in different languages can call the same DLL functions, as long as each
program follows the functions' calling conventions.

Within your Fortran DLL, you use cDEC$ ATTRIBUTES DLLEXPORT to declare that a function or

Advanced Applications Page 6 of 7

9/2/97 3:29:39 PM

data is being exported to other applications. Within your Fortran application, you use cDEC$
ATTRIBUTES DLLIMPORT to declare that the function or data is being imported from a DLL.

For more information, see:

• DLLEXPORT and DLLIMPORT Compiler Directive Options
• DLLEXPORT and DLLIMPORT in Modules

DLLEXPORT and DLLIMPORT Compiler Directive Options

The DLLEXPORT and DLLIMPORT options (for the ATTRIBUTES directive) define a DLL's
interface in the process that uses them. Declaring functions as DLLEXPORT eliminates the need for
a module-definition (.DEF) file. You can also apply the DLLEXPORT and DLLIMPORT properties
to data and to objects in modules (see DLLEXPORT and DLLIMPORT in Modules).

The DLLEXPORT property declares that functions or data are being exported to other applications
or DLLs. The compiler produces the most efficient code when this option is used, and there is no
need for module definition (.DEF) file to export symbols. If you declare a function or data with the
DLLEXPORT property, the definition must appear in the same module of the same program.
Otherwise, a linker error occurs.

A program that uses symbols defined in a DLL imports them. The DLL user needs to link with the
import LIB and use the DLLIMPORT property inside the application that imports the symbol. The
DLLIMPORT directive option is used in a declaration, not a definition, because you do not define
the symbol you are importing.

Building a DLL is described in detail in Dynamic-Link Library Projects in Building Programs and
Libraries.

Fortran and C applications can call Fortran and C DLLs provided the calling conventions are
consistent. Visual Basic applications can also call Fortran functions and subroutines in the form of
DLLs. For example, the following Visual Basic code calls the Fortran subroutine ARRAYTEST:

 Static arr(1 To 3, 1 To 7) As Single
 Call ARRAYTEST(arr(1, 1))

The subroutine ARRAYTEST is defined in the following Fortran code:

 SUBROUTINE ARRAYTEST(arr)
 !DEC$ ATTRIBUTES DLLEXPORT :: ARRAYTEST
 REAL(4) arr(3, 7)
 INTEGER i, j
 DO i = 1, 3
 DO j = 1, 7
 arr (i, j) = 11.0 * i + j
 END DO
 END DO
 END SUBROUTINE

If the Fortran code in the example is saved in the file f90vb4.f90, you can build a DLL in by
selecting New from the File menu, choosing Projects from the New File list, then choosing Win32
Dynamic-Link Library as the Project type. Or you can compile from the command line with the
following:

Advanced Applications Page 7 of 7

9/2/97 3:29:39 PM

 DF /dll f90vb4.f90

This code creates a DLL named f90vb4.dll. The DLL is declared in the Visual Basic .BAS file as
follows:

 Declare Sub ARRAYTEST Lib "f90vb4.dll" (Myarray As Single)

For details on how to call Fortran DLLs from Visual Basic, see Programming with Mixed
Languages.

Your Fortran application can access the same subroutine from the same DLL, as follows:

 PROGRAM FORAPP
 REAL r1, r2, xarray(3, 7)
 ...
 INTERFACE
 SUBROUTINE ARRAYTEST (rarray)
 !DEC$ ATTRIBUTES DLLIMPORT :: ARRAYTEST
 REAL rarray(3, 7)
 END SUBROUTINE ARRAYTEST
 END INTERFACE
 ...
 CALL ARRAYTEST(xarray)
 ...
 END

DLLEXPORT and DLLIMPORT in Modules

You can give objects in a module the DLLEXPORT property, in which case the object is exported
from a DLL. When a module is used in other program units, through the USE statement, any objects
in the module with the DLLEXPORT property are treated in the program using the module as if they
were declared with the DLLIMPORT property. So, a main program that uses a module contained in a
DLL has the correct import attributes for all objects exported from the DLL.

You can also give some objects in a module the DLLIMPORT property. Only procedure declarations
in INTERFACE blocks and objects declared EXTERNAL or with cDEC$ ATTRIBUTES EXTERN
can have the DLLIMPORT property. In this case, the objects are imported by any program unit using
the module.

If you use a module that is part of a DLL and you use an object from that module that does not have
the DLLEXPORT or DLLIMPORT property, the results are undefined.

Using COM and Automation Objects Page 1 of 12

8/21/97 12:22:25 PM

Using COM and Automation Objects

Visual Fortran provides a wizard to simplify the use of Component Object Model (COM) and
Automation (formerly called OLE Automation) objects. The Visual Fortran Module Wizard
generates Fortran 90 modules that simplify calling COM and Automation services from Fortran
programs. This Fortran code allows you to invoke routines in a dynamic link library, methods of an
Automation object, and member functions of a Component Object Model (COM) object.

The following sections describe the use of COM and Automation objects with Visual Fortran:

• The Role of the Module Wizard
• Using the Module Wizard to Generate Code
• Calling the Routines Generated by the Module Wizard
• Additional Information About COM and Automation Objects

The Role of the Module Wizard

To use COM and Automation objects from a Fortran program, the following steps need to occur:

1. Find or install the object on the system. COM and Automation objects can be registered:

• By other programs you install.
• By creating the object yourself, for example, by using Visual C++ or Visual Basic.

For example, Developer Studio registers certain objects during installation (see the Developer
Studio documentation on the Developer Studio object model).

Creating an object involves deciding what type of object and what type of interfaces or
methods should be available. The object's server must be designed, coded, and tested like any
other applcation. For general information about object creation and related information, see
Additional Information About COM and Automation Objects.

2. Determine:

• Whether the object has a COM interface, Automation interface, or both.
• Where the object's type information is located.

You should be able to obtain this information from the object's documentation. You can use
the OLE-COM Object Viewer tool (provided in the Visual Fortran program folder) to
determine the characteristics of an object on your system.

3. Use the Visual Fortran module wizard to generate code.

The Visual Fortran module wizard is a application that interactively asks certain questions
about the object, including its name, type, and other information. The information collected by
the module wizard is used in the generated code. To learn about using the Visual Fortran
module wizard, see Using the Module Wizard to Generate Code.

4. Write a Fortran 90 program to invoke the code generated by the Visual Fortran module

Using COM and Automation Objects Page 2 of 12

8/21/97 12:22:25 PM

wizard.

To understand more about calling the interfaces and jacket routines created by the module
wizard, see Additional Information About COM and Automation Objects.

Using the Module Wizard to Generate Code

To run the Visual Fortran Module Wizard, choose the Tools menu item Fortran Module Wizard. The
module wizard asks a series of questions, including the name and type of the object as well as certain
characteristics. If you have not already obtained the object’s characteristics, see The Role of the
Module Wizard.

The Visual Fortran Module Wizard presents a series of dialog boxes that allow you to select the type
of information needed.

An object’s type information contains programming language independent descriptions of the object’s
interfaces. Depending on the implementation of the object, type information can be obtained from
the running object (see Automation Object below) or from a type library.

A type library is a collection of type information for any number of object classes, interfaces, and so
on. A type library can also be used to describe the routines in a DLL. You can store a type library in a
file of its own (usually with an extension of .TLB) or it can be part of another file. For example, the
type library that describes a DLL can be stored in the DLL itself.

After you start the Module Wizard (Tools menu, Fortran Module Wizard), a dialog box requests the
source of the type information that describes the object you need to use. You need to determine what
type of object it is (or DLL) and how it makes its type information available. The choices are:

• Automation Object
• Type Library Containing Automation Information
• Type Library Containing COM Interface Information
• Type Library Containing DLL Information
• DLL Containing Type Information

The following initial screen appears after you select the Visual Fortran Module Wizard:

Figure: Initial Module Wizard Screen

Using COM and Automation Objects Page 3 of 12

8/21/97 12:22:25 PM

After you select one of the five choices, one of two different screens will appear depending on the
selection made. The Module Name in the initial Module Wizard screen is used as the name of the
Fortran module being generated. It is also used as the default file name of the generated source file.

If You Select Automation Object

If you select Automation Object, the following screen appears:

Figure: Application Object Screen

Using COM and Automation Objects Page 4 of 12

8/21/97 12:22:25 PM

Microsoft recommends that object servers provide a type library. However some applications do not,
but do provide type information dynamically when running. Use this option for such an application.
Enter the name of the application, name of the object, and version number. The version number is
optional. If you do not specify it, you will get the latest version of the object. Note that this method
only works for objects that provide a programmatic identifier (ProgID). ProgIDs are entered into the
system registry and identify, among other things, the executable program that is the object’s server.

After entering the information and pressing the "Generate" button, the Fortran Module Wizard asks
you for the name of the source file to be generated. It then asks COM to create an instance of the
object identified by the ProgID that the wizard constructs using the supplied information. COM starts
the object’s server if it needs to do so. The wizard then asks the object for its type information and
generates a file containing Fortran modules.

If You Select Other Options

After selecting any of the remaining options in the initial screen and press the "Next" button, the
Module Wizard displays the following screen:

Figure: Type Library Screen

Using COM and Automation Objects Page 5 of 12

8/21/97 12:22:25 PM

Choose the type library (or file containing the type library), and optionally specific components of
the type library.

At the top of the dialog box is a combo box that lists all of the type libraries that have been registered
with the system. You will notice a number of different file extensions, for example, .OLB (object
libraries) and .OCX (ActiveX controls). Select a type library from the list or press "Browse" to find
the file using the standard "Open" dialog box. Once you have selected a type library press the
"Show" button to list the interfaces described in the type library. By default, the Fortran Module
Wizard will use all of the interfaces. Optionally, you can select the ones desired from the list.

After entering the information and pressing the "Generate" button, the Fortran Module Wizard asks
you for the name of the source file to be generated. It then asks COM to open the type library and
generates a file containing Fortran modules.

Calling the Routines Generated by the Module Wizard

Although Fortran 90 does not support objects, it does provide Fortran 90 modules. A module is a set
of declarations that are grouped together under a global name, and are made available to other
program units by using the USE statement.

The Fortran Module Wizard generates a source file containing one or more modules. The types of
information placed in the modules include:

Using COM and Automation Objects Page 6 of 12

8/21/97 12:22:25 PM

• Derived-type definitions are Fortran equivalents of data structures that are found in the type
information.

• Procedure interface definitions are Fortran interface blocks that describe the procedures found
in the type information.

• Procedure definitions are Fortran functions and subroutines that are jacket routines for the
procedures found in the type information.

The jacket routines make the external procedures easier to call from Fortran by handling data
conversion and low-level invocation details.

The use of modules allows the Visual Fortran Module Wizard to encapsulate the data structures and
procedures exposed by an object or DLL in a single place. You can then share these definitions in
multiple Fortran programs.

The appropriate USE statement needs to be added in your program, as well as function invocations
or subroutine calls.

The routines generated by the Visual Fortran Module Wizard are designed to be called from Fortran.
These routines in turn call the appropriate system routines (not designed to be called from Fortran),
thereby simplifying the coding needed to use COM and Automation objects.

Visual Fortran provides a set of run-time routines that present to the Fortran programmer a higher
level abstraction of the COM and Automation functionality. The Fortran interfaces that the Wizard
generates hide most of the differences between Automation objects and COM objects.

Depending on the options specified, the following routines can be present in the generated code,
allowing you to call them to use COM or Automation objects:

DFCOM Routines (COMxxxxx)
COMAddObject Reference Adds a reference to an object's interface.

COMCLSIDFromProgID
Passes a programmatic identifier and returns the corresponding
class identifier.

COMCLSIDFromString
Passes a class identifier string and returns the corresponding class
identifier.

COMCreateObjectByGUID
Passes a class identifier and creates an instance of an object. It
returns a pointer to the object's interface.

COMCreateObjectByProgID
Passes a programmatic identifier and creates an instance of an
object. It returns a pointer to the object's IDispatch interface.

COMGetActiveObjectByGUID
Pass a class identifier and returns a pointer to the interface of a
currently active object.

COMGetActiveObjectByProgID
Passes a programmatic identifier and returns a pointer to the
IDispatch interface of a currently active object.

COMInitialize
Initializes the COM library. You must initialize the library before
calling any other COM or AUTO routine.

COMGetFileObject
Passes a file name and returns a pointer to the IDispatch interface
of an Automation object that can manipulate the file.

COMQueryInterface
Passes an interface identifier and it returns a pointer to an object's
interface.

COMReleaseObject
Indicates that the program is done with a reference to an object's

Using COM and Automation Objects Page 7 of 12

8/21/97 12:22:25 PM

COMReleaseObject
interface.

COMUninitialize
Uninitializes the COM library. This must be the last COM routine
that you call.

DFAUTO Automation Routines (AUTOxxxxx)

AUTOAddArg
Passes an argument name and value and adds the argument to the
argument list data structure.

AUTOAllocateInvokeArgs
Allocates an argument list data structure that holds the arguments
that you will pass to AUTOInvoke.

AUTODeallocateInvokeArgs Deallocates an argument list data structure.

AUTOGetExceptInfo
Retrieves the exception information when a method has returned an
exception status.

AUTOGetProperty
Passes the name or identifier of the property and gets the value of
the Automation object’s property.

AUTOGetPropertyByID
Passes the member ID of the property and gets the value of the
Automation object’s property into the argument list’s first argument.

AUTOGetPropertyInvokeArgs
Passes an argument list data structure and gets the value of the
Automation object’s property specified in the argument list’s first
argument.

AUTOInvoke
Passes the name or identifier of an object’s method and an
argument list data structure. It invokes the method with the passed
arguments.

AUTOSetProperty
Passes the name or identifier of the property and a value. It sets the
value of the Automation object’s property.

AUTOSetPropertyByID
Passes the member ID of the property and sets the value of the
Automation object’s property using the argument list’s first
argument.

AUTOSetPropertyInvokeArgs
Passes an argument list data structure and sets the value of the
Automation object’s property specified in the argument list’s first
argument.

Visual Fortran provides two sample applications in the Advanced folder of Samples
(...\DF\SAMPLES\ADVANCED\COM\) that demonstrate the use of the Fortran Module Wizard. They
are:

• DSLINES uses COM to drive Microsoft Developer Studio to edit a Fortran source file and
convert Debug lines (column 1) to IFDEF directives.

• DSBUILD uses OLE Automation to drive Microsoft Developer Studio to rebuild a project
configuration.

Example of Generated Code Used by the DSLINES Sample

The DLINES Sample contains the code that invokes this and other Microsoft Developer Studio
functionality using COM interfaces.

The following code shows an annotated version of the code generated by the Fortran Module Wizard
from the COM type information in ...\DevStudio\SharedIDE\Bin\devshl.dll. This type
information describes the top-level objects in the Microsoft Developer Studio object model.

Using COM and Automation ObjectsUsing COM and Automation Objects Page 8 of 12

8/21/97 12:22:26 PM

 INTERFACE
 ! Saves the document to disk.

 INTEGER*4 FUNCTION IGenericDocument_Save($OBJECT, vFilename, &
vBoolPrompt, pSaved)

 USE DFCOMTY
 INTEGER*4, INTENT(IN) :: $OBJECT ! Object Pointer

 !DEC$ ATTRIBUTES VALUE :: $OBJECT

 TYPE (VARIANT), INTENT(IN) :: vFilename ! (Optional Arg)
 !DEC$ ATTRIBUTES VALUE :: vFilename
 TYPE (VARIANT), INTENT(IN) :: vBoolPrompt ! (Optional Arg)
 !DEC$ ATTRIBUTES VALUE :: vBoolPrompt

 INTEGER*4, INTENT(OUT) :: pSaved ! Void
 !DEC$ ATTRIBUTES REFERENCE :: pSaved
 !DEC$ ATTRIBUTES STDCALL :: IGenericDocument_Save
 END FUNCTION IGenericDocument_Save
 END INTERFACE

 POINTER(IGenericDocument_Save_PTR, IGenericDocument_Save) ! routine pointer

Notes for this example:

If the type information provides a comment that describes the member function, then the comment
is placed before the beginning of the procedure.

The first argument to the procedure is always $OBJECT. It is a pointer to the object’s interface.
The remaining argument names are determined from the type information.

This is an example of an ATTRIBUTE directive statement used to specify the calling convention
of an argument.

A VARIANT is a data structure that can contain any type of Automation data. It contains a field
that identifies the type of data and a union that holds the data value. The use of a VARIANT
argument allows the caller to use any data type that can be converted into the data type expected by
the member function.

Nearly every COM member function returns a status of type HRESULT. Because of this, if a COM
member function produces output it uses output arguments to return the values. In this example, the
"pSaved" argument returns a routine specific status value.

The interface of a COM member function looks very similar to the interface for a dynamic link
library function with one major exception. Unlike a DLL function, the address of a COM member
function is never known at program link time. You must get a pointer to an object’s interface at
run-time, and the address of a particular member function is computed from that.

The following code shows an annotated version of the wrapper generated by the Fortran Module
Wizard for the "Save" function. The name of a wrapper is the same as the name of the corresponding
member function, prefixed with a "$" character.

 ! Saves the document to disk.

Using COM and Automation Objects Page 9 of 12

8/21/97 12:22:26 PM

 INTEGER*4 FUNCTION $IGenericDocument_Save($OBJECT, vFilename, &
vBoolPrompt, pSaved)

 !DEC$ ATTRIBUTES DLLEXPORT :: $IGenericDocument_Save
 IMPLICIT NONE

 INTEGER*4, INTENT(IN) :: $OBJECT ! Object Pointer
 !DEC$ ATTRIBUTES VALUE :: $OBJECT
 TYPE (VARIANT), INTENT(IN), OPTIONAL :: vFilename
 !DEC$ ATTRIBUTES REFERENCE :: vFilename
 TYPE (VARIANT), INTENT(IN), OPTIONAL :: vBoolPrompt
 !DEC$ ATTRIBUTES REFERENCE :: vBoolPrompt
 INTEGER*4, INTENT(OUT) :: pSaved ! Void
 !DEC$ ATTRIBUTES REFERENCE :: pSaved

 INTEGER*4 $RETURN
 INTEGER*4 $VTBL ! Interface Function Table
 POINTER($VPTR, $VTBL)
 TYPE (VARIANT) :: $VAR_vFilename
 TYPE (VARIANT) :: $VAR_vBoolPrompt
 IF (PRESENT(vFilename)) THEN
 $VAR_vFilename = vFilename
 ELSE
 $VAR_vFilename = OPTIONAL_VARIANT
 END IF
 IF (PRESENT(vBoolPrompt)) THEN
 $VAR_vBoolPrompt = vBoolPrompt
 ELSE
 $VAR_vBoolPrompt = OPTIONAL_VARIANT
 END IF
 $VPTR = $OBJECT ! Interface Function Table
 $VPTR = $VTBL + 84 ! Add routine table offset
 IGenericDocument_Save_PTR = $VTBL
 $RETURN = IGenericDocument_Save($OBJECT, $VAR_vFilename, &
 $VAR_vBoolPrompt, pSaved)
 $IGenericDocument_Save = $RETURN
 END FUNCTION $IGenericDocument_Save

Notes for this example:

The wrapper takes the same argument names as the member function interface.

The wrapper computes the address of the member function from the interface pointer and an offset
found in the interface’s type information. In implementation terms, an interface pointer is a pointer to
a pointer to an array of function pointers called an "Interface Function Table".

Arguments to a COM or Automation routine can be optional. The wrapper handles the invocation
details for specifying an optional argument that is not present in the call.

The offset of the "Save" member function is 84. The code assigns the computed address to the
function pointer IGenericDocument_Save_PTR, which was declared in the previous example, and
then calls the function.

The DLINES Sample contains the code that invokes this and other Microsoft Developer Studio
functionality using COM interfaces.

Example of Generated Code Used by the DSBUILD Sample

Using COM and Automation Objects Page 10 of 12

8/21/97 12:22:26 PM

The DSBUILD example contains the code that invokes this and other Microsoft Developer Studio
functionality using Automation interfaces.

The following code shows an annotated version of the code generated by the Fortran Module Wizard
from the Automation type information in ...\DevStudio\SharedIDE\Bin\devshl.dll .

 ! Rebuilds all files in a specified configuration.
 SUBROUTINE IApplication_RebuildAll($OBJECT, Configuration, $STATUS)
 !DEC$ ATTRIBUTES DLLEXPORT :: IApplication_RebuildAll
 IMPLICIT NONE

 INTEGER*4, INTENT(IN) :: $OBJECT ! Object Pointer
 !DEC$ ATTRIBUTES VALUE :: $OBJECT
 TYPE (VARIANT), INTENT(IN), OPTIONAL :: Configuration
 !DEC$ ATTRIBUTES REFERENCE :: Configuration
 INTEGER*4, INTENT(OUT), OPTIONAL :: $STATUS ! Method status
 !DEC$ ATTRIBUTES REFERENCE :: $STATUS
 INTEGER*4 $$STATUS
 INTEGER*4 invokeargs
 invokeargs = AUTOALLOCATEINVOKEARGS()
 IF (PRESENT(Configuration)) CALL AUTOADDARG(invokeargs, ’$ARG1’, &

Configuration, .FALSE.)
 $$STATUS = AUTOINVOKE($OBJECT, 28, invokeargs)
 IF (PRESENT($STATUS)) $STATUS = $$STATUS
 CALL AUTODEALLOCATEINVOKEARGS (invokeargs)
 END SUBROUTINE IApplication_RebuildAll

Notes for this example:

The first argument to the procedure is always $OBJECT. It is a pointer to an Automation object’s
IDispatch interface. The last argument to the procedure is always $STATUS. It is an optional
argument that you can specify if you wish to examine the return status of the method. The IDispatch
Invoke member function returns a status of type HRESULT. An HRESULT is a 32-bit value. It has
the same structure as a Win32 error code. In between the $OBJECT and $STATUS arguments are
the method arguments’ names determined from the type information. Sometimes, the type
information does not provide a name for an argument. The Fortran Module Wizard creates a
"$ARGn" name in this case.

AUTOAllocateInvokeArgs allocates a data structure that is used to collect the arguments that you
will pass to the method. AUTOAddArg adds an argument to this data structure.

AUTOInvoke invokes the named method passing the argument list. This returns a status result.

If the caller supplied a status argument, the code copies the status result to it.

AUTODeallocateInvokeArgs deallocates the memory used by the argument list data structure.

The DSBUILD example contains the code that invokes this and other Microsoft Developer Studio
functionality using Automation interfaces.

Additional Information About COM and Automation Objects

Using COM and Automation Objects Page 11 of 12

8/21/97 12:22:26 PM

This section provides some information about COM and Automation objects.

COM Objects

The Component Object Model (COM) provides mechanisms for creating reusable software
components. COM is an object-based programming model designed to promote software
interoperability; that is, to allow two or more applications or "components" to easily cooperate with
one another, even if they were written by different vendors at different times, in different
programming languages, or if they are running on different machines running different operating
systems.

With COM, components interact with each other and with the system through collections of function
calls, also known as methods or member functions or requests, called interfaces. An interface is a
semantically related set of member functions. The interface as a whole represents a features of an
object. The member functions of an interface represent the operations that make up the feature. In
general, an object can support multiple interfaces and you can use COMQueryInterface to get a
pointer to any of them.

The Visual Fortran COM routines provide a Fortran interface to basic COM functions.

Automation Objects

The capabilities of an Automation object resemble those of a COM object. An Automation object is
in fact a COM object. An Automation object exposes:

• Methods, which are functions that perform an action on an object. These are very similar to the
member functions of COM objects.

• Properties, which hold information about the state of an object. A property can be represented
by a pair of methods; one for getting the property's current value, and one for setting the
property's value.

The Visual Fortran AUTO routines provide a Fortran interface to invoking an automation object's
methods and setting and getting its properties.

Object Identification

Object identification enables the use of COM objects created by disparate groups of developers. To
provide a method of uniquely identifying an object class regardless of where it came from, COM
uses globally unique identifiers (GUIDs). A GUID is a 16-byte integer value that is guaranteed (for
all practical purposes) to be unique across space and time. COM uses GUIDs to identify object
classes, interfaces, and other things that require unique identification.

To create an instance of an object, you need to tell COM what the GUID of the object is. While using
16-byte integers for identification is fine for computers, it poses a challenge for the typical developer.
So, COM also supports the use of a less precise, textual name called a programmatic identifier
(ProgID). A ProgID takes the form:

application_name.object_name.object_version

Additional Resources

There have been a number of published books and articles about COM and Automation. DIGITAL

Using COM and Automation Objects Page 12 of 12

8/21/97 12:22:26 PM

lists these additional resources for the sole purpose of assisting customers who want to learn more
about the subject matter. This list does not comment--either negatively or positively--on any
documents listed or not yet listed. Books and related resources include:

• How OLE and COM Solve the Problems of Component Software Design by K. Brockschmidt.
Microsoft Systems Journal, vol. 11, no. 5 (May 1996): 63-80

• Inside OLE, Second Edition by K. Brockschmidt. Published by Microsoft Press (Redmond,
Washington) 1995

• Microsoft Developer Studio Environment User's Guide (InfoViewer, provided with Visual
Fortran)

• OLE 2 Programmer’s Reference, Volume Two. Published by Microsoft Press (Redmond,
Washington) 1994

• Understanding ActiveX and OLE by David Chappell. Published by Microsoft Press
(Redmond, Washington) 1996

• Win 32 SDK, OLE Programmer’s Reference online version
• Win 32 SDK, Automation online version

Microsoft Press has a URL of http://mspress.microsoft.com/.

Using the Compiler and Linker from the Command Line Page 1 of 14

8/21/97 12:23:22 PM

Using the Compiler and Linker from the Command Line
The DF command is used to compile and link your programs. In most cases, you will use a single DF
command to invoke the compiler and linker. The DF command invokes a driver program that is the
actual user interface to the compiler and linker. It accepts a list of command options and file names
and causes one or more of the processors to process each file.

If you will be using the DF command from the command line, you can set the appropriate
environment variables for the terminal window environment by executing the file DFVARS.BAT or
by using the supplied F90 terminal window (in the Visual Fortran program folder).

The driver program does the following:

• Calls the DIGITAL Visual Fortran compiler to process Fortran files
• Passes the linker options to the linker
• Passes object files created by the compiler to the linker
• Passes libraries to the linker

The DF command automatically references the appropriate Visual Fortran Run-Time Libraries when
it invokes the linker. Therefore, to link one or more object files created by the Visual Fortran
compiler, you should use the DF command instead of the linker command.

Because the DF driver calls other software components, error messages may be returned by these
other components. For instance, the linker may return a message if it cannot resolve a global
reference. Using the /watch:cmd option on the DF command line can help clarify which component
is generating the error.

The following sections discuss these topics:

• The Format of the DF Command
• Examples of the DF Command Format
• Input and Output Files
• Environment Variables Used with the DF Command
• Specifying Project Types with DF Command Options
• Using the DF Command to Compile and Link
• DF Indirect Command File Use
• Compiler Limits and Messages

The Format of the DF Command
This section describes the format of the DF command. It also provides an alphabetical list of DF
command options.

The DF command accepts the following types of options:

• Compiler options
• Linker options

The command driver requires that the following rules be observed when specifying the DF command:

Using the Compiler and Linker from the Command Line Page 2 of 14

9/2/97 3:32:23 PM

• Except for the linker options, options can be specified in any order.
• Linker options must be preceded by the keyword /link and must be specified at the end of the

command line, following all other options.

The DF command has the following form:

 DF options [/link options]

options
A list of compiler or linker options. These lists of options take the following form:

 [/option:[arg]] [filename.ext]...

Where:
/option[:arg]
Indicates either special actions to be performed by the compiler or linker, or special properties of
input or output files.

The following rules apply to options and their names:

• Options begin with a slash (/). You can use a dash (-) instead of a slash.
• Visual Fortran options are not case-sensitive. Certain options provided for compatibility

with Microsoft Fortran Powerstation options are case-sensitive, such as /FA and /Fafile.
• You can abbreviate option names. You need only enter as many characters as are needed to

uniquely identify the option.

Certain options accept one or more keyword arguments following the option name. For example,
the /warn option accepts several keywords, including argument_checking and declarations.

To specify only a single keyword, specify the keyword after the colon (:). For example, the
following specifies the /warn option declarations keyword:

 DF /warn:declarations test.f90

To specify multiple keywords, specify the option name once, and place each keyword in a
comma-separated list enclosed within parentheses with no spaces between keywords, as follows:

 DF /warn:(argument_checking,declarations) test.f90

Instead of the colon, you can use an equal sign (=):

 DF /warn=(argument_checking,declarations) test.f90

filename.ext
Specifies the files to be processed. You can use wildcard characters (such as *.f90) to indicate
multiple files or you can specify each file name.

The file extension identifies the type of the file. With Fortran source files, certain file extensions
indicate whether that source file contains source code in free (such as .f90) or fixed (such as .for)
source form. You can also specify compiler options to indicate fixed or free source form (see

Using the Compiler and Linker from the Command Line Page 3 of 14

9/2/97 3:32:23 PM

/[no]free).

The file extension determines whether that file gets passed to the compiler or to the linker. For
example, files myfile.for and projfile.f are passed to the compiler and file myobj.obj is passed to
the linker.

The following table lists the DF command options:

Table: Options List, Alphabetic Order

/[no]alignment /[no]altparam
/architecture (Alpha only) /[no]asmattributes
/[no]asmfile /assume
/[no]automatic /bintext
/[no]browser /[no]check
/[no]comments /[no]compile_only
/convert /[no]d_lines
/[no]dbglibs /[no]debug
/define /[no]dll
/[no]error_limit /[no]exe
/[no]extend_source /extfor
/extfpp /extlnk
/[no]f66 /[no]f77rtl
/fast /[no]fixed
/[no]fltconsistency (x86 only) /[no]fpconstant
/fpe /fpp
/[no]fpscomp /[no]free
/granularity (Alpha only) /help or /?
/iface /[no]include
/[no]inline /[no]intconstant
/integer_size /[no]keep
/[no]libdir /libs
/[no]link /[no]list
/[no]logo /[no]machine_code
/[no]map /math_library
/[no]module /names
/[no]object /[no]optimize
/[no]pad_source /[no]pdbfile
/[no]pipeline (Alpha only) /preprocess_only
/real_size /[no]recursive
/[no]reentrancy /rounding_mode (Alpha only)
/[no]show /source
/[no]static /[no]stand
/[no]synchronous_exceptions (Alpha only) /[no]syntax_only
/[no]threads /[no]transform_loops (Alpha only)

Using the Compiler and Linker from the Command Line Page 4 of 14

9/2/97 3:32:23 PM

/tune (Alpha only) /undefine
/unroll /[no]vms
/[no]warn /[no]watch
/what /winapp

For More Information:
• On DF command examples, see Examples of the DF Command Format
• On using the FL32 command, see Microsoft Fortran PowerStation Command-Line

Compatibility
• About Fortran Powerstation options (such as /MD) and their DF command equivalents, see

Equivalent Visual Fortran Compiler Options

Examples of the DF Command Format
The following examples demonstrate valid and invalid DF commands:

Valid DF commands

In the following example, the file to be compiled is test.f90 and the file proj.obj is passed to the
linker:

 DF test.f90 proj.obj

In this example, the .f90 file extension indicates test.f90 is a Fortran free-form source file to be
compiled. The file extension of obj indicates proj.obj is an object file to be passed to the linker.
You can optionally add the /link option before the file proj.obj to indicate it should be passed
directly to the linker.

In the following example, the /check:bounds option requests that the Fortran compiler generate
additional code to perform run-time checking for out-of-bounds array and substring references for
the files myfile.for and test.for (fixed-form source):

 DF /check:bounds myfile.for test.for

In the following example, the /link option indicates that files and options after the /link option are
passed directly to the linker:

 DF myfile.for /link myobject.obj /out:myprog.exe

Invalid DF commands

The following DF command is invalid because the /link option indicates that items after the /link
option are passed directly to the linker, but the file test.for should be passed to the compiler:

 DF myfile.for /link test.for /out:myprog.exe

The following DF command is invalid because the /link option is missing and the /out linker
option is not recognized as a compiler option:

Using the Compiler and Linker from the Command Line Page 5 of 14

9/2/97 3:32:23 PM

 DF myfile.for test.for /out:myprog.exe

A correct form of this command is:

 DF myfile.for test.for /link /out:myprog.exe

In this case, you can alternatively use one of the DF options (/exe) that specifies information to
the linker:

 DF myfile.for test.for /exe:myprog.exe

For More Information:
• Environment Variables Used with the DF Command
• Specifying Project Types with DF Command Options
• Using the DF Command to Compile and Link
• DF Indirect Command File Use
• Compiler Limits and Messages

Input and Output Files
You can use the DF command to process multiple files. These files can be source files, object files,
or object libraries.

When a file is not in your path or working directory, specify the directory path before the file name.

The file extension determines whether a file gets passed to the compiler or to the linker. The
following types of files are used with the DF command:

• Files passed to the compiler: .f90, .for, .f, .fpp, .i, .i90, .inc,. .h, .c, .cpp, .fi, .fd, .f77
Typical Fortran (DF command) source files have a file extension of .f90, .for, and .f.

• Files passed to the linker: .lib, .obj, .o, .exe, .res, .rbj, .def, .dll
For example, object files usually have a file extension of .obj. Files with extensions of .lib are
usually library files.

The output produced by the DF command includes:

• An object file (.OBJ) if you specify the /compile_only, /keep, or /object option on the
command line.

• An executable file (.EXE) if you do not specify the /compile_only option
• A dynamic-link library file (.DLL) if you specify the /dll option and do not specify the

/compile_only option
• A module file (.MOD) if a source file being compiled defines a Fortran 90 module (MODULE

statement)
• A program database file (.PDB) if you specify the /pdbfile or /debug:full (or equivalent)

options
• A listing file (.LST) if you specify the /list option
• A browser file (.SBR) if you specify the /browser option

You control the production of these files by specifying the appropriate options on the DF command
line. Unless you specify the /compile_only option or /keep option, the compiler generates a single

Using the Compiler and Linker from the Command Line Page 6 of 14

9/2/97 3:32:23 PM

temporary object file from one or more source files. The linker is then invoked to link the object file
into one executable image file.

If fatal errors are encountered during compilation, or if you specify certain options such as
/compile_only, linking does not occur.

For more information about naming input and output files, see:

• Naming Output Files
• Temporary Files

Naming Output Files

To specify a file name for the executable image file, you can use one of several DF options:

• The /exe:file or the /out:file linker option to name an executable program file.
• The /dll:file alone or the /dll option with the /out:file linker option to name an executable

dynamic-link library.

You can also use the /object:file option to specify the object file name. If you specify the
/compile_only option and omit the /object:file option, each source file is compiled into a separate
object file. For more information about the output file(s) created by compiling and linking multiple
files, see Compiling and Linking Multiple Fortran Source Files.

Many compiler options allow you to specify the name of the file being created. If you specify only a
filename without an extension, a default extenson is added for the file being created, as summarized
below:

Option Default File Extension
/asmfile:file .ASM
/browser:file .SBR
/dll:file .DLL
/exe:file .EXE
/list:file .LST
/map:file .MAP
/pdbfile:file .PDB (default filename is df50.pdb)

Temporary Files

Temporary files created by the compiler or linker reside in the directory used by the operating system
to store temporary files. To store temporary files, the operating system first checks for the TMP
environment variable.

If the TMP environment variable is defined, the directory that it points to is used for temporary files.
If the TMP environment variable is not defined, the operating system checks for the TEMP
environment variable. If the TEMP environment variable is not defined, the current working
directory is used for temporary files. Temporary files are usually deleted, unless the /keep option was
specified. For performance reasons, use a local drive (rather than using a network drive) to contain
the temporary files.

Using the Compiler and Linker from the Command Line Page 7 of 14

9/2/97 3:32:23 PM

To view the file name and directory where each temporary file is created, use the /watch:cmd option.
To create object files in your current working directory, use the /compile_only or /keep option. Any
object files (.obj files) that you specify on the DF command line are retained.

Environment Variables Used with the DF Command
The following environment variables affect the DF command:

Environment

Variable Description
PATH The PATH environment variable sets the search path.
LIB The linker uses the LIB environment variable to determine the location of .LIB files.

If the LIB environment variable is not set, the linker looks for .LIB files in the current
directory.

IMSL_F90 The IMSL_F90 environment variable contains a list of libraries used for linking
IMSL libraries (Professional Edition), as listed in Library Naming Conventions.

INCLUDE The make facility (NMAKE) uses the INCLUDE environment variable to locate
INCLUDE files and module files. The DIGITAL Fortrtan compiler uses the
INCLUDE environment variable to locate files included by an INCLUDE statement
or module files referenced by a USE statement. Similarly, the resource compiler uses
the INCLUDE environment variable to locate #include and RCINCLUDE files.

DF The DF environment variable can be used to specify frequently used DF options and
files. The options and files specified by the DF environment variable are added to the
DF command; they are processed before any options specified on the command line.
You can override an option specified in the DF environment variable by specifying an
option on the command line.

For information about using the DF environment variable to specify frequently-used
options, see Using the DF Environment Variable to Specify Options.

You can set these environment variables by using the DFVARS.BAT file or the F90 command-line
window (see Using the Command-Line Interface).

For a list of environment variables recognized at run-time, see Run-Time Environment Variables.

Specifying Project Types with DF Command Options
This section provides the DF command options that correspond to Developer Studio project types.

When creating an application, you should choose a project type. The first four projects are main
project types, requiring main programs:

• To create a Win32 Console Application with the DF command, you do not need to specify a
specific option. This is the default project type created.

• To create a Standard Graphics Application with the DF command, specify the /libs=qwins
option.

• To create a QuickWin Application with the DF command, specify the /libs:qwin option.
• To create a Win32 (Windows) Application with the DF command, specify the /winapp option.

Using the Compiler and Linker from the Command Line Page 8 of 14

9/2/97 3:32:23 PM

The following types are library projects, without main programs:

• To create a Win32 Static library with the DF command, specify the /libs:static and
/compile_only options to create the object files. Use the LIB command to create the library
(see Managing Libraries with LIB).

• To create a Win32 Dynamic-Link Library with the DF command, specify the /dll option (sets
the /libs:dll option).

For an introduction to Visual Fortran project types and corresponding sample programs, see Visual
Fortran Projects.

Using the DF Command to Compile and Link
By default, when you use DF, your source files are compiled and then linked. To suppress linking,
use the /compile_only option. The following topics show how to use the DF command:

• Compiling and Linking a Single Source File
• Using the DF Environment Variable to Specify Options
• Compiling, but not Linking, a Fortran Source File
• Compiling and Linking Multiple Fortran Source Files
• Generating a Listing File
• Linking Against Additional Libraries
• Linking Object Files
• Compiling and Linking for Debugging
• Compiling and Linking for Optimization
• Compiling and Linking Mixed-Language Programs

Compiling and Linking a Single Source File

The following command compiles x.for, links, and creates an executable file named x.exe. This
command generates a temporary object file, which is deleted after linking:

 DF x.for

To name the executable file, specify the /exe option:

 DF x.for /exe:myprog.exe

Alternatively, you can name the executable file by using linker /out option:

 DF x.for /link /out:myprog.exe

Using the DF Environment Variable to Specify Options

The following command-line sequences show the use of the DF environment variable. In the first
command sequence, the SET command sets the DF environment variable. When the DF command is
invoked, it uses the options specified by the DF environment variable, in this case, /debug:minimal
and /list:

Using the Compiler and Linker from the Command Line Page 9 of 14

9/2/97 3:32:23 PM

 set DF=/debug:minimal /list
 DF myprog.for

You can also specify additional options on the DF command line. In the following command
sequence, the SET command sets the DF environment variable. The DF options specified are
/debug:minimal and /list.

 set DF=/debug:minimal /list
 DF myprog.for /show:map

If the options specified on the command line conflict with the options specified by the DF
environment variable, the option specified on the command line takes precedence. In the following
command sequence, the /debug:minimal option specified by the DF environment variable is
overridden by the /debug:none option specified on the command line:

 set DF=/debug:minimal /list
 DF myprog.for /debug:none

Compiling, but not Linking, a Fortran Source File

The following command compiles x.for and generates the object file x.obj. The /compile_only option
prevents linking (it does not link the object file into an executable file):

 DF x.for /compile_only

Compiling and Linking Multiple Fortran Source Files

The following command compiles a.for, b.for, and c.for. It creates a single temporary object file, then
links the object file into an executable file named a.exe:

 DF a.for b.for c.for

If the files a.for, b.for, and c.for were the only .for files in the current directory, you could use a
wildcard character to similarly compile the three source files:

 DF *.for

If you use the /compile_only option to prevent linking, also use the /object:file option so that
multiple sources files are compiled into a single object file, allowing more optimizations to occur:

 DF /compile_only /object:a.obj a.for b.for c.for

When you use modules and compile multiple files, compile the source files that define modules
before the files that reference (USE) the modules.

If you use multiple DF commands, compile the files that define module definitions first and then
compile the files that reference the modules.

Using the Compiler and Linker from the Command Line Page 10 of 14

9/2/97 3:32:23 PM

When you use a single DF command, the order in which files are placed on the command line is
significant. For example, if the free-form source file moddef.f90 defines the modules referenced by
the file projmain.f90, use the following DF command line:

 DF moddef.f90 projmain.f90

Generating a Listing File

To request a listing file, specify the /list option with the DF command. When you request a listing
file, a separate listing file is generated for each object file created.

The content of the listing file is affected by the /show option. For more information about this option,
see Compiler and Linker Options.

The following command compiles and links a.for, b.for, and c.for. It generates one listing file for the
three source files:

 DF a.for b.for c.for /list

The following command compiles a.for, b.for, and c.for. It generates three listing files (and three
object files) for the three source files:

 DF a.for b.for c.for /list /compile_only

The following command sequence compiles and links a.for, b.for, and c.for. It generates one named
object file (a.obj) and one listing file (a.lst). The second command links the object files into an
executable file (a.exe):

 DF a.for b.for c.for /list /compile_only /object:a.obj
 DF a.obj

The following command sequence compiles and links a.for, b.for, and c.for. It generates three object
files (a.obj, b.obj, and c.obj) and three listing files (a.lst, b.lst, and c.lst). The second command links
the object files into an executable file (a.exe).

 DF a.for b.for c.for /list /compile_only
 DF a.obj b.obj c.obj

Linking Against Additional Libraries

By default, the DF command automatically adds the libraries needed to build a console application to
the link command that it generates. The /libs:dll option indicates that you want to link against
single-threaded DLLs; other /libs options allow you to link against other types of libraries. The
/libs:static option (the default) indicates that you want to link against single-threaded static libraries.
You can link against additional libraries by listing those libraries on the command line.

For example, the following command links against static libraries. In addition to linking against the
default libraries, it links against mylib.lib:

Using the Compiler and Linker from the Command Line Page 11 of 14

9/2/97 3:32:23 PM

 DF x.f90 mylib.lib

The following command links against single-threaded DLLs:

 DF x.f90 /libs:dll

The following command links against single-threaded DLLs. It links against the default libraries and
mylib.lib:

 DF x.f90 /libs:dll mylib.lib

For more information on the types of libraries available to link against, see the /libs and /winapp
options.

Linking Object Files

The following command links x.obj into an executable file. This command automatically links with
the default DIGITAL Fortran libraries:

 DF x.obj

Compiling and Linking for Debugging

If you use a single DF command to compile and link, specify the /debug option (/debug sets the
default optimization level to /optimize:0), as follows:

 DF x.for /debug

By default, the debugger symbol table information is created in a PDB file, which is needed for the
debugger integrated with Developer Studio.

If you use separate DF commands to compile and link, you will want to specify the same debugging
information level for the compiler and the linker. For example, if you specify /debug:minimal to the
compiler, you will also specify /link /debug:minimal. The following command sequence compiles
and then links x.for for debugging with the integrated Developer Studio debugger:

 DF x.for /debug:full /optimize:0 /compile_only
 DF x.obj /debug:full

Compiling and Linking for Optimization

If you omit both the /compile_only and the /keep options, the specified Fortran source files are
compiled together into a single object module and then linked. (The object file is deleted after
linking.) Because all the Fortran source files are compiled together into a single object module, full
interprocedural optimizations can occur. With the DF command, the default optimization level is
/optimize:4 (unless you specify /debug with no keyword).

Using the Compiler and Linker from the Command Line Page 12 of 14

9/2/97 3:32:23 PM

If you specify the /compile_only or /keep option and you want to allow full interprocedural
optimizations to occur, you should also specify the /object option. The combination of the
/compile_only and /object:file options creates a single object file from multiple Fortran source files,
allowing full interprocedural optimizations. The object file can be linked later.

The following command uses both the /compile_only and /object options to allow interprocedural
optimization (explicitly requested by the /optimize:4 option):

 DF /compile_only /object:out.obj /optimize:4 ax.for bx.for cx.for

If you specify the /compile_only or /keep option without specifying the /object option, each source
file is compiled into an object file. This is acceptable if you specified no optimization (/optimize:0)
or local optimization (/optimize:1). An information message appears when you specify multiple
input files and specify an option that creates multiple object files (such as /compile_only without
/object) and specify or imply global optimization (/optimize:2 or higher optimization level).

If you specify the /compile_only option, you must link the object file (or files) later by using a
separate DF command. You might do this using a makefile processed by the NMAKE command for
incremental compilation of a large application.

However, keep in mind that either omitting the /compile_only or /keep option or using the
/compile_only option with the /object:file option provides the benefit of full interprocedural
optimizations for compiling multiple Fortran source files.

Other optimization options are summarized in Software Environment and Efficient Compilation.

Compiling and Linking Mixed-Language Programs

Your application can contain both C and Fortran source files. If your main program is a Fortran
source file (myprog.for) that calls a routine written in C (cfunc.c), you could use the following
sequence of commands to build your application:

 cl -c cfunc.c
 DF myprog.for cfunc.obj /link /out:myprog.exe

The cl command (invokes the C compiler) compiles but does not link cfunc.c. The -c option specifies
that the linker is not called. This command creates cfunc.obj. The DF command compiles myprog.for
and links cfunc.obj with the object file created from myprog.for to create myprog.exe.

For more information about compiling and linking Visual Fortran and Visual C++® programs, and
the libraries used, see Visual Fortran/Visual C++ Mixed-Language Programs.

DF Indirect Command File Use
The DF command allows the use of indirect command files. For example, assume the file text.txt
contains the following:

 /pdbfile:testout.pdb /exe:testout.exe /debug:full /optimize:0 test.f90 rest.f90

The following DF command executes the contents of file text.txt as an indirect command file to

Using the Compiler and Linker from the Command Line Page 13 of 14

9/2/97 3:32:23 PM

create a debugging version of the executable program and its associated PDB file:

 DF @test.txt

Indirect command files do not use continuation characters; all lines are appended together as one
command.

Compiler Limits and Messages
The following table lists the limits to the size and complexity of a single DIGITAL Visual Fortran
program unit and to individual statements contained in it.

The amount of data storage, the size of arrays, and the total size of executable programs are limited
only by the amount of process virtual address space available, as determined by system parameters:

Language Element Limit
Actual number of arguments per CALL or function reference 255
Array dimensions 7
Array elements per dimension 2,147,483,647 or process limit
Constants; character and Hollerith 2000 characters
Constants; characters read in list-directed I/O 2048 characters
Continuation lines 99
DO and block IF statement nesting (combined) 128
DO loop index variable 2,147,483,647 or process limit
Format group nesting 8
Fortran source line length 132 characters
INCLUDE file nesting 10
Labels in computed or assigned GOTO list 500
Lexical tokens per statement 3000
Named common blocks 250
Parentheses nesting in expressions 40
Structure nesting 20
Symbolic name length 31 characters

For more information about compiler limits and messages, see:
• Compiler Diagnostic Messages and Error Conditions
• Linker Diagnostic Messages and Error Conditions

Compiler Diagnostic Messages and Error Conditions

The Visual Fortran compiler identifies syntax errors and violations of language rules in the source
program. If the compiler finds any errors, it writes messages to the standard error output file and any
listing file. If you enter the DF command interactively, the messages are displayed.

Compiler messages have the following format:

 filename(n) : severity: message-text

Using the Compiler and Linker from the Command Line Page 14 of 14

9/2/97 3:32:23 PM

 [text-in-error]
 --------^

The pointer (---^) indicates the exact place on the source program line where the error was found.
The following error message shows the format and message text in a listing file when an END DO
statement was omitted:

 echar.for(7): Severe: Unclosed DO loop or IF block
 DO I=1,5
 --------^

Diagnostic messages usually provide enough information for you to determine the cause of an error
and correct it.

When using the command line, make sure that the appropriate environment variables have been set
by excuting the DFVARS.BAT file (see Using the Command-Line Interface in Getting Started). For
example, this BAT file sets the environment variables for the include directory paths.

For errors related to INCLUDE and module (USE statement) file use, see /[no]include.

For a list of environment variables used by the DF command during compilation, see Environment
Variables Used with the DF Command.

To view the passes as they execute on the DF command line, specify /watch:cmd or /watch:all.

Linker Diagnostic Messages and Error Conditions

If the linker detects any errors while linking object modules, it displays messages about their cause
and severity. If any errors occur, the linker does not produce an executable file.

Linker messages are descriptive, and you do not normally need additional information to determine
the specific error.

To view the libraries being passed to the linker on the DF command line, specify /watch:cmd or
/watch:all.

On the command line, make sure the DFVARS.BAT file was executed to set the appropriate
environment variables (see Using the Command-Line Interface in Getting Started). For example, this
BAT file sets the environment variables for the library directory paths. For a list of environment
variables used by the DF command during compilation, see Environment Variables Used with the
DF Command.

For information on handling build errors in Developer Studio, see Errors During the Build Process.

Compiler and Linker Options Page 1 of 78

8/21/97 12:23:58 PM

Compiler and Linker Options
Most of the compiler and linker options can be specified on the command line or within the
Microsoft Developer Studio environment. This section contains a description of the options available
to you in building programs.

You can set compiler options from:

• The DF command line. Compiler options must precede the /LINK option.
• Within Microsoft Developer Studio, by using the Fortran tab in the Project menu, Settings

dialog box.

Unless you specify certain options, the DF command line will both compile and link the files you
specify. To compile without linking, specify the /compile_only (or equivalent) option.

After the /LINK option on the DF command line, you can specify linker options. Linker options and
any libraries specified get passed directly to the linker, such as /NODEFAULTLIB. If you choose to
use separate compile and link commands, you can also specify linker options on a separate LINK
command.

For compatibility information, see Microsoft Fortran Powerstation Command-Line Compatibility.

Compiler Options
This section describes the compiler options and how they are used. It includes the following topics:

• Categories of compiler options, according to functional grouping.
• Descriptions of each compiler option, listed alphabetically.

Categories of Compiler Options

If you will be using the compiler and linker from the command line, specify the options needed on
the DF command line (as described in Using the Compiler and Linker from the Command Line).
You can use the functional categories of options below to locate the options needed for your
application.

If you will be using the compiler and linker from the Developer Studio Environment, select the
options needed by using the various tabs in the Project menu Settings item (see Building Programs
and Libraries). The following graphic shows a sample Fortran tab:

Figure: Project Settings, Fortran Tab

Compiler and Linker Options Page 2 of 78

8/21/97 12:23:58 PM

The options are grouped under functional categories to help you locate the options needed for your
application. From the Fortran tab, you can select one of the following categories from the Category
drop-down list:
General Compatibility
Debug External Procedures
Floating Point Fortran Data
Fortran Language Library
Listing Files Miscellaneous Compilation
Optimizations Preprocessor
Run-Time Checking

If a compiler option is not available in the dialog boxes, you can enter the option in the lower part of
the window just as you would at the command line.

The following tables list the Visual Fortran compiler options by category in the Fortran tab:

General-Purpose Options
Debugging Level /[no]debug and /[no]pdbfile[:file]
Warning Level /[no]warn[:keyword]
Optimization Level /[no]optimize
Generate Source Browser File /[no]browser[:file]
Predefined Preprocessor Variables /define

Compatibility Options (See also Fortran Data)

Compiler and Linker Options Page 3 of 78

8/21/97 12:23:58 PM

Unformatted Files (Nonnative Data) /convert (also see /assume:[no]byterecl)
VMS /[no]vms
Select F77 Run-Time Library /[no]f77rtl
Integer Constant Kind Used /[no]intconstant
Microsoft Fortran Powerstation V4 /[no]fpscomp (various keywords)

Debug Options
Debugging Level /[no]debug
Program Database for Debug Information and File Name/[no]pdbfile[:file]
Compile Lines With D in Column 1 /[no]d_lines

External Procedures (and Argument Passing) Options
Default Calling Conventions /[no]iface:keyword
String Length Argument Passing /[no]iface:mixed_str_len_arg
Names Case Interpretation /names:keyword
Append Underscore to External Nmes /assume:[no]underscore

Floating-Point Options (See also Optimizations)
Floating-Point Exception Handling /fpe
Rounding Mode /rounding_mode (Alpha only)
Enable Synchronous Floating-Point Exceptions /[no]synchronous_exceptions (Alpha only)
Enable Floating-Point Consistency /[no]fltconsistency (x86 only)
Extended Precision of Single-Precision Constants /[no]fpconstant

Fortran Data Options (See also Compatibility)
Common Element Alignment /[no]alignment:[no]common
Structure Element Alignment (Derived Type and Record Data) /alignment:[no]records
Thread Access Granularity /granularity (Alpha only)
Default INTEGER and LOGICAL Kind /integer_size
Default REAL and COMPLEX Kind /real_size
Variables Default to Automatic (or Static Storage) /[no]automatic or /[no]static
Use Bytes as Unit for Unformatted Files /assume:[no]byterecl
Enable Dummy Argument Aliasing /assume:[no]dummy_aliases

Fortran Language Options
Standards Checking (None, Fortran 90, or Fortran 95) /stand:keyword (also see /warn:stderrors)
Enable FORTRAN 66 Semantics /[no]f66
Enable Alternate PARAMETER Syntax /[no]altparam
Name Case Interpretation /names
Source Form (File Extension, Fixed Form, or Free Form) /[no]free or /[no]fixed
Fixed-Form Line Length /[no]extend_source
Pad Fixed-Form Source Records /[no]pad_source

Library Options (See also External Procedures)
Use Fortran Run-Time Libraries /libs:keyword

Compiler and Linker Options Page 4 of 78

8/21/97 12:23:58 PM

Use Multi-Threaded Library /[no]threads
Enable (or Disable) Reentrancy Support /[no]reentrancy
Use Common Windows Libraries /winapp
Create Dynamic Link Library (DLL) /dll
Disable OBJCOMMENT Library Names in Object /libdir:nouser
Disable Default Library Search Rules /libdir:noauto
Use Debug C Libraries /[no]dbglibs

Listing and Assembly File Options
Source Listing /[no]list
Contents of Source Listing File /show:keyword... or /[no]machine_code
Assembly Listing /[no]asmfile [:file] and /[no]asmattributes

Miscellaneous Compilation Options
Compilation Error Limit /[no]error_limit
Directory to Place Modules /module[:file]
Insert string into object file /bintext:string
Control Warning Messages /[no]warn
Compile, Do Not Link /compile_only or /c (command line only)
Name of Executable Program or DLL File /[no]exe[:file] (command line only)
Name of Object File /[no]object[:file] (command line only)
Perfrom Syntax Check Only (No Object File) /[no]syntax_only (command line only)
Display Help Text File /help or /? (command line only)
Specify Custom File Extension for Compiler /extfor (command line only)
Specify Custom File Extension for Linker /extlnk (command line only)
Display Copyright and Compiler Version /nologo and /what (command line only)
Display Compilation Details /[no]watch (command line only)
Specify Linker Options (after /link) /link (Use Linker tab)
Generate Link Map /[no]map (use Linker tab)

Optimization Options
Optimization Level /[no]optimize
Inlining Procedures /[no]inline
Loop Unrolling /unroll
Reorder Floating-Point Calculations /assume:[no]accuracy_sensitive
Loop Transformations /[no]transform_loops (Alpha only)
Math Library: Checking or Fast Performance /math_library
Software Instruction Scheduling /[no]pipeline (Alpha only)
Code Generation for Alpha Chip /architecture (Alpha only)
Code Tuning for Alpha Chip /tune (Alpha only)

Preprocessor Options
Define Preprocessor Symbols /define
Default INCLUDE and USE Path /assume:[no]source_include
Custom INCLUDE and USE Path /[no]include

Compiler and Linker Options Page 5 of 78

9/2/97 3:32:55 PM

Write C-Style Comments /comments (command line only)
Pass Options to FPP As Is /fpp (command line only)
Specify Custom File Extension for Preprocessor /extfpp (command line only)
Only Preprocess FPP Files /preprocess_only (command line only)
Undefine Preprocessor Symbols /undefine (command line only)

Run-Time Checking and Recursion
Enable Recursive Routines /[no]recursive
Check Array and String Bounds /check:[no]bounds
Check Integer Overflow /check:[no]overflow
Check Edit Descriptor Data Type /check:[no]format
Check for Flawed Pentium Chip /check:[no]flawed_pentium (x86 only)
Check Power Expressions /check:[no]power (Alpha only)
Check Floating-Point Underflow /check:[no]underflow
Check Edit Descriptor Data Size /check:[no]output_conversion

For a table of DF command options listed alphabetically, see Options List, Alphabetic Order.

/[no]alignment

Syntax:

/alignment[:keyword...], /noalignment, or /Zpn

The /alignment option specifies the alignment of data items in common blocks, record structures, and
derived-type structures. The /Zpn option specifies the alignment of data items in derived-type or
record structures.

The /alignment options are:

• /align:[no]commons
The /align:commons option aligns the data items of all COMMONdata blocks on natural
boundaries up to four bytes. The default is /align:nocommons (unless /fast is specified), which
does not align data blocks on natural boundaries. In Developer Studio, specify the Common
Element Alignment as 4 in the Fortran Data Compiler Option Category.

• /align:dcommons
The /align:dcommons option aligns the data items of all COMMON data blocks on natural
boundaries up to eight bytes. The default is /align:nocommons (unless /fast is specified),
which does not align data blocks on natural boundaries. In Developer Studio, specify the
Common Element Alignment as 8 in the Fortran Data Compiler Option Category.

• /align:[no]records
The /align:records option (the default, unless you specify the /vms option) requests that
components of derived types and fields of records be aligned on natural boundaries up to 8
bytes. The /align:norecords option (the default if the /vms option is specified) requests that
components and fields be aligned on arbitrary byte boundaries, instead of on natural
boundaries up to 8 bytes. In Developer Studio, specify the Structure Element Alignment in the
Fortran Data Compiler Option Category.

• /align:recNbyte or /Zpn

Compiler and Linker Options Page 6 of 78

9/2/97 3:32:55 PM

The /align:recNbyte or /Zpn options requests that fields of records and components of derived
types be aligned on the smaller of:

• The size byte boundary (N) specified.
• The boundary that will naturally align them.

Specifying /align:recNbyte, /Zpn, or /align:[no]records does not affect whether common block
fields are naturally aligned or packed. In Developer Studio, specify the Structure Element
Alignment in the Fortran Data Compiler Option Category.

Specifying Is the Same as Specifying
/Zp /alignment:records or /align:rec8byte
/Zp1 /alignment:norecords or /align:rec1byte
/Zp2 /align:rec2byte
/Zp4 /align:rec4byte
/alignment /Zp8 with /align:dcommons, /alignment:all, or /alignment:(dcommons,records)
/noalignment /Zp1, /alignment:none, or /alignment:(nocommons,nodcommons,norecords)
/align:rec1byte/align:norecords
/align:rec8byte/align:records

When you omit the /alignment option, records and components of derived types are naturally aligned,
but fields in common blocks are packed. This default is equivalent to:

/alignment=(nocommons,nodcommons,records)

/[no]altparam

Syntax:

/altparam, /noaltparam, /4Yaltparam, or /4Naltparam

The /altparam option determines how the compiler will treat the alternate syntax for PARAMETER
statements, which is:

PARAMETER par1=exp1 [, par2=exp2...]

This form does not have parentheses around the assignment of the constant to the parameter name.
With this form, the type of the parameter is determined by the type of the expression being assigned
to it and not by any implicit typing.

In Developer Studio, specify the Enable Alternate PARAMETER Syntax in the Fortran Language
Compiler Option Category.

When the /[no]altparam or equivalent options are not specified, the compiler default will be to allow
the alternate syntax for PARAMETER statements (/altparam).

To disallow use of this form, specify /noaltparam or /4Naltparam. To allow use of this form, allow
the default or specify /altparam or /4Yaltparam.

/architecture (Alpha only)

Compiler and Linker Options Page 7 of 78

8/21/97 12:23:58 PM

Syntax:

/architecture:keyword

The /architecture (/arch) option determines the type of Alpha chip code that will be generated for this
program. The /arch:keyword option uses the same keywords as the /tune:keyword option. This option
is ignored on x86 processor systems.

Whereas the /tune:keyword option is primarily used by certain higher-level optimizations for
instruction scheduling purposes, the /arch:keyword option determines the type of code instructions
generated for the program unit being compiled.

All Alpha processors implement a core set of instructions. Certain Alpha processor versions include
additional instruction extensions.

In Developer Studio, specify the Generate Code For in the Optimizations Compiler Option Category.
Supported /arch keywords are as follows:

• /arch:generic
Generates code that is appropriate for all Alpha processor generations. This is the default.
Programs compiled with the generic keyword will run on all implementations of the Alpha
architecture.

• /arch:host
Generates code for the processor generation in use on the system being used for compilation.
Depending on the host system used, the program may or may not run on other Alpha processor
generations:

• Programs compiled on an ev4 or ev5 chip Alpha system with the host keyword will run
on all Alpha processor generations.

• Programs compiled on an ev56 chip system with the host keyword should not be run on
ev4 and ev5 processors.

• Programs compiled on a pca56 chip system with the host keyword should not be run on
ev4, ev5, or ev56 processors.

• /arch:ev4
Generates code for the 21064, 21064A, 21066, and 21068 implementations of the Alpha
architecture. Programs compiled with the ev4 keyword will run on all Alpha processor
generations.

• /arch:ev5
Generates code for the some 21164 chip implementations of the Alpha architecture that use
only the base set of Alpha instructions (no extensions). Programs compiled with the ev5
keyword will run on all Alpha processor generations.

• /arch:ev56
Generates code for some 21164 chip implementations that use the byte and word manipulation
instruction extensions of the Alpha architecture. Programs compiled with the ev56 keyword
will run correctly on ev56 and pca56 processors, but should not be run on ev4 and ev5
processors.

Compiler and Linker Options Page 8 of 78

8/21/97 12:23:58 PM

• /arch:pca56
Generates code for the 21164PC chip implementation that uses the byte and word
manipulation instruction extensions and multimedia instruction extensions of the Alpha
architecture. Programs compiled with the pca56 keyword will run correctly on pca56
processors, but should not be run on ev4, ev5, or ev56 processors.

/[no]asmattributes

Syntax:

/asmattributes:keyword, /noasmattributes, /FA, /FAs, /FAc, or /FAcs

The /asmattributes option indicates what information, in addition to the assembly code, should be
generated in the assembly listing file.

In Developer Studio, specify Assembly Options in the Listing File Compiler Option Category. The
/asmattributes options are:

• /asmattributes:source or /FAs
Intersperses the source code as comments in the assembly listing file.

• /asmattributes:machine or /FAc
Lists the hex machine instructions at the beginning of each line of assembly code.

• /asmattributes:all or /FAcs
Intersperses both the source code as comments and lists the hex machine instructions at the
beginning of each line of assembly code. This is equivalent to /asmattributes.

• /asmattributes:none or /FA
Provides neither interspersed source code comments nor a listing of hex machine instructions.
This is equivalent to /noasmattributes.

If you omit the /asmattributes option, /asmattributes:none is used (default).

The /asmattributes option is ignored if the /[no]asmfile[:file] option is not specified. The /FA, /FAs,
/FAc, or /FAcs options can be used without the /[no]asmfile[:file] option.

/[no]asmfile

Syntax:

/asmfile[:file], /noasmfile, /Fa[file], /Fc[file], /Fl[file], or /Fs[file]

The /asmfile option or equivalent /Fx option indicates that an assembly listing file should be
generated. If the file is not specified, the default filename used will be the name of the source file
with an extension of .asm.

In Developer Studio, specify Assembly Listing in the Listing File Compiler Option Category.

When the /asmfile option or equivalent /Fx[file] option is specified and there are multiple source files
being compiled, each source file will be compiled separately. Compiling source files separately turns
off interprocedural optimization from being performed.

When you specify /noasmfile or the /asmfile option is not specified, the compiler does not generate

Compiler and Linker Options Page 9 of 78

8/21/97 12:23:58 PM

any assembly files.

To specify the content of the assembly listing file, also specify /[no]asmattributes:keyword or specify
the /Fx[file] options:

• /FA[file] provides neither interspersed source code comments nor a listing of hex machine
instructions.

• /FAs[file] provides interspersed source code as comments in the assembly listing file.
• /FAc[file] provides a list of hex machine instructions at the beginning of each line of assembly

code.
• /FAcs[file] provides interspersed source code as comments and lists hex machine instructions

at the beginning of each line of assembly code.

/assume

Syntax:

/assume:keyword

The /assume option specifies assumptions made by the Fortran syntax analyzer, optimizer, and code
generator. These option keywords are:

• /assume:[no]accuracy_sensitive
Specifying /assume:noaccuracy_sensitive allows the compiler to reorder code based on
algebraic identities (inverses, associativity, and distribution) to improve performance. In
Developer Studio, specify Allow Reordering of Floating-Point Operations in the
Optimizations Compiler Option Category.

The numeric results can be slightly different from the default (/assume:accuracy_sensitive)
because of the way intermediate results are rounded.

Numeric results with /assume:noaccuracy_sensitive are not categorically less accurate. They
can produce more accurate results for certain floating-point calculations, such as dot product
summations. For example, the following expressions are mathematically equivalent but may
not compute the same value using finite precision arithmetic.

X = (A + B) - C
X = A + (B - C)

If you omit /assume:noaccuracy_sensitive and omit /fast, the compiler uses a limited number
of rules for calculations, which might prevent some optimizations.

If you specify /assume:noaccuracy_sensitive, or if you specify /fast and omit
/assume:accuracy_sensitive, the compiler can reorder code based on algebraic identities to
improve performance.

For more information on /assume:noaccuracy_sensitive, see Arithmetic Reordering
Optimizations.

• /assume:[no]byterecl
The /assume:byterecl option applies only to unformatted files. In Developer Studio, specify the
Use Bytes as Unit for Unformatted Files in the Fortran Data Compiler Option Category.

Compiler and Linker Optionss Page 10 of 78

8/21/97 12:23:58 PM

Specifying the /assume:byterecl option:
• Indicates that the units for an explicit OPEN statement RECL specifier value are in

bytes.
• Forces the record length value returned by an INQUIRE by output list to be in byte

units.

Specifying /assume:nobyterecl indicates that the units for RECL values with unformatted files
are in four-byte (longword) units. This is the default for the DF command.

• /assume:[no]dummy_aliases
Specifying the /assume:dummy_aliases option requires that the compiler assume that dummy
(formal) arguments to procedures share memory locations with other dummy arguments or
with variables shared through use association, host association, or common block use. The
default is /assume:nodummy_aliases.

In Developer Studio, specify Enable Dummy Argument Aliasing in the Fortran Data Compiler
Option Category.

These program semantics do not strictly obey the Fortran 90 Standard and they slow
performance. If you omit /assume:dummy_aliases, the compiler does not need to make these
assumptions, which results in better run-time performance. However, omitting
/assume:dummy_aliases can cause some programs that depend on such aliases to fail or
produce wrong answers.

You only need to compile the called subprogram with /assume:dummy_aliases.

If you compile a program that uses dummy aliasing with /assume:nodummy_aliases in effect,
the run-time behavior of the program will be unpredictable. In such programs, the results will
depend on the exact optimizations that are performed. In some cases, normal results will
occur; however, in other cases, results will differ because the values used in computations
involving the offending aliases will differ.

For more information, see Dummy Alias Assumption.

• /assume:[no]source_include
This option controls the directory searched for module files specified by a USE statement or
source files specified by an INCLUDE statement:

• Specifying /assume:source_include requests a search for module or include files in the
directory where the source file being compiled resides. This is the default.

• Specifying /assume:nosource_include requests a search for module or include files in
the current (default) directory.

In Developer Studio, specify the Default INCLUDE and USE Paths in the Preprocessor
Compiler Option Category.

• /assume:[no]underscore
Specifying /assume:underscore option controls the appending of an underscore character to
external user-defined names: the main program name, named COMMON, BLOCK DATA,
and names implicitly or explicitly declared EXTERNAL. The name of blank COMMON
remains _BLNK__, and Fortran intrinsic names are not affected.

Compiler and Linker Options Page 11 of 78

8/21/97 12:23:58 PM

In Developer Studio, specify Append Underscore to External Names in the External
Procedures Compiler Option Category.

Specifying /assume:nounderscore option does not append an underscore character to external
user-defined names. This is the default.

For example, the following command requests the noaccuracy_sensitive and nosource_include
keywords and accepts the defaults for the other /assume keywords:

 df /assume:(noaccuracy_sensitive,nosource_include) testfile.f90

/[no]automatic

Syntax:

/automatic, /noautomatic, /4Ya, or /4Na

The /automatic or /4Ya option requests that local variables be put on the run-time stack. In
Developer Studio, specify Variables Default to Automatic in the Fortran Data Compiler Option
Category.

The /noautomatic or /4Na option is the same as the /static option. The default is /noautomatic or
/4Na, which causes all local variables to be statically allocated.

If you specify /recursive, the /automatic (/4Ya) option is set.

/bintext

Syntax:

/bintext:string or /Vstring

Specifying /bintext (or /V) places the text string specified into the object file (.OBJ) being generated
by the compiler. This string also gets propagated into the executable file. For example, the string
might contain version number or copyright information.

In Developer Studio, specify Object Text in the Miscellaneous Compiler Option Category.

If the string contains a space or tab, the string must be enclosed by double quotation marks ("). A
backslash (\) must precede any double quotation marks contained within the string.

If the command line contains multiple /bintext or /V options, the last (right-most) one is used. You
can specify /nobintext to override previous /bintext or /V options on the same command line.

/[no]browser

Syntax:

/browser[:filename], /nobrowser, or /FR

The /browser or /FR option controls the generation of source browser information. When the

Compiler and Linker Options Page 12 of 78

8/21/97 12:23:59 PM

/browser option is not specified, the compiler will not generate browser files (same as /nobrowser).

In Developer Studio, specify Generate Source Browse Information in the General Compiler Option
Category. Also, in the BrowseInfo tab, set Build Browse info check box instead of using
BCSMAKE.

Browser information includes:

• Information about all the symbols in the source file.
• The source code line in which a symbol is defined.
• Each source code line where there is a reference to a symbol.
• The relationships between calling functions and called functions.

The default extension for source browser files is .SBR.

The browser output is intended to be used as input to the Browse Information File Maintenance
Utility (BSCMAKE), which generates a browse information file (.BSC) that can be examined in
browse windows in Microsoft Developer Studio.

Instead of using BCSMAKE, you can use the the Project Settings dialog box in Developer Studio:

• Click the BrowseInfo tab
• Set the Build Browse info check box.

When the /browser or /FR option is specified and there are multiple source files being compiled,
each source file will be compiled separately. Compiling source files separately turns off
interprocedural optimizations.

/[no]check

Syntax:

/check:keyword, /nocheck, /4Yb, /4Nb

The /check, /4Yb, or /4Nb option controls whether extra code is generated for certain run-time
checking. Run-time checks can result in issuing run-time messages for certain conditions.

In Developer Studio, specify the Extended Error Checking items in the Run time Compiler Option
Category. The /check keywords and /4Yb, and /4Nb options are as follows:

• /check:bounds
Requests a run-time error message if a reference to an array subscript or character substring is
outside of the declared bounds. The default is /check:nobounds, which does not issue a
run-time message for this condition.

• /check:flawed_pentium
On x86 systems, requests a run-time error message if a flawed Pentium® processor is
detected. The default is /check:flawed_pentium, which does issue a run-time error message for
this condition and stops program execution. To allow program execution to continue when
this condition occurs, set the environment variable FOR_RUN_FLAWED_PENTIUM to true
and rerun the program (see Run-Time Environment Variables). For more information on the
Pentium flaw, see Intel Pentium Floating-Point Flaw. You can also use the

Compiler and Linker Options Page 13 of 78

8/21/97 12:23:59 PM

FOR_CHECK_FLAWED_PENTIUM routine.

• /check:format
Requests a run-time error message when the data type for an item being formatted for output
does not match the FORMAT descriptor. Specifying /check:noformat suppresses the run-time
error message for this condition.

• /check:output_conversion
Requests a run-time continuable error message when a data item is too large to fit in a
designated FORMAT descriptor field. Specifying /check:nooutput_conversion results in a
noncontinuable error message when a data item is too large to fit in a designated FORMAT
descriptor field.

• /check:overflow
Requests a continuable run-time message when integer overflow occurs. Specifying
/check:nooverflow suppresses the run-time message.

• /check:nopower
Suppresses the run-time error message for 0.0 ** 0.0 and negative-value **
integer-value-of-type-real, so 0.0 ** 0 .0 is 1.0 and (-3.0) ** 3.0 is -27.0.
On Alpha systems, either use the default of /check:power to allow a run-time error message to
be issued for this type of expression, or specify /check:nopower to suppress the run-time error
message. On x86 systems, /check:nopower is always used.

• /check:underflow
Requests an informational run-time message when floating-point underflow occurs.
Specifying /check:nounderflow suppresses a run-time message when floating-point underflow
occurs.

• /4Yb
Sets /check:(overflow,bounds,underflow).

• /4Nb or /check:none or /nocheck
Equivalent to:
/check:(nobounds,noformat,nopower,nooutput_conversion,nooverflow,nounderflow).

• /check or /check:all
Equivalent to:
/check:(bounds,flawed_pentium,format,power,output_conversion,overflow,underflow).

On x86 systems, if you omit these options, the default is:
/check:(nobounds,flawed_pentium,noformat,nopower,nooutput_conversion,nooverflow,nounderflow).

On Alpha systems, if you omit these options, the default is:
/check:(nobounds,noformat,power,nooutput_conversion,nooverflow,nounderflow).

/[no]comments

Syntax:

Compiler and Linker Options Page 14 of 78

8/21/97 12:23:59 PM

/comments or /nocomments

The /comments option writes C-style comments to the output file. The /nocomments option does not
write C-style comments to the output file. For more information, type FPP /? to view FPP options.

/[no]compile_only

Syntax:

/compile_only, /nocompile_only, or /c

The /compile_only or /c option suppresses linking. The default is /nocompile_only (perform linking).

If you specify the /compile_only option at higher levels of optimization and also specify
/object:filename, the /object:filename option causes multiple Fortran input files (if specified) to be
compiled into a single object file. This allows interprocedural optimizations to occur.

However, if you use multiple source files and the /compile_only option without the /object:file
option, multiple object files are created and interprocedural optimizations do not occur.

/convert

Syntax:

/convert:keyword

The /convert option specifies the format of unformatted files containing numeric data. On x86 and
Alpha systems, the format used in memory is always IEEE little endian format. If you want to read
and write unformatted data in IEEE little endian format, you do not need to convert your unformatted
data and can omit this option (or specify /convert:native).

In Developer Studio, specify the Unformatted File Conversion in the Compatibility Compiler Option
Category. The /convert options are:

• /convert:big_endian
Specifies that unformatted files containing numeric data are in IEEE big endian (nonnative)
format. The resulting program will read and write unformatted files containing numeric data
assuming the following:

• Big endian integer format (INTEGER declarations of the appropriate size).
• Big endian IEEE floating-point formats (REAL and COMPLEX declarations of the

appropriate size).

• /convert:cray
Specifies that unformatted files containing numeric data are in CRAY (nonnative) big endian
format. The resulting program will read and write unformatted files containing numeric data
assuming the following:

• Big endian integer format (INTEGER declarations of the appropriate size).
• Big endian CRAY proprietary floating-point formats (REAL and COMPLEX

declarations of the appropriate size).

• /convert:ibm

Compiler and Linker Options Page 15 of 78

8/21/97 12:23:59 PM

Specifies that unformatted files containing numeric data are in IBM (nonnative) big endian
format. The resulting program will read and write unformatted files containing numeric data
assuming the following:

• Big endian integer format (INTEGER declarations of the appropriate size).
• Big endian IBM proprietary floating-point formats (REAL and COMPLEX declarations

of the appropriate size).

• /convert:little_endian
Specifies that numeric data in unformatted files is in native little endian integer format and
IEEE little endian floating-point format (same as used in memory), as follows:

• Integer data is in native little endian format.
• REAL(KIND=4) and COMPLEX(KIND=4) (SINGLE PRECISION) data is in IEEE

little endian S_floating format.
• REAL(KIND=8) and COMPLEX (KIND=8) (DOUBLE PRECISION) data is in IEEE

little endian T_floating format.

• /convert:native
Specifies that numeric data in unformatted files is not converted. This is the default.

• /convert:vaxd
Specifies that numeric data in unformatted files is in VAXD little endian format, as follows:

• Integer data is in native little endian format.
• REAL(KIND=4) and COMPLEX(KIND=4) (SINGLE PRECISION) data is in VAX

F_floating format.
• REAL(KIND=8) and COMPLEX (KIND=8) (DOUBLE PRECISION) data is in VAX

D_floating format.

• /convert:vaxg
Specifies that numeric data in unformatted files is in VAXG little endian format, as follows:

• Integer data is in native little endian format.
• REAL(KIND=4) and COMPLEX(KIND=4) (SINGLE PRECISION) data is in VAX

F_floating format.
• REAL(KIND=8) and COMPLEX (KIND=8) (DOUBLE PRECISION) data is in VAX

G_floating format.

/[no]d_lines

Syntax:

/d_lines, /nod_lines, /4ccD, or /4ccd

The /d_lines, /4ccD, or /4ccd option indicates that lines in fixed-format files that contain a D in
column 1 should be treated as source code. Specifying /nod_lines (the default) indicates that these
lines are to be treated as comment lines.

In Developer Studio, specify Compile DEBUG (D) Lines in the Debug Compiler Option Category.

Visual Fortran does not support the use of characters other than a D or d with the /4ccstring.

/[no]dbglibs

Compiler and Linker Options Page 16 of 78

8/21/97 12:23:59 PM

Syntax:

/dbglibs or /nodbglibs

The /dbglibs option controls whether the debug version or the non-debug version of the C run-time
library is linked against. The default is /nodbglibs, which will link against the non-debug version of
the C library, even when /debug:full is specified.

If you specify /debug:full for an application that calls C library routines and you need to debug calls
into the C library, you should also specify /dbglibs to request that the debug version of the library be
linked against.

In Developer Studio, specify the Use Debug C Libraries in the Libraries Compiler Option Category.

When you specify /dbglibs, the C debug library linked against depends on the specified /libs:keyword
and /[no]threads options, and is one of: libcd.lib, libcmtd.lib, or msvcrtd.lib (see Visual
Fortran/Visual C++ Mixed-Language Programs) .

/[no]debug

Syntax:

/debug:keyword, /nodebug, /Z7, /Zd, or /Zi

The /debug, /Z7, /Zd, or /Zi option controls the level of debugging information associated with the
program being compiled .

In Developer Studio, specify the Debugging Level in the General or Debug Compiler Option
Category. The options are:

• /debug:none or /nodebug
If you specify /debug:none or /nodebug, the compiler produces no traceback or symbol table
information needed for debugging or profiling. Only symbol information needed for linking
(global symbols) is produced. The size of the resulting object module is the minimum size. If
this option is specified, /debug:none is passed to the linker.

• /debug:minimal or /Zd
If you specify /debug:minimal or /Zd, the compiler produces minimal traceback information,
which allows global symbol table information needed for linking, but not local symbol table
information needed for debugging. If /debug:minimal is specified, /debug:minimal and
/debugtype:cv is passed to the linker.

If you omit the /[no]debug:keyword, /Z7, /Zd, and /Zi options, this is the default.

The /Zd option implies /nopdbfile and passes /debug:minimal /pdb:none /debugtype:cv to the
linker.

The object module size is somewhat larger than if /debug:none was specified, but is smaller
than if /debug:full was specified.

• /debug:partial
If you specify /debug:partial , the compiler produces traceback information, which allows
program counter to source file line correlation, global symbol table information needed for

Compiler and Linker Options Page 17 of 78

8/21/97 12:23:59 PM

linking, but not local symbol table information needed for debugging. If /debug:partial is
specified, /debug:partial /debugtype:cv /pdb:none is passed to the linker.

The object module size is somewhat larger than if /debug:none was specified, but is smaller
than if /debug:full was specified.

• /debug:full, /debug, /Zi, or /Z7
If you specify /debug:full, /debug, /Zi, or /Z7, the compiler produces traceback information,
symbol table information needed for full symbolic debugging of unoptimized code, and global
symbol information needed for linking.

If you specify /debug:full for an application that make calls to C library routines and you need
to debug calls into the C library, you should also specify /dbglibs to request that the
appropriate C debug library is linked against.

The /Z7 option implies /nopdbfile and passes /debug:full /debugtype:cv /pdb:none to the
linker.

The / debug:full, /debug, and /Zi options imply /pdbfile and pass /debug:full and
/debugtype:cv to the linker.

If you specify /debug (with no keyword), the default optimization level changes to /optimize:0
(instead of /optimize:4) for the DF command.

/define

Syntax:

/define:symbol[=integer]

The /define option defines the symbol specified for use with conditional compilation directives. If a
value is specified, it must be an integer value. If a value is not specified, 1 is assigned to symbol.

In Developer Studio, specify the Predefined Preprocessor Variables in the General or Preprocessor
Compiler Option Category.

You can use the directives to detect symbol definitions, such as the IF Directive Construct. Like
certain other compiler options, an equivalent directive exists (DEFINE directive).

The following preprocessor symbols are defined by the compiler:

_DF_VERSION_= 500 (500 for
Version 5.0)

_WIN32=1 (always defined)

X86=1 (on x86 systems only) _ALPHA_=1 (on Alpha systems only)
_WIN95=1 (on Windows 95
systems only)

_MT=1 (only if /threads or /MT is specified)

_DLL=1 (only if /dll or /LD is
specified)

MSFORTRAN=401 (only if /fpscomp:symbols is specified or
you use the FL32 command)

/dll

Compiler and Linker Options Page 18 of 78

8/21/97 12:23:59 PM

Syntax:

/dll[:file], /nodll, or /LD

The /dll or /LD option indicates that the program should be linked as a DLL file. The /dll or /LD
option overrides any specification of the run-time routines to be used and activates the /libs:dll
option. A warning is generated when the /libs=qwin or /libs=qwins option and /dll option are used
together.

In Developer Studio, specify the project type as Dynamic Link Library (DLL).

If you omit file, the /dll or /LD option interacts with the /exe and the /Fe options, as follows:

• If neither /exe nor /Fe is specified, the first file name used on the command line is used with
an extension of .DLL.

• If either /exe:file or /Fefile is specified with a file name, that name is used for the DLL file. If
the specified file name does not end with a "." or have an extension, an extension of .DLL is
added to it.

To request linking with multithreaded libraries, specify the /threads option.

For information about building DLL files from Developer Studio, see Dynamic-Link Library Projects
and Building Dynamic-Link Library Projects.

For a list of Fortran Powerstation style options (such as /LD and /MDs) and their DF command
equivalents, see Equivalent Visual Fortran Compiler Options.

/[no]error_limit

Syntax:

/error_limit[:count] or /noerror_limit

The /error_limit option specifies the maximum number of error-level or fatal-level compiler errors
allowed for a given file before compilation aborts. If you specify /noerror_limit, there is no limit on
the number of errors that are allowed.

In Developer Studio, specify the Compilation Error Limit in the Miscellaneous Compiler Option
Category.

The default is /error_limit:30 or a maximum of 30 error-level and fatal-level messages. If the
maximum number of errors is reached, a warning message is issued and the next file (if any) on the
command line is compiled.

/[no]exe

Syntax:

/exe[:file], /noexe, or /Fefile

The /exe or /Fe option specifies the name of the executable program (EXE) or dynamic-link library
(DLL) file being created. To request that a DLL be created instead of an executable program, specify

Compiler and Linker Options Page 19 of 78

8/21/97 12:23:59 PM

the /dll option.

/[no]extend_source

Syntax:

/extend_source[:size], /noextend_source, or /4Lsize

The /extend_source or /4Lsize option controls the column used to end the statement field in
fixed-format source files. When a size is specified, that will be the last column parsed as part of the
statement field. Any columns after that will be treated as comments.

In Developer Studio, specify the Fixed-Form Line Length in the Fortran Language Compiler Option
Category. The following options are equivalent:

• /noextend_source, /extend_source:72, or /4L72 specify the last column as 72.
• /extend_source:80 or /4L80 specify the last column as 80.
• /extend_source, /extend_source:132, or /4L132 specify the last column as 132.

/extfor

Syntax:

/extfor:ext

The /extfor: option specifies file extensions to be processed (/extfor) by the DIGITAL Fortran
compiler. One or more file extensions can be specified. A leading period before each extension is
optional (for and .for are equivalent).

/extfpp

Syntax:

/extfpp:ext

The /extfpp option specifies file extensions to be processed (/extfpp) by the FPP preprocessor. One
or more file extensions can be specified. A leading period before each extension is optional (fpp and
.fpp are equivalent).

/extlnk

Syntax:

/extlnk:ext

The /extlnk option specifies file extensions to be processed (/extlnk) by the linker. One or more file
extensions can be specified. A leading period before each extension is optional (obj and .obj are
equivalent).

/[no]f66

Syntax:

Compiler and Linker Options Page 20 of 78

8/21/97 12:23:59 PM

/f66 or /nof66

The /f66 option requests that the compiler select FORTRAN-66 interpretations in cases of
incompatibility. One of these differences is that DO loops are executed at least once.

In Developer Studio, specify Enable FORTRAN-66 Semantics in the Fortran Language Compiler
Option Category.

/[no]f77rtl

Syntax:

/f77rtl or /nof77rtl

The /f77rtl option controls the run-time support that is used when a program is executed. Specifying
/f77rtl uses the DIGITAL Fortran 77 run-time behavior. In Developer Studio, specify Enable F77
Run-Time Compatibility in the Compatibility Compiler Option Category.

Specifying /nof77rtl uses the Visual Fortran (DIGITAL Fortran 90) run-time behavior. Unless you
specify /f77rtl, /nof77rtl is used.

/fast

Syntax:

/fast

The /fast option sets several options that generate optimized code for fast run-time performance.
Specifying this option is equivalent to specifying:

• /assume:noaccuracy_sensitive
• /math_library:fast
• /alignment:(dcommons, records)

If you omit /fast, these performance-related options will not be set.

/[no]fixed

Syntax:

/fixed, /nofixed, /4Nf, or /4Yf

The /fixed or /4Nf option specifies that the source file should be interpreted as being in fixed-source
format. Equivalent options are as follows:

• The /fixed, /nofree, and /4Nf options request fixed-source form.
• The /nofixed, /free, and /4Yf options request free-source form.

In Developer Studio, specify the Source Form in the Fortran Language Compiler Option Category.

If you omit /[no]fixed, /4Nf, and /4Yf:

• Files with an extension of .f90 or .F90 are assumed to be free-format source files.

Compiler and Linker Options Page 21 of 78

8/21/97 12:23:59 PM

• Files with an extension of .f, .for, .FOR, or .i are assumed to be fixed-format files.

/[no]fltconsistency (x86 only)

Syntax:

/fltconsistency, /nofltconsistency, or /Op

The /fltconsistency or /Op option enables improved floating-point consistency. Floating-point
operations are not reordered and the result of each floating-point operation is stored into the target
variable rather than being kept in the floating-point processor for use in a subsequent calculation.
This option is ignored on Alpha systems.

In Developer Studio, specify Enable Floating-Point Exception Consistency in the Floating Point
Compiler Option Category.

The default is /nofltconsistency, which provides better run-time performance at the expense of less
consistent floating-point results.

/[no]fpconstant

Syntax:

/fpconstant or /nofpconstant

The /fpconstant option requests that a single-precision constant assigned to a double-precision
variable be evaluated in double precision. If you omit /fpconstant (or specify the default
/nofpconstant), a single-precision constant assigned to a double-precision variable is evaluated in
single precision. The Fortran 90 standard requires that the constant be evaluated in single precision.

In Developer Studio, specify Extended Precision of Single-Precision Constants in the Floating Point
Compiler Option Category.

Certain programs created for FORTRAN-77 compilers (including DIGITAL Fortran 77) may show
different floating-point results, because they rely on single-precision constants assigned to a
double-precision variable to be evaluated in double precision.

In the following example, if you specify /fpconstant, identical values are assigned to D1 and D2. If
you omit the /fpconstant option, the compiler will obey the standard and assign a less precise value to
D1:

 REAL (KIND=8) D1, D2
 DATA D1 /2.71828182846182/ ! REAL (KIND=4) value expanded to double
 DATA D2 /2.71828182846182D0/ ! Double value assigned to double

/fpe

Syntax:

/fpe:level

Compiler and Linker Options Page 22 of 78

8/21/97 12:23:59 PM

The /fpe:level option controls floating-point exception handling at run time for the main program.
This includes whether exceptional floating-point values are allowed and how precisely run-time
exceptions are reported. The /fpe:level option specifies how the compiler should handle the
following floating-point exceptions:

• When floating-point calculations result in a divide by zero, overflow, or invalid data.
• When floating-point calculations result in an underflow operation.
• When a denormalized number or other exceptional number (positive infinity, negative infinity,

or a NaN) is present in an arithmetic expression

For performance reasons:

• On x86 systems, the default is /fpe:3. Using /fpe:0 will slow run-time performance on x86
systems.

• On Alpha systems, the default is /fpe:0 (many programs do not need to handle denormalized
numbers or other exceptional values). Using /fpe:3 will slow run-time performance on Alpha
systems.

On Alpha systems, to associate an exception with the instruction that causes the exception, specify
/fpe:3 or specify /synchronous_exceptions.

In Developer Studio, specify the Floating-Point Exception Handling in the Floating Point Compiler
Option Category. The /fpe:level (level is 0, 1, or 3) options are as follows:

Option Handling of Underflow
Handling of Divide by Zero, Overflow,

and Invalid Data Operation
/fpe:0
(default
on Alpha
systems)

Sets any calculated denormalized value
(result) to zero and lets the program
continue. A message is displayed only if
/check:underflow is also specified. Any
use of a denormalized number (non-finite
data) in an arithmetic expression results in
an invalid operation error and the program
terminates.

Exceptional values are not allowed. The
program terminates after displaying a
message. The exception location is one or
more instructions after the instruction that
caused the exception, unless (on Alpha
systems) /synchronous_exceptions was
specified.

/fpe:1
(Alpha
systems
only)

Sets any calculated denormalized value
(result) to zero and lets the program
continue. A message is displayed only if
/check:underflow is also specified. Use of
a denormalized (or exceptional) number in
an arithmetic expression results in
program continuation, but with slower
performance.

The program continues. No message is
displayed. A NaN or Infinity (+ or -) will be
generated.

/fpe:3
(default
on x86
systems)

Leaves any calculated denormalized value
as is. The program continues, allowing
gradual underflow. Use of a denormalized
(or exceptional) number in an arithmetic
expression results in program
continuation, but with slower performance.
A message is displayed only if

The program continues. No message is
displayed. A NaN or Infinity (+ or -) will be
generated.

Compiler and Linker Options Page 23 of 78

8/21/97 12:23:59 PM

/check:underflow is also specified.

The exception message reporting specified by the /fpe:level option applies only to the main program
and cannot be changed during program execution.

When compiling different routines in a program separately, you should use the same /fpe:level value.

On x86 systems, for programs that flush denormalized values to zero (such as those that allow
gradual underflow with /fpe:0), the impact on run-time performance can be significant. On Alpha
systems, for programs that use a number of denormalized values (such as those that allow gradual
underflow with /fpe:3), the impact on run-time performance can be significant.

On Alpha systems, if you use the /math_library:fast along with an /fpe:level option, the /fpe:level
option is ignored when arithmetic values are evaluated by math library routines.

To help you debug a routine, you can associate an exception with the instruction that caused it by
specifying /fpe:3, or, on Alpha systems, by specifying /fpe:0 with /synchronous_exceptions.

On x86 systems, the /fpe option, /check:underflow option, and MATHERRQQ routine interact as
follows:

Specified
/fpe:n Option

Was
/check:underflow

Specified?

Is a User-Written
MATHERRQQ

Routine Present?

Underflow Handling by the Visual
Fortran Run-Time System on x86

Systems
/fpe:0 No No The underflowed result is set to zero (0).

The program continues.
/fpe:0 No Yes The underflowed result is set to zero (0).

The program continues.
/fpe:0 Yes No The underflowed result is set to zero (0).

The program continues. The number of
underflowed results are counted and
messages are displayed for the first two
occurrences.

/fpe:0 Yes Yes The underflowed result is set to zero (0).
The program continues. The number of
underflowed results are counted and
messages are displayed for the first two
occurrences.

/fpe:3 No No Denormalized results are allowed and the
program continues. Traps are masked
and no handlers are invoked.

/fpe:3 No Yes Denormalized results are allowed and the
program continues. Traps are masked
and no handlers are invoked.

/fpe:3 Yes No For Version 5.0, a fatal error results and
the program terminates.

/fpe:3 Yes Yes Depends on the source causing the
underflow:

• If the underflow occurs in an

Compiler and Linker Options Page 24 of 78

8/21/97 12:23:59 PM

intrinsic procedure, the undefined
result is left as is. The program
continues with the assumption that
the user-specified MATHERRQQ
handler will perform any result fix
up needed.

• If the underflow does not occur in
an intrinsic procedure, for Version
5.0, a fatal error results and the
program terminates.

For more information about the floating-point environment and the MATHERRQQ routine (x86
systems), see: The Floating-Point Environment.

For information about routines that can obtain or set the floating-point exception settings used by
Visual Fortran at run-time, see FOR_SET_FPE and FOR_GET_FPE.

For more information on IEEE floating-point exception handling, see IEEE Standard for Binary
Floating-Point Arithmetic (ANSI/IEEE Standard 754-1985).

/fpp

Syntax:

/fpp:options

The /fpp option passes options to FPP as is. You can type FPP /HELP for information on FPP
options.

/[no]fpscomp

Syntax:

/fpscomp[:keyword...] or /nofpscomp

The /fpscomp option controls whether certain aspects of the run-time system and semantic language
attributes within the compiler are compatible with Visual Fortran or Microsoft Fortran Powerstation.

If you experience problems when porting applications from Fortran Powerstation, specify
/fpscomp:keyword (or /fpscomp:all). When porting applications from DIGITAL Fortran, use
/fpscomp:none (the default).

In Developer Studio, specify the Powerstation 4.0 Compatibility Options in the Compatibility
Compiler Option Category. The /fpscomp options are:

• /fpscomp:[no]filesfromcmd
Specifying /fpscomp:filesfromcmd for a file where the OPEN statement FILE specifier is
blank (FILE=' '), requests that the following actions be taken at run-time:

• The program reads a filename from the list of arguments (if any) in the command line
that invoked the program. If any of the command-line arguments contain a null string

Compiler and Linker Options Page 25 of 78

9/2/97 3:32:55 PM

that invoked the program. If any of the command-line arguments contain a null string
(’’), the program asks the user for the corresponding filename. Each additional OPEN
statement with a nameless FILE specifier reads the next command-line argument.

• If there are more nameless OPEN statements than command-line arguments, the
program prompts for additional file names.

• In a QuickWin application, a File Select dialog box appears to request file names.

Specifying /fpscomp:nofilesfromcmd disables the run-time system from using the filename
specified on the command line when the OPEN statement FILE specifier is omitted, allowing
the application of default directory, file name, and extensions like DIGITAL Fortran, such as
the FORTn environment variable and the FORT.n file name (where n is the unit number).

Specifying /fpscomp:filesfromcmd affects the following Fortran constructs:
• The OPEN statement FILE specifier.

For example, assume a program OPENTEST contains the following statements:

 OPEN(UNIT = 2, FILE = ’ ’)
 OPEN(UNIT = 3, FILE = ’ ’)
 OPEN(UNIT = 4, FILE = ’ ’)

The command line, opentest test.dat " " assigns the file TEST.DAT to Unit 2, prompts
the user for a filename to associate with Unit 3, then prompts again for a filename to
associate with Unit 4.

• Implicit file open statements such as the WRITE, READ, and ENDFILE statements.

Unopened files referred to in READ or WRITE statements are opened implicitly as if
there had been an OPEN statement with a name specified as all blanks. The name is
read from the command line.

 WRITE(UNIT = 8, FMT=’(2I5)’) int1, int2
 ! Where "8" has not been explicitly associated with a file.

For more information about running Visual Fortran programs with the /fpscomp:filesfromcmd
option set, see Running Fortran Applications.

• /fpscomp:[no]general
Controls which run-time behavior is used when a difference exists between Visual Fortran and
Microsoft Fortran Powerstation and either semantic must remain available for compatibility
reasons. Specify /fpscomp:general to request Fortran Powerstation semantics. Specify
/fpscomp:nogeneral to request Visual Fortran semantics. This affects the following Fortran
constructs:

• The BACKSPACE statement:
• Allows files opened with ACCESS="APPEND" to be used with the

BACKSPACE statement.
• Allows files opened with ACCESS="DIRECT" to be used with the

BACKSPACE statement.

Note: Allowing files that are not opened with sequential access (such as
ACCESS="DIRECT") to be used with the BACKSPACE statement violates the
Fortran 90 standard and may be removed in the future. Section 9.5 states the following:

Compiler and Linker Options Page 26 of 78

8/21/97 12:23:59 PM

BACKSPACE, an ENDFILE, or a REWIND statement..."
• The REWIND statement.

Allows files opened with ACCESS="DIRECT" to be used with the REWIND
statement.
Note: Allowing files that are not opened with sequential access (such as
ACCESS="DIRECT") to be used with the REWIND statement violates the Fortran 90
standard and may be removed in the future. Section 9.5 states the following: "A file that
is not connected for sequential access must not be referred to by a BACKSPACE, an
ENDFILE, or a REWIND statement..."

• The READ statement.
• Formatted: READ(eunit, format [,advance][,iostat]...)

Reading from a formatted file opened for direct access will read records that have
the same record type format as Fortran Powerstation when /fpscomp:general is
set. This consists of accounting for the trailing Carriage Return/Line Feed pair
(<CR><LF>) which is part of the record.
Allows sequential reads from a formatted file opened for direct access.
Note: Allowing files that are not opened with sequential access (such as
ACCESS="DIRECT") to be used with the sequential READ statement violates
the Fortran 90 standard and may be removed in the future. Section 9.2.1.2.2
states the following: "Reading and writing records is accomplished only by direct
access input/output statements."

• Allows the last record in a file opened with FORM="FORMATTED" and a
record type of STREAM_LF or STREAM_CR that does not end with a proper
record terminator (<line feed> or <carriage return>) to be read without producing
an error.

• Unformatted: READ(eunit, [,iostat]...)
Allows sequential reads from an unformatted file opened for direct access.
Note: Allowing files that are not opened with sequential access (such as
ACCESS="DIRECT") to be read with the sequential READ statement violates
the Fortran 90 standard and may be removed in the future. Section 9.2.1.2.2
states the following: "Reading and writing records is accomplished only by direct
access input/output statements."

• The INQUIRE statement
• The CARRIAGECONTROL specifier returns the value "UNDEFINED"

instead of "UNKNOWN" when the carriage control is not known and when
/fpscomp:general is set.

• The NAME specifier returns the file name "UNKNOWN" instead of space filling
the file name when the file name is not known and when /fpscomp:general is set.

• The SEQUENTIAL specifier returns the value "YES" instead of "NO" for a
direct access formatted file when /fpscomp:general is set.

• The UNFORMATTED specifier returns the value "NO" instead of
"UNKNOWN" when it is not known whether unformatted I/O can be performed
to the file and when /fpscomp:general is set.
Note: Returning the value "NO" instead of "UNKNOWN" for this specifier
violates the Fortran 90 standard and may be removed in the future. See Section
9.6.1.12.

• The OPEN statement
• If a file is opened with an unspecified "STATUS" keyword value, and is not

Compiler and Linker Options Page 27 of 78

8/21/97 12:23:59 PM

named (no FILE specifier), the file is opened as a scratch file when
/fpscomp:general is set. For example:

 OPEN (UNIT = 4)

In contrast, when /fpscomp:nogeneral is in effect with an unspecified STATUS
keyword value with no FILE specifier, the FORTn environment variable and the
FORT.n file name are used (where n is the unit number).

• If the STATUS keyword value was not specified and if the name of the file is
"USER", the file is marked for deletion when it is closed when /fpscomp:general
is set.

• Allows a file to be opened with the APPEND and READONLY attributes when
/fpscomp:general is set.

• If the CARRIAGECONTROL specifier is defaulted, gives the "LIST" carriage
control attribute to direct access formatted files instead of "NONE" when
/fpscomp:general is set.

• Gives an opened file the additional default of write sharing when
/fpscomp:general is set.

• Gives the a file a default block size of 1024 as opposed to 8192 when
/fpscomp:general is set.

• If the MODE and ACTION specifier is defaulted and there was an error opening
the file, then try opening the file read only, then write only.

• If the CARRIAGECONTROL keyword is defaulted and if the device type is a
terminal file the file is given the default carriage control value of "FORTRAN" as
opposed to "LIST" when /fpscomp:general is set.

• If a file that is being re-opened has a different file type than the current existing
file, an error is returned when /fpscomp:general is set.

• Gives direct access formatted files the same record type as Fortran Powerstation
when /fpscomp:general is set. This means accounting for the trailing Carriage
Return/Line Feed pair (<CR><LF>) which is part of the record.

• The STOP statement
Writes the Fortran Powerstation output string and/or returns the same exit condition
values when /fpscomp:general is set.

• The WRITE statement
• Formatted: WRITE(eunit, format [,advance][,iostat]...)

1. Writing to formatted direct files
When writing to a formatted file opened for direct access, records are
written in the same record type format as Fortran Powerstation when
/fpscomp:general is set. This consists of adding the trailing Carriage
Return/Line Feed pair (<CR><LF>) which is part of the record.
Ignores the CARRIAGECONTROL specifier setting when writing to a
formatted direct access file.

2. Interpreting Fortran carriage control characters
When interpreting Fortran carriage control characters during formatted
I/O, carriage control sequences are written which are the same as Fortran
Powerstation when /fpscomp:general is set. This is true for the "Space, 0, 1
and + " characters.

3. Performing non-advancing I/O to the terminal.

Compiler and Linker Options Page 28 of 78

8/21/97 12:23:59 PM

When performing non-advancing I/O to the terminal, output is written in
the same format as Fortran Powerstation when /fpscomp:general is set.

4. Interpreting the backslash (\) and dollar ($) edit descriptors
When interpreting backslash and dollar edit descriptors during formatted
I/O, sequences are written the same as Fortran Powerstation when
/fpscomp:general is set.

• Unformatted: WRITE(eunit, [,iostat]...)
Allows sequential writes from an unformatted file opened for direct access.
Note: Allowing files that are not opened with sequential access (such as
ACCESS="DIRECT") to be read with the sequential WRITE statement violates
the Fortran 90 standard and may be removed in the future. Section 9.2.1.2.2
states the following: "Reading and writing records is accomplished only by direct
access input/output statements."

• /fpscomp:[no]ioformat
Controls which run-time behavior is used for the semantic format for list-directed formatted
I/O and unformatted I/O. Specify /fpscomp:ioformat to request Microsoft Fortran Powerstation
semantic conventions. Specify /fpscomp:noioformat to request DIGITAL Fortran semantic
conventions. This affects the following Fortran constructs:

• The WRITE statement
• Formatted List-Directed: WRITE(eunit, * [,iostat]...)
• Formatted Internal List-Directed: WRITE(iunit,* [,iostat]...)
• Formatted Namelist: WRITE(eunit, nml-group [,iostat]...)

If /fpscomp:ioformat is set, the output line, field width values, and the
list-directed data type semantics are dictated according to the following sample
for real constants:

• For 1 <= N < 10**7, use F15.6 for single precision or F24.15 for double.
• For 10**7 <= N < 1, use E15.6E2 for single precision or E24.15E3 for

double.

See the Fortran Powerstation documentation for more detailed information about
the other data types affected.

• Unformatted: WRITE(eunit, [,iostat]...)
If /fpscomp:ioformat is set, the unformatted file semantics are dictated according
to the Fortran Powerstation documentation. Be aware that the file format differs
from that used by DIGITAL Fortran. See the Fortran Powerstation documentation
for more detailed information.

The following table summarizes the default output formats for list-directed
output with the intrinsic data types:

Default Formats for List-Directed Output

Data Type
Output Format with
/fpscomp:noioformat

Output For
/fpscomp:

BYTE I5 I12
LOGICAL (all) L2 L2
INTEGER(1) I5 I12
INTEGER(2) I7 I12
INTEGER(4) I12 I12

Compiler and Linker Options Page 29 of 78

8/21/97 12:23:59 PM

INTEGER(8) (Alpha
only)

I22 I22

REAL(4) 1PG15.7E2 1PG16.6E2
REAL(8) T_floating 1PG24.15E3 1PG25.15E3
COMPLEX(4) ’(’,1PG14.7E2, ’, ’,1PG14.7E2, ’) ’ ’(’,1PG16.6E2, ’, ’
COMPLEX(8) ’(’,1PG23.15E3, ’, ’,1PG23.15E3, ’) ’ ’(’,1PG25.15E3, ’, ’
CHARACTER Aw 3 Aw 3

• The READ statement
• Formatted List-Directed: READ(eunit,* [,iostat]...)
• Formatted Internal List-Directed: READ(iunit,* [,iostat]...)
• Formatted Namelist: READ(eunit, nml-group [,iostat]...)

If /fpscomp:ioformat is set, the field width values and the list-directed semantics
are dictated according to the following sample for real constants:

• For 1 <= N < 10**7, use F15.6 for single precision or F24.15 for double.
• For 10**7 <= N < 1, use E15.6E2 for single precision or E24.15E3 for

double.

See the Fortran Powerstation documentation for more detailed information about
the other data types affected.

• Unformatted: READ(eunit, [,iostat]...)
If /fpscomp:ioformat is set, the unformatted file semantics are dictated according
to the Fortran Powerstation documentation. Be aware that the file format to read
differs from that used by DIGITAL Fortran. See the Fortran Powerstation
documentation for more detailed information.

• /fpscomp:[no]libs
Controls whether the library dfport.lib is passed to the compiler and linker. Specifying
/fpscomp:libs passes this library. Specifying /fpscomp:nolibs does not pass this library.

• /fpscomp:[no]logicals
Controls the value used for logical true. Microsoft Fortran Powerstation and DIGITAL Fortran
with the /fpscomp:logical option set uses any non-zero value (default is 1) for true. DIGITAL
Fortran with the /fpscomp:nological option set only looks at the low bit of the value, using a -1
for true. Differences can occur when a logical is stored into an integer. Both use 0 (zero) for
false.

This affects the results of all logical expressions and affects the return value for following
Fortran constructs:

• The INQUIRE statement specifiers OPENED, IOFOCUS, EXISTS, and NAMED.
• The EOF intrinsic function.
• The BTEST intrinsic function.
• The lexical intrinsic functions LLT, LLE, LGT, and LGE.

• /fpscomp:[no]symbols
Adds one or more symbols related to Microsoft Fortran Powerstation to preprocessor and
compiler invocations. The symbol currently set by specifying /fpscomp:symbols is
MSFORTRAN=401.

Compiler and Linker Options Page 30 of 78

8/21/97 12:23:59 PM

• /fpscomp:all and /fpscomp
Enable full Microsoft Fortran Powerstation compatibility or
/fpscomp:(filesfromcmd,general,ioformat,libs,logicals,symbols).

• /nofpscomp or /fpscomp:none
Enables full DIGITAL Fortran compatibility or
/fpscomp:(nofilesfromcmd,nogeneral,noioformat,nolibs,nologicals,nosymbols).

If you omit /fpscomp, the defaults are /nofpscomp (/fpscomp:none).

The /fpscomp and /vms options are not allowed in the same command.

/[no]free

Syntax:

/free, /nofree,/4Yf, or /4Nf

The /free or /4Yf option specifies that the source file should be interpreted as being in free source
format. Equivalent options are as follows:

• /free, /nofixed, or /4Yf request free-source form.
• /nofree, /fixed, or /4Nf request fixed-source form.

In Developer Studio, specify the Source Form in the Fortran Language Compiler Option Category.

If you omit /[no]free, /[no]fixed, /4Nf, and /4Yf, the compiler assumes:

• Files with an extension of .f90 or .F90 are free-format source files.
• Files with an extension of .f, .for, .FOR, or .i are fixed-format files.

/granularity (Alpha only)

Syntax:

/granularity:keyword

On Alpha systems, the /granularity option ensures that data of the specified or larger size can be
accessed from different threads sharing data in memory. Such data must be aligned on the natural
boundary and declared as VOLATILE (so it is not held in registers). This option is ignored on x86
processor systems.

In Developer Studio, specify the Thread Access Granularity in the Fortran Data Compiler Option
Category.

You do not need to specify this option for local data access by a single process, unless you have
requested multithread library use or asynchronous write access from outside the user process might
occur. The /granularity:keyword options are as follows:

• /granularity:byte
Specifies that all data (one byte or greater) can be accessed from different threads sharing data
in memory. This option will slow run-time performance.

Compiler and Linker Options Page 31 of 78

8/21/97 12:23:59 PM

• /granularity:longword
Specifies that naturally aligned data of four bytes or greater can be accessed safely from
different threads sharing access to that data in memory. Accessing data items of three bytes or
less and misaligned data may result in data items written from multiple threads being
inconsistently updated.

• /granularity:quadword
Specifies that naturally aligned data of eight bytes can be accessed safely from different
threads sharing data in memory. This is the default. Accessing data items of seven bytes or
less and misaligned data may result in data items written from multiple threads being
inconsistently updated.

/help

Syntax:

/help or /?

The /help and /? option display information about the DF command. The option can be placed
anywhere on the command line.

For a table of DF command options listed alphabetically, see Options List, Alphabetic Order.

/iface

Syntax:

/iface[:keyword...]

The /iface option determines the type of argument-passing conventions used by your program for
general arguments and for hidden-length character arguments.

In Developer Studio, specify the Default Calling Conventions and the String Length Argument
Passing in the External Procedures Compiler Option Category. The /iface keywords are as follows:

• The general argument-passing convention keywords are one of: cref, stdref, and default (stdref
and default are equivalent). The functions performed by each are described in the following
table:

/iface:cref iface:default /iface:stdref
Arguments are passed By referenceBy referenceBy reference
Append @n to names on x86 systems?No Yes Yes
Who cleans up stack Caller Callee Callee
Var args support? Yes No No

• To specify the convention for passing the hidden-length character arguments, specify
/iface:[no]mixed_str_len_arg:

• /iface:mixed_str_len_arg
Requests that the hidden lengths be placed immediately after their corresponding
character argument in the argument list, which is the method used by Microsoft Fortran

Compiler and Linker Options Page 32 of 78

8/21/97 12:23:59 PM

Powerstation.
• /iface:nomixed_str_len_arg

Requests that the hidden lengths be placed in sequential order at the end of the
argument list, which is the method used by DIGITAL Fortran on Windows NTtm Alpha
(and DIGITAL UNIX®) systems by default. When porting mixed-language programs
that pass character arguments, either this option must be specified correctly or the order
of hidden length arguments changed in the source code.

If you omit the /iface option, the following is used:

/iface=(default,mixed_str_len_arg)

For more information on argument passing, see Programming with Mixed Languages.

/[no]include

Syntax:

/include[:path...], /noinclude, or /Ipath

The /include or /I option specifies one or more additional directories (path) to be searched for
module files (USE statement) and include files (INCLUDE statement).

In Developer Studio, specify Custom INCLUDE and USE Path in the Preprocessor Compiler Option
Category.

When module or include file names do not begin with a device or directory name, the directories
searched are as follows:

1. The directory containing the first source file or the current directory (depends on whether
/assume:source_include was specified).

2. The current default directory where the compilation is taking place
3. If specified, the directory or directories listed in the /include:path or /Ipath option. The order

of searching multiple directories occurs within the specified list from left to right
4. The directories indicated in the environment variable INCLUDE

To request that the compiler search first in the directory where the source file resides instead of the
current directory, specify /assume:source_include .

Specifying /noinclude (or /include or /I without a path) prevents searching in the standard directory
specified by the INCLUDE environment variable.

/[no]inline

Syntax:

/inline[:keyword], /noinline, or /Ob2

The /inline or /Ob2 option allows users to have some control over inlining. Inlining procedures can
greatly improve the run-time performance for certain applications.

Compiler and Linker Options Page 33 of 78

8/21/97 12:23:59 PM

When requesting procedure inlining (or interprocedural optimizations), compile all source files
together into a single object file whenever possible. With very large applications, compile as many
related source files together as possible.

If you compile sources without linking (see the /compile_only or /c option), be sure to also specify
the /object[:filename] or /Fofilename option to create a single object file.

In Developer Studio, specify the Inlining type in the Optimizations Compiler Option Category. The
/inline options are:

• /inline:none or /noinline
Prevents the inlining of procedures, except for statement functions. This type of inlining
occurs when you specify /optimize:0 or /Od.

• /inline:manual
Prevents the inlining of procedures, except for statement functions. This type of inlining
occurs when you specify /optimize:0 or /Od.

• /inline:size
Inlines procedures that will improve run-time performance without significantly increasing
program size. It includes the types of procedures inlined when you specify /inline:manual.
This type of inlining is available with /optimize:1 or higher.

• /inline:speed or /Ob2
Inlines procedures that will improve run-time performance with a significant increase in
program size. This type of inlining is available with /optimize:1 or higher.
If you omit /[no]inline or /Ob2, /inline:speed occurs automatically if you specify /optimize:4,
/optimize:5, /Ox, or /Oxp.

• inline:all
Inlines absolutely every call that it is possible to inline while still getting correct code.
However, recursive routines will not cause an infinite loop at compile time. This type of
inlining is available with /optimize:1 or higher. It includes the types of procedures inlined
when you specify other /inline options.

Using /inline:all can significantly increase program size and slow compilation speed.

For more detailed information on this option, see Controlling the Inlining of Procedures.

/[no]intconstant

Syntax:

/intconstant or /nointconstant

The /intconstant option requests that Fortran 77 semantics (type determined by the value) be used to
determine the kind of integer constants instead of Fortran 90 default INTEGER type. If you do not
specify /intconstant, the type is determined by the default INTEGER type.

In Developer Studio, specify Use F77 Integer Constants in the Compatibility Compiler Option
Category.

/integer_size

Syntax:

Compiler and Linker Options Page 34 of 78

8/21/97 12:23:59 PM

/integer_size:size or /4I2

The /integer_size or /4I2 option specifies the size (in bits) of integer and logical declarations,
constants, functions, and intrinsics. In Developer Studio, specify the Default Integer Kind in the
Fortran Data Compiler Option Category. These options are:

• /integer_size:16 or /4I2 makes the default integer and logical variables 2 bytes long.
INTEGER and LOGICAL declarations are treated as (KIND=2).

• /integer_size:32 makes the default integer and logical variables 4 bytes long (default).
INTEGER and LOGICAL declarations are treated as (KIND=4).

• /integer_size:64 (Alpha only) makes the default integer and logical variables 8 bytes long.
INTEGER and LOGICAL declarations are treated as (KIND=8).

/[no]keep

Syntax:

/keep or /nokeep

The /keep option creates one object file for each input source file specified, which may not be
desirable when compiling multiple source files. The /keep option does not remove temporary files,
which might be created by the FPP preprocessor or the DIGITAL Fortran compiler.

If the /keep option is specified, the FPP output files and object files are created in the current
directory and retained. The /keep option also affects the number of files that are created and the file
names used for these files.

/[no]libdir

Syntax:

/libdir[:keyword], /nolibdir, or /Zl or /Zla

The /libdir, /Zl, or /Zla option controls whether library search paths are placed into object files
generated by the compiler. Specify one or more of the following options:

• Specify /libdir:all or /libdir to request the insertion of linker search path directives for libraries
automatically determined by the DF command driver and for those specified by the cDEC$
OBJCOMMENT LIB source directives. Specifying /libdir:all is equivalent to
/libdir:(automatic, user). This is the default.

• Specify /libdir:none, /nolibdir, or /Zla to prevent all linker search path directives from being
inserted into the object file (neither automatic nor user specified).

• Specify /libdir:automatic to request the insertion of linker search path directives for libraries
automatically determined by the DF command driver (default libraries). To prevent the
insertion of linker directives for default libraries, specify /libdir:noautomatic or /Zl. In
Developer Studio, specify Disable Default Library Search Rules (for /libdir:noautomatic) in
the Libraries Compiler Option Category.

• Specify /libdir:user to allow insertion of linker search path directives for any libraries specified

Compiler and Linker Options Page 35 of 78

8/21/97 12:23:59 PM

by the cDEC$ OBJCOMMENT LIB source directives. To prevent the insertion of linker
directives for any libraries specified by the OBJCOMMENT directives, specify /libdir:nouser.
In Developer Studio, specify Disable OBJCOMMENT Directives (for /libdir:nouser) in the
Libraries Compiler Option Category.

/libs

Syntax:

/libs[:keyword], /MD, /MDd, /MDs, /ML, /MLd, /MT, /MTd, /MTs, /MW, or /MWs

The /libs option controls the type of libraries your application is linked with. The default is
/libs:static (same as /libs). In Developer Studio, specify the Use Fortran Run-Time Libraries in the
Libraries Compiler Option Category. These options are:

• /libs:dll or /MDs
The /libs:dll or /MDs option causes the linker to search for unresolved references in single
threaded, dynamic link reference libraries (DLLs). If the unresolved reference is found in the
DLL, it gets resolved when the program is executed (during program loading), reducing
executable program size.
Specifying /libs:dll with /threads is equivalent to /MD.
Specifying /libs:dll with /threads and /dbglibs is equivalent to /MDd.

• /libs:static or /ML
The /libs:static or /ML option requests that the linker searches only in single threaded, static
libraries for unresolved references; dynamic link libraries (DLLs) are not searched. This is the
default. Specifying /libs (with no keyword) is the same as specifying /libs:static.
Specifying /libs:static with /nothreads is equivalent to /ML.
Specifying /libs:static with /nothreads and /dbglibs is equivalent to /MLd.
Specifying /libs:static with /threads is equivalent to /MT.
Specifying /libs:static with /threads and /dbglibs is equivalent to /MTd.

• /libs:qwin or /MW
Specifying /libs:qwin or /MW requests the creation of a QuickWin multi-doc (QuickWin)
application.

• /libs:qwins or /MWs
Specifying /libs:qwins or /MWs requests the creation of a Standard Graphics (QuickWin
single-doc) application.

The following related options request additional libraries to link against:

• /dbglibs
• /threads
• /winapp
• /fpscomp:libs

To request the creation of a dynamic-link library, see /dll .

For information about compiling and linking Visual Fortran and Visual C++ programs (and the
libraries used), see Visual Fortran/Visual C++ Mixed-Language Programs.

Compiler and Linker Options Page 36 of 78

8/21/97 12:23:59 PM

For command-line examples of using the /libs option, see Linking Against Additional Libraries.

/[no]link

Syntax:

/link:options or /nolink

The /link option (without specifying options) precedes options to be passed to the linker as is (see
Linker Options). You can also specify the options to to be passed to the linker as is using the form:
/link:options. In Developer Studio, you can specify linker options using the Linker tab in the Project
menu Settings dialog box.

The /nolink option suppresses linking and forces an object file to be produced even if only one
program is compiled. Any options specified after the /nolink option are ignored.

/[no]list

Syntax:

/list[:file], /nolist, or /Fsfile

The /list or /Fs option creates a listing of the source file with compile-time information appended. To
name the source listing file, specify file. If you omit the /list or /Fs options (or specify /nolist), no
listing file is created.

In Developer Studio, specify Source Listing in the Listing File Compiler Option Category.

When a diagnostic message is displayed, the listing file contains a column pointer (such as1) that
points to the specific part of the source line that caused the error. To request a listing with Assembly
instructions, see /asmfile.

The name of the listing file is the same as the source file (unless specified by file), with the extension
.LST (unless the extension is specified by file).

If multiple object files are created, multiple listing files are usually created. For example, if you
specify multiple source files with the /compile_only and /list options without a named object file
(/object:file), multiple files are created. If you specify multiple source files with the /list,
/compile_only, and /object:file, a single listing file is created. For command-line examples, see
Generating a Listing File.

/[no]logo

Syntax:

/nologo or /logo

The /nologo option suppresses the copyright notice displayed by the compiler and linker. This option
can be placed anywhere on the command line.

/[no]machine_code

Compiler and Linker Options Page 37 of 78

8/21/97 12:23:59 PM

Syntax:

/machine_code or /nomachine_code

The /machine_code option requests that a machine language representation be included in the listing
file. The /machine_code option is a synonym for /show:code. In Developer Studio, specify Source
Listing Options, Machine Code in the Listing File Compiler Option Category.

This option is ignored unless you specify /list[:file] or /Fsfile.

/[no]map

Syntax:

/map[:file], /nomap, or /Fmfile

The /map or /Fm option controls whether or not a link map is created. To name the map file, specify
file. In Developer Studio, you can specify the Generate mapfile option in the Linker tab of the Project
menu Settings dialog box.

If you omit /map or /Fm, a map file is not created.

/math_library

Syntax:

/math_library:keyword

The /math_library option specifies whether argument checking of math routines is done on x86
systems and the type of math library routines used on Alpha systems.

In Developer Studio, specify the Math Library in the Optimizations Compiler Option Category. The
/math_library options are:

• /math_library:accurate (Alpha only)
On Alpha systems, specifying /math_library:accurate uses the standard math library routines
for Fortran intrinsics (for example, SIN), that provide highly accurate answers with good
performance and error checking. This is the default on Alpha systems (unless the /fast option
is specified).

The standard math library routines are designed to obtain very accurate "near correctly
rounded" results and provide the robustness needed to check for IEEE exceptional argument
values, rather than achieve the fastest possible run-time execution speed. Using
/math_library:accurate allows user control of arithmetic exception handling with the /fpe:level
option (in addition to the default).

• /math_library:fast
On x86 systems, /math_library:fast improves performance by not checking the arguments to
the math routines. Using /math_library:fast makes tracing the cause of unexpected exceptional
values results difficult. On x86 systems, /math_library:fast does not change the accuracy of
calculated floating-point numbers.

Compiler and Linker Options Page 38 of 78

8/21/97 12:23:59 PM

On Alpha systems, /math_library:fast improves performance by using tuned routines in the
math library. These routines trade off a small amount of accuracy and less reliable arithmetic
exception handling for improved performance. There are tuned routines for such intrinsic
procedures as SQRT and EXP, allowing certain math library functions to get significant
performance improvements when the applicable intrinsic procedure is used.

The fast math library routines on Alpha systems do not necessarily check for IEEE exceptional
values and should not be used with the /fpe:level option other than fpe:0.

When you use /math_library:fast on Alpha systems, you should carefully check the calculated
output from your program to verify that it is not relying on the full fractional accuracy of the
floating-point data type to produce correct results and not producing unexpected exceptional
values (exception handling is indeterminate).

Programs that do not produce acceptable results on Alpha systems with /math_library:fast and
single-precision data might produce acceptable results with /math_library:fast if they are
modified (or compiled) to use double-precision data.

• /math_library:check
On x86 systems, /math_library:check validates the arguments to and results from calls to the
Fortran math routines. This provides slower run-time performance than /math_library:fast on
x86 systems, but with earlier detection of exceptional values. This is the default on x86
systems.

On Alpha systems, /math_library:check is equivalent to /math_library:accurate (see previous
description of /math_library:accurate).

/[no]module

Syntax:

/module[:path] or /nomodule

The /module option controls where the module files (extension MOD) are placed. If you omit this
option (or specify /nomodule), the .MOD files are placed in the directory where the source file being
compiled resides.

When /module:path is specified, the path specifies the directory location where the module files will
be placed.

In Developer Studio, specify the Module Path in the Miscellaneous Compiler Option Category.

When /module is entered without specifying a path, it is interpreted as a request to place the MOD
files in the same location that the object is being created. Should a path be specified on the /object
option, that location would also be used for the MOD files.

You need to ensure that the module files are created before they are referenced when using the DF
command (see Compile With Appropriate Options and Multiple Source Files).

/names

Compiler and Linker Options Page 39 of 78

8/21/97 12:23:59 PM

Syntax:

/names:keyword, /GNa, /GNl, or /GNu

The /names option specifies how source code identifiers and external names are interpreted and the
case convention used for external names. This naming convention applies whether names are being
defined or referenced. The default is /names:uppercase (same as /GNu).

In Developer Studio, specify the Name Interpretation in the External Procedures or the Fortran
Language Compiler Option Category. The /names options are:

• /names:as_is or /GNa causes the compiler to:
• Distinguish between uppercase and lowercase letters in source code identifiers (treat

uppercase and lowercase letters as different).
• Distinguish between uppercase and lowercase letters in external names.

• /names:lowercase or /GNl causes the compiler to:
• Not distinguish between uppercase and lowercase letters in source code identifiers (treat

lowercase and uppercase letters as equivalent).
• Force all letters to be lowercase in external names.

• /names:uppercase or /GNu (default) causes the compiler to:
• Not distinguish between uppercase and lowercase letters in source code identifiers (treat

lowercase and uppercase letters as equivalent).
• Force all letters to be uppercase in external names.

/[no]object

Syntax:

/object[:filename], /noobject, or /Fofilename

The /object or /Fo option names the object file filename. Specify /noobject to prevent creation of an
object file. The default is /object, where the file name is the same as the first source file with a file
extension of .OBJ.

If you omit /compile_only (or /c) and specify /object:filename or /Fofilename, the /object option
names the object file filename.

If you specify /object:filename or /Fofilename and specify the /compile_only option, the /object or
/Fo option causes multiple Fortran input files (if specified) to be compiled into a single object file.
This allows interprocedural optimizations to occur at higher optimization levels, which usually
improves run-time performance.

For information on where module files are placed, see /module[:path] .

/[no]optimize

Syntax:

/optimize[:level], /nooptimize, /Od, /Ox, or /Oxp

Compiler and Linker Options Page 40 of 78

8/21/97 12:23:59 PM

The /optimize option controls the level of optimization performed by the compiler. To provide
efficient run-time performance, DIGITAL Fortran increases compile time in favor of decreasing run
time. If an operation can be performed, eliminated, or simplified at compile time, the compiler does
so rather than have it done at run time. Also, the size of object file usually increases when certain
optimizations occur (such as with more loop unrolling and more inlined procedures).

In Developer Studio, specify the Optimization Level in the General or Optimizations Compiler
Option Category. The /optimize options are:

• /optimize:0 or /Od
Disables nearly all optimizations. This is the default if you specify /debug (with no keyword).
Specifying this option causes certain /warn options to be ignored. Specifying /Od sets the
/optimize:0 and /math_library:check options.

• /optimize:1
Enables local optimizations within the source program unit, recognition of common
subexpressions, and expansion of integer multiplication and division (using shifts).

• /optimize:2
Enables global optimization. This includes data-flow analysis, code motion, strength reduction
and test replacement, split-lifetime analysis, and instruction scheduling. Specifying
/optimize:2 includes the optimizations performed by /optimize:1.

• /optimize:3
Enables additional global optimizations that improve speed (at the cost of extra code size).
These optimizations include:

• Loop unrolling, including instruction scheduling
• Code replication to eliminate branches
• Padding the size of certain power-of-two arrays to allow more efficient cache use (see

Use Arrays Efficiently)

Specifying /optimize:3 includes the optimizations performed by /optimize:1 and /optimize:2.

• /optimize:4, /Ox, and /Oxp
Enables interprocedure analysis and automatic inlining of small procedures (with heuristics
limiting the amount of extra code). Specifying /optimize:4 includes the optimizations
performed by /optimize:1 /optimize:2, and /optimize:3. For the DF command, /optimize:4 is
the default unless you specify /debug (with no keyword).
Specifying /Ox sets: /optimize:4, /math_library:check, and /assume:nodummy_aliases.
Specifying /Oxp sets: /optimize:4, /math_library:check, /assume:nodummy_aliases, and
/fpconsistency (x86 systems).

• /optimize:5 (Alpha only)
Activates the loop transformation optimizations (also set by /transform_loops) and the
software pipelining optimization (also set by /pipeline):

• The loop transformation optimizations are a group of optimizations that apply to array
references within loops. These optimizations can improve the performance of the
memory system and can apply to multiple nested loops.
Loop transformation optimizations include loop blocking, loop distribution, loop
fusion, loop interchange, loop scalar replacement, and outer loop unrolling. You can

Compiler and Linker Options Page 41 of 78

8/21/97 12:23:59 PM

specify loop transformation optimizations without software pipelining (see
/[no]transform_loops).

• The software pipelining optimization applies instruction scheduling to certain innermost
loops, allowing instructions within a loop to "wrap around" and execute in a different
iteration of the loop. This can reduce the impact of long-latency operations, resulting in
faster loop execution. Software pipelining also enables the prefetching of data to reduce
the impact of cache misses.
You can specify software pipelining without loop transformation optimizations (see
/[no]pipeline).

In addition to loop transformation and software pipelining, specifying /optimize:5 activates
certain optimizations that are not activated by /transform_loops and /pipeline, including
byte-vectorization, and insertion of additional NOP (No Operation) instructions for alignment
of multi-issue sequences.

To determine whether using /optimize:5 benefits your particular program, you should compare
program execution timings for the same program (or subprogram) compiled at levels
/optimize:4 and /optimize:5.

Specifying /optimize:5 (Alpha systems only) includes the optimizations performed by
/optimize:1 /optimize:2, /optimize:3, and /optimize:4.

For detailed information on these optimizations, see Optimization Levels: the /optimize Option

To compile your application for efficient run-time performance, see Compile With Appropriate
Options and Multiple Source Files.

/[no]pad_source

Syntax:

/pad_source or /nopad_source

The /pad_source option requests that source records shorter than the statement field width are to be
padded with spaces on the right out to the end of the statement field. This affects the interpretation of
character and Hollerith literals that are continued across source records.

In Developer Studio, specify the Pad Fixed-Form Source Records in the Fortran Language Compiler
Option Category.

The default is /nopad_source, which causes a warning message to be displayed if a character or
Hollerith literal that ends before the statement field ends is continued onto the next source record. To
suppress this warning message, specify the /warn:nousage option.

Specifying /pad_source can prevent warning messages associated with /warn:usage.

/[no]pdbfile

Syntax:

/pdbfile[:filename], /nopdbfile, or /Fdfilename

Compiler and Linker Options Page 42 of 78

8/21/97 12:23:59 PM

The /pdbfile or /Fd option indicates that any debug information generated by the compiler should be
to a program database file, filename.PDB. If you omit filename, the default file name used is
df50.pdb.

In Developer Studio, specify Use Program Database for Debug Information (and optionally specify
the Program Database .PDB Path) in the Debug Compiler Option Category.

When full debug information is requested (/debug:full, /debug, or equivalent), the debug information
is placed in the PDB file (unless /nopdbfile is specified).

The compiler places debug information in the object file if you specify /nopdbfile or omit both
/pdbfile and /debug:full (or equivalent).

/[no]pipeline (Alpha only)

Syntax:

/pipeline or /nopipeline

On Alpha systems, the /pipeline (or /optimize:5) option activates the software pipelining
optimization. This optimization applies instruction scheduling to certain innermost loops, allowing
instructions within a loop to "wrap around" and execute in a different iteration of the loop. This can
reduce the impact of long-latency operations, resulting in faster loop execution.

In Developer Studio, specify the Apply Software Pipelining Optimizations in the Optimizations
Compiler Option Category.

For this version of Visual Fortran, loops chosen for software pipelining are always innermost loops
and do not contain branches, procedure calls, or COMPLEX floating-point data.

Software pipelining can be more effective when you combine /pipeline with the appropriate
/tune:keyword keyword option for the target Alpha processor generation.

Software pipelining also enables the prefetching of data to reduce the impact of cache misses.

Software pipelining is a subset of the optimizations activated by /optimize:5. Instead of specifying
both /pipeline and /transform_loops, you can specify /optimize:5.

To specify software pipelining without loop transformation optimizations, do one of the following:

• Specify /optimize:5 with /notransform_loops (preferred method)
• Specify /pipeline with /optimize:4, /optimize:3, or /optimize:2. This optimization is not

performed at optimization levels below /optimize:2.

To determine whether using /pipeline benefits your particular program, you should time program
execution for the same program (or subprogram) compiled with and without software pipelining
(such as with /pipeline and /nonopipeline).

For programs that contain loops that exhaust available registers, longer execution times may result
with /optimize:5, requiring use of /unroll:count to limit loop unrolling. The /optimize:5 option
applies only to Alpha systems.

Compiler and Linker Options Page 43 of 78

8/21/97 12:23:59 PM

For more information, see Software Pipelining.

/preprocess_only

Syntax:

/preprocess_only

The /preprocess_only option runs only the FPP preprocessor and puts the result for each source file
in a corresponding .i or .i90 file. The .i or .i90 file does not have line numbers (#) in it.

/real_size

Syntax:

/real_size:size or /4R8

The /real_size or /4R8 option controls the size (in bits) of REAL and COMPLEX declarations,
constants, functions, and intrinsics. In Developer Studio, specify the Default Real Kind in the Fortran
Data Compiler Option Category. The /real_size options are:

• /real_size:32
Defines REAL declarations, constants, functions, and intrinsics as REAL(KIND=4) (SINGLE
PRECISION). It also defines COMPLEX declarations, constants, functions, and intrinsics as
COMPLEX(KIND=4) (COMPLEX). This is the default.

• /real_size:64 or /4R8
Defines REAL declarations, constants, functions, and intrinsics as REAL(KIND=8)
(DOUBLE PRECISION). It also defines COMPLEX declarations, constants, functions, and
intrinsics as COMPLEX(KIND=8).

Specifying /real_size:64 causes intrinsic functions to produce a REAL(KIND=8) or
COMPLEX(KIND=8) result instead of a REAL(KIND=4) or COMPLEX(KIND=4) result, except if
the argument is explicitly typed as REAL(KIND=4) or COMPLEX(KIND=4), including CMPLX,
FLOAT, REAL, SNGL, and AIMAG. For instance, references to the CMPLX intrinsic produce
DCMPLX results (COMPLEX(KIND=8)), except if the argument to CMPLX is explicitly typed as
REAL(KIND=4), REAL*4, COMPLEX(KIND=4), or COMPLEX*8. In this case the resulting data
type is COMPLEX(KIND=4).

/[no]recursive

Syntax:

/recursive or /norecursive

The /recursive option compiles all procedures (functions and subroutines) for possible recursive
execution. Specifying the /recursive option sets the /automatic option. The default is /norecursive.

In Developer Studio, specify Enable Recursive Routines in the Run time Compiler Option Category.

/[no]reentrancy

Compiler and Linker Options Page 44 of 78

8/21/97 12:23:59 PM

Syntax:

/reentrancy[:keyword] or /noreentrancy

The /reentrancy or /reentrancy:threads option requests that the compiler generate reentrant code that
supports a multithreaded application. In Developer Studio, specify the Enable Reentrancy Support or
Disable Reentrancy Support in the Libraries Compiler Option Category.

If you omit /reentrancy, /reentrancy:threads, or /threads, /reentrancy:none (same as /noreentrancy) is
used.

Specifying /threads sets /reentrancy:threads, since multithreaded code must be reentrant.

/rounding_mode (Alpha only)

Syntax:

/rounding_mode:keyword

On Alpha systems, the /rounding_mode option allows you to control how rounding occurs during
floating-point calculations. The rounding mode applies to each program unit being compiled.

In Developer Studio, specify the Rounding Mode in the Floating Point Compiler Option Category.
The /rounding_mode options are:

• /rounding_mode:nearest
The normal rounding mode, where results are rounded to the nearest representable value. If
you omit other /rounding_mode options, /rounding_mode:nearest is used.

• /rounding_mode:chopped
Rounds results toward zero.

• /rounding_mode:minus_infinity
Rounds results toward the next smallest representative value.

• /rounding_mode:dynamic
Lets you set the rounding mode at run-time. You can modify your program to call the
appropriate Windows NT Alpha routine to obtain or set the current rounding mode.

When you call the appropriate Windows NT Alpha routine (such as _controlfp or _control87), you
can set the rounding mode to one of the following settings:

• Round toward zero or truncate (same as /rounding_mode:chopped)
• Round toward nearest (same as /rounding_mode:nearest)
• Round toward plus infinity
• Round toward minus infinity (same as /rounding_mode:minus_infinity)

If you compile with /rounding_mode:dynamic and do not call the appropriate Windows NT routine,
the initial rounding mode is round toward nearest /rounding_mode:nearest.

For the fastest run-time performance, avoid using /rounding_mode:dynamic.

For information on setting the rounding mode on x86 systems, see Floating-Point Control Word (x86
only).

Compiler and Linker Options Page 45 of 78

8/21/97 12:23:59 PM

/[no]show

Syntax:

/show:keyword... or /noshow

The /show option specifies what information is included in a listing. In Developer Studio, specify the
Source Listing Options in the Listing File Compiler Option Category. The /show keywords are:

• /show:code
Includes a machine-language representation of the compiled code in the listing file. The
default is /show:nocode. The /show:code and /machine_code options are equivalent.

• /show:include
Lists any text file included in the source file (unless that source is included using the
INCLUDE 'filespec /NOLIST' syntax; see the /vms option). The default is /show:noinclude.

• /show:map (default)
Includes a symbol map in the listing file.

• /show:nomap
Do not include a symbol map in the listing file.

Specifying /show or /show:all is equivalent to /show:(code,include,map). Specifying /noshow or
/show:none is equivalent to /show:(nocode,noinclude,nomap).

This option is ignored unless you specify /list[:file] or /Fsfile.

/source

Syntax:

/source:file or /Tffile

The /source or /Tf option indicates that the file is a Fortran source file with a non-standard file
extension (not one of .F, .FOR, or .F90) that needs to be compiled.

The default for any file that does not have an extension of .F90 or .f90 is to be a fixed-format Fortran
file.

/[no]stand

Syntax:

/stand[:keyword], /nostand, or /4Ns

The /stand or /4Ns option issues compile-time messages for language elements that are not standard
in the Fortran 90 or Fortran 95 language that can be identified at compile-time. In Developer Studio,
specify the Fortran Standards Checking in the Fortran Language Compiler Option Category. These
options are:

• Specify /stand or /stand:f90 to request that diagnostic messages be generated with a
warning-level severity (allows an object file to be created) for extensions to the Fortran 90
standard.

Compiler and Linker Options Page 46 of 78

8/21/97 12:23:59 PM

• Specify /stand:f95 to request that diagnostic messages be generated with a warning-level
severity (allows an object file to be created) for extensions to the proposed Fortran 95 standard.

• If you omit the /stand, or /stand:keyword, /warn:stderrors, or /4Ys options, messages are not
issued for language elements that are not standard in the Fortran 90 or Fortran 95 language.
This is equivalent to /stand:none, /nostand, or /4Ns.

Specify /warn:stderrors to request that diagnostic messages be generated with an error-level severity
(instead of warning) to prevent an object file from being created.

Specifying /stand issues warning messages for:

• Obsolescent and deleted features sp[ecified by the Fortran standard.
• Syntax extensions to the Fortran 90 standard. Syntax extensions include nonstandard

statements and language constructs.
• Fortran 90 standard-conforming statements that become nonstandard due to the way in which

they are used. Data type information and statement locations are considered when determining
semantic extensions.

• For fixed-format source files, lines that use tab formatting.

Source statements that do not conform to Fortran 90 language standards are detected by the compiler
under the following circumstances:

• The statements contain ordinary syntax and semantic errors.
• A source program containing nonconforming statements is compiled with the /stand or /check

options.

Given these circumstances, the compiler is able to detect most instances of nonconforming usage. It
does not detect all instances because the /stand option does not produce checks for all
nonconforming usage at compile time. In general, the unchecked cases of nonconforming usage arise
from the following situations:

• The standard violation results from conditions that cannot be checked at compile time.
• The compile-time checking is prone to false alarms.

Most of the unchecked cases occur in the interface between calling and called subprograms.
However, other cases are not checked, even within a single subprogram.

The following items are known to be unchecked:

• Use of a data item prior to defining it
• Use of the SAVE statement to ensure that data items or common blocks retain their values

when reinvoked
• Association of character data items on the right and left sides of character assignment

statements
• Mismatch in order, number, or type in passing actual arguments to subprograms with implicit

interfaces
• Association of one or more actual arguments with a data item in a common block when calling

a subprogram that assigns a new value to one or more of the arguments

/[no]static

Compiler and Linker Options Page 47 of 78

8/21/97 12:23:59 PM

Syntax:

/static or /nostatic

The /static option is the same as the /noautomatic option. The default is /static, which causes all local
variables to be statically allocated. The /nostatic option is the same as /automatic. In Developer
Studio, specify /nostatic as Variables Default to Automatic in the Fortran Data Compiler Option
Category.

If you specify /recursive, the /automatic option is set.

/[no]synchronous_exceptions (Alpha only)

Syntax:

/synchronous_exceptions or /nosynchronous_exceptions

On Alpha systems, the /synchronous_exceptions option associates an exception with the instruction
that causes it. This slows program execution, so only specify it when debugging a specific problem,
such as locating the source of an exception.

In Developer Studio, specify Enable Synchronous Floating-Point Exceptions in the Floating Point
Compiler Option Category.

If you omit /synchronous_exceptions, exceptions can be reported one or more instructions after the
instruction that caused the exception, depending on the /fpe:level option used.

The default is /nosynchronous_exceptions (if you specify or imply /fpe:0). If you specify a higher /fpe
level, the default is /synchronous_exceptions.

/[no]syntax_only

Syntax:

/syntax_only or /nosyntax_only

The /syntax_only option requests that only the syntax of the source file be checked. If the
/syntax_only option is specified, code generation is suppressed. The default is /nosyntax_only.

/[no]threads

Syntax:

/threads or /nothreads

The /threads option requests linking with multithreaded libraries, which creates a multithreaded
program or DLL. If you specify /threads, this sets the /reentrancy option.

In Developer Studio, specify Use Multithreaded Library in the Libraries Compiler Option Category.

The default is /nothreads, which links with single-threaded libraries to create a single-threaded
program or DLL.

Compiler and Linker Options Page 48 of 78

8/21/97 12:23:59 PM

Related options that contol the libraries used during linking include:
• /libs
• /winapp
• /fpscomp:libs

/[no]transform_loops (Alpha only)

Syntax:

/transform_loops or /notransform_loops

On Alpha systems, the /transform_loops (or /optimize:5) option activates a group of loop
transformation optimizations that apply to array references within loops. These optimizations can
improve the performance of the memory system and usually apply to multiple nested loops. The
loops chosen for loop transformation optimizations are always counted loops (which include DO or
IF loops, but not uncounted DO WHILE loops).

In Developer Studio, specify the Apply Loop Transformation Optimizations in the Optimizations
Compiler Option Category.

Conditions that typically prevent the loop transformation optimizations from occurring include
subprogram references that are not inlined (such as an external function call), complicated exit
conditions, and uncounted loops.

The types of optimizations associated with /transform_loops include the following:

• Loop blocking
• Loop distribution
• Loop fusion
• Loop interchange
• Loop scalar replacement
• Outer loop unrolling

The loop transformation optimizations are a subset of optimizations activated by /optimize:5. Instead
of specifying both /pipeline and /transform_loops, you can specify /optimize:5.

To specify loop transformation optimizations without software pipelining, do one of the following:

• Specify /optimize:5 with /nopipeline (preferred method)
• Specify /transform_loops with /optimize:4, /optimize:3, or /optimize:2. This optimization is

not performed at optimization levels below /optimize:2.

To determine whether using /transform_loops benefits your particular program, you should time
program execution for the same program (or subprogram) compiled with and without loop
transformation optimizations (such as with /transform_loops and /notransform_loops). This option
applies only to Alpha systems.

For more information, see Loop Transformation.

/tune (Alpha only)

Compiler and Linker Options Page 49 of 78

8/21/97 12:23:59 PM

Syntax:

/tune:keyword

On Alpha systems, the /tune option specifies the types of processor-specific instruction tuning for
implementations of the Alpha architecture. This option is ignored on x86 processor systems.

Regardless of the setting of /tune:keyword option you use, the generated code runs correctly on all
implementations of the Alpha architecture. Tuning for a specific implementation can improve
run-time performance; it is also possible that code tuned for a specific Alpha processor may run
slower on another Alpha processor.

If you omit /tune:keyword, /tune:generic is used. In Developer Studio, specify the Optimize For in
the Optimizations Compiler Option Category. The /tune options are:

• /tune:generic
Generates and schedules code that will execute well for all generations of Alpha processor
chips. This provides generally efficient code for those cases where all processor generations
are likely to be used. This is the default.

• /tune:host
Generates and schedules code optimized for the processor generation in use on the system
being used for compilation.

• /tune:ev4
Generates and schedules code optimized for the 21064, 21064A, 21066, and 21068
implementations of the Alpha chip.

• /tune:ev5
Generates and schedules code optimized for some 21164 implementations of the Alpha
architecture that use only the base set of Alpha instructions (no extensions).

• /tune:ev56
Generates and schedules code for some 21164 chip implementations that use the byte and
word manipulation instruction extensions of the Alpha architecture.

• /tune:pca56
Generates and schedules code for the 21164PC chip implementation that uses the byte and
word manipulation instruction extensions and multimedia instruction extensions of the Alpha
architecture.

To request a specific set of instructions for an Alpha architecture generation, see
/architecture:keyword.

/undefine

Syntax:

/undefine:symbol

The /undefine option removes any initial definition of symbol for the FPP preprocessor.

Compiler and Linker Options Page 50 of 78

8/21/97 12:23:59 PM

/unroll

Syntax:

/unroll:count

For higher optimization levels, the /unroll option allows you to specify how many times loops are
unrolled. If the /unroll option is not specified, the compiler determines how many times loops are
unrolled (4 times for most loops or 2 times for certain loops with large code size or branches outside
the loop).

In Developer Studio, specify the Loop Unroll Count in the Optimizations Compiler Option Category.

If the /optimize:3, /optimize:4 (or equivalent), or /optimize:5 (Alpha systems only) options are
specified, loop unrolling occurs. The count should be an integer in the range 0 to 16. A count value
of 0 is used to indicate that the compiler should determine how many times a loop is unrolled
(default).

The compiler attempts to unroll certain innermost loops, minimizing the number of branches and
grouping more instructions together to allow efficient overlapped instruction execution (instruction
pipelining). The best candidates for loop unrolling are innermost loops with limited control flow.

For more information, see Loop Unrolling.

/[no]vms

Syntax:

/vms or /novms

The /vms option causes the run-time system to provide functions like DIGITAL Fortran for
OpenVMStm VAXtm Systems (previously called VAX FORTRANtm).

In Developer Studio, specify Enable VMS Compatibility in the Compatibility Compiler Option
Category. The /vms option:

• In the absence of other options, sets the following command-line defaults: /align:norecords,
/align:nocommons, /check:format, /check:output_conversion, /static, /norecursive, and
/names:lowercase.

• Allows use of the DELETE statement for relative files. When a record in a relative file is
deleted, the first byte of that record is set to a known character (currently '@'). Attempts to
read that record later result in ATTACCNON errors. The rest of the record (the whole record
when /vms is not set) is set to nulls for unformatted files and spaces for formatted files.

• When an ENDFILE is performed on a sequential unit, an actual 1-byte record containing a
Ctrl+D (04 hex) is written to the file. When you omit /vms, an internal ENDFILE flag is set
and the file is truncated. The /vms option does not affect ENDFILE on relative files; the file is
truncated.

• Enables recognition of certain environment variables at run time for ACCEPT, PRINT, and
TYPE statements and for READ and WRITE statements that do not specify a unit number
(such as READ (*,1000)).

• Changes certain OPEN statement BLANK keyword defaults. Changes the default

Compiler and Linker Options Page 51 of 78

8/21/97 12:23:59 PM

interpretation from BLANK=’NULL’ to BLANK=’ZERO’ for an implicit OPEN or internal file
OPEN. For an explicit OPEN, the default is always BLANK=’NULL’.

• Changes certain OPEN statement effects. If the CARRIAGE CONTROL is defaulted, the file
is formatted, and the unit is connected to a terminal, then the carriage control defaults to
FORTRAN. Otherwise, it defaults to LIST. The /vms option affects the record length for
relative organization files. The buffer size is increased by 1 to accommodate the deleted record
character.

• LIST and /NOLIST are recognized at the end of the file specification to the INCLUDE
statement at compile time. If you specified /vms and if the file specification does not include
the directory path, the current working directory is used as the default directory path. If you
omitted /vms, the directory path is where the file that contains the INCLUDE statement
resides.

• Changes internal file writes using list-directed I/O. A list-directed write to an internal file
results in removal of the first character from the first element; the field length is decremented
accordingly.

• The run-time direct access READ routine checks the first byte of the retrieved record. If this
byte is '@' or NULL ('\0'), then ATTACCNON is returned. The run-time sequential access
READ routine checks to see if the record it just read is 1 byte long and contains a Ctrl+D (04
hex) or a Ctrl+Z (1A hex). If this is true, it returns EOF.

The default is /novms.

/[no]warn

Syntax:

/warn[:keyword...]), /nowarn, /4Yd, /4Nd, /4Ys, /W0, /W1, or /WX

The /warn option instructs the compiler to generate diagnostic messages for defined classes of
additional checking that can be performed at compile-time. It also can change the severity level of
issued compilation messages.

In Developer Studio, specify the Warning Level in the General Compiler Option Category or specify
individual Warning Options in the Miscellaneous Compiler Option Category. The /warn options are:

• /warn:noalignments suppresses warning messages for data that is not naturally aligned. The
default is /warn:alignments.

• /warn:argument_checking enables warnings about argument mismatches between callers and
callees, when compiled together. The default is /warn:noargument_checking.

• /warn:declarations or /4Yd issues an error message for any undeclared symbols. This option
makes the default type of a variable undefined (IMPLICIT NONE) rather than using the
default Fortran rules. The default is /warn:nodeclarations or /4Nd.

• /warn:errors or /WX changes the severity of all warning diagnostics into error diagnostics. The
default is /warn:noerrors. Specifying /warn:errors (or /WX) sets /warn:stderrors.

• /warn:nofileopt suppresses the display of an informational-level diagnostic message when
compiling multiple files separately. The default is /warn:fileopt (displays the message: Some
interprocedural optimizations may be disabled when compiling in this mode).

• /warn:nogeneral suppresses all informational-level and warning-level diagnostic messages
from the compiler. The default is /warn:general or /W1.

• /warn:nogranularity (Alpha systems only) suppresses the display of a warning message that the

Compiler and Linker Options Page 52 of 78

8/21/97 12:23:59 PM

compiler cannot generate code for the requested granularity (see /granularity. The default is
/warn:granularity.

• /warn:stderrors or /4Ys requests Fortran 90 standards checking (see /stand) with error-level
compilation messages instead of warning-level messages. Specifying /warn:stderrors sets
/stand:f90 and is equivalent to /4Ys. Specifying /warn:stderrors with /stand:f95 requests
error-level messages for extensions to the proposed Fortran 95 standard.
Specifying /warn:errors sets /warn:stderrors. The default is /warn:nostderrrors.

• /warn:nouncalled suppresses warning messages for when a statement function is never called.
The default is /warn:uncalled.

• /warn:nouninitialized suppresses warning messages for a variable that is used before a value
was assigned to it. The default is /warn:uninitialized.

• /warn:nousage suppresses warning messages about questionable programming practices and
the use of intrinsic functions that use a two-digit year (year 2000). The questionable
programming practices, although allowed, often are the result of programming errors. For
example, /warn:usage detects a continued character or Hollerith literal whose first part ends
before the statement field ends and appears to end with trailing spaces. The default is
/warn:usage. The /pad_source option can prevent warning messages from /warn:usage.

• /warn:all or /warn requests all possible warning messages, but does not set /warn:errors or
/warn:stderrors. To enable all the additional checking to be performed and force the severity of
the diagnostics to be severe enough to not generate an object file, specify /warn:(all,errors) or
/warn:(all,stderrors).

• /warn:none, /nowarn, or /W0 suppresses all warning messages.

If you omit /warn, the defaults are:

• DF command:
/warn:(alignments,noargument_checking,nodeclarations,noerrors,fileopts,general,granularity,nos

• FL32 command:
/warn:(alignments,argument_checking,nodeclarations,noerrors,nofileopts,general,granularity,nos

/[no]watch

Syntax:

/watch[:keyword] or /nowatch

The /watch option requests the display of processing information to the console terminal. You can
request the display of the passes (compiler, linker) with their respective command arguments and/or
the input and output files by specifying any of the following:

• Specify /watch:cmd to display the passes (compiler, linker) with the respective command
arguments.

• Specify /watch:source to display the names of sources file(s) being processed. Source file
names are listed one per line. This is the default.

• Specify /watch:all or /watch to request /watch:(cmd, source). This displays both pass
information and source file names.

• Specify /nowatch or /watch:none to request /watch:(nocmd, nosource).

/what

Compiler and Linker Options Page 53 of 78

8/21/97 12:23:59 PM

Syntax:

/what

The /what option displays Visual Fortran version number information.

/winapp

Syntax:

/winapp or /MG

The /winapp or /MG option requests the creation of a graphics or windows application and links
against the most commonly used libraries. In Developer Studio, specify the Use Common Windows
Libraries in the Libraries Compiler Option Category.

The following related options request libraries:

• /libs
• /threads
• /fpscomp:libs

For information on Windows Applications, including requesting additional link libraries with the
FULLAPI.F90 file, see Creating Windows Applications.

Linker Options and Related Information
You can set Linker options from:

• The DF command line.

When using the DF command line, specify linker options after the /LINK option. For example:

 DF file.f90 file.lib /LINK /NODEFAULTLIB

• The LINK command line.

You can specify linker options and libraries with the LINK command. For example:

 LINK file.obj file.lib /NODEFAULTLIB

• Within Microsoft Developer Studio, in the Project menu, Settings dialog box

You can specify linker options and libraries by using the Linker tab in the Project menu,
Settings dialog box.

This table describes the Linker options and how they are used.

LINK option Function
/ALIGN Specifies the alignment of each section within the linear address space of the

program.

Compiler and Linker Options Page 54 of 78

8/21/97 12:23:59 PM

/COMMENT Inserts a comment string into the header of an executable file or DLL, after the
array of section headers.

/DEF Passes a module-definition (.DEF) file to the linker.
/DEFAULTLIB Adds one or more libraries to the list of libraries that LINK searches when

resolving references.
/DLL Builds a DLL as the main output file.
/EXPORT Exports a function from your program.
/FIXED Tells the operating system to load the program only at its preferred base address.
/HEAP Sets the size of the heap in bytes.
/IMPLIB Sets the name for the import library that LINK creates when it builds a program that

contains exports.
/NOENTRY Prevents LINK from linking a reference to _main into the DLL.
/OUT Overrides the default name and location of the image file that LINK creates.
/RELEASE Sets the checksum in the header of an executable file.
/SUBSYSTEM Tells the operating system how to run the executable file.
/WARN Determines the output of LINK warnings.

This table lists the Linker options, along with the equivalent Microsoft Developer Studio option if
one is available. Options listed as command-line only can be entered in the "Common Options" text
box of the Project ... Settings dialog box. For instructions on how to work with the Microsoft
Developer Studio environment, see the Developer Studio Environment User’s Guide.

Command-Line Option Microsoft Developer Studio Option
/ALIGN Command-line only
/BASE Output Category
/COMMENT Command-line only
/DEBUG Debug Category
/DEBUGTYPE Debug Category
/DEF Command-line only
/DEFAULTLIB Command-line only
/DLL Command-line only
/ENTRY Output Category
/EXPORT Command-line only
/FIXED Command-line only
/FORCE Customize Category
/HEAP Command-line only
/IMPLIB Command-line only
/INCLUDE Input Category
/INCREMENTAL Customize Category
/MAP Debug Category
/NODEFAULTLIB Input Category
/NOENTRY Command-line only
/NOLOGO Customize Category
/OPT Command-line only
/ORDER Command-line only

Compiler and Linker Options Page 55 of 78

8/21/97 12:24:00 PM

/OUT Customize Category
/PDB Customize Category
/PROFILE General Category
/RELEASE Command-line only
/STACK Output Category
/STUB Input Category
/SUBSYSTEM Command-line only
/VERBOSE Customize Category
/VERSION Output Category
/WARN Command-line only

Besides discussing linker options individually, this section also discusses Module-Definition Files
and Linker Reserved Words.

Setting LINK Options in Microsoft Developer Studio

You can set linker options in Microsoft Developer Studio by using the Link tab in the Build Settings
dialog box. The following tables list the linker options by category in Microsoft Developer Studio,
along with the equivalent command-line options:

General category Command-line equivalent
Output File Name /OUT:filename
Object/Library Modules filename on command line
Generate Debug Info /DEBUG
Ignore All Default Libraries /NODEFAULTLIB
Link Incrementally /INCREMENTAL:{YES|NO}
Generate Mapfile /MAP
Enable Profiling /PROFILE

Output category Command-line equivalent
Base Address /BASE:address
Entry-Point Symbol /ENTRY:function
Stack Allocations /STACK:reserve,commit
Version Information /VERSION:major.minor

Input category Command-line equivalent
Object/Library Modules filename on command line
Ignore Libraries /NODEFAULTLIB:library
Ignore All Default Libraries /NODEFAULTLIB
Force Symbol References /INCLUDE:symbol
MS-DOS Stub File Name /STUB:filename

Customize category Command-line equivalent
Use Program Database /PDB:filename
Link Incrementally /INCREMENTAL:{YES|NO}

Compiler and Linker Options Page 56 of 78

8/21/97 12:24:00 PM

Program Database Name /PDB:filename
Output File Name /OUT:filename
Force File Output /FORCE
Print Progress Messages /VERBOSE
Suppress Startup Banner /NOLOGO

Debug category Command-line equivalent
Mapfile Name /MAP:filename
Generate Mapfile /MAP
Generate Debug Info /DEBUG
Microsoft Format /DEBUGTYPE:CV
COFF Format /DEBUGTYPE:COFF
Both Formats /DEBUGTYPE:BOTH

Rules for LINK Options

An option consists of an option specifier, either a dash (-) or a forward slash (/), followed by the
name of the option. Option names cannot be abbreviated. Some options take an argument, specified
after a colon (:). No spaces or tabs are allowed within an option specification, except within a
quoted string in the /COMMENT option.

Specify numeric arguments in decimal or C-language notation. (The digits 1-9 specify decimal
values, an integer constant preceded by a zero (0) specifies an octal value, and an integer constant
preceded by zero and x (0x or 0X) specifies a hexadecimal value.) Option names and their keyword
or filename arguments are not case sensitive, but identifiers as arguments are case sensitive.

LINK first processes options specified in the LINK environment variable. Next, LINK processes
options in the order specified on the command line and in command files. If an option is repeated
with different arguments, the last one processed takes precedence.

Options apply to the entire build. No options can be applied to specific input files.

/ALIGN

Syntax:

/ALIGN:number

Specifies the alignment of each section within the linear address space of the program. The number
argument is in bytes and must be a power of 2. The default is 4K. The linker generates a warning if
the alignment produces an invalid image.

/BASE

Syntax:

/BASE:{address | @filename,key}

Compiler and Linker Options Page 57 of 78

8/21/97 12:24:00 PM

This option sets a base address for the program, overriding the default location for an executable file
(at 0x400000) or a DLL (at 0x10000000). The operating system first attempts to load a program at its
specified or default base address. If sufficient space is not available there, the system relocates the
program. To prevent relocation, use the /FIXED option.

Specify the preferred base address in the text box (or in the address argument on the command line).
The linker rounds the specified number up to the nearest multiple of 64K.

Another way to specify the base address is by using a filename, preceded by an at sign (@), and a key
into the file. The filename is a text file that contains the locations and sizes of all DLLs your program
uses. The linker looks for filename in either the specified path or, if no path is specified, in
directories named in the LIB environment variable. Each line in filename represents one DLL and
has the following syntax:

key address size ;comment

The key is a string of alphanumeric characters and is not case sensitive. It is usually the name of a
DLL but it need not be. The key is followed by a base address in C-notation hexadecimal or decimal
and a maximum size. All three arguments are separated by spaces or tabs. The linker issues a
warning if the specified size is less than the virtual address space required by the program. Indicate a
comment by a semicolon (;). Comments can be on the same or a separate line. The linker ignores all
text from the semicolon to the end of the line. The following example shows part of such a file:

 main 0x00010000 0x08000000 ; for PROJECT.EXE
 one 0x28000000 0x00100000 ; for DLLONE.DLL
 two 0x28100000 0x00300000 ; for DLLTWO.DLL

If the file that contains these lines is called DLLS.TXT, the following example command applies this
information.

 link dlltwo.obj /dll /base:dllls.txt,two

You can reduce paging and improve performance of your program by assigning base addresses so
that DLLs do not overlap in the address space.

An alternate way to set the base address is with the BASE argument in a NAME or LIBRARY
module-definition statement. The /BASE and /DLL options together are equivalent to the LIBRARY
statement. For information on module-definition statements, see Module-Definition Files.

/COMMENT

Syntax:

/COMMENT:["] comment ["]

Inserts a comment string into the header of an executable file or DLL, after the array of section
headers. The type of operating system determines whether the string is loaded into memory. This
comment string, unlike the comment specified with DESCRIPTION in a .DEF file, is not inserted
into the data section. Comments are useful for embedding copyright and version information.

To specify a comment that contains spaces or tabs, enclose it in double quotation marks ("). LINK

Compiler and Linker Options Page 58 of 78

8/21/97 12:24:00 PM

removes the quotation marks before inserting the string. If more than one /COMMENT option is
specified, LINK concatenates the strings and places a null byte at the end of each string.

/DEBUG

Syntax:

/DEBUG

This option creates debugging information for the executable file or DLL.

The linker puts the debugging information into a program database (PDB). It updates the program
database during subsequent builds of the program. For details about PDBs, see /PDB.

An executable file or DLL created for debugging contains the name and path of the corresponding
PDB. Visual Fortran reads the embedded name and uses the PDB when you debug the program. The
linker uses the base name of the program and the extension .PDB to name the PDB, and embeds the
path where it was created. To override this default, use /PDB:filename.

The object files must contain debugging information. Use the compiler’s /Zi (Program Database), /Zd
(Line Numbers Only), or /Z7 (C7 Compatible) option. If an object (whether specified explicitly or
supplied from a library) was compiled with Program Database, its debugging information is stored in
a PDB for the object file, and the name and location of the .PDB file is embedded in the object. The
linker looks for the object’s PDB first in the absolute path written in the object file and then in the
directory that contains the object file. You cannot specify a PDB’s filename or location to the linker.

If you have turned off Use Program Database (or specified /PDB:NONE on the command line), or if
you have chosen either /DEBUGTYPE:COFF or /DEBUGTYPE:BOTH, the linker does not create a
PDB but instead puts the debugging information into the executable file or DLL.

The /DEBUG option changes the default for the /OPT option from REF to NOREF.

/DEBUGTYPE

Syntax:

/DEBUGTYPE:{CV|COFF|BOTH}

This option generates debugging information in one of three ways: Microsoft format (CV), COFF
format, or both:

• /DEBUGTYPE:CV

Visual Fortran requires new-style Microsoft Symbolic Debugging Information in order to read
a program for debugging. To select this option in Microsoft Developer Studio, choose the Link
tab of the Project Settings dialog box. In the Debug category, select the Microsoft Format
button, which is only available if you have checked the Generate Debug Info box.

For information on using Microsoft Developer Studio, see the Microsoft Developer Studio
Environment User Guide in InfoViewer.

Compiler and Linker Options Page 59 of 78

8/21/97 12:24:00 PM

• /DEBUGTYPE:COFF

This option generates COFF-style debugging information. Some debuggers require Common
Object File Format (COFF) debugging information.

When you set this option, the linker does not create a PDB; in addition, incremental linking is
disabled.

To select this option in Microsoft Developer Studio, choose the Link tab of the Project
Settings dialog box. In the Debug category, select the COFF Format button, which is only
available if you have checked the Generate Debug Info box. For information on using
Microsoft Developer Studio, see the Microsoft Developer Studio Environment User Guide in
InfoViewer.

• /DEBUGTYPE:BOTH

This option generates both COFF debugging information and old-style Microsoft debugging
information.

When you set this option, the linker does not create a PDB; in addition, incremental linking is
disabled. The linker must call the CVPACK.EXE tool to process the old-style Microsoft
debugging information. CVPACK must be in the same directory as LINK or in a directory in
the PATH environment variable.

In Microsoft Developer Studio, specify this option with the Both Formats button, which is
only available if you have selected Generate Debug Info. For information on using Microsoft
Developer Studio, see the Microsoft Developer Studio Environment User Guide in
InfoViewer.

If you do not specify /DEBUG, /DEBUGTYPE is ignored. If you specify /DEBUG but not
/DEBUGTYPE, the default type is /DEBUGTYPE:CV.

/DEF

Syntax:

/DEF:filename

Passes a module-definition (.DEF) file to the linker. Only one .DEF file can be specified to LINK.
For details about .DEF files, see Module-Definition Files.

When a .DEF file is used in a build, whether the main output file is an executable file or a DLL,
LINK creates an import library (.LIB) and an exports file (.EXP). These files are created regardless
of whether the main output file contains exports.

Do not specify this option in the Microsoft Developer Studio environment; this option is for use only
on the command line. To specify a .DEF file, add it to the project along with other files.

/DEFAULTLIB

Compiler and Linker Options Page 60 of 78

8/21/97 12:24:00 PM

Syntax:

/DEFAULTLIB:libraries...

This option adds one or more libraries to the list of libraries that LINK searches when resolving
references. A library specified with /DEFAULTLIB is searched after libraries specified on the
command line and before default libraries named in object files. To specify multiple libraries, type a
comma (,) between library names.

Ignore All Default Libraries (/NODEFAULTLIB) overrides /DEFAULTLIB:library. Ignore Libraries
(/NODEFAULTLIB:library) overrides /DEFAULTLIB:library when the same library name is
specified in both.

/DLL

Syntax:

/DLL

This option builds a DLL as the main output file. A DLL usually contains exports that can be used by
another program. There are three methods for specifying exports, listed in recommended order of use:

• cDEC$ ATTRIBUTES DLLEXPORT in the source code
• An /EXPORT specification in a LINK command
• An EXPORTS statement in a module definition (.DEF) file

A program can use more than one method.

An alternate way to build a DLL is with the LIBRARY module-definition statement. The /BASE and
/DLL options together are equivalent to the LIBRARY statement.

In Microsoft Developer Studio, you can set this option by choosing Dynamic-Link Library under
Project Type in the New Project dialog box.

/ENTRY

Syntax:

/ENTRY:function

This option sets the starting address for an executable file or DLL. Specify a function name that is
defined with cDEC$ ATTRIBUTES STDCALL. The parameters and return value must be defined as
documented in the Win32 API for WinMain (for an .EXE) or DllEntryPoint (for a DLL). It is
recommended that you let the linker set the entry point.

By default, the starting address is a function name from the run-time library. The linker selects it
according to the attributes of the program, as shown in the following table.

Function name Default for
mainCRTStartup An application using /SUBSYSTEM:CONSOLE; calls main

Compiler and Linker Options Page 61 of 78

8/21/97 12:24:00 PM

WinMainCRTStartup An application using /SUBSYSTEM:WINDOWS; calls WinMain, which
must be defined with the STDCALL attribute

_DllMainCRTStartup A DLL; calls DllMain (which must be defined with the STDCALL
attribute) if it exists

If the /DLL or /SUBSYSTEM option is not specified, the linker selects a subsystem and entry point
depending on whether main or WinMain is defined.

The functions main, WinMain, and DllMain are the three forms of the user-defined entry point.

/EXPORT

Syntax:

/EXPORT:entryname[=internalname][, @ordinal [, NONAME]] [, DATA]

This option lets you export a function from your program to allow other programs to call the
function. You can also export data. Exports are usually defined in a DLL.

The entryname is the name of the function or data item as it is to be used by the calling program.
You can optionally specify the internalname as the function known in the defining program; by
default, internalname is the same as entryname. The ordinal specifies an index into the exports table
in the range 1 - 65535; if you do not specify ordinal, LINK assigns one. The NONAME keyword
exports the function only as an ordinal, without an entryname.

The DATA keyword specifies that the exported item is a data item. The data item in the client
program must be declared using DLLIMPORT. (The CONSTANT keyword is supported for
compatability but is not recommended.)

There are three methods for exporting a definition, listed in recommended order of use:

• cDEC$ ATTRIBUTES DLLEXPORT in the source code
• An /EXPORT specification in a LINK command
• An EXPORTS statement in a module definition (.DEF) file

All three methods can be used in the same program. When LINK builds a program that contains
exports, it also creates an import library, unless an .EXP file is used in the build.

LINK uses decorated forms of identifiers. A "decorated name" is an internal representation of a
procedure name or variable name that contains information about where it is declared; for
procedures, the information includes how it is called. Decorated names are mainly of interest in
mixed-language programming, when calling Fortran routines from other languages.

The compiler decorates an identifier when it creates the object file. If entryname or internalname is
specified to the linker in its undecorated form as it appears in the source code, LINK attempts to
match the name. If it cannot find a unique match, LINK issues an error.

Use the DUMPBIN tool described in Examining Files with DUMPBIN to get the decorated form of
an identifier when you need to specify it to the linker. Do not specify the decorated form of
identifiers declared with the C or STDCALL attributes. For more information on when and how to

Compiler and Linker Options Page 62 of 78

8/21/97 12:24:00 PM

use decorated names, see Adjusting Naming Conventions in Mixed-Language Programming.

/FIXED

Syntax:

/FIXED

This option tells the operating system to load the program only at its preferred base address. If the
preferred base address is unavailable, the operating system does not load the file. For more
information on base address, see /BASE.

When you specify /FIXED, LINK does not generate a relocation section in the program. At run-time,
if the operating system cannot load the program at that address, it issues an error and does not load
the program.

Some Win32 operating systems, especially those that coexist with MS-DOS, frequently must
relocate a program. A program created with /FIXED will not run on Win32s operating systems.

Note: Do not use /FIXED when building device drivers.

/FORCE

Syntax:

/FORCE:[{MULTIPLE|UNRESOLVED}]

This option tells the linker to create a valid executable file or DLL even if a symbol is referenced but
not defined or is multiply defined.

The /FORCE option can take an optional argument:

• Use /FORCE:MULTIPLE to create an output file whether or not LINK finds more than one
definition for a symbol.

• Use /FORCE:UNRESOLVED to create an output file whether or not LINK finds an undefined
symbol.

A file created with this option may not run as expected. The linker will not link incrementally with
the /FORCE option.

You can select this option in Microsoft Developer Studio by checking the Force File Output box in
the Customize category of the Link tab in the Project Settings dialog box.

/HEAP

Syntax:

/HEAP:reserve,[commit]

Sets the size of the heap in bytes.

Compiler and Linker Options Page 63 of 78

8/21/97 12:24:00 PM

The reserve argument specifies the total heap allocation in virtual memory. The default heap size is
1MB. The linker rounds up the specified value to the nearest 4 bytes.

The optional commit argument is subject to interpretation by the operating system. In Windows NT,
it specifies the amount of physical memory to allocate at a time. Committed virtual memory causes
space to be reserved in the paging file. A higher commit value saves time when the application needs
more heap space but increases the memory requirements and possibly startup time.

Specify the reserve and commit values in decimal or C-language notation. (Use the digits 1 -9 for
decimal values, precede octal values with zero (0), and precede hexadecimal values with zero and x
(0x or 0X).

/IMPLIB

Syntax:

/IMPLIB:filename

This option overrides the default name for the import library that LINK creates when it builds a
program that contains exports. The default name is formed from the base name of the main output
file and the extension .LIB. A program contains exports if one or more of the following is true:

• cDEC$ ATTRIBUTES DLLEXPORT in the source code
• An /EXPORT specification in a LINK command
• An EXPORTS statement in a module definition (.DEF) file

LINK ignores the /IMPLIB option when an import library is not being created. If no exports are
specified, LINK does not create an import library. If an export (.EXP) file is used in the build, LINK
assumes an import library already exists and does not create one. For information on import libraries
and export files, see Import Libraries and Exports Files in Using Visual Fortran Tools.

/INCLUDE

Syntax:

/INCLUDE:symbol

This option tells the linker to add a specified symbol to the symbol table.

Specify a symbol name in the text box. To specify multiple symbols, specify /INCLUDE:symbol
once for each symbol.

The linker resolves symbol by adding the object that contains the symbol definition to the program.
This is useful for including a library object that otherwise would not be linked to the program.

Specifying a symbol in the /INCLUDE option overrides the removal of that symbol by /OPT:REF.

To select this option in Microsoft Developer Studio, choose the Force Symbol References text box in
the Input category of the Link tab of the Project Settings dialog box.

Compiler and Linker Options Page 64 of 78

8/21/97 12:24:00 PM

/INCREMENTAL

Syntax:

/INCREMENTAL:{YES|NO}

This option controls how the linker handles incremental linking.

By default, the linker runs in nonincremental mode. However, the default mode is incremental if you
specify /DEBUG. To override a default incremental link, turn off Link Incrementally (or specify
/INCREMENTAL:NO on the command line).

To link incrementally regardless of the default, turn on Link Incrementally (or specify
/INCREMENTAL:YES on the command line). When you specify this option, the linker issues a
warning if it cannot link incrementally and then links the program nonincrementally. Certain options
and situations override /INCREMENTAL:YES.

Most programs can be linked incrementally. However, some changes are too great, and some options
are incompatible with incremental linking. LINK performs a full link if any of the following options
are specified:

• Link Incrementally is turned off (/INCREMENTAL:NO)
• COFF Format (/DEBUGTYPE:COFF)
• Both Formats (/DEBUGTYPE:BOTH)
• /OPT:REF
• /ORDER
• Use program Database is turned off (/PDB:NONE) when Generate Debug Info (/DEBUG) is

specified

Additionally, LINK performs a full link if any of the following occur:

• Missing .ILK file. (LINK creates a new .ILK file in preparation for subsequent incremental
linking.)

• No write permission for the .ILK file. (LINK ignores the .ILK file and links
nonincrementally.)

• Missing .EXE or .DLL output file.
• Changing the timestamp of the .ILK, .EXE, or .DLL.
• Changing a LINK option. Most LINK options, when changed between builds, cause a full link.
• Adding or omitting an object file.

To select this option in Microsoft Developer Studio, select the Link Incrementally check box in the
Customize category of the Link tab in the Project Settings dialog box.

/MAP

Syntax:

/MAP[:filename]

This option tells the linker to generate a mapfile. You can optionally specify a map file name to

Compiler and Linker Options Page 65 of 78

8/21/97 12:24:00 PM

override the default.

The linker names the mapfile with the base name of the program and the extension .MAP. To
override the default name, use the filenameargument.

A map file is a text file that contains the following information about the program being linked:

• The module name, which is the base name of the file
• The timestamp from the program file header (not from the file system)
• A list of groups in the program, with each group's start address (as section:offset), length,

group name, and class
• A list of public symbols, with each address (as section:offset), symbol name, flat address, and

object file where the symbol is defined
• The entry point (as section:offset)
• A list of fixups

To select this in Microsoft Developer Studio, select the Generate Mapfile check box in the Debug
category of the Link tab in the Project Settings dialog box.

/NODEFAULTLIB

Syntax:

/NODEFAULTLIB[:library]

This option tells the linker to remove all default libraries from the list of libraries it searches when
resolving external references. If you specify library, the linker only ignores the libraries you have
named. To specify multiple libraries, type a comma (,) between the library names.

The linker resolves references to external definitions by searching first in libraries specified on the
command line, then in default libraries specified with the /DEFAULTLIB option, then in default
libraries named in object files.

Ignore All Default Libraries (/NODEFAULTLIB) overrides /DEFAULTLIB:library. Ignore Libraries
(/NODEFAULTLIB:library) overrides /DEFAULTLIB:library when the same library name is
specified in both.

To select this in Microsoft Developer Studio, select the Ignore Libraries or Ignore All Default
Libraries check box in the Input category of the Link tab in the Project Settings dialog box.

/NOENTRY

Syntax:

/NOENTRY

This option is required for creating a resource-only DLL.

Use this option to prevent LINK from linking a reference to _main into the DLL.

Compiler and Linker Options Page 66 of 78

8/21/97 12:24:00 PM

/NOLOGO

Syntax:

/NOLOGO

This option prevents display of the copyright message and version number. This option also
suppresses echoing of command files.

By default, this information is sent by the linker to the Output window. On the command line, it is
sent to standard output and can be redirected to a file.

To select this option in Microsoft Developer Studio, select the Suppress Startup Banner check box in
the Customize category of the Link tab in the Project Settings dialog box.

/OPT

Syntax:

/OPT:{REF|NOREF}

This option controls the optimizations LINK performs during a build. Optimizations generally
decrease the image size and increase the program speed, at a cost of increased link time.

By default, LINK removes unreferenced packaged functions (COMDATs). This optimization is
called transitive COMDAT elimination. To override this default and keep unused packaged functions
in the program, specify /OPT:NOREF. You can use the /INCLUDE option to override the removal of
a specific symbol. It is not possible to create packaged functions with the Visual Fortran 5.0
compiler. This description is included for mixed-language applications with languages such as
Visual C++ that support packaged functions (with the /Gy compiler option).

If you specify the /DEBUG option, the default for /OPT changes from REF to NOREF and all
functions are preserved in the image. To override this default and optimize a debugging build,
specify /OPT:REF. The /OPT:REF option disables incremental linking.

/ORDER

Syntax:

/ORDER:@filename

This option lets you perform optimization by telling LINK to place certain packaged functions into
the image in a predetermined order. It is not possible to make packaged functions with the Visual
Fortran 5.0 compiler. This description is included for mixed-language applications with languages
such as Visual C++ that support packaged functions (with the /Gy compiler option).

LINK places packaged functions in the specified order within each section in the image.

Specify the order in filename, which is a text file that lists the packaged functions in the order you
want to link them. Each line in filename contains the name of one packaged function. Function

Compiler and Linker Options Page 67 of 78

8/21/97 12:24:00 PM

names are case sensitive. A comment is specified by a semicolon (;) and can be on the same or a
separate line. LINK ignores all text from the semicolon to the end of the line.

LINK uses decorated forms of identifiers. A decorated name is an internal representation of a
procedure name or variable name that contains information about where it is declared; for
procedures, the information includes how it is called. Decorated names are mainly of interest in
mixed-language programming, when calling Fortran routines from other languages.

The compiler decorates an identifier when it creates the object file. If the name of the packaged
function is specified to the linker in its undecorated form as it appears in the source code, LINK
attempts to match the name. If it cannot find a unique match, LINK issues an error.

Use the DUMPBIN tool to get the decorated form of an identifier when you need to specify it to the
linker. Do not specify the decorated form of identifiers declared with cDEC$ ATTRIBUTES C or
STDCALL. For more information on when and how to use decorated names, see Adjusting Naming
Conventions in Mixed-Language Programming.

If more than one /ORDER specification is used, the last one specified takes effect.

Ordering allows you to optimize your program’s paging behavior through swap tuning. Group a
function with the functions it calls. You can also group frequently called functions together. These
techniques increase the probability that a called function is in memory when it is needed and will not
have to be paged from disk.

This option disables incremental linking.

/OUT

Syntax:

/OUT:filename

This option overrides the default name and location of the image file that LINK creates. By default,
LINK forms the filename using the base name of the first file specified and the appropriate extension
(.EXE or .DLL).

The /OUT option controls the default base name for a mapfile or import library. For details, see the
descriptions of /MAP and /IMPLIB.

/PDB

Syntax:

/PDB[:filename]

This option controls how the linker produces debugging information. The optional filenameargument
overrides the default filename for the program database. The default filename for the PDB has the
base name of the program and the extension .PDB.

By default when you specify /DEBUG, the linker creates a program database (PDB), which holds

Compiler and Linker Options Page 68 of 78

8/21/97 12:24:00 PM

debugging information. If you have not specified /DEBUG, the linker ignores /PDB.

If you specify /PDB:NONE, the linker does not create a PDB, but instead puts old-style debugging
information into the executable file or DLL. The linker then calls the CVPACK.EXE tool, which
must be in the same directory as LINK.EXE or in a directory in the PATH environment variable.

Debugging information in a program database must be in Microsoft Format (/DEBUGTYPE:CV). If
you choose either COFF Format (/DEBUGTYPE:COFF) or Both Formats (/DEBUGTYPE:BOTH),
no PDB is created.

Incremental linking is suppressed if you specify /PDB:NONE.

You can select this option in Microsoft Developer Studio by selecting the Use Program Database
check box in the Customize category of the Link tab in the Project Settings dialog box.

/PROFILE

Syntax:

/PROFILE

This option creates an output file that can be used with the profiler. This option is found only in the
General category on the Link tab.

A profiler-ready program has a map file. If it contains debugging information, the information must
be stored in the output file instead of a program database file (.PDB file) and must be in Microsoft
old-style format.

In Microsoft Developer Studio, setting Enable Profiling enables the Generate Mapfile option in the
General and Debug categories. If you set the Generate Debug option, be sure to choose Microsoft
Format in the Debug category.

On the command line, /PROFILE has the same effect as setting the /MAP option; if the /DEBUG
option is specified, then /PROFILE also implies the options /DEBUGTYPE:CV and /PDB:NONE. In
either case, /PROFILE implies /INCREMENTAL:NO.

You can select this option in Microsoft Developer Studio by selecting the Enable Profiling check box
in the General category of the Link tab in the Project Settings dialog box.

/RELEASE

Syntax:

/RELEASE

This option sets the checksum in the header of an executable file.

The operating system requires the checksum for certain files such as device drivers. To ensure
compatibility with future operating systems, set the checksum for release versions of your programs.

This option is set by default when you specify the /SUBSYSTEM:NATIVE option.

Compiler and Linker Options Page 69 of 78

8/21/97 12:24:00 PM

/STACK

Syntax:

/STACK:reserve[,commit]

This option sets the size of the stack in bytes.

The reserve argument specifies the total stack allocation in virtual memory. The default stack size is
1MB. The linker rounds up the specified value to the nearest 4 bytes.

The optional commit argument is subject to interpretation by the operating system. In Windows NT,
it specifies the amount of physical memory to allocate at a time. Committed virtual memory causes
space to be reserved in the paging file. A higher commit value saves time when the application needs
more stack space but increases the memory requirements and possibly startup time.

Specify the reserve and commit values in decimal or C-language notation.

An alternate way to set the stack is with the STACKSIZE statement in a .DEF file. STACKSIZE
overrides Stack Allocations (/STACK) if you specify both. You can change the stack after the
executable file is built by using the EDITBIN.EXE tool. For more information, see Editing Files with
EDITBIN.

To set these options in Microsoft Developer Studio, type values in the Reserve and Commit boxes in
the Output category of the Link tab in the Project Settings dialog box.

/STUB

Syntax:

/STUB:filename

This option attaches an MS-DOS stub program to a Win32 program.

A stub program is invoked if the file is executed in MS-DOS. Usually, it displays an appropriate
message; however, any valid MS-DOS application can be a stub program.

Specify a filename for the stub program after a colon (:). The linker checks filename to be sure that it
is a valid MS-DOS executable file and issues an error if the file is not valid. The program must be an
.EXE file; a .COM file is invalid for a stub program.

If you do not specify /STUB, the linker attaches a default stub program that generates the following
message:

This program cannot be run in MS-DOS mode.

You can select this option in Microsoft Developer Studio by typing the stub file name in the
MS-DOS Stub File Name box in the Input category of the Link tab of the Project Settings dialog
box.

Compiler and Linker Options Page 70 of 78

8/21/97 12:24:00 PM

/SUBSYSTEM

Syntax:

/SUBSYSTEM:{CONSOLE|WINDOWS|NATIVE}[,major [.minor]]

Tells the operating system how to run the executable file. The subsystem is specified as follows:
• The CONSOLE subsystem is used for Win32 character-mode applications. Console

applications are given a console by the operating system. If main or wmain is defined,
CONSOLE is the default.

• The WINDOWS subsystem is appropriate for an application that does not require a console. It
creates its own windows for interaction with the user. If WinMain or wWinMain is defined,
WINDOWS is the default.

• The NATIVE subsystem is used for device drivers.

The optional major and minor version numbers specify the minimum required version of the
subsystem. The arguments are decimal numbers in the range 0 - 65535. The default is version 3.10
for CONSOLE and WINDOWS and 1.0 for NATIVE.

The choice of subsystem affects the default starting address for the program. For more information,
see the /ENTRY option.

/VERBOSE

Syntax:

/VERBOSE[:LIB]

The linker sends information about the progress of the linking session to the Output window. If
specified on the command line, the information is sent to standard output and can be redirected to a
file.

The displayed information includes the library search process and lists each library and object name
(with full path), the symbol being resolved from the library, and the list of objects that reference the
symbol.

Adding :LIB to the /VERBOSE option restricts progress messages to those indicating the libraries
searched.

You can select this option in Microsoft Developer Studio by filling in the Print Progress Messages
box in the Customize category of the Link tab of the Project Settings dialog box.

/VERSION

Syntax:

/VERSION:major [.minor]

This option tells the linker to put a version number in the header of the executable file or DLL.

Compiler and Linker Options Page 71 of 78

8/21/97 12:24:00 PM

The major and minor arguments are decimal numbers in the range 0 - 65535. The default is version
0.0.

An alternate way to insert a version number is with the VERSION module-definition statement.

You can select this option in Microsoft Developer Studio by typing version information in the Major
and Minor boxes in the Output category of the Link tab of the Project Settings dialog box.

/WARN

Syntax:

/WARN[:level]

Allows you to determine the output of LINK warnings. Specify the level as one of the following:

level Meaning
0 Suppress all warnings.
1 Displays most warnings. Overrides a /WARN:level specified earlier on the LINK command

line or in the LINK environment variable. Default if /WARN:level is not used.
2 Displays additional warnings. Default if /WARN is specified without level.

Module-Definition Files

A module-definition (.DEF) file is a text file that contains statements that define an executable file or
DLL. (These should not be confused with module program units, described in Program Units and
Procedures.) The following sections describe the statements in a .DEF file.

Because LINK provides equivalent command-line options for most module-definition statements, a
typical program for Win32 does not usually require a .DEF file. In contrast, 16-bit programs for
Windows almost always must be linked using a .DEF file.

You can use one or more of the following statements in a .DEF file:

• DESCRIPTION
• EXPORTS
• LIBRARY
• NAME
• STACKSIZE
• VERSION

The section describing each module-definition statement gives its command-line equivalent.

Rules for Module-Definition Statements

The following syntax rules apply to all statements in a .DEF file. Other rules that apply to specific
statements are described with each statement.

• Statements and attribute keywords are not case sensitive. User-specified identifiers are case
sensitive.

Compiler and Linker Options Page 72 of 78

8/21/97 12:24:00 PM

• Use one or more spaces, tabs, or newline characters to separate a statement keyword from its
arguments and to separate statements from each other. A colon (:) or equal sign (=) that
designates an argument is surrounded by zero or more spaces, tabs, or newline characters.

• A NAME or LIBRARY statement, if used, must precede all other statements.
• Most statements appear only once in the .DEF file and accept one specification of arguments.

The arguments follow the statement keyword on the same or subsequent line(s). If the
statement is repeated with different arguments later in the file, the latter statement overrides
the former.

• The EXPORTS statement can appear more than once in the .DEF file.
Each statement can take multiple specifications, which must be separated by one or more
spaces, tabs, or newline characters. The statement keyword must appear once before the first
specification and can be repeated before each additional specification.

• Comments in the .DEF file are designated by a semicolon (;) at the beginning of each
comment line. A comment cannot share a line with a statement, but it can appear between
specifications in a multiline statement. (EXPORTS is a multiline statement.)

• Numeric arguments are specified in decimal or in C-language notation.
• If a string argument matches a reserved word, it must be enclosed in double quotation (")

marks.

Many statements have an equivalent LINK command-line option. See the Linker options for
additional details.

DESCRIPTION

Syntax:

DESCRIPTION "text"

This statement writes a string into an .rdata section. Enclose the specified text in single or double
quotation marks (' or "). To use a literal quotation mark (either single or double) in the string, enclose
the string with the other type of mark.

This feature differs from the comment specified with the /COMMENT linker option.

EXPORTS

Syntax:

EXPORTS

This statement makes one or more definitions available as exports to other programs.

EXPORTS marks the beginning of a list of export definitions. Each definition must be on a separate
line. The EXPORTS keyword can be on the same line as the first definition or on a preceding line.
The .DEF file can contain one or more EXPORTS statements.

The syntax for an export definition is:

entryname[=internalname] [@ordinal [NONAME]] [DATA]

Compiler and Linker Options Page 73 of 78

8/21/97 12:24:00 PM

For information on the entryname, internalname, ordinal, NONAME, and DATA arguments, see the
/EXPORT option.

There are three methods for exporting a definition, listed in recommended order of use:

• ATTRIBUTES DLLEXPORT in the source code
• An /EXPORT specification in a LINK command
• An EXPORTS statement in a .DEF file

All three methods can be used in the same program. When LINK builds a program that contains
exports, it also creates an import library, unless the build uses an .EXP file.

LIBRARY

Syntax:

LIBRARY [library] [BASE=address]

This statement tells LINK to create a DLL. LINK creates an import library at the same time, unless
you use an .EXP file in the build.

The library argument specifies the internal name of the DLL. (Use the Output File Name (/OUT)
option to specify the DLL's output name.)

The BASE=address argument sets the base address that the operating system uses to load the DLL.
This argument overrides the default DLL location of 0x10000000. See the description of the Base
Address (/BASE) option for details about base addresses.

You can also use the /DLL linker option to specify a DLL build, and the /BASE option to set the
base address.

NAME

Syntax:

NAME [application] [BASE=address]

This statement specifies a name for the main output file. An equivalent way to specify an output
filename is with the /OUT option, and an equivalent way to set the base address is with the /BASE
option. If both are specified, /OUT overrides NAME. See the Base Address (/BASE) and Output File
Name (/OUT) options for details about output filenames and base addresses.

STACKSIZE

Syntax:

STACKSIZE reserve [,commit]

This statement sets the size of the stack in bytes. An equivalent way to set the stack is with the
/STACK option. See the /STACK option for details about the reserve and commit arguments.

Compiler and Linker Options Page 74 of 78

8/21/97 12:24:00 PM

VERSION

Syntax:

VERSION major [.minor]

This statement tells LINK to put a number in the header of the executable file or DLL. The major
and minor arguments are decimal numbers in the range 0 - 65535. The default is version 0.0.

An equivalent way to specify a version number is with the Version Information (/VERSION) option.

Linker Reserved Words

The following words are reserved by the linker. You can use these names as arguments in
module-definition statements only if you enclose the name in double quotation marks (").

APPLOADER INITINSTANCE PRELOAD
BASE IOPL PROTMODE
CODE LIBRARY PURE
CONFORMING LOADONCALL READONLY
DATA LONGNAMES READWRITE
DESCRIPTION MOVABLE REALMODE
DEV386 MOVEABLE RESIDENT
DISCARDABLE MULTIPLE RESIDENTNAME
DYNAMIC NAME SEGMENTS
EXECUTE-ONLY NEWFILES SHARED
EXECUTEONLY NODATA SINGLE
EXECUTEREAD NOIOPL STACKSIZE
EXETYPE NONAME STUB
EXPORTS NONCONFORMING VERSION
FIXED NONDISCARDABLE WINDOWAPI
FUNCTIONS NONE WINDOWCOMPAT
HEAPSIZE NONSHARED WINDOWS
IMPORTS NOTWINDOWCOMPAT

IMPURE OBJECTS

INCLUDE OLD

Microsoft Fortran Powerstation Command-Line Compatibility
This section provides compatibility information for FL32 command-line users of Microsoft Fortran
Powerstation Version 4. It includes the following topics:

• Using the DF or FL32 Command Line
• Equivalent Visual Fortran Compiler Options

Using the DF or FL32 Command Line

Compiler and Linker Options Page 75 of 78

8/21/97 12:24:00 PM

You can use either the DF or FL32 commands to compile (and link) your application. The main
difference between the DF and FL32 commands is the defaults set for certain command-line options:

• FL32 requests no optimization (/Od on x86 systems, /optimize:0 on Alpha systems). See
/[no]optimize.

• FL32 requests checking of arguments passed to and results from the math library
(/math_library:check or /Od). Math library checking applies to x86 systems only. See
/[no]math_library.

• FL32 provides minimal debug information (/debug:minimal or /Zd). See /[no]debug.
• FL32 requests full Microsoft® Fortran Powerstation compatibility (/fpscomp:all). See

/[no]fpscomp.
• FL32 disallows alternative PARAMETER syntax (/noaltparam). See /[no]altparam.
• FL32 requests record length units for unformatted files to be in bytes (/assume:byterecl). See

/assume.
• FL32 requests warnings for mismatched arguments (/warn:argument_checking). See

/[no]warn.
• FL32 compiles each source unit individually and retains intermediate files that would

otherwise be deleted (/keep). This prevents interprocedure optimizations at higher
optimization levels. See /keep.

• FL32 does not display an informational message related to compiling multiple files
individually. See /warn:fileopts.

• FL32 requests no inlining (/inline:none). See /[no]inline.
• FL32 places module files in the same directory as the object files. See /module:path .

The DF and FL32 commands both:

• Recognize the same set of command-line options. For example, the following commands are
supported:

 DF /Odx test2.for
 FL32 /Odx test2.for

Both DF and FL32 command lines allow most Microsoft Fortran Powerstation style options
(such as /Ox) and all Visual Fortran options (such as /optimize:4). For a detailed list of
equivalent Microsoft Fortran Powerstation style compiler options and Visual Fortran compiler
options, see Equivalent Visual Fortran Compiler Options.

• Activate the same compiler, the DIGITAL Fortran compiler.

For new programs and most existing applications, use the DIGITAL Fortran compiler
(default). The DIGITAL Fortran compiler and language used by Visual Fortran provides a
superset of the Fortran 90 standard with extensions for compatibility with previous versions of
DIGITAL Fortran (DEC Fortrantm), VAX FORTRANtm, and Microsoft Fortran Powerstation
Version 4.

• Pass options specified after /LINK to the LINK command.

The LINK command options after /link are passed directly to the Linker. These options are
described in Linker Options.

Compiler and Linker Options Page 76 of 78

8/21/97 12:24:00 PM

• Allow the use of indirect command files.

For example, assume the file text.txt contains the following:

/pdbfile:testout.pdb /exe:testout.exe /debug:full /optimize:0 test.f90 rest.f9

Either of the following (DF or FL32) commands executes the contents of file text.txt as an
indirect command file to create a debugging version of the executable program and its
associated PDB file:

 DF @test.txt

 FL32 @test.txt

To request Microsoft Fortran Powerstation V4 compatibility, specify the /[no]fpscomp option.

For information about using the DF command, see Using the Compiler and Linker from the
Command Line".

Equivalent Visual Fortran Compiler Options

The following table lists the Microsoft Fortran Powerstation options and their Visual Fortran
equivalents. The Microsoft Fortran Powerstation options (such as /FAc) are case-sensitive; other
Visual Fortran options (such as /asmfile) are not case-sensitive/.

Fortran Powerstation
Option (and Category)

Visual Fortran Command-Line Option

Listing Options
/FA Assembly listing. Specify /noasmattributes with /asmfile[:file] or /FA.
/FAc Assembly listing with machine code. Specify /asmattributes:machine with

/asmfile[:file] or /FAc.
/FAs Assembly listing with source code. Specify /asmattributes:source with

/asmfile[:file] or /FAs.
/FAcs Assembly listing with machine instructions and source code. Specify

/asmattributes:all with /asmfile[:file] or /FAcs.
/Fa[file] Assembly listing to file file. Specify /asmfile[:file] with /noasmattributes or

specify /Fa[file].
/Fc[file] Assembly listing with source and machine code to file file. Specify

/asmfile[:file] with /asmattributes:all or specify /Fc[file].
/Fl[file] Assembly listing with machine instructions to file file. Specify

/asmfile[:file] with /asmattributes:machine or specify /Fl[file].
/Fs[file] Source listing with compiled code. Specify /list[:file] with /show:map or

specify /Fs[file].
Code Generation Options
/FR[file] Generates extended Source Browser information. Specify /browser[:file] or

/FR[file].
/G3 /G4 /G5 Ignored on x86 systems. On Alpha systems, use /tune:keyword.
/Ob2 Automatic inlining of code, use with /Ox. Specify /inline:speed or /Ob2.

Compiler and Linker Options Page 77 of 78

8/21/97 12:24:00 PM

/Od No code optimization (default for FL32 command). Specify /optimize:0
with /math_library:check, or specify /Od.

/Op Improved floating-point consistency. Specify /fltconsistency or /Op.
/Ox Full optimization with no error checking. Specify /optimize:4 with

/math_library:fast and /assume:nodummy_aliases , or specify /Ox.
/Oxp Speed optimization and denoted inlining; error checking. Specify

/optimize:4 with /assume:nodummy_aliases and /math_library:check with
/fltconsistency (x86 systems), or specify /Oxp.

/Zp[n] Packs structures on n-byte boundary (n is 1, 2, or 4). Specify
/alignment[:keyword] or /Zp[n].

Language Extension Options
/4Lnn Line length for Fortran 90 fixed-form source (nn is 72, 80, or 132). Specify

/extend_source[:nn] or /4Lnn.
/4Yb or /4Nb Enable/disable extended error checking. Specify /check[:keyword], /4Yb, or

/4Nb.
/4Yd or /4Nd Warnings about undeclared variables. Specify /warn: [no]declarations, /4Yd

or /4Nd.
/W0 Suppress warnings. Specify /nowarn or /W0.
/W1 Show warnings (default). Specify /warn:general or /W1.
/WX Interpret all warnings as errors. Specify /warn:(general,errors) or /WX.
Language Standard, Source Form, and Data Options
/4Ya or /4Na Makes all variables AUTOMATIC. Specify /[no]automatic, /[no]static,

/4Ya, or /4Na.
/4Yaltparam
/4Naltparam

Use the alternate syntax for PARAMETER statements. Specify
/[no]altparam, /4Yaltparam, or /4Naltparam.

/4Yf or /4Nf Use free-form source format. Specify /[no]free, /[no]fixed, /4Yf, or /4Nf.
/4I2 Change default KIND for INTEGER and LOGICAL declarations. Specify

/integer_size:nn (nn is 16 for KIND=2) or /4I2.
/4R8 Change default KIND for REAL declarations. Specify /real_size:nn (nn is

32 for KIND=4) or /4R8.
/4Ys or /4Ns Strict Fortran 90 syntax. Specify /stand:f90, /warn:stderrors, /4Ys, or /4Ns.
Compiler Directive Options
/Dsymbol[=int] Define preprocessor symbol. Specify /define:symbol[=int] or Dsymbol[=int]
/4ccstring Treat lines with d or D in column 1 as comments. Specify /d_lines or /4ccd

or /4ccD (partial support)
Build Control Options
/4Yportlib or
/4Nportlib

Specify /4Yportlib or /4Nportlib

/Fd[file] Controls creation of compiler PDB files. Specify /[no]pdbfile[:file] or
/Fd[file]

/Fe[file] Specifies file name of executable or DLL file. Specify /exe:file, /dll:file, or
/Fe[file]

/Fm[file] Controls creation of link map file. Specify /map[:file] or /Fm[file]
/Fo[file] Controls creation of object file. Specify /object[:file] or /Fo[file]
/GNa Keep external names as is and treat source code identifiers as case

Compiler and Linker Options Page 78 of 78

8/21/97 12:24:00 PM

sensitive. Specify /names:as_is or /GNa
/GNl Make external names lowercase and ignore the case of source code

identifiers. Specify /names:lowercase or /GNl
/GNu Make external names uppercase and ignore the case of source code

identifiers. Specify /names:uppercase or /GNu
/Ipath Control search path for module or include files. Specify /[no]include[:path]

or /Ipath
/LD Create dynamic-link library. Specify /dll or /LD
/MD Link against multithreaded DLL libraries. Specify /libs:dll with /threads or

/MD
/MDd Link against multithreaded DLL libraries. Specify /libs:dll with /threads and

/dbglibs or specify /MDd
/MDs Link against single threaded DLL libraries. Specify /libs:dll or /MDs
/MG Link against libraries for windows applications. Specify /winapp or /MG
/ML Link against single threaded static libraries. Specify /libs:static or /ML
/MLd Link against single threaded static libraries. Specify /libs:static with /dbglibs

or /MLd
/MT Link against multithreaded static libraries. Specify /libs:static with /threads

or /MT
/MTd Link against multithreaded static libraries. Specify /libs:static with /threads

and /dbglibs or specify /MTd
/MW Link against quickwin multidoc libraries. Specify /libs:qwin or /MW
/MWs Link against quickwin single doc libraries. Specify /libs:qwins or /MWs
/Tffile Request that file be treated as a Fortran source file. Specify /source:filename

or /Tffile
/V"string" Place string in object file. Specify /bintext:string or /V"string"
/Z7 Request full debug information in object file. Specify /debug:full with

/nopdbfile or /Z7
/Zd Request minimal debug information. Specify /debug:minimal with /pdbfile

or /Zd
/Zi Request full debug information and create PDB file. Specify /debug:full

with /pdbfile or /Zi
/Zla Do not insert any library names in object file. Specify /nolibdir or /Zla
/Zl Do not insert default library names in object file. Specify

/libdir:noautomatic or /Zl
/Zs Perform syntax check only (no object). Specify /syntax_only or /Zs
/link [option] Begin specifying linker options. Specify /link [option]
Command-Line Specific Options
/?, /help Display command help. Specify /? or /help
/nologo Prevent display of copyright information. Specify /nologo

Performance: Making Programs Run Faster Page 1 of 43

8/21/97 12:24:40 PM

Performance: Making Programs Run Faster
This chapter discusses the following topics related to improving run-time performance of DIGITAL
Visual Fortran programs:

• Important software environment suggestions that apply to nearly all applications, including
using the most recent version of the compiler, related performance tools, and efficient ways to
compile using the DF command (Software Environment and Efficient Compilation)

• Analyzing program performance, including using profiling tools (Analyze Program
Performance)

• Guidelines related to avoiding unaligned data (Data Alignment Considerations)
• Guidelines for efficient array use (Use Arrays Efficiently)
• Guidelines related to improving overall I/O performance (Improve Overall I/O Performance)
• Additional performance guidelines related to source code (Additional Source Code Guidelines

for Run-Time Efficiency)
• Understanding the DF /optimize:num optimization level options and the types of optimizations

performed (Optimization Levels: the /optimize:num Option)
• Understanding other DF optimization options (besides the /optimize:num options (Other

Options Related to Optimization)

Software Environment and Efficient Compilation
Before you attempt to analyze and improve program performance, you should:

• Obtain and install the latest version of Visual Fortran, along with performance products that
can improve application performance.

• Use the DF command and its options in a manner that lets the DIGITAL Visual Fortran
compiler perform as many optimizations as possible to improve run-time performance.

• Use certain performance capabilities provided by the operating system.

For more information, see:
• Install the Latest Version of Visual Fortran and Performance Products
• Compile With Appropriate Options and Multiple Source Files

Install the Latest Version of Visual Fortran and Performance Products

To ensure that your software development environment can significantly improve the run-time
performance of your applications, obtain and install the following optional software products:

• The latest version of Visual Fortran

New releases of the DIGITAL Visual Fortran compiler and its associated run-time libraries
may provide new features that improve run-time performance.

For information on more recent Visual Fortran releases, access the DIGITAL Fortran web
page at the following URL: http://www.digital.com/fortran.

If you have the appropriate technical support contract, you can also contact the DIGITAL

Performance: Making Programs Run Faster Page 2 of 43

8/21/97 12:24:40 PM

technical support center for information on new releases (see Visual Fortran Technical
Support).

• Performance profiling tools

The Developer Studio profiling tools allow function and line profiling. For more information
on profiling, see Analyze Program Performance.

• System-wide performance products

Other products are not specific to a particular programming language or application, but can
improve system-wide performance, such as minimizing disk device I/O and handling capacity
planning.

When running large programs, such as those accessing large arrays, adequate process limits
and virtual memory space as well as proper system tuning are especially important.

Compile With Appropriate Options and Multiple Source Files

During the earlier stages of program development (such as for the debug configuartion in Developer
Studio), you can use compilation with minimal optimization. For example:

% DF /compile_only /optimize:1 sub2.f90
% DF /compile_only /optimize:1 sub3.f90
% DF /exe:main.exe /debug /optimize:0 main.f90 sub2.obj sub3.obj

During the later stages of program development (such as for the release configuration), you should:

• Specify multiple source files together and use an optimization level of at least /optimize:4 on
the DF command line to allow more interprocedural optimizations to occur. For instance, the
following command compiles all three source files together using the default level of
optimization (/optimize:4):

% DF /exe:main.exe main.f90 sub2.f90 sub3.f90

• Avoid using incremental linking.
• Consider building from the command line to allow multiple source files to be compiled

together. For information on creating (exporting) makefile for command-line use, see Files in
a Project; for information about using NMAKE, see Building Projects with NMAKE.

Compiling multiple source files lets the compiler examine more code for possible optimizations,
which results in:

• Inlining more procedures
• More complete data flow analysis
• Reducing the number of external references to be resolved during linking

When compiling all source files together is not feasible (such as for very large programs), consider
compiling related source files together using multiple DF commands rather than compiling source
files individually.

If you use the /compile_only option to prevent linking, also use the /object:file option so that
multiple sources files are compiled into a single object file, allowing more optimizations to occur.

Performance: Making Programs Run Faster Page 3 of 43

8/21/97 12:24:40 PM

Visual Fortran performs certain optimizations unless you specify the appropriate DF command-line
options or corresponding Developer Studio options in the Optimization category of the Fortran tab
(see Categories of Compiler Options). Additional optimizations can be enabled or disabled using DF
command options or the Fortran tab in Developer Studio.

The following table shows DF options that can directly improve run-time performance on both x86
and Alpha systems. Most of these options do not affect the accuracy of the results, while others
improve run-time performance but can change some numeric results.

Options Related to Run-Time Performance

Option Names Description
For More

Information
/align: keyword Controls whether padding bytes are added between data

items within common blocks, derived-type data, and
DIGITAL Fortran record structures to make the data items
naturally aligned.

See Data
Alignment
Considerations.

/fast Sets the following performance-related options:
/align:dcommons, /assume:noaccuracy_sensitive, and
/math_library:fast.

See description
of each option

/assume:
noaccuracy_sensitive

Allows the compiler to reorder code based on algebraic
identities to improve performance, enabling certain
optimizations. The numeric results can be slightly different
from the default (accuracy_sensitive) because of the way
intermediate results are rounded. This slight difference in
numeric results is acceptable to most programs.

Arithmetic
Reordering
Optimizations

/inline:all Inlines every call that can possibly be inlined while
generating correct code. Certain recursive routines are not
inlined to prevent infinite loops.

Controlling the
Inlining of
Procedures

/inline:speed Inlines procedures that will improve run-time performance
with a likely significant increase in program size.

Controlling the
Inlining of
Procedures

/inline:size Inlines procedures that will improve run-time performance
without a significant increase in program size. This type of
inlining occurs with optimization level /optimize:4 (or, on
Alpha systems, /optimize:4 or /optimize:5).

Controlling the
Inlining of
Procedures

/math_library:fast On x86 systems, requests that arguments to the math
library routines are not checked to improve performance.

On Alpha systems, requests the use of certain math library
routines (used by intrinsic functions) that provide faster
speed. Using this option may cause a slight loss of
accuracy and provides less reliable arithmetic exception
checking to get significant performance improvements in
those functions.

/math_library

/optimize:level Controls the optimization level and thus the types of
optimizations performed. The default optimization level is
/optimize:4, unless you specify /debug, which changes the

Optimization
Levels: the
/optimize Option

Performance: Making Programs Run Faster Page 4 of 43

8/21/97 12:24:40 PM

default to /optimize:0 (no optimizations). On Alpha
systems, use /optimize:5 to activate loop transformation
optimizations and the software pipelining optimizations.

/unroll:num Specifies the number of times a loop is unrolled (num)
when specified with optimization level /optimize:3 or
higher. If you omit /unroll: num, the optimizer determines
how many times loops are unrolled.

Loop Unrolling

The following table lists the DF options that can directly improve run-time performance on Alpha
systems only.

Options Related to Run-Time Performance for Alpha Systems Only

Option Names Description
For More

Information
/architecture:
keyword

Requests code generation for a specific Alpha chip
generation. Certain Alpha chip generations use new
instructions that provide improved performance for
certain applications, but those instructions are not
supported by older Alpha chip generations.

/architecture

/math_library:fast On Alpha systems, requests the use of certain math
library routines (used by intrinsic functions) that provide
faster speed. Using this option may cause a slight loss of
accuracy and provides less reliable arithmetic exception
checking to get significant performance improvements in
those functions.

/math_library

/optimize:level Controls the optimization level and thus the types of
optimization performed. The default optimization level
is /optimize:4, unless you specify /debug, which changes
the default to /optimize:0 (no optimizations). On Alpha
systems, use /optimize:5 to activate loop transformation
optimizations and the software pipelining optimization.

Optimization Levels:
the /optimize Option

/pipeline
Activates the software pipelining optimization (a subset
of /optimize:5).

/[no]pipeline

/transform_loops Activates a group of loop transformation optimizations
(a subset of /optimize:5).

/[no]transform_loops

/tune:keyword Specifies the target processor generation (chip)
architecture on which the program will be run, allowing
the optimizer to make decisions about instruction tuning
optimizations needed to create the most efficient code.
Keywords allow specifying one particular Alpha
processor generation type, multiple processor generation
types, or the processor generation type currently in use
during compilation. Regardless of the setting of /tune
keyword, the generated code will run correctly on all
implementations of the Alpha architecture.

Requesting Optimized
Code for a Specific
Processor Generation

The following table lists options that can slow program performance on x86 and Alpha systems.

Performance: Making Programs Run Faster Page 5 of 43

8/21/97 12:24:40 PM

Some applications that require floating-point exception handling might need to use a different /fpe:n
option. Other applications might need to use the /assume: dummy_aliases or /vms options for
compatibility reasons. Other options listed in the table are primarily for troubleshooting or debugging
purposes.

Options that Slow Run-Time Performance

Option Names Description For More Information
/assume:dummy_aliases Forces the compiler to assume that

dummy (formal) arguments to procedures
share memory locations with other
dummy arguments or with variables
shared through use association, host
association, or common block use. These
program semantics slow performance, so
you should specify /assume:
dummy_aliases only for the called
subprograms that depend on such aliases.
The use of dummy aliases violates the
FORTRAN-77 and Fortran 90 standards
but occurs in some older programs.

Dummy Aliasing Assumption

/compile_only If you use /compile_only when compiling
multiple source files, also specify
/object:file to compile many source files
together into one object file. Separate
compilations prevent certain
interprocedural optimizations, the same as
using multiple DF commands or using
/compile_only without the /object:file
option.

Compile Using Multiple
Source Files and Appropriate
DF Options

/check:bounds Generates extra code for array bounds
checking at run time.

/check

/check:overflow Generates extra code to check integer
calculations for arithmetic overflow at run
time. Once the program is debugged, you
may want to omit this option to reduce
executable program size and slightly
improve run-time performance.

/check

/fpe:n values On x86 systems, /fpe:3 provides the best
performance. Using other /fpe values
slows program execution.

On Alpha systems, using /fpe:0 provides
the best performance. Using other /fpe
values (or using the for_set_fpe routine)
to set equivalent exception handling
slows program execution. For programs
that specify /fpe:3, the impact on run-time

/fpe

Performance: Making Programs Run Faster Page 6 of 43

8/21/97 12:24:40 PM

performance can be significant.
/rounding_mode:dynamic
(Alpha only)

Certain rounding modes and changing the
rounding mode can slow program
execution slightly.

/rounding_mode (Alpha only)

/debug:full, /debug, or
equivalent

Generates extra symbol table information
in the object file. Specifying /debug also
reduces the default level of optimization
to /optimize:0.

/debug

/inline: none
/inline: manual

Prevents the inlining of all procedures
(except statement functions).

Controlling the Inlining of
Procedures

/optimize:0, /optimize:1,
/optimize:2, or
/optimize:3

Reduces the optimization level (and types
of optimizations). Use during the early
stages of program development or when
you will use the debugger.

/[no]optimize and
Optimization Levels: the
/optimize Option

/synchronous_exceptions
(Alpha only)

Generates extra code to associate an
arithmetic exception with the instruction
that causes it, slowing instruction
execution. Use this option only when
troubleshooting, such as when identifying
the source of an exception.

[no]synchronous_exceptions

/vms Controls certain VMS-related run-time
defaults, including alignment. If you
specify the /vms option, you may need to
also specify the /align:records option to
obtain optimal run-time performance.

/[no]vms

For More Information:

• On compiling multiple files, see Compiling and Linking for Optimization.

Analyze Program Performance
This section describes how you can analyze program performance using timings and profiling tools.

Before you analyze program performance, make sure any errors you might have encountered during
the early stages of program development have been corrected. Only profile code that is stable and has
been debugged.

The following topics are covered:

• Timing Your Application
• Profiling and Performance Tools

Timing Your Application

The following considerations apply to timing your application:

• Run program timings when other users are not active. Your timing results can be affected by
one or more CPU-intensive processes also running while doing your timings.

Performance: Making Programs Run Faster Page 7 of 43

8/21/97 12:24:40 PM

• Try to run the program under the same conditions each time to provide the most accurate
results, especially when comparing execution times of a previous version of the same
program. Use the same system (processor model, amount of memory, version of the operating
system, and so on) if possible.

• If you do need to change systems, you should measure the time using the same version of the
program on both systems, so you know each system's effect on your timings.

• For programs that run for less than a few seconds, run several timings to ensure that the results
are not misleading. Certain overhead functions like loading DLLs might influence short
timings considerably.

• If your program displays a lot of text, consider redirecting the output from the program.
Redirecting output from the program will change the times reported because of reduced screen
I/O.

Methods of Timing Your Application

To perform application timings, use a version of the TIME command in a .BAT file (or the function
timing profiling option). You might consider modifying the program to call routines within the
program to measure execution time (possibly using conditionally compiled lines). For example:

• DIGITAL Fortran intrinsic procedures, such as CPU_TIME, SYSTEM_CLOCK,
DATE_AND_TIME, and TIME.

• Library routines, such as etime or time.

Visual Fortran programs created in a Windows 95 development environment can be run and
analyzed on Windows NT x86 systems. Whenever possible, perform detailed performance analysis
on a system that closely resembles the system(s) that will used for actual application use.

Sample Command Procedure that Uses TIME and Performance Monitor

The following example shows a .BAT command procedure that uses the TIME command and the
Performance Monitor (perfmon) tool available on Windows NT systems. The kill command that
stops the perfmon tool is included on the Windows NT Resource kit; if the kill tool is not available
on your system, manually end the perfmon task (use the task manager).

This .BAT procedure assumes that the program to be timed is myprog.exe.

Before using this batch file, start the performance monitor to setup logging of the statistics that you
are interested in:

1. At the DOS prompt type: Perfmon
2. In the View menu, select Log
3. In the Edit menu, select Add to Log and select some statistics
4. In the Options menu, select Log. In the dialog box:

• Name the log file.This following .BAT procedure assumes that you have named the
logfile myprog.log.

• Consdier adjusting the Log Interval.
• As the last step, be sure to select "Start Log".

5. In the File menu, select Save Workspace to save the setup information.The following .BAT
procedure assumes you have saved the workspace as my_perfmon_setup.pmw.

Performance: Making Programs Run Faster Page 8 of 43

8/21/97 12:24:40 PM

The command procedure follows:

echo off
rem Sample batch file to record performance statistics for later analysis.
rem This .bat file assumes that you have the utility "kill" available, which is
rem distributed with the NT resource kit.

rem Delete previous logs, then start up the Performance Monitor.
rem We use start so that control returns instantly to this batch file.
del myprog.log
start perfmon my_perfmon_setup.pmw

rem print the time we started
time <nul | findstr current

rem start the program we are interested in, this time using
rem cmd /c so that the batch file waits for the program to finish.
echo on
cmd /c myprog.exe
echo off

rem print the time we stopped
time <nul | findstr current

rem all done logging statistics
kill perfmon
rem if kill is not available, end the perfmon task manually

After the run, analyze your data by using Performance Monitor:

1. If it is not currently running, start Performance Monitor.
2. In the View menu, select Chart.
3. In the Options menu, select Data From and specify the name of the logfile.
4. In the Edit menu, select Add To Chart to display the counters.

For more information:

• About the optimizations that improve application performance without source code
modification, see Compile With Appropriate Options and Multiple Source Files.

• About profiling your application, see Profiling and Performance Tools.

Profiling and Performance Tools

To generate profiling information, you use the compiler, linker, and the profiler from either
Developer Studio or the command line.

Select those parts of your application that make the most sense to profile. For example, routines that
perform user interaction may not be worth profiling. Consider profiling routines that perform a series
of complex calculations or call multiple user-written subprograms.

Profiling identifies areas of code where significant program execution time is spent. It can also show
areas of code that are not executed. Visual Fortran programs created in a Windows 95 or Windows
NT x86 development environment can be run and analyzed on a Windows NT x86 or Windows 95
system. Whenever possible, perform detailed performance analysis on a system that closely
resembles the system(s) that will be used to run the actual application.

Performance: Making Programs Run Faster Page 9 of 43

8/21/97 12:24:40 PM

For detailed information about profiling from the command line, see Profiling Code from the
Command Line.

There are two main types of profiling: function profiling and line profiling.

Function Profiling

Function profiling helps you locate areas of inefficient code. It can show:

• The time spent in functions and the number of times a function was called (function timing).
• Only the number of times a function was called (function counting).
• A list of functions executed or not executed (function coverage).
• Information about the stack when each function is called (function attribution).

Function profiling does not require debug information (it obtains addresses from a .MAP file). Since
function profiling (except function attribution) uses the stack, routines that modify the stack cannot
be profiled. Exclude object files for routines that modify the stack.

To perform function profiling:

1. In the Project menu, select Settings.
2. Click the Link tab.
3. In the General category, click the Enable profiling checkbox (this turns off incremental

linking).
4. In the General category, click the Generate mapfile checkbox.
5. Click OK to accept the current project settings.
6. Build your application.
7. After building your application, profile your project.

Line Profiling

Line profiling collects more information than function profiling. It shows how many times a line is
executed and whether certain lines are not executed. Line profiling requires debug information.

To perform line profiling:

1. In the Project menu, select Settings.
2. Click the Link tab.
3. In the General category, click the Enable profiling checkbox (this turns off incremental

linking).
4. In the General category, click the Generate debug information checkbox.
5. Click on the Fortran tab.
6. In the category drop-down list, select Debug.
7. In the Debugging level drop-down list, select Full.
8. In the Debugging level drop-down list, click the Use Program Database for Debug Information

checkbox.
9. Click OK to accept the current project settings.
10.Build your application
11.After building your application, profile your project.

Performance: Making Programs Run Faster Page 10 of 43

8/21/97 12:24:40 PM

Performance Tools

Tools that you can use to analyze performance include:

• Process Viewer (Pview) lets you view process and thread charcteristics.
• Spy++ provides a graphical view of system use.
• On Windows NT systems, the Windows NT Performance Monitor can help identify

performance bottlenecks.
• Other performance tools are available in the Microsoft® Win32 SDK (see the online Platform

SDK Tools Guide, Tuning section in InfoViewer).

You can also purchase separate products to perform performance analysis and profiling.

Efficient Source Code

Once you have determined those sections of code where most of the program execution time is spent,
examine these sections for coding efficiency. Suggested guidelines for improving source code
efficiency are provided in the following sections:

• Data Alignment Considerations
• Use Arrays Efficiently
• Improve Overall I/O Performance
• Additional Source Code Guidelines for Run-Time Efficiency

For information about timing your application and for an example command procedure that uses the
Windows NT Performance Monitor, see Timing Your Appication.

Data Alignment Considerations
For optimal performance, make sure your data is aligned naturally.

A natural boundary is a memory address that is a multiple of the data item's size (data type sizes are
described in Data Representation). For example, a REAL (KIND=8) data item aligned on natural
boundaries has an address that is a multiple of 8. An array is aligned on natural boundaries if all of
its elements are so aligned.

All data items whose starting address is on a natural boundary are naturally aligned. Data not aligned
on a natural boundary is called unaligned data.

Although the DIGITAL Fortran compiler naturally aligns individual data items when it can, certain
DIGITAL Fortran statements (such as EQUIVALENCE) can cause data items to become unaligned
(see Causes of Unaligned Data and Ensuring Natural Alignment).

Although you can use the DF command /align: keyword options to ensure naturally aligned data, you
should check and consider reordering data declarations of data items within common blocks and
structures. Within each common block, derived type, or record structure, carefully specify the order
and sizes of data declarations to ensure naturally aligned data. Start with the largest size numeric
items first, followed by smaller size numeric items, and then nonnumeric (character) data.

Performance: Making Programs Run Faster Page 11 of 43

9/2/97 3:33:18 PM

The following sections discuss data alignment considerations in more detail:
• Causes of Unaligned Data and Ensuring Natural Alignment
• Checking for Inefficient Unaligned Data
• Ordering Data Declarations to Avoid Unaligned Data
• Options Controlling Alignment

Causes of Unaligned Data and Ensuring Natural Alignment

Common blocks (COMMON statement), derived-type data, and DIGITAL Fortran record structures
(RECORD statement) usually contain multiple items within the context of the larger structure.

The following declaration statements can force data to be unaligned:

• Common blocks (COMMON statement)

The order of variables in the COMMON statement determines their storage order.

Unless you are sure that the data items in the common block will be naturally aligned, specify
either the /align: commons or /align: dcommons option, depending on the largest data size
used.

For examples and more information, see Arranging Data in Common Blocks.

• Derived-type (user-defined) data

Derived-type data members are declared after a TYPE statement.

If your data includes derived-type data structures and you specify the /vms option, you should
also specify the /align: records option, unless you are sure that the data items in derived-type
data structures will be naturally aligned.

If you omit the SEQUENCE statement, the /align: records option (default unless the /vms
option is specified) ensures all data items are naturally aligned.

If you specify the SEQUENCE statement, the /align: records option is prevented from adding
necessary padding to avoid unaligned data (data items are packed). When you use
SEQUENCE, you should specify data declaration order such that all data items are naturally
aligned.

For an example and more information, see Arranging Data Items in Derived-Type Data.

• DIGITAL Fortran record structures (RECORD and STRUCTURE statements)

DIGITAL Fortran record structures usually contain multiple data items. The order of variables
in the STRUCTURE statement determines their storage order. The RECORD statement
names the record structure. For examples and more information, see Arranging Data Items in
DIGITAL Fortran Record Structures.

If your data includes DIGITAL Fortran record structures and you specify the /vms option, you
should also specify the /align: records option, unless you are sure that the data items in
derived-type data and DIGITAL Fortran record structures will be naturally aligned.

Performance: Making Programs Run Faster Page 12 of 43

9/2/97 3:33:18 PM

For an example and more information, see Arranging Data Items in DIGITAL Fortran Record
Structures.

• EQUIVALENCE statements

EQUIVALENCE statements can force unaligned data or cause data to span natural
boundaries.

To avoid unaligned data in a common block, derived-type data, or record structures, use one or both
of the following:

• For new programs or for programs where the source code declarations can be modified easily,
plan the order of data declarations with care. For example, you should order variables in a
COMMON statement such that numeric data is arranged from largest to smallest, followed by
any character data (see the data declaration rules in Ordering Data Declarations to Avoid
Unaligned Data).

• For existing programs where source code changes are not easily done or for array elements
containing derived-type or record structures, you can use command line options to request that
the compiler align numeric data by adding padding spaces where needed.

Other possible causes of unaligned data include unaligned actual arguments and arrays that contain a
derived-type structure or DIGITAL Fortran record structure.

When actual arguments from outside the program unit are not naturally aligned, unaligned data
access will occur. DIGITAL Fortran assumes all passed arguments are naturally aligned and has no
information at compile time about data that will be introduced by actual arguments during program
execution.

For arrays where each array element contains a derived-type structure or DIGITAL Fortran record
structure, the size of the array elements may cause some elements (but not the first) to start on an
unaligned boundary.

Even if the data items are naturally aligned within a derived-type structure without the SEQUENCE
statement or a record structures, the size of an array element might require use of DF /align options
to supply needed padding to avoid some array elements being unaligned.

If you specify /align: norecords or specify /vms without /align: records, no padding bytes are added
between array elements. If array elements each contain a derived-type structure with the
SEQUENCE statement, array elements are packed without padding bytes regardless of the DF
command options specified. In this case, some elements will be unaligned.

When /align: records option is in effect, the number of padding bytes added by the compiler for each
array element is dependent on the size of the largest data item within the structure. The compiler
determines the size of the array elements as an exact multiple of the largest data item in the
derived-type structure without the SEQUENCE statement or a record structure. The compiler then
adds the appropriate number of padding bytes.

For instance, if a structure contains an 8-byte floating-point number followed by a 3-byte character
variable, each element contains five bytes of padding (16 is an exact multiple of 8). However, if the
structure contains one 4-byte floating-point number, one 4-byte integer, followed by a 3-byte
character variable, each element would contain one byte of padding (12 is an exact multiple of 4).

Performance: Making Programs Run Faster Page 13 of 43

9/2/97 3:33:18 PM

For More Information:

On the /align:keyword options, see Options Controlling Alignment.

Checking for Inefficient Unaligned Data

During compilation, the DIGITAL Fortran compiler naturally aligns as much data as possible.
Exceptions that can result in unaligned data are described in Causes of Unaligned Data and Ensuring
Natural Alignment.

Because unaligned data can slow run-time performance, it is worthwhile to:

• Double-check data declarations within common block, derived-type data, or record structures
to ensure all data items are naturally aligned (see the data declaration rules in Ordering Data
Declarations to Avoid Unaligned Data). Using modules to contain data declarations can ensure
consistent alignment and use of such data.

• Avoid the EQUIVALENCE statement or use it in a manner that cannot cause unaligned data
or data spanning natural boundaries.

• Ensure that passed arguments from outside the program unit are naturally aligned.
• Check that the size of array elements containing at least one derived-type data or record

structure cause array elements to start on aligned boundaries (see Causes of Unaligned Data
and Ensuring Natural Alignment).

During compilation, warning messages are issued for any data items that are known to be unaligned
(unless you specify the /warn:noalignments option).

Ordering Data Declarations to Avoid Unaligned Data

For new programs or when the source declarations of an existing program can be easily modified,
plan the order of your data declarations carefully to ensure the data items in a common block,
derived-type data, record structure, or data items made equivalent by an EQUIVALENCE statement
will be naturally aligned.

Use the following rules to prevent unaligned data:

• Always define the largest size numeric data items first.
• Add small data items of the correct size (or padding) before otherwise unaligned data to

ensure natural alignment for the data that follows.
• If your data includes a mixture of character and numeric data, place the numeric data first.

Using the suggested data declaration guidelines minimizes the need to use the /align keyword options
to add padding bytes to ensure naturally aligned data. In cases where the /align keyword options are
still needed, using the suggested data declaration guidelines can minimize the number of padding
bytes added by the compiler.

Arranging Data Items in Common Blocks

The order of data items in a COMMON statement determine the order in which the data items are

Performance: Making Programs Run Faster Page 14 of 43

8/21/97 12:24:40 PM

stored. Consider the following declaration of a common block named X:

LOGICAL (KIND=2) FLAG
INTEGER IARRY_I(3)
CHARACTER(LEN=5) NAME_CH
COMMON /X/ FLAG, IARRY_I(3), NAME_CH

As shown in the following figure, if you omit the appropriate DF command options, the common
block will contain unaligned data items beginning at the first array element of IARRY_I.

Common Block with Unaligned Data

As shown in the following figure, if you compile the program units that use the common block with
the /align:commons options, data items will be naturally aligned.

Common Block with Naturally Aligned Data

Because the common block X contains data items whose size is 32 bits or smaller, specify
/align:commons. If the common block contains data items whose size might be larger than 32 bits
(such as REAL (KIND=8) data), use /align:dcommons.

If you can easily modify the source files that use the common block data, define the numeric
variables in the COMMON statement in descending order of size and place the character variable
last to provide more portability and ensure natural alignment without padding or the DF command
options /align:commons or /align:dcommons:

LOGICAL (KIND=2) FLAG
INTEGER IARRY_I(3)
CHARACTER(LEN=5) NAME_CH
COMMON /X/ IARRY_I(3), FLAG, NAME_CH

As shown in the following figure, if you arrange the order of variables from largest to smallest size
and place character data last, the data items will be naturally aligned.

Common Block with Naturally Aligned Reordered Data

Performance: Making Programs Run Faster Page 15 of 43

8/21/97 12:24:40 PM

When modifying or creating all source files that use common block data, consider placing the
common block data declarations in a module so the declarations are consistent. If the common block
is not needed for compatibility (such as file storage or DIGITAL Fortran 77 use), you can place the
data declarations in a module without using a common block.

Arranging Data Items in Derived-Type Data

Like common blocks, derived-type data may contain multiple data items (members).

Data item components within derived-type data will be naturally aligned on up to 64-bit boundaries,
with certain exceptions related to the use of the SEQUENCE statement and DF options.

DIGITAL Fortran stores a derived data type as a linear sequence of values, as follows:

• If you specify the SEQUENCE statement, the first data item is in the first storage location and
the last data item is in the last storage location. The data items appear in the order in which
they are declared. The DF options have no effect on unaligned data, so data declarations must
be carefully specified to naturally align data.

• If you omit the SEQUENCE statement, DIGITAL Fortran adds the padding bytes needed to
naturally align data item components, unless you specify the /align:norecords option or the
/vms option without /align:records.

Consider the following declaration of array CATALOG_SPRING of derived-type PART_DT:

MODULE DATA_DEFS
 TYPE PART_DT
 INTEGER IDENTIFIER
 REAL WEIGHT
 CHARACTER(LEN=15) DESCRIPTION
 END TYPE PART_DT
 TYPE (PART_DT) CATALOG_SPRING(30)
 .
 .
 .
END MODULE DATA_DEFS

As shown in the following figure, the largest numeric data items are defined first and the character
data type is defined last. There are no padding characters between data items and all items are
naturally aligned. The trailing padding byte is needed because CATALOG_SPRING is an array; it is
inserted by the compiler when the /align records option is in effect.

Derived-Type Naturally Aligned Data (in CATALOG_SPRING())

Arranging Data Items in DIGITAL Fortran Record Structures

Performance: Making Programs Run Faster Page 16 of 43

9/2/97 3:33:18 PM

DIGITAL Fortran supports record structures provided by DIGITAL Fortran. DIGITAL Fortran
record structures use the RECORD statement and optionally the STRUCTURE statement, which
are extensions to the FORTRAN 77 and Fortran 90 standards. The order of data items in a
STRUCTURE statement determine the order in which the data items are stored.

DIGITAL Fortran stores a record in memory as a linear sequence of values, with the record’s first
element in the first storage location and its last element in the last storage location. Unless you
specify the /vms option without the /align:records option or specify /align:norecords, padding bytes
are added if needed to ensure data fields are naturally aligned.

The following example contains a structure declaration, a RECORD statement, and diagrams of the
resulting records as they are stored in memory:

STRUCTURE /STRA/
 CHARACTER*1 CHR
 INTEGER*4 INT
END STRUCTURE
 .
 .
 .
RECORD /STRA/ REC

The following figure shows the memory diagram of record REC for naturally aligned records.

Memory Diagram of REC for Naturally Aligned Records

Options Controlling Alignment

The following options control whether the DIGITAL Fortran compiler adds padding (when needed)
to naturally align multiple data items in common blocks, derived-type data, and DIGITAL Fortran
record structures:

• The /align:commons option

Requests that data in common blocks be aligned on up to 4-byte boundaries, by adding
padding bytes as needed. Unless you specify /fast, the default is /align:nocommons or arbitrary
byte alignment of common block data. In this case, unaligned data can occur unless the order
of data items specified in the COMMON statement places the largest numeric data item first,
followed by the next largest numeric data (and so on), followed by any character data.

• The /align:dcommons option

Requests that data in common blocks be aligned on up to 8-byte boundaries, by adding
padding bytes as needed. Unless you specify /fast, the default is /align:nocommons or arbitrary
byte alignment of data items in a common data.

Performance: Making Programs Run Faster Page 17 of 43

9/2/97 3:33:18 PM

Specify the /align:dcommons option for applications that use common blocks, unless your
application has no unaligned data or, if the application might have unaligned data, all data
items are four bytes or smaller. For applications that use common blocks where all data items
are four bytes or smaller, you can specify /align:commons instead of /align:dcommons.

• The /align:norecords option

Requests that multiple data items in derived-type data and record structures (a DIGITAL
Fortran extension) be aligned arbitrarily on byte boundaries instead of being naturally aligned.
If you omit the /vms option, the default is /align:records. If you specify the /vms option, /align:
norecords is used (unless you also specify /align: records).

• The /align:records option

Requests that multiple data items in record structures and derived-type data without the
SEQUENCE statement be naturally aligned, by adding padding bytes as needed. You only
need to specify /align records if you specify the /vms option.

• The /vms option

Controls certain VMS-related run-time defaults, including alignment (sets /align:norecords)
option. If you specify the /vms option, you may need to also specify the /align:records option
to ensure that padding bytes are added.

The default behavior is that multiple data items in derived-type data and record structures will be
naturally aligned; data items in common blocks will not be naturally aligned (/align:records) with
/align:nocommons. In derived-type data, using the SEQUENCE statement prevents /align:records
from adding needed padding bytes to naturally align data items.

Use Arrays Efficiently
On Alpha systems, many of the array access efficiency techniques described in this section are
applied automatically by the DIGITAL Fortran loop transformation optimizations.

Several aspects of array use can improve run-time performance:

• The fastest array access occurs when contiguous access to the whole array or most of an array
occurs. Perform one or a few array operations that access all of the array or major parts of an
array rather than numerous operations on scattered array elements.

Rather than use explicit loops for array access, use elemental array operations, such as the
following line that increments all elements of array variable A:

 A = A + 1.

When reading or writing an array, use the array name and not a DO loop or an implied
DO-loop that specifies each element number. Fortran 90 array syntax allows you to reference a
whole array by using its name in an expression. For example:

Performance: Making Programs Run Faster Page 18 of 43

9/2/97 3:33:18 PM

 REAL :: A(100,100)
 A = 0.0
 A = A + 1. ! Increment all elements of A by 1
 .
 .
 .

 WRITE (8) A ! Fast whole array use

Similarly, you can use derived-type array structure components, such as:

 TYPE X
 INTEGER A(5)
 END TYPE X
 .
 .
 .
 TYPE (X) Z
 WRITE (8) Z%A ! Fast array structure component use

• Make sure multidimensional arrays are referenced using proper array syntax and are traversed
in the "natural" ascending order column major for Fortran. With column-major order, the
leftmost subscript varies most rapidly with a stride of one. Writing a whole array uses
column-major order.

Avoid row-major order, as is done by C, where the rightmost subscript varies most rapidly.

For example, consider the nested DO loops that access a two-dimension array with the J loop
as the innermost loop:

 INTEGER X(3,5), Y(3,5), I, J
 Y = 0
 DO I=1,3 ! I outer loop varies slowest
 DO J=1,5 ! J inner loop varies fastest
 X (I,J) = Y(I,J) + 1 ! Inefficient row-major storage order
 END DO ! (rightmost subscript varies fastest)
 END DO
 .
 .
 .
 END PROGRAM

Because J varies the fastest and is the second array subscript in the expression X (I,J), the
array is accessed in row-major order.

To make the array accessed in natural column-major order, examine the array algorithm and
data being modified.

Using arrays X and Y, the array can be accessed in natural column-major order by changing
the nesting order of the DO loops so the innermost loop variable corresponds to the leftmost
array dimension:

 INTEGER X(3,5), Y(3,5), I, J
 Y = 0

 DO J=1,5 ! J outer loop varies slowest

Performance: Making Programs Run Faster Page 19 of 43

8/21/97 12:24:41 PM

 DO I=1,3 ! I inner loop varies fastest
 X (I,J) = Y(I,J) + 1 ! Efficient column-major storage order
 END DO ! (leftmost subscript varies fastest)
 END DO
 .
 .
 .
 END PROGRAM

Fortran whole array access (X= Y + 1) uses efficient column major order. However, if the
application requires that J vary the fastest or if you cannot modify the loop order without
changing the results, consider modifying the application program to use a rearranged order of
array dimensions. Program modifications include rearranging the order of:

• Dimensions in the declaration of the arrays X(5,3) and Y(5,3)
• The assignment of X(J,I) and Y(J,I) within the DO loops
• All other references to arrays X and Y

In this case, the original DO loop nesting is used where J is the innermost loop:

 INTEGER X(5,3), Y(5,3), I, J
 Y = 0
 DO I=1,3 ! I outer loop varies slowest
 DO J=1,5 ! J inner loop varies fastest
 X (J,I) = Y(J,I) + 1 ! Efficient column-major storage order
 END DO ! (leftmost subscript varies fastest)
 END DO
 .
 .
 .
 END PROGRAM

Code written to access multidimensional arrays in row-major order (like C) or random order
can often make inefficient use of the CPU memory cache. For more information on using
natural storage order during record I/O operations, see Write Array Data in the Natural Storage
Order.

• Use the available Fortran 90 array intrinsic procedures rather than create your own.

Whenever possible, use Fortran 90 array intrinsic procedures instead of creating your own
routines to accomplish the same task. Fortran 90 array intrinsic procedures are designed for
efficient use with the various Visual Fortran run-time components.

Using the standard-conforming array intrinsics can also make your program more portable.

• With multidimensional arrays where access to array elements will be noncontiguous, avoid
left-most array dimensions that are a power of two (such as 256, 512). At higher levels of
optimization (/optimize=3 or higher), the compiler pads certain power-of-two array sizes to
minimize possible inefficient use of the cache.

Because the cache sizes are a power of two, array dimensions that are also a power of two
may make inefficient use of cache when array access is noncontiguous. On Alpha systems, if
the cache size is an exact multiple of the leftmost dimension, your program will probably
make little use of the cache. This does not apply to contiguous sequential access or whole
array access.

Performance: Making Programs Run Faster Page 20 of 43

8/21/97 12:24:41 PM

One work-around is to increase the dimension to allow some unused elements, making the
leftmost dimension larger than actually needed. For example, increasing the leftmost
dimension of A from 512 to 520 would make better use of cache:

 REAL A (512,100)
 DO I = 2,511
 DO J = 2,99
 A(I,J)=(A(I+1,J-1) + A(I-1, J+1)) * 0.5
 END DO
 END DO

In this code, array A has a leftmost dimension of 512, a power of two. The innermost loop
accesses the rightmost dimension (row major), causing inefficient access. Increasing the
leftmost dimension of A to 520 (REAL A (520,100)) allows the loop to provide better
performance, but at the expense of some unused elements.

Because loop index variables I and J are used in the calculation, changing the nesting order of
the DO loops changes the results.

For More Information:

On arrays and their data declaration statements, see Specifying Arrays.

Improve Overall I/O Performance
Improving overall I/O performance can minimize both device I/O and actual CPU time. The
techniques listed in this section can greatly improve performance in many applications.

A bottleneck limits the maximum speed of execution by being the slowest process in an executing
program. In some programs, I/O is the bottleneck that prevents an improvement in run-time
performance. The key to relieving I/O bottlenecks is to reduce the actual amount of CPU and I/O
device time involved in I/O. Bottlenecks may be caused by one or more of the following:

• A dramatic reduction in CPU time without a corresponding improvement in I/O time results in
an I/O bottleneck.

• By such coding practices as:
• Unnecessary formatting of data and other CPU-intensive processing
• Unnecessary transfers of intermediate results
• Inefficient transfers of small amounts of data
• Application requirements

Improved coding practices can minimize actual device I/O, as well as the actual CPU time.

You can also consider solutions to system-wide problems like minimizing device I/O delays.

The following sections discuss I/O performance considerations in more detail:

• Use Unformatted Files Instead of Formatted Files
• Write Whole Arrays or Strings
• Write Array Data in the Natural Storage Order

Performance: Making Programs Run Faster Page 21 of 43

8/21/97 12:24:41 PM

• Use Memory for Intermediate Results
• Enable Implied-DO Loop Collapsing
• Use of Variable Format Expressions
• Efficient Use of Record Buffers and Disk I/O
• Specify RECL
• Use the Optimal Record Type

Use Unformatted Files Instead of Formatted Files

Use unformatted files whenever possible. Unformatted I/O of numeric data is more efficient and
more precise than formatted I/O. Native unformatted data does not need to be modified when
transferred and will take up less space on an external file.

Conversely, when writing data to formatted files, formatted data must be converted to character
strings for output, less data can transfer in a single operation, and formatted data may lose precision
if read back into binary form.

To write the array A(25,25) in the following statements, S1 is more efficient than S2:

S1 WRITE (7) A

S2 WRITE (7,100) A
 100 FORMAT (25(’ ’,25F5.21))

Although formatted data files are more easily ported to other systems, DIGITAL Fortran can convert
unformatted data in several formats (see Converting Unformatted Numeric Data).

Write Whole Arrays or Strings

The general guidelines about array use discussed in Use Arrays Efficiently also apply to reading or
writing an array with an I/O statement.

To eliminate unnecessary overhead, write whole arrays or strings at one time rather than individual
elements at multiple times. Each item in an I/O list generates its own calling sequence. This
processing overhead becomes most significant in implied-DO loops. When accessing whole arrays,
use the array name (Fortran 90 array syntax) instead of using implied-DO loops.

Write Array Data in the Natural Storage Order

Use the natural ascending storage order whenever possible. This is column-major order, with the
leftmost subscript varying fastest and striding by 1 (see Use Arrays Efficiently). If a program must
read or write data in any other order, efficient block moves are inhibited.

If the whole array is not being written, natural storage order is the best order possible.

If you must use an unnatural storage order, in certain cases it might be more efficient to transfer the
data to memory and reorder the data before performing the I/O operation.

Use Memory for Intermediate Results

Performance: Making Programs Run Faster Page 22 of 43

8/21/97 12:24:41 PM

Performance can improve by storing intermediate results in memory rather than storing them in a file
on a peripheral device. One situation that may not benefit from using intermediate storage is when
there is a disproportionately large amount of data in relation to physical memory on your system.
Excessive page faults can dramatically impede virtual memory performance.

Enable Implied-DO Loop Collapsing

DO loop collapsing reduces a major overhead in I/O processing. Normally, each element in an I/O
list generates a separate call to the DIGITAL Fortran RTL. The processing overhead of these calls
can be most significant in implied-DO loops.

DIGITAL Fortran reduces the number of calls in implied-DO loops by replacing up to seven nested
implied-DO loops with a single call to an optimized run-time library I/O routine. The routine can
transmit many I/O elements at once.

Loop collapsing can occur in formatted and unformatted I/O, but only if certain conditions are met:

• The control variable must be an integer. The control variable cannot be a dummy argument or
contained in an EQUIVALENCE or VOLATILE statement. DIGITAL Fortran must be able
to determine that the control variable does not change unexpectedly at run time.

• The format must not contain a variable format expression.

For More Information:

• See the VOLATILE attribute and statement.
• On loop optimizations, see Optimization Levels: the /optimize:num Option.

Use of Variable Format Expressions

Variable format expressions (a DIGITAL Fortran extension) are almost as flexible as run-time
formatting, but they are more efficient because the compiler can eliminate run-time parsing of the I/O
format. Only a small amount of processing and the actual data transfer are required during run time.

On the other hand, run-time formatting can impair performance significantly. For example, in the
following statements, S1 is more efficient than S2 because the formatting is done once at compile

time, not at run time:

 S1 WRITE (6,400) (A(I), I=1,N)
 400 FORMAT (1X, <N> F5.2)
 .
 .
 .
 S2 WRITE (CHFMT,500) ’(1X,’,N,’F5.2)’
 500 FORMAT (A,I3,A)
 WRITE (6,FMT=CHFMT) (A(I), I=1,N)

Efficient Use of Record Buffers and Disk I/O

Performance: Making Programs Run Faster Page 23 of 43

8/21/97 12:24:41 PM

Records being read or written are transferred between the user’s program buffers and one or more
disk block I/O buffers, which are established when the file is opened by the DIGITAL Fortran RTL.
Unless very large records are being read or written, multiple logical records can reside in the disk
block I/O buffer when it is written to disk or read from disk, minimizing physical disk I/O.

You can specify the size of the disk block I/O buffer by using the OPEN statement BLOCKSIZE
specifier. If you omit the BLOCKSIZE specifier in the OPEN statement, it is set for optimal I/O use
with the type of device the file resides on.

The default for BUFFERCOUNT is 1. Any experiments to improve I/O performance should
increase the BUFFERCOUNT value and not the BLOCKSIZE value, to increase the amount of
data read by each disk I/O.

Specify RECL

The sum of the record length (RECL specifier in an OPEN statement) and its overhead is a multiple
or divisor of the blocksize, which is device specific. For example, if the BLOCKSIZE is 8192 then
RECL might be 24576 (a multiple of 3) or 1024 (a divisor of 8).

The RECL value should fill blocks as close to capacity as possible (but not over capacity). Such
values allow efficient moves, with each operation moving as much data as possible; the least amount
of space in the block is wasted. Avoid using values larger than the block capacity, because they
create very inefficient moves for the excess data only slightly filling a block (allocating extra
memory for the buffer and writing partial blocks are inefficient).

The RECL value unit for formatted files is always 1-byte units. For unformatted files, the RECL
unit is 4-byte units, unless you specify the /assume:byterecl option to request 1-byte units.

When porting unformatted data files from non-DIGITAL systems, see Converting Unformatted
Numeric Data.

Use the Optimal Record Type

Unless a certain record type is needed for portability reasons, choose the most efficient type, as
follows:

• For sequential files of a consistent record size, the fixed-length record type gives the best
performance.

• For sequential unformatted files when records are not fixed in size, the variable-length record
type gives the best performance, particularly for BACKSPACE operations.

• For sequential formatted files when records are not fixed in size, the Stream_LF record type
gives the best performance.

For More Information:

• On OPEN statement specifiers and defaults, see I/O Statements and OPEN.
• On Visual Fortran data files, see Devices and Files.

Additional Source Code Guidelines for Run-Time Efficiency

Performance: Making Programs Run Faster Page 24 of 43

8/21/97 12:24:41 PM

In addition to data alignment and the efficient use of arrays and I/O, other source coding guidelines
can be implemented to improve run-time performance.

The amount of improvement in run-time performance is related to the number of times a statement is
executed. For example, improving an arithmetic expression executed within a loop many times has
the potential to improve performance, more than improving a similar expression executed once
outside a loop.

Suggested guidelines for improving source code efficiency are provided in the following sections:

• Avoid Small Integer and Small Logical Data Items
• Avoid Mixed Data Type Arithmetic Expressions
• Use Efficient Data Types
• Avoid Using Slow Arithmetic Operators
• Avoid EQUIVALENCE Statement Use
• Use Statement Functions and Internal Subprograms
• Code DO Loops for Efficiency

Avoid Small Integer and Small Logical Data Items

To minimize data storage and memory cache misses with arrays, use 32-bit data rather than 64-bit
data, unless you require the greater range and precision of double precision floating-point numbers
or, on Alpha systems, the numeric range of 8-byte integers.

On Alpha systems, avoid using integer or logical data less than 32 bits (KIND=4). Accessing a 16-bit
(KIND=2) or 8-bit (KIND=1) data type can result in a sequence of machine instructions to access the
data, rather than a single, efficient machine instruction for a 32-bit data item.

Avoid Mixed Data Type Arithmetic Expressions

Avoid mixing integer and floating-point (REAL) data in the same computation. Expressing all
numbers in a floating-point arithmetic expression (assignment statement) as floating-point values
eliminates the need to convert data between fixed and floating-point formats. Expressing all numbers
in an integer arithmetic expression as integer values also achieves this. This improves run-time
performance.

For example, assuming that I and J are both INTEGER variables, expressing a constant number (2.)
as an integer value (2) eliminates the need to convert the data:

Original Code: INTEGER I, J
I= J / 2.

Efficient Code: INTEGER I, J
I= J / 2

For applications with numerous floating-point operations, consider using the /assume:
accuracy_sensitive option (see Arithmetic Reordering Optimizations) if a small difference in the
result is acceptable.

You can use different sizes of the same general data type in an expression with minimal or no effect

Performance: Making Programs Run Faster Page 25 of 43

8/21/97 12:24:41 PM

on run-time performance. For example, using REAL, DOUBLE PRECISION, and COMPLEX
floating-point numbers in the same floating-point arithmetic expression has minimal or no effect on
run-time performance.

Use Efficient Data Types

In cases where more than one data type can be used for a variable, consider selecting the data types
based on the following hierarchy, listed from most to least efficient:

• Integer (for Alpha systems, also see Avoid Small Integer and Small Logical Data Items)
• Single-precision real, expressed explicitly as REAL, REAL (KIND=4), or REAL*4
• Double-precision real, expressed explicitly as DOUBLE PRECISION, REAL (KIND=8), or

REAL*8

However, keep in mind that in an arithmetic expression, you should avoid mixing integer and
floating-point (REAL) data (see Avoid Mixed Data Type Arithmetic Expressions).

Avoid Using Slow Arithmetic Operators

Before you modify source code to avoid slow arithmetic operators, be aware that optimizations
convert many slow arithmetic operators to faster arithmetic operators. For example, the compiler
optimizes the expression H=J**2 to be H=J*J.

Consider also whether replacing a slow arithmetic operator with a faster arithmetic operator will
change the accuracy of the results or impact the maintainability (readability) of the source code.

Replacing slow arithmetic operators with faster ones should be reserved for critical code areas. The
following hierarchy lists the DIGITAL Fortran arithmetic operators, from fastest to slowest:

• Addition (+), subtraction (-), and floating-point multiplication (*)
• Integer multiplication (*)
• Division (/)
• Exponentiation (**)

Avoid EQUIVALENCE Statement Use

Avoid using EQUIVALENCE statements. EQUIVALENCE statements can:

• Force unaligned data or cause data to span natural boundaries.
• Prevent certain optimizations, including:

• Global data analysis under certain conditions (see Global Optimizations)
• Implied-DO loop collapsing when the control variable is contained in an

EQUIVALENCE statement

Use Statement Functions and Internal Subprograms

Whenever the DIGITAL Visual Fortran compiler has access to the use and definition of a
subprogram during compilation, it may choose to inline the subprogram. Using statement functions
and internal subprograms maximizes the number of subprogram references that will be inlined,

Performance: Making Programs Run Faster Page 26 of 43

8/21/97 12:24:41 PM

especially when multiple source files are compiled together at optimization level /optimize:4 (or, on
Alpha systems, optimization level /optimize:4 or /optimize:5).

For more information, see Compile With Appropriate Options and Multiple Source Files.

Code DO Loops for Efficiency

Minimize the arithmetic operations and other operations in a DO loop whenever possible. Moving
unnecessary operations outside the loop will improve performance (for example, when the
intermediate nonvarying values within the loop are not needed).

For More Information:

• On loop optimizations, see Software Pipelining (Alpha systems only) and Controlling Loop
Unrolling.

• On the DO statement, see DO and your language reference manual.

Optimization Levels: the /optimize Option
Visual Fortran performs many optimizations by default. You do not have to recode your program to
use them. However, understanding how optimizations work helps you remove any inhibitors to their
successful function.

If an operation can be performed, eliminated, or simplified at compile time, Visual Fortran does so,
rather than have it done at run time. The time required to compile the program usually increases as
more optimizations occur.

The program will likely execute faster when compiled at /optimize:4, but will require more
compilation time than if you compile the program at a lower level of optimization.

The size of object files varies with the optimizations requested. Factors that can increase object file
size include an increase of loop unrolling or procedure inlining.

The following table lists the levels of DIGITAL Fortran optimization with different /optimize:num
options (for example, /optimize:0 specifies no selectable optimizations); some optimizations always
occur. On x86 systems, /optimize:4 specifies all levels of optimizations. On Alpha systems,
/optimize:5 specifies all levels of optimizations, including loop transformation and software
pipelining.

Levels of Optimization with Different /optimize:num Options

 Option
Optimization Type /optimize:0 /optimize:1 /optimize:2 /optimize:3 /optimize:4 /optimize:5

Loop transformation and
software pipelining

x (Alpha
only)

Automatic inlining x x
Additional global
optimizations

x x x

Global optimizations x x x x

Performance: Making Programs Run Faster Page 27 of 43

8/21/97 12:24:41 PM

Local (minimal)
optimizations

x x x x x

The default is /optimize:4. However, if /debug is also specified, the default is /optimize:0 (no
optimizations).

In the table, the following terms are used to describe the levels of optimization (described in detail in
the following sections:

• Local (minimal) optimizations (/optimize:1) or higher occur within the source program unit
and include recognition of common subexpressions and the expansion of multiplication and
division.

• Global optimizations (/optimize:2) or higher include such optimizations as data-flow analysis,
code motion, strength reduction, split-lifetime analysis, and instruction scheduling.

• Additional global optimizations (/optimize:3) or higher improve speed at the cost of extra code
size. These optimizations include loop unrolling, code replication to eliminate branches, and
padding certain power-of-two array sizes for more efficient cache use.

• Automatic inlining (/optimize:4) or higher applies interprocedure analysis and inline
expansion of small procedures, usually by using heuristics that limit extra code.

• On Alpha systems, Loop transformation and Software pipelining (/optimize:5), include a
group of loop transformation optimizations and the software pipelining optimization. The loop
transformation optimizations apply to array references within loops and can apply to multiple
nested loops. Loop transformation optimizations can improve the performance of the memory
system.

Software pipelining applies instruction scheduling to certain innermost loops, allowing
instructions within a loop to "wrap around" and execute in a different iteration of the loop.
This can reduce the impact of long-latency operations, resulting in faster loop execution.
Software pipelining also enables the prefetching of data to reduce the impact of cache misses.

The following sections discuss I/O performance considerations in more detail:

• Optimizations Performed at All Optimization Levels
• Local (Minimal) Optimizations
• Global Optimizations
• Additional Global Optimizations
• Automatic Inlining
• Loop Transformation and Software Pipelining (Alpha only)

Optimizations Performed at All Optimization Levels

The following optimizations occur at any optimization level (/optimize:0 through /optimize:5):

• Space optimizations

Space optimizations decrease the size of the object or executing program by eliminating
unnecessary use of memory, thereby improving speed of execution and system throughput.
Visual Fortran space optimizations are as follows:

• Constant Pooling

Performance: Making Programs Run Faster Page 28 of 43

8/21/97 12:24:41 PM

Only one copy of a given constant value is ever allocated memory space. If that constant
value is used in several places in the program, all references point to that value.

• Dead Code Elimination

If operations will never execute or if data items will never be used, Visual Fortran
eliminates them. Dead code includes unreachable code and code that becomes unused
as a result of other optimizations, such as value propagation.

• Inlining arithmetic statement functions and intrinsic procedures

Regardless of the optimization level, Visual Fortran inserts arithmetic statement functions
directly into a program instead of calling them as functions. This permits other optimizations
of the inlined code and eliminates several operations, such as calls and returns or stores and
fetches of the actual arguments. For example:

SUM(A,B) = A+B
 .
 .
 .
Y = 3.14
X = SUM(Y,3.0) ! With value propagation, becomes: X = 6.14

Many intrinsic procedures are automatically inlined.

Inlining of other subprograms, such as contained subprograms, occurs at optimization level
/optimize:4 (or /optimize:5 on Alpha systems).

• Implied-DO loop collapsing

DO loop collapsing reduces a major overhead in I/O processing. Normally, each element in an
I/O list generates a separate call to the Visual Fortran RTL. The processing overhead of these
calls can be most significant in implied-DO loops.

If Visual Fortran can determine that the format will not change during program execution, it
replaces the series of calls in up to seven nested implied-DO loops with a single call to an
optimized RTL routine (see Enable Implied-Do Loop Collapsing). The optimized RTL routine
can transfer many elements in one operation.

Visual Fortran collapses implied-DO loops in formatted and unformatted I/O operations, but it
is more important with unformatted I/O, where the cost of transmitting the elements is a
higher fraction of the total cost.

• Array temporary elimination and FORALL statements

Certain array store operations are optimized. For example, to minimize the creation of array
temporaries, Visual Fortran can detect when no overlap occurs between the two sides of an
array assignment. This type of optimization occurs for some assignment statements in
FORALL constructs.

Certain array operations are also candidates for loop unrolling optimizations (see Loop
Unrolling).

Performance: Making Programs Run Faster Page 29 of 43

8/21/97 12:24:41 PM

Local (Minimal) Optimizations

To enable local optimizations, use /optimize:1 or a higher optimization level /optimize:2,
/optimize:3, /optimize:4, or (on Alpha systems) /optimize:5.

To prevent local optimizations, specify the /optimize:0 option.

The following sections discuss the local optimizations:

• Common Subexpression Elimination
• Integer Multiplication and Division Expansion
• Compile-Time Operations
• Value Propagation
• Dead Store Elimination
• Register Usage
• Mixed Real/Complex Operations

Common Subexpression Elimination

If the same subexpressions appear in more than one computation and the values do not change
between computations, Visual Fortran computes the result once and replaces the subexpressions with
the result itself:

DIMENSION A(25,25), B(25,25)
A(I,J) = B(I,J)

Without optimization, these statements can be coded as follows:

t1 = ((J-1)*25+(I-1))*4
t2 = ((J-1)*25+(I-1))*4
A(t1) = B(t2)

Variables t1 and t2 represent equivalent expressions. Visual Fortran eliminates this redundancy by
producing the following:

t = ((J-1)*25+(I-1)*4
A(t) = B(t)

Integer Multiplication and Division Expansion

Expansion of multiplication and division refers to bit shifts that allow faster multiplication and
division while producing the same result. For example, the integer expression (I*17) can be
calculated as I with a 4-bit shift plus the original value of I. This can be expressed using the
DIGITAL Fortran ISHFT intrinsic function:

J1 = I*17
J2 = ISHFT(I,4) + I ! equivalent expression for I*17

The optimizer uses machine code that, like the ISHFT intrinsic function, shifts bits to expand

Performance: Making Programs Run Faster Page 30 of 43

8/21/97 12:24:41 PM

multiplication and division by literals.

Compile-Time Operations

Visual Fortran does as many operations as possible at compile time rather than having them done at
run time.

Constant Operations

Visual Fortran can perform many operations on constants (including PARAMETER constants):

• Constants preceded by a unary minus sign are negated.
• Expressions involving +, -, *, or / operators are evaluated; for example:

PARAMETER (NN=27)
I = 2*NN+J ! Becomes: I = 54 + J

Evaluation of some constant functions and operators is performed at compile time. This
includes certain functions of constants, concatenation of string constants, and logical and
relational operations involving constants.

• Lower-ranked constants are converted to the data type of the higher-ranked operand:

REAL X, Y
X = 10 * Y ! Becomes: X = 10.0 * Y

• Array address calculations involving constant subscripts are simplified at compile time
whenever possible:

INTEGER I(10,10)
I(1,2) = I(4,5) ! Compiled as a direct load and store

Algebraic Reassociation Optimizations

Visual Fortran delays operations to see whether they have no effect or can be transformed to have no
effect. If they have no effect, these operations are removed. A typical example involves unary minus
and .NOT. operations:

X = -Y * -Z ! Becomes: Y * Z

Value Propagation

Visual Fortran tracks the values assigned to variables and constants, including those from DATA
statements, and traces them to every place they are used. Visual Fortran uses the value itself when it
is more efficient to do so.

When compiling subprograms, Visual Fortran analyzes the program to ensure that propagation is
safe if the subroutine is called more than once.

Value propagation frequently leads to more value propagation. Visual Fortran can eliminate run-time

Performance: Making Programs Run Faster Page 31 of 43

8/21/97 12:24:41 PM

operations, comparisons and branches, and whole statements.

In the following example, constants are propagated, eliminating multiple operations from run time:

Original Code Optimized Code

 PI = 3.14
 .
 .
 .
 PIOVER2 = PI/2
 .
 .
 .
 I = 100
 .
 .
 .
 IF (I.GT.1) GOTO 10

10 A(I) = 3.0*Q

 .
 .
 .
 PIOVER2 = 1.57
 .
 .
 .
 I = 100
 .
 .
 .
 10 A(100) = 3.0*Q

Dead Store Elimination

If a variable is assigned but never used, Visual Fortran eliminates the entire assignment statement:

X = Y*Z
 .
 .
 . !If X is not used in between, X=Y*Z is eliminated.

X = A(I,J)* PI

Some programs used for performance analysis often contain such unnecessary operations. When you
try to measure the performance of such programs compiled with Visual Fortran, these programs may
show unrealistically good performance results. Realistic results are possible only with program units
using their results in output statements.

Register Usage

A large program usually has more data that would benefit from being held in registers than there are
registers to hold the data. In such cases, Visual Fortran typically tries to use the registers according to
the following descending priority list:

1. For temporary operation results, including array indexes
2. For variables
3. For addresses of arrays (base address)
4. All other usages

Visual Fortran uses heuristic algorithms and a modest amount of computation to attempt to
determine an effective usage for the registers.

Holding Variables in Registers

Because operations using registers are much faster than using memory, Visual Fortran generates code

Performance: Making Programs Run Faster Page 32 of 43

8/21/97 12:24:41 PM

that uses the integer and floating-point registers instead of memory locations. Knowing when Visual
Fortran uses registers may be helpful when doing certain forms of debugging.

Visual Fortran uses registers to hold the values of variables whenever the Fortran language does not
require them to be held in memory, such as holding the values of temporary results of
subexpressions, even if /optimize:0 (no optimization) was specified.

Visual Fortran may hold the same variable in different registers at different points in the program:

V = 3.0*Q
 .
 .
 .
X = SIN(Y)*V
 .
 .
 .
V = PI*X
 .
 .
 .
Y = COS(Y)*V

Visual Fortran may choose one register to hold the first use of V and another register to hold the
second. Both registers can be used for other purposes at points in between. There may be times when
the value of the variable does not exist anywhere in the registers. If the value of V is never needed in
memory, it might not ever be assigned.

Visual Fortran uses registers to hold the values of I, J, and K (so long as there are no other
optimization effects, such as loops involving the variables):

A(I) = B(J) + C(K)

More typically, an expression uses the same index variable:

A(K) = B(K) + C(K)

In this case, K is loaded into only one register, which is used to index all three arrays at the same
time.

Mixed Real/Complex Operations

In mixed REAL/COMPLEX operations, Visual Fortran avoids the conversion and performs a
simplified operation on:

• Add (+), subtract (-), and multiply (*) operations if either operand is REAL
• Divide (/) operations if the divisor is REAL

For example, if variable R is REAL and A and B are COMPLEX, no conversion occurs with the
following:

COMPLEX A, B

Performance: Making Programs Run Faster Page 33 of 43

8/21/97 12:24:41 PM

 .
 .
 .
B = A + R

Global Optimizations

To enable global optimizations, use /optimize:2 or a higher optimization level. Using /optimize:2 or
higher also enables local optimizations (/optimize:1).

Global optimizations include:

• Data-flow analysis
• Split lifetime analysis
• Strength reduction (replaces a CPU-intensive calculation with one that uses fewer CPU cycles)
• Code motion (also called code hoisting)
• Instruction scheduling

Data-flow and split lifetime analysis (global data analysis) traces the values of variables and whole
arrays as they are created and used in different parts of a program unit. During this analysis, Visual
Fortran assumes that any pair of array references to a given array might access the same memory
location, unless constant subscripts are used in both cases.

To eliminate unnecessary recomputations of invariant expressions in loops, Visual Fortran hoists
them out of the loops so they execute only once.

Global data analysis includes which data items are selected for analysis. Some data items are
analyzed as a group and some are analyzed individually. Visual Fortran limits or may disqualify data
items that participate in the following constructs, generally because it cannot fully trace their values.

Data items in the following constructs can make global optimizations less effective:

• VOLATILE declarations

VOLATILE declarations are needed to use certain run-time features of the operating system.
Declare a variable as VOLATILE if the variable can be accessed using rules in addition to
those provided by the Fortran 90 language. Examples include:

• COMMON data items or entire common blocks that can change value by means other
than direct assignment or during a routine call. For such applications, you must declare
the variable or the COMMON block to which it belongs as volatile.

• An address not saved by the %LOC built-in function.
• Variables read or written by a signal handler, including those in a common block or

module.

As requested by the VOLATILE statement, Visual Fortran disqualifies any volatile variables
from global data analysis.

• Subroutine calls or external function references

Visual Fortran cannot trace data flow in a called routine that is not part of the program unit
being compiled, unless the same DF command compiled multiple program units (see Compile

Performance: Making Programs Run Faster Page 34 of 43

9/2/97 3:33:18 PM

With Appropriate Options and Multiple Source Files). Arguments passed to a called routine
that are used again in a calling program are assumed to be modified, unless the proper
INTENT is specified in an interface block (the compiler must assume they are referenced by
the called routine).

• Common blocks

Visual Fortran limits optimizations on data items in common blocks. If common block data
items are referenced inside called routines, their values might be altered. In the following
example, variable I might be altered by FOO, so Visual Fortran cannot predict its value in
subsequent references.

COMMON /X/ I

DO J=1,N
 I = J
 CALL FOO
 A(I) = I
ENDDO

• Variables in Fortran 90 modules

Visual Fortran limits optimizations on variables in Fortran 90 modules. Like common blocks,
if the variables in Fortran 90 modules are referenced inside called routines, their values might
be altered.

• Variables referenced by a %LOC built-in function or variables with the TARGET attribute

Visual Fortran limits optimizations on variables indirectly referenced by a %LOC function or
on variables with the TARGET attribute, because the called routine may dereference a pointer
to such a variable.

• Equivalence groups

An equivalence group is formed explicitly with the EQUIVALENCE statement or implicitly
by the COMMON statement. A program section is a particular common block or local data
area for a particular routine. Visual Fortran combines equivalence groups within the same
program section and in the same program unit.

The equivalence groups in separate program sections are analyzed separately, but the data
items within each group are not, so some optimizations are limited to the data within each
group.

Additional Global Optimizations

To enable additional global optimizations, use /optimize:3 or a higher optimization level. Using
/optimize:3 or higher also enables local optimizations (/optimize:1) and global optimizations
(/optimize:2).

Additional global optimizations improve speed at the cost of longer compile times and possibly extra
code size. These optimizations include:

Performance: Making Programs Run Faster Page 35 of 43

9/2/97 3:33:18 PM

• Loop unrolling, including instruction scheduling (see Loop Unrolling)
• Code replication to eliminate branches (see Code Replication to Eliminate Branches)
• Padding the size of certain power-of-two arrays to allow more efficient cache use (see Use

Arrays Efficiently)

Loop Unrolling

At optimization level /optimize:3 or above, Visual Fortran attempts to unroll certain innermost loops,
minimizing the number of branches and grouping more instructions together to allow efficient
overlapped instruction execution (instruction pipelining). The best candidates for loop unrolling are
innermost loops with limited control flow.

As more loops are unrolled, the average size of basic blocks increases. Loop unrolling generates
multiple copies of the code for the loop body (loop code iterations) in a manner that allows efficient
instruction pipelining.

The loop body is replicated a certain number of times, substituting index expressions. An
initialization loop might be created to align the first reference with the main series of loops. A
remainder loop might be created for leftover work.

The number of times a loop is unrolled can be determined either by the optimizer or by using the
/unroll option, which can specify the limit for loop unrolling. Unless the user specifies a value, the
optimizer unrolls a loop four times for most loops or two times for certain loops (large estimated
code size or branches out of the loop).

Array operations are often represented as a nested series of loops when expanded into instructions.
The innermost loop for the array operation is the best candidate for loop unrolling (like DO loops).
For example, the following array operation (once optimized) is represented by nested loops, where
the innermost loop is a candidate for loop unrolling:

 A(1:100,2:30) = B(1:100,1:29) * 2.0

Code Replication to Eliminate Branches

In addition to loop unrolling and other optimizations, the number of branches are reduced by
replicating code that will eliminate branches. Code replication decreases the number of basic blocks
(a stream of instructions entered only at the beginning and exited only at the end) and increases
instruction-scheduling opportunities.

Code replication normally occurs when a branch is at the end of a flow of control, such as a routine
with multiple, short exit sequences. The code at the exit sequence gets replicated at the various
places where a branch to it might occur.

For example, consider the following unoptimized routine and its optimized equivalent that uses code
replication, where R0 (EAX on x86 systems) is register 0:

Unoptimized Instructions Optimized (Replicated) Instructions

 .
 .

 .
 .

Performance: Making Programs Run Faster Page 36 of 43

9/2/97 3:33:18 PM

 .
 branch to exit1
 .
 .
 .
 branch to exit1
 .
 .
 .
exit1: move 1 into R0
 return

 .
 move 1 into R0
 return
 .
 .
 .
 move 1 into R0
 return
 .
 .
 .
 move 1 into R0
 return

Similarly, code replication can also occur within a loop that contains a small amount of shared code
at the bottom of a loop and a case-type dispatch within the loop. The loop-end test-and-branch code
might be replicated at the end of each case to create efficient instruction pipelining within the code
for each case.

Automatic Inlining

To enable optimizations that perform automatic inlining, use /optimize:4 (or /optimize:5 on Alpha
systems). Using /optimize:4 also enables local optimizations (/optimize:1), global optimizations
(/optimize:2), and additional global optimizations (/optimize:3).

The default is /optimize:4 (unless /debug is specified).

Interprocedure Analysis

Compiling multiple source files at optimization level /optimize:4 or higher lets the compiler examine
more code for possible optimizations, including multiple program units. This results in:

• Inlining more procedures
• More complete global data analysis
• Reducing the number of external references to be resolved during linking

As more procedures are inlined, the size of the executable program and compile times may increase,
but execution time should decrease.

Inlining Procedures

Inlining refers to replacing a subprogram reference (such as a CALL statement or function
invocation) with the replicated code of the subprogram. As more procedures are inlined, global
optimizations often become more effective.

The optimizer inlines small procedures, limiting inlining candidates based on such criteria as:

• Estimated size of code
• Number of call sites
• Use of constant arguments

You can specify:

Performance: Making Programs Run Faster Page 37 of 43

8/21/97 12:24:41 PM

• One of the /optimize:num options to control the optimization level. For example, specifying
/optimize:4 or higher enables interprocedure optimizations.

Different /optimize:num options set different /inline: keyword options. For example,
/optimize:4 sets /inline:speed.

• One of the /inline:keyword options to directly control the inlining of procedures (see
Controlling the Inlining of Procedures). For example, /inline:speed inlines more procedures
than /inline:size.

Loop Transformation and Software Pipelining (Alpha only)

A group of optimizations known as loop transformation optimizations and software pipelining with
its associated additional software dependence analysis are enabled by using the /optimize:5 option on
Alpha systems. In certain cases, this improves run-time performance.

The loop transformation optimizations apply to array references within loops and can apply to
multiple nested loops. These optimizations can improve the performance of the memory system.

Software pipelining applies instruction scheduling to certain innermost loops, allowing instructions
within a loop to "wrap around" and execute in a different iteration of the loop. This can reduce the
impact of long-latency operations, resulting in faster loop execution.

Software pipelining also enables the prefetching of data to reduce the impact of cache misses.

For More Information:

• On loop transformations, see Loop Transformation.
• On software pipelining, see Software Pipelining.

Other Options Related to Optimization
In addition to the /optimize:num options (discussed in Optimization Levels: the /optimize:num
Option), several other DF command options can prevent or facilitate improved optimizations, as
discussed in the following sections:

• Options Set by the /fast Option
• Controlling Loop Unrolling
• Controlling the Inlining of Procedures
• Arithmetic Reordering Optimizations
• Dummy Aliasing Assumption
• Requesting Optimized Code for a Specific Processor Generation (Alpha only)
• Requesting Code Generation for a Specific Processor Generation (Alpha only)
• Loop Transformation (Alpha only)
• Software Pipelining (Alpha only)

Options Set by the /fast Option

Specifying the /fast option sets the following options:

• /align:(dcommons,records) (see Data Alignment Considerations)

Performance: Making Programs Run Faster Page 38 of 43

8/21/97 12:24:41 PM

• /assume:noaccuracy_sensitive (see Arithmetic Reordering Optimizations)
• /math_library: fast (see /math_library)

Controlling Loop Unrolling

You can specify the number of times a loop is unrolled by using the /unroll:num option.

Although unrolling loops usually improves run-time performance, the size of the executable program
may increase.

On Alpha systems, the /unroll: num option can also influence the run-time results of software
pipelining optimizations performed when you specify /optimize:5.

For More Information:

On loop unrolling, see Loop Unrolling.

Controlling the Inlining of Procedures

To specify the types of procedures to be inlined, use the /inline:keyword options. Also, compile
multiple source files together and specify an adequate optimization level, such as /optimize:4.

If you omit /noinline and the /inline:keyword options, the optimization level /optimize:num option
used determines the types of procedures that are inlined.

The /inline:keyword options are as follows:

• /inline:none (same as /noinline) inlines statement functions but not other procedures. This type
of inlining occurs if you specify /optimize:0 or /optimize:1 and omit /inline: xxxx options.

• /inline:manual inlines statement functions but not other procedures. This type of inlining
occurs if you omit /inline: xxxx options.

• In addition to inlining statement functions, /inline:size inlines any procedures that the
DIGITAL Fortran optimizer expects will improve run-time performance with no likely
significant increase in program size.

• In addition to inlining statement functions, /inline:speed inlines any procedures that the
DIGITAL Fortran optimizer expects will improve run-time performance with a likely
significant increase in program size. This type of inlining occurs if you specify /optimize:4 (or
/optimize:4 or /optimize:5 on Alpha systems) and omit /inline: xxxx options.

• /inline:all inlines every call that can possibly be inlined while generating correct code,
including the following:

• Statement functions (always inlined)
• Any procedures that DIGITAL Fortran expects will improve run-time performance with

a likely significant increase in program size.
• Any other procedures that can possibly be inlined and generate correct code. Certain

recursive routines are not inlined to prevent infinite expansion.

For information on the inlining of other procedures (inlined at optimization level /optimize:4 or
higher), see Inlining Procedures.

Maximizing the types of procedures that are inlined usually improves run-time performance, but

Performance: Making Programs Run Faster Page 39 of 43

8/21/97 12:24:41 PM

compile-time memory usage and the size of the executable program may increase.

To determine whether using /inline all benefits your particular program, time program execution for
the same program compiled with and without /inline:all.

Arithmetic Reordering Optimizations

If you use the /assume:noaccuracy_sensitive option, DIGITAL Fortran may reorder code (based on
algebraic identities) to improve performance. For example, the following expressions are
mathematically equivalent but may not compute the same value using finite precision arithmetic:

X = (A + B) + C

X = A + (B + C)

The results can be slightly different from the default /assume:accuracy_sensitive because of the way
intermediate results are rounded. However, the /assume:noaccuracy_sensitive results are not
categorically less accurate than those gained by the default. In fact, dot product summations using
/assume:noaccuracy_sensitive can produce more accurate results than those using
/assume:accuracy_sensitive.

The effect of /assume:noaccuracy_sensitive is important when DIGITAL Fortran hoists divide
operations out of a loop. If /assume:noaccuracy_sensitive is in effect, the unoptimized loop becomes
the optimized loop:

Unoptimized Code Optimized Code
DO I=1,N
.
.
.
B(I)= A(I)/V
END DO

T= 1/V
DO I=1,N
.
.
.
B(I)= A(I)*T
END DO

The transformation in the optimized loop increases performance significantly, and loses little or no
accuracy. However, it does have the potential for raising overflow or underflow arithmetic
exceptions.

Dummy Aliasing Assumption

Some programs compiled with Visual Fortran (or DIGITAL Fortran 77) may have results that differ
from the results of other Fortran compilers. Such programs may be aliasing dummy arguments to
each other or to a variable in a common block or shared through use association, and at least one
variable access is a store.

This program behavior is prohibited in programs conforming to the Fortran 90 standard, but not by
Visual Fortran. Other versions of Fortran allow dummy aliases and check for them to ensure correct
results. However, Visual Fortran assumes that no dummy aliasing will occur, and it can ignore
potential data dependencies from this source in favor of faster execution.

The Visual Fortran default is safe for programs conforming to the Fortran 90 standard. It will

Performance: Making Programs Run Faster Page 40 of 43

8/21/97 12:24:41 PM

improve performance of these programs because the standard prohibits such programs from passing
overlapped variables or arrays as actual arguments if either is assigned in the execution of the
program unit.

The /assume:dummy_aliases option allows dummy aliasing. It ensures correct results by assuming
the exact order of the references to dummy and common variables is required. Program units taking
advantage of this behavior can produce inaccurate results if compiled with
/assume:nodummy_aliases.

The following example is taken from the DAXPY routine in the Fortran-77 version of the Basic
Linear Algebra Subroutines (BLAS).

Example: Using the /assume:dummy_aliases Option

 SUBROUTINE DAXPY(N,DA,DX,INCX,DY,INCY)

C Constant times a vector plus a vector.
C uses unrolled loops for increments equal to 1.

 DOUBLE PRECISION DX(1), DY(1), DA
 INTEGER I,INCX,INCY,IX,IY,M,MP1,N
C
 IF (N.LE.0) RETURN
 IF (DA.EQ.0.0) RETURN
 IF (INCX.EQ.1.AND.INCY.EQ.1) GOTO 20

C Code for unequal increments or equal increments
C not equal to 1.
 .
 .
 .
 RETURN
C Code for both increments equal to 1.
C Clean-up loop

20 M = MOD(N,4)
 IF (M.EQ.0) GOTO 40
 DO I=1,M
 DY(I) = DY(I) + DA*DX(I)
 END DO

 IF (N.LT.4) RETURN
40 MP1 = M + 1
 DO I = MP1, N, 4
 DY(I) = DY(I) + DA*DX(I)
 DY(I + 1) = DY(I + 1) + DA*DX(I + 1)
 DY(I + 2) = DY(I + 2) + DA*DX(I + 2)
 DY(I + 3) = DY(I + 3) + DA*DX(I + 3)
 END DO

 RETURN
 END SUBROUTINE

The second DO loop contains assignments to DY. If DY is overlapped with DA, any of the
assignments to DY might give DA a new value, and this overlap would affect the results. If this
overlap is desired, then DA must be fetched from memory each time it is referenced. The repetitious
fetching of DA degrades performance.

Performance: Making Programs Run Faster Page 41 of 43

8/21/97 12:24:41 PM

Linking Routines with Opposite Settings

You can link routines compiled with the /assume:dummy_aliases option to routines compiled with
/assume:nodummy_aliases. For example, if only one routine is called with dummy aliases, you can
use /assume:dummy_aliases when compiling that routine, and compile all the other routines with
/assume:nodummy_aliases to gain the performance value of that option.

Programs calling DAXPY with DA overlapping DY do not conform to the FORTRAN-77 and
Fortran 90 standards. However, they are accommodated if /assume:dummy_aliases was used to
compile the DAXPY routine.

Requesting Optimized Code for a Specific Processor Generation (Alpha systems)

You can specify the types of optimized code to be generated by using the /tune:keyword option.
Regardless of the specified keyword, the generated code will run correctly on all implementations of
the Alpha architecture. Tuning for a specific implementation can improve run-time performance; it is
also possible that code tuned for a specific target may run slower on another target.

Specifying the correct keyword for /tune:keyword for the target Alpha processor generation type
usually slightly improves run-time performance. Unless you request software pipelining, the run-time
performance difference for using the wrong keyword for /tune:keyword (such as using /tune ev4 for
an ev5 processor) is usually less than 5%. When using software pipelining (using /optimize:5) with
/tune:keyword, the difference can be more than 5%.

The combination of the specified keyword for /tune:keyword and the type of processor generation
used has no effect on producing the expected correct program results.

The /tune:keyword keywords are described in /tune (Alpha only).

To request a specific set of instructions for an Alpha architecture generation, see the /architecture
option.

Requesting Code Generation for a Specific Processor Generation (Alpha only)

You can specify whether the code to be generated will run on an ev56, pca56, or earlier Alpha
processor. The /architecture (/arch) option determines the type of Alpha chip code that will be
generated for this program. The /arch:keyword option uses the same keywords as the /tune:keyword
option. This option is ignored on x86 processor systems.

For more information, see /architecture (Alpha only).

Loop Transformation (Alpha only)

The loop transformation optimizations are enabled by using the /transform_loops option or the
/optimize:5 option. Loop transformation attempts to improve performance by rewriting loops to
make better use of the memory system. By rewriting loops, the loop transformation optimizations
can increase the number of instructions executed, which can degrade the run-time performance of
some programs.

To request loop transformation optimizations without software pipelining, do one of the following:

Performance: Making Programs Run Faster Page 42 of 43

8/21/97 12:24:41 PM

• Specify /optimize:5 with /nopipeline (preferred method)
• Specify /transform_loops with /optimize:4, /optimize:3, or /optimize:2. This optimization is

not performed at optimization levels below /optimize:2.

The loop transformation optimizations apply to array references within loops. These optimizations
can improve the performance of the memory system and usually apply to multiple nested loops. The
loops chosen for loop transformation optimizations are always counted loops. Counted loops are
those loops that use a variable to count iterations in a manner that the number of iterations can be
determined before entering the loop. For example, most DO loops are counted loops.

Conditions that typically prevent the loop transformation optimizations from occurring include
subprogram references that are not inlined (such as an external function call), complicated exit
conditions, and uncounted loops.

The types of optimizations associated with /transform_loops include the following:

• Loop blocking
Can minimize memory system use with multidimensional array elements by completing as
many operations as possible on array elements currently in the cache. Also known as loop
tiling.

• Loop distribution
Moves instructions from one loop into separate, new loops. This can reduce the amount of
memory used during one loop so that the remaining memory may fit in the cache. It can also
create improved opportunities for loop blocking.

• Loop fusion
Combines instructions from two or more adjacent loops that use some of the same memory
locations into a single loop. This can avoid the need to load those memory locations into the
cache multiple times and improves opportunities for instruction scheduling.

• Loop interchange
Changes the nesting order of some or all loops. This can minimize the stride of array element
access during loop execution and reduce the number of memory accesses needed. Also known
as loop permutation.

• Scalar replacement
Replaces the use of an array element with a scalar variable under certain conditions.

• Outer loop unrolling
Unrolls the outer loop inside the inner loop under certain conditions to minimize the number
of instructions and memory accesses needed. This also improves opportunities for instruction
scheduling and scalar replacement.

For More Information:

On the interaction of command-line options and timing programs compiled with the loop
transformation optimizations, see /[no]transform_loops.

Software Pipelining (Alpha only)

Software pipelining and additional software dependence analysis are enabled by using the /pipeline
option or by the /optimize:5 option. Software pipelining in certain cases improves run-time

Performance: Making Programs Run Faster Page 43 of 43

8/21/97 12:24:41 PM

performance.

The software pipelining optimization applies instruction scheduling to certain innermost loops,
allowing instructions within a loop to "wrap around" and execute in a different iteration of the loop.
This can reduce the impact of long-latency operations, resulting in faster loop execution.

Loop unrolling (enabled at /optimize:3 or above) cannot schedule across iterations of a loop.
Because software pipelining can schedule across loop iterations, it can perform more efficient
scheduling to eliminate instruction stalls within loops.

For instance, if software dependence analysis of data flow reveals that certain calculations can be
done before or after that iteration of the loop, software pipelining reschedules those instructions
ahead of or behind that loop iteration, at places where their execution can prevent instruction stalls or
otherwise improve performance.

Software pipelining also enables the prefetching of data to reduce the impact of cache misses.

Software pipelining can be more effective when you combine /pipeline (or /optimize:5) with the
appropriate /tune keyword for the target Alpha processor generation (see Requesting Optimized Code
for a Specific Processor Generation).

To specify software pipelining without loop transformation optimizations, do one of the following:

• Specify /optimize:5 with /notransform_loops (preferred method)
• Specify /pipeline with /optimize:4, /optimize:3, or /optimize:2. This optimization is not

performed at optimization levels below /optimize:2.

For this version of Visual Fortran, loops chosen for software pipelining:

• Are always innermost loops (those executed the most).
• Do not contain branches or procedure calls.
• Do not use COMPLEX floating-point data.

By modifying the unrolled loop and inserting instructions as needed before and/or after the unrolled
loop, software pipelining generally improves run-time performance, except where the loops contain a
large number of instructions with many existing overlapped operations. In this case, software
pipelining may not have enough registers available to effectively improve execution performance.
Run-time performance using /optimize:5 (or /pipeline) may not improve performance, as compared
to using /optimize:4.

For programs that contain loops that exhaust available registers, longer execution times may result
with /optimize:5 or /pipeline. In cases where performance does not improve, consider compiling with
the /unroll 1 option along with /optimize:5 or /pipeline, to possibly improve the effects of software
pipelining.

For More Information:

On the interaction of command-line options and timing programs compiled with software pipelining,
see /[no]pipeline.

Creating Multithread Applications Page 1 of 12

8/21/97 12:25:10 PM

Creating Multithread Applications
Visual Fortran provides support for creating multithread applications. You should consider using
more than one thread if your application needs to manage multiple activities, such as simultaneous
keyboard input and calculations. One thread can process keyboard input while a second thread
performs data transformation calculations. A third thread can update the display screen based on data
from the keyboard thread. At the same time, other threads can access disk files, or get data from a
communications port.

For resources about threads, processes, and multithreading, see Other Sources of Information .

For more information, see:

• Basic Concepts of Multithreading
• Writing a Multithread Program
• Compiling and Linking Multithread Programs
• Other Sources of Information

Basic Concepts of Multithreading
A thread is a path of execution through a program. It is an executable entity that belongs to one and
only one process. Each process has at least one thread of execution, automatically created when the
process is created. Your main program runs in the first thread. A Win32 thread consists of a stack,
the state of the CPU registers, a security context, and an entry in the execution list of the system
scheduler. Each thread shares all of the process's resources.

A process consists of one or more threads and the code, data, and other resources of a program in
memory. Typical program resources are open files, semaphores (a method of interthread
communication), and dynamically allocated memory. A program executes when the system scheduler
gives one of its threads execution control. The scheduler determines which threads should run and
when they should run. Threads of lower priority might need to wait while higher priority threads
complete their tasks. On multiprocessor machines, the scheduler can move individual threads to
different processors to balance the CPU load.

Because threads require less system overhead and are easier to create than an entire process, they are
useful for time- or resource-intensive operations that can be performed concurrently with other tasks.
Threads can be used for operations such as background printing, monitoring a device for input, or
backing up data while it is being edited.

When threads, processes, files, and communications devices are opened, the function that creates
them returns a handle. Each handle has an associated Access Control List (ACL) that is used to
check the security credentials of the process. Processes and threads can inherit a handle or give one
away using functions described in this section. Objects and handles regulate access to system
resources. For more information on handles and security, see the Reference for the Win32
Application Programming Interface.

All threads in a process execute independently of one another. Unless you take special steps to make
them communicate with each other, each thread operates while completely unaware of the existence
of other threads in a process. Threads sharing common resources must coordinate their work by

Creating Multithread Applications Page 2 of 12

8/21/97 12:25:10 PM

using semaphores or another method of interthread communication. For more information on
interthread communication, see Sharing Resources.

Writing a Multithread Program
Multiple threads are best used for:

• Background tasks such as data calculations, database queries, and input gathering, which do
not directly involve window management or user interface.

• Operations that are independent from one another that can benefit from concurrent processing.
• Asynchronous tasks such as polling on a serial port.

If your application contains tasks that require a private address space and private resources, you can
protect them from the activities of other threads by creating multiple processes rather than multiple
threads. See Working with Multiple Processes.

The sections that follow discuss the steps you need to consider in creating a multithread application:

• Modules for Multithread Programs
• Starting and Stopping Threads
• Thread Routine Format
• Sharing Resources
• Thread Local Storage (TLS)
• Synchronizing Threads
• Handling Errors in Multithread Programs
• Working with Multiple Processes
• Table of Multithread Routines

Modules for Multithread Programs

A module called DFMT.MOD is supplied with Visual Fortran. It contains interface statements to the
underlying Win32 API routines as well as parameter and structure definitions used by the routines.
You need to include a USE DFMT statement in the declarations section of every Fortran program
unit (program, subroutine, function, or module) that uses multithread APIs.

The source code for the DFMT module (file name DFMT.F90) contains type definitions and external
function declarations. You can use it as an added reference for the calling syntax, number, and type
of arguments for a multithread procedure.

Other Windows APIs that support multithreading tasks (such as window management functions) are
included in the DFWIN.F90 module, available to your programs with the USE DFWIN statement.
For information about creating a Windows application, see Creating Windows Applications.

Starting and Stopping Threads

When you add threads to a process, you need to consider the costs to your process. Create only the
number of threads that help your application respond and perform better. You can save time by
multitasking, but remember that additional CPU time is needed to keep track of multiple threads.
When you are deciding how many threads to create, you also need to consider what data can be

Creating Multithread Applications Page 3 of 12

8/21/97 12:25:10 PM

process-specific, and what data is thread-specific. Sharing Resources discusses synchronizing access
to variables and data.

One single call to the CreateThread function creates a thread, specifies security attributes and
memory stack size, and names the routine for the thread to run. Windows allocates memory for the
thread stack in the virtual address space of the application that contains the thread. Once a thread has
finished processing, the CloseHandle routine frees the resources used by the thread.

For more information, see:

• Starting Threads
• Stopping Threads
• Other Thread Support Functions

Starting Threads

The function CreateThread creates a new thread. Its return value is an INTEGER(4) thread handle,
used in communicating to the thread and when closing it. The syntax for this function is:

CreateThread (security, stack, thread_func, argument, flags, thread_id)

All arguments are INTEGER(4) variables except for thread_func, which names the routine for
CreateThread to run. Minimum requirements for thread_func are discussed in Thread Routine
Format.

The first argument, security, is the SECURITY_ATTRIBUTES type, defined in DFMT.F90. If
security is zero, the thread has the default security attributes of the parent process. For more
information about setting security attributes for processes and threads, see the Win32 API Reference.

The second argument, stack, defines the stack size of the new thread. All of an application's default
stack space is allocated to the first thread of execution. As a result, you must specify how much
memory to allocate for a separate stack for each additional thread your program needs. The
CreateThread call allows you to specify the value for the stack size on each thread you create. A
value of zero indicates the stack has the same size as the application's primary thread. The size of the
stack is increased dynamically, if necessary, up to a limit of 1 MB.

The third parameter, thread_func, is the starting address for the thread function.

The fourth parameter, argument, is an optional argument for thread_func. Your program defines this
parameter and how it is used.

You can create a thread that will not begin processing until you signal it. The fifth parameter, flags,
can take either of two values: 0, or CREATE_SUSPENDED. If you specify
CREATE_SUSPENDED, the thread is created, but does not run until you call the ResumeThread
function.

The last argument, thread_id, is returned by CreateThread. It is a unique identifier for the thread,
which you can use when calling other multithread routines. While the thread is running, no other
thread has the same identifier. However, the operating system may use the identifier again for other
threads once this one has completed.

Creating Multithread Applications Page 4 of 12

8/21/97 12:25:10 PM

A thread can be referred to by its handle as well as its unique thread identifier. Synchronization
functions such as WaitForSingleObject and WaitForMultipleObjects take the thread handle as an
argument.

Stopping Threads

The ExitThread routine allows a thread to stop its own execution. The syntax is:

CALL EXITTHREAD ([Termination Status])

Termination status may be queried by another thread. A termination status of 0 indicates normal
termination. You can assign other termination status values and their meaning in your program.

When the called thread is no longer needed, the calling thread needs to close the handle for the
thread. Use the CloseHandle routine to free memory used by the thread. A thread object is not
deleted until the last thread handle is closed.

It is possible for more than one handle to be open to a thread: for example, if a program creates two
threads, one of which waits for information from the other. In this case, two handles are open to the
first thread: one from the thread requesting information, the other from the thread that created it. All
handles are closed implicitly when the enclosing process terminates.

The TerminateThread routine allows one thread to terminate another, if the security attributes are
set appropriately for both threads. DLLs attached to the thread are not notified that the thread is
terminating, and its initial stack is not deallocated. Use Terminate Thread for emergencies only.

Other Thread Support Functions

Scheduling thread priorities is supported through the functions GetThreadPriority and
SetThreadPriority. Use the priority class of a thread to differentiate between applications that are
time critical and those that have normal or below normal scheduling requirements. If you need to
manipulate priorities, be very careful not to give a thread too high a priority, or it can consume all of
the available CPU time. A thread with a base priority level above 11 interferes with the normal
operation of the operating system. Using REALTIME_PRIORITY_CLASS may cause disk caches to
not flush, hang the mouse, and so on.

When communicating with other threads, a thread uses a pseudohandle to refer to itself. A
pseudohandle is a special constant that is interpreted as the current thread handle. Pseudohandles are
only valid for the calling thread; they cannot be inherited by other threads. The GetCurrentThread
function returns a pseudohandle for the current thread. The calling thread can use this handle to
specify itself whenever a thread handle is required. Pseudohandles are not inherited.

To get the thread’s identifier, use the GetCurrentThreadId function. The identifier uniquely
identifies the thread in the system until it terminates. You can use the identifier to specify the thread
itself whenever an identifier is required.

Use GetExitCodeThread to find out if a thread is still active, or if it is not, to find its exit status.
Call GetLastError for more detailed information on the exit status. If one routine depends on a task
being performed by a different thread, use the wait functions described in Synchronizing Threads
instead of GetExitCodeThread.

Creating Multithread Applications Page 5 of 12

8/21/97 12:25:11 PM

Thread Routine Format

A function or subroutine that runs in a separate thread from the main program can take an argument.
The code below shows a skeleton for a function and a subroutine:

INTEGER(4) FUNCTION thrdfnc(arg)
USE DFMT
integer(4) arg
arg = arg + 1 ! Sample only; real work goes here.
thrdfnc = 0 ! Sets exit code to 0.
END FUNCTION

SUBROUTINE thrdfnc2 (arg2)
USE DFMT
integer(4) arg2
 ! Subroutine work goes here.
Call exitthread(0) ! Exit code is 0.
END

The arguments arg or arg2 are passed to the function or subroutine when the main program calls
CreateThread, as the fourth argument.

Threads automatically terminate when the function or subroutine terminates.

Sharing Resources

Each thread has its own stack and its own copy of the CPU registers. Other resources, such as files,
units, static data, and heap memory, are shared by all threads in the process. Threads using these
common resources must coordinate their work. There are several ways to synchronize resources:

• Critical section--A block of code that accesses a non-shareable resource. Critical sections are
typically used to restrict access to data or code that can only be used by one thread at a time
within a process (for example, modification of shared data in a common block).

• MUTual EXclusion object (Mutex)--A mechanism that allows only one thread at a time to
access a resource. Mutexes are typically used to restrict access to a system resource that can
only be used by one thread at a time (for example, a printer), or when sharing might produce
unpredictable results.

• Semaphore--A counter that regulates the number of threads that can use a resource.
Semaphores are typically used to control access to a specified number of identical resources.

• Event--An event object announces that an event has happened to one or more threads.

The state of each of these objects is either signaled or not-signaled. A signaled state indicates a
resource is available for a process or thread to use it. A not-signaled state indicates the resource is in
use. The routines described in the following sections manage the creation, initialization, and
termination of resource sharing mechanisms. Some of them change the state to signaled from
not-signaled. The routines WaitForSingleObject and WaitForMultipleObjects also change the
signal status of an object. For information on these functions, see Synchronizing Threads.

For resources about coordinating and synchronizing Win32 threads, see Other Sources of
Information.

For more information, see:

Creating Multithread Applications Page 6 of 12

8/21/97 12:25:11 PM

• Thread Stacks
• I/O Operations

Critical Sections

Before you can synchronize threads with a critical section, you must initialize it by calling
InitializeCriticalSection, passing to it the address of a global variable or COMMON block that
different threads have access to. Call EnterCriticalSection when beginning to process the global
variable, and LeaveCriticalSection when the application is finished with it. Both
EnterCriticalSection and LeaveCriticalSection can be called several times within an application.
For a Multithreaded Sample that uses Critical Sections, see PEEKAPP.F90.

Mutexes

CreateMutex creates a mutex object. It returns an error if the mutex already exists (one by the same
name was created by another process or thread). Call GetLastError after calling CreateMutex to
look for the error status ERROR_ALREADY_EXISTS. You can also use the OpenMutex function
to determine whether or not a named mutex object exists. When called, OpenMutex returns the
object's handle if it exists, or null if a mutex with the specified name is not found. Using OpenMutex
does not change a mutex object to a signaled state; this is accomplished by one of the wait routines
described in Synchronizing Threads.

ReleaseMutex changes a mutex from the not-signaled state to the signaled state. This function only
has an effect if the thread calling it also owns the mutex. When the mutex is in a signaled state, any
thread waiting for it can acquire it and begin executing.

Semaphores

Functions for handling semaphores are nearly identical to functions that manage mutexes.
CreateSemaphore creates a semaphore, specifying an initial as well as a maximum count for the
number of threads that can access the resource. OpenSemaphore, like OpenMutex, returns the
handle of the named semaphore object, if it exists. The handle can then be used in any function that
requires it (such as one of the wait functions described in Synchronizing Threads). Calling
OpenSemaphore does not reduce a resource's available count; this is accomplished by the function
waiting for the resource.

Use ReleaseSemaphore to increase the available count for a resource by a specified amount. You
can call this function when the thread is finished with the resource. Another possible use is to call
CreateSemaphore, specifying an initial count of zero to protect the resource from access during an
initialization process. When the application has finished its initialization, call ReleaseSemaphore to
increase the resource's count to its maximum.

Events

Event objects can trigger execution of other threads. You can use events if one thread provides data
to several other threads. An event object is created by the CreateEvent function. The creating thread
specifies the initial state of the object and whether it is a manual-reset or auto-reset event. A
manual-reset event is one whose state remains signaled until it is explicitly reset by a call to
ResetEvent. An auto-reset event is automatically reset by the system when a single waiting thread is
released.

Creating Multithread Applications Page 7 of 12

8/21/97 12:25:11 PM

Use either SetEvent or PulseEvent to set an event object’s state to signaled. OpenEvent returns a
handle to the event, which can be used in other function calls. ReleaseEvent releases ownership of
the event.

Memory Use and Thread Stacks

Because each thread has its own stack, you can avoid potential collisions over data items by using as
little static data as possible. Design your program to use automatic stack variables for all data that
can be private to a thread. All the variables declared in a multithread routine are by default static and
shared among the threads. If you do not want one thread to overwrite a variable used by another, you
can do one of the following:

• Declare the variable as AUTOMATIC.
• Create a vector of variable values, one for each thread, so that the variable values for different

threads are in different storage locations. (You can use the single integer parameter passed by
CREATETHREAD as an index to identify the thread.)

• Use Thread Local Storage (TLS).

Variables declared as automatic are placed on the stack, which is part of the thread context saved
with the thread. Automatic variables within procedures are discarded when the procedure completes
execution.

I/O Operations

Although files and units are shared between threads, you may not need to coordinate the use of these
shared resources by threads. Fortran treats each input/output statement as an atomic operation. If two
separate threads try to write to the same unit and one thread's output operation has started, the
operation will complete before the other thread's output operation can begin.

The operating system does not impose an ordering on threads' access to units or files. For example,
the non-determinate nature of multithread applications can cause records in a sequential file to be
written in a different order on each execution of the application as each thread writes to the file.
Direct access files might be a better choice than sequential files in such a case. If you cannot use
direct access files, use mutexes to impose an ordering constraint on input or output of sequential
files.

Certain restrictions apply to blocking functions for input procedures in QuickWin programs. For
details on these restrictions, see Using QuickWin.

Thread Local Storage

Thread Local Storage (TLS) calls allow you to store per-thread data. TLS is the method by which
each thread in a multithreaded process can allocate locations in which to store thread-specific data.

Dynamically bound (run-time) thread-specific data is supported by routines such as TlsAlloc
(allocates an index to store data), TlsGetValue (retrieves values from an index), TlsSetValue (stores
values into an index), and TlsFree (frees the dynamic storage). Threads allocate dynamic storage and
use TlsSetValue to associate the index with a pointer to that storage. When a thread needs to access
the storage, it calls TlsGetValue, specifying the index.

Creating Multithread Applications Page 8 of 12

8/21/97 12:25:11 PM

When all threads have finished using the index, TlsFree frees the dynamic storage.

Synchronizing Threads

The routines WAITFORSINGLEOBJECT and WAITFORMULTIPLEOBJECTS enable
threads to wait for a variety of different occurrences, such as thread completion or signals from other
threads. They enable threads and processes to wait efficiently, consuming no CPU resources, either
indefinitely or until a specified timeout interval has elapsed.

WAITFORSINGLEOBJECT takes an object handle as the first parameter and does not return until
the object referenced by the handle either reaches a signaled state or until a specified timeout value
elapses. The syntax is:

WaitResult = WAITFORSINGLEOBJECT (ObjectHandle, [Timeout])

If you are using a timeout, specify the value in milliseconds as the second parameter. The value
WAIT_INFINITE represents an infinite timeout, in which case the function waits until ObjectHandle
completes.

WAITFORMULTIPLEOBJECTS is similar, except that its second parameter is an array of
Windows object handles. Specify the number of handles to wait for in the first parameter. This can
be less than the total number of threads created, and its maximum is 64. The function can either wait
until all events have completed, or resume as soon as any one of the objects completes.

Deadlocks occur when a thread waits for objects that never become available. Use the timeout
parameter when there is a chance that the thread you are waiting for may never terminate. See
"Detecting Deadlocks in Multithreaded Win32 Applications," by Ruediger Asche, in Microsoft
Systems Journal, vol. 8, for a discussion of how to find and avoid potential resource collisions.

Suspending and Resuming Threads

You can use SuspendThread to stop a thread from executing. SuspendThread is not particularly
useful for synchronization because it does not control the point in the code at which the thread’s
execution is suspended. However, you could suspend a thread if you need to confirm a user’s input
that would terminate the work of the thread. If confirmed, the thread is terminated; otherwise, it
resumes.

If a thread is created in a suspended state, it does not begin to run until Resume Thread is called
with a handle to the suspended thread. This can be useful for initializing the thread’s state before it
begins to run. Suspending a thread at creation can be useful for one-time synchronization, because
ResumeThread ensures that the suspended thread will resume running at the starting point of its
code.

Handling Errors in Multithread Programs

Use the GetLastError function to obtain error information if any of the multithreading routines
returns an error code. Remember that it returns the error code of the last error, not necessarily the
error status of the last call.

Creating Multithread Applications Page 9 of 12

8/21/97 12:25:11 PM

Error codes are 32-bit values. Bit 29 is reserved for application-defined error codes. You can set this
bit and use SetLastError if you are creating your own dynamic-link library, to emulate Win32 API
behavior. Win32 functions only call SetLastError when they fail, not when they succeed.

The last error code value is kept in Thread Local Storage, so that multiple threads do not overwrite
each other’s values.

Working with Multiple Processes

The multithread libraries provide a number of routines for working with multiple processes. An
application can use multiple processes for functions that require a private address space and private
resources, to protect them from the activities of other threads. It is usually more efficient to
implement multitasking by creating several threads in one process, rather than by creating multiple
processes, for these reasons:

• The system can create and execute threads more quickly than it can create processes, since the
code for threads has already been mapped into the address space of the process, while the code
for a new process must be loaded.

• All threads of a process share the same address space and can access the process's global
variables, which can simplify communications between threads.

• All threads of a process can use open handles to resources such as files and pipes.

If you want to create an independent process that runs concurrently with the current one, use
CreateProcess. CreateProcess returns a 32-bit process identifier that is valid until the process
terminates. ExitProcess stops the process and notifies all DLLs the process is terminating.

Different processes can share mutexes, events, and semaphores (but not critical sections). Processes
can also optionally inherit handles from the process that created them (see Help for CreateProcess).

You can obtain information about the current process by calling GetCurrentProcess (returns a
pseudohandle to its own process), and GetCurrentProcessId (returns the process identifier). The
value returned by these functions can be used in calls to communicate with other processes.
GetExitCodeProcess returns the exit code of a process, or an indication that it is still running.

The OpenProcess function opens a handle to a process specified by its process identifier.
OpenProcess allows you to specify the handle's access rights and inheritability.

A process terminates whenever one of the following occurs:

• Any thread of the process calls ExitProcess
• The primary thread of the process returns
• The last thread of the process terminates
• TerminateProcess is called with a handle to the process

ExitProcess is the preferred way to terminate a process because it notifies all attached DLLs of the
termination, and ensures that all threads of the process terminate. DLLs are not notified after a call to
TerminateProcess.

Table of Multithread Routines

Creating Multithread Applications Page 10 of 12

8/21/97 12:25:11 PM

The following table lists routines available for multithread programs. For information about the
calling syntax of these routines, see the Platform SDK Reference section in InfoViewer.

Routine Description
CloseHandle Closes an open object handle.
CreateEvent Creates a named or unnamed event object.
CreateMutex Creates a named or unnamed mutex object.
CreateProcess Creates a new process and its primary thread.
CreateSemaphore Creates a named or unnamed semaphore object.
CreateThread Creates a thread to execute within the address space of the calling process.
DeleteCriticalSection Releases all resources used by an unowned critical section object.
DuplicateHandle Duplicates an object handle.
EnterCriticalSection Waits for ownership of the specified critical section object.
ExitProcess Ends a process and all its threads.
ExitThread Ends a thread.
GetCurrentProcess Returns a pseudohandle for the current process.
GetCurrentProcessId Returns the process identifier of the calling process.
GetCurrentThread Returns a pseudohandle for the current thread.
GetCurrentThreadId Returns the thread identifier of the calling thread.
GetExitCodeProcess Retrieves the termination status of the specified process.
GetExitCodeThread Retrieves the termination status of the specified thread.
GetLastError Returns the calling thread’s last-error code value.
GetPriorityClass Returns the priority class for the specified process.
GetThreadPriority Returns the priority value for the specified thread.
InitializeCriticalSection Initializes a critical section object.
LeaveCriticalSection Releases ownership of the specified critical section object.
OpenEvent Returns a handle of an existing named event object.
OpenMutex Returns a handle of an existing named mutex object.
OpenProcess Returns a handle of an existing process object.
OpenSemaphore Returns a handle of an existing named semaphore object.
PulseEvent As a single operation, sets (to signaled) and then resets the state of the

specified event object after releasing the appropriate number of waiting
threads.

ReleaseMutex Releases ownership of the specified mutex object.
ReleaseSemaphore Increases the count of the specified semaphore object by a specified

amount.
ResetEvent Sets the state of the specified event object to nonsignaled.
ResumeThread Decrements a thread’s suspend count. When the suspend count is zero,

execution of the thread resumes.
SetEvent Sets the state of the specified event object to signaled.
SetLastError Sets the last-error code for the calling thread.
SetPriorityClass Sets the priority class for the specified process.
SetThreadPriority Sets the priority value for the specified thread.
SuspendThread Suspends the specified thread.

Creating Multithread Applications Page 11 of 12

8/21/97 12:25:11 PM

TerminateProcess Terminates the specified process and all of its threads.
TerminateThread Terminates a thread.
TlsAlloc Allocates a thread local storage (TLS) index.
TlsFree Releases a thread local storage (TLS) index, making it available for reuse.
TlsGetValue Retrieves the value in the calling thread’s thread local storage (TLS) slot

for a specified TLS index.
TlsSetValue Stores a value in the calling thread’s thread local storage (TLS) slot for a

specified TLS index.
WaitForMultipleObjects Returns either any one or all of the specified objects are in the signaled

state or when the time-out interval elapses.
WaitForSingleObject Returns when the specified object is in the signaled state or the time-out

interval elapses.

If a function mentioned in this section is not listed in the preceding table, then it is only available
through the USE DFWIN statement.

Compiling and Linking Multithread Programs
The support library DFORMT.LIB is a re-entrant library for creating statically linked multithread
programs. The DFORMD.LIB library, which calls code in the shared DFORMD.DLL, is also
re-entrant. Programs built with DFORMT.LIB do not share Fortran run-time library code or data
with any dynamic-link libraries they call. You must link with DFORMD.LIB if you plan to call a
DLL.

To build a multithread application that uses the Fortran run-time libraries, you must tell the linker to
use a special version of the libraries. You can specify the /threads compiler option from the
command line, or in Microsoft Developer Studio in the Project Settings window, as described in the
following paragraph.

A sample multithread project and source file, THREADS.MAK and THREADS.F90, are included in
the \DF\SAMPLES\ADVANCED\WIN32\THREADS subdirectory and \DF\SAMPLES\TUTORIAL
subdirectory, respectively. To build this sample, open the project THREADS.MAK and choose Build
All from the Build menu. Listed following are the steps for compiling and linking your own
multithread program using the Microsoft Developer Studio.

To compile and link your multithread program:

1. Create a new project. Choose the Project tab, then specify the Project type. (The sample
THREADS.F90 is a QuickWin project.)

2. Add the file containing the source code to the project.
3. From the Project menu, select Settings.

The Project Settings dialog box appears.
4. Choose the Fortran tab, Fortran Libraries category, and set the Runtime Libraries to

Multithread Libraries (DFORMT.LIB) or Multithread Libraries in a DLL (DFORMD.LIB).
5. Create the executable file by choosing Build All from the Build menu.

The following steps describe how to compile and link the sample multithread program from the
command line.

Creating Multithread Applications Page 12 of 12

8/21/97 12:25:11 PM

To compile and link the sample multithread program from the command line:

1. Make sure the library files directory is specified in your LIB environment variable.
2. Compile and link the program with the DF command-line option /threads.

For example:

DF /threads MYTHREAD.F90

The /threads compiler option (automatically set when you specify a multithread application in
Developer Studio) tells the linker to use DFORMT.LIB as a default library.

To compile and link the THREADS.F90 sample, the command is:

DF /libs=qwin THREADS.F90

The /threads compiler option causes the linker to search the multithread library; the /libs=qwin
requests a Quickwin multiple window application.

Select the compiler options /libs=dll and /threads if you are using both multithread code and DLLs.
You can use the /libs=dll and /threads options only with console projects, not QuickWin
applications.

Other Sources of Information
For a thorough discussion of threads. processes, and multithreading, see Helen Custer’s Inside
Windows NT, available from Microsoft Press. Articles on how to accomplish multithreading have
also been published in the Microsoft Developer Network CD and the Microsoft Systems Journal:

• The Microsoft Developer Network CD contains several articles on multithreading:

• "Multiple Threads in the User Interface," by Nancy Winnick Cluts, discusses the
ramifications of adding multiple threads to the user interface. This article not only
offers alternatives to multiple threads, but also covers window management and
message loops for multithreading.

• "Multithreading for Rookies," by Ruediger R. Asche, focuses on practical applications
of multithreading.

• "Detecting Deadlocks in Multithreaded Win32 Applications," by Ruediger R. Asche,
presents deadlock detection techniques. A deadlock is a condition in which the
application hangs because two or more threads are waiting for each other to release a
shared resource before resuming execution.

• "Moving Unix Applications to Windows NT," provides an overview of Windows
multithreading calls, contrasting them with Unix fork() calls.

• The Microsoft Systems Journal is also a source of information on multithreading:

• "Coordinate Win32 threads using manual-reset and auto-reset events," by Jeffrey
Richter. October 1993, v8 n10.

• "Synchronizing Win32 threads using critical sections, semaphores, and mutexes," by
Jeffrey Richter. August 1993, v8 n8.

Programming with Mixed Languages Page 1 of 38

8/21/97 12:25:29 PM

Programming with Mixed Languages
Mixed-language programming is the process of building programs in which the source code is
written in two or more languages. It allows you to:

• Call existing code that is written in another language
• Use procedures that may be difficult to implement in a particular language
• Gain advantages in processing speeds

Mixed-language programming is possible among the 32-bit languages Visual Fortran, Visual C/C++,
Visual Basic, and MASM. Mixed-language programming in Win32 is different from that in 16-bit
environments, and in many respects it is easier.

To properly create mixed-language programs, rules must be established for naming variables and
procedures, for stack use, and for argument passing among routines written in different languages.
These rules, as a whole, are the calling convention.

A calling convention includes:

• Stack considerations
• Does a routine receive a varying or fixed number of arguments?
• Which routine clears the stack after a call?

• Naming conventions
• Is lowercase or uppercase significant or not significant?
• Are names decorated (as in Visual C++)?

• Argument passing protocol
• Are arguments passed by value or by reference?
• What are the equivalent data types and data structures among languages?

This section provides information on the calling conventions available when writing routines written
in Fortran, C, Visual C++, Visual Basic, and x86 assembly language. It is organized into the
following topics:

• Overview of Mixed-Language Issues
• Exchanging and Accessing Data in Mixed-Language Programming
• Handling Data Types in Mixed-Language Programming
• Visual Fortran/Visual C++ Mixed-Language Programs
• Fortran/Visual Basic Mixed-Language Programs
• Fortran/MASM Mixed-Language Programs

Overview of Mixed-Language Issues
Mixed-language programming involves a call from a routine written in one language to a function,
procedure, or subroutine written in another language. For example, a Fortran main program may
need to execute a specific task that you want to program separately in an assembly-language
procedure, or you may need to call an existing DLL or system procedure.

Mixed-language programming is possible with Visual Fortran, Visual C/C++, Visual Basic, and
assembly language (MASM) because each language implements functions, subroutines, and

Programming with Mixed Languages Page 2 of 38

8/21/97 12:25:29 PM

procedures in approximately the same way. The following table shows how different kinds of
routines from each language correspond to each other. For example, a C main program could call an
external void function, which is actually implemented as a Fortran subroutine.

Language Equivalents for Calls to Routines

Language Call with return value Call with no return value
Fortran FUNCTION SUBROUTINE
C and Visual C++ function (void) function
Visual Basic Function Sub
Assembly language Procedure Procedure

There are some important differences in the way languages implement routines. Argument passing,
naming conventions and other interface issues must be thoughtfully and consistently reconciled
between any two languages to prevent program failure and indeterminate results. However, the
advantages of mixed-language programming often make the extra effort worthwhile.

A summary of a few mixed-language advantages and restrictions follows:

• Fortran/Assembly Language

Assembly-language routines are small and execute very quickly because they don't require
initialization as do high-level languages like Fortran and C. Also, they allow access to
hardware instructions unavailable to the high-level language user. In a
Fortran/assembly-language program, compiling the main routine in Fortran gives the assembly
code access to Fortran high-level procedures and library functions, yet allows freedom to tune
the assembly-language routines for maximum speed and efficiency. The main program can
also be an assembly-language program.

• Fortran/Visual Basic

A mix of Fortran and Visual Basic 4.0 or higher (32-bit) allows you to use the
easy-to-implement user-interface features of Visual Basic, yet do all your computation,
especially floating-point math, in Fortran routines. In a Fortran/Visual Basic program, the
main routine must be Visual Basic. It is not possible to call Basic routines from Fortran.

• Fortran/C (or C++)

Generally, Fortran/C programs are mixed to allow one to use existing code written in the other
language. Either Fortran or C can call the other, so the main routine can be in either language.

To use the same Developer Studio environment for multiple languages, you must have the same
version of Developer Studio for your languages (see Mixed-Language Development Support).

This section provides an explanation of the keywords, attributes, and techniques you can use to
reconcile differences between Fortran and other languages. Adjusting calling conventions, adjusting
naming conventions and writing interface procedures are discussed in the next sections:

• Adjusting Calling Conventions in Mixed-Language Programming
• Adjusting Naming Conventions in Mixed-Language Programming
• Prototyping a Procedure in Fortran

Programming with Mixed Languages Page 3 of 38

8/21/97 12:25:29 PM

After establishing a consistent interface between mixed-language procedures, you then need to
reconcile any differences in the treatment of individual data types (strings, arrays, and so on). This is
discussed in Exchanging and Accessing Data in Mixed-Language Programming .

Note: This section uses the term "routine" in a generic way, to refer to functions, subroutines, and
procedures from different languages.

Adjusting Calling Conventions in Mixed-Language Programming

The calling convention determines how a program makes a call to a routine, how the arguments are
passed, and how the routines are named (discussed in the section on Adjusting Naming Conventions
in Mixed-Language Programming). In a single-language program, calling conventions are nearly
always correct, because there is one default for all routines and because header files or Fortran
module files with interface blocks enforce consistency between the caller and the called routine.

In a mixed-language program, different languages cannot share the same header files. If, as a result,
you link Fortran and C routines that use different calling conventions, the error isn’t apparent until
the bad call is made at run-time. During execution, the bad call causes indeterminate results and/or a
fatal error, often somewhere in the program that has no apparent relation to the actual cause:
memory/stack corruption due to calling errors. Therefore, you should check carefully the calling
conventions for each mixed-language call.

The discussion of calling conventions between languages applies only to external procedures. You
cannot call internal procedures from outside the program unit that contains them.

A calling convention affects programming in five ways:

• The caller routine uses a calling convention to determine the order in which to pass arguments
to another routine; the called routine uses a calling convention to determine the order in which
to receive the arguments passed to it. In Fortran, you can specify these conventions in a
mixed-language interface with the INTERFACE statement or in a data or function
declaration. 32-bit Visual C/C++ and Fortran both pass arguments in order from left to right.

• The caller routine and the called routine use a calling convention to determine which of them
is responsible for adjusting the stack in order to remove arguments when the execution of the
called routine is complete. You can specify these conventions with ATTRIBUTES (
cDEC$ ATTRIBUTES compiler directive) options such as C or STDCALL.

• The caller routine and the called routine use a calling convention to select the option of
passing a variable number of arguments.

• The caller routine and the called routine use a calling convention to pass arguments by value
(values passed) or by reference (addresses passed). Individual Fortran arguments can also be
designated with ATTRIBUTES option VALUE or REFERENCE.

• The caller routine and the called routine use a calling convention to establish naming
conventions for procedure names. You can establish any procedure name you want, regardless
of its Fortran name, with the ALIAS directive (or ATTRIBUTES option ALIAS). This is
useful because C is case sensitive, while Fortran is not.

Different Fortran calling conventions can be specified by declaring the Fortran procedure to have
certain attributes. For example, on x86 systems:

Programming with Mixed Languages Page 4 of 38

8/21/97 12:25:29 PM

 INTERFACE
 SUBROUTINE MY_SUB (I)
 !DEC$ ATTRIBUTES C, ALIAS:’_My_Sub’ :: MY_SUB ! x86 systems
 INTEGER I
 END SUBROUTINE MY_SUB
 END INTERFACE

This code declares a subroutine named MY_SUB with the C property and the external name _My_Sub
set with the ALIAS property on x86 systems.

On Alpha systems, the leading underscore for the external name _My_Sub is removed, so the !DEC$
ATTRIBUTES line is as follows:

 !DEC$ ATTRIBUTES C, ALIAS:’My_Sub’ :: MY_SUB ! Alpha systems

To write code for both x86 and Alpha platforms, use the conditional compilation features of the IF
Directive Construct, perhaps with the platform-specific preprocessor macros (such as _X86_ and
ALPHA) defined under the /define option.

The ATTRIBUTES options C, STDCALL, REFERENCE, VALUE, and VARYING all affect the
calling convention of routines. By default, Fortran passes all data by reference (except the hidden
length argument of strings, which is a special case). If the C or STDCALL option is used, the default
changes to passing almost all data by value except arrays. However, in addition to the
calling-convention options C and STDCALL, you can specify argument options, VALUE and
REFERENCE, to pass arguments by value or by reference, regardless of the calling convention
option. Arrays can only be passed by reference.

The following table summarizes the effect of the most common Fortran calling-convention
directives.

Calling Conventions for ATTRIBUTES Options

 Default C STDCALL C, REFERENCE
STDCALL,

REFERENCE
Argument

Scalar Reference Value Value Reference Reference
Scalar
[value]

Value Value Value Value Value

Scalar
[reference]

Reference Reference Reference Reference Reference

String Reference, either
Len: Mixed or
Len:End

String(1:1) String(1:1) Reference, either
Len: Mixed or
Len:End

Reference, No
Len

String
[value]

Error String(1:1) String(1:1) String(1:1) String(1:1)

String
[reference]

Reference, either
Len: Mixed or
No Len

Reference,
No Len

Reference,
No Len

Reference, No Len Reference, No
Len

Array Reference Reference Reference Reference Reference
Array [value] Error Error Error Error Error

Programming with Mixed Languages Page 5 of 38

8/21/97 12:25:29 PM

Array
[reference]

Reference Reference Reference Reference Reference

Derived Type Reference Value, size
dependent

Value, size
dependent

Reference Reference

Derived Type
[value]

Value, size
dependent

Value, size
dependent

Value, size
dependent

Value, size
dependent

Value, size
dependent

Derived Type
[reference]

Reference Reference Reference Reference Reference

F90 Pointer Descriptor Descriptor Descriptor Descriptor Descriptor
F90 Pointer
[value]

Error Error Error Error Error

F90 Pointer
[reference]

Descriptor Descriptor Descriptor Descriptor Descriptor

Procedure Name
Suffix @n (x86

systems)
none @n (x86

systems)
none @n (x86 systems)

Case Upper Case Lower Case Lower Case Lower Case Lower Case
Stack
Cleanup

Callee Caller Callee Caller Callee

The terms in the above table mean the following:

[value] Assigned the VALUE property.
[reference] Assigned the REFERENCE property.
Value The argument value is pushed on the stack. All values are padded to the next 4-byte

boundary.
Reference The 4-byte argument address is pushed on the stack.
Len: Mixed or
Len: End

For certain string arguments:
• Len: Mixed applies when /iface:mixed_str_len_arg is set. The length of the

string is pushed (by value) on the stack immediately after the address of the
beginning of the string.

• Len: End applies when /iface:nomixed_str_len_arg is set. The length of the
string is pushed (by value) on the stack after all of the other arguments.

Len: Mixed or
No Len

For certain string arguments:
• Len: Mixed applies when /iface:mixed_str_len_arg is set. The length of the

string is pushed (by value) on the stack immediately after the address of the
beginning of the string.

• No Len applies when //iface:nomixed_str_len_arg is set. The length of the
string is not available to the called procedure.

No Len For string arguments, the length of the string is not available to the called procedure.
String(1:1) For string arguments, the first character is converted to INTEGER(4) as in

ICHAR(string(1:1)) and pushed on the stack by value.
Error Produces a compiler error.
Descriptor 4-byte address of the array descriptor.
@n On x86 systems, the at sign (@) followed by the number of bytes (in decimal)

required for the argument list.
Size Derived-type arguments specified by value are passed as follows:

Programming with Mixed Languages Page 6 of 38

8/21/97 12:25:29 PM

dependent • Arguments from 1 to 4 bytes are passed by value.
• Arguments from 5 to 8 bytes are in two registers (two arguments).
• Arguments more than 8 bytes provide value semantics by passing a temporary

storage address by reference.
Upper Case Procedure name in all uppercase.
Lower Case Procedure name in all lowercase.
Callee The procedure being called is responsible for removing arguments from the stack

before returning to the caller.
Caller The procedure doing the call is responsible for removing arguments from the stack

after the call is over.

The following table shows which Fortran ATTRIBUTES options match other language calling
conventions.

Matching Calling Conventions

Other language calling convention Matching ATTRIBUTES option
Visual C/C++ cdecl (default) C option
Visual C/C++ __stdcall STDCALL option
Visual Basic none
Visual Basic CDECL keyword C option
MASM C (in PROTO and PROC declarations) C option
MASM STDCALL (in PROTO and PROC declarations) STDCALL option

Note that the ALIAS option can be used with any other Fortran calling-convention option to preserve
mixed-case names.

Note: When interfacing to the Windows graphical user interface or making API calls, you will
typically use STDCALL. See Advanced Applications, for more information on Windows
programming.

Specific calling-convention issues are discussed in the following sections:

• Stack Considerations in Calling Conventions
• Fortran/C Calling Conventions
• Fortran/Visual Basic Calling Conventions
• Fortran/MASM Calling Conventions

Stack Considerations in Calling Conventions

In the C calling convention, the calling routine always adjusts the stack immediately after the called
routine returns control. This produces slightly larger object code because the code that restores the
stack must exist at every point a procedure is called. In the STDCALL calling convention, the called
procedure controls the stack. The code to restore the stack resides in the called procedure, so the
code needs to appear only once.

However, the C calling convention makes calling with a variable number of arguments possible.
Since in the C calling convention the caller cleans up the stack, it is possible to write a routine with a
variable number of arguments. Therefore, it has the same address relative to the frame pointer,
regardless of how many arguments are actually passed. Because of this, when the calling routine

Programming with Mixed Languages Page 7 of 38

8/21/97 12:25:29 PM

controls the stack, it knows how many arguments it passed, how big they are and where they reside
in the stack. It can thus skip passing an argument and still keep track.

You can call routines with a variable number of arguments by including the ATTRIBUTES C and
VARYING options in your interface to a routine. The VARYING option prevents Fortran from
enforcing a matching number of arguments in routines. The VARYING option is not necessary with
intrinsic Fortran 90 routines with optional arguments, where argument order and/or keywords
determine which arguments are present and which are absent.

In MASM, stack control is also set by the C or STDCALL convention declared for the procedure, but
you can write MASM code to control the stack within the procedure any way you wish. In addition,
you can specify the USES option in the PROC directive to save and restore certain registers
automatically.

Fortran/C Calling Conventions

In C and Visual C++ modules, you can specify the STDCALL calling convention by using the
__stdcall keyword in a function prototype or definition. The __stdcall convention is also used by
window procedures and API functions. As an example, the following C language prototype sets up a
function call to a subroutine using the STDCALL calling convention:

extern void __stdcall FORTRAN_ROUTINE (int n);

Alternatively, instead of changing the calling convention of the C code, you can adjust the Fortran
source code by using the C option. This is set with the ATTRIBUTES directive. For example, the
following declaration assumes the subroutine is called with the C calling convention:

 SUBROUTINE CALLED_FROM_C (A)
 !DEC$ ATTRIBUTES C :: CALLED_FROM_C
 INTEGER A

Fortran/Visual Basic Calling Conventions

You establish Fortran subroutines and functions in Visual Basic forms and the Fortran routines are
then invoked from a Basic module. A Fortran routine has to be a DLL (dynamic-link library) to be
called from Basic. For more information on DLLs, see Advanced Applications and Dynamic-Link
Library Projects.

The calling-convention ALIAS directive (or ATTRIBUTES option ALIAS) is needed if mixed-case
names are to be preserved (by default Fortran translates names to all uppercase). However, two
special cases require different treatment:

• If a varying number of arguments are to be passed, the C and VARYING options are needed in
the Fortran procedure definition and the CDECL keyword needed in the Basic DECLARE
statement in order to establish the C calling and naming convention.

• When passing character arguments, the Fortran routine must use the ATTRIBUTES option
STDCALL so it does not expect the hidden length of the character arguments. Since
STDCALL also lowercases Fortran names, the Fortran subprogram name should be referenced
in lowercase from the Visual Basic program.

The following Fortran and Visual Basic statements establish an example Fortran function to be

Programming with Mixed Languages Page 8 of 38

8/21/97 12:25:29 PM

called from Basic:

! Fortran Subprogram establishing Fortran function.
 INTERFACE
 DOUBLE PRECISION FUNCTION GetFVal (r1)
 !DEC$ ATTRIBUTES ALIAS:’GetFVal’ :: GetFVal
 !DEC$ ATTRIBUTES VALUE :: r1
 REAL r1
 END FUNCTION
 END INTERFACE
’FORM.FRM Basic Form to establish Fortran function
Declare Function GetFVal Lib "C:\f90\FVAL.DLL" (ByVal r1 As Single) As Double

Fortran/MASM Calling Conventions

You specify the calling convention for a MASM procedure in the PROTO and PROC directives.
The STDCALL option in the PROTO and PROC directives tells the procedure to use the
STDCALL calling convention. The C option in the PROTO and PROC directives tells the
procedure to use the C calling convention. The USES option in the PROC directive specifies which
registers to save and restore in the called MASM routine. The VARARG option to the PROTO and
PROC directives specifies that the procedure allows a variable number of arguments.

As an example, the following Fortran and MASM statements set up a MASM function that can be
called from Visual Fortran, using the STDCALL calling convention:

!Fortran STDCALL prototype.
 INTERFACE
 INTEGER FUNCTION forfunc(I1, I2)
 !DEC$ ATTRIBUTES STDCALL :: forfunc
 INTEGER I1
 INTEGER(2) I2
 END INTERFACE
 WRITE (*,*) forfunc(I1,I2)

 ;MASM STDCALL Prototype
 .MODEL FLAT, STDCALL
 forfunc PROTO STDCALL, forint: SDWORD, shorti: SWORD
 .CODE
 forfunc PROC STDCALL, forint: SDWORD, shorti: SWORD
 ...
 forfunc ENDP END

The following Fortran and MASM statements set up a Fortran-callable MASM function using the C
calling convention:

!Fortran C prototype
 INTERFACE
 INTEGER FUNCTION Forfunc (I1, I2)
 !DEC$ATTRIBUTES C, ALIAS:’Forfunc’ :: Forfunc
 INTEGER I1
 INTEGER(2) I2
 END INTERFACE
 WRITE(*,*) Forfunc (I1, I2)
 END

; MASM C PROTOTYPE
 .MODEL FLAT, C
 Forfunc PROTO C, forint:SDWORD, shorti:SWORD
 .CODE
 Forfunc PROC C, forint:SDWORD, shorti:SWORD

Programming with Mixed Languages Page 9 of 38

8/21/97 12:25:29 PM

 ...
 Forfunc ENDP END

Adjusting Naming Conventions in Mixed-Language Programming

C and STDCALL determine naming conventions as well as calling conventions. Calling conventions
specify how arguments are moved and stored; naming conventions specify how symbol names are
altered when placed in an .OBJ file. Names are an issue for external data symbols shared among
parts of the same program as well as among external routines. Symbol names (such as the name of a
subroutine) identify a memory location that must be consistent among all calling routines.

Parameter names (names given in a procedure definition to variables that are passed to it) are never
affected. Names are altered because of case sensitivity (in C, Visual Basic, and MASM), lack of case
sensitivity (in Fortran), name decoration (in Visual C++), or other issues. If naming conventions are
not reconciled, the program cannot successfully link and you will receive an "unresolved external"
error.

This section also discusses:

• Visual C/C++ and Visual Basic Naming Conventions
• MASM Naming Conventions
• Summary of Naming Conventions
• How to reconcile names between languages in four common cases

Visual C/C++ and Visual Basic Naming Conventions

Visual C/C++ and Visual Basic preserve case sensitivity in their symbol tables while Fortran by
default does not, a difference that requires attention. Fortunately, you can use the Fortran
ATTRIBUTES ALIAS option to resolve discrepancies between names, to preserve mixed-case
names, or to override the automatic conversion of names to all uppercase by the Fortran default
naming, or the automatic conversion to all lowercase by Fortran's STDCALL and C naming
convention.

MASM Naming Conventions

In MASM (Microsoft Assembler, for x86 systems), specifying the C or STDCALL naming
convention in PROC and PROTO statements preserves case sensitivity if no CASEMAP option
exists. The MASM OPTION CASEMAP directive (and the command line option /C) also sets case
sensitivity and overrides naming conventions specified within PROTO and PROC statements.
CASEMAP: NONE (equivalent to /Cx) preserves the case of identifiers in PUBLIC, COMM,
EXTERNDEF, EXTERN, PROTO, and PROC declarations. CASEMAP: NOTPUBLIC
(equivalent to /Cp) preserves the case of all user identifiers; this is the default. CASEMAP: ALL
(equivalent to /Cu) translates all identifiers to uppercase.

Summary of Naming Conventions

The following table summarizes how Fortran, Visual C/C++, Visual Basic and MASM handle
procedure names. Note that for MASM, the table does not appy if the CASEMAP: ALL option is
used.

Programming with Mixed Languages Page 10 of 38

8/21/97 12:25:29 PM

Naming Conventions in Fortran, C, Visual C++, Visual Basic, and MASM

Language Attributes Name translated as
Case of name in

.OBJ file
Fortran cDEC$ ATTRIBUTES C _name All lowercase

cDEC$ ATTRIBUTES STDCALL _name@n All lowercase
default _name@n All uppercase

C cdecl (default) _name Mixed case preserved
__stdcall _name@n Mixed case preserved

Visual C++ Default _name@@decoration Mixed case preserved
Visual
Basic

Default _name@n Mixed case preserved

MASM C (in PROTO and PROC declarations) _name Mixed case preserved
STDCALL (in PROTO and PROC
declarations)

_name@n Mixed case preserved

In the preceding table:
• The leading underscore (such as _name) is used on x86 systems only (not on Alpha systems).
• @n represents the stack space, in decimal notation, occupied by parameters on x86 systems

only (not on Alpha systems).

For example, assume a function is declared in C as:

extern int __stdcall Sum_Up(int a, int b, int c);

Each integer occupies 4 bytes, so the symbol name placed in the .OBJ file on x86 systems is:

_Sum_Up@12

On Alpha systems, the symbol name placed in the .OBJ file is:

Sum_Up

The following sections describe how to reconcile names between languages in four common cases:

• Calls to Fortran, where Fortran cannot be recompiled (use uppercase names)
• Symbol names that are all lowercase
• Mixed-case names
• Fortran module names
• Visual C++ names

All-Uppercase Names

If you call a Fortran routine that uses Fortran defaults and cannot recompile the Fortran code, then in
C and Visual Basic you must use an all-uppercase name to make the call. In MASM you must either
use an all-uppercase name or set the OPTION CASEMAP directive to ALL, which translates all
identifiers to uppercase. Use of the __stdcall convention in C code or STDCALL in MASM
PROTO and PROC declarations is not enough, because __stdcall and STDCALL always preserve
case. Fortran generates all-uppercase names by default and the C or MASM code must match it.

For example, these prototypes establish the Fortran function FFARCTAN(angle) where the argument

Programming with Mixed Languages Page 11 of 38

8/21/97 12:25:29 PM

angle has the ATTRIBUTES VALUE property:

• In C,

extern float __stdcall FFARCTAN(float angle);

• In Visual Basic,

Declare Function FFARCTAN Lib "C:\f90ps\FBAS.DLL" (ByVal angle As Single) As S

• In MASM,

.MODEL FLAT, STDCALL
FFARCTAN PROTO STDCALL, angle: PTR REAL4
...
FFARCTAN PROC STDCALL, angle: PTR REAL4

All-Lowercase Names

If the name of the routine appears as all lowercase in C or MASM, then naming conventions are
automatically correct when the C or STDCALL option is used in the Fortran declaration. Any case
may be used in the Fortran source code, including mixed case since the C and STDCALL options
change the name to all lowercase. In this way STDCALL differs from the Fortran default behavior.
You cannot call a Visual Basic routine from Fortran directly (see Fortran/Visual Basic
Mixed-Language Programs), so Basic routine names are never translated.

Mixed-case Names

If the name of a routine appears as mixed-case in C or MASM and you cannot change the name, then
you can resolve this naming conflict by using the Fortran ATTRIBUTES ALIAS option. ALIAS is
required in this situation because otherwise Fortran will not preserve the mixed-case name.

To use the ALIAS option, place the name in quotation marks exactly as it is to appear in the .OBJ
file. The following is an example on x86 systems for referring to the C function My_Proc:

 !DEC$ ATTRIBUTES ALIAS:’_My_Proc’ :: My_Proc

On Alpha systems, this would be coded without the leading underscore as:

 !DEC$ ATTRIBUTES ALIAS:’My_Proc’ :: My_Proc

Fortran Module Names

Fortran module entities (data and procedures) have external names that differ from other external
entities. Module names use the convention:

_MODULENAME_mp_ENTITY [@stacksize]

MODULENAME is the name of the module and is all uppercase by default. ENTITY is the name of
the module procedure or module data contained within MODULENAME. ENTITY is also uppercase
by default. _mp_ is the separator between the module and entity names and is always lowercase.

For example:

 MODULE mymod
 INTEGER a

Programming with Mixed Languages Page 12 of 38

8/21/97 12:25:29 PM

 CONTAINS
 SUBROUTINE b (j)
 INTEGER j
 END SUBROUTINE
 END MODULE

results in the following symbols being defined in the compiled .OBJ file on x86 systems:

_MYMOD_mp_A
_MYMOD_mp_B@4

Or, on Alpha systems:

MYMOD_mp_A
MYMOD_mp_B

Compiler options can affect the naming of module data and procedures.

Note: Except for ALIAS, ATTRIBUTES options do not affect the module name, which remains
uppercase.

The following table shows how each ATTRIBUTES option affects the subroutine in the previous
example module.

Effect of ATTRIBUTES options on Fortran Module Names

ATTRIBUTES Option
Given to Routine ’b’

Procedure name in .OBJ file on
x86 systems

Procedure name in .OBJ file
on Alpha systems

None _MYMOD_mp_B@4 MYMOD_mp_B
C _MYMOD_mp_b MYMOD_mp_b
STDCALL _MYMOD_mp_b@4 MYMOD_mp_b
ALIAS Overrides all others, name as

given in the alias
Overrides all others, name as
given in the alias

VARYING No effect on name No effect on name

You can write code to call Fortran modules or access module data from other languages. As with
other naming and calling conventions, the module name must match between the two languages.
Generally, this means using the C or STDCALL convention in Fortran, and if defining a module in
another language, using the ALIAS option to match the name within Fortran. Examples are given in
the section Using Modules in Mixed-Language Programming.

Visual C++ Names

Visual C++ uses the same calling convention and argument-passing techniques as C, but naming
conventions are different because of Visual C++ decoration of external symbols. The extern "C"
syntax makes it possible for a Visual C++ module to share data and routines with other languages by
causing Visual C++ to drop name decoration.

The following example declares prn as an external function using the C naming convention. This
declaration appears in Visual C++ source code:

extern "C" { void prn(); }

To call functions written in Fortran, declare the function as you would in C and use a "C" linkage

Programming with Mixed Languages Page 13 of 38

8/21/97 12:25:29 PM

specification. For example, to call the Fortran function FACT from Visual C++, declare it as follows:

extern "C" { int __stdcall FACT(int n); }

The extern "C" syntax can be used to adjust a call from Visual C++ to other languages, or to change
the naming convention of Visual C++ routines called from other languages. However, extern "C"
can only be used from within Visual C++. If the Visual C++ code does not use extern "C" and
cannot be changed, you can call Visual C++ routines only by determining the name decoration and
generating it from the other language. Such an approach should only be used as a last resort, because
the decoration scheme is not guaranteed to remain the same between versions.

Use of extern "C" has some restrictions:

• You cannot declare a member function with extern "C".
• You can specify extern "C" for only one instance of an overloaded function; all other

instances of an overloaded function have Visual C++ linkage.

For more information on the extern "C" linkage specification, see the Microsoft Visual C++
Language Reference.

Prototyping a Procedure in Fortran

You define a prototype (interface block) in your Fortran source code to tell the Fortran compiler
which language conventions you want to use for an external reference. The interface block is
introduced by the INTERFACE statement. See Program Units and Procedures, for a more detailed
description of the INTERFACE statement.

The general form for the INTERFACE statement is:

INTERFACE
routine statement
[routine ATTRIBUTE options]
[argument ATTRIBUTE options]
formal argument declarations
END routine name
END INTERFACE

The routine statement defines either a FUNCTION or a SUBROUTINE, where the choice depends
on whether a value is returned or not, respectively. The optional routine ATTRIBUTE options (such
as C and STDCALL) determine the calling, naming, and argument-passing conventions for the
routine in the prototype statement. The optional ATTRIBUTE argument options (such as VALUE
and REFERENCE) are properties attached to individual arguments. The formal argument
declarations are Fortran data type declarations. Note that the same INTERFACE block can specify
more than one procedure.

For example, suppose you are calling a C function that has the following prototype:

extern void My_Proc (int i);

The Fortran call to this function should be declared with the following INTERFACE block on x86
systems:

Programming with Mixed Languages Page 14 of 38

8/21/97 12:25:29 PM

 INTERFACE
 SUBROUTINE my_Proc (I)
 !DEC$ ATTRIBUTES C, ALIAS:’_My_Proc’ :: my_Proc
 INTEGER I
 END SUBROUTINE my_Proc
 END INTERFACE

Note that:

• On Alpha systems, the leading underscore in _My_Proc is omitted. The !DEC$ ATTRIBUTES
line on Alpha systems contains:

 !DEC$ ATTRIBUTES C, ALIAS:’My_Proc’ :: my_Proc

• Except in the ALIAS string, the case of My_Proc in the Fortran program doesn't matter.

Exchanging and Accessing Data in Mixed-Language
Programming
You can use several approaches to sharing data between mixed-language routines, which can be used
within the individual languages as well. These approaches are:

• Passing Arguments in Mixed-Language Programming
• Using Modules in Mixed-Language Programming
• Using Common External Data in Mixed-Language Programming

Generally, if you have a large number of parameters to work with or you have a large variety of
parameter types, you should consider using modules or external data declarations. This is true when
using any given language, and to an even greater extent when using mixed languages.

Passing Arguments in Mixed-Language Programming

You can pass data between Fortran and C, Visual C++, Visual Basic and MASM through calling
argument lists just as you can within each language (for example, the argument list a, b and c in
CALL MYSUB(a,b,c)). There are two ways to pass individual arguments:

• By value, which passes the argument's value.
• By reference, which passes the address of the argument. (In Fortran, Visual Basic, C, and

Visual C++, all addresses in Version 5.0 are 4 bytes on x86 and Alpha systems.)

You need to make sure that for every call, the calling program and the called routine agree on how
each argument is passed. Otherwise, the called routine receives bad data.

The Fortran technique for passing arguments changes depending on the calling convention specified.
By default, Fortran passes all data by reference (except the hidden length argument of strings, which
is a special case). If the ATTRIBUTES C or STDCALL option is used, the default changes to
passing all data by value except arrays. If the procedure has the REFERENCE option as well as the C
or STDCALL option, all arguments by default are passed by reference.

Programming with Mixed Languages Page 15 of 38

8/21/97 12:25:29 PM

In Fortran, in addition to establishing argument passing with the calling-convention options C and
STDCALL, you can specify argument options, VALUE and REFERENCE, to pass arguments by
value or by reference. In mixed-language programming, it is a good idea to specify the passing
technique explicitly rather than relying on defaults.

Note: In addition to ATTRIBUTES, the compiler option /iface also establishes some default
argument passing conventions (such as for hidden length of strings).

Examples of passing by reference and value for C, Visual Basic and MASM follow. All are
interfaces to the example Fortran subroutine TESTPROC below. The definition of TESTPROC declares
how each argument is passed. The REFERENCE option is not strictly necessary in this example, but
using it makes the argument’s passing convention conspicuous.

 SUBROUTINE TESTPROC(VALPARM, REFPARM)
 !DEC$ ATTRIBUTES VALUE :: VALPARM
 !DEC$ ATTRIBUTES REFERENCE :: REFPARM
 INTEGER VALPARM
 INTEGER REFPARM
 END

• Fortran/C example of arguments passed by value and reference

In C and Visual C++ all arguments are passed by value, except arrays, which are passed by
reference to the address of the first member of the array. Unlike Fortran, C and Visual C++ do
not have calling-convention directives to affect the way individual arguments are passed. To
pass non-array C data by reference, you must pass a pointer to it. To pass a C array by value,
you must declare it as a member of a structure and pass the structure. The following C
declaration sets up a call to the example Fortran TESTPROC subroutine:

extern void __stdcall TESTPROC(int ValParm, int *RefParm);

• Fortran/Visual Basic example of arguments passed by value and reference

In Visual Basic, arguments are passed by reference by default. To pass arguments by value,
you use the keyword BYVAL in front of the argument in the DECLARE statement. For
example:

Declare Sub TESTPROC Lib "C:\f90\TESTPROC.DLL"

 (ByVal Valparm As Long, Refparm As Long)

Strings are a special case. See the discussion on character strings in Handling Character
Strings.

• Fortran/MASM example of arguments passed by value and reference

In MASM, arguments are passed by value by default. Arguments to be passed by reference are
designated with PTR in the PROTO and PROC directives. For example:

TESTPROC PROTO STDCALL, valparm: SDWORD, refparm: PTR SDWORD

To use an argument passed by value, use the value of the variable. For example:

 mov eax, valparm ; Load value of argument

Programming with Mixed Languages Page 16 of 38

8/21/97 12:25:29 PM

This statement places the value of valparm into the EAX register.

To use an argument passed by reference, use the address of the variable. For example:

 mov ecx, refparm ; Load address of argument
 mov eax, [ecx] ; Load value of argument

These statements place the value of refparm into the EAX register.

The following table summarizes how to pass arguments by reference and value. An array name in C
is equated to its starting address because arrays are normally passed by reference. You can assign the
REFERENCE property to a procedure, not only to individual arguments.

Passing Arguments by Reference and Value

Language ATTRIBUTE Argument Type
To pass

by reference
To pass
by value

Fortran Default Scalars and derived
types

Default VALUE option

C or STDCALL
option

Scalars and derived
types

REFERENCE option Default

Default Arrays Default Cannot pass by value
C or STDCALL
option

Arrays Default Cannot pass by value

Visual C/C++ Non-arrays Pointer
argument_name

Default

Arrays Default Struct {type}
array_name

Visual Basic All types Default ByVal
Assembler (x86) MASM All types PTR Default

This table does not describe argument passing of strings and Fortran 90 pointer arguments in Visual
Fortran, which are constructed differently than other arguments. By default, Fortran passes strings by
reference along with the string length. String length placement depends on whether the compiler
option /iface:mixed_str_len_arg (immediately after the address of the beginning of the string) or
/iface:nomixed_str_len_arg (after all arguments) is set.

Fortran 90 array pointers and assumed-shape arrays are passed by passing the address of the array
descriptor.

For a discussion of the effect of attributes on passing Fortran 90 pointers and strings, see Handling
Fortran 90 Pointers and Allocatable Arrays and Handling Character Strings.

Using Modules in Mixed-Language Programming

Modules are the simplest way to exchange large groups of variables with C, because Visual Fortran
modules are directly accessible from Visual C/C++. The following example declares a module in
Fortran, then accesses its data from C:

! F90 Module definition

Programming with Mixed Languages Page 17 of 38

8/21/97 12:25:30 PM

 MODULE EXAMP
 REAL A(3)
 INTEGER I1, I2
 CHARACTER(80) LINE
 TYPE MYDATA
 INTEGER N
 CHARACTER(30) INFO
 END TYPE MYDATA
 END MODULE EXAMP

* C code accessing module data *\
extern float EXAMP_mp_A[3];
extern int EXAMP_mp_I1, EXAMP_mp_I2;
extern char EXAMP_mp_LINE[80];
extern struct {
 int N;
 char INFO[30];
} EXAMP_mp_MYDATA;

You can also define a module procedure in C and make that routine part of a Fortran module by
using the ALIAS directive:

// C procedure
void pythagoras (float a, float b, float *c)
{
 *c = (float) sqrt(a*a + b*b);
}
! Fortran 90 Module including procedure
 MODULE CPROC
 INTERFACE
 SUBROUTINE PYTHAGORAS (a, b, res)
 !DEC$ ATTRIBUTES C :: PYTHAGORAS
 !DEC$ ATTRIBUTES REFERENCE :: res
! res is passed by REFERENCE because its individual attribute
! overrides the subroutine’s C attribute
 REAL a, b, res
! a and b have the VALUE attribute by default because
! the subroutine has the C attribute
 END SUBROUTINE
 END INTERFACE
 END MODULE

Using Common External Data in Mixed-Language Programming

Common external data structures include Fortran common blocks, and C structures and variables that
have been declared global or external. All of these data specifications create external variables,
which are variables available to routines outside the routine that defines them.

This section applies only to Fortran/C and Fortran/MASM mixed-language programs because there
is no way to share common data with Visual Basic. You must pass all data between Visual Basic and
Fortran as arguments. This process can be streamlined by passing user-defined types between them,
described in Handling User-Defined Types.

External variables are case sensitive, so the cases must be matched between different languages, as
discussed in the section on naming conventions. Common external data exchange is described in the
following sections:

• Using Global Variables

Programming with Mixed Languages Page 18 of 38

8/21/97 12:25:30 PM

• Using Fortran Common Blocks and C Structures

Using Global Variables in Mixed-Language Programming

A variable can be shared between Fortran and C or MASM by declaring it as global (or COMMON)
in one language and accessing it as an external variable in the other language. Visual Basic cannot
access another language's global data or share its own. In Fortran/Basic programs, variables must be
passed as arguments.

In Fortran, a variable can access a global parameter by using the EXTERN option for
ATTRIBUTES. For example:

 !DEC$ ATTRIBUTES C, EXTERN :: idata
 INTEGER idata (20)

EXTERN tells the compiler that the variable is actually defined and declared global in another source
file. If Fortran declares a variable external with EXTERN, the language it shares the variable with
must declare the variable global.

In C, a variable is declared global with the statement:

int idata[20]; // declared as global (outside of any function)

MASM declares a parameter global (PUBLIC) with the syntax:

PUBLIC [langtype] name

where name is the name of the global variable to be referenced, and the optional langtype is
STDCALL or C. The option langtype, if present, overrides the calling convention specified in the
.MODEL directive.

Conversely, Fortran can declare the variable global (COMMON) and other languages can reference
it as external:

!Fortran declaring PI global
 REAL PI
 COMMON /PI/ PI ! Common Block and variable have the same name

In C, the variable is referenced as an external with the statement:

//C code with external reference to PI
extern float PI;

Note that the global name C references is the name of the Fortran common block, not the name of a
variable within a common block. Thus, you cannot use blank common to make data accessible
between C and Fortran. In the preceding example, the common block and the variable have the same
name, which helps keep track of the variable between the two languages. Obviously, if a common
block contains more than one variable they cannot all have the common block name. (See common
block usage.)

MASM can also access Fortran global (COMMON) parameters with the EXTERN directive. The
syntax is:

EXTERN [langtype] name

Programming with Mixed Languages Page 19 of 38

8/21/97 12:25:30 PM

where name is the name of the global variable to be referenced, and the optional langtype is
STDCALL or C.

Using Fortran Common Blocks and C Structures

In order to reference C structures from Fortran common blocks and vice versa, you must take into
account the way the common blocks and structures differ in their methods of storing member
variables in memory. Fortran places common block variables into memory in order as close together
as possible, with the following rules:

• A single BYTE, INTEGER(1), LOGICAL(1), or CHARACTER variable in common block
list begins immediately following the previous variable or array in memory.

• All other types of single variables begin at the next even address immediately following the
previous variable or array in memory.

• All arrays of variables begin on the next even address immediately following the previous
variable or array in memory, except for CHARACTER arrays which always follow
immediately after the previous variable or array.

• All common blocks begin on a four-byte aligned address.

Because of these padding rules, you must consider the alignment of C structure elements with
Fortran common block elements and assure matching either by making all variables exactly
equivalent types and kinds in both languages (using only 4-byte and 8-byte data types in both
languages simplifies this) or by using the C pack pragmas in the the C code around the C structure to
make C data packing like Fortran's. For example:

#pragma pack(2)
struct {
 int N;
 char INFO[30];
} examp;
#pragma pack()

To restore the original packing, you must add #pragma pack() at the end of the structure.
(Remember: Fortran module data can be shared directly with C structures with appropriate naming.)

Once you have dealt with alignment and padding, you can give C access to an entire common block
or set of common blocks. Alternatively, you can pass individual members of a Fortran common
block in an argument list, just as you can any other data item. Use of common blocks for
mixed-language data exchange is discussed in the following sections:

• Accessing Common Blocks and C Structures Directly
• Passing the Address of a Common Block

Accessing Common Blocks and C Structures Directly

You can access Fortran common blocks directly from C by defining an external C structure with the
appropriate fields, and making sure that alignment and padding between Fortran and C are
compatible. The C and ALIAS ATTRIBUTES options can be used with a common block to allow
mixed-case names.

As an example, suppose your Fortran code has a common block named Really, as shown:

 !DEC$ ATTRIBUTES ALIAS:’Really’ :: Really

Programming with Mixed Languages Page 20 of 38

8/21/97 12:25:30 PM

 REAL(4) x, y, z(6)
 REAL(8) ydbl
 COMMON / Really / x, y, z(6), ydbl

You can access this data structure from your C code with the following external data structure:

#pragma pack(2)
extern struct {
 float x, y, z[6];
 double ydbl;
} Really;
#pragma pack()

You can also access C structures from Fortran by creating common blocks that correspond to those
structures. This is the reverse case from that just described. However, the implementation is the same
because after common blocks and structures have been defined and given a common address (name),
and assuming the alignment in memory has been dealt with, both languages share the same memory
locations for the variables.

Passing the Address of a Common Block

To pass the address of a common block, simply pass the address of the first variable in the block, that
is, pass the first variable by reference. The receiving C or Visual C++ module should expect to
receive a structure by reference.

In the following example, the C function initcb receives the address of a user-defined type n, which
it considers to be a pointer to a structure with three fields:

! Fortran SOURCE CODE
!
 INTERFACE
 SUBROUTINE initcb (BLOCK)
 !DEC$ ATTRIBUTES C :: initcb
 !DEC$ ATTRIBUTES REFERENCE :: BLOCK
 INTEGER BLOCK
 END SUBROUTINE
 END INTERFACE
!
 INTEGER n
 REAL(8) x, y
 COMMON /CBLOCK/n, x, y
 . . .
 CALL initcb(n)
/* C source code */
//
#pragma pack(2)
struct block_type
{
 int n;
 double x;
 double y;
};
#pragma pack()
//
void initcb(struct block_type *block_hed)
 {
 block_hed->n = 1;
 block_hed->x = 10.0;
 block_hed->y = 20.0;
}

Programming with Mixed Languages Page 21 of 38

8/21/97 12:25:30 PM

Handling Data Types in Mixed-Language Programming
Even when you have reconciled calling conventions, naming conventions, and methods of data
exchange, you must still be concerned with data types, because each language handles them
differently. The following table lists the equivalent data types among Fortran, C, Visual Basic, and
MASM:

Equivalent Data Types

Fortran data type C data type Visual Basic data type MASM data type
INTEGER(1) char --- SBYTE
INTEGER(2) short Integer SWORD
INTEGER(4) int, long Long SDWORD
REAL(4) float Single REAL4
REAL(8) double Double REAL8
CHARACTER(1) unsigned char --- BYTE
CHARACTER*(*) See Handling Character Strings
COMPLEX(4) struct complex4 {

float real, imag;
};

--- COMPLEX4 STRUCT 4
real REAL4 0
imag REAL4 0
COMPLEX4 ENDS

COMPLEX(8) struct complex8 {
double real, imag;
};

--- COMPLEX8 STRUCT 8
real REAL8 0
imag REAL8 0
COMPLEX8 ENDS

All LOGICAL types Use integer types for C, MASM, and Visual Basic

The following sections describe how to reconcile data types between the different languages:

• Handling Numeric, Complex, and Logical Data Types
• Handling Fortran 90 Array Pointers and Allocatable Arrays
• Handling DIGITAL Fortran Pointers
• Handling Arrays and Visual Fortran Array Descriptors
• Handling Character Strings
• Handling User-Defined Types

Handling Numeric, Complex, and Logical Data Types

Normally, passing numeric data does not present a problem. If a C program passes an unsigned data
type to a Fortran routine, the routine can accept the argument as the equivalent signed data type, but
you should be careful that the range of the signed type is not exceeded.

The table of Equivalent Data Types (included in the section Handling Data Types in
Mixed-Language Programming) summarizes equivalent numeric data types for Fortran, MASM, and
Visual Visual C/C++.

C, Visual C++, and MASM do not directly implement the Fortran types COMPLEX(4) and

Programming with Mixed Languages Page 22 of 38

8/21/97 12:25:30 PM

COMPLEX(8). However, you can write structures that are equivalent. The type COMPLEX(4) has
two fields, both of which are 4-byte floating-point numbers; the first contains the real-number
component, and the second contains the imaginary-number component. The type COMPLEX is
equivalent to the type COMPLEX(4). The type COMPLEX(8) is similar except that each field
contains an 8-byte floating-point number.

Note: Fortran functions of type COMPLEX place a hidden COMPLEX argument at the beginning
of the argument list. C functions that implement such a call from Fortran must declare this hidden
argument explicitly, and use it to return a value. The C return type should be void.

Following are the Visual C/C++ structure definitions for the Fortran COMPLEX types:

struct complex4 {
 float real, imag;
};
struct complex8 {
 double real, imag;
};

The following list contains the MASM structure definitions for the Fortran COMPLEX types:

COMPLEX4 STRUCT 4
 real REAL4 0
 imag REAL4 0
COMPLEX4 ENDS
COMPLEX8 STRUCT 8
 real REAL8 0
 imag REAL8 0
COMPLEX8 ENDS

A Fortran LOGICAL(2) is stored as a 2-byte indicator value (0=false, and the /fpscomp:[no]logicals
compiler option determines how true values are handled). A Fortran LOGICAL(4) is stored as a
4-byte indicator value, and LOGICAL(1) is stored as a single byte. The type LOGICAL is the same
as LOGICAL(4), which is equivalent to type int in C.

You can use a variable of type LOGICAL in an argument list, module, common block, or global
variable in Fortran and type int in C for the same argument. Type LOGICAL(4) is recommended
instead of the shorter variants for use in common blocks.

The Visual C++ class type has the same layout as the corresponding C struct type, unless the class
defines virtual functions or has base classes. Classes that lack those features can be passed in the
same way as C structures.

Handling Fortran 90 Array Pointers and Allocatable Arrays

How Fortran 90 array pointers and arrays are passed is affected by the ATTRIBUTES options in
effect, and by the INTERFACE, if any, of the procedure they are passed to. If the INTERFACE
declares the array pointer or array with deferred shape (for example, ARRAY(:)), its descriptor is
passed. This is true for array pointers and all arrays, not just allocatable arrays. If the INTERFACE
declares the array pointer or array with fixed shape, or if there is no interface, the array pointer or
array is passed by base address, which is like passing the first element of an array.

When a Fortran 90 array pointer or array is passed to another language, either its descriptor or its

Programming with Mixed Languages Page 23 of 38

8/21/97 12:25:30 PM

base address can be passed. The following table shows how Fortran 90 array pointers and allocatable
arrays are passed with different attributes in effect. Note that the VALUE option cannot be used with
descriptor-based arrays.

The effect of ATTRIBUTES options on Fortran 90 array pointers and allocatable arrays passed as
arguments is as follows:

• If the property of the array pointer or array is none, it is passed by descriptor, regardless of the
property of the passing procedure (None; C; STDCALL; C, REFERENCE; or STDCALL,
REFERENCE).

• If the property of the array pointer or array is VALUE, an error is returned, regardless of the
property of the passing procedure.

• If the property of the array pointer or array is REFERENCE, it is passed by descriptor,
regardless of the property of the passing procedure.

When you pass a Fortran array pointer or an array by descriptor to a non-Fortran routine, that routine
needs to know how to interpret the descriptor. Part of the descriptor is a pointer to address space, as a
C pointer, and part of it is a description of the pointer or array properties, such as its rank, stride, and
bounds. For information about the Visual Fortran array descriptor format, see Handling Arrays and
Visual Fortran Array Descriptors

Fortran 90 pointers that point to scalar data contain the address of the data and are not passed by
descriptor.

Handling DIGITAL Fortran Pointers

DIGITAL Fortran (integer) pointers are not the same as Fortran 90 pointers, but are instead like C
pointers. DIGITAL Fortran pointers are 4-byte INTEGER quantities.

When passing a DIGITAL Fortran pointer to a routine written in another language:

• The argument should be declared in the non-Fortran routine as a pointer of the appropriate
data type.

• The argument passed from the Fortran routine should be the DIGITAL Fortran pointer name,
not the pointer-based variable name.

For example, on x86 systems:

! Fortran main program.
 INTERFACE
 SUBROUTINE Ptr_Sub (p)
 !DEC$ ATTRIBUTES C, ALIAS:’_Ptr_Sub’ :: Ptr_Sub
 INTEGER p
 END SUBROUTINE Ptr_Sub
 END INTERFACE
 REAL A(10), VAR(10)
 POINTER (p, VAR) ! VAR is the pointer-based
 ! variable, p is the int.
 p = LOC(A)

 CALL Ptr_Sub (p)
 WRITE(*,*) ’A(4) = ’, A(4)
 END
 !

Programming with Mixed Languages Page 24 of 38

8/21/97 12:25:30 PM

 //C subprogram
 void Ptr_Sub (float *p)
 {
 p[3] = 23.5;
 }

On Alpha systems, the !DEC$ ATTRIBUTES line omits the leading underscore for _Ptr_Sub, as
follows:

 !DEC$ ATTRIBUTES C, ALIAS:’Ptr_Sub’ :: Ptr_Sub

When the main Fortran program and C function are built and executed, the following output
appears:

A(4) = 23.50000

When receiving a pointer from a routine written in another language:

• The argument should be declared in the non-Fortran routine as a pointer of the appropriate
data type and passed as usual.

• The argument received by the Fortran routine should be declared as a DIGITAL Fortran
pointer name, then the POINTER statement should associate it with a pointer-based variable
of the appropriate data type (matching the data type of the passing routine). When inside the
Fortran routine, use the pointer-based variable to set and access what the pointer points to.

For example, on x86 systems:

! Fortran subroutine.
 SUBROUTINE Iptr_Sub (p)
 !DEC$ ATTRIBUTES C, ALIAS:’_Iptr_Sub’ :: Iptr_Sub
 integer VAR(10)
 POINTER (p, VAR)
 OPEN (8, FILE=’STAT.DAT’)
 READ (8, *) VAR(4) ! Read from file and store the
 ! fourth element of VAR
 END SUBROUTINE Iptr_Sub
!
 //C main program
 extern void Iptr_Sub(int *p);

 main (void)
 {
 int a[10];
 Iptr_Sub (&a[0]);
 printf("a[3] = %i\n", a[3]);
 }

On Alpha systems, the !DEC$ ATTRIBUTES line omits the leading underscore, as follows:

 !DEC$ ATTRIBUTES C, ALIAS:’Iptr_Sub’ :: Iptr_Sub

When the main C program and Fortran subroutine are built and executed, the following output
appears:

Programming with Mixed Languages Page 25 of 38

8/21/97 12:25:30 PM

a[3] = 4

Handling Arrays and Visual Fortran Array Descriptors

Fortran 90 allows arrays to be passed as array elements, as array subsections, or as whole arrays
referenced by array name. Within Fortran 90, array elements are ordered in column-major order,
meaning the subscripts of the lowest dimensions vary first.

When using arrays between Fortran and another language, differences in element indexing and
ordering must be taken into account. You must reference the array elements individually and keep
track of them. Fortran, Visual Basic, MASM and C vary in the way that array elements are indexed.
Array indexing is a source-level consideration and involves no difference in the underlying data.

Visual Basic stores arrays and character strings as descriptors: data structures that contain array size
and location. This storage difference is transparent to the user, however.

To pass an array from Visual Basic to Fortran, pass the first element of the array. By default, Visual
Basic passes variables by reference, so passing the first element of the array will give Fortran the
starting location of the array, just as Fortran expects. Visual Basic indexes the first array element as 0
by default, while Fortran by default indexes it as 1. Visual Basic indexing can be set to start with 1
using the statement:

Option Base 1

Alternatively, in the array declaration in either language you can set the array lower bound to any
integer in the range -32,768 to 32,767. For example:

’ In Basic
Declare Sub FORTARRAY Lib "fortarr.dll" (Barray as Single)
DIM barray (1 to 3, 1 to 7) As Single
Call FORTARRAY(barray (1,1))

! In Fortran
Subroutine FORTARRAY(arr)
 REAL arr(3,7)

In MASM, arrays are one-dimensional and array elements must be referenced byte-by-byte. The
assembler stores elements of the array consecutively in memory, with the first address referenced by
the array name. You then access each element relative to the first, skipping the total number of bytes
of the previous elements. For example:

xarray REAL4 1.1, 2.2, 3.3, 4.4 ; initializes
 ; a four element array with
 ; each element 4 bytes

Referencing xarray in MASM refers to the first element, the element containing 1.1. To refer to the
second element, you must refer to the element 4 bytes beyond the first with xarray[4] or xarray+4.
Similarly:

yarray BYTE 256 DUP ; establishes a
 ; 256 byte buffer, no initialization
zarray SWORD 100 DUP(0) ; establishes 100
 ; two-byte elements, initialized to 0

Fortran and C arrays differ in two ways:

Programming with Mixed Languages Page 26 of 38

8/21/97 12:25:30 PM

• The value of the lower array bound is different. By default, Fortran indexes the first element of
an array as 1. C and Visual C++ index it as 0. Fortran subscripts should therefore be one
higher. (Fortran also provides the option of specifying another integer lower bound.)

• In arrays of more than one dimension, Fortran varies the left-most index the fastest, while C
varies the right-most index the fastest. These are sometimes called column-major order and
row-major order, respectively.

In C, the first four elements of an array declared as X[3][3] are:

X[0][0] X[0][1] X[0][2] X[1][0]

In Fortran, the first four elements are:

X(1,1) X(2,1) X(3,1) X(1,2)

The order of indexing extends to any number of dimensions you declare. For example, the C
declaration:

int arr1[2][10][15][20];

is equivalent to the Fortran declaration:

INTEGER arr1(20, 15, 10, 2)

The constants used in a C array declaration represent extents, not upper bounds as they do in other
languages. Therefore, the last element in the C array declared as int arr[5][5] is arr[4][4], not
arr[5][5].

The following table shows equivalencies for array declarations.

Equivalent Array Declarations for Different Languages

Language Array declaration Array reference from Fortran
Fortran DIMENSION x(i, k)

-or-
type x(i, k)

x(i, k)

Visual Basic DIM x(i, k) As type x(i -1, k -1)
Visual C/C++ type x[k] [i] x(i -1, k -1)
MASM Declare and reference arrays as elements in consecutive storage

Visual Fortran Array Descriptor Format

For cases where Fortran 90 needs to keep track of more than a pointer memory address, the
DIGITAL Visual Fortran compiler uses an array descriptor, which stores the details of how an
array is organized.

When using an explicit interface (by association or procedure interface block), Visual Fortran will
generate a descriptor for the following types of array arguments:

• Pointers to arrays (array pointers)
• Assumed-shape arrays

Certain data structure arguments do not use a descriptor, even when an appropriate explicit interface

Programming with Mixed Languages Page 27 of 38

8/21/97 12:25:30 PM

is provided. For example, explicit-shape and assumed-size arrays do not use a descriptor. In contrast,
array pointers and allocatable arrays use descriptors regardless of whether they are used as
arguments.

When calling between Visual Fortran and a non-Fortran language (such as C), using an implicit
interface allows the array argument to be passed without a Visual Fortran descriptor.

However, for cases where the called routine needs the information in the Visual Fortran descriptor,
declare the routine with an explicit interface and specify the dummy array as either an assumed-shape
array or with the pointer attribute.

You can associate a Fortran 90 pointer with any piece of memory, organized in any way desired (so
long as it is "rectangular" in terms of array bounds). You can also pass Fortran 90 pointers to other
languages, such as C, and have the other language correctly interpret the descriptor to obtain the
information it needs.

However, using array descriptors can increase the opportunity for errors and is not portable:
• If the descriptor is not defined correctly, the program might access the wrong memory address,

possibly causing a General Protection Fault.
• Array descriptor formats are specific to each Fortran compiler. Code that uses array

descriptors is not portable to other compilers or platforms. For example, the Visual Fortran
array descriptor format (for Win32 systems) differs from the array descriptor format for
DIGITAL Fortran on DIGITAL UNIX and OpenVMS systems. The Visual Fortran array
descriptor format is the same format used by Microsoft Fortran Powerstation.

• The array descriptor format might change in the future.

The components of the Visual Fortran array descriptor follow:
• The first longword (bytes 0 to 3) contains the base address. The base address plus the offset

defines the first memory location (start) of the array.
• The second longword (bytes 4 to 7) contains the size of a single element of the array.
• The third longword (bytes 8 to 11) contains the offset. The offset is added to the base address

to define the start of the array.
• The fourth longword (bytes 12 to 15) contains the low-order bit set if the array has been

defined (storage allocated).
• The fifth longword (bytes 16 to 19) contains the number of dimensions (rank) of the array.
• The remaining longwords (bytes 20 up to 103) contain information about each dimension (up

to seven). Each dimension is described by three additional longwords:
• The number of elements (extent)
• The distance between the starting address of two successive elements, in bytes. This

value is the stride of the array expression multiplied by the size of one array element.
• The lower bound

An array of rank one would require three additional longwords for a total of in eight
longwords (5 + 3*1) and end at byte 31. An array of rank seven would be described in a total
of 26 longwords (5 + 3*7) and end at byte 103.

For example, consider the following declaration:

 integer,target :: a(10,10)
 integer,pointer :: p(:,:)

Programming with Mixed Languages Page 28 of 38

8/21/97 12:25:30 PM

 p => a(9:1:-2,1:9:3)
 call f(p)
 .
 .
 .

The descriptor for actual argument p would contain the following values:
• The first longword (bytes 0 to 3) contain the base address (assigned at run-time).
• The second longword (bytes 4 to 7) is set to 4 (size of a single element).
• The third longword (bytes 8 to 11) contain the offset (assigned at run-time).
• The fourth longword (bytes 12 to 15) contains 1 (low bit is set).
• The fifth longword (bytes 16 to 19) contains 2 (rank).
• The sixth, seventh, and eighth longwords (bytes 20 to 31) contain information for the

first dimension, as follows:
• 5 (extent)
• -8 (distance between elements)
• 1 (the lower bound)

• For the second dimension, the ninth, tenth, and eleventh longwords (bytes 32 to 43)
contain

• 3 (extent)
• 120 (distance between elements)
• 1 (the lower bound)

• Byte 43 is the last byte for this example.

Handling Character Strings

By default, Visual Fortran passes a hidden length argument for strings. The hidden length argument
consists of an unsigned 4-byte integer, always passed by value, immediately following the address of
the character string. You can alter the default way strings are passed by using attributes. The
following table shows the effect of various attributes on passed strings.

Effect of ATTRIBUTES Options on Character Strings Passed as Arguments

Argument Default C STDCALL
C,

REFERENCE
STDCALL,

REFERENCE
String Passed by

reference,
along with
length

First character
converted to
INTEGER(4)
and passed by
value

First character
converted to
INTEGER(4)
and passed by
value

Passed by
reference, along
with length

Passed by
reference, no
length

String with
VALUE option

Error First character
converted to
INTEGER(4)
and passed by
value

First character
converted to
INTEGER(4)
and passed by
value

First character
converted to
INTEGER(4) and
passed by value

First character
converted to
INTEGER(4) and
passed by value

String with
REFERENCE
option

Passed by
reference,
possibly
along with

Passed by
reference, no
length

Passed by
reference, no
length

Passed by
reference, no
length

Passed by
reference, no
length

Programming with Mixed Languages Page 29 of 38

8/21/97 12:25:30 PM

length

The important things to note about the above table are:

• Character strings without the VALUE or REFERENCE attribute that are passed to C or
STDCALL routines are not passed by reference. Instead, only the first character is passed and
it is passed by value.

• Character strings with the VALUE option passed to C or STDCALL routines are not passed
by pushing the entire string on the stack. Instead, only the value of the first character is passed.

• For string arguments with ATTRIBUTES DEFAULT or C, REFERENCE:
• When /iface:mixed_str_len_arg is set, the length of the string is pushed (by value) on

the stack immediately after the address of the beginning of the string.
• When /iface:nomixed_str_len_arg is set, the length of the string is pushed (by value) on

the stack after all of the other arguments.
• For string arguments passed by reference with default ATTRIBUTES:

• When /iface:mixed_str_len_arg is set, the length of the string is pushed (by value) on
the stack immediately after the address of the beginning of the string.

• When /iface:nomixed_str_len_arg is set, the length of the string is not available to the
called procedure.

Since all strings in C are pointers, C expects strings to be passed by reference, without a string
length. In addition, C strings are null-terminated while Fortran strings are not. There are two basic
ways to pass strings between Fortran and C: convert Fortran strings to C strings, or write C routines
to accept Fortran strings.

To convert a Fortran string to C, choose a combination of attributes that passes the string by
reference without length, and null terminate your strings. For example, on x86 systems:

 INTERFACE
 SUBROUTINE Pass_Str (string)
 !DEC$ ATTRIBUTES C, ALIAS:’_Pass_Str’ :: Pass_Str
 CHARACTER*(*) string
 !DEC$ ATTRIBUTES REFERENCE, string
 END SUBROUTINE
 END INTERFACE
 CHARACTER(40) forstring
 DATA forstring /’This is a null-terminated string.’C/

On Alpha systems, the first !DEC$ ATTRIBUTES line would omit the leading underscsore and be as
follows:

 !DEC$ ATTRIBUTES C, ALIAS:’_Pass_Str’ :: Pass_Str

This example shows the extension of using the null-terminator for the string in the Fortran DATA
statement (see C Strings):

 DATA forstring /’This is a null-terminated string.’C/

The C interface is:

void Pass_Str (char *string)

To get your C routines to accept Fortran strings, C must account for the length argument passed

Programming with Mixed Languages Page 30 of 38

8/21/97 12:25:30 PM

along with the string address. For example:

Fortran code
INTERFACE
SUBROUTINE Pass_Str (string)
CHARACTER*(*) string
END INTERFACE

The C routine must expect two arguments:

void __stdcall PASS_STR (char *string, unsigned int length_arg)

This interface handles the hidden-length argument, but you must still reconcile C strings that are
null-terminated and Fortran strings that are not. In addition, if the data assigned to the Fortran string
is less than the declared length, the Fortran string will be blank padded.

Rather than trying to handle these string differences in your C routines, the best approach in
Fortran/C mixed programming is to adopt C string behavior whenever possible. Another good reason
for using C strings is that Win32 APIs and most C library functions expect null-terminated strings.

Fortran functions that return a character string using the syntax CHARACTER*(*) place a hidden
string argument and the address of the string at the beginning of the argument list.

C functions that implement such a Fortran function call must declare this hidden string argument
explicitly and use it to return a value. The C return type should be void. However, you are more
likely to avoid errors by not using character-string return functions. Use subroutines or place the
strings into modules or global variables whenever possible.

Visual Basic strings must be passed by value to Fortran. Visual Basic strings are actually stored as
structures containing length and location information. Passing by value dereferences the structure
and passes just the string location, as Fortran expects. For example:

! In Basic
 Declare Sub forstr Lib "forstr.dll" (ByVal Bstring as String)
 DIM bstring As String * 40 Fixed-length string
 CALL forstr(bstring)

! In Fortran
 SUBROUTINE forstr(s)
 !DEC$ ATTRIBUTES STDCALL:: forstr
 CHARACTER(40) s
 s = ’Hello, Visual Basic!’
 END

The Fortran directive !DEC$ ATTRIBUTES STDCALL informs Fortran not to expect the hidden
length arguments to be passed from the Visual Basic calling program. The name in the Visual Basic
program is specified as lowercase since STDCALL makes the Fortran name lowercase.

MASM does not add either a string length or a null character to strings by default. To append the
string length, use the syntax:

lenstring BYTE "String with length", LENGTHOF lenstring

To add a null character, append it by hand to the string:

 nullstring BYTE "Null-terminated string", 0

Programming with Mixed Languages Page 31 of 38

8/21/97 12:25:30 PM

Handling User-Defined Types

Fortran 90 supports user-defined types (data structures similar to C structures). User-defined types
can be passed in modules and common blocks just as other data types, but the other language must
know the type’s structure. For example:

! Fortran CODE
 TYPE LOTTA_DATA
 SEQUENCE
 REAL A
 INTEGER B
 CHARACTER(30) INFO
 COMPLEX CX
 CHARACTER(80) MOREINFO
 END TYPE LOTTA_DATA
 TYPE (LOTTA_DATA) D1, D2
 COMMON /T_BLOCK/ D1, D2

 /* C code accessing D1 and D2 */
 extern struct {
 struct {
 float a;
 int b;
 char info[30];
 struct {
 float real, imag;
 } cx;
 char moreinfo[80];
 } d1, d2;
} T_BLOCK;

Visual Fortran/Visual C++ Mixed-Language Programs
When you understand and reconcile the calling, naming and argument passing conventions between
Fortran and C, you are ready to build an application.

If you are using Visual C/C++ you can edit, compile and debug your code within Microsoft
Developer Studio. If you are using another C compiler, you can edit your code within Microsoft
Developer Studio by selecting File/New and choosing Visual C/C++ source in the File tab or, after
activating the editor, by selecting the View menu Properties item and selecting from the drop-down
list.

However, if you are not using Visual C/C++, you must compile your code outside Microsoft
Developer Studio and either build the Fortran/C program on the command line or add the compiled
C .OBJ file to your Fortran project in Microsoft Developer Studio.

As an example of building from the command line, if you have a main C program CMAIN.C that
calls Fortran subroutines contained in FORSUBS.F90, you can create the CMAIN application with
the following commands:

cl /c cmain.c
DF cmain.obj forsubs.f90

The Fortran (DF) compiler accepts an object file for the main program written in C and compiled by
the C compiler. The DF compiler compiles the .F90 file and then has the linker create an executable

Programming with Mixed Languages Page 32 of 38

8/21/97 12:25:30 PM

file under the name CMAIN.EXE using the two object files.

Either compiler can do the linking, regardless of which language the main program is written in;
however, if you use the DF compiler first, you must include DFOR.LIB with the C compiler, and you
might experience some difficulty with the version of LIBC.LIB used by the C compiler. For these
reasons, you may prefer to use the C compiler first or get your project settings for both Fortran and C
to agree on the default C library to link against.

You need to link your application against one and only one copy of the C library.

When using Developer Studio to build your application, Fortran uses default libraries depending on
the information specified in the Fortran tab in the Project menu, Settings item (Project Settings
dialog box). You can also specify linker settings with the Linker tab in the Project Settings dialog
box.

In the Fortran tab, within the Libraries category, the following options determine the default libraries
selected:

• Use Fortran Run-time Libraries (Static or DLL) (Types of Projects) of Dynamic-Link Library
or the DF command option /dll)

• Use Multi-threaded Libraries (/[no]threads)
• Use C Debug Libraries (/[no]dbglibs)

The combinations of these options use the following libraries:

Static or DLL
Project?

Use Multi-Theaded
Libraries?

Use C Debug
Libraries?

Fortran Link
Library Used

C Link Library
Used

Static No No dfor.lib libc.lib
Static No Yes dfor.lib libcd.lib
Static Yes No dformt.lib libcmt.lib
Static Yes Yes dformt.lib libcmtd.lib

DLL No No
dfordll.lib
(dforrt.dll)

msvcrt.lib
(msvcrt.dll)

DLL No Yes
dfordll.lib
(dforrt.dll)

msvcrtd.lib
(msvcrtd.dll)

DLL Yes No
dformd.lib
(dformd.dll)

msvcrt.lib
(msvcrt.dll)

DLL Yes Yes
dformd.lib
(dformd.dll)

msvcrtd.lib
(msvcrtd.dll)

The way Visual C++ chooses libraries is also based upon the Project menu Settings item, but within
the C/C++ tab. In the Code Generation category, the Use run-time library item lists the following C
libraries:

Menu Item Selected
CL Option or Project Type

Enabled
Default Library Specified in Object

File
Single-threaded /ML libc.lib
Multithreaded /MT libcmt.lib
Multithreaded DLL /MD msvcrt.lib (msvcrt.dll)

Programming with Mixed Languages Page 33 of 38

8/21/97 12:25:30 PM

Debug Single-threaded /MLd libcd.lib
Debug Multithreaded /MTd libcmtd.lib
Debug Multithreaded
DLL

/MDd msvcrtd.lib (msvcrt.dll)

If you are using Microsoft Visual C/C++, Microsoft Developer Studio can create mixed Fortran/C
applications transparently, with no special directives or steps on your part. You can edit and browse
your C and Fortran programs with appropriate syntax coloring for the language. You can add C
source files to your Fortran project or Fortran source files to a C project, and they will be compiled
and linked automatically.

When you debug a mixed Visual C/Fortran application, the debugger will adjust to the code type as it
steps through: the C or Fortran expression evaluator will be selected automatically based on the code
being debugged, and the stack window will show Fortran data types for Fortran procedures and C
data types for C procedures.

When printing from Visual C++ programs while calling Fortran subprograms that also print, the
output may not appear in the order you expect. In Visual C++, the output buffer contents are not
written immediately, but written when the buffer is full, the I/O stream is closed or the program
terminates normally. The buffer is said to be "flushed" when this occurs.

To make sure interleaving Visual C++ and Fortran program units print in the order expected, you can
explicitly flush the Visual C++ buffers after an output command with the flushall, fflush, fclose,
setbuf, or setvbuf Visual C++ library calls.

Multithreaded applications should have full multithread support, so if you use DFORMT.LIB, be
sure LIBCMT.LIB is specified as a default library.

Fortran/Visual Basic Mixed-Language Programs
Fortran/Visual Basic programs allow you to use the user-interface features of Visual Basic and do
computation in Fortran. In Fortran/Visual Basic programs, the Visual Basic must be 32-bit (at least
Version 4.0). To use a common Developer Studio environment (instead of the command line
environment), use Visual Basic Version 5.0.

You can call Fortran subprograms from Visual Basic, but because Visual Basic subprograms are
interpreted and not compiled, they cannot be called directly from compiled language programs like
Fortran. Instead, Visual Basic creates OLE objects that export properties and routines.

Visual Basic calls to Fortran are discussed in the next sections:

• Visual Basic User Interfaces for Fortran
• Examples of Fortran/Visual Basic Programs

Visual Basic User Interfaces for Fortran

You can create user interfaces to your Fortran routines in Visual Basic by adding items (such as
command buttons) to the Form and attaching to them the Visual Basic code that calls the Fortran
subroutines. The Visual Basic call and the Fortran subroutine must match their calling and naming

Programming with Mixed Languages Page 34 of 38

8/21/97 12:25:30 PM

conventions as discussed in the previous sections.

The following example steps through creating a simple Visual Basic interface to a Fortran subroutine
that exchanges an array of integers between them.

To create the Visual Basic interface:

1. Select File/New Project in Visual Basic. Add a Command Button and Text Box by dragging
them from the Tool Bar to the Form. Change the caption of the Command Button by clicking
on it, then selecting Caption in Windows/Properties.

2. Double-click on the Command Button. The code window for that control opens. Add the
following Visual Basic code:

Static arr(1 To 3, 1 To 7) As Single
 Call ARRAYTEST(arr(1, 1))
 text1.Text = arr(3, 7)

3. Choose Project/ADD Module. Add the following code to the General Declarations window:

 Type MyArray
 arr(1 To 3, 1 To 7) As Single
 Declare Sub ARRAYTEST Lib "d:\vb\f90vb.dll" (Myarray As Single)

4. Save the module as GLOBAL.BAS.

The following example defines a Visual Basic type, an array of strings. The Fortran DLL that
contains the subroutine should be declared with its full path in the module, so Visual Basic doesn’t
have to search for it.

To create the Fortran subroutine for Visual Basic to call:

1. In Visual Fortran:
• From the File menu select New.
• Click the Projects tab and select "Win32 Dynamic-Link Library."
• Enter "F90VB" as the project name.
• Click OK.

2. Perform the following steps:
• From the File menu select New.
• Click the Files tab and select "Fortran Free Format Source Files"
• Enter "f90vb" as the file name.
• Click OK.

3. Within the text editor, type the following code:

 SUBROUTINE ARRAYTEST(arr)
 !DEC$ ATTRIBUTES DLLEXPORT :: ARRAYTEST
 REAL(4) arr(3, 7)
 INTEGER i, j
 DO i = 1, 3
 DO j = 1, 7
 arr (i, j) = 11.0 * i + j
 END DO
 END DO
 END SUBROUTINE

Programming with Mixed Languages Page 35 of 38

8/21/97 12:25:30 PM

From the File menu, select Save.
4. Build the DLL and copy it to the Visual Basic directory you specified in your Visual Basic

module, d:\vb in the example. To build the Fortran DLL from the comamnd line, use the
following command:

 df /dll f90vb.f90

5. Run the Visual Basic project by selecting Run/Start. The Visual Basic interface you created
appears. Start the Fortran subroutine by choosing the Command Button.

Examples of Fortran/Visual Basic Programs

The following brief code demonstrates the interface for a Fortran subroutine and function (free-form
Fortran source):

1. In Developer Studio, create a new project of type Win32 Dynamic-Link Library. Name the
project FCALL.

2. Create a new free-form source file (Project menu, Add to Project, New) for the project named
FCALL.F90 with the following code:

! Fortran Code establishing subroutine
! Computes the MOD of R1 and 256.0 and stores the
! result in the argument NUM

 SUBROUTINE FortranCall (r1, num)

! Specify that the routine name is to be made available to callers of the
! DLL and that the external name should not have any prefix or suffix

!DEC$ ATTRIBUTES DLLEXPORT :: FortranCall
!DEC$ ATTRIBUTES ALIAS:’FortranCall’ :: FortranCall

 REAL,INTENT(IN) :: r1 ! Input argument
 REAL,INTENT(OUT) :: num

 num = MOD (r1, 256.0)

END SUBROUTINE

3. Build the Fortran DLL as described in Dynamic-Link Library Projects in Building Programs
and Libraries.

4. Start Visual Basic and create a new Standard EXE project:
• On the control toolbar, click on the CommandButton icon and then, with the cursor

over the form, draw out a button.
• In the button's Properties box, double-click on Caption and change the caption to "Do

it!".
• Click on the TextBox icon and, in the same fashion, draw a text box on the form. In its

Properties box, find the Text property and change it to an empty string.
5. Double-click on the Command1 button on the form - a code window will appear. Fill in the

code so that it looks like this:

Programming with Mixed Languages Page 36 of 38

8/21/97 12:25:30 PM

 Private Sub Command1_Click()
 r1 = 456.78
 Call FortranCall(r1, Num)
 Text1.Text = Str$(Num)
 End Sub

6. Select Project..Add Module and click on Open to create a new module. Add the following
code to the module (all of it goes on one line - broken into multiple lines here for clarity):

 Declare Sub FortranCall Lib"c:\Program Files\DevStudio\MyProjects\Fcall\Debu
 (r1 As Single, Num As Single)

Replace the filename with the location of the Fortran DLL, if it is different.
7. Run the Basic program by pressing F5. Click on the Do it! button. The Fortran routine will be

called to compute the modulus, returning the result to the Basic code. The Basic code will then
convert the result to a string and display it in the text box.

Notes: Visual Basic, like Fortran, passes numeric values (such as integers and reals) by reference, so
it is not necessary to change the passing mechanism on either side. The ALIAS attribute is required
because Visual Basic, even though it uses the STDCALL calling mechanism, does not "decorate"
routine names with the @n suffix. If the Fortran routine were also to be called by other Fortran code,
it would be appropriate to use the Alias option on the Basic side to name it with the proper suffix.

Fortran/MASM Mixed-Language Programs
With Microsoft Macro Assembler (MASM), you can combine the unique strengths of
assembly-language programming with Visual Fortran. If you structure your assembly-language
procedures appropriately, you can call them from Visual Fortran programs and subprograms. MASM
works with Visual Fortran, C, and Visual C++. These high-level languages can call MASM
procedures, and each of the languages can be called from MASM programs. Details of the MASM
interfaces with the other languages can be found in the Microsoft MASM Programmer’s Guide.

Compile your Fortran source module with Visual Fortran, and assemble your assembly-language
procedure with the MASM assembler. Then, link the two object files. The following example shows
how to call a MASM assembler-language program from Fortran.

The Fortran code:

 INTERFACE
 INTEGER (4) FUNCTION POWER2 (V,E)
 !DEC$ ATTRIBUTES STDCALL :: Power2
 INTEGER V, E
 END INTERFACE

The MASM code:

POWER2 PROTO STDCALL, v, e
...
POWER2 PROC STDCALL, v, e
...
POWER2 ENDP

Programming with Mixed Languages Page 37 of 38

8/21/97 12:25:30 PM

END

In the example, the Fortran call to MASM is power2(v,e), which is identical to a Fortran function
call.

There are two differences between this mixed-language call and a call between two Fortran modules:

• The subprogram power2(v,e) is implemented in MASM using standard MASM syntax. The
PROTO declaration in MASM specifies that the procedure use the STDCALL calling
convention.

• The INTERFACE statement in the Fortran module specifies the STDCALL calling
convention, so the Fortran program uses same convention that the MASM procedure specifies.

This section covers the following topics:

• Creating a MASM Procedure
• Fortran/MASM Alignment and Return Value Considerations
• Examples of Fortran/MASM Programming

Creating a MASM Procedure

Normally you follow these steps in creating a MASM procedure:

1. Set up the procedure, defining compatible segments and declaring the procedure.
2. Enter the procedure and set up an appropriate stack frame.
3. Preserve register values by pushing any registers on the stack that you modify later.
4. Reserve space on the stack for any local data (optional).
5. Access arguments in the main body of your procedure.
6. Deallocate any local data by returning space from the stack.
7. Restore register values by popping any preserved registers from the stack.
8. If you called the procedure as a function, return a value (optional).
9. Set up the caller routine by restoring the caller stack frame.
10.Exit the procedure and return to the caller program.

Fortran/MASM Alignment and Return Value Considerations

Visual Fortran allows you to specify alignment for all data objects. Requesting alignment specifies
that bytes may be added as padding, so that the object and its data start on a natural boundary (see
Data Alignment Considerations). The MASM default is byte-alignment, so you should specify an
alignment of 4 for MASM structures or use the Fortran compiler option /alignment:keyword (or
/Zpn).

Your MASM procedure can return a value to your Fortran routine if you prototype it as a function.
All return values of 4 bytes or less (except for floating-point values) are returned in the EAX register.

Procedures that return floating-point values return their results on the floating-point processor stack.
This is possible because there is always a coprocessor or emulator available for 32-bit compilers.

To return REAL and COMPLEX floating-point values, records, arrays, and values larger than 4 bytes
and return user-defined types larger than 8 bytes from assembly language to Fortran, you must use a
special convention. Fortran creates space in the stack segment to hold the actual return value and

Programming with Mixed Languages Page 38 of 38

8/21/97 12:25:30 PM

passes an extra parameter as the last parameter pushed onto the stack. This extra parameter contains
the address of the stack space that contains the return value. For user-defined types, values of 4 bytes
or less are returned in EAX and values of 5 to 8 bytes are returned in EAX:EDX.

In the assembly procedure, put the data for the return value at the location pointed to by the return
value offset. Then copy the return-value offset (located at EBP+8 if you’ve created a stack frame in
your assembly code) to EAX. This is necessary because the calling module expects EAX to point to
the return value.

Summary of Ways to Return Values

Type of value to return Method of returning value
Integer or logical variable of size 4 bytes or less Return value in EAX register
Floating-point variable Return value on the FPU stack
Structure of size more than 4 bytes (strings, complex values) or
user-defined structures more than 8 bytes

Return value on stack, address of
value in EAX register

User-defined structures between 5 and 8 bytes Return value in EAX:EDX
registers.

Examples of Fortran/MASM Programming

Several sample programs have been provided which illustrate Visual Fortran routines that call
MASM procedures (see the \DF\SAMPLES\MIXLANG subdirectory).

Portability Page 1 of 8

8/21/97 12:25:51 PM

Portability
This section presents topics to help you understand how language standards, operating system
differences, and computing hardware influence your use of Visual Fortran and the portability of your
programs.

Your program is portable if you can implement it on one hardware-software platform and then move
it to additional systems with a minimum of changes to the source code. Correct results on the first
system should be correct on the additional systems. The number of changes you might have to make
when moving your program varies significantly. You might have no changes at all (strictly portable),
or so many (non-portable customization) that it is more efficient to design or implement a new
program. Most programs in their lifetime will need to be ported from one system to another, and this
section can help you write code that makes this easy.

For information on special library routines to help port your program from one system to another, see
Portability Library.

For more information, see:

• Standard Fortran Language
• Operating System
• Storage and Representation of Data

Standard Fortran Language

A language standard specifies the form and establishes the interpretation of programs expressed in
the language. Its primary purpose is to promote, among vendors and users, portability of programs
across a variety of systems.

The vendor-user community has adopted three major Fortran language standards. ANSI (American
National Standards Institute) and ISO (International Standards Organization) are the primary
organizations that develop and publish the standards.

• FORTRAN IV

American National Standard Programming Language FORTRAN, ANSI X3.9-1966. This was
the first attempt to standardize the languages called FORTRAN by many vendors.

• FORTRAN 77

American National Standard Programming Language FORTRAN, ANSI X3.9-1978. This
standard added new features based on vendor extensions to FORTRAN IV and addressed
problems associated with large-scale projects, such as improved control structures.

• Fortran 90

American National Standard Programming Language Fortran, ANSI X3.198-1992 and
International Standards Organization, ISO/IEC 1539: 1991, Information technology --
Programming lnguages -- Fortran. This recent standard emphasizes modernization of the
language by introducing new developments. For information about differences between

Portability Page 2 of 8

8/21/97 12:25:51 PM

Fortran 90 and FORTRAN 77, see Features of Fortran 90 or the printed DIGITAL Fortran
Language Reference Manual.

• Fortran 95 (proposed)

This proposed standard introduces certain language elements. Fortran 95 includes Fortran 90
and most features of FORTRAN 77. For information about differences between Fortran 95
and Fortran 90, see Features of Fortran 95 or the printed DIGITAL Fortran Language
Reference Manual.

Although a language standard seeks to define the form and the interpretation uniquely, a standard
might not cover all areas of interpretation. It might also include some ambiguities. You need to
carefully craft your program in these cases so that you get the answers that you want when producing
a portable program.

For more information, see:

• Standard vs. Extensions
• Compiler Optimizations

Standard vs. Extensions

Use standard features to achieve the greatest degree of portability for your Visual Fortran programs.
You can design a robust implementation to improve the portability of your program, or you can
choose to use extensions to the standard to increase the readability, functionality, and efficiency of
your programs. You can ensure your program enforces the Fortran standard by using the /stand:f90 or
/stand:f95 compiler option to flag extensions.

Not all extensions will cause problems in porting to other platforms. Many extensions are supported
on a wide range of platforms, and if a system you are porting a program to supports an extension,
there is no reason to avoid using it. There is no guarantee, however, that the same feature on another
system will be implemented in the same way as it is in Visual Fortran. Only the Fortran standard is
guaranteed to coexist uniformly on all platforms.

DIGITAL Fortran supports many language extensions on multiple platforms, including DIGITAL
Alpha systems. For information on compability with DIGITAL Fortran on Alpha systems, see
Compatibility with DIGITAL Fortran on Other Platforms. Also, the printed DIGITAL Fortran
Language Reference Manual identifies whether each language element is supported on other
DIGITAL Fortran platforms.

It is a good programming practice to declare any external procedures either in an EXTERNAL
statement or in a procedure interface block, for the following reasons:

• The Fortran 90 standard added many new intrinsic procedures to the language. Programs that
conformed to the FORTRAN 77 standard may include nonintrinsic functions or subroutines
having the same name as new Fortran 90 procedures.

• Some processors include nonstandard intrinsic procedures that might conflict with procedure
names in your program.

If you do not explicitly declare the external procedures and the name duplicates an intrinsic
procedure, the processor calls the intrinsic procedure, not your external routine. For more

Portability Page 3 of 8

8/21/97 12:25:51 PM

information on how the Fortran compiler resolves name definitions, see Resolving Procedure
References.

Compiler Optimizations

Many Fortran compilers perform code-generation optimizations to increase the speed of execution or
to decrease the required amount of memory for the generated code. Although the behaviors of both
the optimized and nonoptimized programs fall within the language standard specification, different
behaviors can occur in areas not covered by the language standard. Compiler optimization especially
can influence floating-point numeric results.

The DIGITAL Visual Fortran compiler can perform optimizations to increase execution speed and to
improve floating-point numerical consistency. For a summary of optimization levels, see
Optimization Levels.

Floating-point consistency refers to obtaining results consistent with the IEEE binary floating-point
standards (see the /fltconsistency option, x86 systems only).

Unless you properly design your code, you might encounter numerical difficulties when you optimize
for fastest execution. The /nofltconsistency option uses the floating-point registers, which have a
higher precision than stored variables, whenever possible. This tends to produce results that are
inconsistent with the precision of stored variables. The /fltconsistency option (also set by /Oxp) can
improve the consistency of generated code by rounding results of statement evaluations to the
precision of the standard data types, but it does produce slower execution times.

Operating System
The operating system envelops your program and influences it both externally and internally. To
achieve portability, you need to minimize the amount of operating-system-specific information
required by your program. The Fortran language standards do not specify this information.

Operating-system-specific information consists of nonintrinsic extensions to the language, compiler
and linker options, and possibly the graphical user interface of Windows. Input and output operations
use devices that may be system-specific, and may involve a file system with system-specific record
and file structures. You can find information on the file structure and its use in Input/Output Editing.

The operating system also governs resource management and error handling. You can depend on
default resource management and error handling mechanisms or provide mechanisms of your own.
For information on special library routines to help port your program from one system to another, see
Portability Library.

The minimal interaction with the operating system is for input/output operations and usually consists
of knowing the standard units preconnected for input and output. You can use default file units with
the asterisk (*) unit specifier.

To increase the portability of your programs across operating systems, consider the following:

• Do not assume the use of a particular type of file system.
• Do not embed filenames or paths in the body of your program. Define them as constants at the

Portability Page 4 of 8

8/21/97 12:25:51 PM

beginning of the program or read them from input data.
• Do not assume a particular type of standard I/O device or the "size" of that device (number of

rows and columns).
• Do not assume display attributes for the standard I/O device. Some environments do not

support attributes such as color, underlined text, blinking text, highlighted text, inverse text,
protected text, or dim text.

Storage and Representation of Data
The Fortran language standard specifies little about the storage of data types. This loose specification
of storage for data types results from a great diversity of computing hardware. This diversity poses
problems in representing data and especially in transporting stored data among a multitude of
systems. The size (as measured by the number of bits) of a storage unit (a word, usually several
bytes) varies from machine to machine. In addition, the ordering of bits within bytes and bytes within
words varies from one machine to another. Furthermore, binary representations of negative integers
and floating-point representations of real and complex numbers take several different forms.

If you are careful, you can avoid most of the problems involving data storage. The simplest and most
reliable means of transfering data between dissimilar systems is in character and not binary form.
Simple programming practices ensure that your data as well as your program is portable.

For more information, see:

• Size of Basic Types
• Bit, Byte, and Word Characteristics
• Transportability of Data

Size of Basic Types

The intrinsic data types are INTEGER, REAL, LOGICAL, COMPLEX, and CHARACTER, whose
sizes are shown in the following table.

Data Types and Storage Sizes

Types Number of Bytes
INTEGER(1),
LOGICAL(1),
CHARACTER

1

INTEGER(2),
LOGICAL(2)

2

INTEGER, LOGICAL,
REAL

Depending on default integer size (set by the /integer_size compiler
option or equivalent directive) , INTEGER and LOGICAL can have 2, 4,
or (on Alpha systems only) 8 bytes; default allocation is 4 bytes.
Depending on default real size (set by the /real_size compiler option or
equivalent directive), REAL can have 4 or 8 bytes; default allocation is 4
bytes.

INTEGER(4), REAL(4),
LOGICAL(4)

4

INTEGER(8), 8

Portability Page 5 of 8

8/21/97 12:25:51 PM

LOGICAL(8) (Alpha only)
COMPLEX Depending on default real, COMPLEX can have 8 or 16 bytes; default

allocation is 8 bytes.
DOUBLE PRECISION,
REAL(8), COMPLEX(8)

8

DOUBLE COMPLEX,
COMPLEX(16)

16

CHARACTER(n) n
Structures Size of derived type (can be affected by PACK directive)
RECORD Size of record structure (can be affected by PACK directive)

Bit, Byte, and Word Characteristics

In a 32-bit word environment such as that of Visual Fortran, it might seem as though there should be
no problems with data storage, since all data types are consecutive subcomponents (bytes) of a word
or are consecutive, multiple words. However, when transporting binary data among disparate
systems -- either by intermediate storage medium (disk, tape) or by direct connection (serial port,
network) -- problems arise from different definitions of serial bit and serial byte order. For
simplicity, the following discussion considers only byte order within a word, since that is the usual
case of difficulty. (For more information, refer to "On Holy Wars and a Plea for Peace" by Danny
Cohen, IEEE Computer, vol. 14, pp. 48-54, 1981.)

For more information, see:

• Big End or Little End Ordering
• Binary Representations
• Declaring Data Types

Big End or Little End Ordering

Computer memory is a linear sequence of bits organized into a hierarchical structure of bytes and
words. One system is the "Big End," where bits and bytes are numbered starting at the most
significant bit (MSB, "left," or high end). Another system is the "Little End," where bits and bytes
start at the least significant bit (LSB, "right, " or low end). The following figure illustrates the
difference between the two conventions for the case of addressing bytes within words.

Byte Order Within Words: (a) Big End, (b) Little End

Portability Page 6 of 8

8/21/97 12:25:51 PM

Data types stored as subcomponents (bytes stored in words) end up in different locations within
corresponding words of the two conventions. The following figure illustrates the difference between
the representation of several data types in the two conventions. Letters represent 8-bit character data,
while numbers represent the 8-bit partial contribution to 32-bit integer data.

Character and Integer Data in Words: (a) Big End, (b) Little End

If you serially transfer bytes now from the Big End words to the Little End words (BE byte 0 to LE
byte 0, BE byte 1 to LE byte 1, ...), the left half of the figure shows how the data ends up in the Little
End words. Note that data of size one byte (characters in this case) is ordered correctly, but that
integer data no longer correctly represents the original binary values. The right half of the figure
shows that you need to swap bytes around the middle of the word to reconstitute the correct 32-bit
integer values. After swapping bytes, the two preceding figures are identical.

Data Sent from Big to Little: (a) After Transfer, (b) After Byte Swaps

You can generalize the previous example to include floating-point data types and to include
multiple-word data types. The following table summarizes the ordering nature of several common
processors.

Ordering Nature of Processors

Processor Byte Order Bit Order

Portability Page 7 of 8

8/21/97 12:25:51 PM

Intel® 80486, Pentium®, Pentium Pro Little Little
DIGITAL Alpha and VAXtm Little Little
Motorola® 680XX Big Little
IBM® Mainframes Big Big

The important result is that portable, serial transport of 8-bit character data between most systems is
possible with little or no knowledge about the ordering nature of each system.

For more information on big and little endian data and Visual Fortran unformatted data conversion
capabilities, see Converting Unformatted Numeric Data.

Binary Representations

The discussion in Big End or Little End Ordering stresses 8-bit character data because you might
encounter hardware that uses a different representation of binary data. The Visual Fortran system
uses the two's-complement representation of negative binary integers. You might encounter a system
that uses a signed magnitude representation, a one's complement representation, or a biased (excess)
representation. Additionally, the bit representation of binary floating-point numbers is not unique.

If you transport binary data to or from a different system, you need to know the respective
representations to convert the binary data appropriately.

Declaring Data Types

Use default data types unless you anticipate memory problems, or if your data is sensitive to
overflow limits. If data precision errors or numeric overflow could affect your program, specify type
and kind parameters for the intrinsic types as well as for declared data objects. Default data types are
portable and are usually aligned by the compiler to achieve good memory access speed. Using some
of the nondefault data types on certain machines may slow down memory access.

Transportability of Data

You can achieve the highest transportability of your data by formatting it as 8-bit character data. Use
a standard character set such as the ASCII standard for encoding your character data. Although this
practice is less efficient than using binary data, it will save you from shuffling and converting your
data.

If you are transporting your data by means of a record-structured medium, it is best to use the Fortran
sequential formatted (as character data) form. You can also use the direct formatted form, but you
need to know the record length of your data. Remember also that some systems use a carriage
return-linefeed pair as an end-of-record indicator, while other systems use linefeed only. If you use
either the direct unformatted or the sequential unformatted form, there might be system-dependent
values embedded within your data that complicate its transport.

Implementing a strictly portable solution requires a careful effort. Maximizing portability may also
mean making compromises to the efficiency and functionality of your solution. If portability is not
your highest priority, you can use some of the techniques that appear in later sections to ease your
task of customizing a solution.

Portability Page 8 of 8

8/21/97 12:25:51 PM

For more information on big and little endian data and unformatted data conversion, see Converting
Unformatted Numeric Data.

Using National Language Support Routines Page 1 of 8

8/21/97 12:26:05 PM

Using National Language Support Routines
Visual Fortran provides a complete National Language Support (NLS) library of
language-localization routines and multibyte-character routines. You can use these routines to write
applications in many different languages. In many languages, the standard ASCII character set is not
enough because it lacks common symbols and punctuation (such as the British pound sign), or
because the language uses a non-ASCII script (such as Cyrillic for Russian) or because the language
consists of too many characters for each to be represented by a single byte (such as Chinese).

In the case of many non-ASCII languages, such as Arabic and Russian, an extended single-byte
character set is sufficient. You need only change the language locale and codepage, which can be
done at a system level or within your program. However, Eastern languages such as Japanese and
Chinese use thousands of separate characters that cannot be encoded as single-byte characters.
Multibyte characters are needed to represent them.

Character sets are stored in tables called code sets. There are three components of a code set: the
locale, which is a language and country (since, for instance, the language Spanish may vary among
countries), the codepage, which is a table of characters to make up the computer’s alphabet, and the
font used to represent the characters on the screen. These three components can be set independently.
Each computer running Windows NT or Windows 95 comes with many code sets built into the
system, such as English, Arabic, and Spanish. Multibyte code sets, such as Chinese and Japanese, are
not standard but come with special versions of the operating system (for instance, Windows NT-J
comes with the Japanese code set).

The default code set is obtained from the operating system when a program starts up. When you
install your operating system, you should install the system supplied code sets. Thereafter, they are
always available. You can switch among them by going into Control Panel in Windows NT or
Windows 95, choosing International in Windows NT or Regional Settings in Windows 95, and
choosing from the dropdown list of available locales (languages and countries).

When you select a new locale, it becomes the default system locale, and will remain the default
locale until you change it. Each locale has a default codepage associated with it, and a default
currency, number, and date format.

Note: The default codepage does not change when you select a new locale until you reboot your
computer.

You can change the currency, number, and date format in the International dialog box or the
Regional Setting dialog box independently of the locale.

The locale determines the character set available to the user. The locale you select becomes the
default for the NLS routines described in this section, but the NLS routines allow you to change
locales and their parameters from within your programs. These routines are useful for creating
original foreign-language programs or different versions of the same program for various
international markets. Changes you make to the locale from within a program affect only the
program. They do not change the system default settings.

The codepage you select, which can be set independently, controls the multibyte (MB routines)
character routines described in this section. Only users with special multibyte-character code sets

Using National Language Support Routines Page 2 of 8

8/21/97 12:26:05 PM

installed on their computers need to use MB routines. The standard code sets all use single-byte
character code sets.

Note that in Visual Fortran source code, multibyte characters can be used only in character strings
and source comments. They cannot be used within variable names or statements. Like program
changes to the locale, program changes to codepages affect only the program, not the system
defaults.

The NLS and MB routines are contained in the library DFNLS.LIB which consists of DFNLS.MOD
and DFNLS.F90. To access the routines, the statement USE DFNLS should be present in any
program unit that uses NLS or MB routines.

This section includes a discussion of character sets and the NLS library routines:

• Single and Multibyte Character Sets
• National Language Support Library Routines

Single and Multibyte Character Sets
The ASCII character set defines the characters from 0 to 127 and an extended set from 128 to 255.
Several alternative single-byte character sets, primarily European, define the characters from 0 to 127
identically to ASCII, but define the characters from 128 to 255 differently. With this extension, 8-bit
representation is sufficient for defining the needed characters in most European-derived languages.
However, some languages, such as Japanese Kanji, include many more characters than can be
represented with a single byte. These languages require multibyte coding.

A multibyte character set consists of both one-byte and two-byte characters. A multibyte-character
string can contain a mix of single and double-byte characters. A two-byte character has a lead byte
and a trail byte. In a particular multibyte character set, the lead and trail byte values can overlap, and
it is then necessary to use the byte's context to determine whether it is a lead or trail byte.

National Language Support Library Routines
The library routines for handling extended and multibyte character sets are divided into three
categories:

• Locale Setting and Inquiry Routines to set locales (local code sets) and inquire about their
current settings

• NLS Formatting Routines to format dates, currency, and numbers
• Multibyte character routines

All of these routines are described in detail in the Reference.

In the descriptions that follow, function and parameter names are given with a mixture of upper- and
lowercase letters. This is to make the names easier to understand. You can use any case for these
names when writing your applications.

Locale Setting and Inquiry Routines

Using National Language Support Routines Page 3 of 8

8/21/97 12:26:05 PM

At program startup, the current language and country setting is retrieved from the operating system.
The user can change this setting through the Windows NT Control Panel/International menu and
Windows 95 Control Panel/Regional Settings menu. The current codepage is also retrieved from the
system. There is a system default console codepage and a system default Windows codepage.
Console programs retrieve the system console codepage, while Windows programs (including
QuickWin applications) retrieve the system Windows codepage.

The NLS Library provides routines to determine the current locale (local code set), to return
parameters of the current locale, to provide a list of all the system supported locales, and to set the
locale to another language, country and/or codepage. These routines are summarized in the following
table. Note that the locales and codepages set with these routines affect only the program or console
that calls the routine. They do not change the system defaults or affect other programs or consoles.

Routines to Set and Inquire about the Locales

Name
Procedure

Type
Description

NLSSetLocale Function Sets the language, country and codepage
NLSGetLocale Subroutine Retrieves the current language, country and

codepage
NLSGetLocaleInfo Function Retrieves requested information about the current

local code set
NLSEnumLocales Function Returns all the languages and country combinations

supported by the system
NLSEnumCodepages Function Returns all the supported codepages on the system
NLSSetEnvrionmentCodepage Function Changes the codepage for the current console
NLSGetEnvrionmentCodepage Function Returns the codepage number for the system

(Window) codepage or the console codepage

As an example:

 USE DFNLS
 INTEGER(4) strlen, status
 CHARACTER(40) str

 strlen = NLSGetLocaleInfo(NLS$LI_SDAYNAME1, str)
 print *, str ! prints Monday
 strlen = NLSGetLocaleInfo(NLS$LI_SDAYNAME2, str)
 print *, str ! prints Tuesday
 strlen = NLSGetLocaleInfo(NLS$LI_SDAYNAME3, str)
 print *, str ! prints Wednesday
 ! Change locale to Spanish, Mexico
 status = NLSSetLocale("Spanish", "Mexico")
 strlen = NLSGetLocaleInfo(NLS$LI_SDAYNAME1, str)
 print *, str ! prints lunes
 strlen = NLSGetLocaleInfo(NLS$LI_SDAYNAME2, str)
 print *, str ! prints martes
 strlen = NLSGetLocaleInfo(NLS$LI_SDAYNAME3, str)
 print *, str ! prints miércoles
 END

NLS Formatting Routines

Using National Language Support Routines Page 4 of 8

8/21/97 12:26:05 PM

You can set time, date, currency and number formats from the Windows NT Control
Panel/International and Windows 95 Control Panel/Regional Settings menu. The NLS Library also
provides formatting routines for the current locale. These routines are summarized in the following
table. These routines return strings in the current codepage, set by default at program start or by
NLSSetLocale.

All the formatting routines return the number of bytes in the formatted string (not the number of
characters, which can vary if multibyte characters are included). If the output string is longer than the
formatted string, the output string is blank padded. If the output string is shorter than the formatted
string, an error occurs, NLS$ErrorInsufficientBuffer is returned, and nothing is written to the
output string.

Formatting Routines

Name
Procedure

Type
Description

NLSFormatCurrency Function Formats a number string and returns the correct currency
string for the current locale

NLSFormatDate Function Returns a correctly formatted string containing the date for
the current locale

NLSFormatNumber Function Formats a number string and returns the correct number
string for the current locale

NLSFormatTime Function Returns a correctly formatted string containing the time for
the current locale

As an example:

 USE DFNLS
 INTEGER(4) strlen, status
 CHARACTER(40) str
 strlen = NLSFormatTime(str)
 print *, str ! prints 11:42:24 AM
 strlen = NLSFormatDate(str, flags= NLS$LongDate)
 print *, str ! prints Friday, July 14, 1995
 status = NLSSetLocale ("Spanish", "Mexico")
 strlen = NLSFormatTime(str)
 print *, str ! prints 11:42:24
 print *, str ! prints viernes 14 de julio de 1995

Multibyte Character Routines

All of the routines in this section are intended for use with Multibyte Character Sets (MBCS).
Examples of such characters sets are Japanese, Korean, and Chinese. The routines in this section
work from the current codepage, set with NLSSetLocale and read back with NLSGetLocale. String
comparison routines, such as MBLLT, are based on the current language and country settings.

Routines discussed in this section are:

• MBCS Inquiry Routines
• MBCS Conversion Routines
• MBCS Fortran Equivalent Routines
• Standard Fortran 90 Routines That Handle MBCS Characters

Using National Language Support Routines Page 5 of 8

8/21/97 12:26:05 PM

MBCS Inquiry Routines

The MBCS inquiry routines provide information on the maximum length of multibyte characters, the
length, number and position of multibyte characters in strings, and whether a multibyte character is a
leading or trailing byte. These routines are summarized in the following table. The NLS library
provides a parameter, MBLenMax, defined in the NLS module to be the longest length (in bytes) of
any character, in any codepage. This parameter can be useful in comparisons and tests. To determine
the maximum character length of the current codepage, use the MBCurMax function.

MBCS Inquiry Routines

Name
Procedure

Type
Description

MBCharLen Function Returns the length of the first multibyte character in a string
MBCurMax Function Returns the longest possible mutlibyte character for the current

codepage
MBLead Function Determines whether a given character is the first byte of a multibyte

character
MBLen Function Returns the number of multibyte characters in a string, including

trailing spaces
MBLen_Trim Function Returns the number of multibyte characters in a string, not including

trailing spaces
MBNext Function Returns the string position of the first byte of the multibyte character

immediately after the given string position
MBPrev Function Returns the string position of the first byte of the multibyte character

immediately before the given string position
MBStrLead Function Performs a context sensitive test to determine whether a given byte in

a character string is a lead byte

As an example:

 USE DFNLS
 CHARACTER(4) str
 INTEGER status
 status = NLSSetLocale ("Japan")
 str = " ·, " ¿"
 PRINT '(1X,''String by char = '',\)'
 DO i = 1, len(str)
 PRINT '(A2,\)',str(i:i)
 END DO
 PRINT '(/,1X,''MBLead = '',\)'
 DO i = 1, len(str)
 PRINT '(L2,\)',mblead(str(i:i))
 END DO
 PRINT '(/,1X,''String as whole = '',A,\)',str
 PRINT '(/,1X,''MBStrLead = '',\)'
 DO i = 1, len(str)
 PRINT '(L1,\)',MBStrLead(str,i)
 END DO
 END

This code produces the following output for str = · , " ¿

Using National Language Support Routines Page 6 of 8

8/21/97 12:26:05 PM

MBCS Conversion Routines

There are four MBCS conversion routines: two convert Japan Industry Standard characters to
Microsoft Kanji characters or vice versa, and the other two convert between a codepage mutlibyte
character string and a Unicode string. These routines are summarized in the following table.

MBCS Conversion Routines

Name
Procedure

Type
Description

MBConvertMBToUnicode Function Converts a character string from a multibyte codepage to
a Unicode string

MBConvertUnicodeToMB Function Converts a Unicode string to a multibyte character string
of the current codepage

MBJISToJMS Function Converts a Japan Industry Standard (JIS) character to a
Microsoft Kanji (Shift JIS or JMS) character

MBJMSToJIS Function Converts a Microsoft Kanji (Shift JIS or JMS) character
to a Japan Industry Standard (JIS) character

MBCS Fortran Equivalent Routines

The NLS Library provides several functions that are the exact equivalents of Fortran 90 functions
except that the MBCS equivalents allow character strings to contain multibyte characters. These
routines are summarized in the following table.

MBCS Fortran Equivalent Routines

Name
Procedure

Type
Description

MBINCHARQQ Function Same as INCHARQQ but can read a single multibyte
character at once and returns the number of bytes read

MBINDEX Function Same as INDEX except that multibyte characters can
be included in its arguments

MBLGE, MBLGT, MBLLE,
MBLLT, MBLEQ, MBLNE

Functions Same as LGE, LGT, LLE, LLT and the operators
.EQ. and .NE. except that multibyte characters can be
included in their arguments

MBSCAN Function Same as SCAN except that multibyte characters can be
included in its arguments

MBVERIFY Function Same as VERIFY except that multibyte characters can
be included in its arguments

The following example is included in the \DF\SAMPLES\TUTORIAL subdirectory as
MBCOMP.FOR:

Using National Language Support Routines Page 7 of 8

8/21/97 12:26:05 PM

 USE DFNLS

 INTEGER(4) i, len(7), infotype(7)
 CHARACTER(10) str(7)
 LOGICAL(4) log4

 data infotype / NLS$LI_SDAYNAME1, NLS$LI_SDAYNAME2, &
 & NLS$LI_SDAYNAME3, NLS$LI_SDAYNAME4, &
 & NLS$LI_SDAYNAME5, NLS$LI_SDAYNAME6, &
 & NLS$LI_SDAYNAME7 /
 WRITE(*,*) ’NLSGetLocaleInfo’
 WRITE(*,*) ’----------------’
 WRITE(*,*) ’ ’
 WRITE(*,*) ’Getting the names of the days of the week...’

 DO i = 1, 7
 len(i) = NLSGetLocaleInfo(infotype(i), str(i))
 WRITE(*, 11) ’len/str/hex = ’, len(i), str(i), str(i)
 END DO
 11 FORMAT (1X, A, I2, 2X, A10, 2X, ’[’, Z20, ’]’)

 WRITE(*,*) ’ ’
 WRITE(*,*) ’Lexically comparing the names of the days...’

 DO i = 1, 6
 log4 = MBLGE(str(i), str(i+1), NLS$IgnoreCase)
 WRITE(*, 12) ’Is day ’, i, ’ GT day ’, i+1, ’? Answer = ’, log4
 END DO
 12 FORMAT (1X, A, I1, A, I1, A, L1)

 WRITE(*,*) ’ ’
 WRITE(*,*) ’Done.’
 END

This code produces the following output:

Using National Language Support Routines Page 8 of 8

8/21/97 12:26:06 PM

Standard Fortran Routines That Handle MBCS Characters

This section describes Fortran routines that work as usual even if MBCS characters are included in
strings.

Because a space can never be a lead or tail byte, many routines that deal with spaces work as
expected on strings containing MBCS characters. Such functions include:

ADJUSTL(string), ADJUSTR(string), TRIM (string)

Some routines work with the computer collating sequence to return a character in a certain position
in the sequence or the position in the sequence of a certain character. These functions are not
dependent on a particular collating sequence. (You should note, however, that elsewhere in this
manual the ASCII collating sequence is mentioned in reference to these functions.) Such functions
include:

ACHAR(position), CHAR(position [, kind]), IACHAR(c), ICHAR(c)

Because Fortran uses character lengths instead of NULLs to indicate the length of a string, some
functions work solely from the length of the string, and not with the contents of the string. These
functions work as usual on strings containing MBCS characters, and include:

REPEAT (string, ncopies)

The Floating-Point Environment Page 1 of 17

8/21/97 12:26:29 PM

The Floating-Point Environment
This section describes the Visual Fortran numeric environment using IEEE® arithmetic for x86 and
Alpha systems. The following topics are covered:

• Representing Numbers
• Loss of Precision Errors: Rounding, Special Values, Underflow, and Overflow
• Setting and Retrieving Floating-Point Status and Control Words (x86 systems only)
• Handling Arithmetic Exceptions
• Intel Pentium Floating-Point Flaw (x86 systems only)

When the term floating-point unit (FPU) appears, it refers to your math processor, which could be a
math coprocessor for a 486 SX CPU, an integrated floating-point unit in an Intel® 486, Pentium®,
or Pentium Pro processor, or software that emulates a coprocessor. The reference manual for your
FPU describes its registers and features. The descriptions in this section minimize hardware-specific
terminology.

Visual Fortran supplies a single library for floating-point operations. Earlier versions of Visual
Fortran had several versions that you could specify, depending on your hardware configuration and
your software development goals. You do not have to specify a library; the operating system selects
the appropriate routines to execute at run-time. If the system on which your program executes
contains an FPU, the hardware routines execute; if not, software routines emulate an FPU.

Representing Numbers
Fortran's numeric environment is flexible, which helps make Fortran a strong language for intensive
numerical calculations. The Fortran standard purposely leaves the precision of numeric quantities
and the method of rounding numeric results unspecified. This allows Fortran to operate efficiently
for diverse applications on diverse systems.

The effect of math computations on integers is straightforward. Integers of KIND=4 consist of a
maximum positive integer (2,147,483,647), a minimum negative integer (-2,147,483,648), and all
integers between them including zero. Operations on integers result in other integers within this
range. The only arithmetic rule to remember is that integer division results in truncation (for
example, 8/3 evaluates to 2).

Computations on real numbers, however, may not yield what you expect. This happens because the
hardware must represent numbers in a finite number of bits.

There are several effects of using finite floating-point numbers. The hardware is not able to represent
every real number exactly, but must approximate exact representations by rounding or truncating to
finite length. In addition, some numbers lie outside the range of representation of the maximum and
minimum exponents and can result in calculations that underflow and overflow. As an example of
one consequence, finite precision produces many numbers that, although non-zero, behave in
addition as zero.

You can minimize the effects of finite representation with programming techniques; for example, by

The Floating-Point Environment Page 2 of 17

8/21/97 12:26:29 PM

not using floating-point numbers in LOGICAL comparisons or by giving them a tolerance (for
example, IF (x <= 10.001)), and by not attempting to combine or compare numbers that differ by
more than the number of significant bits. (For more information on programming methods to reduce
the effects of imprecision, see Rounding Errors.)

For further discussion of how floating-point numbers are represented, see:

• Floating-Point Numbers
• Retrieving Parameters of Numeric Representations

Floating-Point Numbers

This version of Visual Fortran uses a close approximation to the IEEE floating-point standard
(ANSI/IEEE Std 754-1985, IEEE Standard for Binary Floating-Point Arithmetic, 1985). This
standard is common to many microcomputer-based systems due to the availability of fast math
coprocessors that implement the required characteristics. Software emulation of the standard is also
possible if a hardware system does not include a coprocessor.

You should choose the appropriate setting of the /fpe compiler option to select the type of default
floating-point exception handling provided by the Visual Fortran run-time system.

This section outlines the characteristics of the standard and its implementation for Visual Fortran.
Except as noted, the description includes both the IEEE standard and the Visual Fortran
implementation. The following topics are discussed:

• Floating-Point Formats
• Floating-Point Representation
• Viewing Floating-Point Representations with BitViewer
• Special Values (Signed Zero, NaN, Signed Infinity)

Floating-Point Formats

The IEEE® Standard 754 specifies values and requirements for floating-point representation (such as
base 2). The standard outlines requirements for two formats: basic and extended, and for two
word-lengths within each format: single and double.

Visual Fortran supports single-precision format (REAL(4)) and double-precision format (REAL(8))
floating-point numbers. Visual Fortran sets the process control word by default to use
double-precision run-time intermediate calculations. At some levels of optimization, some
single-precision numbers are stored on the floating-point stack (which defaults to double precision)
rather than being stored back into memory where they would be truncated to single precision. The
compiler option /fltconsistency (x86 only) can control floating-point consistency and request that
results be stored in memory rather than on the floating-point stack.

Floating-Point Representation

Floating-point numbers approximate real numbers with a finite number of bits. You can see the bits
representing a floating-point number with the BitViewer tool. The bits are calculated as shown in the
following formula. The representation is binary, so the base is 2. The bits bn represent binary digits
(0 or 1). The precision P is the number of bits in the nonexponential part of the number (the

The Floating-Point Environment Page 3 of 17

8/21/97 12:26:29 PM

significand), and E is the exponent. With these parameters, binary floating-point numbers
approximate real numbers with the values:

(- 1)s b0 . b 1 b2 ... b P-1 x 2E

where s is 0 or 1 (+ or -), and Emin<= E <= Emax. The following table gives the standard values for

these parameters for single, double, and extended-double formats and the resulting bit widths for the
sign, the exponent, and the full number.

Parameters for IEEE Floating-Point Formats

Parameter SingleDouble Extended double
Sign width in bits 1 1 1
P 24 53 64
Emax +127 +1023 +16383

Emin - 126 - 1022 - 16382

Exponent bias + 127 +1023 +16383
Exponent width in bits8 11 15
Format width in bits 32 64 80

The standard requires that the single and double formats be normalized, so b0 is always 1. The actual

number of bits needed to represent the precisions 24 and 53 is therefore 23 and 52, respectively,
because b0 is chosen to be 1 implicitly.

Extended-double format need not be normalized, so it uses the full 64 bits for precision. A bias is
added to all exponents so that only positive integer exponents occur. This expedites comparisons of
exponent values. The stored exponent is actually:

e = E + bias.

For more information on:
• Floating-point representation, see Native IEEE Floating-Point Representations.
• Using the Bitviewer tool, see Viewing Floating-Point Representations with BitViewer.
• Reading or writing floating-point data other than native IEEE little endian data, see

Converting Unformatted Numeric Data.

Viewing Floating-Point Representations with BitViewer

You can view the binary representation of real numbers in single and double format with the
BitViewer utility. This tool is accessed from the command line with the command BITVIEW. By
default Visual Fortran installs the BitViewer utility in the directory ...\DF\BIN.

The following figure shows the logical layout of the single and double formats. The figure shows the
contents of each field, its width, and the location of the most significant bit (MSB) and the least
significant bit (LSB).

Logical Structure of the IEEE Single and Double Formats

The Floating-Point Environment Page 4 of 17

8/21/97 12:26:29 PM

To view floating-point numbers in BitViewer, open the Data Type menu, then choose Floating-Point
Real (or use the F9 shortcut key). Set the precision by selecting one of the choices in the Bytes box.
Four bytes, REAL(4), displays the number in single format (23-bit precision). Eight bytes, REAL(8),
displays the number in double format (52-bit precision). The following figures show the BitViewer
display of the memory storage for a 4-byte real number and an 8-byte real number, both equal to
12.6. In the double format display, the most significant part is on the bottom and the least significant
32 bits above.

Single Format in BitViewer

Double Format in BitViewer

The Floating-Point Environment Page 5 of 17

8/21/97 12:26:29 PM

Note: BitViewer allows you to view and manipulate integer and character data as well as
floating-point, and to translate between different data types. Refer to the BitViewer Help file for
more information.

Special Values

Special cases of the exponent-significand combination represent four types of special values in
addition to the normalized numbers. The following table shows all five types of values.

IEEE Floating-Point Values

Name Quantity Exponent Significand
Signed zero ± 0 E = Emin - 1 sig = 0

Denormalized number ± 0 . sig x 2Emin E = Emin - 1 sig not equal 0

Normalized number ± 1 . sig x 2E Emin<= E<= E max sig

Signed infinity ± infinity E = Emax + 1 sig = 0

Not a Number NaN E = Emax + 1 sig not equal 0

These special values are interpreted as follows:

• Signed zero

Visual Fortran treats zero as signed by default. The sign of zero is the same as the sign of a
nonzero number. If you use the intrinsic function SIGN with zero as the second argument, the
sign of the zero will be transferred. Comparisons, however, consider +0 to be equal to -0. A
signed zero is useful in certain numerical analysis algorithms, but in most applications the sign
of zero is invisible.

• Denormalized numbers

Denormalized numbers (denormals) fill the gap between the smallest positive number and the
smallest negative number. Otherwise only (±) 0 occurs in that interval. Denormalized numbers
permit gradual underflow for intermediate results calculated internally in extended-double
format. A status flag (on x86 systems, the precision bit in the FPU Status Word exception
field) is set when a number loses precision due to denormalization.

• Signed infinity

Infinities are the result of arithmetic in the limiting case of operands with arbitrarily large
magnitude. They provide a way to continue when an overflow occurs. The sign of an infinity
is simply the sign you obtain for a finite number in the same operation as the finite number
approaches an infinite value. By retrieving the status flags described in Setting and Retrieving
Floating-Point Status and Control Words in this section, you can differentiate between an
infinity that results from an overflow and one that results from division by zero. Visual Fortran
treats infinity as signed by default. The output value of infinity is Infinity or -Infinity.

• Not a Number

Not a Number (NaN) results from an operation involving one or more invalid operands. For

The Floating-Point Environment Page 6 of 17

8/21/97 12:26:29 PM

instance 0/0 and SQRT (- 1) result in NaN. In general, an operation involving a NaN produces
another NaN. Because the fraction of a NaN is unspecified, there are many possible NaNs.
Visual Fortran treats all NaNs identically, but provide two different types:

• Signaling NAN, which has an initial fraction bit of 0 (zero).
• Quiet NaN, which has an initial fraction bit of 1.

The output value of NaN is NaN.

Retrieving Parameters of Numeric Representations

Visual Fortran includes several intrinsic functions that return details about the numeric
representation. These are listed in the following table and described fully in the Reference.

Functions that return numeric parameters

Name Description
Argument/Function

type
DIGITS DIGITS(x). Returns number of significant digits for data

of the same type as x
x: Integer or Real
result: INTEGER(4)

EPSILON EPSILON(x). Returns the smallest positive number that
when added to one produces a number greater than one
for data of the same type as x

x: Real
result: same type as x

EXPONENT EXPONENT(x). Returns the exponent part of the
representation of x

x: Real
result: INTEGER(4)

FRACTION FRACTION(x). Returns the fractional part (significand)
of the representation of x

x: Real
result: same type as x

HUGE HUGE(x). Returns largest number that can be represented
by data of type x

x: Integer or Real
result: same type as x

MAXEXPONENT MAXEXPONENT(x). Returns the largest positive
decimal exponent for data of the same type as x

x: Real
result: INTEGER(4)

MINEXPONENT MINEXPONENT(x). Returns the largest negative
decimal exponent for data of the same type as x

x: Real
result: INTEGER(4)

NEAREST NEAREST(x, s). Returns the nearest different machine
representable number to x in the direction of the sign of s

x: Real
s: Real and not zero
result: same type as x

PRECISION PRECISION(x). Returns the number of significant digits
for data of the same type as x

x: Real or Complex
result: INTEGER(4)

RADIX RADIX(x). Returns the base for data of the same type as x x: Integer or Real
result: INTEGER(4)

RANGE RANGE(x). Returns the decimal exponent range for data
of the same type as x

x: Integer, Real or
Complex
result: INTEGER(4)

RRSPACING RRSPACING(x). Returns the reciprocal of the relative
spacing of numbers near x

x: Real
result: same type as x

SCALE SCALE(x, i). Multiplies x by 2 raised to the power of i x: Real
i: Integer
result: same type as x

SET_EXPONENT SET_EXPONENT(x,i). Returns a number whose x: Real

The Floating-Point Environment Page 7 of 17

8/21/97 12:26:30 PM

fractional part is x and whose exponential part is i i: Integer
result: same type as x

SPACING SPACING(x). Returns the absolute spacing of numbers
near x

x: Real
result: same type as x

TINY TINY(x). Returns smallest postive number that can be
represented by data of type x

x: Real
result: same type as x

Loss of Precision Errors: Rounding, Special Values,
Underflow, and Overflow
If a real number is not exactly one of the representable floating-point numbers, then the nearest
floating-point number must represent it. The rounding error is the difference between the exact real
number and its nearest floating-point representation. The floating-point number representing a
rounded real number is called inexact.

Normally, calculations proceed when an inexact value results. Almost any floating-point operation
can produce an inexact result. The rounding mode (round up, round down, round nearest, truncate) is
determined by the floating-point control word.

If an arithmetic operation does not result in an exact, valid floating-point number, which includes
numbers that have been rounded to an exactly representable floating-point number, it results in a
special value: signed zero, signed infinity, NaN, or a denormal. Special-value results are a limiting
case of the arithmetic operation involved. Special values can propogate through your arithmetic
operations without causing your program to fail, and often providing usable results.

If an arithmetic operation results in an exact value, but the value is invalid, the operation causes
underflow or overflow:

• Underflow occurs when an arithmetic result is too small for the math processor to handle.
Depending on the setting of the /fpe compiler option, underflows are set to zero (they are
usually harmless) or they are left as is (denormalized).

• Overflow occurs when an arithmetic result is too large for the math processor to handle.
Overflows are more serious than underflows, and may indicate an error in the formulation of a
problem (for example, unintended exponention of a large number by a large number).
Overflows produce an appropriately signed infinity value.

Inexact numbers, special values, underflows, and overflows are floating-point exceptions. You can
select how rounding is done and how exceptions are handled by setting the floating-point control
word. Setting the control word is described in Setting and Retrieving Floating-Point Status and
Control Words (x86 only) and exception handling in Handling Floating-Point Exceptions (x86 only).

For a further discussion of rounding errors see:

• Rounding Errors

Rounding Errors

Although the rounding error for one real number might be acceptably small in your calculations, at
least two problems arise because of it. If you test for exact equality between what you consider to be
two exact numbers, the rounding error of either or both floating-point representations of those

The Floating-Point Environment Page 8 of 17

8/21/97 12:26:30 PM

numbers may prevent a successful comparison and produce spurious results. Also, when you
calculate with floating-point numbers the rounding errors may accumulate to a meaningful loss of
numerical significance.

Carefully consider the numerics of your solution to minimize rounding errors or their effects. You
might benefit from using double-precision arithmetic or restructuring your algorithm, or both. For
instance, if your calculations involve arrays of linear data items, you might reduce the loss of
numerical significance by subtracting the mean value of each array from each array element and by
normalizing each element of such an array to the standard deviation of the array elements.

The following code segment can execute differently on different systems and produce different
results for n, x, and s. It also produces different results if you use the /fltconsistency or
/nofltconsistency compiler options on x86 systems. Rounding error accumulates in x because the
floating-point representation of 0.2 is inexact, then accumulates in s, and affects the final value for n:

 INTEGER n
 REAL s, x
 n = 0
 s = 0.
 x = 0.
 1 n = n + 1
 x = x + 0.2
 s = s + x
 IF (x .LE. 10.) GOTO 1 ! Will you get 51 cycles?
 WRITE(*,*) ’n = ’, n, ’; x = ’, x, ’; s = ’, s

This example illustrates a common coding problem: carrying a floating-point variable through many
successive cycles and then using it to perform an IF test. This process is common in numerical
integration. There are several remedies. You can compute x and s as multiples of an integer index,
for example, replacing the statement that increments x with x = n * 0.2 to avoid round-off
accumulation. You might test for completion on the integer index, such as IF (n <= 50) GOTO 1, or
use a DO loop, such as DO n= 1,51. If you must test on the real variable that is being cycled, use a
realistic tolerance, such as IF (x <= 10.001).

Floating-point arithmetic does not always obey the standard rules of algebra exactly. Addition is not
precisely associative when round-off errors are considered. You can use parentheses to express the
exact evaluation you require to compute a correct, accurate answer. This is recommended when you
specify optimization for your generated code, since associativity may otherwise be unpredictable.

The expressions (x + y) + z and x + (y + z) can give unexpected results in some cases, as the example
ASSOCN.F90 in the \DF\SAMPLES\TUTORIAL subdirectory shows. This example demonstrates
the danger of combining two numbers whose values differ by more than the number of significant
digits.

The example INTERVAL.F90 in the \DF\SAMPLES\TUTORIAL subdirectory shows how changing
the rounding precision and rounding mode in the floating-point control word between calculations
affects the calculated result of the following simple expression:

 (q*r + s*t) / (u + v)

The example EPSILON.F90 in the \DF\SAMPLES\TUTORIAL subdirectory illustrates difficulties
that rounding errors can cause in expressions like 1.0 + eps, where eps is just significant compared to

The Floating-Point Environment Page 9 of 17

8/21/97 12:26:30 PM

1.0.

The compiler uses the default rounding mode (round-to-nearest) during compilation. The compiler
performs more compile-time operations that eliminate run-time operations as the optimization level
increases. If you set rounding mode to a different setting (other than round-to-nearest), that rounding
mode is used only if that computation is performed at run-time. For example, the Sample
INTERVAL.F90 is compiled at /optimize:0, which disables certain compile-time optimizations,
including constant propagation and inlining.

For more information, see:

• ULPs, Relative Error, and Machine Epsilon
• /rounding_mode (Alpha only)

ULPs, Relative Error, and Machine Epsilon

Several terms describe the magnitude of rounding error. A floating-point approximation to a real
constant or to a computed result may err by as much as 1/2 unit in the last place (the bP-1 bit). The
abbreviation ULP represents the measure "unit in the last place." Another measure of the rounding
error uses the relative error, which is the difference between the exact number and its approximation
divided by the exact number. The relative error that corresponds to 1/2 ULP is bounded by:

1/2 2-P <= 1/2 ULP <= 2 -P.

The upper bound EPS = 2-P, the machine epsilon, is commonly used in discussions of rounding errors
because it expresses the smallest floating-point number that you can add to 1.0 with a result that does
not round to 1.0.

Additional guard bits are included in floating-point hardware to allow rounding on the order of EPS.
The result of any one floating-point operation is therefore tolerably imprecise, but the total error that
results from many such operations on propagated numbers accumulates unavoidably.

Setting and Retrieving Floating-Point Status and Control
Words (x86 only)
The FPU (floating-point unit) on x86 systems contains eight floating-point registers the system uses
for numeric calculations, for status and control words, and for error pointers. You normally need to
consider only the status and control words, and then only when customizing your floating-point
environment.

The FPU status and control words correspond to 16-bit registers whose bits hold the value of a state
of the FPU or control its operation. Visual Fortran defines a set of symbolic constants to set and reset
the proper bits in the status and control words. For example:

 USE DFLIB
 CALL SETCONTROLFPQQ(FPCW$OVERFLOW .AND. FPCW$CHOP)
 ! set the floating-point control word to allow overflows
 ! and to round by truncation

The status and control symbolic constants (such as FPCW$OVERFLOW and FPCW$CHOP in
the preceding example) are defined as INTEGER(2) parameters in the module DFLIB.F90 in the

The Floating-Point Environment Page 10 of 17

8/21/97 12:26:30 PM

\DF\INCLUDE subdirectory. The status and control words are made of logical combinations (such as
with .AND.) of different parameters for different FPU options.

The name of a symbolic constant takes the general form name$option. The prefix name is one of the
following:

Prefixes for Parameter Flags

name Meaning
FPSW Floating-point status word
FPCW Floating-point control word
SIG Signal
FPE Floating-point exception
MTH Math function

The suffix option is one of the options available for that name. The parameter name$option
corresponds either to a status or control option (for example, FPSW$ZERODIVIDE, a status word
parameter that shows whether a zero-divide exception has occured or not) or name$option
corresponds to a mask, which sets all symbolic constants to 1 for all the options of name. You can
use the masks in logical functions (such as IAND, IOR, and NOT) to set or to clear all options for
the specified name. The following sections define the options and illustrate their use with examples.

You can control the floating-point processor options (on x86 systems) and find out its status with the
run-time library routines GETSTATUSFPQQ (x86 only), GETCONTROLFPQQ (x86 only),
SETCONTROLFPQQ (x86 only), and MATHERRQQ (x86 only). Examples of using these routines
also appear in the following sections.

For more information, see:

• Floating-Point Status Word (x86 only)
• Floating-Point Control Word (x86 only)

Floating-Point Status Word (x86 only)

On x86 systems, the FPU status word includes bits that show the floating-point exception state of the
processor. The status word parameters describe six exceptions: invalid result, denormalized result,
zero divide, overflow, underflow and inexact precision. These are described in the section, Loss of
Precision Errors: Rounding, Special Values, Underflow, and Overflow. When one of the bits is set to
1, it means a past floating-point operation produced that exception type. (Visual Fortran initially
clears all status bits. It does not reset the status bits before performing additional floating-point
operations after an exception occurs. The status bits accumulate.) The following table shows the
floating-point exception status parameters:

Parameter name Value in hex Description
FPSW$MSW_EM #003F Status Mask (set all bits to 1)
FPSW$INVALID #0001 An invalid result occurred
FPSW$DENORMAL #0002 A denormal (very small number) occurred
FPSW$ZERODIVIDE #0004 A divide by zero occurred
FPSW$OVERFLOW #0008 An overflow occurred

The Floating-Point Environment Page 11 of 17

8/21/97 12:26:30 PM

FPSW$UNDERFLOW #0010 An underflow occurred
FPSW$INEXACT #0020 Inexact precision occurred

You can find out which exceptions have occurred by retrieving the status word and comparing it to
the exception parameters. For example:

USE DFLIB
INTEGER(2) status
CALL GETSTATUSFPQQ(status)
IF ((status .AND. FPSW$INEXACT) > 0) THEN
 WRITE (*, *) "Inexact precision has occurred"
ELSE IF ((status .AND. FPSW$DENORMAL) > 0) THEN
 WRITE (*, *) "Denormal occurred"
END IF

Floating-Point Control Word (x86 only)

On x86 systems, the FPU control word includes bits that control the FPU’s precision, rounding mode,
and whether exceptions generate signals if they occur. You can read the control word value with
GETCONTROLFPQQ (x86 only) to find out the current control settings, and you can change the
control word with SETCONTROLFPQQ (x86 only).

Each bit in the floating-point control word corresponds to a mode of the floating-point math
processor. The DFLIB.F90 module file in the \DF\INCLUDE subdirectory contains the INTEGER(2)
parameters defined for the control word, as shown in the following table.

Parameter name Value in hex Description
FPCW$MCW_IC #1000 Infinity control mask
FPCW$AFFINE #1000 Affine infinity
FPCW$PROJECTIVE #0000 Projective infinity
FPCW$MCW_PC #0300 Precision control mask
FPCW$64 #0300 64-bit precision
FPCW$53 #0200 53-bit precision
FPCW$24 #0000 24-bit precision
FPCW$MCW_RC #0C00 Rounding control mask
FPCW$CHOP #0C00 Truncate
FPCW$UP #0800 Round up
FPCW$DOWN #0400 Round down
FPCW$NEAR #0000 Round to nearest
FPCW$MSW_EM #003F Exception mask
FPCW$INVALID #0001 Allow invalid numbers
FPCW$DENORMAL #0002 Allow denormals (very small numbers)
FPCW$ZERODIVIDE #0004 Allow divide by zero
FPCW$OVERFLOW #0008 Allow overflow
FPCW$UNDERFLOW #0010 Allow underflow
FPCW$INEXACT #0020 Allow inexact precision

The control word defaults are:

The Floating-Point Environment Page 12 of 17

8/21/97 12:26:30 PM

• 53-bit precision
• Round to nearest (rounding mode)
• The denormal, underflow, overflow, invalid, and inexact precision exceptions are disabled (do

not generate an exception). To change exception handling, you can use the /fpe compiler
option or the FOR_SET_FPE routine.

For more information (x86 only), see:

• Exception Parameters
• Precision Parameters
• Rounding Parameters

Exception Parameters

An exception is disabled if its bit is set to 1 and enabled if its bit is cleared to 0. If an exception is
disabled (exceptions can be disabled by setting the flags to 1 with SETCONTROLFPQQ (x86 only)),
it will not generate an interrupt signal if it occurs. The floating-point process will return an
appropriate special value (for example, NaN or signed infinity), but the program continues. You can
find out which exceptions (if any) occurred by calling GETSTATUSFPQQ (x86 only). If errors on
floating-point exceptions are enabled (by clearing the flags to 0 with SETCONTROLFPQQ (x86
only)), the operating system generates an interrupt when the exception occurs. By default these
interrupts cause run-time errors, but you can capture the interrupts with SIGNALQQ and branch to
your own error-handling routines.

You should remember not to clear all existing settings when changing one. The values you want to
change should be combined with the existing control word in an inclusive-OR operation (OR, IOR,
.OR.) if you don't want to reset all options. For example:

USE DFLIB
INTEGER(2) control, newcontrol
CALL GETCONTROLFPQQ(control)
newcontrol = (control .OR. FPCW$INVALID)
! Invalid exception set (disabled).
CALL SETCONTROLFPQQ(newcontrol)

Precision Parameters

On x86 systems, the precision bits control the precision to which the FPU rounds floating-point
numbers. For example:

USE DFLIB
INTEGER(2) control, holdcontrol, newcontrol
CALL GETCONTROLFPQQ(control)
! Clear any existing precision flags.
holdcontrol = (control .AND. (.NOT. FPCW$MCW_PC))
newcontrol = holdcontrol .OR. FPCW$64
! Set precision to 64 bits.
CALL SETCONTROLFPQQ(newcontrol)

The precision options are mutually exclusive. If you set more than one, you may get an invalid mode
or a mode other than the one you want. Therefore, you should clear the precision bits before setting a
new precision mode.

The Floating-Point Environment Page 13 of 17

8/21/97 12:26:30 PM

Rounding Parameters

On x86 systems, the rounding flags control the method of rounding that the FPU uses. For example:

USE DFLIB
INTEGER(2) control, clearcontrol, newcontrol
CALL GETCONTROLFPQQ(control)
! Clear any existing rounding flags.
clearcontrol = (control .AND. (.NOT. FPCW$MCW_RC))
newcontrol = clearcontrol .OR. FPCW$UP
! Set rounding mode to round up.
CALL SETCONTROLFPQQ(newcontrol)

The rounding options are mutually exclusive. If you set more than one, you may get an invalid mode
or a mode other than the one you want. Therefore, you should clear the rounding bits before setting a
new rounding mode.

On Alpha systems, you can use /rounding_mode (Alpha only) compiler option to control the
rounding mode.

Handling Arithmetic Exceptions
Two levels of arithmetic exceptions occur in Visual Fortran. Low-level exceptions result from
floating-point exceptions. High-level exceptions result from arithmetic errors that occur during
execution of the mathematical functions. You have some flexibility in handling each type of
exception.

The following sections describe:

• Floating-Point Exceptions
• Handling Run-Time Math Exceptions (x86 only)

Handling Floating-Point Exceptions

If a floating-point exception is disabled (set to 1), it will not generate an interrupt signal if it occurs.
The floating-point process will return an appropriate special value (for example, NaN or signed
infinity), and the program will continue. If a floating-point exception is enabled (set to 0), it will
generate an interrupt signal (software interrupt) if it occurs. The following table lists the
floating-point exception signals.

Parameter name Value in hex Description
FPE$INVALID #81 Invalid result
FPE$DENORMAL #82 Denormal operand
FPE$ZERODIVIDE #83 Divide by zero
FPE$OVERFLOW #84 Overflow
FPE$UNDERFLOW#85 Underflow
FPE$INEXACT #86 Inexact precision

If a floating-point exception interrupt occurs and you do not have an exception handling routine, the
run-time system will respond to the interrupt according to the behavior selected by the compiler

The Floating-Point Environment Page 14 of 17

8/21/97 12:26:30 PM

option /fpe. Remember, interrupts only occur if an exception is enabled (set to 0).

If you do not want the default system exception handling, you need to write your own interrupt
handling routine. This is a relatively simple two-step process:

• Write a function that performs whatever special behavior you require on the interrupt.
• Register that function as the procedure to be called on that interrupt with SIGNALQQ.

Note that your interrupt handling function must use the ATTRIBUTES C directive.

The drawback of writing your own routine is that your exception-handling routine cannot return to
the process that caused the exception. This is because when your exception-handling routine is
called, the floating-point processor is in an error condition, and if your routine returns, the processor
is in the same state, which will cause a system termination. Your exception-handling routine can
therefore either branch to another separate program unit or exit (after saving your program state and
printing an appropriate message). You cannot return to a different statement in the program unit that
caused the exception-handling routine, because a global GOTO does not exist, and you cannot reset
the status word in the floating-point processor.

If you need to know when exceptions occur and also must continue if they do, you must disable
exceptions so they do not cause an interrupt, then poll the floating-point status word at intervals with
GETSTATUSFPQQ (x86 only) to see if any exceptions occurred. Obviously, this creates processing
overhead for your program. In general, you will want to allow the program to terminate if there is an
exception. An example of an exception-handling routine follows. The exception-handling routine
hand_fpe and the program that invokes it are both contained in SIGTEST.F90 in the
\DF\SAMPLES\TUTORIAL subdirectory. The comments at the beginning of the SIGTEST.F90 file
describe how to compile this example.

! SIGTEST.F90
!Establish the name of the exception handler as the
! function to be invoked if an exception happens.
! The exception handler hand_fpe is attached below.
 USE DFLIB
 INTERFACE
 FUNCTION hand_fpe (sigid, except)
 !DEC$ATTRIBUTES C :: hand_fpe
 INTEGER(4) hand_fpe
 INTEGER(2) sigid, except
 END FUNCTION
 END INTERFACE

INTEGER(4) iret
REAL(4) r1, r2
r1 = 0.0
iret = SIGNALQQ(SIG$FPE, hand_fpe)
WRITE(*,*) ’Set exception handler. Return = ’, iret
! Cause divide by zero exception
r1 = 0.0
r2 = 3/r1
END

! Exception handler routine hand_fpe
 FUNCTION hand_fpe (signum, excnum)
 !DEC$ ATTRIBUTES C :: hand_fpe
 USE DFLIB
 INTEGER(2) signum, excnum
 WRITE(*,*) ’In signal handler for SIG$FPE’

The Floating-Point Environment Page 15 of 17

8/21/97 12:26:30 PM

 WRITE(*,*) ’signum = ’, signum
 WRITE(*,*) ’exception = ’, excnum
 SELECT CASE(excnum)
 CASE(FPE$INVALID)
 STOP ’ Floating point exception: Invalid number’
 CASE(FPE$DENORMAL)
 STOP ’ Floating point exception: Denormalized number’
 CASE(FPE$ZERODIVIDE)
 STOP ’ Floating point exception: Zero divide’
 CASE(FPE$OVERFLOW)
 STOP ’ Floating point exception: Overflow’
 CASE(FPE$UNDERFLOW)
 STOP ’ Floating point exception: Underflow’
 CASE(FPE$INEXACT)
 STOP ’ Floating point exception: Inexact precision’
 CASE DEFAULT
 STOP ’ Floating point exception: Non-IEEE type’
 END SELECT
 hand_fpe = 1
 END

Handling Run-Time Math Exceptions (x86 only)

On x86 systems, the run-time subroutine MATHERRQQ (x86 only) handles floating-point
exceptions that occur in the math functions, such as SIN and LOG10. If you use the default version
of MATHERRQQ, which the linker automatically includes in your executable program, then math
exceptions result in a standard run-time error (such as forrtl: severe (nnnn): sqrt: domain
error). If you want to alter the behavior of one or more math exceptions, you need to provide your
own version of MATHERRQQ. You have more flexibility in the way you handle run-time math
exceptions than floating-point exceptions, because your error handling routine can return to the
program unit that caused the exception.

The module DFLIB.F90 in the \DF\INCLUDE subdirectory contains the definitions of the run-time
math exceptions. These are listed in the following table:

Parameter name Value Description
MTH$E_DOMAIN 1 Argument domain error
MTH$E_SINGULARITY 2 Argument singularity
MTH$E_OVERFLOW 3 Overflow range error
MTH$E_UNDERFLOW 4 Underflow range error
MTH$E_TLOSS 5 Total loss of precision
MTH$E_PLOSS 6 Partial loss of precision

A domain error means that an argument is outside the math function’s domain, for example,
SQRT(-1). A singularity error means that an argument is a singularity value for the math function,
and the result is not defined for that value, for example, LOG10(0.0). Overflow and underflow errors
are the same as floating-point counterparts, and precision loss the same as floating-point inexact
results.

You can write a MATHERRQQ subroutine that resolves errors generated by math functions. Your
MATHERRQQ can issue a warning, assign a default value if an error occurs, or take other action. If
you do not provide your own MATHERRQQ subroutine, a default MATHERRQQ provided with
the floating-point library will terminate the program. The following gives an example of an

The Floating-Point Environment Page 16 of 17

8/21/97 12:26:30 PM

alternative MATHERRQQ subroutine (in MATHERR.F90 in the /DF/SAMPLES/TUTORIAL
subdirectory):

SUBROUTINE MATHERRQQ(name, length, info, retcode)
 USE DFLIB
 INTEGER(2) length, retcode
 CHARACTER(length) name
 RECORD /MTH$E_INFO/ info
 PRINT *, "Entered MATHERRQQ"
 PRINT *, "Failing function is: ", name
 PRINT *, "Error type is: ", info.errcode
 IF ((info.ftype == TY$REAL4).OR.(info.ftype == TY$REAL8)) THEN
 PRINT *, "Type: REAL"
 PRINT *, "Enter the desired function result: "
 READ(*,*) info.r8res
 retcode = 1
 ELSE IF ((info.ftype == TY$CMPLX8).OR.(info.ftype == TY$CMPLX16)) THEN
 PRINT *, "Type: COMPLEX"
 PRINT *, "Enter the desired function result: "
 READ(*,*) info.c16res
 retcode = 1
 END IF
 END

The following is an example program (MATHTEST.F90 in the /DF/SAMPLES/TUTORIAL
subdirectory) that causes MATHERQQ to be called:

REAL(4) r1, r2 /-1.0/
REAL(8) r3, r4 /-1.0/
COMPLEX(4) c1, c2 /(0.0, 0.0)/
r1 = LOG(r2)
r3 = SQRT(r4)
c1 = CLOG(c2)

WRITE(*, *) r1
WRITE(*, *) r3
WRITE(*, *) c1
END

Intel Pentium Floating-Point Flaw (x86 only)
Certain versions of the Intel® Pentium® processor have a flaw in rare floating-point division
operations, which can also manifest itself in floating-point TAN, ATAN, and MOD operations.
Since the number of input cases that cause this problem is very small and the associated error in the
results is also very small, it is unlikely that you will ever see a problem due to this flaw. It has been
estimated that only 1 out of 9 billion operations will produce even the slightest inaccuracy.

To request a check for a flawed Pentium chip, you can use the default compiler option
/check:flawed_pentium option (in the Run-Time Checking category of the Fortran tab in Developer
Studio) on code you suspect demonstrates the Pentium flaw, such as the code shown below. This
compiler option generates run-time calls to the run-time routine
FOR_CHECK_FLAWED_PENTIUM. The default, /check:flawed_pentium, does issue a run-time
error message for this condition and stops program execution. To allow program execution to
continue when this condition occurs, set the environment variable
FOR_RUN_FLAWED_PENTIUM to true and rerun the program (see Run-Time Environment
Variables).

The Floating-Point Environment Page 17 of 17

8/21/97 12:26:30 PM

Visual Fortran does not include a software workaround for the flawed Pentium problems, and these
operations could produce incorrect results on a flawed Pentium processor.

To determine if you have a flawed pentium, you can run the following program with the
/check:flawed_pentium compiler option:

 PROGRAM go
 REAL(8) op1, op2
 COMMON /divide_check/ op1, op2
 DATA op1 /3145727.0/, op2 /4195835.0/
 IF(op2/op1 > 1.3338) THEN
 PRINT *,’This computer always divides correctly.’
 ELSE
 PRINT *,’This computer can have divide problems.’
 ENDIF
 END

If you compile and run this program without any compiler options (the default is
/check:flawed_pentium), a run-time error occurs when it is run on a flawed Pentium system.

Both Windows NT and Windows 95 can also work around flawed Pentium processors by using
software emulation for floating-point operations. Refer to your operating system documentation for
more information. If the operating system has been configured for software emulation, then all
floating-point operations in Visual Fortran will always operate correctly, including the above
program. Note that the performance cost of an operating system fix can be very high, and if your
program is run on another machine without the same operating system fix, it will execute incorrectly.

If you distribute software that is susceptible to the floating-point problems of a flawed Pentium, and
want your program to halt if it is run on a system with such a processor, you can check the processor
when your application starts. To do this, convert the program above into a simple subroutine, call the
subroutine at the start of your application, and use the STOP statement to stop the application before
it begins if a flawed Pentium processor is detected. If you distribute your software, you should
compile it with the /check:flawed_pentium compiler option.

All the run-time libraries that come with Visual Fortran have been compiled to be safe with respect
to the Pentium divide and MOD problems.

For more information on the Intel Pentium flaw, or to request a replacement Pentium processor, you
can contact Intel in the US at 1-800-628-8686.

Handling Run-Time Errors Page 1 of 7

8/21/97 12:26:51 PM

Handling Run-Time Errors
This section contains information on the following topics:

• Default Run-Time Error Processing, including the message format and values returned at
program termination.

• Handling Run-Time Errors within your program, including using the END, EOR, and ERR
I/O statement branch specifiers and the IOSTAT specifier.

• Locating Run-Time Errors, including suggested compiler options and information about
debugging exceptions.

• Run-Time Environment Variables that allow program continuation under certain conditions,
disable the display of certain dialog boxes under certain conditions, and allow "just-in-time"
debugging.

During execution, your program may encounter errors or exception conditions. These conditions can
result from any of the following:

• Errors that occur during I/O operations
• Invalid input data
• Argument errors in calls to the mathematical library
• Arithmetic errors
• Other system-detected errors

The DIGITAL Visual Fortran Run-Time Library (RTL) generates appropriate messages and takes
action to recover from errors whenever possible.

For a description of each Visual Fortran run-time error message, see Run-Time Errors

Default Run-Time Error Processing
The Visual Fortran RTL processes a number of errors that can occur during program execution. A
default action is defined for each error recognized by the Visual Fortran RTL. The default actions
described throughout this chapter occur unless overridden by explicit error-processing methods.

The way in which the Visual Fortran RTL actually processes errors depends upon the following
factors:

• The severity of the error. For instance, the program usually continues executing when an error
message with a severity level of warning or info (informational) is detected.

• For certain errors associated with I/O statements, whether or not an I/O error-handling
specifier was specified.

• For certain errors, whether or not the default action of an associated signal was changed.
• For certain errors related to arithmetic operations (including floating-point exceptions),

compilation options can determine whether the error is reported and the severity of the
reported error.

How arithmetic exception conditions are reported and handled depends on the cause of the exception
and how the program was compiled. Unless the program was compiled to handle exceptions, the

Handling Run-Time Errors Page 2 of 7

8/21/97 12:26:51 PM

exception might not be reported until after the instruction that caused the exception condition.

For More Information:

• On the Visual Fortran message format, see Run-Time Message Format
• On the Visual Fortran return values at program termination, see Values Returned at Program

Termination
• On locating errors and the compiler options related to handling errors and exceptions, see

Locating Run-Time Errors.
• On DF command options and their categories in Developer Studio (Project Settings, Fortran

tab), see Categories of Compiler Options.
• On DIGITAL Fortran intrinsic data types and their ranges, see Data Representation.
• On the floating-point environment, see The Floating-Point Environment

Run-Time Message Format

When errors occur during program execution (run time) of a scalar (nonparallel) program, the Visual
Fortran RTL issues diagnostic messages. These run-time messages have the following format:

forrtl: severity (number): message-text

Run-time messages provide the following information:

Contents Information Given
forrtl Identifies the source as the Visual Fortran RTL.
severity The severity levels are: severe, error, warning, or info (abbreviation of information)

(see the table Severity Levels of Run-Time Messages).
number This is the message number, also the IOSTAT value for I/O statements.
message-text Explains the event that caused the message.

The following table explains the severity levels of run-time messages, in the order of greatest to least
severity:

Severity Levels of Run-Time Messages

Severity Description
severe Must be corrected. The program's execution is terminated when the error is encountered

unless the program's I/O statements use the END, EOR, or ERR branch specifiers to
transfer control, perhaps to a routine that uses the IOSTAT specifier (see the section Using
the END, EOR, and ERR Branch Specifiers and the section Using the IOSTAT Specifier
and Fortran Exit Codes).

error Should be corrected. The program might continue execution, but the output from this
execution may be incorrect.

warning Should be investigated. The program continues execution, but output from this execution
may be incorrect.

info For informational purposes only; the program continues.

For a description of each Visual Fortran run-time error message, see Run-Time Errors

Handling Run-Time Errors Page 3 of 7

9/2/97 3:36:22 PM

Values Returned at Program Termination

A Visual Fortran program can terminate in one of several ways:

• The program runs to normal completion. A value of zero is returned to the shell.
• The program stops with a PAUSE statement. A value of zero is returned to the shell.
• The program stops because of a signal that is caught but does not allow the program to

continue. A value of 1 is returned to the shell.
• The program stops because of a severe run-time error. The error number for that run-time error

is returned to the shell. Error numbers are listed in Run-Time Errors.
• The program stops with a CALL EXIT statement. The value passed to EXIT is returned to

the shell.

Methods of Handling Errors
Whenever possible, the Visual Fortran RTL does certain error handling, such as generating
appropriate messages and taking necessary action to recover from errors. You can explicitly
supplement or override default actions by using the following methods:

• To transfer control to error-handling code within the program, use the END, EOR, and ERR
branch specifiers in I/O statements, see Using the END, EOR, and ERR Branch Specifiers.

• To identify Fortran-specific I/O errors based on the value of Visual Fortran RTL error codes,
use the I/O status specifier (IOSTAT) in I/O statements (or call the ERRSNS subroutine), see
Using the IOSTAT Specifier and Fortran Exit Codes.

These error-processing methods are complementary; you can use any or all of them within the same
program to obtain Visual Fortran run-time error codes.

On Alpha systems, if your program generates an exception, unless you are using the /fpe:0 option,
consider using the /synchronous_exceptions option and recompile and relink your application.

Using the END, EOR, and ERR Branch Specifiers

When a severe error occurs during Visual Fortran program execution, the default action is to display
an error message and terminate the program. To override this default action, there are three branch
specifiers you can use in I/O statements to transfer control to a specified point in the program:

• The END branch specifier handles an end-of-file condition.
• The EOR branch specifier handles an end-of-record condition for nonadvancing reads.
• The ERR branch specifier handles all error conditions.

If you use the END, EOR, or ERR branch specifiers, no error message is displayed and execution
continues at the designated statement, usually an error-handling routine.

You might encounter an unexpected error that the error-handling routine cannot handle. In this case,
do one of the following:

• Modify the error-handling routine to display the error message number
• Remove the END, EOR, or ERR branch specifiers from the I/O statement that causes the

error

Handling Run-Time Errors Page 4 of 7

9/2/97 3:36:22 PM

After you modify the source code, compile, link, and run the program to display the error message.
For example:

 READ (8,50,ERR=400)

If any severe error occurs during execution of this statement, the Visual Fortran RTL transfers
control to the statement at label 400. Similarly, you can use the END specifier to handle an
end-of-file condition that might otherwise be treated as an error. For example:

 READ (12,70,END=550)

When using nonadvancing I/O, use the EOR specifier to handle the end-of-record condition. For
example:

150 FORMAT (F10.2, F10.2, I6)
 READ (UNIT=20, FMT=150, SIZE=X, ADVANCE=’NO’, EOR=700) A, F, I

You can also use ERR as a specifier in an OPEN, CLOSE, or INQUIRE statement. For example:

 OPEN (UNIT=10, FILE=’FILNAM’, STATUS=’OLD’, ERR=999)

If an error is detected during execution of this OPEN statement, control transfers to the statement at
label 999.

Using the IOSTAT Specifier and Fortran Exit Codes

You can use the IOSTAT specifier to continue program execution after an I/O error and to return
information about I/O operations (I/O is done in a scalar fashion). As described in Run-Time Errors,
certain errors are not returned in IOSTAT.

Although the IOSTAT specifier transfers control, it can only return information returned by the
Visual Fortran RTL. For additional Win32 error handling capabilities, see .

The IOSTAT specifier can supplement or replace the END, EOR, and ERR branch transfers.

Execution of an I/O statement containing the IOSTAT specifier suppresses the display of an error
message and defines the specified integer variable, array element, or scalar field reference as one of
the following, which is returned as an exit code if the program terminates:

• A value of -2 if an end-of-record condition occurs with nonadvancing reads.
• A value of -1 if an end-of-file condition occurs.
• A value of 0 for normal completion (not an error condition, end-of-file, or end-of-record

condition).
• A positive integer value if an error condition occurs. (This value is one of the Fortran-specific

IOSTAT numbers listed in Run-Time Errors.)

Following the execution of the I/O statement and assignment of an IOSTAT value, control transfers
to the END, EOR, or ERR statement label, if any. If there is no control transfer, normal execution

Handling Run-Time Errors Page 5 of 7

9/2/97 3:36:22 PM

continues. For more information on transfer of control, see Errors, End-of-File, and End-of-Record
Handling Specifiers.

You can include the iosdef.for file in your program to obtain symbolic definitions for the values of
IOSTAT.

The following example uses the IOSTAT specifier and the iosdef.for file to handle an OPEN
statement error (in the FILE specifier).

Example: Error Handling OPEN Statement File Name

 CHARACTER(LEN=40) :: FILNM
 INCLUDE ’iosdef.for’

 DO I=1,4
 FILNM = ’’
 WRITE (6,*) ’Type file name ’
 READ (5,*) FILNM
 OPEN (UNIT=1, FILE=FILNM, STATUS=’OLD’, IOSTAT=IERR, ERR=100)
 WRITE (6,*) ’Opening file: ’, FILNM
! (process the input file)
 CLOSE (UNIT=1)
 STOP

 100 IF (IERR .EQ. FOR$IOS_FILNOTFOU) THEN
 WRITE (6,*) ’File: ’, FILNM, ’ does not exist ’
 ELSE IF (IERR .EQ. FOR$IOS_FILNAMSPE) THEN
 WRITE (6,*) ’File: ’, FILNM, ’ was bad, enter new file name’
 ELSE
 PRINT *, ’Unrecoverable error, code =’, IERR
 STOP
 END IF
 END DO
 WRITE (6,*) ’File not found. Locate correct file with Explorer and run again’
 END PROGRAM

Locating Run-Time Errors
This section provides some guidelines for locating the cause of exceptions and run-time errors. In
Version 5.0, Visual Fortran error messages do not usually indicate the exact source location causing
the error.

To locate the cause of errors use the various compiler options to isolate programming errors at
compile-time and run-time or use the debugger to locate the cause of exceptions:

• The /[no]warn options control compile-time diagnostic messages, which in some
circumstances can help determine the cause of a run-time error. In Developer Studio, specify
the Warning Level in the General Compiler Option Category or specify individual Warning
Options in the Miscellaneous Compiler Option Category.

• The /check:keyword options generate extra code to catch certain conditions at run-time (see
/check or in Developer Studio, specify the Extended Error Checking items in the Run time
Compiler Option Category). For example:

• The /check:bounds option generates extra code to catch access to data beyond the array

Handling Run-Time Errors Page 6 of 7

8/21/97 12:26:51 PM

or string boundaries.
• The /check:overflow option generates extra code to catch integer overflow conditions.
• The /check:noformat, /check:nooutput_conversion, and /check:nopower options reduce

the severity level of the associated run-time error to allow program continuation (see
/check).

• The /check:underflow option controls the reporting of floating-point underflow
exceptions at run-time.

• The /fpe option controls the handling of floating-point arithmetic exceptions (IEEE arithmetic)
at run-time. In Developer Studio, specify the Floating-Point Exception Handling in the
Floating Point Compiler Option Category.

For example, if you specified /fpe:3, exceptions related to exceptional IEEE values are not
reported and your application may generate exceptional IEEE values, which later in your
application may generate an exception or unexpected values. By recompiling the application at
/fpe:0, any exceptional IEEE values generated will cause the program to terminate and report
an error message earlier.

The FOR_GET_FPE and FOR_SET_FPE routines are also available to examine and set the
run-time handling of certain arithmetic exceptions.

• On Alpha systems, the /synchronous_exceptions option (and certain /fpe:n option) influence
the reporting of floating-point arithmetic exceptions at run-time. In Developer Studio, specify
Enable Synchronous Floating-Point Exceptions in the Floating Point Compiler Option
Category.

• For many types of errors, using the Debugger can help you isolate the cause of errors.

In the Debug menu, select the Exceptions item to specify the types of exceptions that will stop
program execution. When using this method, be aware that your program must use compiler
options that allow the debugger to catch the appropriate exceptions.

For example, if you do not specify /check:bounds, the debugger will not catch and stop at
array or character string bounds errors. Similarly, if you specify /fpe:3, certain floating-point
exceptions will not be caught, since this setting allows IEEE exceptional values and program
continuation.

For information on using the Debugger, see the Debugger section in the Developer Studio
Environment User's Guide.

Run-Time Environment Variables
The Visual Fortran run-time system recognizes the following environment variables:

Environment Variable Description
FOR_DEFAULT_PRINT_DEVICE Lets you specify the print device other than the default print device

PRN (LPT1) for files closed (CLOSE statement) with the
DISPOSE='PRINT' specifier. To specify a different print device for
the file associated with the CLOSE statement DISPOSE='PRINT'
specifier, set the environment variable

Handling Run-Time Errors Page 7 of 7

8/21/97 12:26:51 PM

FOR_DEFAULT_PRINT_DEVICE to any legal DOS print device
before executing the program.

FOR_IGNORE_EXCEPTIONS If set to true, disables the default run-time exception handling, for
example, to allow just-in-time debugging. The run-time system
exception handler returns EXCEPTION_CONTINUE_SEARCH to
the operating system, which looks for other handlers to service the
exception. For information on just-in-time debugging, see Running
Fortran Applications and the Developer Studio Environment User’s
Guide.

FOR_RUN_FLAWED_PENTIUM If set to true, allows the continuation of the executing program when
/check:flawed_pentium (default) is in effect and a flawed Pentium
chip is detected. For more information, see Intel Pentium
Floating-Point Flaw.

FOR_NOERROR_DIALOGS If set to true, disables the display of dialog boxes when certain
exceptions or errors occur. This is useful when running many test
programs in batch mode to prevent a failure from stopping execution
of the entire test stream.

FORTn Lets you specify the file name for a particular unit number (n), when a
file name is not specified in the OPEN statement or an implicit OPEN
is used, and the compiler option /fpscomp:filesfromcmd was not
specified. Preconnected files attached to units 0, 5, and 6 are by
default associated with system standard I/O files.

FORT_CONVERTn Lets you specify the data format for an unformatted file associated
with a particular unit number (n), as described in Methods of
Specifying the Data Format.

Use the SET command to display (SET with no parameters) or set (SET environment
variable=value) environment variables from the command line.

For a list of environment variables used with the DF command, see Environment Variables Used
with the DF Command.

Converting Unformatted Numeric Data Page 1 of 7

8/21/97 12:27:07 PM

Converting Unformatted Numeric Data
This section describes how you can use DIGITAL Visual Fortran to read and write nonnative
unformatted numeric data, including DIGITAL Fortran for OpenVMS systems numeric data.

The following topics are available:

• Supported Native and Nonnative Numeric Formats
• Limitations of Numeric Conversion
• Methods of Specifying the Data Format
• Environment Variable FORT_CONVERTn Method
• OPEN Statement CONVERT='keyword' Method
• OPTIONS Statement Method
• Compiler Option /convert:keyword Method
• Additional Notes on Nonnative Data

Supported Native and Nonnative Numeric Formats
DIGITAL Visual Fortran supports the following little endian floating-point formats in memory:

Floating-Point Size Format in Memory
REAL(KIND=4), COMPLEX(KIND=4) IEEE S_floating
REAL(KIND=8), COMPLEX(KIND=8) IEEE T_floating

If your program needs to read or write unformatted data files containing a floating-point format that
differs from the format in memory for that data size, you can request that the unformatted data be
converted.

Data storage in different computers uses a convention of either little endian or big endian storage.
The storage convention generally applies to numeric values that span multiple bytes, as follows:

• Little endian storage occurs when:
• The least significant bit (LSB) value is in the byte with the lowest address.
• The most significant bit (MSB) value is in the byte with the highest address.
• The address of the numeric value is the byte containing the LSB. Subsequent bytes with

higher addresses contain more significant bits.
• Big endian storage occurs when:

• The least significant bit (LSB) value is in the byte with the highest address.
• The most significant bit (MSB) value is in the byte with the lowest address.
• The address of the numeric value is the byte containing the MSB. Subsequent bytes

with higher addresses contain less significant bits.

The following figure shows the difference between the two byte-ordering schemes.

Little and Big Endian Storage of an INTEGER Value

Converting Unformatted Numeric Data Page 2 of 7

8/21/97 12:27:07 PM

Moving unformatted data files between big endian and little endian computers requires that the data
be converted.

Visual Fortran provides the capability for programs to read and write unformatted data (originally
written using unformatted I/O statements) in several nonnative floating-point formats and in big
endian INTEGER or floating-point format. Supported nonnative floating-point formats include
DIGITAL VAXtm little endian floating-point formats supported by VAX FORTRANtm, standard
IEEE® big endian floating-point format found on most Sun Microsystems® systems and IBM®
RISC System/6000 systems, IBM floating-point formats (associated with the IBM's System/370 and
similar systems), and CRAY® floating-point formats.

Converting unformatted data instead of formatted data is generally faster and is less likely to lose
precision of floating-point numbers.

The native memory format includes little endian integers and little endian IEEE floating-point
formats, S_float for REAL(KIND=4) and COMPLEX(KIND=4) declarations and T_float for
REAL(KIND=8) and COMPLEX(KIND=8) declarations.

The keywords for supported nonnative unformatted file formats and their data types are listed in the
following table.

Nonnative Numeric Formats, Keywords, and Supported Data Types

Keyword Description
BIG_ENDIAN Big endian integer data of the appropriate size (one, two, or four bytes) and big

endian IEEE floating-point (REAL(KIND=4), REAL(KIND=8),
COMPLEX(KIND=4), COMPLEX(KIND=8)) formats of the appropriate size
for either real or complex numbers. INTEGER(KIND=1) data is the same for
little endian and big endian.

CRAY Big endian integer data of the appropriate size (one, two, four, or on Alpha
systems, eight bytes) and big endian CRAY proprietary floating-point format of
size REAL(KIND=8) or COMPLEX(KIND=8).

FDX Little endian integer data of the appropriate size (one, two, four, or on Alpha
systems, eight bytes) and DIGITAL VAX floating-point data of format
F_floating for REAL(KIND=4) or COMPLEX(KIND=4), and D_Floating for
REAL(KIND=8) or COMPLEX(KIND=8).

FGX Little endian integer data of the appropriate size (one, two, four, or on Alpha
systems, eight bytes) and DIGITAL VAX floating-point data of format

Converting Unformatted Numeric Data Page 3 of 7

9/2/97 3:36:48 PM

F_floating for REAL(KIND=4) or COMPLEX(KIND=4), and G_Floating for
REAL(KIND=8) or COMPLEX(KIND=8).

IBM Big endian integer data of the appropriate size (one, two, or four bytes) and big
endian IBM proprietary floating-point format of size REAL(KIND=4) or
COMPLEX(KIND=4) or size REAL(KIND=8) or COMPLEX(KIND=8).

LITTLE_ENDIAN Native little endian integers of the appropriate size (one, two, four, or on Alpha
systems, eight bytes) and native little endian IEEE floating-point data of the
appropriate size and type (REAL(KIND=4), REAL(KIND=8),
COMPLEX(KIND=4), COMPLEX(KIND=8)). These are the same formats as
stored in memory. For additional information on supported ranges for these data
types, see Native IEEE Floating-Point Representations.

NATIVE No conversion occurs between memory and disk. This is the default for
unformatted files.

VAXD Little endian integers of the appropriate size (one, two, four, or on Alpha
systems, eight bytes) and DIGITAL VAX floating-point format F_floating for
size REAL(KIND=4) or COMPLEX(KIND=4), and D_floating for size
REAL(KIND=8) or COMPLEX(KIND=8).

VAXG Little endian integers of the appropriate size (one, two, four, or on Alpha
systems, eight bytes) and DIGITAL VAX floating-point format F_floating for
size REAL(KIND=4) or COMPLEX(KIND=4), and G_floating for size
REAL(KIND=8) or COMPLEX(KIND=8).

When reading a nonnative format, the nonnative format on disk is converted to native format in
memory. If a converted nonnative value is outside the range of the native data type, a run-time
message is displayed.

Limitations of Numeric Conversion
The DIGITAL Visual Fortran floating-point conversion solution is not expected to fulfill all
floating-point conversion needs.

For instance, data in record structures variables (specified in a STRUCTURE statement) are not
converted. When they are later examined as separate fields by the program, they will remain in the
binary format they were stored in on disk, unless the program is modified. With EQUIVALENCE
statements, the data type of the variable named in the I/O statement is used.

If a program reads an I/O record containing multiple format floating-point fields into a single
variable (such as an array) instead of their respective variables, the fields will not be converted.
When they are later examined as separate fields by the program, they will remain in the binary format
they were stored in on disk, unless the program is modified.

The conversion of the following file structure types are not supported:

• Binary data (FORM='BINARY')
• Formatted data (FORM='FORMATTED')
• Unformatted data (FORM='UNFORMATTED') written by Microsoft Fortran Powerstation or

by Visual Fortran with the /fpscomp:ioformat compiler option in effect.

Converting Unformatted Numeric Data Page 4 of 7

9/2/97 3:36:48 PM

Methods of Specifying the Data Format
There are four methods of specifying a nonnative numeric format for unformatted data. If none of
these methods are specified, the native LITTLE_ENDIAN format is assumed (no conversion occurs
between disk and memory).

Any keyword listed in Supported Native and Nonnative Numeric Formats can be used with any of
these methods.

The four methods you can use to specify the type of nonnative (or native) format are as follows:

• Setting an environment variable for a specific unit number before the file is opened. The
environment variable is named FORT_CONVERTn, where n is the unit number.

• Compiling the program with an OPTIONS statement that specifies the /CONVERT= keyword
qualifier. This method affects all unit numbers using unformatted data specified by the
program.

• Specifying the CONVERT keyword in the OPEN statement for a specific unit number.
• Compiling the program with the appropriate compiler option (DF command /convert: keyword

or Developer Studio equivalent), which affects all unit numbers that use unformatted data
specified by the program.

If you specify more than one method, the order of precedence when you open a file with unformatted
data is to:

• Check for an environment variable first
• Check the OPEN statement CONVERT specifier
• Check whether an OPTIONS statement with a /CONVERT=(keyword) qualifier was present

when the program was compiled
• Check whether the compiler option /convert:keyword was present when the program was

compiled

The following sections describe each method:

• Environment Variable FORT_CONVERTn Method
• OPEN Statement CONVERT= Method
• OPTIONS Statement Method
• Compiler Option /convert Method

Environment Variable FORT_CONVERTn Method

You can use this method to specify multiple formats in a single program, usually one format for each
specified unit number. You specify the numeric format at run time by setting the appropriate
environment variable before an implicit or explicit OPEN to that unit number.

When the appropriate environment variable is set when you open the file, the environment variable is
always used because this method takes precedence over the other methods. For instance, you might
use this method to specify that a unit number will use a particular format instead of the format
specified in the program (perhaps for a one-time file conversion).

For example, assume you have a previously compiled program that reads numeric data from unit 28

Converting Unformatted Numeric Data Page 5 of 7

9/2/97 3:36:48 PM

and writes it to unit 29 using unformatted I/O statements. You want the program to read nonnative
big endian (IEEE floating-point) format from unit 28 and write that data in native little endian format
to unit 29. In this case, the data is converted from big endian IEEE format to native little endian
IEEE memory format (S_float and T_float) when read from unit 28, and then written without
conversion in native little endian IEEE format to unit 29.

Without requiring source code modification or recompilation of this program, the following
command sequence sets the appropriate environment variables before running the program
(c:\users\leslie\convieee.exe):

set FORT_CONVERT28=BIG_ENDIAN
set FORT_CONVERT29=NATIVE
c:\users\leslie\convieee.exe

The following figure shows the data formats used on disk and in memory when the example file
c:\users\leslie\convieee.exe is run after the environment variables are set.

Sample Unformatted File Conversion

OPEN Statement CONVERT Method

You can use this method to specify multiple formats in a single program, usually one format for each
specified unit number. This method requires an explicit file OPEN statement to specify the numeric
format of the file for that unit number.

This method takes precedence over the OPTIONS statement and the compiler option
/convert:keyword method, but has a lower precedence than the environment variable method.

For example, the following source code shows how the OPEN statement would be coded to read
unformatted VAXD numeric data from unit 15, which might be processed and possibly written in
native little endian format to unit 20 (the absence of the CONVERT keyword or environment
variable FORT_CONVERT20 indicates native little endian data for unit 20):

OPEN (CONVERT=’VAXD’, FILE=’graph3.dat’, FORM=’UNFORMATTED’, UNIT=15)
 .
 .
 .
OPEN (FILE=’graph3_t.dat’, FORM=’UNFORMATTED’, UNIT=20)

Converting Unformatted Numeric Data Page 6 of 7

9/2/97 3:36:48 PM

A hard-coded OPEN statement CONVERT keyword value cannot be changed after compile time.
However, to allow selection of a particular format at run time, equate the CONVERT keyword to a
variable and provide the user with a menu that allows selection of the appropriate format (menu
choice sets the variable) before the OPEN occurs. You can also select a particular format for a unit
number at run time by using the environment variable method, which takes precedence over the
OPEN statement CONVERT keyword method.

OPTIONS Statement Method

You can only specify one numeric file format for all unformatted file unit numbers using this method
unless you also use the logical name or OPEN statement CONVERT specifier method.

You specify the numeric format at compile time and must compile all routines under the same
OPTIONS statement /CONVERT=keyword qualifier. You could use one source program and
compile it using different DF commands to create multiple executable programs that each read a
certain format.

The environment variable or OPEN statement CONVERT specifier methods take precedence over
this method. For instance, you might use the logical name or OPEN CONVERT specifier method to
specify each unit number that will use a format other than that specified using the DF option method.
This method takes precedence over the DF /convert: keyword compiler option method.

You can use OPTIONS statements to specify the appropriate floating-point formats (in memory and
in unformatted files) instead of using the corresponding DF command qualifiers. For example, to use
VAX F_floating and G_floating as the unformatted file format, specify the following OPTIONS
statement:

OPTIONS /CONVERT=VAXG

Because this method affects all unit numbers, you cannot read data in one format and write it in
another format unless you use it in combination with the logical name method or the OPEN
statement CONVERT keyword method to specify a different format for a particular unit number.

For more information, see the OPTIONS statement.

Compiler Option /convert Method

You can only specify one numeric format for all unformatted file unit numbers using the compiler
option /convert method unless you also use one (or both) of the previous methods. You specify the
numeric format at compile time and must compile all routines under the same /convert:keyword
compiler option, which is listed under the Compatability category in the Developer Studio, Fortran
tab. You could use the same source program and compile it using different DF commands (or the
equivalent in Developer Studio) to create multiple executable programs that each read a certain
format.

If you specify other methods, they take precedence over this method. For instance, you might use the
environment variable or OPEN statement CONVERT keyword method to specify each unit number
that will use a format different than that specified using the DF /convert:keyword compiler option

Converting Unformatted Numeric Data Page 7 of 7

9/2/97 3:36:48 PM

method for all other unit numbers.

For example, the following commands compile program file.for to use VAX D_floating (and
F_floating) floating-point data for all unit numbers (unless superseded by one of the other methods).
Data is converted between the file format and the little endian memory format (little endian integers,
S_float and T_float little endian IEEE floating-point format). The created file, vconvert.exe, can then
be run:

DF file.for /convert:vaxd /link /out:vconvert.exe

Because this method affects all unformatted file unit numbers, you cannot read data in one format
and write it in another file format using the /convert:keyword compiler option method alone. You can
if you use it in combination with the environment variable method or the OPEN statement
CONVERT keyword method to specify a different format for a particular unit number.

Additional Notes on Nonnative Data
The following notes apply to porting nonnative data:

• When porting source code along with the unformatted data, vendors might use different units
for specifying the record length (RECL specifier) of unformatted files. While formatted files
are specified in units of characters (bytes), unformatted files are specified in longword units
for DIGITAL Fortran (default) and some other vendors.

To allow you to specify the RECL units (bytes or longwords) for unformatted files without
source file modification, use the /assume:byterecl compiler option (in Developer Studio, this is
available in the Project menu Settings item, Fortran tab, Fortran Data category).

The Fortran 90 standard (American National Standard Fortran 90, ANSI X3.198-1991, and
International Standards Organization standard ISO/IEC 1539:1991), in Section 9.3.4.5, states:
"If the file is being connected for unformatted input/output, the length is measured in
processor-dependent units."

• Certain vendors apply different OPEN statement defaults to determine the record type. The
default record type (RECORDTYPE) with DIGITAL Fortran depends on the values for the
ACCESS and FORM specifiers for the OPEN statement (also described in the DIGITAL
Fortran Language Reference Manual).

• Certain vendors use a different identifier for the logical data types, such as hex FF instead of
01 to denote "true."

• Source code being ported might be coded specifically for big endian use.

Using Visual Fortran Tools Page 1 of 64

8/26/97 10:28:38 AM

Using Visual Fortran Tools
This section summarizes the available Visual Fortran tools and describes how to use tools from the
Console command line:

• Overview of Visual Fortran Tools
• Using Tools From the Command Line
• Setting Up the Command Console
• Fortran Compiler and Linker
• MS-DOS Editor
• Building Projects with NMAKE
• Resource Compiler Options
• Managing Libraries with LIB
• Editing Files with EDITBIN
• Examining Files with DUMPBIN
• Editing Format Descriptors with the Format Editor
• Profiling Code from the Command Line
• Fortran Tools: FSPLIT and FPR

Overview of Visual Fortran Tools
The following tools are available in Visual Fortran:

Tool Description
Integrated Tools in Developer Studio

Editor
Provides general editing functionality. It recognizes Fortran syntax and can
be customized. For more information, see "Text Editor" in the Developer
Studio Environment User's Guide.

Debugger Provides general debug functionality. For more information, see "Debugger"
in the Developer Studio Environment User's Guide.

Format Editor
(FRMTEDIT)

Presents format code with resulting data layout. For more information, see
Editing Format Descriptors with the Format Editor.

Module Wizard
(MODWIZ)

Simplifies the use of Component Object Model (COM) and Automation
(OLE Automation) objects with Fortran. For more information, see Using
COM and Automation Objects.

Profiler (PROFILE,
PLIST, and PREP)

Determines unexecuted code or indicates where an application is spending
most of its time. For more information, see Profiling Code from the
Command Line.

Resource Editors Develops user-interface components for projects; for example, to build a
dialog box. For more information, see Using Dialogs and see "Resource
Editors" in the Developer Studio Environment User's Guide.

Source Browser
(BSCMAKE)

Creates an information file with details about the symbols in your program.
The browse window displays this information and lets you move among
instances of the symbols in your source code. For more information, see
Source Browser and the /browser option.

Additional Tools1

Using Visual Fortran Tools Page 2 of 64

8/26/97 10:28:38 AM

Linker (LINK) Lets you link object files and libraries, creating 32-bit executable images or
DLLs. For more information, see Using the Compiler and Linker from the
Command Line and Compiler and Linker Options.

Librarian (LIB) Lets you manage object libraries, create import libraries to reference
exported symbol definitions used when you build Dynamic Link Libraries
(DLLs), and extract library members. For more information, see Managing
Libraries with LIB.

Microsoft Binary File
Dumper (DUMPBIN)

Displays various information from .obj, .exe, and .libs files. For more
information, see Examining Files with DUMPBIN.

Microsoft Binary File
Editor (EDITBIN)

Lets you modify execution characteristics of a program. For more
information, see Editing Files with EDITBIN.

BitViewer
(BITVIEW)

Lets you view the binary representation of real numbers in single and double
format. For more information, see Viewing Floating-Point Representations
with BitViewer.

CVTRES Lets you convert binary resource files (.res) to linkable object (.obj) files. For
more information, see CVTRES below.

DDESpy (DDESPY) Lets you monitor Dynamic Data Exchange (DDE) activity between
processes. For more information, see "Windows Utilities" in the Developer
Studio Environment User’s Guide.

FPP Lets you preprocess Fortran files; similar to the C preprocessor (CPP). For
more information, see /fpp.

FPR Lets you transform files formatted according to Fortran’s carriage control
conventions into files formatted according to line printer conventions. For
more information, see Fortran Tools: FSPLIT and FPR.

FSPLIT and
FSPLIT90

Lets you split a multi-routine Fortran file into individual files. FSPLIT works
on FORTRAN 77 files, while FSPLIT90 works on Fortran 90 files. For more
information, see Fortran Tools: FSPLIT and FPR.

Microsoft Program
Maintenance Utility
(NMAKE)

Lets you build projects based on commands contained in a description
(makefile) file. For more information, see Building Projects with NMAKE.

OLE Object Viewer
(OLEVIEW)

Lets you browse, configure, test, and activate any COM class on your
system; also called the OLEViewer. For more information, see OLE Object
Viewer below.

PView (PVIEW) Lets you examine and modify processes and threads running on your system.
For more information, see PView and WinDiff and "Windows Utilities" in
the Developer Studio Environment User’s Guide.

Resource Compiler
(RC)

Compiles various resources so they can be included in an image. For more
information, see Resource Compiler Command Line.

Running Object Table
Viewer (IROTVIEW)

Lets you view the contents of the OLE Running Object Table. For more
information, see Running Object Table Viewer below.

Spy++ (SPYXX) Lets you monitor windows messages. For more information, see "Windows
Utilities" in the Developer Studio Environment User’s Guide.

WinDiff (WINDIFF) Lets you graphically compare the contents of two files or two directories. For
more information, see PView and WinDiff and "Windows Utilities" in the
Developer Studio Environment User’s Guide.

ZoomIn (ZOOMIN) Lets you capture and enlarge an area of the Windows desktop. For more

Using Visual Fortran Tools Page 3 of 64

8/26/97 10:28:38 AM

information, see "Windows Utilities" in the Developer Studio Environment
User’s Guide.

1 To access these tools from a command window, the DIGITAL Visual Fortran environment must be
initialized. During installation, the environment variables are initialized by default. If you chose not
to install these variables during installation, see Using the Command-Line Interface for information
on how to proceed.

Miscellaneous Tool Information
This section briefly describes tools that are not described in detail elsewhere in the documentation.

CVTRES

Binary resource files (.res) cannot be linked. CVTRES lets you convert a binary resource file into a
linkable object file (.obj). For example:

 cvtres /out:test.obj test.res

Running Object Table Viewer (IROTVIEW)

The Running Object Table Viewer lets you view the contents of the OLE Running Object Table
(ROT). This table contains information about ActiveXTM and OLE objects currently existing in
memory.

OLE Object Viewer (OLEVIEW)

The OLE/COM Object Viewer (OLEViewer) lets you do the following:

• Browse, in a structured way, all of the Component Object Model (COM) classes installed on
your machine.

• See the registry entries for each class in an easy-to-read format.

• Configure any COM class (including Java-based classes) on your system. This includes
Distributed COM activation and security settings.

• Configure system-wide COM settings, including enabling or disabling Distributed COM.

• Test any COM class by double-clicking its name. The list of interfaces that class supports will
be displayed. Double-clicking an interface entry allows you to invoke a viewer that will
"exercise" that interface.

• Activate COM classes locally or remotely. Use this to test Distributed COM setups.

• View type library contents. Use this to figure out what methods, properties, and events an
ActiveXTM Control supports.

• Copy a properly formatted OBJECT tag to the clipboard for inserting into an HTML
document.

The OLEViewer supports plug-in interface viewers. The code for the interface viewers is included in

Using Visual Fortran Tools Page 4 of 64

8/26/97 10:28:38 AM

OLEView (in IVIEWERS.DLL).

Using Tools from the Command Line
Although Visual Fortran comes with an integrated Windows-based development environment called
Microsoft Developer Studio, you can still use many software tools directly from the command line. If
you prefer to use a text-based environment, you can build your programs or libraries in the console
(such as the F90 window in the Visual Fortran program folder), a command-line operating
environment similar to MS-DOS provided by Windows 95 and Windows NT. However, to get the
benefit of components that you cannot use from the command line, you may want to do some of your
work from the console, and some of it in Developer Studio.

When you run an application for Windows (such as the Format Statement Editor) from the command
line, Windows recognizes that the program does not execute within the command window and acts
accordingly.

You can tell Windows to run a program with its own resources by using the START command. For
example, to run the Library Manager as a separate task, the command is:

START LIB.EXE

Visual Fortran contains an extensive electronic reference called InfoViewer that includes the Visual
Fortran online documentation and a search engine. You cannot access these books from outside
Developer Studio. If you want to use Visual Fortran from the command line, you can still use
Developer Studio to display InfoViewer, and task switch between it and the console.

The following related sections discuss command-line tools:

• Setting Up the Command Console
• Fortran Compiler and Linker
• MS-DOS Editor
• Building Projects with NMAKE
• Resource Compiler Options
• Managing Libraries with LIB
• Editing Files with EDITBIN
• Examining Files with DUMPBIN
• Editing Format Descriptors with the Format Editor
• Profiling Code from the Command Line
• Fortran Tools: FSPLIT and FPR

For a summary of all Visual Fortran tools, see Overview of Visual Fortran Tools.

Setting Up the Command Console
To start the command console, open the Start menu and select MS-DOS® Prompt from the Programs
submenu.

Similarly, Visual Fortran provides a command window with the appropriate environment variables
already set. To start the Visual Fortran command window, open the Start menu and select Visual

Using Visual Fortran Tools Page 5 of 64

8/26/97 10:28:38 AM

Fortran from the Programs submenu. Select the F90 icon.

The console window provides a similar working environment to that provided by running a version
of MS-DOS instead of Windows NT or Windows 95. You can use any command recognized by
MS-DOS in the Windows NT console, plus some additional commands.

Because the command console runs within the context of Windows, you get the additional benefit
that you can easily switch between the command console and other applications for Windows. If you
want, you can even have multiple instances of the command console open at once. When you are
finished working in a command console window, use the EXIT command to close the window and
end the session.

To create a custom Start menu entry:

1. Select Settings, then Taskbar from the Start menu. Choose the Start Menu Programs tab from
the Taskbar dialog box and click Add.

2. The Create Shortcut dialog box opens. Enter the name and location of the executable you want
to add to the Start menu (in this case the MS-DOS command prompt).

You can either type the path to your COMMAND.COM for Windows 95 systems or
CMD.EXE for Windows NT systems (for example, C:\WINDOWS\COMMAND.COM) into
the text box or use the browser by clicking on the Browse button, then selecting the
COMMAND file from the WINDOWS folder. When you are done, click Next.

3. The Select Program Folder dialog box opens and you are shown the folders in your computer.
Select the Visual Fortran Folder and choose Next.

4. The Select Title for the Program dialog box opens. Type the name you want to appear on the
Fortran Start menu (for example, "Fortran Console") or leave it as the default MS-DOS
Prompt. Click on Finish.

5. You are returned to the Start Menu tab. Choose Advanced.
6. The Explorer browser opens with a list of Start programs. Choose Visual Fortran. The Fortran

menu expands. Select the MS-DOS Prompt by whatever name you have given it.
7. Choose Properties from the File menu and select the Program tab.
8. Type your working directory into the Working text box (for example, c:\work). Click Change

Icon.
9. Choose a new icon by selecting one of the displayed choices. Click OK on the Properties

dialog, close the Explorer browser, and choose OK on the Start Menu tab.

For more information, see:

• Configuring the Command Console Window
• Setting Search Paths in the Console

Configuring the Command Console Window
When you start a session in the command console, a window containing the command interpreter
opens. The resources available, as well as the size and behavior of the window, are initially set by the
operating system, but you can change these properties, including:

• Whether the command console takes over the entire screen or is presented in a window.

Using Visual Fortran Tools Page 6 of 64

8/26/97 10:28:38 AM

• The typeface and type size used to display text in the command console.
• The size of the command console text buffer and the position of the command console

window if it is presented in a window.
• The colors used to display text in the the command console.
• The size of the command history buffer used to store commands that scroll out of view.
• The amount of each type of memory that is available to programs running in the command

console.
• Special configuration files to be run when the console session begins.

The controls that you use to make these adjustments depend upon which version of Windows you are
using. Both Windows NT and Windows 95 provide a way to specify configuration settings for all
subsequent sessions with the command console.

In Windows NT, use the control panel.

In Windows 95 you use the Properties dialog box to set all of the initial and operating conditions for
the command console. With the command window open, click the right mouse button at the top of
the window. A drop-down list appears. Choose Properties. From the Properties dialog, set up the
console display as you like.

Setting Search Paths in the Console
When the command console session begins, the search paths for libraries, module files, and so forth
are those set for your user account on the PC. In Windows 95, these paths are initially specified in
the AUTOEXEC.BAT file that is read when the computer is booted. By default, Windows NT uses a
file called AUTOEXEC.NT to perform initialization of console sessions, but you can specify your
own initialization file for the command console with the PIF Editor. (See your Windows NT manual
for more about the PIF Editor.)

You can use the SET command to change these search paths manually within the console session,
but your changes will only be in effect during that session. If you need to specify certain path
changes each time you begin a console session, you can put the SET commands into a batch file and
run it when you begin a session. The Setup program provides a batch file called DFVARS.BAT for
this purpose. You can add your SET commands to this file and run it at the start of each session.

You can run DFVARS.BAT:

• Each time you begin a session on Windows 95 systems, by specifying it in the Program tab of
the Properties dialog box for the console icon.

• On Windows NT systems, you can specify it as the initialization file with the PIF Editor.

The instructions specify the PATH, INCLUDE, and LIB environment variables. For example, the
lines in the batch file that sets the INCLUDE environment variable include:

 set LIB=%DFcdrom%\DF\LIB;%DFcdrom%\VC\LIB;%LIB%

The batch file inserts the directories used by Visual Fortran at the beginning of the existing paths.
Because these directories appear first, they are searched before any directories in the path lists
provided by Windows. This is especially important if the existing path includes directories with files

Using Visual Fortran Tools Page 7 of 64

8/26/97 10:28:38 AM

having the same names as those needed by Visual Fortran.

As described in Using the Command-Line Interface in Getting Started, the Visual Fortran F90
command window sets these variables for you automatically. To activate this command window,
select the F90 icon in the Visual Fortran program folder.

Fortran Compiler and Linker
The DF (or FL32) command is the driver for running the compiler and linker. You can either
compile and link your projects in one step with DF, or compile them with DF and then link them
with LINK. You can also use LINK to build libraries of object modules. Each of these commands
provides syntax instructions at the command line if you request it with the /? or /help option. For
more information about the DF and LINK commands, see:

• Using the Compiler and Linker from the Command Line
• Compiler and Linker Options

MS-DOS Editor
You can use the MS-DOS Editor (EDIT.EXE) or any text editor to create your source programs, but
you will not be able to perform the specialized functions built into Microsoft Developer Studio such
as setting bookmarks or multi-file searches, and your source code will not be displayed with syntax
coloring.

You invoke the MS-DOS Editor by typing EDIT followed by the name of the file you want to edit;
for example, EDIT test.f90.

Building Projects with NMAKE
Some projects require an extensive set of build instructions to ensure that each component is built
with the appropriate options. With Microsoft Developer Studio you can specify build instructions by
routine, and you can have separate sets of instructions for the debug and release builds of a project.
In Microsoft Developer Studio, you select these options in a set of dialog boxes. For information on
creating (exporting) a makefile from Developer Studio, see The Project Makefile.

When you build projects from the command line, you can put your build instructions into a special
build file, and run the build process with NMAKE, the Microsoft Program Maintenance Utility.
Other command-line building methods include using indirect command files (see DF Indirect
Command File Use) and .BAT files.

The Microsoft Program Maintenance Utility (NMAKE.EXE) is a 32-bit tool that runs in Windows.
This section discusses the following:

• Running NMAKE
• Contents of a Makefile
• Description Blocks
• Commands in a Makefile
• Inline Files in a Makefile

Using Visual Fortran Tools Page 8 of 64

8/26/97 10:28:38 AM

• Macros and NMAKE
• NMAKE Inference Rules
• Dot Directives
• Makefile Preprocessing

Running NMAKE
NMAKE builds only specified targets or, if none is specified, the first target in the makefile is used.
The first makefile target can be a pseudotarget that builds other targets. NMAKE uses makefiles
specified with the /F option. If the /F option is not specified, it uses the MAKEFILE file in the
current directory. If no makefile is specified, it uses inference rules to build command-line targets.

The syntax for NMAKE is:

NMAKE [option...] [macros...] [targets...] [@commandfile...]

The commandfile text file contains command-line input. Other input can precede or follow
@commandfile. A path is permitted. In commandfile, line breaks are treated as spaces. Enclose
macro definitions in quotation marks if they contain spaces.

For more information:

• On targets, see Description Blocks
• On macros, see Macros and NMAKE
• On options, see NMAKE Options

NMAKE Options

NMAKE options are described in the following sections. Options are preceded by either a slash (/)
or a dash (-) and are not case sensitive. Use !CMDSWITCHES (described in Makefile
Preprocessing Directives) to change option settings in a makefile or in TOOLS.INI.

This section describes the following topics:
• NMAKE Option /A
• NMAKE Option /B
• NMAKE Option /C
• NMAKE Option /D
• NMAKE Option /E
• NMAKE Option /F
• NMAKE Option /HELP
• NMAKE Option /I
• NMAKE Option /K
• NMAKE Option /N
• NMAKE Option /NOLOGO
• NMAKE Option /P
• NMAKE Option /Q
• NMAKE Option /R
• NMAKE Option /S
• NMAKE Option /T
• NMAKE Option /X

Using Visual Fortran Tools Page 9 of 64

8/26/97 10:28:38 AM

• TOOLS.INI and NMAKE
• Exit Codes from NMAKE

NMAKE Option /A

Forces build of all evaluated targets, even if not out-of-date with respect to dependents. Does not
force build of unrelated targets.

NMAKE Option /B

Forces build even if timestamps are equal. Recommended for very fast systems (resolution of two
seconds or less).

NMAKE Option /C

Suppresses default output, including nonfatal NMAKE errors or warnings, timestamps, and NMAKE
copyright message. Suppresses warnings issued by the /K option.

NMAKE Option /D

Displays timestamps of each evaluated target and dependent and a message when a target does not
exist. Useful with the /P option for debugging a makefile. Use !CMDSWITCHES (described in
Makefile Preprocessing Directives) to set or clear the /D option for part of a makefile.

NMAKE Option /E

Causes environment variables to override makefile macro definitions.

NMAKE Option /F

The option /F filename specifies filenameas a makefile. Spaces or tabs can precede filename. Specify
the /F option once for each makefile. To supply a makefile from standard input, specify a dash (-) for
filename. End keyboard input with either F6 or CTRL+Z.

NMAKE Option /HELP

The option /HELP or /? displays a brief summary of NMAKE command-line syntax.

NMAKE Option /I

Ignores exit codes from all commands. To set or clear the /I option for part of a makefile, use
!CMDSWITCHES (described in Makefile Preprocessing Directives). To ignore exit codes for part
of a makefile, use a dash (-) command modifier or .IGNORE. Overrides the /K option if both are
specified.

Using Visual Fortran Tools Page 10 of 64

8/26/97 10:28:38 AM

NMAKE Option /K

Continues building unrelated dependencies if a command returns an error; also issues a warning and
returns an exit code of 1. By default, NMAKE halts if any command returns a nonzero exit code.
Warnings from the /K option are suppressed by the /C option; the /I option overrides the /K option if
both are specified.

NMAKE Option /N

Displays but does not execute commands; preprocessing commands are executed. Does not display
commands in recursive NMAKE calls. Useful for debugging makefiles and checking timestamps. To
set or clear the /N option for part of a makefile, use !CMDSWITCHES (described in Makefile
Preprocessing Directives).

NMAKE Option /NOLOGO

Suppresses the NMAKE copyright message.

NMAKE Option /P

Displays information (macro definitions, inference rules, targets, .SUFFIXES list) to standard
output, then runs the build. If no makefile or command-line target exists, it displays information
only. Use with the /D option to debug a makefile.

NMAKE Option /Q

Checks timestamps of targets; does not run the build. Returns a zero exit code if all are up-to-date
and a nonzero exit code if any target is not. Preprocessing commands are executed. Useful when
running NMAKE from a batch file.

NMAKE Option /R

Clears the .SUFFIXES list and ignores inference rules and macros that are defined in the
TOOLS.INI file or that are predefined.

NMAKE Option /S

Suppresses display of executed commands. To suppress display in part of a makefile, use the @
command modifier or .SILENT. To set or clear the /S option for part of a makefile, use
!CMDSWITCHES (described in Makefile Preprocessing Directives).

NMAKE Option /T

Updates timestamps of command-line targets (or first makefile target) and executes preprocessing
commands but does not run the build.

Using Visual Fortran Tools Page 11 of 64

8/26/97 10:28:38 AM

NMAKE Option /X

The option /X filename sends NMAKE error output to filename instead of standard error. Spaces or
tabs can precede filename. To send error output to standard output, specify a dash (-) for filename.
Does not affect output from commands to standard error.

TOOLS.INI and NMAKE

NMAKE reads TOOLS.INI before it reads makefiles, unless the /R option is used. It looks for
TOOLS.INI first in the current directory and then in the directory specified by the INIT environment
variable. The section for NMAKE settings in the initialization file begins with [NMAKE] and can
contain any makefile information. Specify a comment on a separate line beginning with a semicolon
(;) or a number sign (#).

Exit Codes from NMAKE

By default, NMAKE halts if any command returns a nonzero exit code. The /I option causes
NMAKE to ignore exit codes. Warnings from the /K option are suppressed by the /C option; the /I
option overrides the /K option if both are specified. The following table lists the exit codes.

Code Meaning
0 No error (possibly a warning)
1 Incomplete build (issued only when the /K option is used)
2 Program error, possibly due to one of the following:

• A syntax error in the makefile
• An error or exit code from a command
• An interruption by the user

4 System error--out of memory
255 Target is not up-to-date (issued only when the /Q option is used)

Contents of a Makefile
A makefile contains:

• Description blocks
• Commands
• Macros
• Inference Rules
• Dot Directives
• Preprocessing Directives

Other features of a makefile include wildcards, long filenames, comments, and special characters.

Wildcards and NMAKE

NMAKE expands filename wildcards (* and ?) in dependency lines. A wildcard specified in a

Using Visual Fortran Tools Page 12 of 64

8/26/97 10:28:38 AM

command is passed to the command; NMAKE does not expand it.

Long Filenames in a Makefile

Enclose long filenames in double quotation marks, as follows:

 all : "VeryLongFileName.exe"

Comments in a Makefile
Precede a comment with a number sign (#). NMAKE ignores text from the number sign to the next
newline character. The following are examples of comments:

Comment on line by itself
OPTIONS = /MAP # Comment on macro definition line

all.exe : one.obj two.obj # Comment on dependency line
 link one.obj two.obj
Comment in commands block
copy *.obj \objects # Command turned into comment
 copy one.exe \release

.obj.exe: # Comment on inference rule line
 link $<

 my.exe : my.obj ; link my.obj # Error: cannot comment this
 # Error: # must be the first character
.obj.exe: ; link $< # Error: cannot comment this

To specify a literal number sign, precede it with a caret (̂), as follows:

DEF = ^#define #Macro representing a Fortran compiler directive

Special Characters in a Makefile

To use an NMAKE special character as a literal character, place a caret (̂) in front of it. NMAKE
ignores carets that precede other characters. The special characters are:

: ; # () $ ^ \ { } ! @ -

A caret within a quoted string is treated as a literal caret character. A caret at the end of a line inserts
a literal newline character in a string or macro.

In macros, a backslash followed by a newline character is replaced by a space.

In commands, a percent symbol (%) is a file specifier. To represent a percent symbol (%) literally in
a command, specify a double percent sign (%%) in place of a single one. In other situations,
NMAKE interprets a single % literally, but it always interprets a double %% as a single %.
Therefore, to represent a literal %%, specify either three percent signs, %%%, or four percent
signs, %%%%.

To use the dollar sign ($) as a literal character in a command, specify two dollar signs ($$); this
method can also be used in other situations where ^$ also works.

Using Visual Fortran Tools Page 13 of 64

8/26/97 10:28:38 AM

Description Blocks
A description block is a dependency line optionally followed by a commands block:

targets... : dependents...
 commands...

A dependency line specifies one or more targets and zero or more dependents. A target must be at the
start of the line. Separate targets from dependents by a colon (:); spaces or tabs are allowed. To split
the line, use a backslash (\) after a target or dependent. If a target does not exist, has an earlier
timestamp than a dependent, or is a pseudotarget, NMAKE executes the commands. If a dependent is
a target elsewhere and does not exist or is out-of-date with respect to its own dependents, NMAKE
updates the dependent before updating the current dependency.

For more information, see:

• Targets
• Pseudotargets
• Multiple Targets
• Cumulative Dependencies
• Targets in Multiple Description Blocks
• Dependents

Targets
In a dependency line, specify one or more targets, using any valid filename or pseudotarget. Separate
multiple targets with one or more spaces or tabs. Targets are not case sensitive. Paths are permitted
with filenames. A target cannot exceed 256 characters. If the target preceding the colon is a single
character, use a separating space; otherwise, NMAKE interprets the letter-colon combination as a
drive specifier.

Pseudotargets
A pseudotarget is a label used in place of a filename in a dependency line. It is interpreted as a file
that does not exist and so is out-of-date. NMAKE assumes a pseudotarget's timestamp is the most
recent of all its dependents; if it has no dependents, the current time is assumed. If a pseudotarget is
used as a target, its commands are always executed.

A pseudotarget used as a dependent must also appear as a target in another dependency; however,
that dependency does not need to have a commands block.

Pseudotarget names follow the filename syntax rules for targets. However, if the name does not have
an extension (that is, does not contain a period), it can exceed the 8-character limit for filenames and
can be up to 256 characters long.

Multiple Targets

Using Visual Fortran Tools Page 14 of 64

8/26/97 10:28:38 AM

NMAKE evaluates multiple targets in a single dependency as if each were specified in a separate
description block as follows:

This... ...is evaluated as this
bounce.exe leap.exe : jump.obj
 echo Building...

bounce.exe : jump.obj
echo Building...
leap.exe : jump.obj
 echo Building...

Cumulative Dependencies
Dependencies are cumulative in a description block if a target is repeated as follows:

This... ...is evaluated as this
bounce.exe : jump.obj
bounce.exe : up.obj
 echo Building bounce.exe...

bounce.exe : jump.obj up.obj
 echo Building bounce.exe...

Multiple targets in multiple dependency lines in a single description block are evaluated as if each
were specified in a separate description block, but targets that are not in the last dependency line do
not use the commands block as follows:

This... ...is evaluated as this
bounce.exe leap.exe : jump.obj
bounce.exe climb.exe : up.obj
 echo Building...

bounce.exe : jump.obj up.obj
 echo Building bounce.exe...
climb.exe : up.obj
 echo Building climb.exe...
leap.exe : jump.obj
invokes an inference rule

Targets in Multiple Description Blocks
To update a target in more than one description block using different commands, specify two
consecutive colons (::) between targets and dependents. For example:

target.lib :: one.f90 two.f90 three.f90
 df one.f90 two.f90 three.f90
 lib target one.obj two.obj three.obj
target.lib :: four.c five.c
 df /c four.for five.for
 lib target four.obj five.obj

If a target is specified with a colon (:) in two dependency lines in different locations, and if
commands appear after only one of the lines, NMAKE interprets the dependencies as if adjacent or
combined. It does not invoke an inference rule for the dependency that has no commands, but instead
assumes that the dependencies belong to one description block and executes the commands specified
with the other dependency as follows:

This... ...is evaluated as this
bounce.exe : jump.obj
 echo Building bounce.exe...
bounce.exe : up.obj

bounce.exe : jump.obj up.obj
 echo Building bounce.exe...

This effect does not occur if :: is used as follows:

Using Visual Fortran Tools Page 15 of 64

8/26/97 10:28:38 AM

This... ...is evaluated as this
bounce.exe :: jump.obj
 echo Building bounce.exe...
bounce.exe :: up.obj

bounce.exe : jump.obj
 echo Building bounce.exe...
bounce.exe : up.obj
invokes an inference rule

Dependents

In a dependency line, specify zero or more dependents after the colon (:) or double colon (::), using
any valid filename or pseudotarget. Separate multiple dependents with one or more spaces or tabs.
Dependents are not case sensitive. Paths are permitted with filenames.

Inferred Dependents

An inferred dependent is derived from an inference rule and is evaluated before explicit dependents.
If an inferred dependent is out-of-date with respect to its target, NMAKE invokes the commands
block for the dependency. If an inferred dependent does not exist or is out-of-date with respect to its
own dependents, NMAKE first updates the inferred dependent. For more information, see Inference
Rules.

Search Paths for Dependents

Each dependent has an optional search path, specified as follows:

{directory[;directory...]}dependent

NMAKE looks for a dependent first in the current directory, and then in directories in the order
specified. A macro can specify part or all of a search path. Enclose directory names in braces ({ });
separate multiple directories with a semicolon (;). No spaces or tabs are allowed.

Commands in a Makefile
A description block or inference rule specifies a block of commands to run if the dependency is
out-of-date. NMAKE displays each command before running it, unless the /S option, .SILENT,
!CMDSWITCHES, or @ is used. NMAKE looks for a matching inference rule if a description
block is not followed by a commands block.

A commands block contains one or more commands, each on its own line. No blank line can appear
between the dependency or rule and the commands block. However, a line containing only spaces or
tabs can appear; this line is interpreted as a null command and no error occurs. Blank lines are
permitted between command lines.

A command line begins with one or more spaces or tabs. A backslash (\) followed by a newline
character is interpreted as a space in the command; use a backslash at the end of a line to continue a
command onto the next line. NMAKE interprets the backslash literally if any other character,
including a space or tab, follows the backslash.

A command preceded by a semicolon (;) can appear on a dependency line or inference rule, whether
or not a commands block follows:

Using Visual Fortran Tools Page 16 of 64

8/26/97 10:28:38 AM

 project.obj : project.f90 ; df /c project.f90

For more information see:

• Command Modifiers in NMAKE
• Filename-Parts Syntax in NMAKE

Command Modifiers in NMAKE
You can specify one or more command modifiers preceding a command, optionally separated by
spaces or tabs. As with commands, modifiers must be indented. The following table lists the
command modifiers:

Modifier Action
@command Prevents display of the command. Display by commands is not suppressed. By default,

NMAKE echoes all executed commands. Use the /S option to suppress display for the
entire makefile; use .SILENT to suppress display for part of the makefile.

-[number]
command

Turns off error checking for command. By default, NMAKE halts when a command
returns a nonzero exit code. If -number is used, NMAKE stops if the exit code exceeds
number. Spaces or tabs cannot appear between the dash and number; at least one space
or tab must appear between number and command. Use the /I option to turn off error
checking for the entire makefile; use .IGNORE to turn off error checking for part of
the makefile.

!command Executes command for each dependent file if command uses $** (all dependent files
in the dependency) or $? (all dependent files in the dependency with a later timestamp
than the target).

Filename-Parts Syntax in NMAKE

Filename-parts syntax in commands represents components of the first dependent filename (which
may be an implied dependent). Filename components are the file's drive, path, base name, and
extension as specified, not as it exists on disk.

Use %s to represent the complete filename. Use %|[parts]F to represent parts of the filename, where
parts can be zero or more of the following letters, in any order:

Letter Description
No letter Complete name
d Drive
p Path
f File base name
e File extension

Inline Files in a Makefile

An inline file contains text you specify in the makefile. Its name can be used in commands as input
(for example, a LINK command file), or it can pass commands to the operating system. The file is
created on disk when a command that creates the file is run.

Using Visual Fortran Tools Page 17 of 64

8/26/97 10:28:38 AM

For more information, see:

• Specifying an Inline File in Makefiles
• Creating Inline File Text
• Reusing Inline Files in Makefiles
• Multiple Inline Files

Specifying an Inline File in Makefiles

The syntax for specifying an inline file in a command is:

<<[filename]

Specify two angle brackets (<<) in the command where the filename is to appear. The angle brackets
cannot be a macro expansion. When the command is run, the angle brackets are replaced by
filename, if specified, or by a unique NMAKE-generated name. If specified, filename must follow
the angle brackets without a space or tab. A path is permitted. No extension is required or assumed.

If filename is specified, the file is created in the current or specified directory, overwriting any
existing file by that name; otherwise, it is created in the TMP directory (or the current directory, if
the TMP environment variable is not defined). If a previous filename is reused, NMAKE overwrites
the previous file.

Creating Inline File Text in Makefiles
The syntax to create the content of an inline file is:

inlinetext
.
.
.
<<[KEEP | NOKEEP]

Specify inlinetext on the first line after the command. Mark the end with double brackets at the
beginning of a separate line. The file contains all inlinetext before the delimiting brackets. The
inlinetext can have macro expansions and substitutions, but not directives or makefile comments.
Spaces, tabs, and newline characters are treated literally.

Inline files are temporary or permanent. A temporary file exists for the duration of the session and
can be reused by other commands. Specify KEEP after the closing angle brackets to retain the file
after the NMAKE session; an unnamed file is preserved on disk with the generated filename. Specify
NOKEEP or nothing for a temporary file. KEEP and NOKEEP are not case sensitive.

Reusing Inline Files in Makefiles

To reuse an inline file, specify <<filename where the file is defined and first used, then reuse filename
without the angle brackets (<<) later in the same or another command. The command to create the
inline file must run before all commands that use the file.

Using Visual Fortran Tools Page 18 of 64

8/26/97 10:28:38 AM

Multiple Inline Files

A command can create more than one inline file. The syntax to do this is:

command << <<
inlinetext
<<[KEEP | NOKEEP]
inlinetext
<<[KEEP | NOKEEP]

For each file, specify one or more lines of inline text followed by a closing line containing the
delimiter. Begin the second file’s text on the line following the delimiting line for the first file.

Macros and NMAKE

Macros replace a particular string in the makefile with another string. Using macros, you can create a
makefile that can build different projects, specify options for commands, or set environment
variables. You can define your own macros or use NMAKE’s predefined macros.

For more information, see:

• Defining an NMAKE Macro
• Special Characters in NMAKE Macros
• Null and Undefined NMAKE Macros
• Where to Define Macros
• Precedence in Macro Definitions
• Using an NMAKE Macro
• Macro Substitution
• Special NMAKE Macros

Defining an NMAKE Macro

Use the following syntax to define a macro:

macroname=string

The macroname is a combination of letters, digits, and underscores (_) up to 1024 characters, and is
case sensitive. The macroname can contain an invoked macro. If macroname consists entirely of an
invoked macro, the macro being invoked cannot be null or undefined.

The string can be any sequence of zero or more characters. A null string contains zero characters or
only spaces or tabs. The string can contain a macro invocation.

Special Characters in NMAKE Macros

A number sign (#) after a definition specifies a comment. To specify a literal number sign in a
macro, use a caret (^), as in ̂ #.

A dollar sign ($) specifies a macro invocation. To specify a literal $, use $$.

Using Visual Fortran Tools Page 19 of 64

8/26/97 10:28:38 AM

To extend a definition to a new line, end the line with a backslash (\). When the macro is invoked,
the backslash plus newline character is replaced with a space. To specify a literal backslash at the
end of the line, precede it with a caret (^), or follow it with a comment specifier (#).

To specify a literal newline character, end the line with a caret (̂), as in:

 CMDS = cls^
 dir

Null and Undefined NMAKE Macros

Both null and undefined macros expand to null strings, but a macro defined as a null string is
considered defined in preprocessing expressions. To define a macro as a null string, specify no
characters except spaces or tabs after the equal sign (=) in a command line or command file, enclose
the null string or definition in double quotation marks (""). To undefine a macro, use !UNDEF.

Where to Define Macros

You can define macros in a makefile command line, or command file.

In a makefile, each macro definition must appear on a separate line and cannot start with a space or
tab. Spaces or tabs around the equal sign (=) are ignored. All string characters are literal, including
surrounding quotation marks and embedded spaces.

In a command line or command file, spaces and tabs delimit arguments and cannot surround the
equal sign. If string has embedded spaces or tabs, enclose either the string itself or the entire macro
in double quotation marks ("").

Precedence in Macro Definitions

If a macro is multiply defined, NMAKE uses the highest-precedence definition:

1. A macro defined on the command line
2. A macro defined in a makefile or include file
3. An inherited environment-variable macro
4. A predefined macro, such as FOR and RC

Use the /E option to cause macros inherited from environment variables to override makefile macros
with the same name. Use !UNDEF to override a command line.

Using an NMAKE Macro

To use a macro, enclose its name in parentheses preceded by a dollar sign ($):

$(macroname)

No spaces are allowed. The parentheses are optional if macroname is a single character. The
definition string replaces $(macroname); an undefined macro is replaced by a null string.

Using Visual Fortran Tools Page 20 of 64

8/26/97 10:28:38 AM

Macro Substitution

To substitute text within a macro, use the following syntax:

$(macroname:string1=string2)

When macroname is invoked, each occurrence of string1 in its definition string is replaced by
string2. Macro substitution is case sensitive and is literal; string1 and string2 cannot invoke macros.
Substitution does not modify the original definition. You can substitute text in any predefined macro
except $$@.

No spaces or tabs precede the colon; any after the colon are interpreted as literal. If string2 is null, all
occurrences of string1 are deleted from the macro’s definition string.

Special NMAKE Macros

NMAKE provides several special macros to represent various filenames and commands. One use for
some of these macros is in the predefined inference rules. Like all macros, the macros provided by
NMAKE are case sensitive.

This section discusses:

• Filename Macros
• Recursion Macros
• Command Macros and Options Macros
• Environment-Variable Macros

Filename Macros

Filename macros are predefined as filenames specified in the dependency (not full filename
specifications on disk). These macros do not need to be enclosed in parentheses when invoked;
specify only a $ as shown.

Macro Meaning
$@ Current target's full name (path, base name, extension), as currently specified.
$$@ Current target's full name (path, base name, extension), as currently specified. Valid only as

a dependent in a dependency.
$* Current target's path and base name minus file extension.
$** All dependents of the current target.
$? All dependents with a later timestamp than the current target.
$< Dependent file with a later timestamp than the current target. Valid only in commands in

inference rules.

To specify part of a predefined filename macro, append a macro modifier and enclose the modified
macro in parentheses.

Modifier Resulting filename part
D Drive plus directory
B Base name

Using Visual Fortran Tools Page 21 of 64

8/26/97 10:28:39 AM

F Base name plus extension
R Drive plus directory plus base name

Recursion Macros

Use recursion macros to call NMAKE recursively. Recursive sessions inherit command-line and
environment-variable macros. They do not inherit makefile-defined inference rules or .SUFFIXES
and .PRECIOUS specifications. To pass macros to a recursive NMAKE session, either set an
environment variable with the SET command before the recursive call or define a macro in the
command for the recursive call.

Macro Definition
MAKE Command used originally to invoke NMAKE.
MAKEDIR Current directory when NMAKE was invoked.
MAKEFLAGS Options currently in effect. Use as /$(MAKEFLAGS).

Command Macros, Options Macros

Command macros are predefined for Microsoft products. Options macros represent options to these
products and are undefined by default. Both are used in predefined inference rules and can be used in
description blocks or user-defined inference rules. Command macros can be redefined to represent
part or all of a command line, including options. Options macros generate a null string if left
undefined.

Microsoft product Command macro Defined as Options macro
Macro Assembler AS ml AFLAGS
Basic Compiler BC bc BFLAGS
C Compiler CC cl CFLAGS
COBOL Compiler COBOL cobol COBFLAGS
C++ Compiler CPP cl CPPFLAGS
C++ Compiler CXX cl CXXFLAGS
Visual Fortran Compiler FOR df FFLAGS
Pascal Compiler PASCAL pl PFLAGS
Resource Compiler RC rc RFLAGS

Environment-Variable Macros

NMAKE inherits macro definitions for environment variables that exist before the start of the
session. If a variable was set in the operating-system environment, it is available as an NMAKE
macro. The inherited names are converted to uppercase. Inheritance occurs before preprocessing. Use
the /E option to cause macros inherited from environment variables to override any macros with the
same name in the makefile.

Environment-variable macros can be redefined in the session, but this does not change the
corresponding environment variable; to change the variable, use the SET command. Using the SET
command to change an environment variable in a session does not change the corresponding macro.

If an environment variable is defined as a string that would be syntactically incorrect in a makefile,
no macro is created and no warning is generated. If a variable’s value contains a dollar sign ($),
NMAKE interprets it as the beginning of a macro invocation; using the macro can cause unexpected

Using Visual Fortran Tools Page 22 of 64

8/26/97 10:28:39 AM

behavior.

NMAKE Inference Rules

Inference rules supply commands to update targets and to infer dependents for targets. Extensions in
an inference rule match a single target and dependent that have the same base name. Inference rules
are user-defined or predefined; predefined rules can be redefined.

If an out-of-date dependency has no commands and if .SUFFIXES contains the dependent’s
extension, NMAKE uses a rule whose extensions match the target and an existing file in the current
or specified directory. If more than one rule matches existing files, the .SUFFIXES list determines
which to use; list priority descends from left to right.

If a dependent file doesn’t exist and is not listed as a target in another description block, an inference
rule can create the missing dependent from another file with the same base name. If a description
block’s target has no dependents or commands, an inference rule can update the target. Inference
rules can build a command-line target even if no description block exists. NMAKE may invoke a
rule for an inferred dependent even if an explicit dependent is specified.

For more information, see:

• Defining an Inference Rule in NMAKE
• Search Paths in Inference Rules
• Predefined Inference Rules
• Inferred Dependents and Rules
• Precedence in NMAKE Inference Rules

Defining an Inference Rule in NMAKE

To define an inference rule, use the following syntax:

.fromext.toext :
commands

The fromext represents the extension of a dependent file, and toext represents the extension of a
target file. Extensions are not case sensitive. Macros can be invoked to represent fromext and toext;
the macros are expanded during preprocessing.

The period (.) preceding fromext must appear at the beginning of the line. The colon (:) is preceded
by zero or more spaces or tabs; it can be followed only by spaces or tabs, a semicolon (;) to specify a
command, a number sign (#) to specify a comment, or a newline character. No other spaces are
allowed. Commands are specified as in description blocks.

Search Paths in Inference Rules

An inference rule that specifies paths has the following syntax:

{frompath}.fromext{topath}.toext :
commands

Using Visual Fortran Tools Page 23 of 64

8/26/97 10:28:39 AM

An inference rule applies to a dependency only if paths specified in the dependency exactly match
the inference-rule paths. Specify the dependent’s directory in frompath and the target’s directory in
topath; no spaces are allowed. Specify only one path for each extension. A path on one extension
requires a path on the other. To specify the current directory, use either a period (.) or empty braces (
{ }). Macros can represent frompath and topath; they are invoked during preprocessing.

Predefined Inference Rules

Predefined inference rules use NMAKE-supplied command and option macros:

Rule Command Default action
.asm.exe $(AS) $(AFLAGS) $*.asm ml $*.asm
.asm.obj $(AS) $(AFLAGS) /c $*.asm ml /c $*.asm
.c.exe $(CC) $(CFLAGS) $*.c cl $*.c
.c.obj $(CC) $(CFLAGS) /c $*.c cl /c $*.c
.cpp.exe $(CPP) $(CPPFLAGS) $*.cpp cl $*.cpp
.cpp.obj $(CPP) $(CPPFLAGS) /c $*.cpp cl /c $*.cpp
.cxx.exe $(CXX) $(CXXFLAGS) $*.cxx cl $*.cxx
.cxx.obj $(CXX) $(CXXFLAGS) /c $*.cxx cl /c $*.cxx
.bas.obj $(BC) $(BFLAGS) $*.bas; bc $*.bas;
.cbl.exe $(COBOL) $(COBFLAGS) $*.cbl, $*.exe; cobol $*.cbl, $*.exe;
.cbl.obj $(COBOL) $(COBFLAGS) $*.cbl; cobol $*.cbl;
.for.exe $(FOR) $(FFLAGS) $*.for fl32 $*.for
.f90.exe $(FOR) $(FFLAGS) $*.f90 fl32 $*.f90
.f.exe $(FOR) $(FFLAGS) $*.f fl32 $*.f
.for.obj $(FOR) /c $(FFLAGS) $*.for fl32 $*.for /c
.f90.obj $(FOR) /c $(FFLAGS) $*.f90 fl32 $*.f90 /c
.f.obj $(FOR) /c $(FFLAGS) $*.f fl32 $*.f /c
.pas.exe $(PASCAL) $(PFLAGS) $*.pas pl $*.pas
.pas.obj $(PASCAL) /c $(PFLAGS) $*.pas pl /c $*.pas
.rc.res $(RC) $(RFLAGS) /r $* rc /r $*

Inferred Dependents and Rules

NMAKE assumes an inferred dependent for a target if an applicable inference rule exists. A rule
applies if:

• toext matches the target's extension.
• fromext matches the extension of a file that has the target's base name and that exists in the

current or specified directory.
• fromext is in .SUFFIXES; no other fromext in a matching rule has a higher .SUFFIXES

priority.
• No explicit dependent has a higher .SUFFIXES priority.

Inferred dependents can cause unexpected side effects. If the target's description block contains
commands, NMAKE executes those commands and not the commands in the rule.

Using Visual Fortran Tools Page 24 of 64

8/26/97 10:28:39 AM

Precedence in NMAKE Inference Rules

If an inference rule is multiply defined, the highest-precedence rule applies:

1. An inference rule defined in a makefile; later definitions have precedence.
2. A predefined inference rule.

Dot Directives in Makefiles

Specify dot directives outside a description block, at the start of a line. Dot directives begin with a
period (.) and are followed by a colon (:). Spaces and tabs are allowed. Dot directive names are case
sensitive and are uppercase.

Directive Action
.IGNORE : Ignores nonzero exit codes returned by commands, from the place it is specified to

the end of the makefile. By default, NMAKE halts if a command returns a nonzero
exit code. To restore error checking, use !CMDSWITCHES (described in
Makefile Preprocessing Directives). To ignore the exit code for a single command,
use the dash modifier. To ignore exit codes for an entire file, use the /I option.

.PRECIOUS :
targets

Preserves targets on disk if the commands to update them are halted; has no effect
if a command handles an interrupt by deleting the file. Separate the target names
with one or more spaces or tabs. By default, NMAKE deletes a target if a build is
interrupted by CTRL+C or CTRL+BREAK. Each use of .PRECIOUS applies to the
entire makefile; multiple specifications are cumulative.

.SILENT : Suppresses display of executed commands, from the place it is specified to the end
of the makefile. By default, NMAKE displays the commands it invokes. To restore
echoing, use !CMDSWITCHES. To suppress echoing of a single command, use
the @ modifier. To suppress echoing for an entire file, use the /S option.

.SUFFIXES :
list

Lists extensions for inference-rule matching; predefined as: .exe .obj .asm .c .cpp
.cxx .bas .cbl .for .pas .res .rc

To change the .SUFFIXES list order or to specify a new list, clear the list and specify a new setting.
To clear the list, specify no extensions after the colon:

 .SUFFIXES :

To add additional suffixes to the end of the list, specify:

 .SUFFIXES : suffixlist

where suffixlist is a list of the additional suffixes, separated by one or more spaces or tabs. To see the
current setting of .SUFFIXES, run NMAKE with the /P option.

Makefile Preprocessing

You can control the NMAKE session by using preprocessing directives and expressions.
Preprocessing instructions can be placed in the makefile. Using directives, you can conditionally
process your makefile, display error messages, include other makefiles, undefine a macro, and turn

Using Visual Fortran Tools Page 25 of 64

8/26/97 10:28:39 AM

certain options on or off.

For more information, see:

• Makefile Preprocessing Directives
• Expressions in Makefile Preprocessing
• Makefile Preprocessing Operators
• Executing a Program in Preprocessing

Makefile Preprocessing Directives

Preprocessing directives are not case sensitive. The initial exclamation point (!) must appear at the
beginning of the line. Zero or more spaces or tabs can appear after the exclamation point, for
indentation. The following are preprocessing directives:

• !CMDSWITCHES {+ | -}option...

Turns each option listed on or off. Spaces or tabs must appear before the + or - operator; none
can appear between the operator and the option letters. Letters are not case sensitive and are
specified without a slash (/). To turn some options on and others off, use separate
specifications of !CMDSWITCHES.

Only D, I, N, and S can be used in a makefile. Changes specified in a description block do not
take effect until the next description block. This directive updates the MAKEFLAGS
recursion macro; changes are inherited during recursion if MAKEFLAGS is specified.

• !ERROR text

Displays text in error U1050, then halts NMAKE, even if /K, /I, .IGNORE,
!CMDSWITCHES, or the dash (-) command modifier is used. Spaces or tabs before text are
ignored.

• !MESSAGE text

Displays text to standard output. Spaces or tabs before text are ignored.

• !INCLUDE [<]filename[>]

Reads filename as a makefile, then continues with the current makefile. NMAKE searches for
filename first in the specified or current directory, then recursively through directories of any
parent makefiles, then, if filename is enclosed by angle brackets (<>), in directories specified
by the INCLUDE macro, which is initially set to the INCLUDE environment variable. Useful
to pass .SUFFIXES settings, .PRECIOUS, and inference rules to recursive makefiles.

• !IF constantexpression

Processes statements between !IF and the next !ELSE or !ENDIF if constantexpression
evaluates to a nonzero value.

• !IFDEF macroname

Processes statements between !IFDEF and the next !ELSE or !ENDIF if macroname is

Using Visual Fortran Tools Page 26 of 64

9/2/97 3:37:17 PM

defined. A null macro is considered to be defined.

• !IFNDEF macroname

Processes statements between !IFNDEF and the next !ELSE or !ENDIF if macroname is not
defined.

• !ELSE [IF constantexpression | IFDEF macroname | IFNDEF macroname]

Processes statements between !ELSE and the next !ENDIF if the prior !IF, !IFDEF, or
!IFNDEF statement evaluated to zero. The optional keywords give further control of
preprocessing.

• !ELSEIF

Synonym for !ELSE IF.

• !ELSEIFDEF

Synonym for !ELSE IFDEF.

• !ELSEIFNDEF

Synonym for !ELSE IFNDEF.

• !ENDIF

Marks the end of an !IF, !IFDEF, or !IFNDEF block. Any text after !ENDIF on the same line
is ignored.

• !UNDEF macroname

Undefines macroname.

Expressions in Makefile Preprocessing

The !IF or !ELSE IF constantexpression consists of integer constants (in decimal or C-language
notation), string constants, or commands. Use parentheses to group expressions. Expressions use
C-style signed long integer arithmetic; numbers are in 32-bit two's-complement form in the range
-2147483648 to 2147483647.

Expressions can use operators that act on constant values, exit codes from commands, strings,
macros, and file-system paths.

Makefile Preprocessing Operators

The DEFINED operator is a logical operator that acts on a macro name. The expression DEFINED
(macroname) is true if macroname is defined. DEFINED in combination with !IF or !ELSE IF is
equivalent to !IFDEF or !ELSE IFDEF. However, unlike these directives, DEFINED can be used
in complex expressions using binary logical operators.

Using Visual Fortran Tools Page 27 of 64

8/26/97 10:28:39 AM

The EXIST operator is a logical operator that acts on a file-system path. EXIST (path) is true if path
exists. The result from EXIST can be used in binary expressions. If path contains spaces, enclose it
in double quotation marks.

Integer constants can use the unary operators for numerical negation (-), one’s complement (~), and
logical negation (!).

Constant expressions can use the following binary operators:

Operator Description Operator Description
+ Addition || Logical OR
- Subtraction << Left shift
* Multiplication >> Right shift
/ Division == Equality
% Modulus != Inequality
& Bitwise AND < Less than
| Bitwise OR > Greater than
^ Bitwise XOR <= Less than or equal to
&& Logical AND >= Greater than or equal to

To compare two strings, use the equality (==) operator and the inequality (!=) operator. Enclose
strings in double quotation marks.

Executing a Program in Preprocessing

To use a command’s exit code during preprocessing, specify the command, with any arguments,
within brackets ([]). Any macros are expanded before the command is executed. NMAKE replaces
the command specification with the command’s exit code, which can be used in an expression to
control preprocessing.

Resource Compiler Options
With Visual Fortran, you can create dialog boxes for an interactive user interface at run-time. For
example, you can provide selection lists and scroll bars and the user will not have to type in text
strings or numerical control parameters. You can also create custom icons for your QuickWin
applications.

Microsoft Developer Studio includes a special dialog editor for creating dialogs and placing the
controls within them, and a graphic editor for drawing or importing icons. You must use the dialog
editor and graphic editor in Microsoft Developer Studio to design dialogs and icons. Once you have
created a dialog or icon, you can compile it from the command line using RC, the resource compiler.

This section describes the preprocessing directives and statements that make up a resource-definition
(script) file and how to use RC.EXE to compile your application’s resources and add them to an
application’s executable file.

The resource editor in Microsoft Developer Studio offers easy, time-saving alternatives to the

Using Visual Fortran Tools Page 28 of 64

8/26/97 10:28:39 AM

traditional hand-coded scripts used to create resources. These visual tools create and manage your
project’s script - you don’t need to hand-code scripts. For more information on the working with
resources in Microsoft Developer Studio, see the following sections in the Developer Studio
Environment User’s Guide: Working with Resources, Using the Dialog Editor, and Using the
Graphic Editor.

The following topics are covered in this section:

• Including Resources in an Application
• Creating a Resource Definition File
• The RC Command Line

Including Resources in an Application

To include resources in your application:

1. Use the Microsoft Developer Studio dialog editor or graphic editor to create a resource or each
dialog or icon in your application. (For more information, see Working with Resources, Using
the Dialog Editor, and Using the Graphic Editor, in the Developer Studio Environment User's
Guide.)

2. Create a resource-definition file (also called a script) that describes all resources used by the
application.

3. Compile the script into a resource (.RES) file with RC.EXE (RC).
4. Link the compiled resource files into the application's executable file.

You do not use RC to include compiled resources into the executable file or to mark the file as an
application for Windows. The linker recognizes the compiled resource files and links them to the
executable file.

Creating a Resource-Definition File

After creating individual resource files for your application's dialog box and icon resources, you
create a resource-definition file, or script. A script is a text file with the extension .RC.

The script lists every resource in your application and describes some types of resources in great
detail. For a resource that exists in a separate file, such as an icon or cursor, the script names the
resource and the file that contains it. For some resources, such as a menu, the entire definition of the
resource exists within the script.

A script file can contain the following information:

• Preprocessing Directives, which instruct RC to perform actions on the script before compiling.
Directives can also assign values to names.

• Statements, which name and describe resources. Statements can be single-line or multiline
statements.

To view a script file that defines resources for an application, see Sample Script File.

Preprocessing Directives

Using Visual Fortran Tools Page 29 of 64

8/26/97 10:28:39 AM

The directives listed in the following table can be used in the script to instruct RC to perform actions
or assign values to names. The syntax and semantics for the RC preprocessor are the same as for the
Microsoft C compiler.

Directive Description
#define Defines a specified name by assigning it a given value.
#elif Marks an optional clause of a conditional-compilation block.
#else Marks the last optional clause of a conditional-compilation block.
#endif Marks the end of a conditional-compilation block.
#if Conditionally compiles the script if a specified expression is true.
#ifdef Conditionally compiles the script if a specified name is defined.
#ifndef Conditionally compiles the script if a specified name is not defined.
#include Copies the contents of a file into the resource-definition file.
#undef Removes the definition of the specified name.

Single-Line Statements

A single-line statement can begin with any of the following keywords:

Keyword Description
BITMAP Defines a bitmap by naming it and specifying the name of the file that contains

it. (To use a particular bitmap, the application requests it by name.)
CURSOR Defines a cursor by naming it and specifying the name of the file that contains

it. (To use a particular cursor, the application requests it by name.) Custom
cursors are not available in Visual Fortran.

FONT Specifies the name of a file that contains a font.
ICON Defines an icon by naming it and specifying the name of the file that contains

it. (To use a particular icon, the application requests it by name.)
LANGUAGE Sets the language for all resources up to the next LANGUAGE statement or to

the end of the file. When the LANGUAGE statement appears before the
BEGIN in an ACCELERATORS, DIALOG, MENU, RCDATA, or
STRINGTABLE resource definition, the specified language applies only to
that resource.

MESSAGETABLE Defines a message table by naming it and specifying the name of the file that
contains it. The file is a binary resource file generated by the Message
Compiler. (The Message Compiler is documented in InfoViewer.)

Multiline Statements

A multiline statement can begin with any of the following keywords:

Keyword Description
ACCELERATORS Defines menu accelerator (quick-access) keys.
DIALOG Defines a template that an application can use to create dialog boxes.
MENU Defines the appearance and function of a menu.
RCDATA Defines data resources. Data resources let you include binary data in the

executable file.

Using Visual Fortran Tools Page 30 of 64

8/26/97 10:28:39 AM

STRINGTABLE Defines string resources. String resources are Unicode strings that can be
loaded from the executable file.

Each of these multiline statements allows you to specify zero or more optional statements before the
BEGIN ... END block that defines the resource. You can specify the following statements:

Statement Description
CHARACTERISTICS dword User-defined information about the resource that can be used by

tools that read and write resource files. The value appears in the
compiled resource file; it is not stored in the executable file and is
not used by Windows.

LANGUAGE language,
sublanguage

Specifies the language for the resource. The arguments are
constants from WINNLS.H.

VERSION dword User-defined version number for the resource that can be used by
tools that read and write resource files. The value appears in the
compiled resource file; it is not stored in the executable file and is
not used by Windows.

Sample Script File

The following example shows a script file that defines the resources for an application named
Shapes:

#include "SHAPES.H"

ShapesCursor CURSOR SHAPES.CUR
ShapesIcon ICON SHAPES.ICO

 BEGIN
 POPUP "&Shape"
 BEGIN
 MENUITEM "&Clear", ID_CLEAR
 MENUITEM "&Rectangle", ID_RECT
 MENUITEM "&Triangle", ID_TRIANGLE
 MENUITEM "&Star", ID_STAR
 MENUITEM "&Ellipse", ID_ELLIPSE
 END
 END

The CURSOR statement names the application’s cursor resource ShapesCursor and specifies the
cursor file SHAPES.CUR, which contains the image for that cursor. Custom cursors are not available
in Visual Fortran.

The ICON statement names the application’s icon resource ShapesIcon and specifies the icon file
SHAPES.ICO, which contains the image for that icon.

The MENU statement defines an application menu named ShapesMenu, a pop-up menu with five
menu items.

The menu definition, enclosed by the BEGIN and END keywords, specifies each menu item and the
menu identifier that is returned when the user selects that item. For example, the first item on the
menu, Clear, returns the menu identifier ID_CLEAR when the user selects it. The menu identifiers
are defined in the application header file, SHAPES.H.

Using Visual Fortran Tools Page 31 of 64

8/26/97 10:28:39 AM

Resource Compiler Command Line

To start RC, use the following command-line syntax:

RC [options] script-file

The options argument can include one or more of the following options:

Option Description
/? Displays a list of RC command-line options.
/d Defines a symbol for the preprocessor that you can test with the #ifdef directive.
/fo resname Uses resname for the name of the .RES file.
/h Displays a list of RC command-line options.
/i directory Causes RC to search the specified directory before searching the directories specified by

the INCLUDE environment variable.
/r Ignored. Provided for compatibility with existing makefiles.
/u Undefines a symbol.
/v Causes a display of messages that report on the progress of the compiler.
/x Prevents RC from checking the INCLUDE environment variable when searching for

header files or resource files.

Options are not case sensitive and a dash (-) can be used in place of a forward slash (/). You can
combine single-letter options if they do not require additional arguments. For example, the following
commands are equivalent:

RC /V /X SAMPLE.RC
rc -vx sample.rc

The script-file argument specifies the name of the resource-definition script that contains the names,
types, filenames, and descriptions of the resources to be compiled.

For more information, see:

• Defining Names for the Resource Preprocessor
• Naming the Compiled Resource File
• Searching for Resource Files
• Adding a Directory to Search
• Suppressing the INCLUDE Environment Variable
• Displaying Resource-Compiler Progress Messages
• Common Resource Statement Arguments

Defining Names for the Resource Preprocessor

You can use the /d option to specify conditional compilation in a script, based on whether a name is
defined on the RC command line. You can also use the DEFINE directive to specify conditional
compilation in the file or an include file.

For example, suppose your application has a pop-up menu, the Debug menu, that should appear only
with debugging versions of the application. When you compile the application for normal use, the

Using Visual Fortran Tools Page 32 of 64

8/26/97 10:28:39 AM

Debug menu is not included.

The following example shows the statements that can be added to the resource-definition file to
define the Debug menu:

MainMenu MENU
BEGIN
 . . .
#ifdef DEBUG
 POPUP "&Debug"
 BEGIN
 MENUITEM "&Memory usage", ID_MEMORY
 MENUITEM "&Walk data heap", ID_WALK_HEAP
 END
#endif
END

When compiling resources for a debugging version of the application, you could include the Debug
menu by using the following RC command:

rc -d DEBUG myapp.rc

To compile resources for a normal version of the application -- one that does not include the Debug
menu -- you could use the following RC command:

rc myapp.rc

Naming the Compiled Resource File

By default, when compiling resources, RC names the compiled resource (.RES) file with the base
name of the .RC file and places it in the same directory as the .RC file. The following example
compiles MYAPP.RC and creates a compiled resource file named MYAPP.RES in the same
directory as MYAPP.RC:

 rc myapp.rc

The /fo option lets you give the resulting .RES file a name that differs from the name of the
corresponding .RC file. For example, to name the resulting .RES file NEWFILE.RES, you would use
the following command:

 rc -fo newfile.res myapp.rc

The /fo option can also place the .RES file in a different directory. For example, the following
command places the compiled resource file MYAPP.RES in the directory
C:\SOURCE\RESOURCE:

 rc -fo c:\source\resource\myapp.res myapp.rc

Searching for Resource Files

Using Visual Fortran Tools Page 33 of 64

8/26/97 10:28:39 AM

By default, RC searches for header files and resource files (such as icon and cursor files) first in the
current directory and then in the directories specified by the INCLUDE environment variable. (The
PATH environment variable has no effect on which directories RC searches.)

Adding a Directory to Search

You can use the /i option to add a directory to the list of directories RC searches. The compiler then
searches the directories in the following order:

1. The current directory.
2. The directory or directories you specify by using the /i option, in the order in which they

appear on the RC command line.
3. The list of directories specified by the INCLUDE environment variable, in the order in which

the variable lists them, unless you specify the /x option.

The following example compiles the resource-definition file MYAPP.RC:

rc /i c:\source\stuff /i d:\resources myapp.rc

When compiling the script MYAPP.RC, RC searches for header files and resource files first in the
current directory, then in C:\SOURCE\STUFF and D:\RESOURCES, and then in the directories
specified by the INCLUDE environment variable.

Suppressing the INCLUDE Environment Variable

You can prevent RC from using the INCLUDE environment variable when determining the
directories to search. To do so, use the /x option. The compiler then searches for files only in the
current directory and in any directories you specify by using the /i option.

The following example compiles the script file MYAPP.RC:

 rc /x /i c:\source\stuff myapp.rc

When compiling the script MYAPP.RC, RC searches for header files and resource files first in the
current directory and then in C:\SOURCE\STUFF. It does not search the directories specified by the
INCLUDE environment variable.

Displaying Resource-Compiler Progress Messages

You can use the /v option to specify that RC is to display progress messages. The following example
causes RC to display progress messages as it compiles the resource-definition script SAMPLE.RC
and creates the compiled resource file SAMPLE.RES:

rc /v sample.rc

Common Resource Statement Arguments

Using Visual Fortran Tools Page 34 of 64

8/26/97 10:28:39 AM

The following topics list arguments in common among the resource statements. Occasionally, a
certain statement will use an argument differently, or may ignore an argument. The
statement-specific variation is described with the statement in the alphabetical reference.

• Common Control Arguments
• Common Resource Attributes
• Resource Memory Attributes

Common Resource Control Arguments

The syntax for a resource control definition is as follows:

control [text,] id, x, y, width, height [, style [, extended-style]

Horizontal dialog units are 1/4 of the dialog base width unit. Vertical units are 1/8 of the dialog base
height unit. The current dialog base units are computed from the height and width of the current
system font. The GetDialogBaseUnits Win32 function returns the dialog base units in pixels. The
coordinates are relative to the origin of the dialog box.

The arguments are as follows:

control

Specifies the keyword that indicates the type of control being defined, such as PUSHBUTTON
or CHECKBOX.

text

Specifies text that is displayed with the control. The text is positioned within the control's
specified dimensions, or adjacent to the control.

The text argument must contain zero or more characters enclosed in double quotation marks.
Strings are automatically null-terminated and converted to Unicode in the resulting resource file,
except for strings specified in raw-data statements (raw-data can be specified in RCDATA and
user-defined resources). To specify a Unicode string in raw-data, explicitly qualify the string as a
wide-character string by using the L prefix.

By default, the characters listed between the double quotation marks are ANSI characters, and
escape sequences are interpreted as byte escape sequences. If the string is preceded by the L
prefix, the string is a wide-character string and escape sequences are interpreted as two-byte
escape sequences that specify Unicode characters. If a double quotation mark is required in the
text, you must include the double quotation mark twice or use the \" escape sequence.

An ampersand (&) character in the text indicates that the following character is used as a
mnemonic character for the control. When the control is displayed, the ampersand is not shown,
but the mnemonic character is underlined. The user can choose the control by pressing the key
corresponding to the underlined mnemonic character. To use the ampersand as a character in a
string, insert two ampersands (&&).

id

Specifies the control identifier. This value must be a 16-bit unsigned integer in the range 0 to

Using Visual Fortran Tools Page 35 of 64

8/26/97 10:28:39 AM

65,535 or a simple arithmetic expression that evaluates to a value in that range.

x

Specifies the x-coordinate of the left side of the control relative to the left side of the dialog box.
This value must be a 16-bit unsigned integer in the range 0 to 65,535. The coordinate is in dialog
units and is relative to the origin of the dialog box, window, or control containing the specified
control.

y

Specifies the y-coordinate of the top side of the control relative to the top of the dialog box. This
value must be a 16-bit unsigned integer in the range 0 to 65,535. The coordinate is in dialog units
relative to the origin of the dialog box, window, or control containing the specified control.

width

Specifies the width of the control. This value must be a 16-bit unsigned integer in the range 1 to
65,535. The width is in 1/4-character units.

height

Specifies the height of the control. This value must be a 16-bit unsigned integer in the range 1 to
65,535. The height is in 1/8-character units.

style

Specifies the control styles. Use the bitwise OR (|) operator to combine styles.

extended-style

Specifies extended (WS_EX_xxx) styles. You must specify a style to specify an extended-style.

Common Resource Options

All resource-definition statements include a load-mem option that specifies the loading and memory
characteristics of the resource. The only option used by Win32 is the DISCARDABLE option. The
LOADONCALL and PRELOAD options are allowed in the script for compatibility with existing
scripts, but are ignored.

Resource Memory Properties

Memory properties specify whether the resource is fixed or movable, whether it is discardable, and
whether it is pure. The memory argument can be one or more of the following:

Argument Description
FIXED Ignored. In 16-bit Windows, the resource remains at a fixed memory location.
MOVEABLE Ignored. In 16-bit Windows, the resource can be moved if necessary in order to

compact memory.
DISCARDABLE Resource can be discarded if no longer needed.

Using Visual Fortran Tools Page 36 of 64

8/26/97 10:28:39 AM

PURE Ignored. Accepted for compatibility with existing resource scripts.
IMPURE Ignored. Accepted for compatibility with existing resource scripts.

The default is DISCARDABLE for cursor, icon, and font resources.

Managing Libraries with LIB
You may find it useful to create libraries of Common Object File Format (COFF) object files to
organize shared components of multiple projects. In Microsoft Developer Studio, you create and
manage object libraries with a variety of dialogs. From the command line, you can use the Microsoft
32-Bit Library Manager (LIB.EXE) to manage COFF object libraries, create export files and import
libraries to reference exported symbol definitions when you build Dynamic Link Libraries (DLLs),
and extract library members.

You use the standard libraries, import libraries, and exports files LIB creates with LINK when
building a 32-bit program. (LINK is described in Using the Compiler and Linker from the Command
Line and Compiler and Linker Options.) The three LIB modes -- creating standard (COFF) libraries,
creating import libraries and export files, and extracting library members -- are mutually exclusive.
You can use LIB in only one mode at a time.

You can use LIB to perform the following library-management tasks:

• Add objects to a library

Specify the filename for the existing library and the filenames for the new objects.

• Combine libraries

Specify the library filenames. You can add objects and combine libraries in a single LIB
command.

• Replace a library member with a new object

Specify the library containing the member object to be replaced and the filename for the new
object (or the library that contains it). When an object that has the same name exists in more
than one input file, LIB puts the last object specified in the LIB command into the output
library. When you replace a library member, be sure to specify the new object or library after
the library that contains the old object.

• Delete a member from a library

Use the /REMOVE option. LIB processes any specifications of /REMOVE after combining all
input objects, regardless of command-line order.

Note: You cannot both delete a member and extract it to a file in the same step. You must first
extract the member object using /EXTRACT, then run LIB again using /REMOVE.

This section describes the Microsoft 32-Bit Library Manager (LIB.EXE). The following topics are
covered:

• LIB Input/Output

Using Visual Fortran Tools Page 37 of 64

8/26/97 10:28:39 AM

• Running LIB
• LIB Options
• Extracting a Library Member
• Import Libraries and Exports Files

LIB Input/Output

LIB expects types of input files and generates types of output files depending on the mode in which it
is used. You can also get information about the resulting library with the /LIST option, and you can
examine the contents of the library by using DUMPBIN with the /LINKERMEMBER option.

For more information, see:

• LIB Input Files
• LIB Output Files
• Other LIB Output
• Viewing Contents of a Library

LIB Input Files

The input files expected by LIB depend on the mode in which it is used, as follows:

Mode Input
Default (building or modifying a
library)

COFF object (.OBJ) files, COFF libraries (.LIB), 32-bit OMF
object (.OBJ) files

Extracting a member with
/EXTRACT

COFF library (.LIB)

Building an exports file and
import library with /DEF

Module-definition (.DEF) file, COFF object (.OBJ) files, COFF
libraries (.LIB), 32-bit OMF object (.OBJ) files

Note: Object Model Format (OMF) libraries created by the 16-bit version of LIB cannot be used as
input to the 32-bit LIB.

LIB Output Files

The output files produced by LIB depend on the usage mode as follows:

Mode Output
Default (building or modifying a library) COFF library (.LIB)
Extracting a member with /EXTRACT Object (.OBJ) file
Building an exports file and import library with /DEF Import library (.LIB) and exports (.EXP) file

Other LIB Output

In the default mode, you can use the /LIST option to display information about the resulting library.
You can redirect this output to a file.

LIB displays a copyright and version message and echoes command files unless the /NOLOGO
option is used.

Using Visual Fortran Tools Page 38 of 64

8/26/97 10:28:39 AM

When you type lib with no other input, LIB displays a usage statement that summarizes its options.

Error and warning messages issued by LIB have the form LNKnnnn. The LINK, DUMPBIN, and
EDITBIN tools also use this range of errors.

Viewing Contents of a Library

A library contains COFF objects. Objects in a library contain functions and data that can be
referenced externally by other objects in a program. An object in a library is sometimes referred to as
a library member.

You can get additional information about the contents of a library by running the DUMPBIN tool
with the /LINKERMEMBER option. For more information, see Examining Files with DUMPBIN.

Running LIB

This section presents information on running LIB in any mode. It describes the LIB command line,
discusses the use of command files, and gives general rules for using options.

For more information, see:

• LIB Command Line
• LIB Command Files
• Using LIB Options

LIB Command Line

To run LIB, type the command LIB followed by the options and filenames for the task you are using
LIB to perform. LIB also accepts command-line input in command files. LIB does not use an
environment variable.

Note: If you are accustomed to the LINK32.EXE and LIB32.EXE tools provided with the Microsoft
Win32 Software Development Kit for Windows NT, you may have been using either the command
LINK32 -LIB or the command LIB32 for managing libraries and creating import libraries. Be sure to
change your makefiles and batch files to use the LIB command instead.

LIB Command Files

You can pass command-line arguments to LIB in a command file by using the following syntax:

LIB @commandfile

The commandfile is the name of a text file. No space or tab is allowed between the at sign (@) and
the filename. There is no default extension; you must specify the full filename, including any
extension. Wildcards cannot be used. You can specify an absolute or relative path with the filename.

In the command file, arguments can be separated by spaces or tabs as they can on the command line,
and they can also be separated by newline characters. Use a semicolon (;) to mark a comment. LIB
ignores all text from the semicolon to the end of the line.

Using Visual Fortran Tools Page 39 of 64

8/26/97 10:28:39 AM

You can specify either all or part of the command line in a command file, and you can use more than
one command file in a LIB command. LIB accepts the command-file input as if it were specified in
that location on the command line. Command files cannot be nested. LIB echoes the contents of
command files unless the /NOLOGO option is used.

Using LIB Options

An option consists of an option specifier, which is either a dash (-) or a forward slash (/), followed
by the name of the option. Option names cannot be abbreviated. Some options take an argument,
specified after a colon (:). No spaces or tabs are allowed within an option specification. Use one or
more spaces or tabs to separate option specifications on the command line.

Option names and their keyword or filename arguments are not case sensitive, but identifiers used as
arguments are case sensitive. LIB processes options in the order specified on the command line and
in command files. If an option is repeated with different arguments, the last one to be processed takes
precedence.

The following LIB options apply to all modes of LIB:

• /MACHINE

Specifies the architecture of the library.

• /NOLOGO

Suppresses display of the LIB copyright message and version number and prevents echoing of
command files.

• /VERBOSE

Displays details about the progress of the session. The information is sent to standard output
and can be redirected to a file.

Other options apply only to specific modes of LIB. These options are discussed in the sections
describing each mode.

LIB Options

The default mode for LIB is to build or modify a library of COFF objects. LIB runs in this mode
when you do not specify /EXTRACT (to copy an object to a file) or /DEF (to build an import
library).

To build a library from objects and/or libraries, use the following syntax:

LIB [options...] files...

This command creates a library from one or more input files. The files can be COFF object files,
32-bit OMF object files, and existing COFF libraries. LIB creates one library that contains all objects
in the specified files. If an input file is a 32-bit OMF object file, LIB converts it to COFF before
building the library. LIB cannot accept a 32-bit OMF object that is in a library created by the 16-bit

Using Visual Fortran Tools Page 40 of 64

8/26/97 10:28:39 AM

version of LIB. You must first use the 16-bit LIB to extract the object, then you can use the extracted
object file as input to the 32-bit LIB. The 16-bit version of LIB is not provided with Visual Fortran.

By default, LIB names the output file using the base name of the first object or library file and the
extension .LIB. If a file already exists with the same name, the output file overwrites the existing file.
To preserve an existing library, use the /OUT option to specify a name for the output file.

The following options apply to building and modifying a library:

• /LIST
• /OUT
• /REMOVE

LIB Option /LIST

Displays information about the output library to standard output. The output can be redirected to a
file. You can use /LIST to determine the contents of an existing library without modifying it.

LIB Option /OUT

The option LIB /OUT: filename overrides the default output filename. By default, the output library
has the base name of the first library or object on the command line and the extension .LIB.

LIB Option /REMOVE

The option LIB /REMOVE: object omits the specified object from the output library. LIB creates an
output library by first combining all objects (whether in object files or libraries), then deleting any
objects specified with /REMOVE.

LIB Option /SUBSYSTEM

Tells the operating system how to run a program created by linking to the output library. For more
information, see the description of the LINK /SUBSYSTEM option in Compiler and Linker Options.

You can use LIB to perform the following library-management tasks:

• Add objects to a library

Specify the filename for the existing library and the filenames for the new objects.

• Combine libraries

Specify the library filenames. You can add objects and combine libraries in a single LIB
command.

• Replace a library member with a new object

Specify the library containing the member object to be replaced and the filename for the new
object (or the library that contains it). When an object that has the same name exists in more
than one input file, LIB puts the last object specified in the LIB command into the output

Using Visual Fortran Tools Page 41 of 64

8/26/97 10:28:39 AM

library. When you replace a library member, be sure to specify the new object or library after
the library that contains the old object.

• Delete a member from a library

Use the /REMOVE option. LIB processes any specifications of /REMOVE after combining all
input objects, regardless of command-line order.

Note: You cannot both delete a member and extract it to a file in the same step. You must first
extract the member object using /EXTRACT, then run LIB again using /REMOVE. This behavior
differs from that of the 16-bit LIB (for OMF libraries) provided in some Microsoft products.

Extracting a Library Member

You can use LIB to create an object (.OBJ) file that contains a copy of a member of an existing
library. To extract a copy of a member, use the following syntax:

LIB library /EXTRACT:member /OUT:objectfile

This command creates an .OBJ file called objectfile that contains a copy of a member of a library.
The member name is case sensitive. You can extract only one member in a single command. The
/OUT option is required; there is no default output name. If a file called objectfile already exists in
the specified directory (or current directory, if no directory is specified with objectfile), the extracted
objectfile overwrites the existing file.

Import Libraries and Exports Files

You can use LIB with the /DEF option to create an import library and an exports file. LINK uses the
exports file to build a program that contains exports (usually a DLL), and it uses the import library to
resolve references to those exports in other programs.

In most situations, you do not need to use LIB to create your import library. When you link a
program (either an executable file or a DLL) that contains exports, LINK automatically creates an
import library that describes the exports. Later, when you link a program that references those
exports, you specify the import library.

However, when a DLL exports to a program that it also imports from, whether directly or indirectly,
you must use LIB to create one of the import libraries. When LIB creates an import library, it also
creates an exports file. You must use the exports file when linking one of the DLLs.

For more information, see:

• Building an Import Library and Exports File
• Using an Import Library and Exports File

Building an Import Library and Exports File

To build an import library and exports file, use the following syntax:

LIB /DEF[:deffile] [options] [objfiles] [libraries]

Using Visual Fortran Tools Page 42 of 64

8/26/97 10:28:39 AM

When /DEF is specified, LIB creates the output files from export specifications that are passed in the
LIB command. There are three methods for specifying exports, listed in recommended order of use:

• cDEC$ ATTRIBUTES DLLEXPORT in one of the objfiles or libraries
• A specification of /EXPORT:name on the LIB command line
• A definition in an EXPORTS statement in a deffile

These are the same methods you use to specify exports when linking an exporting program. A
program can use more than one method. You can specify parts of the LIB command (such as
multiple objfiles or /EXPORT specifications) in a command file in the LIB command, just as you can
in a LINK command.

The following options apply to building an import library and exports file:

• /DEBUGTYPE
• /OUT
• /EXPORT
• /INCLUDE

LIB Import-Export Option /DEBUGTYPE

The option /DEBUGTYPE:{CV|COFF|BOTH} sets the format of debugging information. Specify
CV for new-style Microsoft Symbolic Debugging Information, required by Visual C++ and Visual
Fortran. Specify COFF for Common Object File Format (COFF) debugging information. Specify
BOTH for both COFF debugging information and old-style Microsoft debugging information.

LIB Import-Export Option /OUT

The option /OUT:import overrides the default output filename for the import library being created.
When /OUT is not specified, the default name is the base name of the first object file or library in the
LIB command and the extension .LIB. The exports file is given the same base name as the import
library and the extension .EXP.

LIB Import-Export Option /EXPORT

The option /EXPORT:entryname[=internalname] [,@ordinal[,NONAME]] [,DATA] exports a
function from your program to allow other programs to call the function. You can also export data.
Exports are usually defined in a DLL.

The entryname is the name of the function or data item as it is to be used by the calling program.
You can optionally specify the internalname as the function known in the defining program; by
default, internalname is the same as entryname. The ordinal specifies an index into the exports table
in the range 1 - 65535; if you do not specify ordinal, LIB assigns one. The NONAME keyword
exports the function only as an ordinal, without an entryname.

LIB Import-Export Option /INCLUDE

The option /INCLUDE:symbol adds the specified symbol to the symbol table. This is useful for
forcing the use of a library object that otherwise would not be included.

Using Visual Fortran Tools Page 43 of 64

8/26/97 10:28:39 AM

Using an Import Library and Exports File

When a program (either an executable file or a DLL) exports to another program that it also imports
from, or if more than two programs both export to and import from each other, the commands to link
these programs must accommodate the circular exports.

In a situation without circular exports, when you link a program that uses exports from another
program, you must specify the import library for the exporting program. The import library for the
exporting program is created when you link that exporting program. This requires that you link the
exporting program before the importing program. For example, if TWO.DLL imports from
ONE.DLL, you must first link ONE.DLL and get the import library ONE.LIB. You then specify
ONE.LIB when you link TWO.DLL. When the linker creates TWO.DLL, it also creates its import
library, TWO.LIB. You use TWO.LIB when linking programs that import from TWO.DLL.

However, in a circular export situation, it is not possible to link all of the interdependent programs
using import libraries from the other programs. In the example discussed earlier, if TWO.DLL also
exports to ONE.DLL, the import library for TWO.DLL won’t exist yet when ONE.DLL is linked.
When circular exports exist, you must use LIB to create an import library and exports file for one of
the programs.

To begin, choose one of the programs on which to run LIB. In the LIB command, list all objects and
libraries for the program and specify the /DEF option. If the program uses a .DEF file or /EXPORT
specifications, specify these as well.

After you create the import library (.LIB) and the export file (.EXP) for the program, you then use the
import library when linking the other program or programs. LINK creates an import library for each
exporting program it builds. For example, if you ran LIB on the objects and exports for ONE.DLL,
you created ONE.LIB and ONE.EXP. You can now use ONE.LIB when linking TWO.DLL; this step
also creates the import library TWO.LIB.

Finally, link the program you began with. In the LINK command, specify the objects and libraries for
the program, the .EXP file that LIB created for the program, and the import library or libraries for the
exports used by the program. In the continuing example, the LINK command for ONE.DLL contains
ONE.EXP and TWO.LIB, as well as the objects and libraries that go into ONE.DLL. Do not specify
the .DEF file and /EXPORT specifications in the LINK command; these are not needed because the
exports definitions are contained in the .EXP file. When you link using an .EXP file, LINK does not
create an import library because it assumes that one was created when the .EXP file was created.

Editing files with EDITBIN
You can specify execution characteristics of a program or library by selecting options in Microsoft
Developer Studio. For example, you might need to specify the base address at which a program is
loaded by the operating system. If you work from the command line, you can use the Microsoft
Binary File Editor (EDITBIN) to set these types of controls.

This section describes the Microsoft COFF Binary File Editor (EDITBIN.EXE). EDITBIN modifies
32-bit Common Object File Format (COFF) binary files. You can use EDITBIN to modify object
files, executable files, and dynamic-link libraries (DLLs).

Using Visual Fortran Tools Page 44 of 64

8/26/97 10:28:39 AM

EDITBIN converts the format of an Object Module Format (OMF) input file to COFF before making
other changes to the file. You can use EDITBIN to convert the format of a file to COFF by running
EDITBIN with no options.

The following topics are covered in this section:

• EDITBIN Command Line
• EDITBIN Options

EDITBIN Command Line

To run EDITBIN, use the following syntax:

EDITBIN [options] files...

Specify one or more files for the objects or images to be changed, and one or more options for
changing the files.

When you type the command EDITBIN without any other command-line input, EDITBIN displays a
usage statement that summarizes its options.

EDITBIN Options

An option consists of an option specifier, which is either a dash (-) or a forward slash (/), followed
by the name of the option. Option names cannot be abbreviated. Some options take arguments,
specified after a colon (:). No spaces or tabs are allowed within an option specification. Use one or
more spaces or tabs to separate option specifications on the command line. Option names and their
keyword or filename arguments are not case sensitive.

This section discusses the following EDITBIN options:

• /BIND
• /HEAP
• /NOLOGO
• /REBASE
• /RELEASE
• /STACK

EDITBIN Option /BIND

The option /BIND[:PATH=path] sets the addresses of the entry points in the import address table for
an executable file or DLL. Use this option to reduce load time of a program.

Specify the program's executable file and DLLs in the files argument on the EDITBIN command
line. The optional path argument to the /BIND option specifies the location of the DLLs used by the
specified files. Separate multiple directories with semicolons (;). If path is not specified, EDITBIN
searches the directories specified in the PATH environment variable. If path is specified, EDITBIN
ignores the PATH variable.

By default, the Windows program loader sets the addresses of entry points when it loads a program.
The amount of time this takes varies depending on the number of DLLs and the number of entry

Using Visual Fortran Tools Page 45 of 64

8/26/97 10:28:39 AM

points referenced in the program.

If a program has been modified with the /BIND option, and if the base addresses for the executable
file and its DLLs do not conflict with DLLs that are already loaded, the operating system does not
need to set these addresses. In a situation where the files are incorrectly based, the operating system
will relocate the program’s DLLs and recalculate the entry-point addresses; this adds to the program’s
load time.

EDITBIN Option /HEAP

The option /HEAP:reserve[,commit] sets the size of the heap in bytes. The reserve argument
specifies the total heap allocation in virtual memory. The default heap size is 1MB. The linker
rounds up the specified value to the nearest 4 bytes.

The optional commit argument is subject to interpretation by the operating system. In Windows 95
and Windows NT, it specifies the amount of physical memory to allocate at a time. Committed
virtual memory causes space to be reserved in the paging file. A higher commit value saves time
when the application needs more heap space but increases the memory requirements and possibly
startup time.

Specify the reserve and commit values in decimal or C-language notation.

EDITBIN Option /NOLOGO

This option suppresses display of the EDITBIN copyright message and version number.

EDITBIN Option /REBASE

The option /REBASE[:modifiers] sets the base addresses for the specified files. EDITBIN assigns
new base addresses in a contiguous address space according to the size of each file rounded up to the
nearest 64K.

Specify the program’s executable files and DLLs in the files argument on the EDITBIN command
line in the order in which they are to be based. You can optionally specify one or more modifiers,
each separated by a comma (,):

Modifier Action
BASE=address Provides a beginning address for reassigning base addresses to the files. Specify

address in decimal or C-language notation. If BASE is not specified, the default
starting base address is 0x400000. If DOWN is used, BASE must be specified, and
address sets the end of the range of base addresses.

BASEFILE Creates a file named COFFBASE.TXT, which is a text file in the format expected
by LINK’s /BASE option.

DOWN Tells EDITBIN to reassign base addresses downward from an ending address. The
files are reassigned in the order specified, with the first file located in the highest
possible address below the end of the address range. BASE must be used with
DOWN to ensure sufficient address space for basing the files. To determine the
address space needed by the specified files, run EDITBIN with the /REBASE option

Using Visual Fortran Tools Page 46 of 64

8/26/97 10:28:39 AM

on the files and add 64K to the displayed total size.

EDITBIN Option /RELEASE

This option sets the checksum in the header of an executable file. The operating system requires the
checksum for certain files such as device drivers. It is recommended that you set the checksum for
release versions of your programs to ensure compatibility with future operating systems.

EDITBIN Option /STACK

The option /STACK:reserve[,commit] sets the size of the stack in bytes and takes arguments in
decimal or C-language notation. The /STACK option applies only to an executable file.

The reserve argument specifies the total stack allocation in virtual memory. EDITBIN rounds up the
specified value to the nearest 4 bytes. The optional commit argument is subject to interpretation by
the operating system. In Windows NT, commit specifies the amount of physical memory to allocate
at a time. Committed virtual memory causes space to be reserved in the paging file. A higher commit
value saves time when the application needs more stack space but increases the memory
requirements and possibly startup time.

Examining Files with DUMPBIN
There are times when you must examine or change OBJ, EXE, and DLL files. In Microsoft
Developer Studio, you can open any file as a Binary rather than as an ASCII text file and work with
both hexadecimal and ASCII versions of the contents. From the command line, you can use the
Microsoft Binary File Dumper (DUMPBIN) to edit these types of files.

This section describes the Microsoft COFF Binary File Dumper (DUMPBIN.EXE). DUMPBIN
displays information about 32-bit Common Object File Format (COFF) binary files. You can use
DUMPBIN to examine COFF object files, standard libraries of COFF objects, executable files, and
dynamic-link libraries (DLLs).

The following topics are covered in this section:

• DUMPBIN Command Line
• DUMPBIN Options

DUMPBIN Command Line

The syntax for DUMPBIN is:

DUMPBIN [options] files...

Specify one or more binary files, along with any options required to control the information.
DUMPBIN displays the information to standard output. You can either redirect it to a file or use the
/OUT option to specify a filename for the output.

When you run DUMPBIN on a file without specifying an option, DUMPBIN displays the
/SUMMARY output.

Using Visual Fortran Tools Page 47 of 64

8/26/97 10:28:39 AM

When you type the command dumpbin without any other command-line input, DUMPBIN displays a
usage statement that summarizes its options.

DUMPBIN Options

An option consists of an option specifier, which is either a dash (-) or a forward slash (/), followed by
the name of the option. Option names cannot be abbreviated. Some options take arguments, specified
after a colon (:). No spaces or tabs are allowed within an option specification. Use one or more
spaces or tabs to separate option specifications on the command line. Option names and their
keyword or filename arguments are not case sensitive. Most options apply to all binary files; a few
apply only to certain types of files.

This section discusses the following DUMPBIN options:

• /ALL
• /ARCHIVEMEMBERS
• /DISASM
• /EXPORTS
• /FPO
• /HEADERS
• /IMPORTS
• /LINENUMBERS
• /LINKERMEMBER
• /OUT:filename
• /RAWDATA
• /RELOCATIONS
• /SUMMARY
• /SYMBOLS

DUMPBIN Option /ALL

Displays all available information except code disassembly. Use the /DISASM option to display
disassembly. You can use /RAWDATA:NONE with the /ALL option to omit the raw binary details
of the file.

DUMPBIN Option /ARCHIVEMEMBERS

Displays minimal information about member objects in a library.

DUMPBIN Option /DISASM

Displays disassembly of code sections, using symbols if present in the file.

DUMPBIN Option /EXPORTS

Displays all definitions exported from an executable file or DLL.

Using Visual Fortran Tools Page 48 of 64

8/26/97 10:28:39 AM

DUMPBIN Option /FPO

Displays Frame Pointer Optimization (FPO) records.

DUMPBIN Option /HEADERS

Displays coff header information.

DUMPBIN Option /IMPORTS

Displays all definitions imported to an executable file or DLL.

DUMPBIN Option /LINENUMBERS

Displays COFF line numbers. Line numbers exist in an object file if it was compiled with Program
Database (/Zi) or Line Numbers Only (/Zd). An executable file or DLL contains COFF line numbers
if it was linked with Generate Debug Info (/DEBUG) and COFF Format (/DEBUGTYPE:COFF).

DUMPBIN Option /LINKERMEMBER

The option /LINKERMEMBER[:{1|2}] displays public symbols defined in a library.

Specify the 1 argument to display symbols in object order, along with their offsets. Specify the 2
argument to display offsets and index numbers of objects, then list the symbols in alphabetical order
along with the object index for each. To get both outputs, specify /LINKERMEMBER without the
number argument.

DUMPBIN Option /OUT

The option /OUT:filename specifies a filename for the output. By default, DUMPBIN displays the
information to standard output.

DUMPBIN Option /RAWDATA

The option /RAWDATA[:{ BYTES | SHORTS | LONGS | NONE }[, number]] displays the raw
contents of each section in the file. The arguments control the format of the display, as follows:

Argument Result
BYTES The default. Contents are displayed in hexadecimal bytes, and also as ASCII if they have

a printed representation.
SHORTS Contents are displayed in hexadecimal words.
LONGS Contents are displayed in hexadecimal longwords.
NONE Raw data is suppressed. This is useful to control the output of the /ALL option.
number Displayed lines are set to a width that holds number values per line.

DUMPBIN Option /RELOCATIONS

Using Visual Fortran Tools Page 49 of 64

8/26/97 10:28:39 AM

Displays any relocations in the object or image.

DUMPBIN Option /SUMMARY

Displays minimal information about sections, including total size. This option is the default if no
other option is specified.

DUMPBIN Option /SYMBOLS

Displays the COFF symbol table. Symbol tables exist in all object files. A COFF symbol table
appears in an image file only if it is linked with the Generate Debug Info and COFF Format options
under Debug Info on the Debug category for the linker (or the /DEBUG and /DEBUGTYPE:COFF
options on the command line).

Editing Format Descriptors with the Format Editor
The Format Editor is an application for Windows® that shows you what data formatted to match
your edit descriptors will look like, and lets you edit either the discriptor list or the data. You can
interactively create and edit Fortran 90 FORMAT statements and embedded formatting directives.

You can run the Format Editor either from the Edit menu in Microsoft Developer Studio or from the
command line. The Format Editor program is located in the ...\DevStudio\SharedIDE\Bin
directory, and is called FRMTEDIT.EXE. To use it from the command line, you specify the source
code file name, line number and column position in the argument list, and the Format Editor operates
on the formatting at the indicated location. For example:

FRMTEDIT test.f90 5 18

If the line specified by the second parameter is empty, a new format statement is created with the
words label FORMAT.

To use the Format Editor on a multi-line format statement, the argument list must specify the first
line of the format statement. In-line comments in a multi-line Format statement are lost when the
Format Editor writes the updated format statement and generates new continuation marks. Similarly,
the part of a formatted I/O statement that follows the formatting directives is lost when the Format
Editor writes the updated directive string back to the file.

When you are finished editing the format statement, the Format Editor rewrites the source file with
code for the format you have developed. If the file has the extension .F90, the revised code is written
with Fortran 90 free-form syntax rules; otherwise, it is written with Fortran 90 fixed-form syntax
rules.

The Format Editor is installed on the Edit menu by the Visual Fortran Setup utility. If you have
removed it for any reason, and need to reinstall it, you can do so by choosing Customize from the
Tools menu. The argument list, which passes the current file name, line number and column position
to the Format Editor, is $File $Line $Column. For more information about adding programs to the
Tools menu, select the Help button in the Customize dialog.

Using Visual Fortran Tools Page 50 of 64

8/26/97 10:28:39 AM

Starting the Format Editor from Microsoft Developer Studio

The Format Editor presents the format code and a sample of the resulting data layout in a window
that works like a dialog box. You can edit either the source code or the data layout, and the Format
Editor changes the other to match.

To open the Format Editor:

1. Load a Fortan source file that contains a FORMAT statement or an I/O edit descriptor.
2. Place the cursor on the first line of the FORMAT statement or on the line containing the edit

descriptor.
3. From the Edit menu, choose Format Editor. The Format Editor dialog box opens.

The Format Editor dialog box consists of the following text boxes and buttons:

• The edit descriptors in the upper-left text box
• The sample data display in the lower-left text box
• The New Field, Remove Field, Change Value, OK, Cancel, and Help buttons along the

bottom.

When you open the Format editor in a line with an edit descriptor, the editor attempts to parse the
first opening quote that precedes the cursor position. When you open the editor in a line containing a
FORMAT statement, the editor attempts to parse the edit descriptors in the statement. If the editor is
successful, it displays the edit descriptors in the upper-left box and a sample data display in the lower
text box. If the editor cannot parse the descriptor string or FORMAT statement, you will get a parse
error message.

To insert new I/O edit descriptors into existing formatted I/O statements or FORMAT
statements in Microsoft Developer Studio:

1. Place the cursor in the existing descriptor or FORMAT statement.
2. From the Edit menu, choose Format Editor.
3. Choose New Field from the Format Editor dialog box.
4. Choose the descriptor type (Character, Integer, and so on) and choose whether to insert the

descriptor before or after the current descriptor.
5. A default value is used for the descriptor you choose (for example, I5). To change the

descriptor value, select the value and type in the new value. (For example, select 5 from I5 and
type 8 to get an I8 format.)

To insert a new Format statement:

1. Place the cursor on a blank line.
2. From the Edit menu, choose Format Editor.

The Format Editor inserts the words label FORMAT into the file at the cursor. You then must use the
text editor in Microsoft Developer Studio or another text editor to add the edit descriptors.

For a discussion of the features of the Format Editor in Microsoft Developer Studio, choose Format
Editor from the Edit menu, and click on Help in the Format Editor dialog box.

Using Visual Fortran Tools Page 51 of 64

8/26/97 10:28:39 AM

Profiling Code from the Command Line
The profiler is an analysis tool you can use to examine the run-time behavior of your programs. By
profiling, you can find out which sections of your code are working efficiently and which need to be
tuned. The profiler can also show areas of code that are not being executed.

Because profiling is a tuning process, you should use the profiler to make your programs run better,
not to find bugs. Once your program is fairly stable, you should start profiling to find out where to
optimize your code. Use the profiler to determine whether an algorithm is effective, a function is
being called frequently (if at all), or if a piece of code is being covered by software testing
procedures.

In Microsoft Developer Studio, you can use the Profiler to generate reports that characterize how
your program executes. If you work from the command line, you can create a batch command file to
run PREP, PROFILE and PLIST, the programs that generate execution profile reports.

For information on using the Profiler from Microsoft Developer Studio and timing your application,
see Analyze Program Performance.

This section describes how to use the components of the profiler from the command line. The
following topics are covered:

• Profiler Batch Processing
• Profiler Batch Files
• Profiler Command-Line Options
• Exporting Data From the Profiler

Profiler Batch Processing

Profiling requires three separate programs: PREP, PROFILE, and PLIST. Microsoft Developer
Studio executes all three of these programs for you automatically. To execute them efficiently from
the command line, and to customize the output format or specify function and line count profiling,
you must write batch files to invoke PREP, PROFILE, and PLIST. You can redirect the output of the
batch file to a designated file by using the redirection character (>).

A typical profiler batch file might look like this:

PREP /OM /FT /EXC nafxcwd.lib %1
if errorlevel == 1 goto done
PROFILE %1 %2 %3 %4 %5 %6 %7 %8 %9
if errorlevel == 1 goto done
PREP /M %1
if errorlevel == 1 goto done
PLIST /SC %1 >%1.lst
 :done

Note that the PREP program is called twice - once before the actual profiling and again afterward.
The command-line arguments govern PREP's behavior. Intermediate files with extensions .PBI,
.PBO, and .PBT are used to transfer information between profiling steps. The first call to PREP
generates a .PBI file which is passed to PROFILER. PROFILER generates a .PBO file which is
passed in the second call to PREP. The second call to PREP generates a .PBT file which is passed to

Using Visual Fortran Tools Page 52 of 64

8/26/97 10:28:39 AM

PLIST. The profiler data flow is shown in the following figure:

Profiler Data Flow

If the preceding batch file was named FTIME.BAT, and you wanted to profile the program TEST
from the command prompt, you would type:

 FTIME C:\Program Files\DF\MYDIR\TEST.EXE

Profiler Batch Files

Like the linker, all three profiler programs accept response files. The command line:

 PREP /OM /FT /EXC nafxcwd.lib %1

can be replaced by the line:

 PREP @opts.rsp %1

Using Visual Fortran Tools Page 53 of 64

8/26/97 10:28:40 AM

if you create a file OPTS.RSP that contains this text:

 /OM /FT /EXC nafxcwd.lib # this is a comment

The # character in a response file defines a comment that runs through the end of the line.

Five standard batch files ship with the profiler:

Filename Description
FTIME.BAT Function timing
FCOUNT.BAT Function counting
FCOVER.BAT Function coverage
LCOUNT.BAT Line counting
LCOVER.BAT Line coverage

These batch files contain only the minimum parameters for the initial call to PREP. Use them as
prototypes for your own batch files, which should contain selection parameters. If you ran an
unmodified LCOVER batch file for a complex Fortran 90 application with a large number of
functions, subroutines and modules, the output report could be thousands of lines long.

Profiler Command-Line Options

The next three sections describe the command-line options for the three components of the profiler:

• PREP
• PROFILE
• PLIST

PREP

The PREP program runs twice during a normal profiling operation. In Phase I, it reads an .EXE file
and then creates .PBI and .PBT files. In Phase II, it reads .PBT and .PBO files and then writes a new
.PBT file for PLIST. An 'X' in the following Options table indicates that a PREP command-line
option applies to a particular phase.

The syntax for PREP is:

PREP [options] [programname1] [programname2...programname8]

PREP reads the command line from left to right, so the rightmost options override contradictory
options to the left. None of the options are case sensitive. You must prefix options with a forward
slash (/) or a dash (-), and options must be separated by spaces.

Parameter Description

options
Control the kind of profiling, the inclusion and exclusion of code to be profiled,
whether to merge profiles, and other profiling features. See the Options table.

programname1 Filename of primary program to profile (.DBG, .EXE, or .DLL). PROFILE adds the
.EXE extension if no extension is given. This parameter must be specified in the
first call to PREP and not the second call.

Using Visual Fortran Tools Page 54 of 64

8/26/97 10:28:40 AM

programname2

...
programname8

Additional programs to profile. These parameters can be specified for the first call to
PREP only.

Options

Phase
Option I II Description

/EXC X Excludes a specified module from the profile (See the Remarks section).
/EXCALL X Excludes all modules from the profile (See the Remarks section).
/FC X Selects function count profiling.
/FT X Selects function timing profiling. This option causes the profiler to generate count

information as well.
/FV X Selects function coverage profiling.
/INC X Includes in profile (See the Remarks section).
/H[ELP] X X Provides a short summary of PREP options.
/IO
filename

X Merges an existing .PBO file (the file generated by PROFILER to be passed in the
second call to PREP). Up to eight .PBO files can be merged at a time. The default
extension is .PBO.

/IT
filename

X Merges an existing .PBT file (the file generated by the second call to PREP to be
passed to PLIST). Up to eight .PBT files can be merged at a time. You cannot
merge .PBT files from different profiling methods. The default extension is .PBT.

/LC X Selects line count profiling.
/LV X Selects line coverage profiling.
/M
filename

X Substitutes for /IT, /IO, and /OT options.

/NOLOGO X X Suppresses the PREP copyright message.
/O I
filename

X Creates a .PBI file (the file generated by the first call to PREP). The default
extension is .PBI. If /OI is not specified, the output .PBI file is
programname1.PBI.

/OM X Creates a self-profiling file with _XE or _LL extension for function timing,
function counting, and function coverage. Without this option, the executable code
is stored in the .PBI file. This option speeds up profiling.

/OT
filename

X X Specifies the output .PBT file. The default extension is .PBT. If /OT is not
specified, the output .PBT file is programname1.PBT.

/SF
function

X Starts profiling with function. The function name must correspond to an entry in
the .MAP file.

/? X X Provides a short summary of PREP options.

Environment Variable

The PREP environment variable specifies the default PREP command-line options. If a value for the
PREP environment variable is not specified, the default options for PREP are:

 /FT /OI filename /OT filename

Using Visual Fortran Tools Page 55 of 64

8/26/97 10:28:40 AM

where filename is set to the programname1 parameter value.

Remarks

The /INC and /EXC options specify individual .LIB, .OBJ, .FOR and .F90 files. For line counting
and line coverage, you can specify line numbers with source files as in:

 /EXCALL /INC TEST.F90(3-41,50-67)

In this example, the /EXCALL option excludes all modules from the profile, and the /INC option
supercedes that to include only lines 3 - 41 and lines 50 - 67 from the source file TEST.F90. Note the
absence of spaces in the source specification.

To specify all source lines in a particular module, specify the .OBJ file like this:

 /EXCALL /INC TEST.OBJ

or by using the source filename with zero line numbers like this:

 /EXCALL /INC TEST.F90(0-0)

The following statement profiles from line 50 to the end of the file:

 /EXCALL /INC TEST.F90(50-0)

PROFILE

PROFILE profiles an application and generates a .PBO file of the results. Use PROFILE after
creating a .PBI file with PREP.

The syntax for PROFILE is:

PROFILE [options] programname [programargs]

PROFILE reads the command line from left to right, so the rightmost options override contradictory
options to the left. None of the options are case sensitive. You must prefix options with a forward
slash (/) or a dash (-), and options must be separated by spaces.

If you do not specify a .PBO filename on the command line, PROFILE uses the base name of the
.PBI file with a .PBO extension. If you do not specify a .PBI or a .PBO file, PROFILE uses the base
name of programname with the .PBI and .PBO extensions.

Parameter Description
options Control .PBI input, .PBO output, error printing, and other profiler features. (See the

Options table).
programname Filename of program to profile. PROFILE adds the .EXE extension if no extension is

given. (See the Remarks section).
programargs Optional command-line arguments for programname. (See the Remarks section).

Using Visual Fortran Tools Page 56 of 64

8/26/97 10:28:40 AM

Options

Option Description
/A Appends any redirected error messages to an existing file. If the /E command-line option

is used without the /A option, the file os overwritten. This option is valid only with the
/E option.

/E filename Sends profiler-generated error messages to filename.
/H[ELP] Provides a short summary of PROFILE options.
/ I filename Specifies a .PBI file to be read. This file is generated by PREP.
/NOLOGO Suppresses the PROFILE copyright message.
/O
filename

Specifies a .PBO file to be generated. Use the PREP utility to merge with other .PBO
files or to create a .PBT file for use with PLIST.

/X Returns the exit code of the program being profiled.
/? Provides a short summary of PROFILE options.

Remarks

You must specify the filename of the program to profile on the PROFILE command line. PROFILE
assumes the .EXE extension, if no extension is given.

You can follow the program name with command-line arguments; these arguments are passed to the
profiled program unchanged.

If you are profiling code in a .DLL file, give the name of an executable file that calls it. For example,
if you want to profile SAMPLE.DLL, which is called by CALLER.EXE, you can type:

 PROFILE CALLER.EXE

assuming that CALLER.PBI has SAMPLE.DLL selected for profiling.

Environment Variable

The PROFILE environment variable specifies the default command-line options for PROFILE. If the
PROFILE environment variable is not specified, there are no defaults.

PLIST

PLIST converts results from the .PBT file generated by the second call to PREP into a formatted text
file.

The syntax for PLIST is:

PLIST [options] inputfile

PLIST reads the command line from left to right, so the rightmost options override contradictory
options to the left. None of the options are case sensitive. You must prefix options with a forward
slash (/) or a dash (-), and options must be separated by spaces.

PLIST results are sent to STDOUT by default. Use the greater-than (>) redirection

Using Visual Fortran Tools Page 57 of 64

8/26/97 10:28:40 AM

PLIST must be run from the directory in which the profiled program was compiled.

Parameter Description
options Control the format and organization of profiler output data. (See the Options table.)
inputfile The .PBT file to be converted by PLIST.

Options

Option Description
/C count Specifies the minimum hit count to appear in the listing.
/D
directory

Specifies an additional directory for PLIST to search for source files. Use multiple /D
command-line options to specify multiple directories. Use this option when PLIST
cannot find a source file.

/F Lists full paths in tab-delimited report.
/H[ELP] Provides a short summary of PLIST options.
/NOLOGO Suppresses the PLIST copyright message.
/PL length Sets page length (in lines) of output. The length must be 0 or 15-255. A length of 0

suppresses page breaks. The default length is 0.
/PW width Sets page width (in characters) of output. The width must be 1-511. The default width is

511.
/SC Sorts output by counts, highest first.
/SL Sorts output in the order that the lines appear in the file. This is the default. This option

is available only when profiling by line.
/SLS Forces line count profile output to be printed in coverage format.
/SN Sorts output in alphabetical order by function name. This option is available only when

profiling by function.
/SNS Displays function timing or function counting information in function coverage format.

Sorts output in alphabetical order by function name.
/ST Sorts output by time, highest first.
/T Tab-separated output. Generates a tab-delimited database from the .PBT file for export

to other applications. All other options, including sort specifications, are ignored when
using this option. For more information, see Exporting Data from the Profiler.

/? Provides a summary of PLIST options.

Environment Variable

The PLIST environment variable specifies the default command-line options for PLIST. If the PLIST
environment variable is not specified, the default options for PLIST depend on the profile type as
shown:

Profile type Sort option Hit count option
Function timing /ST /C 1
Function counting /SC /C 1
Function coverage /SN /C 0
Line counting /SL /C 0
Line coverage /SL /C 0

Using Visual Fortran Tools Page 58 of 64

8/26/97 10:28:40 AM

Exporting Data from the Profiler

In addition to formatted reports, the PLIST report-generation utility can produce a tab-delimited
report of profiler output. The following sections describe the data format of the report, steps for
analyzing statistics in the report, and a Microsoft Excel macro that uses this report format:

• Tab-Delimited Record Format
• Global Information Records
• Local Information Records
• Steps to Analyze Profiler Statistics
• Processing Profiler Output with Microsoft Excel
• Generating the Tab-Delimite Report
• Using the PROFILER.XLM Macro
• Changing the PROFILER.XLM Selection Criteria

The PLIST /T command-line option causes PLIST to dump the contents of a .PBT file into a
tab-delimited format suitable for import into a spreadsheet or database. This format can also be used
by user-written programs.

For example, to create a tab-delimited file called MYPROG.TXT from MYPROG.PBT, enter:

PLIST /T MYPROG > MYPROG.TXT

Note: The ASCII tab-delimited format was designed to be read by other programs; it was not
intended for general reporting.

Tab-Delimited Record Format

Every piece of data stored by the Profiler is available through the tab-delimited report. Because not
all aspects of the database are recorded by every profiling method, unused fields within a record may
be zero. For example, the total time of the program will be zero if the program was profiled for
counts only. Also, all included functions will be listed for function counting and timing profiles,
even if those functions were not executed.

The tab-delimited format is arranged with one record per line and two to eight fields per record. The
following figure shows how a database looks when loaded into Microsoft Excel. The database was
produced using the PLIST /T command-line option.

Using Visual Fortran Tools Page 59 of 64

8/26/97 10:59:30 AM

The first item in each record is a format tag number. These tags range from 0 to 7 and indicate the
kind of data given in the other fields of the record. The fields in each record are described in:

• Global Information Records
• Local Information Records

Tab-delimited reports are generated with global information records first, organized in numerical
order by format tag. The local information records, containing information about specific lines or
functions, are generated last. Local information records are organized by line number.

If the .PBT file contains information from more than one .EXE or .DLL file, the global information
will cover them all. Local information records include the EXE field, which specifies the name of the
executable file that each record pertains to.

Global Information Records

The global information records contain information about the entire executable file. The format tag
numbers for global information records are 0 through 5. The record formats are as follows:

Profiler Banner
0 Version Banner
Field Explanation
0 Format tag number
Version PLIST version number
Banner PLIST banner

Profiling Method
1 Method Description
Field Explanation
1 Format tag number
Method Numeric value that indicates the profiling type (see the following table)
Description ASCII description of the profiling type given by the method field

Using Visual Fortran Tools Page 60 of 64

8/26/97 10:59:30 AM

The profiling types are listed in the following table:

Profiling Types
Method Description
321 Profile: Line counting, sorted by line
324 Profile: Line coverage, sorted by line
521 Profile: Function counting, sorted by function name
522 Profile: Function timing, sorted by function name
524 Profile: Function coverage, sorted by function name

Profiling Time and Depth
2 Total Time Outside Time Call Depth
Field Explanation
2 Format tag number
Total
Time

Total amount of time used by the program being profiled. This field is zero for counting
and coverage profiles

Outside
Time

Amount of time spent before the first profiled function (with function profiling) or line
(with line profiling) was executed. This field is zero for counting and coverage profiles

Call
Depth

Maximum number of nested functions found while profiling. Only profiled functions are
counted. This field is zero for line-level profiling

Hit Counts
3 Total Hits Lines/Funcs Lines/Funcs Hit
Field Explanation
3 Format tag number
Total Hits Total number of times the profiler detected a profiled line or function being

executed
Lines/Funcs Total number of lines or functions marked for profiling
Lines/Funcs
Hit

Number of marked lines or functions executed at least once while profiling

Date/Command Line
4 Date Command Line
Field Explanation
4 Format tag number
Date The date/time the profile was run (ASCII format)
Command Line The PLIST command-line arguments

Starting Function Name
5 Starting Function Name
Field Explanation
5 Format tag number
Starting Function
Name

The decorated name of the starting function identified by the PREP /SF
parameter

Local Information Records

Using Visual Fortran Tools Page 61 of 64

8/26/97 10:28:40 AM

The local information records contain information about specific lines or functions that were
profiled. The format tag numbers for local information records are 6 and 7. A report can have only
one kind of local information record. The record formats are as follows:

Function Information
6 Exe Source Count Time Child Func
Field Explanation
6 Format tag number
Exe ASCII name of the executable file that contains this function.
Source ASCII name of the object module (including the .OBJ extension) that contains this function
Count Number of times this function has been executed
Time Amount of time spent executing this function in milliseconds. This field is zero with

profiling by counting or coverage
Child Amount of time spent executing the function and any child functions it calls. This field is

zero with profiling by counting or coverage
Func ASCII name of the function

Line Information
7 Exe Source Line Count
Field Explanation
7 Format tag number
Exe ASCII name of the executable file that contains this function
Source ASCII name of the source that contains the first line of this function
Line Line number of this line
Count Number of times this line has been executed. With coverage, this field is 1 if the line has

been executed and 0 otherwise

Steps to Analyze Profiler Statistics

The profiler tab-delimited report format can contain a great deal of information. You can process this
data in a spreadsheet, database, or user-written program.

To process the data in the tab-delimited report:

1. Collect the cumulative data from the global information records. These lines begin with the
numbers 0 through 5. Each of these lines appears only once, and always in ascending order.

2. Determine the type of database by finding the value of the "Method" field. This field is the
second field of record type 1.

3. If the value in the "Method" field is greater than 400, the report comes from function profiling.
If it is less than 400, the report comes from line profiling. The type of information in the local
information records given later is directly related to this value.

4. In any one report, the local information records are always of the same type, either line
information or function information.

5. Process data from the local information records. For example, to calculate the percentage of
hits on a given function, divide the value of the "Count" field in record type 6 by the total
number of hits from the "Total Hits" field of record type 3.

6. Remember that there can be only one type of local information record (either line or function
information) in a report.

Using Visual Fortran Tools Page 62 of 64

8/26/97 10:28:40 AM

7. Send the results to a file or STDOUT.

Processing Profiler Output with Microsoft Excel

PROFILER.XLM is an example Microsoft Exceltm macro that processes a tab-delimited profiler
report (generated by PLIST) and creates a graph based on the results. You will find this macro in the
..\vc\bin directory.

The PROFILER.XLM macro is composed of four sub-macros. The first two macros, in columns A
and B, are helper macros that copy and preprocess the data for use by the second pair of macros in
columns C and D. The macro in column C, labeled CreateColumnChart, creates a graph showing the
number of times that each function or line was executed. The final macro, in column D, is
CreateColumnTimeChart; it works like CreateColumnChart, but operates on timing information.

Generating the Tab-Delimited Report

To generate the tab-delimited report, use the PLIST /T option. This can be done after the normal
profile run has been completed; PLIST will read the profile data from the last profiler execution. The
output of PLIST /T should be redirected to a file, preferably with the .XLS extension for easy loading
into Excel (Excel will interpret the tab-delimited file correctly as a text file even with the .XLS
extension).

Using the PROFILER.XLM Macro

To run the macro, follow these steps from within Microsoft Excel:

1. Open PROFILER.XLM by choosing Open from the File menu.
2. Open the tab-delimited report that was created by PLIST by choosing Open from the File

menu.
3. If you have several open worksheets, activate the one containing the profiler data by selecting

it with the mouse or by choosing its title from the Windows menu.
4. Run the macro:

• Press CTRL+C for a chart based on hit counts.
• Press CTRL+T for a chart based on timing.

You cannot get a timing chart if the report contains only counting or coverage information.

The macro typically takes only a few seconds to execute. When it is complete, Microsoft Excel
displays a 3-D bar chart based on the results in the report. You can change the chart type by using the
Gallery menu.

This macro copies the data in the report to another worksheet before processing it. The original
tab-delimited report is left untouched.

Changing the PROFILER.XLM Selection Criteria

The standard PROFILER.XLM macro displays hit counts greater than 0 (for CTRL+C) and times
greater than .01 millisecond (for CTRL+T). If you need to narrow the selections without analyzing the

Using Visual Fortran Tools Page 63 of 64

8/26/97 10:28:40 AM

macro, edit the formulas in cells C10 and D10.

Fortran Tools: FSPLIT and FPR

This section describes the following Fortran command-line tools:

• FSPLIT (includes F90SPLIT)
• FPR

FSPLIT and F90SPLIT

The FSPLIT and F90SPLIT tools split a multi-routine Fortran file into individual files. These tools
are useful if you have a large Fortran program.

Use F90SPLIT when your program uses free-form source or Fortran 90/95 constructs. Use FSPLIT
for FORTRAN 77 code. The FSPLIT and F90SPLIT commands have the same form:

FSPLIT [-e:name] [-extend_source] [-silent] [input-file...]

F90SPLIT [-e:name] [-extend_source] [-silent] [input-file...]

The command options are:

-e:name
Processes only the program unit name. You can specify more than one -e name on
a command line.

-extend_source
Treats the statement field of each source line as ending in column 132, instead of
column 72.

-help, ? Displays information about the FSPLIT command.

-nologo
Suppresses the copyright notice that is displayed when FSPLIT or F90SPLIT is
run.

-silent Suppresses display of the name of each file opened (input and output files).

input-file
A Fortran source file to be split. You can specify more than one file by using a list
of files. If input-file is omitted the FSPLIT or F90SPLIT Utility reads from
standard input.

FSPLIT or F9)SPLIT splits multi-routine Fortran files into separate routine files of the form
filename.for, where filename is the name of the program unit (for example: a function, subroutine,
block data, or program). The name for unnamed block data subprograms has the form
blkdtannn.for, where nnn is a 3-digit code. For unnamed main programs, the name has the form
mainnnn.for.

If there is an error in classifying a program unit, or if filename.for already exists, the program unit is
put in a file named zzznnn.for, where nnn is a 3-digit code.

Normally each subprogram unit is split into a separate file.

Avoid using the -e option for unnamed main programs and block data subprograms since you must
predict the created file name.

If FSPLIT or F90SPLIT cannot find the names specified by the -e option, an error message is written

Using Visual Fortran Tools Page 64 of 64

8/26/97 10:28:40 AM

to standard error device.

The following command example splits the subprogram units readit and doit into separate files:

 FSPLIT -e readit -e doit prog.for

FPR

The FPR tool transforms files formatted according to Fortran’s carriage control conventions into files
formatted according to line printer conventions. The FPR command has the following form:

FPR [-f record-size] [filename]

The FPR command options are:

-f record-size
Specifies a fixed-length record as input. The record-size must be a decimal
integer.

filename Specifies the data file to be transformed.

FPR copies the input filename onto itself, replacing the carriage control characters with characters
that will produce the intended effects when printed using the PRINT command. The first character of
each line determines the vertical spacing as follows:

Character Vertical Space Before Printing
Blank One line
0 Two lines
1 To first line of next page
+ No advance
$ or ASCII NUL One line; no return after printing

FPR interprets the first character of every line of input, even if that character is not a recognizable
control character. Control characters that are not recognized are treated as blanks and result in a
single line advance.

FPR handles stream and fixed-length files. Input to FPR is assumed to be a stream (Stream_LF) file,
unless you specify the -f option.

No diagnostic message is issued when FPR encounters an unrecognized control character.

PView and WinDiff Page 1 of 7

8/21/97 12:28:10 PM

PView and WinDiff
The PView process viewer (PVIEW.EXE) and the WinDiff utility (WINDIFF.EXE) are tools
included with Microsoft Developer Studio. PView lets you examine and modify processes and
threads running on your system. WinDiff graphically compares the contents of two files or two
directories.

If these components have been installed, you can launch PView and WinDiff by double-clicking
their icons in the Visual Fortran program folder. This section describes how to use these tools.

For more information, see:

• Using WinDiff
• Using PView

Using WinDiff
WinDiff graphically compares the contents of files and directories. If WinDiff has been installed, you
can launch WinDiff by double-clicking its icon in the Visual Fortran program folder.

The full WinDiff syntax is:

WINDIFF path1 [path2] [-s [options] savefile]

The parameters for WinDiff are:

path1
Compares files in path1 with files in current directory.

path1 path2
Compares files in path1 with files in path2.

options
Can be any combination of the following options:

• s: Compares files that are the same in both paths.
• l: Compares only files in the first (left-hand) path.
• r: Compares only files in the second (right-hand) path.
• d: Compares two different files in both paths.

savefile
Name of text file to which comparison results are written.

These sections describe WinDiff features:

• Expand/Outline Button
• WinDiff Colors
• WinDiff Menus

Expand/Outline Button

PView and WinDiff Page 2 of 7

8/21/97 12:28:10 PM

When chosen, the Expand button displays the contents of the selected file. The button label then
changes to Outline. When the Outline button is chosen, it displays only the filename(s). Files with
the same name but different contents are displayed in red text. Identical files are displayed in black
text.

WinDiff Colors

File contents are displayed in two background colors:

• Red--Indicates text from first (left-hand) file.
• Yellow--Indicates text from second (right-hand) file.

WinDiff Menus

WinDiff has File, Edit, View, Expand, Options, and Help menus. The items in these menus and their
purposes are listed in the following tables.

File Menu

Menu item Function
Compare Files Displays the File Open dialog box in which you can enter the names of two files

to compare.
Compare
Directories

Displays the Select Directories dialog box in which you can enter the names of
two directories to compare.

Close Closes the current file(s).
Abort Terminates a file-scanning operation. This menu selection is unavailable until a

scanning operation is initiated.
Save File List Displays a dialog box in which you can specify the name of the output file to

which the comparison results are written.
Copy Files Displays a dialog box in which you can specify files to be moved from one

directory to another.
Print Sends the comparison results to a printer.

Edit Menu

Menu item Function
Edit Left File Displays the contents of the first (left-hand) file using the default Notepad editor.
Edit Right File Displays the contents of the second (right-hand) file using the default Notepad

editor.
Edit Composite
File

Displays both files using the default Notepad editor.

Set Editor Displays a dialog box in which you can specify the editor to be used for the above
operations. By default, Notepad is used.

View Menu

Menu item Function
Outline Shows only the list of filenames (equivalent to the Outline button).

PView and WinDiff Page 3 of 7

8/21/97 12:28:10 PM

Expand Shows comparison of the contents of selected files (equivalent to the Expand
button).

Picture Shows a graphical representation of the contents of the two files.
Previous
Change

Goes directly to previous area of the file that was changed (if any).

Next Change Goes directly to next area of the file that was changed (if any).

Expand Menu

Menu item Function
Left File Only Expands only the left-hand file (with changed lines colored appropriately).
Right File Only Expands only the right-hand file (with changed lines colored appropriately).
Both Files Expands both files (with changed lines colored appropriately).
Left Line Numbers Displays line numbers for the first (left-hand) file.
Right Line Numbers Displays line numbers for the second (right-hand) file.
No Line Numbers Turns off line number display.

Options Menu

Menu item Function
Ignore Blanks Blank spaces are ignored in the expanded view so that lines differing only in the

amount of white space are shown as identical.
Show Identical
Files

In outline view, displays files that are identical.

Show Left-Only
Files

In outline view, displays files that appear only in the first (left-hand) path.

Show Right-Only
Files

In outline view, displays files that appear only in the second (right-hand) path.

Show Different
Files

In outline view, displays files that are in both paths, but are different.

Help Menu

Menu item Purpose
About Displays copyright and version information about WinDiff.

Using PView
With the PView process viewer (PVIEW.EXE) you can examine and modify many characteristics of
processes and threads running on your system. This can help you optimize the operation of your
system and your programs. PView can answer questions such as:

• How much memory does the program allocate at various points in its execution, and how
much memory is being paged out?

• Which processes and threads are using the most CPU time?
• How does the program run at different system priorities?
• What happens if a thread or process stops responding to DDE (system dynamic data

exchange), OLE, or pipe I/O?

PView and WinDiff Page 4 of 7

8/21/97 12:28:10 PM

• What percentage of time is spent in calls to Windows APIs (Application Programming
Interface)?

Warning: PView lets you modify the status of processes running on your system. As a result, by
using PView, you can stop processes and potentially halt the entire system. Make sure you save
edited files before running PView.

The following topics are covered in this section:

• Opening PView
• Selecting System Processes
• Process Memory Usage
• Selecting Base Process Priority
• Selecting Threads
• Thread Execution Information
• Thread Priority
• Process Memory Details

Opening PView

To start PView, double-click its icon in the Visual Fortran program folder. PView opens by
displaying the main Process Viewer dialog box. The Process Viewer dialog box consists of several
boxes containing information on active processes and threads, and controls to change their behavior.

The following buttons control PView actions:

Button Function
Exit Closes PView.
Memory
Details

Opens the Memory Details dialog box.

Kill
Process

Removes the highlighted process from the system. This is different from choosing Close
from the system menu, because the process is not informed of the shutdown (with
WM_DESTROY) before it is stopped.

Refresh Updates information in the Process Viewer dialog box and the Memory Details dialog
box.

Connect Views information about the computer specified in the Computer text box. The
Computer text box should contain the network name of the computer you wish to view.
Your ability to connect to a remote system may be affected by security on the target
machine.

See the topics below for information on the Process Viewer boxes that relate to active processes and
threads:

• Process Selection
• Process Memory Used
• Process Priority
• Thread Selection
• Thread Information
• Thread Priority

PView and WinDiff Page 5 of 7

8/21/97 12:28:10 PM

• Memory Details Dialog Box

Process Selection

The Process Selection list box in the Process Viewer dialog box displays information on the
accessible processes running on the system. From this list, you can select a process to use for future
actions. All other information and control areas in PView reflect the process chosen in this box.

Note: Because Windows NT is a secure operating system, you may not be able to view or alter
attributes of some programs running on the system. See your Windows NT User’s Guide for more
information on security.

The fields in the Process Selection box are shown in the following table:

Field Contents
Process Name of the process on this line. Usually an .EXE filename.
CPU
Time

Amount of CPU time this process has used.

Privileged Percentage of the CPU time that was spent executing privileged code (code in the
Windows NT Executive).

User Percentage of the CPU time that was spent executing user code. This time includes time
running protected subsystem code.

Process Memory Used

The Process Memory Used box in the Process Viewer dialog box displays information on the
memory usage of the process selected in the Process Selection box.

Field Contents
Working
Set

The average amount of physical memory used by the process. The longer a process has
been running, the more accurate this value is.

Heap
Usage

The current total heap being used by the process. Heap space is taken by dynamically
allocated data, including memory reserved by calls to the malloc, new, LocalAlloc,
HeapAlloc, VirtualAlloc, and GlobalAlloc Window APIs.

Process Priority

The Priority buttons in the Process Viewer dialog box let you change the base priority of the process
highlighted in the Process Selection box. This priority determines the activity of all threads of the
selected process.

Button Purpose
Very
High

Maximum priority. CPU time is split between this and other Very High priority processes.
Lower priority processes execute only when all Very High priority processes are blocked.

Normal The standard priority group, also known as foreground. Most applications run with normal
priority.

Idle The lowest priority group, also known as background. Processes with this priority execute
only when the system has no higher-priority processes that need CPU time. Screen savers
run at this priority.

PView and WinDiff Page 6 of 7

8/21/97 12:28:10 PM

Thread Selection

The Thread Selection list box in the Process Viewer dialog box displays statistics for threads of the
process selected in the Process Selection box and lets you select a thread for further operations.

Field Contents
Threads The thread ID number. This is the handle returned by CreateThread.
CPU Time The amount of time that this instance of the thread has been running.
%
Privileged

The percentage of the CPU time that was spent executing privileged code (code in the
Windows NT Executive).

% User The percentage of the CPU time that was spent executing user code. This time includes
time running protected subsystem code.

Thread Information

The Thread Information box in the Process Viewer dialog box displays execution information about
the thread selected in the Thread Selection box.

Field Contents
User PC Value The value of the instruction pointer for this thread.
Start Address The address of the entry point of this thread. This information is useful for

debugging.
Context
Switches

Number of times that this thread has received CPU attention.

Dynamic
Priority

The current dynamic thread priority. This number is determined by many factors,
including user activity.

Thread Priority

The Thread Priority box in the Process Viewer dialog box shows you the base priority of the thread
selected in the Thread Selection box. This is not an absolute priority, but is a range of priorities that
can be selected by the operating system for the selected thread.

Field Contents
Highest The highest priority level allowed by the process priority.
Above Normal Slightly elevated priority.
Normal The standard priority level for the given process priority.
Below Normal Reduced priority.
Idle No CPU time will be spent on this thread unless all other threads are blocked.

Memory Details Dialog Box

The Memory Details dialog box gives information on the process selected by the Process Selection
box in the Process Viewer dialog box.

To update the information in this dialog box, return to the Process Viewer dialog box and click the
Refresh button.

PView and WinDiff Page 7 of 7

8/21/97 12:28:10 PM

This dialog box consists of the following buttons:

• OK

Returns to the Process Viewer dialog box.

• Process

The name and process ID of the process selected in the Process Selection box of the Process
Viewer dialog box.

• User Address Space for

Displays the statistics for specific .EXE or .DLL files or Total Image Commit, which displays
statistics for all components of the currently selected process. These statistics are shown in the
following table.

Field Contents
Inaccessible Address space that cannot be accessed. This includes memory reserved by

VirtualAlloc.
Read Only Read-only data and code.
Writeable Total data address space that can be written to.
Writeable (Not
Written)

Data address space that can be written to, but has not been.

Executable Code in selected EXEs and DLLs.

• Virtual Memory Counts

Displays the following statistics on Virtual Memory usage.

Field Contents
Working Set Average amount of virtual memory used by the process. The longer a process ha

been running, the more accurate this value is.
Peak Working
Set

Maximum value attained by the Working Set described above.

Private Pages Number of pages marked as private.
Virtual Size Current size of virtual memory for this process.
Peak Virtual
Size

Maximum size of virtual memory for this process.

Fault Count Number of page faults. Each page fault represents an attempt to access memory a
an address that was not in physical memory.

Paged Number of pages currently in the swap file.
Peak Paged Maximum number of pages currently in the swap file.
Non-Paged Number of pages that have not been moved to the swap file.

Using the IMSL Mathematical and Statistical Libraries Page 1 of 5

8/21/97 12:28:27 PM

Using the IMSL Mathematical and Statistical Libraries

The Professional Edition of Visual Fortran includes the IMSLtm libraries, a collection of nearly 1000
mathematical and statistical functions easily accessible from Microsoft Developer Studio.

The IMSL libraries are installed with the Visual Fortran Professional Edition, as described in Using
Setup to Install Visual Fortran and Related Software (in Getting Started).

When you install IMSL, you should also install the IMSL online documentation, which allow you to
quickly find details on the purpose and use of any IMSL Library routine. You should view the IMSL
readme file and online help provided in the Visual Fortran program folder (Professional Edition
only). You can access the following topics through the IMSL Help file, available in the Visual
Fortran program folder:

• IMSL MATH/LIBRARY Subroutines
• IMSL MATH/LIBRARY Special Functions
• IMSL STAT/LIBRARY Subroutines
• IMSL Fortran 90 MP Subroutines

Click on any of the libraries to see a submenu of items grouped by subject. Within each category (for
example, Linear Systems, Eigensystem Analysis, and so on), click on a routine for more information.

IMSL libraries are included with the Professional Edition of Visual Fortran (not the Standard
Edition).

This section provides information on the following topics:

• Using the Libraries from Visual Fortran
• Library Naming Conventions
• Using IMSL Libraries in a Mixed-Language Environment

Using the Libraries from Visual Fortran
To use the IMSL libraries, you need to:

1. Set the necessary IMSL environment variables for your development environment by
executing the DFVARS.BAT file (installed by default in the directory ...\DF\BIN). This sets the
INCLUDE path and library (linker) search paths.

Within the F90 command-line window in the Visual Fortran program folder, the
DFVARS.BAT file is already executed. Within Developer Studio, the equivalent of
DFVARS.BAT file (as installed by Visual Fortran) is executed. You can view these directory
paths within Developer Studio by:

• In the Tools menu, click Options.
• Click the Directory tab.
• In the drop-down list for Show Directories, select Library files and view the library

paths.
• In the drop-down list for Show Directories, select Include files and view the include file

Using the IMSL Mathematical and Statistical Libraries Page 2 of 5

8/21/97 12:28:27 PM

paths.
• Click OK if you have changed any information.

2. You may need to explicitly pass IMSL libraries to the Linker. In most cases, these are passed
automatically by using cDEC$ OBJCOMMENT LIB source directives. To view the list of
library names to be passed to the linker in Developer Studio:

• If not already open, open your Project Workspace (File menu, Open Workspace).
• In the Project menu, click on Settings.
• Click on the Link tab to view the list of Object/Library modules (General category). The

IMSL libraries are listed in Library Naming Conventions and include the following
library names:

sstatd.lib sstats.lib smathd.lib smaths.lib sf90mp.lib

• Click OK if you have changed any information.

3. Make IMSL routines and their interfaces available to your program:

• When calling MATH and STAT library routines from a Fortran 90 program, you should
use the numerical_libraries module to provide interface blocks and parameter
definitions for the routines. Including the following USE statement in your calling
program will verify the correct usage of the IMSL routines at compile time:

USE numerical_libraries

When calling MATH and STAT library routines from a FORTRAN 77 style program,
you can use the corresponding INCLUDE statement to perform the equivalent of the
prior USE statement:

INCLUDE IMSLF90.FI

For more details, see the IMSL readme file in the Visual Fortran program folder.

When calling MATH and STAT library routines, you do not need to declare the
functions or subroutines separately.

• When also calling Fortran 90 MP library routines, you should instead use the imslf90
module to provide interface blocks and parameter definitions for all the Fortran 90 MP
routines and the MATH and STAT library routines. Including the following USE
statement in your calling program will verify the correct usage of the IMSL routines at
compile time:

USE IMSLF90

For more information about calling the Fortran 90 MP routines, see the IMSL Libraries
online help file.

The free-form Fortran 90 example program below invokes the function AMACH and the subroutine
UMACH from the IMSL Libraries. The AMACH function retrieves real machine constants that

Using the IMSL Mathematical and Statistical Libraries Page 3 of 5

8/21/97 12:28:27 PM

define the computer’s real arithmetic. A value for positive machine infinity is returned (Infinity).
The subprogram UMACH retrieves the output unit number.

! This free-form example demonstrates how to call
! IMSL routines from Visual Fortran.
!
! The module numerical_libraries includes the Math and
! Stat libraries; these contain the type declarations
! and interface statements for the library routines.

 PROGRAM SHOWIMSL

 USE NUMERICAL_LIBRARIES
 INTEGER NOUT
 REAL RINFP

! The AMACH function and UMACH subroutine are
! declared in the numerical_libraries module

 CALL UMACH(2,NOUT)
 RINFP = AMACH(7)
 WRITE(NOUT,*) ’REAL POSITIVE MACHINE INFINITY = ’,RINFP
 END PROGRAM

For information on compiling and linking with Microsoft Developer Studio, see Building Programs
and Libraries in InfoViewer.

Note: IMSL routines are in general not multithread safe. In a multithread environment, you should
take care that no two IMSL routines are active at the same time. To insure this, use multithread
control techniques. For further information, see Creating Multithread Applications.

Library Naming Conventions
The IMSL FORTRAN 77 MATH and STAT Numerical Libraries are provided in separate single-
and double-precision versions. The IMSL libraries use the following library names:

File
Name

Library Description

SMATHS Single-precision MATH library, one of the IMSL FORTRAN 77 Numerical Libraries.
SMATHD Double-precision MATH library, one of the IMSL FORTRAN 77 Numerical Libraries.
SSTATS Single-precision STAT library, one of the IMSL FORTRAN 77 Numerical Libraries.
SSTATD Double-precision STAT library, one of the IMSL FORTRAN 77 Numerical Libraries.

SF90MP
Fortran 90 MP library, a new generation of Fortran 90-based algorithms, optimized for
multiprocessor and other high-performance systems.

The IMSL FORTRAN 77 Numerical Libraries are for applications in general applied mathematics
and for analyzing and presenting statistical data in scientific and business applications.

For command-line window development, excuting the DFVARS.BAT file (see Using the Compiler
and Linker from the Command Line) sets Visual Fortran environment variables as well as IMSL
(Professional Edition) environment variables (see Environment Variables Used with the DF
Command).

Using the IMSL Mathematical and Statistical Libraries Page 4 of 5

8/21/97 12:28:27 PM

For more information on the IMSL libraries, see:
• The IMSL readme file provided in the Visual Fortran program folder.
• The IMSL online help provided in the Visual Fortran program folder.
• Product information about IMSL at the following URL: http://www.vni.com.

Using IMSL Libraries in a Mixed-Language Environment
This section explains how to use the IMSL Libraries in a mixed-language development environment
with Visual Fortran and Microsoft Visual C++®.

Messages that IMSL routines write to standard output or to error output in a mixed-language
application or an application for Windows can be awkward if they are written to the screen. You can
avoid this by calling UMACH from a Fortran routine to remap the output and error units to a file
instead of to the screen. For example, the following free-form program writes the standard output
from VHSTP to the file STD.TXT, and the error message from AMACH to the file ERR.TXT:

 PROGRAM fileout
! This program demonstrates how to use the UMACH routine to
! redirect the standard output and error output from IMSL
! routines to files instead of to the screen. The routines
! AMACH and UMACH are declared in the numerical_libraries module
!
 USE numerical_libraries
 INTEGER STDU, ERRU
 REAL x, frq(10)/3.0,1.0,4.0,1.0,5.0,9.0,2.0,6.0,5.0,3.0/
!
! Redirect IMSL standard output to STD.TXT at unit 8
!
 CALL umach(-2, STDU)
 OPEN (unit=STDU, file=’std.txt’)
 CALL vhstp(10,frq,1,’Histogram Plot’)
 CLOSE(8)
!
! Redirect IMSL error output to ERR.TXT at unit 9
!
 CALL umach(-3, ERRU)
 OPEN (unit=ERRU, file=’err.txt’)
 x = amach(0) ! Illegal parameter error
 CLOSE(9)
 END

The standard output from IMSL routine VHSTP written to STD.TXT is:

1
 Histogram Plot
 Frequency-------------------------
 9 * I *
 8 * I *
 7 * I *
 6 * I I *
 5 * I I I I *
 4 * I I I I I *
 3 * I I I I I I I *
 2 * I I I I I I I I *
 1 * I I I I I I I I I I *

 Class 5 10

Using the IMSL Mathematical and Statistical Libraries Page 5 of 5

8/21/97 12:28:27 PM

The error output from IMSL routine AMACH written to ERR.TXT is:

*** TERMINAL ERROR 5 from AMACH. The argument must be between 1 and 8
*** inclusive. N = 0

Consider the following simple Fortran example that uses the IMSL library:

 USE numerical_libraries
 real rinfp
 rinfp = AMACH(7)
 write(*,*) ’Real positive machine infinity = ’,rinfp
 end

The output is:

 Real positive machine infinity = Infinity

The corresponding C example is:

/* FILE CSAMP0.C */
#include <stdio.h>
#include <stdlib.h>

extern float _stdcall AMACH(long *);

main()
{
 long n;
 float rinfp;

 n = 7;
 rinfp = AMACH(&n);
 printf("Real positive machine infinity = %16E\n", rinfp);

 fflush(stdout);
 _exit(0);
}

This C language example demonstrates the use of:

• The _stdcall modifier in the function prototype needed when calling the IMSL libraries.
• The & address operator passes the address of the variable to the subprogram (IMSL libraries

expect arguments passed by reference).

The C example can be compiled by the cl command to create an object file that can be linked using
the DF command.

For more information on mixed-language programming, see Programming with Mixed Languages.

Appendix A: Compatibility Information Page 1 of 6

9/2/97 3:38:11 PM

Appendix A: Compatibility Information

Visual Fortran uses the same DIGITAL Fortran compiler available on DIGITAL UNIX® and
OpenVMSTM Alpha systems. DIGITAL Visual Fortran supports extensions to the ISO and ANSI
standards, including a number of extensions defined by:

• Microsoft® Fortran PowerStation 4.0
• DIGITAL Fortran for the various DIGITAL Fortran platforms

Many language extensions associated with Microsoft Fortran Powerstation Version 4 have been
added to Visual Fortran; most of these extensions will be added to different releases of DIGITAL
Fortran on Alpha platforms.

The following sections describe Visual Fortran compatibility information:
• Compatibility with Microsoft Fortran Powerstation
• Compatibility with DIGITAL Fortran on Other Platforms

Compatibility with Microsoft Fortran Powerstation

Visual Fortran recognizes the FL32 command and many of the command-line options provided by
the Microsoft Fortran Powerstation Version 4 compiler. For more information on command-line
compatibility, see Microsoft Fortran PowerStation Command-Line Compatibility.

Visual Fortran supports many of the language extensions to the Fortran 90 Standard supported by
Microsoft Fortran Powerstation Version 4. Certain extensions may require the /fpscomp compiler
option (also see Categories of Compiler Options). These extensions include the following:

• .f, .for, .f90 source file types
• # Constants - constants using other than base 10
• C strings - NULL terminated strings
• MBCS characters in comments
• MBCS characters in string literals
• Conditional compilation and metacommand (directive) expressions ($DEFINE,

$UNDEFINE, $IF, $ELSEIF, $ELSE, $ENDIF)
• !MS$ directive form (see Compiler Directives: table)
• $FREEFORM, $NOFREEFORM, $FIXEDFORM - source file format
• $OBJCOMMENT - place library-search record in object file
• $INTEGER, $REAL - selects size
• $FIXEDFORMLINESIZE - line length for fixed form source
• $STRICT, $NOSTRICT - F90 conformance
• $ATTRIBUTES, identifier attributes (C, STDCALL, REFERENCE, VALUE, DLLIMPORT,

DLLEXPORT, EXTERN, ALIAS, VARYING)
• $PACK - structure packing
• Kind numbers match bytes - kind parameters
• AUTOMATIC attribute - automatic storage class
• Integer Pointers (Cray pointers)
• VAX Structures == F90 sequence derived types

Appendix A: Compatibility Information Page 2 of 6

9/2/97 3:38:11 PM

• Mixing logicals and numerics - logicals used with arithmetic operators and variables
• Argument matching for procedure calls
• Mixing integer kinds to intrinsics
• Byte data type == INTEGER*1
• $ATTRIBUTES [] Form
• $ATTRIBUTES ALIA S - external name for a subprogram
• $ATTRIBUTES C, STDCALL - calling and naming conventions
• $ATTRIBUTES VALUE, REFERENCE - argument passing calling conventions
• $ATTRIBUTES DLLIMPORT, DLLEXPORT - import from/export to DLL
• Character and non-character equivalence
• Double complex data type
• .XOR. - exclusive disjunction
• Integer arguments in logical expressions
• OPEN statement specifier options:

• BLOCKSIZE= internal buffer size used in I/O
• CARRIAGECONTROL= controls the output of formatted files
• MODE= controls access to file on networked systems
• TITLE=, IOFOCUS= controls QuickWin child windows
• SHARE= controls simultaneous access to file on networked systems

• Default carriage control
• Implicit open - prompt user for filenames
• Special device names for FILE= in OPEN statements
• FORM=BINARY in INQUIRE/OPEN statements
• Unformatted sequential file form
• Q edit descriptor - number of characters remaining in the input record
• \ descriptor - prevents writing an end-of-record mark
• $ edit descriptor - suppresses the carriage return at the end of a record
• X edit descriptor default - 1
• Ew.dDe and Gw.dDe edit descriptors - similar to Ew.dEe and Gw.dEe
• Variable Format Expressions (VFEs) - integer expression in FORMAT statement
• Expanded missing ,'s in FORMAT statements - optional commas
• Expanded namelist start/end sequences
• All path names: including driver, compiler, and INCLUDE statement MBCS enabled [not

W95]
• UNC pathnames
• Long filenames
• 7200 character statement length
• Free form infinite line length
• $DECLARE and $NODECLARE == IMPLICIT NONE
• Logical truth: 0 = false, non-zero = true
• $ATTRIBUTES EXTERN - variable allocated in another source file
• $ATTRIBUTES VARYING - variable number of arguments
• Alternate PARAMETER syntax - no parenthesis
• $ in identifiers
• INTERFACE TO - subroutine/function prototype, however global scoping is not supported
• Argument passing modifiers - %VAL, %REF
• Argument passing modifiers - %DESCR (treated as %REF)
• CRAY pointer support for procedure names (for COM/OLE support)

Appendix A: Compatibility Information Page 3 of 6

9/2/97 3:38:11 PM

• $ATTRIBUTES ALLOCATABL E - allocatable array
• Mixing subroutines/functions in generic interfaces
• $MESSAGE - output message during compilation
• $LINE == C's #line
• Listing directives - $TITLE, $SUBTITLE
• STATIC attribute-static storage class
• EOF checks for end of file
• LOC equivalent to %LOC
• HFIX converts to short integer
• INT1 converts to one byte integer by truncating
• INT2 converts to two byte integer by truncating
• INT4 converts to four byte integer by truncating
• JFIX same as INT4
• MALLOC allocates a memory block of size bytes and returns an integer pointer to the block
• FREE frees the memory block specified by the integer pointer
• COTAN returns cotangent
• DCOTAN returns double precision cotangent
• IMAG returns the imaginary part of complex number
• IBCHNG reverses value of bit
• ISHA shifts arithmetically left or right
• ISHC performs a circular shift
• ISHL shifts logically left or right

The following known source incompatibilities exist between Microsoft Fortran Powerstation Version
4 and Visual Fortran:

• DATA statement style initialization in attribute style declaration (not supported)
• Debug lines (other than D) (not supported)
• $OPTIMIZE-change optimization options (not supported)
• Integer array can contain format (not supported)
• Listing directives - $PAGE, $PAGESIZE, $LINESIZE, $[NO]LIST, $INCLUDE (not

supported)
• $DEBUG, $NODEBUG - additional runtime checking (not supported)
• Internal files can be any type (not supported)
• Negative I/O unit numbers (not supported)
• Interface blocks using INTERFACE [TO] at the beginning of a source file to provide global

scoping for subsequent program units. (not supported)
Visual Fortran uses standard Fortran 90 semantic rules about interface block placement and
use.

• Tab continuation lines that start with characters other than digits 1 through 9 (not supported)

Compatibility with DIGITAL Fortran on Other Platforms

DIGITAL Visual Fortran supports extensions to the ISO and ANSI standards, including a number of
extensions defined by Microsoft Fortran PowerStation 4.0 (see Compatibility with Microsoft Fortran
Powerstation) and DIGITAL Fortran for the various DIGITAL Fortran platforms (operating
system/architecture pairs).

In addition to DIGITAL Visual Fortran systems, DIGITAL Fortran platforms include:

Appendix A: Compatibility Information Page 4 of 6

9/2/97 3:38:11 PM

• DIGITAL Fortran 90 and DIGITAL Fortran 77 on DIGITAL UNIX (formerly DEC OSF/1®)
Alpha systems

• DIGITAL Fortran 90 and DIGITAL Fortran 77 on OpenVMS Alpha systems
• DIGITAL Fortran 77 on OpenVMS VAXTM systems

Major additions to the FORTRAN 77 standard introduced by the Fortran 90 standard include:
• Array operations
• Improved facilities for numeric computation
• Parameterized intrinsic data types
• User-defined data types
• Facilities for modular data and procedure definitions
• Pointers (Fortran 90 pointers)
• The concept of language evolution

In addition, the Fortran 90 standard includes the following industry-accepted extensions to the
FORTRAN 77 standard:

• Support for recursive subprograms
• IMPLICIT NONE statements
• INCLUDE statement
• NAMELIST-directed I/O
• DO WHILE and ENDDO statements
• Use of exclamation point (!) for end of line comments
• Support for automatic arrays
• Support for the following SELECT CASE - CASE - CASE DEFAULT - END SELECT

statements.
• Support for the EXIT and CYCLE statements and for construct names on DO - END DO

statements

DIGITAL Visual Fortran includes the following features and enhancements also found on other
DIGITAL Fortran platforms:

• Support for linking against static libraries
• Support for linking against dynamically linked libraries (DLL)
• Support for creating code to be put into a dynamically linked library (DLL)
• Support for stack-based storage
• Support for dynamic memory allocation
• Support for reading and writing binary data files in nonnative formats, including IEEE®

(little-endian and big-endian), VAX, IBM® System\360, and CRAY® integer and floating
point formats

• User control over IEEE floating point exception handling, reporting, and resulting values.
• Control for memory boundary alignment of items in COMMON and fields in structures and

warnings for misaligned data
• Directives to control listing page titles and subtitles, object file identification field, COMMON

and record field alignment, and some attributes of COMMON blocks
• Composite data declarations using STRUCTURE, END STRUCTURE, and RECORD

statements, and access to record components through field references
• Explicit specification of storage allocation units for data types such as:

• INTEGER*4
• LOGICAL*4

Appendix A: Compatibility Information Page 5 of 6

9/2/97 3:38:11 PM

• REAL*4
• REAL*8
• COMPLEX*8

• Support for 64-bit signed integers using INTEGER*8 and LOGICAL*8 (on Alpha platforms
only)

• A set of data types:
• BYTE
• LOGICAL*1, LOGICAL*2, LOGICAL*4
• INTEGER*1, INTEGER*2, INTEGER*4
• LOGICAL*8 and INTEGER*8 on Alpha platforms only
• REAL*4, REAL*8
• COMPLEX*8, COMPLEX*16, DOUBLE COMPLEX
• DIGITAL Fortran POINTER statement (CRAY style)

• Data statement style initialization in type declaration statements
• AUTOMATIC and STATIC statements
• Bit constants to initialize LOGICAL, REAL, and INTEGER values and participate in

arithmetic and logical expressions
• Built-in functions %LOC, %REF, and %VAL
• VOLATILE statement
• Bit manipulation functions
• Binary, hexadecimal, and octal constants and Z and O format edit descriptors applicable to all

data types
• I/O unit numbers that can be any nonnegative INTEGER*4 value
• Variable amounts of data can be read from and written to "STREAM" files, which contain no

record delimiters
• ENCODE and DECODE statements
• ACCEPT, TYPE, and REWRITE input/output statements
• DEFINE FILE, UNLOCK, and DELETE statements
• USEROPEN subroutine invocation at file OPEN
• Debug statements in source
• Generation of a source listing file with optional machine code representation of the executable

source
• Variable format expressions in a FORMAT statement
• Optional run-time bounds checking of array subscripts and character substrings
• 31-character identifiers that can include dollar sign ($) and underscore (_)
• Language elements that support the various extended range and extended precision floating

point architectural features:
• 32-bit IEEE S_floating data type, with an 8-bit exponent and 24-bit mantissa and a

precision of typically 7 decimal digits
• 64-bit IEEE T_floating data type, with an 11-bit exponent and 53-bit mantissa and a

precision of typically 15 decimal digits
• Command line control for:

• The size of default INTEGER, REAL, and DOUBLE PRECISION data items
• The levels and types of optimization to be applied to the program
• The directories to search for INCLUDE and module files
• Inclusion or suppression of various compile-time warnings
• Inclusion or suppression of run-time checking for various I/O and computational errors
• Control over whether compilation terminates after a specific number of errors has been

Appendix A: Compatibility Information Page 6 of 6

9/2/97 3:38:11 PM

found
• Choosing whether executing code will be thread-reentrant

• Kind types for all of the hardware-supported data types:
• For 1-, 2-, and 4-byte LOGICAL data: LOGICAL (KIND=1), LOGICAL (KIND=2),

LOGICAL (KIND=4)
• For 1-, 2-, and 4-byte INTEGER data: INTEGER (KIND=1), INTEGER (KIND=2),

INTEGER (KIND=4)
• For 8-byte LOGICAL and INTEGER data on Alpha platforms only: LOGICAL

(KIND=8), INTEGER (KIND=8)
• For 4- and 8-byte REAL data: REAL (KIND=4), REAL (KIND=8)
• For single precision and double precision COMPLEX data: COMPLEX (KIND=4),

COMPLEX (KIND=8)

Appendix B: FORTRAN 77 Syntax Page 1 of 6

8/21/97 12:29:08 PM

Appendix B: FORTRAN 77 Syntax
This section contains the syntax for statements and intrinsics of ANSI FORTRAN 77. All are
recognized by Visual Fortran without the use of special compiler options, except in certain special
instances.

This section discusses the following topics:

• FORTRAN 77 Data Types
• FORTRAN 77 Intrinsic Functions
• FORTRAN 77 Statements

FORTRAN 77 Data Types

The six data types defined by the ANSI FORTRAN 77 specification are:

• INTEGER
• REAL
• DOUBLE PRECISION
• COMPLEX
• LOGICAL
• CHARACTER [*n], where n is between 1 and 32,767

The data type of a variable, symbolic constant, or function can be declared in a specification
statement. If its type is not declared, the compiler determines a data type by the first letter of the
variable, constant, or function name. A type statement can also dimension an array variable.

Default requirements for these data types are listed in the following table.

Type Bytes
INTEGER 4
REAL 4
DOUBLE PRECISION 8
COMPLEX 8
LOGICAL 4
CHARACTER 1
CHARACTER*n n(See note below)

Note: The maximum n is 32,767.

FORTRAN 77 Intrinsic Functions

Function syntax Type of return value
ABS (gen) Same as argument
ACOS (real) Same as argument
AIMAG (cmp8) REAL
AINT (real) Same as argument

Appendix B: FORTRAN 77 Syntax Page 2 of 6

8/21/97 12:29:08 PM

ALOG (real4) REAL
ALOG10 (real4) REAL
AMAX0 (intA, intB [, intC] ..) REAL
AMAX1 (real4A, real4B, [, real4C]...) REAL
AMIN0 (intA, intB [, intC]...) REAL
AMIN1 (real4A, real4B [, real4C]...) REAL
AMOD (value, mod) REAL
ANINT (value) REAL
ASIN (real) Same as argument
ATAN (real) Same as argument
ATAN2 (realA, realB) Same as argument
CABS (cmp) Same as argument; COMPLEX returns REAL
CCOS (cmp8) COMPLEX
CHAR (int) CHARACTER
CLOG (cmp8) COMPLEX
CMPLX (genA [, genB]) COMPLEX
CONJG (cx8value) COMPLEX
COS (gen) Same as argument
COSH (real) Same as argument
CSIN (cmp8) COMPLEX
CSQRT (cx8value) COMPLEX
DABS (r8value) DOUBLE PRECISION
DACOS (dbl) DOUBLE PRECISION
DASIN (dbl) DOUBLE PRECISION
DATAN (dbl) DOUBLE PRECISION
DATAN2 (dblA, dblB) DOUBLE PRECISION
DBLE (value) DOUBLE PRECISION
DCOS (dbl) DOUBLE PRECISION
DCOSH (dbl) DOUBLE PRECISION
DDIM (dblA, dblB) DOUBLE PRECISION
DEXP (dbl) DOUBLE PRECISION
DIM (genA, genB) Same as arguments
DINT (rvalue) DOUBLE PRECISION
DLOG (dbl) DOUBLE PRECISION
DLOG10 (dbl) DOUBLE PRECISION
DMAX1 (dblA, dblB [, dblC]...) DOUBLE PRECISION
DMIN1 (dblA, dblB [dblC]...) DOUBLE PRECISION
DMOD (value, mod) DOUBLE PRECISION
DNINT (dbl) DOUBLE PRECISION
DPROD (real4A, real4B) DOUBLE PRECISION
DREAL (cxvalue) DOUBLE PRECISION
DSIGN (dblA, dblB) DOUBLE PRECISION
DSIN (dbl) DOUBLE PRECISION

Appendix B: FORTRAN 77 Syntax Page 3 of 6

8/21/97 12:29:08 PM

DSINH (dbl) DOUBLE PRECISION
DSQRT (rvalue) DOUBLE PRECISION
DTAN (dbl) DOUBLE PRECISION
DTANH (dbl) DOUBLE PRECISION
EXP (gen) Same as argument
FLOAT (ivalue) REAL
IABS (int) Same as argument
ICHAR (char) INTEGER
IDIM (intA, intB) INTEGER
IDINT (dbl) INTEGER
IDNINT (dbl) INTEGER
IFIX (real4) REAL
INDEX (charA, charB) INTEGER
INT (gen) INTEGER
ISIGN (intA, intB) INTEGER
LEN (char) INTEGER
LGE (charA, charB) LOGICAL
LGT (charA, charB) LOGICAL
LLE (charA, charB) LOGICAL
LLT (charA, charB) LOGICAL
LOG (gen) Same as argument
LOG10 (real) Same as argument
MAX (genA, genB [, genC]...) INTEGER or REAL
MAX0 (intA, intB [, intC]...) INTEGER
MAX1 (realA, realB [, realC]...) INTEGER
MIN (genA, genB [, genC]...) INTEGER or REAL
MIN0 (intA, intB [, intC]...) INTEGER
MIN1 (realA, real [, real]...) INTEGER
MOD (genA, genB) REAL
NINT (real) INTEGER
REAL (gen) REAL
SIGN (genA, genB) INTEGER or REAL
SIN (gen) Same as argument
SINH (real) Same as argument
SNGL(dbl) REAL
SQRT (gen) Same as argument
TAN (real) Same as argument
TANH (real) Same as argument

FORTRAN 77 Statements

ASSIGN label TO variable

BACKSPACE {unitspec |

Appendix B: FORTRAN 77 Syntax Page 4 of 6

8/21/97 12:29:08 PM

([UNIT=]unitspec
[, ERR=errlabel]
[, IOSTAT=iocheck])}

BLOCK DATA [blockdataname]

CALL sub [([actuals])]

CHARACTER [*chars] vname [*length] [(dim)] [, vname [*length] [(dim)]

CLOSE ([UNIT=]unitspec
[, ERR=errlabel]
[, IOSTAT=iocheck]
[, STATUS=status])

COMMON [/[cname] /] nlist,] / [cname] /nlist] ...

COMPLEX vnam [(dim)] [,vname [(dim)]]...

CONTINUE

DATA nlist /clist/ [[,] nlist /clist/]...

DIMENSION array ([lower:]upper [, {[lower:]upper])

DO [label [,]] dovar = start, stop [, inc]

DOUBLE PRECISION vname [(dim)] [,vname [(dim)]]...

ELSE
statementblock

ELSE IF (expression) THEN
statementblock

END

END IF

ENDFILE {unitspec |
([UNIT=] unitspec
[, ERR=errlabel]
[, IOSTAT=iocheck])}

ENTRY ename [([formal [,formal]...])]

EQUIVALENCE (nlist) [, (nlist)]...

EXTERNAL name [,name]...

FORMAT [editlist]

[type] FUNCTION func ([formal] [,formal]...)

Appendix B: FORTRAN 77 Syntax Page 5 of 6

8/21/97 12:29:08 PM

GOTO variable [[,] (labels)]

GOTO (labels) [,] n

GOTO label

IF (expression) label1, label2, label3

IF (expression) statement

IF (expression) THEN
statementblock1
[ELSE IF (expression) THEN
statementblock2] ...
[ELSE
statementblock3]
END IF

IMPLICIT type (letters) [, type (letters)]...

INQUIRE ({[UNIT=]unitspec | FILE=file}
[, ACCESS=access]
[, BLANK=blank] [, DIRECT=direct] [, ERR=errlabel] [, EXIST=exist] [,
FORM=form]
[, FORMATTED=formatted] [, IOSTAT=iocheck]
[, NAME=name] [, NAMED=named]
[, NEXTREC=nextrec] [, NUMBER=num] [, OPENED=opened]
[, RECL=recl] [, SEQUENTIAL=seq] [, UNFORMATTED=unformatted])

INTEGER vname [(dim)] [, vname [(dim)]] ...

INTRINSIC names

LOGICAL vname [(dim)] [, vname [(dim)]]...

OPEN ([UNIT=]unitspec [, ACCESS=access]
[, BLANK=blanks]
[, ERR=errlabel] [, FILE=file]
[, FORM=form] [, IOSTAT=iocheck]
[, RECL=recl] [, STATUS=status])

PARAMETER (name=constexpr [, name=constexpr]...)

PAUSE [prompt]

PRINT { *, | formatspec | } [, iolist]

PROGRAM program-name

READ { formatspec, | ([UNIT=] unitspec [, [FMT=]
formatspec] [, END=endlabel] [, ERR=errlabel]

Appendix B: FORTRAN 77 Syntax Page 6 of 6

8/21/97 12:29:08 PM

[, IOSTAT=iocheck] [, REC=rec])} iolist

REAL vname [(dim)] [, vname [(dim)]] ...

RETURN [ordinal]

REWIND { unitspec |
([UNIT=]unitspec
[, ERR=errlabel]
[, IOSTAT=iocheck])}

SAVE [names]

STOP [message]

SUBROUTINE subr [([formal [, formal]...])]

WRITE ([UNIT=] unitspec
[, [FMT=] formatspec]
[, ERR=errlabel]
[, IOSTAT=iocheck]
[, REC=rec])
iolist

Appendix C: ASCII and Key Code Charts (WNT and W95) Page 1 of 6

8/28/97 3:43:48 PM

Appendix C: ASCII and Key Code Charts (WNT and W95)
This section contains the following character charts:

• ASCII Character Codes
• ANSI Character Codes
• Key Codes

ASCII Character Codes (WNT and W95)
The ASCII character code tables contain the decimal and hexadecimal values of the extended ASCII
(American Standards Committee for Information Interchange) character set. The extended character
set includes the ASCII character set (Chart 1) and 128 other characters for graphics and line drawing
(Chart 2), often called the "IBM® character set".

For charts of the ASCII character codes, see:

• ASCII Character Codes Chart 1
• ASCII Character Codes Chart 2

ASCII Character Codes Chart 1

Appendix C: ASCII and Key Code Charts (WNT and W95) Page 2 of 6

8/28/97 3:43:48 PM

ASCII Character Codes Chart 2 (IBM character set)

Appendix C: ASCII and Key Code Charts (WNT and W95) Page 3 of 6

8/28/97 3:43:48 PM

ANSI Character Codes (WNT and W95)
The ANSI character code chart lists the extended character set of most of the programs used by
Windows. The codes of the ANSI (American National Standards Institute) character set from 32
through 126 are displayable characters from the ASCII character set. The ANSI characters displayed
as solid blocks are undefined characters and may appear differently on output devices.

For a chart of the ANSI character codes, see:

• ANSI Character Codes Chart

ANSI Character Codes Chart

Appendix C: ASCII and Key Code Charts (WNT and W95) Page 4 of 6

8/28/97 3:43:48 PM

Key Codes (WNT and W95)
Some keys, such as function keys, cursor keys, and ALT+KEY combinations, have no ASCII code.
When a key is pressed, a microprocessor within the keyboard generates an "extended scan code" of
two bytes.

The first (low-order) byte contains the ASCII code, if any. The second (high-order) byte has the scan
code--a unique code generated by the keyboard when a key is either pressed or released. Because the
extended scan code is more extensive than the standard ASCII code, programs can use it to identify
keys which do not have an ASCII code.

For charts of the key codes, see:

• Key Codes Chart 1

Appendix C: ASCII and Key Code Charts (WNT and W95) Page 5 of 6

8/28/97 3:43:48 PM

• Key Codes Chart 2

Key Codes Chart 1

Key Codes Chart 2

Appendix C: ASCII and Key Code Charts (WNT and W95) Page 6 of 6

8/28/97 3:43:48 PM

Appendix D: Hexadecimal-Binary-Octal-Decimal Conversions Page 1 of 1

9/2/97 3:39:26 PM

Appendix D: Hexadecimal-Binary-Octal-Decimal Conversions
The following table lists hexadecimal, binary, octal, and decimal conversion:

Hex Number Binary Number Octal Number Decimal Number
0 0000 00 0
1 0001 01 1
2 0010 02 2
3 0011 03 3
4 0100 04 4
5 0101 05 5
6 0110 06 6
7 0111 07 7
8 1000 10 8
9 1001 11 9
A 1010 12 10
B 1011 13 11
C 1100 14 12
D 1101 15 13
E 1110 16 14
F 1111 17 15

Appendix E: Data Representation Page 1 of 11

8/21/97 12:29:53 PM

Appendix E: Data Representation
This appendix discusses the following topics:

• Data representation models
• Data representation

Data Representation Models
Several of the numeric intrinsic functions are defined by a model set for integers (for each intrinsic
kind used) and reals (for each real kind used). The bit functions are defined by a model set for bits
(binary digits). For more information on integer ranges, see Integer Data Type; on real ranges, see
Real Constants.

This section discusses the following topics:

• The model for Integer Data
• The model for Real Data
• The model for Bit Data

Model for Integer Data

In general, the model set for integers is defined as follows:

The following values apply to this model set:

• i is the integer value.
• s is the sign (either +1 or -1).
• q is the number of digits (a positive integer).
• r is the radix (an integer greater than 1).
• wk is a nonnegative number less than r.

The model for INTEGER(KIND=4) (or INTEGER*4) follows:

The following example demonstrates the general integer model for i = -20 using a base (r) of 2:

i = (-1) x (0 x 20 + 0 x 21 + 1 x 22 + 0 x 23 + 1 x 24)

i = (-1) x (4 + 16)

i = -1 x 20

i = -20

Appendix E: Data Representation Page 2 of 11

8/21/97 12:29:53 PM

Model for Real Data

The model set for reals, in general, is defined as one of the following:

The following values apply to this model set:

• x is the real value.
• s is the sign (either +1 or -1).
• b is the base (real radix; an integer greater than 1).
• p is the number of mantissa digits (an integer greater than 1). The number of digits differs

depending on the real format, as follows:

IEEE S_floating 24
DIGITAL VAX F_floating (VMS only) 24
IEEE T_floating 53
DIGITAL VAX D_floating (VMS only) 53 1

DIGITAL VAX G_floating (VMS only) 53

1 The memory format for VAX D_floating format is 56 mantissa digits, but computationally it
is 53 digits. It is considered to have 53 digits by DIGITAL Fortran.

• e is an integer in the range emin to emax inclusive. This range differs depending on the real

format, as follows:

 emin emax

IEEE S_floating -125 128
DIGITAL VAX F_floating (VMS only) -127 127
IEEE T_floating -1021 1024
DIGITAL VAX D_floating (VMS only) -127 127
DIGITAL VAX G_floating (VMS only) -1023 1023

• fk is a nonnegative number less than b (f1 is also nonzero).

For x = 0, its exponent e and digits fk are defined to be zero.

The model set for single-precision real (REAL(KIND=4) or REAL*4) is defined as one of the
following:

Appendix E: Data Representation Page 3 of 11

8/21/97 12:29:53 PM

The following example demonstrates the general real model for x = 20.0 using a base (b) of 2:

x = 1 x 25 x (1 x 2-1 + 0 x 2-2 + 1 x 2-3)

x = 1 x 32 x (.5 + .125)

x = 32 x (.625)

x = 20.0

Model for Bit Data

The model set for bits (binary digits) interprets a nonnegative scalar data object of type integer as a
sequence, as follows:

The following values apply to this model set:

• j is the integer value.
• s is the number of bits.
• wk is a bit value of 0 or 1.

The bits are numbered from right to left beginning with 0.

The following example demonstrates the bit model for j = 1001 (integer 9) using a bit number (s) of
4:

j = (w0 x 20) + (w1 x 21) + (w2 x 22) + (w3 x 23)

j = 1 + 0 + 0 + 8

j = 9

Data Representation
DIGITAL Fortran expects numeric data to be in native little endian order, in which the
least-significant, right-most zero bit (bit 0) or byte has a lower address than the most-significant,
left-most bit (or byte). For information on using nonnative big endian and DIGITAL VAX

Appendix E: Data Representation Page 4 of 11

8/21/97 12:29:53 PM

floating-point formats, see Converting Unformatted Numeric Data.

The symbol :A in any figure specifies the address of the byte containing bit 0, which is the starting
address of the represented data element.

The following table lists the intrinsic data types used by Visual Fortran, the storage required, and
valid ranges.

DIGITAL Fortran Data Types and Storage
Data Type Storage Description

BYTE
(INTEGER(KIND=1))

1 byte (8 bits)
A BYTE declaration is a signed integer data type
equivalent to INTEGER(KIND=1).

INTEGER

See
INTEGER(KIND=2),
INTEGER(KIND=4),
and
INTEGER(KIND=8).

Signed integer, either INTEGER(KIND=2) or
INTEGER(KIND=4) on x86 systems, or
INTEGER(KIND=2), INTEGER(KIND=4), or
INTEGER(KIND=8) on Alpha systems. The size
is controlled by the /integer_ size:nn compiler
option. The default is /integer_size:32
(INTEGER(KIND=4)).

INTEGER(KIND=1) 1 byte (8 bits) Signed integer value from -128 to 127.
INTEGER(KIND=2) 2 bytes (16 bits) Signed integer value from -32,768 to 32,767.

INTEGER(KIND=4) 4 bytes (32 bits)
Signed integer value from -2,147,483,648 to
2,147,483,647.

INTEGER(KIND=8) 8 bytes (64 bits)
Signed integer value from
-9,223,372,036,854,775,808 to
9,223,372,036,854,775,807.

REAL(KIND=4)
(REAL)

4 bytes (32 bits)

Single-precision real floating-point values in
IEEE S_floating format ranging from
1.17549435E-38 to 3.40282347E38. Values
between 1.17549429E-38 and 1.40129846E-45
are denormalized (subnormal).

REAL(KIND=8)
DOUBLE PRECISION

8 bytes (64 bits)

Double-precision real floating-point values in
IEEE T_floating format ranging from
2.2250738585072013D-308 to
1.7976931348623158D308. Values between
2.2250738585072008D-308 and
4.94065645841246544D-324 are denormalized
(subnormal).

COMPLEX(KIND=4)
(COMPLEX)

8 bytes (64 bits)

Single-precision complex floating-point values in
a pair of IEEE S_floating format parts: real and
imaginary. The real and imaginary parts range
from 1.17549435E-38 to 3.40282347E38. Values
between 1.17549429E-38 and 1.40129846E-45
are denormalized (subnormal).
Double-precision complex floating-point values
in a pair of IEEE T_floating format parts: real
and imaginary. The real and imaginary parts each

Appendix E: Data Representation Page 5 of 11

8/21/97 12:29:53 PM

COMPLEX(KIND=8)
DOUBLE COMPLEX

16 bytes (128 bits)
range from 2.2250738585072013D-308 to
1.7976931348623158D308. Values between
2.2250738585072008D-308 and
4.94065645841246544D-324 are denormalized
(subnormal).

LOGICAL

See
LOGICAL(KIND=2),
LOGICAL(KIND=4),
and
LOGICAL(KIND=8).

Logical value, either LOGICAL(KIND=2) or
LOGICAL(KIND=4) on x86 systems, or
LOGICAL(KIND=2), LOGICAL(KIND=4), or
LOGICAL(KIND=8) on Alpha systems. The size
is controlled by the /integer_size:nn compiler
option. The default is /integer_size:32
(LOGICAL(KIND=4)).

LOGICAL(KIND=1) 1 byte (8 bits) Logical values .TRUE. or .FALSE.
LOGICAL(KIND=2) 2 bytes (16 bits) Logical values .TRUE. or .FALSE.
LOGICAL(KIND=4) 4 bytes (32 bits) Logical values .TRUE. or .FALSE.
LOGICAL(KIND=8) 8 bytes (64 bits) Logical values .TRUE. or .FALSE.

CHARACTER
1 byte (8 bits) per
character

Character data represented by character code
convention. Character declarations can be in the
form CHARACTER*n, where n is the number of
bytes or n is (*) to indicate passed-length format.

HOLLERITH
1 byte (8 bits) per
Hollerith character

Hollerith constants.

In addition, you can define bit constants as explained in the DIGITAL Fortran Language Reference
Manual.

The following sections discuss the intrinsic data types in more detail:
• Integer Data Representations
• Logical Data Representations
• Native IEEE Floating-Point Representations
• Character Representation
• Hollerith Representation

Integer Data Representations

On x86 systems, integer data lengths can be 1-, 2-, or 4-bytes in length.

On Alpha systems, integer data lengths can be 1-, 2- 4-, or 8-bytes in length.

The default data size used for an INTEGER data declaration is INTEGER(KIND=4), unless the
/integer_size:16 or (on Alpha systems) the /integer_size:64 option was specified.

Integer data is signed with the sign bit being 0 (zero) for positive numbers and 1 for negative
numbers.

On Alpha systems, to improve performance use INTEGER(KIND=4) (or INTEGER(KIND=8))
rather than INTEGER(KIND=2) or INTEGER(KIND=1).

The following sections discuss integer data:
• INTEGER(KIND=1) Representation

Appendix E: Data Representation Page 6 of 11

8/21/97 12:29:53 PM

• INTEGER(KIND=2) Representation
• INTEGER(KIND=4) Representation
• INTEGER(KIND=8) Representation (Alpha systems)

INTEGER(KIND=1) Representation

INTEGER(KIND=1) values range from -128 to 127 and are stored in 1 byte, as shown below.

Figure: INTEGER(KIND=1) Data Representation

Integers are stored in a two's complement representation. For example:

+22 = 16(hex)
 -7 = F9(hex)

INTEGER(KIND=2) Representation

INTEGER(KIND=2) values range from -32,768 to 32,767 and are stored in 2 contiguous bytes, as
shown below:

Figure: INTEGER(KIND=2) Data Representation

Integers are stored in a two's complement representation. For example:

+22 = 0016(hex)
 -7 = FFF9(hex)

INTEGER(KIND=4) Representation

INTEGER(KIND=4) values range from -2,147,483,648 to 2,147,483,647 and are stored in 4
contiguous bytes, as shown below.

Figure: INTEGER(KIND=4) Data Representation

INTEGER(KIND=4) values are stored in a two's complement representation.

Appendix E: Data Representation Page 7 of 11

8/21/97 12:29:53 PM

INTEGER(KIND=8) Representation (Alpha only)

On Alpha systems only, INTEGER(KIND=8) values range from -9,223,372,036,854,775,808 to
9,223,372,036,854,775,807 and are stored in 8 contiguous bytes, as shown below.

Figure: INTEGER(KIND=8) Data Representation

INTEGER(KIND=8) values are stored in a two’s complement representation.

Logical Data Representations
On x86 systems, logical data lengths can be 1-, 2-, or 4-bytes in length.

On Alpha systems, logical data lengths can be 1-, 2-, 4-, or 8-bytes in length.

The default data size used for a LOGICAL data declaration is LOGICAL(KIND=4), unless the
/integer_size:16 or /integer_size:64 (Alpha systems) option was specified.

To improve performance on Alpha systems, use LOGICAL(KIND=4) (or LOGICAL(KIND=8))
rather than LOGICAL(KIND=2) or LOGICAL(KIND=1).

LOGICAL(KIND=1) values are stored in 1 byte. In addition to having logical values .TRUE. and
.FALSE., LOGICAL(KIND=1) data can also have values in the range -128 to 127. Logical variables
can also be interpreted as integer data.

In addition to LOGICAL(KIND=1), logical values can also be stored in 2 (LOGICAL(KIND=2)), 4
(LOGICAL(KIND=4)), or 8 (LOGICAL(KIND=8)) contiguous bytes, starting on an arbitrary byte
boundary. LOGICAL(KIND=8) data is available on Alpha systems only.

If the /fpscomp:nological option is set, the low-order bit determines whether the logical value is true
or false. Specify /fpscomp:logical for Microsoft Fortran Powerstation logical values, where 0 (zero)
is false and non-zero values are true.

LOGICAL(KIND=1), LOGICAL(KIND=2), LOGICAL(KIND=4), and LOGICAL(KIND=8) data
representation (when /fpscomp:nological option was set) appears below.

LOGICAL(KIND=1), LOGICAL(KIND=2), LOGICAL(KIND=4), and LOGICAL(KIND=8)
Data Representation

Appendix E: Data Representation Page 8 of 11

8/21/97 12:29:53 PM

Native IEEE Floating-Point Representations

The REAL(KIND=4) (S_floating) and REAL(KIND=8) (T_floating) formats are stored in standard
little endian IEEE binary floating-point notation. (See IEEE Standard 754 for additional information
about IEEE binary floating point notation.) COMPLEX(KIND=4) and COMPLEX(KIND=8)
formats use a pair of REAL(KIND=4) or REAL(KIND=8) values to denote the real and imaginary
parts of the data.

For IEEE S_floating and T_floating formats, fractions are represented in sign-magnitude notation,
with the binary radix point to the right of the most-significant bit. Fractions are assumed to be
normalized, and therefore the most-significant bit is not stored (this is called "hidden bit
normalization"). This bit is assumed to be 1 unless the exponent is 0. If the exponent equals 0, then
the value represented is denormalized (subnormal) or plus or minus zero.

The following sections discuss floating-point data:

• REAL(KIND=4) (REAL) Representation
• REAL(KIND=8) (DOUBLE PRECISION) Representation
• COMPLEX(KIND=4) (COMPLEX) Representation
• COMPLEX(KIND=8) (DOUBLE COMPLEX) Representation

For more information on:

• Using the Bitviewer tool, see Viewing Floating-Point Representations with BitViewer.
• Reading or writing floating-point data other than native IEEE little endian data, see

Converting Unformatted Numeric Data.
• Using floating-point numbers, The Floating-Point Environment.

REAL(KIND=4) (REAL) Representation

REAL(KIND=4) data occupies 4 contiguous bytes stored in IEEE S_floating format. Bits are labeled
from the right, 0 through 31, as shown below.

REAL(KIND=4) Floating-Point Data Representation

The form of REAL(KIND=4) data is sign magnitude, with bit 31 the sign bit (0 for positive numbers,

Appendix E: Data Representation Page 9 of 11

8/21/97 12:29:53 PM

1 for negative numbers), bits 30:23 a binary exponent in excess 127 notation, and bits 22:0 a
normalized 24-bit fraction including the redundant most-significant fraction bit not represented.

The value of data is in the approximate range: 1.17549435E-38 (normalized) to 3.40282347E38. The
IEEE denormalized (subnormal) limit is 1.40129846E-45. The precision is approximately one part in
2**23; typically 7 decimal digits.

REAL(KIND=8) (DOUBLE PRECISION) Representation

REAL(KIND=8) data occupies 8 contiguous bytes stored in IEEE T_floating format. Bits are labeled
from the right, 0 through 63, as shown below.

REAL(KIND=8) Floating-Point Data Representation

The form of REAL(KIND=8) data is sign magnitude, with bit 63 the sign bit (0 for positive numbers,
1 for negative numbers), bits 62:52 a binary exponent in excess 1023 notation, and bits 51:0 a
normalized 53-bit fraction including the redundant most-significant fraction bit not represented.

The value of data is in the approximate range: 2.2250738585072013D-308 (normalized) to
1.7976931348623158D308. The IEEE denormalized (subnormal) limit is
4.94065645841246544D-324. The precision is approximately one part in 2**52; typically 15
decimal digits.

COMPLEX(KIND=4) (COMPLEX) Representation

COMPLEX(KIND=4) data is 8 contiguous bytes containing a pair of REAL(KIND=4) values stored
in IEEE S_floating format. The low-order 4 bytes contain REAL(KIND=4) data that represents the
real part of the complex number. The high-order 4 bytes contain REAL(KIND=4) data that
represents the imaginary part of the complex number, as shown below.

COMPLEX(KIND=4) Floating-Point Data Representation

The limits and underflow characteristics for REAL(KIND=4) apply to the two separate real and
imaginary parts of a COMPLEX(KIND=4) number. Like REAL(KIND=4) numbers, the sign bit
representation is 0 (zero) for positive numbers and 1 for negative numbers.

COMPLEX(KIND=8) (DOUBLE COMPLEX) Representation

Appendix E: Data Representation Page 10 of 11

8/21/97 12:29:53 PM

COMPLEX(KIND=8) (same as COMPLEX*16) data is 16 contiguous bytes containing a pair of
REAL(KIND=8) values stored in IEEE T_floating format. The low-order 8 bytes contain
REAL(KIND=8) data that represents the real part of the complex data. The high-order 8 bytes
contain REAL(KIND=8) data that represents the imaginary part of the complex data, as shown below.

COMPLEX(KIND=8) Floating-Point Data Representation

The limits and underflow characteristics for REAL(KIND=8) apply to the two separate real and
imaginary parts of a COMPLEX(KIND=8) number. Like REAL(KIND=8) numbers, the sign bit
representation is 0 (zero) for positive numbers and 1 for negative numbers.

Character Representation

A character string is a contiguous sequence of bytes in memory, as shown below.

Figure: CHARACTER Data Representation

A character string is specified by two attributes: the address A of the first byte of the string, and the
length L of the string in bytes. The length L of a string is in the range 1 through 65,535.

Hollerith Representation

Hollerith constants are stored internally, one character per byte, as shown below.

Figure: Hollerith Data Representation

Appendix E: Data Representation Page 11 of 11

8/21/97 12:29:53 PM

Appendix F: Summary of Language Extensions Page 1 of 8

9/2/97 3:40:01 PM

Appendix F: Summary of Language Extensions
This appendix summarizes the DIGITAL Fortran language extensions to the ANSI/ISO Fortran 90
Standard.

For more information, see the following sections:

• DIGITAL Fortran Language Extensions

• High Performance Fortran Language Extensions

DIGITAL Fortran Language Extensions
This section summarizes the DIGITAL Fortran language extensions. Most extensions are available
on all systems, but some extensions are limited to certain systems. If an extension is limited, it is
labeled.

Extensions in the following topics are discussed:

• Source Forms
• Characters in Names
• Character Sets
• Intrinsic Data Types
• Constants
• Derived Data Types
• Arrays
• Expressions
• Specification Statements
• Procedures
• Compilation Control Statements
• Built-In Functions
• I/O Statements
• I/O Formatting
• File Operation Statements
• Compiler Directives
• Additional Language Features
• Intrinsic Procedures

For more information, see High Performance Fortran Language Extensions.

Source Forms

The following are allowed as extensions to the methods and rules for source forms:

• Tab-formatting as a method to code lines
• The letter D as a debugging statement indicator in column 1 of fixed or tab source form
• An optional statement field width of 132 columns for fixed or tab source form
• An optional sequence number field for fixed source form

Appendix F: Summary of Language Extensions Page 2 of 8

9/2/97 3:40:01 PM

• Up to 511 continuation lines in a source program

Characters in Names

As an extension, the dollar sign ($) is allowed as a valid character in names.

Character Sets

The following are extensions to the Fortran 90 character set:

• The Tab character
• The DEC Multinational extension to the ASCII character set (VMS, U*X)1
• ASCII Character Code Chart 2--IBM Character Set (WNT, W95)
• ANSI Character Codes (WNT, W95)
• Key Codes (WNT, W95)

1 See the Language Reference Manual.

Intrinsic Data Types

The following are data-type extensions:

BYTELOGICAL* 1INTEGER*1REAL*4 COMPLEX*8
LOGICAL* 2INTEGER*2REAL*8 COMPLEX*16
LOGICAL* 4INTEGER*4REAL*16
LOGICAL* 8INTEGER*8

Constants

Hollerith constants are allowed as an extension.

C Strings are allowed as extensions in character constants.

Derived Data Types

As an extension, default initial values for derived-type components can be specified in a derived-type
definition.

Arrays

As an extension, arrays declared using the ALLOCATABLE attribute can be automatically
deallocated.

Expressions

When operands of different intrinsic data types are combined in expressions, conversions are
performed as necessary.

Appendix F: Summary of Language Extensions Page 3 of 8

9/2/97 3:40:01 PM

Binary, octal, hexadecimal, and Hollerith constants can appear wherever numeric constants are
allowed.

The following are extensions allowed in logical expressions:

• .XOR. as a synonym for .NEQV.
• Integers as valid logical items

As an extension, the WHERE construct can include nested WHERE constructs and a masked
ELSEWHERE statement. WHERE constructs can also be named.

Specification Statements

The following specification attributes and statements are extensions:

• AUTOMATIC attribute and statement
• STATIC attribute and statement
• VOLATILE attribute and statement

Procedures

The ELEMENTAL and PURE prefixes are allowed in user-defined functions and subroutines as
extensions.

As an extension, the END INTERFACE statement of an interface block defining a generic routine
can specify a generic identifier.

Compilation Control Statements

The following statements are extensions that can influence compilation:

• INCLUDE statement format (VMS only):

INCLUDE '[text-lib] (module-name) [/[NO]LIST]'

• OPTIONS statement:
/ASSUME = [NO]UNDERSCORE (Alpha only)
/CHECK = ALL
 [NO]BOUNDS
 [NO]OVERFLOW
 [NO]UNDERFLOW
 NONE
/NOCHECK

/CONVERT = BIG_ENDIAN
 CRAY
 FDX
 FGX
 IBM

Appendix F: Summary of Language Extensions Page 4 of 8

9/2/97 3:40:01 PM

 LITTLE_ENDIAN
 NATIVE
 VAXD
 VAXG
/[NO]EXTEND_SOURCE

/[NO]F77

/FLOAT D_FLOAT (VMS only)
 G_FLOAT (VMS only)
 IEEE_FLOAT
/[NO]G_FLOATING (VMS only)

/[NO]I4

/[NO]RECURSIVE

Built-In Functions

The %VAL, %REF, %DESCR, and %LOC built-in functions are extensions.

I/O Statements

The following I/O statements and specifiers are extensions:

• ACCEPT statement
• REWRITE statement
• TYPE statements as synonyms for PRINT statements
• A key-field-value specifier as a control list parameter (VMS only)
• A key-of-reference specifier as a control list parameter (VMS only)
• Indexed READ Statement (VMS only)
• Indexed WRITE Statement (VMS only)

As an extension, comments (beginning with !) are allowed in namelist input data.

I/O Formatting

The following are extensions allowed in I/O editing:

• The letter Q as an edit descriptor
• The dollar sign ($) as an edit descriptor
• The backslash (\) as an edit descriptor
• The dollar sign as a carriage control character
• ASCII NUL as a carriage control character
• Variable format expressions
• On output, when using I, B, O, Z, and F edit descriptors, the specified value of the field width

can be zero.

File Operation Statements

The following statement specifiers and statements are extensions:

Appendix F: Summary of Language Extensions Page 5 of 8

9/2/97 3:40:01 PM

• CLOSE statement specifiers:
• STATUS values: 'SAVE' (as a synonym for 'KEEP'), 'PRINT', 'PRINT/DELETE',

'SUBMIT', 'SUBMIT/DELETE'
• DISPOSE (or DISP)

• DELETE statement
• INQUIRE statement specifiers:

• ACCESS value: 'KEYED' (VMS only)
• BINARY (WNT, W95)
• BLOCKSIZE (WNT, W95)
• CARRIAGECONTROL
• CONVERT
• DEFAULTFILE
• FORM value: 'UNKNOWN' and 'BINARY' (WNT, W95)
• KEYED (VMS only)
• IOFOCUS (WNT, W95)
• MODE as a synonym for ACTION (WNT, W95)
• ORGANIZATION
• RECORDTYPE
• SHARE (WNT, W95)

• OPEN statement specifiers:
• ACCESS values: 'KEYED' (VMS only) and 'APPEND'
• ASSOCIATEVARIABLE
• BLOCKSIZE
• BUFFERCOUNT
• CARRIAGECONTROL
• CONVERT
• DEFAULTFILE
• DISPOSE
• EXTENDSIZE (VMS only)
• FORM value: 'BINARY' (WNT, W95)
• INITIALSIZE (VMS only)
• IOFOCUS (WNT, W95)
• KEY (VMS only)
• MAXREC
• MODE as a synonym for ACTION (WNT, W95)
• NAME as a synonym for FILE
• NOSPANBLOCKS (VMS only)
• ORGANIZATION
• READONLY
• RECORDSIZE as a synonym for RECL
• RECORDTYPE
• SHARE (WNT, W95)
• SHARED
• TITLE (WNT, W95)
• TYPE as a synonym for STATUS
• USEROPEN

• UNLOCK statement

Appendix F: Summary of Language Extensions Page 6 of 8

9/2/97 3:40:01 PM

Compiler Directives

The following General Directives are extensions:

• ALIAS
• ATTRIBUTES
• DECLARE and NODECLARE
• DEFINE and UNDEFINE
• FIXEDFORMLINESIZE
• FREEFORM and NOFREEFORM
• IDENT
• IF and IF DEFINED
• INTEGER
• MESSAGE
• OBJCOMMENT
• OPTIONS
• PACK
• PSECT
• REAL
• STRICT and NOSTRICT
• SUBTITLE
• TITLE

Additional Language Features

The following are language extensions that facilitate compatibility with other versions of Fortran:

• DEFINE FILE statement
• ENCODE and DECODE statements
• FIND statement
• An alternative syntax for the PARAMETER statement
• VIRTUAL statement
• AND, OR, XOR, IMAG, LSHIFT, RSHIFT intrinsics
• An alternative syntax for octal and hexadecimal constants
• An alternative syntax for an I/O record specifier
• An alternate syntax for the DELETE statement
• Alternative form for namelist external records
• The DIGITAL Fortran 77 POINTER statement
• Structures and records

Intrinsic Procedures

The following intrinsic procedures are extensions:

ACOSD COTAN IARGCOUNT 2 NWORKERS

ASIND CPU_TIME IARGPTR QEXT 3

ATAND DATE IBCHNG QFLOAT 3

ATAN2D DCMPLX IDATE RAN

CDABS 1 DFLOAT ISHA RANDU

Appendix F: Summary of Language Extensions Page 7 of 8

9/2/97 3:40:01 PM

CDCOS 1 DREAL ISHC SECNDS

CDEXP 1 EOF ISHL SIND

CDLOG 1 ERRSNS ISNAN SIZEOF

CDSIN 1 EXIT LOC TAND

CDSQRT 1 FP_CLASS MALLOC TIME

COSD FREE NULL ZEXT

1Double precision complex intrinsics can also begin with the letter Z. For example, CDABS can also
be spelled ZABS.

2 VMS only

3 VMS, U*X

The following INTEGER(8) specific functions are extensions available on Alpha processors:

AKMAX0 KIBCLR KIFIX KMIN0
AKMIN0 KIBITS KINT KMIN1
BKTEST KIBSET KIOR KMOD
DFLOTK KIDIM KISHFT KNINT
FLOATK KIDINT KISIGN KNOT
KIABS KIDNNT KMAX0 KZEXT
KIAND KIEOR KMAX1

As an extension, the keyword KIND can be specified for CEILING and FLOOR.

As an extension, SIGN can distinguish between positive and negative zero.

High Performance Fortran Language Extensions
This section summarizes the High Performance Fortran language extensions to the Fortran 90
standard.

The following extensions are discussed:

• Data Parallel Statements
• Procedure Prefixes
• Intrinsic Procedures

For more information, see DIGITAL Fortran Language Extensions.

Data Parallel Statements

The following statement and construct are extensions:

• FORALL statement
• FORALL construct with multiple assignments

Appendix F: Summary of Language Extensions Page 8 of 8

9/2/97 3:40:01 PM

Procedure Prefixes

The following prefixes are allowed in functions and subroutines as extensions:

• PURE
• EXTRINSIC (HPF) - functional only on DIGITAL UNIX systems
• EXTRINSIC (HPF_LOCAL) - functional only on DIGITAL UNIX systems
• EXTRINSIC (HPF_SERIAL) - functional only on DIGITAL UNIX systems

Intrinsic Procedures

System Inquiry Intrinsic Procedures

The following intrinsic procedures are extensions:

• NUMBER_OF_PROCESSORS intrinsic function
• PROCESSORS_SHAPE intrinsic function

Computational Intrinsic Functions

The argument DIM is an extension in the MAXLOC and MINLOC intrinsic functions.

Bit Manipulation Functions

The ILEN intrinsic function is an extension.

Glossary Page 1 of 27

8/21/97 12:30:53 PM

Glossary

A - B - C - D - E - F - G - H - I - K - L - M - N - O - P - Q - R - S - T - U - V - W

Glossary A

Absolute pathname
On DIGITAL UNIX, Windows NT, and Windows 95 systems, a directory path specified in fixed
relationship to the root directory. On DIGITAL UNIX systems, the first character is a slash (/). On
Windows NT and Windows 95 systems, the first character is a backslash (\).

Active screen buffer
The screen buffer that is currently displayed in a console’s window.

Active window
A top-level window of the application with which the user is working. Windows identifies the
active window by highlighting its title bar and border.

Actual argument
An expression, variable, procedure, or alternate return specifier which is specified in a subroutine
or function reference. The value is passed from the calling program unit to a subprogram.

Adjustable array
An explicit-shape array that is a dummy argument to a subprogram. The term is from
FORTRAN-77. See also Explicit-shape array.

Aggregate reference
A reference to a record structure field.

Allocatable array
A named array that has the ALLOCATABLE attribute. Once space has been allocated for this
type of array, the array has a shape and can be defined (and redefined) or referenced. It is an error
to allocate an allocatable array that is currently allocated.

Allocation status
Indicates whether an allocatable array or pointer is allocated. An allocation status is one of:
allocated, deallocated, or undefined. An undefined allocation status means an array can no longer
be referenced, defined, allocated, or deallocated. See also Association status.

Alphanumeric
Pertaining to letters and digits.

Alternate return
A subroutine argument that permits control to branch immediately to some position other than the
statement following the call. The actual argument in an alternate return is the statement label to
which control should be transferred. (An alternate return is an obsolescent feature in Fortran 90.)

ANSI
The American National Standards Institute. An organization through which accredited
organizations create and maintain voluntary industry standards.

Argument
See Actual argument and Dummy argument.

Argument association
The relationship (or "matching up") between an actual argument and dummy argument during the
execution of a procedure reference.

Argument keyword

Glossary Page 2 of 27

8/21/97 12:30:53 PM

The name of a dummy (formal) argument. It can be used in a procedure reference before the
equals sign [keyword = actual argument] provided the procedure has an explicit interface. This
association allows actual arguments to appear in any order.
Argument keywords are supplied for many of the intrinsic procedures.

Array
A set of scalar data that all have the same type and kind type parameters. An array can be
referenced by element (using a subscript), by section (using a section subscript list), or as a whole.
An array has a rank (up to 7), bounds, size, and a shape.
An individual array element is a scalar object. An array section, which is itself an array, is a
subset of the entire array.
Contrast with Scalar. See also Bounds, Conformable, Shape, and Size.

Array constructor
A mechanism used to specify a sequence of scalar values that produce a rank-one array.
To construct an array of rank greater than one, you must apply the RESHAPE intrinsic function to
the array constructor.

Array element
A scalar item in an array. An array element is identified by the array name followed by one or
more subscripts in parentheses, indicating the element’s position in the array. For example, B(3)
or A(2,5).

Array pointer
A pointer to an array. See also Array and Pointer.

Array section
A subobject (or portion) of an array. It consists of the set of array elements or substrings of this
set. The set (or section subscript list) is specified by subscripts, subscript triplets, and vector
subscripts. If the set does not contain at least one subscript triplet or vector subscript, the
reference indicates an array element, not an array.

Array specification
A program statement specifying an array name and the number of dimensions the array contains
(its rank). An array specification can appear in a DIMENSION or COMMON statement, or in a
type declaration statement.

ASCII
The American Standard Code for Information Interchange. A 7-bit character encoding scheme
associating an integer from 0 through 127 with 128 characters.

Assignment
A statement in the form variable = expression. The statement assigns (stores) the value of an
expression on the right of an equal sign to the storage location of the variable to the left of the
equal sign. In the case of Fortran 90 pointers, the storage location is assigned, not the pointer
itself.

Association
An assignment of names, pointers, or storage locations which identifies one entity with several
names in the same or different scoping units. The principal kinds of association are argument
association, host association, pointer association, storage association, and use association.

Association status
Indicates whether or not a pointer is associated with a target. An association status is one of:
undefined, associated, or disassociated. An undefined association status means a pointer can no
longer be referenced, defined, or deallocated. An undefined pointer can, however, be allocated,
nullified, or pointer assigned to a new target. See also Allocation status.

Assumed-length character argument

Glossary Page 3 of 27

8/21/97 12:30:53 PM

A dummy argument that assumes the length attribute of the corresponding actual argument. An
asterisk (*) specifies the length of the dummy character argument.

Assumed-shape array
A dummy argument array that assumes the shape of its associated actual argument array.

Assumed-size array
A dummy array that takes the size of the actual argument passed to it. The rank, extents, and
bounds of the dummy array are specified in its declaration, except for the upper bound (which is
specified by a *) and the extent of the last dimension.

Attribute
A property of a data object that can be specified in a type declaration statement. These properties
determine how the data object can be used in a program.

Glossary B

Background window
Any window created by a thread other than the foreground thread.

Big endian
A method of data storage in which the least significant bit of a numeric value spanning multiple
bytes is in the highest addressed byte. Contrast with Little endian.

Binary constant
A constant that is a string of binary (base 2) digits (0 or 1) enclosed by apostrophes or quotation
marks and preceded by the letter B.

Binary operator
An operator that acts on a pair of operands. The exponentiation, multiplication, division, and
concatenation operators are binary operators.

Bit constant
A constant that is a binary, octal, or hexadecimal number.

Bit field
A contiguous group of bits within a binary pattern; they are specified by a starting bit position and
length. Some intrinsic functions (for example, IBSET and BTEST) and the intrinsic subroutine
MVBITS operate on bit fields.

Bitmap
An array of bits that contains data that describes the colors found in a rectangular region on the
screen (or the rectangular region found on a page of printer paper).

Blank common
A common block (one or more contiguous areas of storage) without a name. Common blocks are
defined by a COMMON statement.

Block
A group of statements or constructs that is treated as an integral unit. For example, a block can be
a group of constructs or statements that perform a task; the task can be executed once, repeatedly,
or not at all.

Block data program unit
A program unit, containing a BLOCK DATA statement and its associated specification
statements, that establishes common blocks and assigns initial values to the variables in named
common blocks. In FORTRAN 77, this was called a block data subprogram.

Bounds
The range of subscript values for elements of an array. The lower bound is the smallest subscript
value in a dimension, and the upper bound is the largest subscript value in that dimension. Array

Glossary Page 4 of 27

8/21/97 12:30:53 PM

bounds can be positive, zero, or negative.
These bounds are specified in an array specification. See also Array specification.

Brush
A bitmap that is used to fill the interior of closed shapes, polygons, ellipses, and paths.

Brush origin
A coordinate that specifies the location of one of the pixels in a brush’s bitmap. Windows maps
this pixel to the upper left corner of the window that contains the object to be painted. See also
Bitmap.

Byte-order mark
A special Unicode character (0xFEFF) that is placed at the beginning of Unicode text files to
indicate that the text is in Unicode format.

Byte reversed
A Unicode file in which the most significant byte is first (as on Motorola architectures).

Glossary C

Carriage-control character
A character in the first position of a printed record that determines the vertical spacing of the
output line.

Character constant
A constant that is a string of printable ASCII characters enclosed by apostrophes (’) or quotation
marks (").

Character expression
A character constant, variable, function value, or another constant expression, separated by a
concatenation operator (//); for example, DAY// ’ FIRST’.

Character set
A mapping of characters to their identifying numeric values. See also Multibyte character set.

Character storage unit
The unit of storage for holding a scalar value of default character type (and character length one)
that is not a pointer. One character storage unit corresponds to one byte of memory.

Character string
A sequence of contiguous characters; a character data value. See also Character constant.

Character substring
One or more contiguous characters in a character string.

Child process
A process (child) initiated by another process (the parent). The child process can operate
independently from the parent process. Further, the parent process can suspend or terminate
without affecting the child process.

Comment
Text that documents or explains a program. In free source form, a comment begins with an
exclamation point (!), unless it appears in a Hollerith or character constant.
In fixed and tab source form, a comment begins with a letter C or an asterisk (*) in column 1. A
comment can also begin with an exclamation point anywhere in a source line (except in a
Hollerith or character constant) or in column 6 of a fixed-format line. The comment extends from
the exclamation point to the end of the line.
The compiler does not process comments, but shows them in program listings. See also Compiler
directive.

Common block

Glossary Page 5 of 27

8/21/97 12:30:53 PM

A physical storage area shared by one or more program units. This storage area is defined by a
COMMON statement. If the common block is given a name, it is a named common block; if it is
not given a name, it is a blank common.

Compilation unit
The source file or files that are compiled together to form a single object file, possibly using
interprocedural optimization across source files. Only one f90 command is used for each
compilation, but one f90 command can specify that multiple compilation units be used.

Compiler directive
A structured comment that tells the compiler to perform certain tasks when it compiles a source
program unit. Compiler directives are usually compiler-specific. (Some Fortran compilers call
these directives "metacommands".)

Complex constant
A constant that is a pair of real or integer constants representing a complex number; the pair is
separated by a comma and enclosed in parentheses. The first constant represents the real part of
the number; the second constant represents the imaginary part. In DIGITAL Fortran, there are two
types of complex constants: COMPLEX (COMPLEX(KIND=4)) and DOUBLE COMPLEX
(COMPLEX(KIND=8)).

Complex type
A data type that represents the values of complex numbers. The value is expressed as a complex
constant. See also Data type.

Component
A part of a derived-type definition. There must be at least one component (intrinsic or derived
type) in every derived-type definition.

Concatenate
The combination of two items into one by placing one of the items after the other. In Fortran 90,
the concatenation operator (//) is used to combine character items. See also Character expression.

Conformable
Pertains to dimensionality. Two arrays are conformable if they have the same shape. A scalar is
conformable with any array.

Console
An interface that provides input and output to character-mode applications.

Constant
A data object whose value does not change during the execution of a program; the value is
defined at the time of compilation. A constant can be named (using the PARAMETER attribute
or statement) or unnamed. An unnamed constant is called a literal constant. The value of a
constant can be numeric or logical, or it can be a character string. Contrast with Variable.

Constant expression
An expression whose value does not change during program execution.

Construct
A block of statements, beginning with CASE, DO, IF, FORALL, or WHERE statement, and
ending with the appropriate termination statement.

Contiguous
Pertaining to entities that are adjacent (next to one another) without intervening blanks (spaces);
for example, contiguous characters or contiguous areas of storage.

Control character
A character string, usually with an ASCII value between 0 and 31, used to communicate with
devices such as printers, modems, and the like.

Control edit descriptor

Glossary Page 6 of 27

8/21/97 12:30:53 PM

A format descriptor that directly displays text or affects the conversions performed by subsequent
data edit descriptors. Except for the slash descriptor, control edit descriptors are nonrepeatable.

Control statement
A statement that alters the normal order of execution by transferring control to another part of a
program unit or a subprogram. A control statement can be conditional (such as the IF construct or
computed GO TO statement) or unconditional (such as the STOP or GO TO statement).

Critical section
An object used to synchronize the threads of a single process. Only one thread at a time can own a
critical-section object.

Glossary D

Data abstraction
A style of programming in which you define types to represent objects in your program, define a
set of operations for objects of each type, and restrict the operations to only this set, making the
types abstract. The Fortran 90 modules, derived types, and defined operators, support this
programming paradigm.

Data edit descriptor
A repeatable format descriptor that causes the transfer or conversion of data to or from its internal
representation. In FORTRAN-77, this term was called a field descriptor.

Data entity
A data object that has a data type. It is the result of the evaluation of an expression, or the result
of the execution of a function reference (the function result).

Data item
A unit of data (or value) to be processed. Includes constants, variables, arrays, character
substrings, or records.

Data object
A constant, variable, or part (subobject) of a constant or variable. Its type may be specified
implicitly or explicitly.

Data type
The properties and internal representation that characterize data and functions. Each intrinsic and
user-defined data type has a name, a set of operators, a set of values, and a way to show these
values in a program. The basic intrinsic data types are integer, real, complex, logical, and
character. The data value of an intrinsic data type depends on the value of the type parameter. See
also Type parameter.

Data type length specifier
The form *n appended to DIGITAL Fortran-specific data type names. For example, in REAL*4,
the *4 is the data type length specifier.

Deadlock
A bug where the execution of thread A is blocked indefinitely waiting for thread B to perform
some action, while thread B is blocked waiting for thread A. For example, two threads on
opposite ends of a named pipe can become deadlocked if each thread waits to read data written by
the other thread. A single thread can also deadlock itself. See also Thread.

Declaration
A statement or series of statements which specify attributes and properties of named entities, such
as specifying the data type of named data objects. Declaration is a synonym for specification.

Decorated name
An internal representation of a procedure name or variable name that contains information about

Glossary Page 7 of 27

8/21/97 12:30:53 PM

where it is declared; for procedures, the information includes how it is called. Decorated names
are mainly of interest in mixed-language programming, when calling Fortran routines from other
languages.

Default character
The kind type for character constants if no kind type parameter is specified. Currently, the only
kind type parameter for character constants is CHARACTER(KIND=1), the default character
kind.

Default complex
The kind type for complex constants if no kind type parameter is specified. The default complex
kind is affected by the compiler option specifying real size. If no compiler option is specified,
default complex is COMPLEX(KIND=8) (COMPLEX*8). See also Default real.

Default integer
The kind type for integer constants if no kind type parameter is specified. The default integer kind
is affected by compiler options specifying integer size. If no compiler option is specified, default
integer is INTEGER(KIND=4) (INTEGER*4).
If a command line option affecting integer size has been specified, the integer has the kind
specified, unless it is outside the range of the kind specified by the option. In this case, the kind
type of the integer is the smallest integer kind which can hold the integer.

Default logical
The kind type for logical constants if no kind type parameter is specified. The default logical kind
is affected by compiler options specifying integer size. If no compiler option is specified, default
logical is LOGICAL(KIND=4) (LOGICAL*4). See also Default integer.

Default real
The kind type for real constants if no kind type parameter is specified. The default real kind is
affected by the compiler option specifying real size. If no compiler option is specified, default real
is REAL(KIND=4) (REAL*4).
If a real constant is encountered that is outside the range for the default, an error occurs.

Deferred-shape array
An array pointer (an array with the POINTER attribute) or an allocatable array (an array with the
ALLOCATABLE attribute). The size in each dimension is determined by pointer assignment or
when the array is allocated.
The declared bounds are specified by a colon (:).

Definable
A property of variables. A variable is definable if its value can be changed by the appearance of
its name or designator on the left of an assignment statement. An example of a variable that is not
definable is an allocatable array that has not been allocated.

Define
(1) To give a value to a data object during program execution. (2) To declare derived types and
procedures.

Defined assignment
An assignment statement that is not intrinsic, but is defined by a subroutine and an interface
block. See also Derived type.

Defined operation
An operation that is not intrinsic, but is defined by a function subprogram containing a generic
interface block with the specifier OPERATOR. See also Interface block.

Denormalized number
A computational floating-point result smaller than the lowest value in the normal range of a data
type (the smallest representable normalized number). You cannot write a constant for a

Glossary Page 8 of 27

8/21/97 12:30:53 PM

denormalized number.
Derived type

A data type that is user-defined and not intrinsic. It requires a type definition to name the type and
specify its components (which can be intrinsic or user-defined types). A structure constructor can
be used to specify a value of derived type. A component of a structure is referenced using a
percent sign (%).
Operations on objects of derived types (structures) must be defined by a function with an
OPERATOR interface. Assignment for derived types can be defined intrinsically, or be redefined
by a subroutine with an ASSIGNMENT interface. Structures can be used as procedure arguments
and function results, and can appear in input and output lists. Also called a user-defined type. See
also Record, the first definition.

Designator
A name that references a subobject (part of an object). A designator is the name of the object
followed by a selector that selects the subobject. For example, B(3) is a designator for an array
element. Also called a subobject designator. See also Selector and Subobject.

Dimension
A range of values for one subscript or index of an array. An array can have from 1 to 7
dimensions. The number of dimensions is the rank of the array.

Dimension bounds
See Bounds.

Direct access
A method for retrieving or storing data in which the data (record) is identified by the record
number, or the position of the record in the file. The record is accessed directly (nonsequentially);
therefore, all information is equally accessible. Also called random access. Contrast with
Sequential access.

DLL
See Dynamic Link Library.

Double-byte character set (DBCS)
A mapping of characters to their identifying numeric values, in which each value is 2 bytes wide.
Double-byte character sets are sometimes used for languages that have more than 256 characters.
See also Multibyte Character Set.

Double-precision constant
A processor approximation to the value of a real number that occupies 8 bytes of memory and can
assume a positive, negative, or zero value. The precision is greater than a constant of real
(single-precision) type. For the precise ranges of the double-precision constants, see your user
manual. See also Denormalized number.

Driver program
On Windows NT, Windows 95, and DIGITAL UNIX systems, a program that is the user interface
to the language compiler. It accepts command line options and file names and causes one or more
language utilities or system programs to process each file.

Dummy aliasing
The sharing of memory locations between dummy (formal) arguments and other dummy
arguments or COMMON variables that are assigned.

Dummy argument
A variable whose name appears in the parenthesized list following the procedure name in a
FUNCTION statement, a SUBROUTINE statement, an ENTRY statement, or a statement
function statement. A dummy argument takes the value of the corresponding actual argument in
the calling program unit (through argument association). Also called a formal argument.

Glossary Page 9 of 27

8/21/97 12:30:53 PM

Dummy array
A dummy argument that is an array.

Dummy pointer
A dummy argument that is a pointer.

Dummy procedure
Is a dummy argument that is specified as a procedure or appears in a procedure reference. The
corresponding actual argument must be a procedure.

Dynamic Link Library (DLL)
A separate source module compiled and linked independently of the applications that use it.
Applications access the DLL through procedure calls. The code for a DLL is not included in the
user’s executable image, but the compiler automatically modifies the executable image to point to
DLL procedures at run time.

Glossary E

Edit descriptor
A descriptor in a format specification. It can be a data edit descriptor, control edit descriptor, or
string edit descriptor. See also Control edit descriptor, Data edit descriptor, and String edit
descriptor.

Element
See Array element.

Elemental
Pertains to an intrinsic operation, intrinsic procedure, or assignment statement that is
independently applied to either of the following:
• The elements of an array
• Corresponding elements of a set of conformable arrays and scalars

End-of-file
The condition that exists when all records in a file open for sequential access have been read.

Entity
A general term referring to any Fortran 90 concept; for example, a constant, a variable, a program
unit, a statement label, a common block, a construct, an I/O unit and so forth.

Environment variable
A symbolic variable that represents some element of the operating system, such as a path, a
filename, or other literal data.

Error number
An integer value denoting an I/O error condition, obtained by using the IOSTAT keyword in an
I/O statement.

Escape character
The character whose ascii value is 27, usually part of a string used to communicate commands to
devices such as printers. See also Control character.

Exceptional values
For floating-point numbers, values outside the range of normalized numbers, including denormal
(subnormal) numbers, infinity, Not-a-Number (NaN) values, zero, and other architecture-defined
numbers.

Executable construct
A CASE, DO, IF, WHERE, or FORALL construct.

Executable program

Glossary Page 10 of 27

8/21/97 12:30:53 PM

A set of program units that include only one main program.
Executable statement

A statement that specifies an action to be performed or controls one or more computational
instructions.

Explicit interface
A procedure interface whose properties are known within the scope of the calling program, and
do not have to be assumed. These properties are the names of the procedure and its dummy
arguments, the attributes of a procedure (if it is a function), and the attributes and order of the
dummy arguments.
The following have explicit interfaces:
• Internal and module procedures (explicit by definition)
• Intrinsic procedures
• External procedures that have an interface block
• External procedures that are defined by the scoping unit and are recursive
• Dummy procedures that have an interface block

Explicit-shape array
An array whose rank and bounds are specified when the array is declared.

Expression
Is either a data reference or a computation, and is formed from operands, operands, and
parentheses. The result of an expression is either a scalar value or an array of scalar values.

Extent
The size of (number of elements in) one dimension of an array.

External file
A sequence of records that exists in a medium external to the executing program.

External procedure
A procedure that is contained in an external subprogram. External procedures can be used to
share information (such as source files, common blocks, and public data in modules) and can be
used independently of other procedures and program units. Also called an external routine.

External subprogram
A subroutine or function that is not contained in a main program, module, or another subprogram.
A module is not a subprogram.

Glossary F

Field
Can be either of the following:
• A set of contiguous characters, considered as a single item, in a record or line.
• A substructure of a STRUCTURE declaration.

Field descriptor
See Data edit descriptor.

Field separator
The comma (,) or slash (/) that separates edit descriptors in a format specification.

Field width
The total number of characters in the field. See also Field, the first definition.

File
A collection of logically related records. If the file is in internal storage, it is an internal file; if the
file is on an input/output device, it is an external file.

Glossary Page 11 of 27

8/21/97 12:30:53 PM

File access
The way records are accessed (and stored) in a file. The Fortran 90 file access modes are
sequential and direct. On OpenVMS systems, you can also use a keyed mode of access.

File organization
The way records in a file are physically arranged on a storage device. Fortran 90 files can have
sequential or relative organization. On OpenVMS systems, files can also have indexed
organization.

Fixed-length record type
A file format in which all the records are the same length.

Focus window
Window to which keyboard input is directed.

Foreground window
The window with which the user is currently working. The system assigns a slightly higher
priority to the thread that created the foreground window than it does to other threads.

Foreign file
An unformatted file that contains data from a foreign platform, such as data from a CRAY, IBM,
or big endian IEEE machine.

Format
A specific arrangement of data. A FORMAT statement specifies how data is to be read or written.

Format specification
The part of a FORMAT statement that specifies explicit data arrangement. It is a list within
parentheses that can include edit descriptors and field separators. A character expression can also
specify format; the expression must evaluate to a valid format specification.

Formatted data
Data written to a file by using formatted I/O statements. Such data contains ASCII representations
of binary values.

Formatted I/O statement
An I/O statement specifying a format for data transfer. The format specified can be explicit
(specified in a format specification) or implicit (specified using list-directed or namelist
formatting). Contrast with Unformatted I/O statement. See also List-directed I/O statement and
Namelist I/O statement.

Function
A series of statements that perform some operation and return a single value (through the function
or result name) to the calling program unit. A function is invoked by a function reference in a
main program unit or a subprogram unit.
In Fortran 90, a function can be used to define a new operator or extend the meaning of an
intrinsic operator symbol. The function is invoked by the appearance of the new or extended
operator in the expression (along with the appropriate operands). For example, the symbol * can
be defined for logical operands, extending its intrinsic definition for numeric operands. See also
Function subprogram, Statement function, and Subroutine.

Function reference
Used in an expression to invoke a function, it consists of the function name and its actual
arguments. A function reference returns a value (through the function or result name) which is
used to evaluate the calling expression.

Function result
The result value associated with a particular execution or call to a function. This result can be of
any data type (including derived type) and can be array-valued. In a FUNCTION statement, the
RESULT option can be used to give the result a name different from the function name. This

Glossary Page 12 of 27

8/21/97 12:30:53 PM

option is required for a recursive function that directly calls itself.
Function subprogram

A sequence of statements beginning with a FUNCTION (or optional OPTIONS) statement that is
not in an interface block and ending with the corresponding END statement. See also Function.

Glossary G

Generic identifier
AA generic name, operator, or assignment specified in an INTERFACE statement that is
associated with all of the procedures within the interface block. Also called a generic
specification.

Global entity
An entity (a program unit, common block, or external procedure) that can be used with the same
meaning throughout the executable program. A global entity has global scope; it is accessible
throughout an executable program. See also Local entity.

Global section
A data structure (for example, global COMMON) or shareable image section potentially available
to all processes in the system.

Glossary H

Handle
A 32-bit quantity which is an index into a table specific to a process. Handles have associated
access control lists that the operating system uses to check against the security credentials of the
process.

Hexadecimal constant
A constant that is a string of hexadecimal (base 16) digits (range 0 to 9, or an uppercase or
lowercase letter in the range A to F) enclosed by apostrophes or quotation marks and preceded by
the letter Z.

High Performance Fortran
An extended version of Fortran 90 with features supporting parallel processing. DIGITAL Fortran
90 supports full High Performance Fortran (HPF), and compiles HPF programs for parallel
execution.

Hollerith constant
A constant that is a string of printable ASCII characters preceded by nH, where n is the number of
characters in the string (including blanks and tabs).

Host
Either the main program or subprogram that contains an internal procedure, or the module that
contains a module procedure. The data environment of the host is available to the (internal or
module) procedure.

Host association
The process by which a module procedure, internal procedure, or derived-type definition accesses
the entities of its host.

Glossary I

Implicit interface
A procedure interface whose properties (the collection of names, attributes, and arguments of the
procedure) are not known within the scope of the calling program, and have to be assumed. The

Glossary Page 13 of 27

8/21/97 12:30:53 PM

information is assumed by the calling program from the properties of the procedure name and
actual arguments in the procedure call.

Implicit typing
The mechanism by which the data type for a variable is determined by the beginning letter of the
variable name.

Import library
A .LIB file that contains information about one or more dynamic-link libraries (DLLs), but does
not contain the DLL’s executable code. The linker uses an import library when building an
executable module of a process, to provide the information needed to resolve the external
references to DLL functions.

Index
Can be any of the following:
• The variable used as a loop counter in a DO statement.
• An intrinsic function specifying the starting position of a substring inside a string.
• On OpenVMS systems, an internal data structure that provides a guide, based on key values,

to file components in an indexed file.

Initialize
The assignment of an initial value to a variable.

Initialization expression
A form of constant expression that is used to specify an initial value for an entity.

Inlining
An optimization that replaces a subprogram reference (CALL statement or function invocation)
with the replicated code of the subprogram.

Input/output (I/O)
The data that a program reads or writes. Also, devices to read and write data.

Inquiry function
An intrinsic function whose result depends on properties of the principal argument, not the value
of the argument.

Integer constant
constant that is a whole number with no decimal point. It can have a leading sign and is
interpreted as a decimal number.

Intent
An attribute of a dummy argument that is not a procedure or a pointer. It indicates whether the
argument is used to transfer data into the procedure, out of the procedure, or both.

Interface
The properties of a procedure, consisting of: specifications of the attributes for a function result,
the specification of dummy argument attributes, and the information in the procedure heading.

Interface block
The sequence of statements starting with an INTERFACE statement and ending with the
corresponding END INTERFACE statement.

Interface body
The sequence of statements in an interface block starting with a FUNCTION or SUBROUTINE
statement and ending with the corresponding END statement. Also called a procedure interface
body.

Internal file
The designated internal storage space (or variable buffer) that is manipulated during input and
output. An internal file can be a character variable, character array, character array element, or

Glossary Page 14 of 27

8/21/97 12:30:53 PM

character substring. In general, an internal file contains one record. However, an internal file that
is a character array has one record for each array element.

Internal procedure
A procedure (other than a statement function) that is contained within an internal subprogram.
The program unit containing an internal procedure is called the host of the internal procedure.
The internal procedure (which appears between a CONTAINS and END statement) is local to its
host and inherits the host’s environment through host association.

Internal subprogram
A subprogram contained in a main program or another subprogram.

Intrinsic
Describes entities defined by the Fortran 90 language (such as data types and procedures).
Intrinsic entities can be used freely in any scoping unit.

Intrinsic procedure
A subprogram supplied as part of the Fortran 90 library that performs array, mathematical,
numeric, character, bit manipulation, and other miscellaneous functions. Intrinsic procedures are
automatically available to any Fortran 90 program unit (unless specifically overridden by an
EXTERNAL statement or a procedure interface block). Also called a built-in or library procedure.

Invoke
To call upon; used especially with reference to subprograms. For example, to invoke a function is
to execute the function.

Iteration count
The number of executions of the DO range, which is determined as follows:

[(terminal value - initial value + increment value) / increment value]

Glossary K

Keyword
(1) Part of the syntax of a statement (syntax keyword). These keywords are not reserved. (2) A
dummy argument name.

Kind type parameter
Indicates the range of an intrinsic data type. For real and complex types, it also indicates
precision. If a specific kind type parameter is not specified (for example, INTEGER), the kind
type is the default for that type (for example, default integer). See also Default character, Default
complex, Default integer, Default logical, and Default real.

Glossary L

Label
An integer, from 1 to 5 digits long, that is used to identify a statement. For example, labels can be
used to refer to a FORMAT statement or branch target statement.

Language extension
A DIGITAL Fortran language element or interpretation that is not part of the Fortran 90 standard.

Lexical token
A sequence of one or more characters that have an indivisible interpretation. A lexical token is
the smallest meaningful unit (a basic language element) of a Fortran 90 statement; for example,
constants, and statement keywords.

Line

Glossary Page 15 of 27

8/21/97 12:30:53 PM

A source form record consisting of 0 or more characters. A standard Fortran 90 line is limited to a
maximum of 132 characters.

Linker
A system program that creates an executable program from one or more object files produced by
a language compiler or assembler. The linker resolves external references, acquires referenced
library routines, and performs other processing required to create OpenVMS executable images or
DIGITAL UNIX, Windows NT, and Windows 95 executable files.

List-directed I/O statement
An implicit, formatted I/O statement that uses an asterisk (*) specifier rather than an explicit
format specification. See also Formatted I/O statement and Namelist I/O statement.

Listing
A printed copy of a program.

Literal constant
A constant without a name. In Fortran 77, this was called simply a constant.

Little endian
A method of data storage in which the least significant bit of a numeric value spanning multiple
bytes is in the lowest addressed byte. This is the method used on DIGITAL systems. Contrast with
Big endian.

Local entity
An entity that can be used only within the context of a subprogram (its scoping unit); for
example, a statement label. A local entity has local scope. See also Global entity.

Local optimization
Refers to enabling local optimizations within the source program unit, recognition of common
expressions, and integer multiplication and division expansion (using shifts). The order of
compilation of procedures is determined from the call graph. See also Optimization.

Local symbol
A name defined in a program unit that is not accessible outside of that program unit.

Logical constant
A constant that specifies the value .TRUE. or .FALSE..

Logical expression
An integer or logical constant, variable, function value, or another constant expression, joined by
a relational or logical operator. The logical expression is evaluated to a value of either true or
false. For example, .NOT. 6.5 + (B .GT. D).

Logical operator
A symbol that represents an operation on logical expressions. The logical operators are .AND.,
.OR., .NEQV., .XOR., .EQV., and .NOT..

Logical unit
A channel in memory through which data transfer occurs between the program and the device or
file. See also Unit identifier.

Longword
Four contiguous bytes (32 bits) starting on any addressable byte boundary. Bits are numbered 0 to
31. The address of the longword is the address of the byte containing bit 0. When the longword is
interpreted as a signed integer, bit 31 is the sign bit. The value of signed integers is in the range
-2**31 to 2**31-1. The value of unsigned integers is in the range 0 to 2**32-1.

Loop
A group of statements that are executed repeatedly until an ending condition is reached.

Glossary M

Glossary Page 16 of 27

8/21/97 12:30:53 PM

Main program
A program unit containing a PROGRAM statement (or not containing a SUBROUTINE,
FUNCTION, or BLOCK DATA statement). The main program is the first program unit to receive
control when a program is run, and exercises control over subprograms. Contrast with
Subprogram.

Makefile
On DIGITAL UNIX systems, an argument to the make command containing a sequence of entries
that specify dependences. On Windows NT and Windows 95 systems, a file passed to the
NMAKE utility containing a sequence of entries that specify dependences. The contents of a
makefile override the system built-in rules for maintaining, updating, and regenerating groups of
programs. For more information, see make(1) on DIGITAL UNIX systems, or see help on the
NMAKE utility on Windows NT and Windows 95 systems.

Many-one array section
An array section with a vector subscript having two or more elements with the same value.

Metacommand
See Compiler directive.

Misaligned data
Data not aligned on a natural boundary. See also Natural boundary.

Module
A program unit that contains specifications and definitions that other program units can access
(unless the module entities are declared PRIVATE). Modules are referenced in USE statements.

Module procedure
A subroutine or function defined within a module subprogram (the module procedure’s host). The
module procedure appears between a CONTAINS and END statement in its host module, and
inherits the host module’s environment through host association. A module procedure can be
declared PRIVATE to the module; it is public by default.

Module subprogram
A subprogram that is contained in a module. (It cannot be an internal subprogram.)

Multibyte character set
A character set in which each character is identified by using more than one byte. Although
Unicode characters are 2 bytes wide, the Unicode character set is not referred to by this term.

Glossary N

Name
Identifies an entity within a Fortran program unit (such as a variable, function result, common
block, named constant, procedure, program unit, namelist group, or dummy argument). In
FORTRAN 77, this term was called a symbolic name.

Name association
Pertains to argument, host, or use association.

Named common block
A common block (one or more contiguous areas of storage) with a name. Common blocks are
defined by a COMMON statement.

Named constant
A constant that has a name. In FORTRAN 77, this term was called a symbolic constant.

Namelist I/O statement
An implicit, formatted I/O statement that uses a namelist group specifier rather than an explicit
format specifier. See also Formatted I/O statement and List-directed I/O statement.

Glossary Page 17 of 27

8/21/97 12:30:53 PM

Natural boundary
The virtual address of a data item that is the multiple of the size of its data type. For example, a
REAL(KIND=8) (REAL*8) data item aligned on natural boundaries has an address that is a
multiple of eight.

Naturally aligned record
A record that is aligned on a hardware-specific natural boundary; each field is naturally aligned.
(For more information, see the Programmer’s Guide.) Contrast with Packed record.

Nesting
The placing of one entity (such as a construct, subprogram, format specification, or loop) inside
another entity of the same kind. For example, nesting a loop within another loop (a nested loop),
or nesting a subroutine within another subroutine (a nested subroutine).

Nonexecutable statement
A Fortran 90 statement that describes program attributes, but does not cause any action to be
taken when the program is executed.

Nonsignaled
The state of an object used for synchronization in one of the wait functions is either signaled or
nonsignaled. A nonsignaled state can prevent the wait function from returning. See also Wait
function.

Numeric expression
A numeric constant, variable, or function value, or combination of these, joined by numeric
operators and parentheses, so that the entire expression can be evaluated to produce a single
numeric value. For example, -L or X+(Y-4.5*Z).

Numeric operator
A symbol designating an arithmetic operation. In Fortran 90, the symbols +, -, *, /, and ** are
used to designate addition, subtraction, multiplication, division, and exponentiation, respectively.

Numeric storage unit
The unit of storage for holding a non-pointer scalar value of type default real, default integer, or
default logical. One numeric storage unit corresponds to 4 bytes of memory.

Numeric type
Integer, real, or complex type.

Glossary O

Object
(1) An internal structure that represents a system resource such as a file, a thread, or a graphic
image. (2) A data object.

Object file
The binary output of a language processor (such as an assembler or compiler), which can either be
executed or used as input to the linker.

Obsolescent feature
A feature of FORTRAN 77 that is considered to be redundant in Fortran 90. These features are
still in frequent use.

Octal constant
A constant that is a string of octal (base 8) digits (range of 0 to 7) enclosed by apostrophes or
quotation marks and preceded by the letter O.

Operand
The passive element in an expression on which an operation is performed. Every expression must
have at least one operand. For example, in I .NE. J, I and J are operands. Contrast with Operator.

Glossary Page 18 of 27

8/21/97 12:30:54 PM

Operation
A computation involving one or two operands.

Operator
The active element in an expression that performs an operation. An expression can have zero or
more operators. Intrinsic operators are arithmetic (+, -, *, /, and **) or logical (.AND., .NOT., and
so on). For example, in I .NE. J, .NE. is the operator.
Executable programs can define operators which are not intrinsic.

Optimization
The process of producing efficient object or executing code that takes advantage of the hardware
architecture to produce more efficient execution.

Optional argument
A dummy argument that has the OPTIONAL attribute (or is included in an OPTIONAL statement
in the procedure definition). Such an argument does not have to be associated with an actual
argument.

Order of subscript progression
A characteristic of a multidimensional array in which the leftmost subscripts vary most rapidly.

Overflow
An error condition occurring when an arithmetic operation yields a result that is larger than the
maximum value in the range of a data type.

Glossary P

Packed record
A record that starts on an arbitrary byte boundary; each field starts in the next unused byte.
Contrast with Naturally aligned record.

Pad
The filling of unused positions in a field or character string with dummy data (such as zeros or
blanks).

Parameter
Can be either of the following:
• In general, any quantity of interest in a given situation; often used in place of the term

"argument".
• A Fortran 90 named constant.

Parent window
A window that has one or more child windows.

Pathname
On Windows NT, Windows 95, and DIGITAL UNIX systems, the path from the root directory to
a subdirectory or file. See also Root.

Pipe
A connection that allows one program to get its input directly from the output of another program

Platform
A combination of operating system and hardware that provides a distinct environment in which to
use a software product (for example, Microsoft Windows 95 on Intel processors).

Pointer
Is one of the following:
• A Fortran 90 pointer

A data object that has the POINTER attribute. To be referenced or defined, it must be

Glossary Page 19 of 27

8/21/97 12:30:54 PM

"pointer-associated" with a target (have storage space associated with it). If the pointer is an
array, it must be pointer-associated to have a shape. See also Pointer association.

• A DIGITAL Fortran 77 (or Integer) pointer
A data object that contains the address of its paired variable.

Pointer assignment
The association of a pointer with a target by the execution of a pointer assignment statement or
the execution of an assignment statement for a data object of derived type having the pointer as a
subobject.

Pointer association
The association of storage space to a Fortran 90 pointer by means of a target. A pointer is
associated with a target after pointer assignment or the valid execution of an ALLOCATE
statement.

Precision
The number of significant digits in a real number. See also Double-precision constant, Kind type
parameter, and Single-precision constant.

Primary
The simplest form of an expression. A primary can be any of the following data objects:
• A constant
• A constant subobject (parent is a constant)
• A variable (scalar, structure, array, or pointer; an array cannot be assumed size)
• An array constructor
• A structure constructor
• A function reference
• An expression in parentheses

Primary thread
The initial thread of a process. Also called the main thread or thread 1.

Procedure
A computation that can be invoked during program execution. It can be a subroutine or function,
an internal, external, dummy or module procedure, or a statement function. A subprogram can
define more than one procedure if it contains an ENTRY statement. See also Subprogram.

Procedure interface
The statements that specify the name and characteristics of a procedure, the name and attributes
of each dummy argument, and the generic identifier (if any) by which the procedure can be
referenced. If these properties are all known to the calling program, the procedure interface is
explicit; otherwise it is implicit.

Process object
A virtual address space, security profile, a set of threads that execute in the address space of the
process, and a set of resources visible to all threads executing in the process. Several thread
objects can be associated with a single process.

Program unit
The fundamental component of an executable program. A sequence of statements and comment
lines. It can be a main program, a module, an external subprogram, or a block data program unit.

Glossary Q

Quadword
Four contiguous words (64 bits) starting on any addressable byte boundary. Bits are numbered 0

Glossary Page 20 of 27

8/21/97 12:30:54 PM

to 63. (Bit 63 is used as the sign bit.) A quadword is identified by the address of the word
containing the low-order bit (bit 0). The value of a signed quadword integer is in the range -2**63
to 2**63-1.

Glossary R

Random access
See Direct access.

Rank
The number of dimensions of an array. A scalar has a rank of zero.

Rank-one object
A data structure comprising scalar elements with the same data type and organized as a simple
linear sequence. See also Scalar.

Real constant
A constant that is a number written with a decimal point, exponent, or both. It can have single
precision (REAL(4)) or double precision (REAL(8)). On OpenVMS and DIGITAL UNIX
systems, it can also have quad precision (REAL(16)).

Record
Can be either of the following:
• A set of logically related data items (in a file) that is treated as a unit; such a record contains

one or more fields. This definition applies to I/O records and items that are declared in a
record structure.

• One or more data items that are grouped in a structure declaration and specified in a RECORD
statement.

Record access
The method used to store and retrieve records in a file.

Record structure declaration
A block of statements that define the fields in a record. The block begins with a STRUCTURE
statement and ends with END STRUCTURE. The name of the structure must be specified in a
RECORD statement.

Record type
The property that determines whether records in a file are all the same length, of varying length,
or use other conventions to define where one record ends and another begins.

Recursion
Pertains to a subroutine or function that directly or indirectly references itself.

Reference
Can be any of the following:
• For a data object, the appearance of its name, designator, or associated pointer where the value

of the object is required. When an object is referenced, it must be defined.
• For a procedure, the appearance of its name, operator symbol, or assignment symbol that

causes the procedure to be executed. Procedure reference is also called "calling" or "invoking"
a procedure.

• For a module, the appearance of its name in a USE statement.

Relational expression
An expression containing one relational operator and two operands of numeric or character type.
The result is a value that is true or false. For example, A-C .GE. B+2 or DAY .EQ. 'MONDAY'.

Relational operator

Glossary Page 21 of 27

8/21/97 12:30:54 PM

The symbols used to express a relational condition or expression. The relational operators are
(.EQ., .NE., .LT., .LE., .GT., and .GE.).

Relative file organization
A file organization that consists of a series of component positions, called cells, numbered
consecutively from 1 to n. DIGITAL Fortran 90 uses these numbered, fixed-length cells to
calculate the component’s physical position in the file.

Relative pathname
A directory path expressed in relation to any directory other than the root directory. Contrast with
Absolute pathname.

Root
On DIGITAL UNIX systems, the top-level directory in the file system; it is represented by a slash
(/).
On Windows NT and Windows 95 systems, the top-level directory on a disk drive; it is
represented by a backslash (\). For example, C:\ is the root directory for drive C.

Run time
The time during which a computer executes the statements of a program.

Glossary S

Saved object
A variable that retains its association status, allocation status, definition status, and value after
execution of a RETURN or END statement in the scoping unit containing the declaration.

Scalar
Pertaining to data items with a rank of zero. A single data object of any intrinsic or derived data
type. Contrast with Array. See also Rank-one object.

Scalar memory reference
A reference to a scalar variable, scalar record field, or array element that resolves into a single
data item (having a data type) and can be assigned a value with an assignment statement. It is
similar to a scalar reference, but it excludes constants, character substrings, and expressions.

Scalar reference
A reference to a scalar variable, scalar record field, derived-type component, array element,
constant, character substring, or expression that resolves into a single data item having a data
type.

Scalar variable
A variable name specifying one storage location.

Scale factor
A number indicating the location of the decimal point in a real number and, if there is no
exponent, the size of the number on input.

Scope
The portion of a program in which a declaration or a particular name has meaning. Scope can be
global (throughout an executable program), scoping unit (local to the scoping unit), or statement
(within a statement, or part of a statement).

Scoping unit
The part of the program in which a name has meaning. It is one of the following:
• A program unit or subprogram
• A derived-type definition
• A procedure interface body

Glossary Page 22 of 27

8/21/97 12:30:54 PM

Scoping units can not overlap, though one scoping unit can contain another scoping unit. The
outer scoping unit is called the host scoping unit.

Screen coordinates
Coordinates relative to the upper left corner of the screen.

Section subscript
A subscript list (enclosed in parentheses and appended to the array name) indicating a portion
(section) of an array. At least one of the subscripts in the list must be a subscript triplet or vector
subscript. The number of section subscripts is the rank of the array. See also Array section,
Subscript, Subscript triplet, and Vector subscript.

Seed
A value (which can be assigned to a variable) that is required in order to properly determine the
result of a calculation; for example, the argument i in the random number generator (RAN)
function syntax:

y = RAN (i).

Selector
A mechanism for designating the following:
• Part of a data object (an array element or section, a substring, a derived type, or a structure

component)
• The set of values for which a CASE block is executed

Sequence
A set ordered by a one-to-one correspondence with the numbers 1 through n, where n is the total
number of elements in the sequence. A sequence can be empty (contain no elements).

Sequential access
A method for retrieving or storing data in which the data (record) is read from, written to, or
removed from a file based on the logical order (sequence) of the record in the file. (The record
cannot be accessed directly.) Contrast with Direct access.

Sequential file organization
A file organization in which records are stored one after the other, in the order in which they were
written to the file.

Shape
The rank and extents of an array. Shape can be represented by a rank-one array (vector) whose
elements are the extents in each dimension.

Shape conformance
Pertains to the rule concerning operands of binary intrinsic operations in expressions: to be in
shape conformance, the two operands must both be arrays of the same shape, or one or both of the
operands must be scalars.

Short field termination
The use of a comma (,) to terminate the field of a numeric data edit descriptor. This technique
overrides the field width (w) specification in the data edit descriptor and therefore avoids padding
of the input field. The comma can only terminate fields less than w characters long. See also Data
edit descriptor.

Signal
The software mechanism used to indicate that an exception condition (abnormal event) has been
detected. For example, a signal can be generated by a program or hardware error, or by request of
another program.

Single-precision constant

Glossary Page 23 of 27

8/21/97 12:30:54 PM

A processor approximation of the value of a real number that occupies 4 bytes of memory and can
assume a positive, negative, or zero value. The precision is less than a constant of
double-precision type. For the precise ranges of the single-precision constants, see your user
manual. See also Denormalized number.

Size
The total number of elements in an array (the product of the extents).

Source file
A program or portion of a program library, such as an object file, or image file.

Specification expression
A restricted expression that is of type integer and has a scalar value. This type of expression
appears only in the declaration of array bounds and character lengths.

Specification statement
A nonexecutable statement that provides information about the data used in the source program.
Such a statement can be used to allocate and initialize variables, arrays, records, and structures,
and define other characteristics of names used in a program.

Statement
An instruction in a programming language that represents a step in a sequence of actions or a set
of declarations. In Fortran 90, an ampersand can be used to continue a statement from one line to
another, and a semicolon can be used to separate several statements on one line.
There are two main classes of statements: executable and nonexecutable.

Statement entity
An entity identified by a lexical token whose scope is a single statement or part of a statement.

Statement function
A function whose definition is contained in a single statement.

Statement function definition
A statement that defines a statement function. Its form is the statement function name (followed
by its optional dummy arguments in parentheses), followed by an equal sign (=), followed by a
numeric, logical, or character expression.
A statement function definition must precede all executable statements and follow all
specification statements.

Statement keyword
A word that begins the syntax of a statement. All program statements (except assignment
statements and statement function definitions) begin with a statement keyword. Examples are
INTEGER, DO, IF, and WRITE.

Statement label
See Label.

Static variable
A variable whose storage is allocated for the entire execution of a program.

Storage association
The relationship between two storage sequences when the storage unit of one is the same as the
storage unit of the other. Storage association is provided by the COMMON and EQUIVALENCE
statements. For modules, pointers, allocatable arrays, and automatic data objects, the
SEQUENCE statement defines a storage order for structures.

Storage location
An addressable unit of main memory.

Storage sequence
A sequence of any number of consecutive storage units. The size of a storage sequence is the
number of storage units in the storage sequence. A sequence of storage sequences forms a

Glossary Page 24 of 27

8/21/97 12:30:54 PM

composite storage sequence. See also Storage association and Storage unit.
Storage unit

In a storage sequence, the number of storage units needed to represent one real, integer, logical, or
character value. See also Character storage unit, Numeric storage unit, and Storage sequence.

Stride
The increment between subscript values, specified in a subscript triplet. If it is omitted, it is
assumed to be one.

String edit descriptor
A format descriptor that transfers characters to an output record.

Structure
Can be either of the following:
• A scalar data object of derived (user-defined) type.
• An aggregate entity containing one or more fields or components.

Structure component
Can be either of the following:
• One of the components of a structure.
• An array whose elements are components of the elements of an array of derived type.

Structure constructor
A mechanism that is used to specify a scalar value of a derived type. A structure constructor is the
name of the type followed by a parenthesized list of values for the components of the type.

Subobject
Part of a data object (parent object) that can be referenced and defined separately from other parts
of the data object. A subobject can be an array element, an array section, a substring, a derived
type, or a structure component. Subobjects are referenced by designators and can be considered to
be data objects themselves. See also Designator.

Subobject designator
See Designator.

Subprogram
A user-written function or subroutine subprogram that can be invoked from another program unit
to perform a specific task. Note that in FORTRAN 77, a block data program unit was also called
a subprogram.

Subroutine
procedure that can return many values, a single value, or no value to the calling program unit
(through arguments). A subroutine is invoked by a CALL statement in another program unit.
In Fortran 90, a subroutine can also be used to define a new form of assignment (defined
assignment), which is different from those intrinsic to Fortran 90. Such assignments are invoked
with assignment syntax (using the = symbol) rather than the CALL statement. See also Function,
Statement function, and Subroutine subprogram.

Subroutine subprogram
A sequence of statements starting with a SUBROUTINE (or optional OPTIONS) statement and
ending with the corresponding END statement. See also Subroutine.

Subscript
A scalar integer expression (enclosed in parentheses and appended to the array name) indicating
the position of an array element. The number of subscripts is the rank of the array. See also Array
element.

Subscript triplet

Glossary Page 25 of 27

8/21/97 12:30:54 PM

An item in a section subscript list specifying a range of values for the array section. A subscript
triplet contains at least one colon and has three optional parts: a lower bound, an upper bound,
and a stride. Contrast with Vector subscript. See also Array section and Section subscript.

Substring
A contiguous portion of a scalar character string. Do not confuse this with the substring selector
in an array section, where the result is another array section, not a substring.

Symbolic name
See Name.

Syntax
The formal structure of a statement or command string.

Glossary T

Target
The named data object associated with a pointer (in the form pointer-object => target). A target is
declared in a type declaration statement that contains the TARGET attribute. See also Pointer and
Pointer association.

Thread
The smallest unit of execution for which the operating system allocates CPU time. A thread
consists of a stack, the state of the CPU registers, and an entry in the execution list of the system
scheduler. Each process has at least one thread of execution.

Transformational function
An intrinsic function that is not an elemental or inquiry function. A transformational function
usually changes an array actual argument into a scalar result or another array, rather than applying
the argument element by element.

Truncation
Can be either of the following:
• A technique that approximates a numeric value by dropping its fractional value and using only

the integer portion.
• The process of removing one or more characters from the left or right of a number or string.

Type declaration statement
A nonexecutable statement specifying the data type of one or more variables: an INTEGER,
REAL, DOUBLE PRECISION, COMPLEX, DOUBLE COMPLEX, CHARACTER, LOGICAL,
or TYPE statement. Also called a type declaration or type specification.

Type parameter
Defines an intrinsic data type. The type parameters are kind and length. The kind type parameter
(KIND=) specifies the range for the integer data type, the precision and range for real and
complex data types, and the machine representation method for the character and logical data
types. The length type parameter (LEN=) specifies the length of a character string. See also Kind
type parameter.

Glossary U

Ultimate component
For a derived type or a structure, a component that is of intrinsic type or has the POINTER
attribute, or an ultimate component of a component that is a derived type and does not have the
POINTER attribute.

Unary operator

Glossary Page 26 of 27

8/21/97 12:30:54 PM

An operator that operates on one operand. For example, the minus sign in -A and the .NOT.
operator in .NOT. (J .GT. K).

Undefined
For a data object, the property of not having a determinate value.

Underflow
An error condition occurring when the result of an arithmetic operation yields a result that is
smaller than the minimum value in the range of a data type. For example, in unsigned arithmetic,
underflow occurs when a result is negative. See also Denormalized number.

Unformatted data
Data written to a file by using unformatted I/O statements; for example, binary numbers.

Unformatted I/O statement
An I/O statement that does not contain format specifiers and therefore does not translate the data
being transferred. Contrast with Formatted I/O statement.

Unformatted record
A record that is transmitted in internal format between internal and external storage.

Unit identifier
The identifier that specifies an external unit or internal file. The identifier can be any one of the
following:
• An integer expression whose value must be zero or positive
• An asterisk (*) that corresponds to the default (or implicit) I/O unit
• The name of a character scalar memory reference or character array name reference for an

internal file

Also called a device code, or logical unit number.

Unspecified storage unit
A unit of storage for holding a pointer or a scalar that is not a pointer and is of type other than
default integer, default character, or default real.

Use association
The process by which the entities in a module are made accessible to other scoping units (through
a USE statement in the scoping unit).

User-defined type
See Derived type.

Glossary V

Variable
A data object (stored in a memory location) whose value can change during program execution. A
variable can be a named data object, an array element, an array section, a structure component, or
a substring. In FORTRAN 77, a variable was always scalar and named. Contrast with Constant.

Variable format expression
A numeric expression enclosed in angle brackets (<>) that can be used in a FORMAT statement.
If necessary, it is converted to integer type before use.

Variable-length record type
A file format in which records may be of different lengths.

Vector subscript
A rank-one array of integer values used as a section subscript to select elements from a parent
array. Unlike a subscript triplet, a vector subscript specifies values (within the declared bounds
for the dimension) in an arbitrary order. Contrast with Subscript triplet. See also Array section

Glossary Page 27 of 27

8/21/97 12:30:54 PM

and Section subscript.

Glossary W

Wait function
A function that blocks the execution of a calling thread until a specified set of conditions has been
satisfied.

	Programmer’s Guide
	Copyright Page

	Introduction to the Programmer’s Guide
	Programmer’s Guide Conventions

	Features of Fortran 95
	Deleted Features in Fortran 95
	Obsolescent Features in Fortran 95

	Features of Fortran 90
	Organizing Programs in Fortran
	Scope and Association
	Procedures in Fortran 90
	New Intrinsic Procedures

	Controlling Program Flow
	Data Concepts
	Array Operations in Fortran 90
	Pointers
	Input and Output Facilities
	Source Form
	Syntax and Usage
	Obsolescent Features in Fortran 90

	Program Structure, Characters, and Source Forms
	Program Structure
	Statements
	Names
	Keywords

	Character Sets
	Source Forms
	Free Source Form
	Fixed and Tab Source Forms
	Fixed-Format Lines
	Tab-Format Lines

	Source Code Useable for All Forms

	Declaring and Using Data
	Overview of Data Types
	Intrinsic Data Types
	Integer Data Type
	Integer Constants

	Real Data Type
	Real Constants

	Complex Data Type
	Complex Constants

	Character Data Type
	Substrings
	Character Constants
	C Strings
	Converting Characters to Numeric Data Types

	Logical Data Type
	Logical Constants

	Mixing Logicals and Numerics

	Derived Types
	Default Initialization
	Determination of Derived Types
	Derived-Type Values
	Record Structures

	Type Declaration Statements
	Declaration Statements for Noncharacter Types
	Declaration Statements for Character Types

	Data Initialization and the DATA Statement
	Data Attributes
	The PARAMETER Attribute and Statement
	The PUBLIC and PRIVATE Attributes and Statements
	The SAVE Attribute and Statement
	The STATIC Attribute and Statement
	The AUTOMATIC Attribute and Statement
	Specifying Properties by Using a Compiler Directive

	Storage Association
	Storage Units and Storage Sequence
	The COMMON Statement
	The EQUIVALENCE Statement
	The NAMELIST Statement

	Expressions
	Intrinsic Operators
	Creating Expressions
	Numeric Expressions
	Character Expressions
	Relational Expressions
	Logical Expressions
	Defined Operators and Expressions

	Assignment Statements
	Character Assignments
	Differences in Kind in Assignments
	Derived-Type Assignments
	Defined Assignment Statements

	Defining Variables
	Undefined Variables

	Arrays and Pointers
	Array Properties and Specifications
	Explicit-Shape Arrays
	Assumed-Shape Arrays
	Assumed-Size Arrays
	Deferred-Shape Arrays

	Array Elements and Sections
	Array Elements
	Array Sections
	Subscript Triplets
	Vector Subscripts

	Assigning Values to Arrays
	Masked Array Assignment

	Operations Using Arrays
	Specifying Pointers and Targets
	Pointer Assignments
	Dynamic Association of Arrays and Pointers
	The ALLOCATE Statement
	The NULLIFY Statement
	The DEALLOCATE Statement
	Association Status and Definition

	Character Strings
	DIGITAL Fortran Pointers

	Execution Control
	Executable Constructs and Blocks
	Naming Constructs
	IF Constructs
	CASE Constructs
	DO Constructs
	Loop Control
	Extended Range
	The CYCLE and EXIT Statements
	The DO WHILE Statement

	Branching
	GOTO and Computed GOTO
	CONTINUE and STOP

	Obsolescent Branching Methods
	Nonblock DO
	ASSIGN and Assigned GOTO
	Arithmetic IF
	PAUSE

	Program Units and Procedures
	Overview of Program Units
	Main Program
	Program Format
	Program Execution

	Modules
	Module Format
	The USE Statement
	Module Names and File Names
	Using Modules
	Procedure Libraries

	Procedures
	External Procedures
	Internal Procedures
	Intrinsic Procedures
	Module Procedures
	Procedure Interfaces
	Generic Interfaces and Generic Procedures
	Dummy Procedures
	Recursive Procedures
	Pure Procedures
	Elemental Procedures
	Functions and the RESULT Keyword
	The RETURN Statement
	Declaring Procedure Attributes
	Variable Values in Procedures
	The OPTIONAL Attribute and Statement
	The INTENT Attribute and Statement
	The EXTERNAL Attribute and Statement
	The INTRINSIC Attribute and Statement

	Arguments
	Argument Keywords
	Optional Arguments

	Block Data Program Units
	Association
	Argument Association
	Use Association
	Host Association

	Scope
	Scope of Names
	Global Names
	Local Names
	Duplicating Names of Intrinsic Procedures
	Statement Names
	Common Block Names
	Function Result Names
	Derived-Type Component Names
	Function Result Names
	Derived-Type Component Names
	Scope of Argument Keywords
	Other Special Cases

	Resolving Procedure References
	Resolving Generic References
	Resolving Specific References

	Files, Devices, and I/O Hardware
	Devices and Files
	Logical Devices
	External Files
	Internal Files

	Files
	Formatted Sequential Files
	Formatted Direct Files
	Unformatted Sequential Files
	Unformatted Direct Files
	Binary Sequential Files
	Binary Direct Files

	I/O Hardware
	Printing
	Physical Devices

	Input/Output Editing
	Input/Output Lists
	Methods of I/O Editing
	Formatted I/O
	Repeatable Edit Descriptors
	Integer Editing (I)
	Binary (B), Octal (O), and Hexadecimal (Z) Editing
	Real Editing Without Exponents (F)
	Real Editing With Exponents (E)
	Double-Precision Real Editing (D)
	Engineering-Notation Editing (EN)
	Scientific-Notation Editing (ES)
	Logical Editing (L)
	Character Editing (A)
	Generalized Editing (G)

	Nonrepeatable Edit Descriptors
	Character String Editing
	Hollerith Editing (H)
	Character Count Editing (Q)
	Positional Editing: Tab, Tab Left, Tab Right (T, TL, TR)
	Positional Editing (X)
	Optional-Plus Editing (SP, SS, S)
	Slash Editing (/)
	Backslash (\) and Dollar-Sign ($) Editing
	Terminating Format Control (:)
	Scale-Factor Editing (P)
	Blank Interpretation (BN, BZ)

	Variable Format Expressions
	Interaction Between Format Specifications and I/O Lists

	List-Directed I/O
	List-Directed Input
	List-Directed Output

	Namelist I/O
	Namelist Input
	Namelist Output
	Namelist READ

	Input/Output Statements
	Overview of I/O Statements
	I/O Statement Specifiers
	Format and Namelist Specifiers
	Format Specifier (FMT=)
	Namelist Specifier (NML=)

	Errors, End-of-File, and End-of-Record Handling Specifiers
	Record Specifiers
	Input/Output Buffer Size Specifiers
	Carriage Control Specifier
	File Property Specifiers
	Specifying Filenames
	Specifying File Status and Disposition
	Specifying File Structure
	Specifying File Access Methods
	Specifying File Access Privileges
	Specifying File Sharing
	Specifying File Data Transfer Methods
	Specifying File Position
	Specifying File Numeric Format

	Using An External User-Written Function To Open A File
	Changing I/O Specifications with OPEN

	General Compiler Directives
	Rules for General Directives
	Compiler Directives and Compiler Options
	Using the ATTRIBUTES Directive
	Using Conditional-Compilation Directives

	Portability Library
	Using the Portability Library
	The DFPORT Module

	Routines for Information Retrieval
	Device and Directory Information Routines

	Process Control Routines
	Numeric Routines
	Input and Output With Portability Routines
	Date and Time Routines
	Error Handling Routines
	Miscellaneous String and Sorting Routines
	Other Compatibility Routines

	Using QuickWin
	Capabilities of QuickWin
	Comparing QuickWin with Windows-Based Applications
	Types of QuickWin Programs
	Standard Graphics Applications
	QuickWin Graphics Applications

	The QuickWin User Interface
	Default QuickWin Menus

	Creating QuickWin Windows
	Accessing Window Properties
	Creating Child Windows
	Giving a Window Focus and Setting the Active Window
	Keeping Child Windows Open
	Controlling Size and Position of Windows

	Using Graphics and Character-Font Routines
	Defining Graphics Characteristics
	Selecting Display Options
	Setting Graphics Coordinates
	Using Color
	Setting Figure Properties

	Displaying Graphics Output
	Drawing Graphics
	Displaying Character-Based Text
	Displaying Font-Based Characters

	Working With Screen Images
	Transferring Images in Memory
	Loading and Saving Images to Files
	Editing Text and Graphics from the QuickWin Edit Menu

	Enhancing QuickWin Applications
	Customizing QuickWin Applications
	Program Control of Menus
	Controlling the Initial Menu and Frame Window
	Deleting, Inserting, and Appending Menu Items
	Modifying Menu Items
	Creating a Menu List of Available Child Windows
	Simulating Menu Selections

	Changing Status Bar and State Messages
	Displaying Message Boxes
	Defining an About Box
	Using Custom Icons
	Using a Mouse
	Event-Based Functions
	Blocking (Sequential) Functions
	Default QuickWin Processing

	QuickWin Programming Precautions
	Blocking Procedures
	Callback Routines

	Simulating Nonblocking I/O

	Using Dialogs
	Using the Resource Editor to Design a Dialog
	Setting Control Properties
	The Include (.FD) File

	Writing a Dialog Application
	Initializing and Activating the Dialog Box
	Dialog Callback Routines

	Dialog Functions
	Dialog Controls
	Control Indexes
	Available Indexes for Each Dialog Control
	Specifying Control Indexes

	Using Dialog Controls
	Using Static Text
	Using Edit Boxes
	Using Group Boxes
	Using Check Boxes and Radio Buttons
	Using Buttons
	Using List Boxes and Combo Boxes
	Using List Boxes
	Using Combo Boxes
	Using Drop-Down List Boxes

	Using Scroll Bars
	Setting Return Values and Exiting

	Drawing Graphics Elements
	Working with Graphics Modes
	Checking the Current Graphics Mode
	Setting the Graphics Mode
	Writing a Graphics Program
	Activating a Graphics Mode
	Drawing Lines on the Screen
	Drawing a Sine Curve
	Adding Shapes

	Adding Color
	Color Mixing
	VGA Color Palette
	Using Text Colors

	Understanding Coordinate Systems
	Text Coordinates
	Graphics Coordinates
	Physical Coordinates
	Viewport Coordinates
	Window Coordinates

	Real Coordinates Sample Program

	Using Fonts from the Graphics Library
	Available Typefaces
	Using Fonts
	Initializing Fonts
	Setting the Font and Displaying Text

	SHOWFONT.F90 Example

	Writing New Code: Design Considerations
	Choosing Your Development Environment
	Selecting a Program Type
	Console Applications
	Standard Graphics Applications
	QuickWin Graphics Applications
	Windows Applications

	Structuring Your Program
	Creating Fortran Executables
	Advantages of Modules
	Advantages of Internal Procedures
	Storing Object Code in Static Libraries
	Storing Routines in Dynamic-Link Libraries

	Special Design Considerations
	Porting Fortran Source Code Between Systems
	Mixed-Language Issues
	Porting Data Between Systems

	Using the Special Features of Microsoft Windows
	Built-in Benefits of Windows
	Single or Multithread Program Execution
	QuickWin and Windows Programs

	Development Environments

	Building Programs and Libraries
	Overview of Building Projects
	How Information Is Displayed
	Menu Options
	Using the Shortcut Menu

	Types of Projects
	Win32 Console Application Projects
	Standard Graphics Application Projects
	QuickWin Application Projects
	Win32 (Windows) Application Projects
	Win32 Dynamic-Link Library Projects

	Defining Your Project
	Files in a Project
	Selecting Project Features
	Selecting a Configuration
	Setting Build Options
	Creating the Executable Program
	Building Dynamic-Link Library Projects
	Using Microsoft Developer Studio to Build DLLs
	Organization and Behavior of DLLs
	Importing and Exporting Data with DLLs
	Building the DLL
	The DLL Build Output
	Using DLLs
	QuickWin Restrictions

	Errors During the Build Process
	Running Fortran Applications
	Porting Projects Between x86 and Alpha Platforms

	Advanced Applications
	Creating Windows Applications
	The Visual Fortran Windows Module
	Writing a Windows GDI Program
	Using Win32 with QuickWin
	Sample Fortran Windows Applications
	Getting Help with Windows Programming

	Dialog Boxes
	OpenGL Graphics
	DLLs
	DLLEXPORT and DLLIMPORT Compiler Directive Options
	DLLEXPORT and DLLIMPORT in Modules

	Using COM and Automation Objects
	The Role of the Module Wizard
	Using the Module Wizard to Generate Code
	Calling the Routines Generated by the Module Wizard
	Additional Information About COM and Automation Objects
	COM Objects
	Automation Objects
	Object Identification
	Additional Resources

	Using the Compiler and Linker from the Command Line
	The Format of the DF Command
	Examples of the DF Command Format
	Input and Output Files
	Naming Output Files
	Temporary Files

	Environment Variables Used with the DF Command
	Specifying Project Types with DF Command Options
	Using the DF Command to Compile and Link
	Compiling and Linking a Single Source File
	Using the DF Environment Variable to Specify Options
	Compiling, but not Linking, a Fortran Source File
	Compiling and Linking Multiple Fortran Source Files
	Generating a Listing File
	Linking Against Additional Libraries
	Linking Object Files
	Compiling and Linking for Debugging
	Compiling and Linking for Optimization
	Compiling and Linking Mixed-Language Programs

	DF Indirect Command File Use
	Compiler Limits and Messages
	Compiler Diagnostic Messages and Error Conditions
	Linker Diagnostic Messages and Error Conditions

	Compiler and Linker Options
	Compiler Options
	Categories of Compiler Options
	/[no]alignment
	/[no]altparam
	/architecture (Alpha only)
	/[no]asmattributes
	/[no]asmfile
	/assume
	/[no]automatic
	/bintext
	/[no]browser
	/[no]check
	/[no]comments
	/[no]compile_only
	/convert
	/[no]d_lines
	/[no]dbglibs
	/[no]debug
	/define
	/dll
	/[no]error_limit
	/[no]exe
	/[no]extend_source
	/extfor
	/extfpp
	/extlnk
	/[no]f66
	/[no]f77rtl
	/fast
	/[no]fixed
	/[no]fltconsistency (x86 only)
	/[no]fpconstant
	/fpe
	/fpp
	/[no]fpscomp
	/[no]free
	/granularity (Alpha only)
	/help
	/iface
	/[no]include
	/[no]inline
	/[no]intconstant
	/integer_size
	/[no]keep
	/[no]libdir
	/libs
	/[no]link
	/[no]list
	/[no]logo
	/[no]machine_code
	/[no]map
	/math_library
	/[no]module
	/names
	/[no]object
	/[no]optimize
	/[no]pad_source
	/[no]pdbfile
	/[no]pipeline (Alpha only)
	/preprocess_only
	/real_size
	/[no]recursive
	/[no]reentrancy
	/rounding_mode (Alpha only)
	/[no]show
	/source
	/[no]stand
	/[no]static
	/[no]synchronous_exceptions (Alpha only)
	/[no]syntax_only
	/[no]threads
	/[no]transform_loops (Alpha only)
	/tune (Alpha only)
	/undefine
	/unroll
	/[no]vms
	/[no]warn
	/[no]watch
	/what
	/winapp

	Linker Options and Related Information
	Setting LINK Options in Microsoft Developer Studio
	Rules for LINK Options
	/ALIGN
	/BASE
	/COMMENT
	/DEBUG
	/DEBUGTYPE
	/DEF
	/DEFAULTLIB
	/DLL
	/ENTRY
	/EXPORT
	/FIXED
	/FORCE
	/HEAP
	/IMPLIB
	/INCLUDE
	/INCREMENTAL
	/MAP
	/NODEFAULTLIB
	/NOENTRY
	/NOLOGO
	/OPT
	/ORDER
	/OUT
	/PDB
	/PROFILE
	/RELEASE
	/STACK
	/STUB
	/SUBSYSTEM
	/VERBOSE
	/VERSION
	/WARN
	Module-Definition Files
	Rules for Module-Definition Statements
	DESCRIPTION
	EXPORTS
	LIBRARY
	NAME
	STACKSIZE
	VERSION

	Linker Reserved Words

	Microsoft Fortran Powerstation Command-Line Compatibility
	Using the DF or FL32 Command Line
	Equivalent Visual Fortran Compiler Options

	Performance: Making Programs Run Faster
	Software Environment and Efficient Compilation
	Install the Latest Version of Visual Fortran and Performance Products
	Compile With Appropriate Options and Multiple Source Files
	Options Related to Run-Time Performance
	Options Related to Run-Time Performance for Alpha Systems Only
	Options that Slow Run-Time Performance

	Analyze Program Performance
	Timing Your Application
	Profiling and Performance Tools
	Function Profiling
	Line Profiling
	Performance Tools
	Efficient Source Code

	Data Alignment Considerations
	Causes of Unaligned Data and Ensuring Natural Alignment
	Checking for Inefficient Unaligned Data
	Ordering Data Declarations to Avoid Unaligned Data
	Arranging Data Items in Common Blocks
	Arranging Data Items in Derived-Type Data
	Arranging Data Items in DIGITAL Fortran Record Structures

	Options Controlling Alignment

	Use Arrays Efficiently
	Improve Overall I/O Performance
	Use Unformatted Files Instead of Formatted Files
	Write Whole Arrays or Strings
	Write Array Data in the Natural Storage Order
	Use Memory for Intermediate Results
	Enable Implied-DO Loop Collapsing
	Use of Variable Format Expressions
	Efficient Use of Record Buffers and Disk I/O
	Specify RECL
	Use the Optimal Record Type

	Additional Source Code Guidelines for Run-Time Efficiency
	Avoid Small Integer and Small Logical Data Items
	Avoid Mixed Data Type Arithmetic Expressions
	Use Efficient Data Types
	Avoid Using Slow Arithmetic Operators
	Avoid EQUIVALENCE Statement Use
	Use Statement Functions and Internal Subprograms
	Code DO Loops for Efficiency

	Optimization Levels: the /optimize Option
	Optimizations Performed at All Optimization Levels
	Local (Minimal) Optimizations
	Common Subexpression Elimination
	Integer Multiplication and Division Expansion
	Compile-Time Operations
	Constant Operations
	Algebraic Reassociation Optimizations

	Value Propagation
	Dead Store Elimination
	Register Usage
	Holding Variables in Registers

	Mixed Real/Complex Operations

	Global Optimizations
	Additional Global Optimizations
	Loop Unrolling
	Code Replication to Eliminate Branches

	Automatic Inlining
	Interprocedure Analysis
	Inlining Procedures

	Loop Transformation and Software Pipelining (Alpha only)

	Other Options Related to Optimization
	Options Set by the /fast Option
	Controlling Loop Unrolling
	Controlling the Inlining of Procedures
	Arithmetic Reordering Optimizations
	Dummy Aliasing Assumption
	Requesting Optimized Code for a Specific Processor Generation (Alpha systems)
	Requesting Code Generation for a Specific Processor Generation (Alpha only)
	Loop Transformation (Alpha only)
	Software Pipelining (Alpha only)

	Creating Multithread Applications
	Basic Concepts of Multithreading
	Writing a Multithread Program
	Modules for Multithread Programs
	Starting and Stopping Threads
	Starting Threads
	Stopping Threads
	Other Thread Support Functions

	Thread Routine Format
	Sharing Resources
	Critical Sections
	Mutexes
	Semaphores
	Events
	Memory Use and Thread Stacks
	I/O Operations

	Thread Local Storage
	Synchronizing Threads
	Suspending and Resuming Threads

	Handling Errors in Multithread Programs
	Working with Multiple Processes
	Table of Multithread Routines

	Compiling and Linking Multithread Programs
	Other Sources of Information

	Programming with Mixed Languages
	Overview of Mixed-Language Issues
	Adjusting Calling Conventions in Mixed-Language Programming
	Stack Considerations in Calling Conventions
	Fortran/C Calling Conventions
	Fortran/Visual Basic Calling Conventions
	Fortran/MASM Calling Conventions

	Adjusting Naming Conventions in Mixed-Language Programming
	Visual C/C++ and Visual Basic Naming Conventions
	MASM Naming Conventions
	Summary of Naming Conventions
	All-Uppercase Names
	All-Lowercase Names
	Mixed-case Names
	Fortran Module Names
	Visual C++ Names

	Prototyping a Procedure in Fortran

	Exchanging and Accessing Data in Mixed-Language
	Passing Arguments in Mixed-Language Programming
	Using Modules in Mixed-Language Programming
	Using Common External Data in Mixed-Language Programming
	Using Global Variables in Mixed-Language Programming
	Using Fortran Common Blocks and C Structures
	Accessing Common Blocks and C Structures Directly
	Passing the Address of a Common Block

	Handling Data Types in Mixed-Language Programming
	Handling Numeric, Complex, and Logical Data Types
	Handling Fortran 90 Array Pointers and Allocatable Arrays
	Handling DIGITAL Fortran Pointers
	Handling Arrays and Visual Fortran Array Descriptors
	Handling Character Strings
	Handling User-Defined Types

	Visual Fortran/Visual C++ Mixed-Language Programs
	Fortran/Visual Basic Mixed-Language Programs
	Visual Basic User Interfaces for Fortran
	Examples of Fortran/Visual Basic Programs

	Fortran/MASM Mixed-Language Programs
	Creating a MASM Procedure
	Fortran/MASM Alignment and Return Value Considerations
	Examples of Fortran/MASM Programming

	Portability
	Standard Fortran Language
	Standard vs. Extensions
	Compiler Optimizations

	Operating System
	Storage and Representation of Data
	Size of Basic Types
	Bit, Byte, and Word Characteristics
	Big End or Little End Ordering
	Binary Representations
	Declaring Data Types

	Transportability of Data

	Using National Language Support Routines
	Single and Multibyte Character Sets
	National Language Support Library Routines
	Locale Setting and Inquiry Routines
	NLS Formatting Routines
	Multibyte Character Routines
	MBCS Inquiry Routines
	MBCS Conversion Routines
	MBCS Fortran Equivalent Routines
	Standard Fortran Routines That Handle MBCS Characters

	The Floating-Point Environment
	Representing Numbers
	Floating-Point Numbers
	Floating-Point Formats
	Floating-Point Representation
	Viewing Floating-Point Representations with BitViewer
	Special Values

	Retrieving Parameters of Numeric Representations

	Loss of Precision Errors: Rounding, Special Values,
	Rounding Errors
	ULPs, Relative Error, and Machine Epsilon

	Setting and Retrieving Floating-Point Status and Control
	Floating-Point Status Word (x86 only)
	Floating-Point Control Word (x86 only)
	Exception Parameters
	Precision Parameters
	Rounding Parameters

	Handling Arithmetic Exceptions
	Handling Floating-Point Exceptions
	Handling Run-Time Math Exceptions (x86 only)

	Intel Pentium Floating-Point Flaw (x86 only)

	Handling Run-Time Errors
	Default Run-Time Error Processing
	Run-Time Message Format
	Values Returned at Program Termination

	Methods of Handling Errors
	Using the END, EOR, and ERR Branch Specifiers
	Using the IOSTAT Specifier and Fortran Exit Codes

	Locating Run-Time Errors
	Run-Time Environment Variables

	Converting Unformatted Numeric Data
	Supported Native and Nonnative Numeric Formats
	Limitations of Numeric Conversion
	Methods of Specifying the Data Format
	Environment Variable FORT_CONVERTn Method
	OPEN Statement CONVERT Method
	OPTIONS Statement Method
	Compiler Option /convert Method

	Additional Notes on Nonnative Data

	Using Visual Fortran Tools
	Overview of Visual Fortran Tools
	Using Tools from the Command Line
	Setting Up the Command Console
	Configuring the Command Console Window
	Setting Search Paths in the Console

	Fortran Compiler and Linker
	MS-DOS Editor
	Building Projects with NMAKE
	Running NMAKE
	NMAKE Options
	NMAKE Option /A
	NMAKE Option /B
	NMAKE Option /C
	NMAKE Option /D
	NMAKE Option /E
	NMAKE Option /F
	NMAKE Option /HELP
	NMAKE Option /I
	NMAKE Option /K
	NMAKE Option /N
	NMAKE Option /NOLOGO
	NMAKE Option /P
	NMAKE Option /Q
	NMAKE Option /R
	NMAKE Option /S
	NMAKE Option /T
	NMAKE Option /X
	TOOLS.INI and NMAKE
	Exit Codes from NMAKE

	Contents of a Makefile
	Wildcards and NMAKE
	Long Filenames in a Makefile
	Comments in a Makefile
	Special Characters in a Makefile

	Description Blocks
	Targets
	Pseudotargets
	Multiple Targets
	Cumulative Dependencies
	Targets in Multiple Description Blocks
	Dependents

	Commands in a Makefile
	Command Modifiers in NMAKE
	Filename-Parts Syntax in NMAKE

	Inline Files in a Makefile
	Specifying an Inline File in Makefiles
	Creating Inline File Text in Makefiles
	Reusing Inline Files in Makefiles
	Multiple Inline Files

	Macros and NMAKE
	Defining an NMAKE Macro
	Special Characters in NMAKE Macros
	Null and Undefined NMAKE Macros
	Where to Define Macros
	Precedence in Macro Definitions
	Using an NMAKE Macro
	Macro Substitution
	Special NMAKE Macros
	Filename Macros
	Recursion Macros
	Command Macros, Options Macros
	Environment-Variable Macros

	NMAKE Inference Rules
	Defining an Inference Rule in NMAKE
	Search Paths in Inference Rules
	Predefined Inference Rules
	Inferred Dependents and Rules
	Precedence in NMAKE Inference Rules

	Dot Directives in Makefiles
	Makefile Preprocessing
	Makefile Preprocessing Directives
	Expressions in Makefile Preprocessing
	Makefile Preprocessing Operators
	Executing a Program in Preprocessing

	Resource Compiler Options
	Including Resources in an Application
	Creating a Resource-Definition File
	Preprocessing Directives
	Single-Line Statements
	Multiline Statements
	Sample Script File

	Resource Compiler Command Line
	Defining Names for the Resource Preprocessor
	Naming the Compiled Resource File
	Searching for Resource Files
	Adding a Directory to Search
	Suppressing the INCLUDE Environment Variable
	Displaying Resource-Compiler Progress Messages

	Common Resource Statement Arguments
	Common Resource Control Arguments
	Common Resource Options
	Resource Memory Properties

	Managing Libraries with LIB
	LIB Input/Output
	LIB Input Files
	LIB Output Files
	Other LIB Output
	Viewing Contents of a Library

	Running LIB
	LIB Command Line
	LIB Command Files
	Using LIB Options

	LIB Options
	LIB Option /LIST
	LIB Option /OUT
	LIB Option /REMOVE
	LIB Option /SUBSYSTEM

	Extracting a Library Member
	Import Libraries and Exports Files
	Building an Import Library and Exports File
	LIB Import-Export Option /DEBUGTYPE
	LIB Import-Export Option /OUT
	LIB Import-Export Option /EXPORT
	LIB Import-Export Option /INCLUDE

	Using an Import Library and Exports File

	Editing files with EDITBIN
	EDITBIN Command Line
	EDITBIN Options
	EDITBIN Option /BIND
	EDITBIN Option /HEAP
	EDITBIN Option /NOLOGO
	EDITBIN Option /REBASE
	EDITBIN Option /RELEASE
	EDITBIN Option /STACK

	Examining Files with DUMPBIN
	DUMPBIN Command Line
	DUMPBIN Options
	DUMPBIN Option /ALL
	DUMPBIN Option /ARCHIVEMEMBERS
	DUMPBIN Option /DISASM
	DUMPBIN Option /EXPORTS
	DUMPBIN Option /FPO
	DUMPBIN Option /HEADERS
	DUMPBIN Option /IMPORTS
	DUMPBIN Option /LINENUMBERS
	DUMPBIN Option /LINKERMEMBER
	DUMPBIN Option /OUT
	DUMPBIN Option /RAWDATA
	DUMPBIN Option /RELOCATIONS
	DUMPBIN Option /SUMMARY
	DUMPBIN Option /SYMBOLS

	Editing Format Descriptors with the Format Editor
	Starting the Format Editor from Microsoft Developer Studio

	Profiling Code from the Command Line
	Profiler Batch Processing
	Profiler Batch Files
	Profiler Command-Line Options
	PREP
	PROFILE
	PLIST

	Exporting Data from the Profiler
	Tab-Delimited Record Format
	Global Information Records
	Local Information Records
	Steps to Analyze Profiler Statistics
	Processing Profiler Output with Microsoft Excel
	Generating the Tab-Delimited Report
	Using the PROFILER.XLM Macro
	Changing the PROFILER.XLM Selection Criteria

	Fortran Tools: FSPLIT and FPR
	FSPLIT and F90SPLIT
	FPR

	PView and WinDiff
	Using WinDiff
	Expand/Outline Button
	WinDiff Colors
	WinDiff Menus

	Using PView
	Opening PView
	Process Selection
	Process Memory Used
	Process Priority
	Thread Selection
	Thread Information
	Thread Priority
	Memory Details Dialog Box

	Using the IMSL Mathematical and Statistical Libraries
	Using the Libraries from Visual Fortran
	Library Naming Conventions
	Using IMSL Libraries in a Mixed-Language Environment

	Appendix A: Compatibility Information
	Compatibility with Microsoft Fortran Powerstation
	Compatibility with DIGITAL Fortran on Other Platforms

	Appendix B: FORTRAN 77 Syntax
	FORTRAN 77 Data Types
	FORTRAN 77 Intrinsic Functions
	FORTRAN 77 Statements

	Appendix C: ASCII and Key Code Charts (WNT and W95)
	ASCII Character Codes (WNT and W95)
	ASCII Character Codes Chart 1
	ASCII Character Codes Chart 2 (IBM character set)

	ANSI Character Codes (WNT and W95)
	ANSI Character Codes Chart

	Key Codes (WNT and W95)
	Key Codes Chart 1
	Key Codes Chart 2

	Appendix D: Hexadecimal-Binary-Octal-Decimal Conversions
	Appendix E: Data Representation
	Data Representation Models
	Model for Integer Data
	Model for Real Data
	Model for Bit Data

	Data Representation
	Integer Data Representations
	INTEGER(KIND=1) Representation
	INTEGER(KIND=2) Representation
	INTEGER(KIND=4) Representation
	INTEGER(KIND=8) Representation (Alpha only)

	Logical Data Representations
	Native IEEE Floating-Point Representations
	REAL(KIND=4) (REAL) Representation
	REAL(KIND=8) (DOUBLE PRECISION) Representation
	COMPLEX(KIND=4) (COMPLEX) Representation
	COMPLEX(KIND=8) (DOUBLE COMPLEX) Representation

	Character Representation
	Hollerith Representation

	Appendix F: Summary of Language Extensions
	DIGITAL Fortran Language Extensions
	Compilation Control Statements
	Source Forms
	Characters in Names
	Character Sets
	Intrinsic Data Types
	Constants
	Derived Data Types
	Arrays
	Expressions
	Specification Statements
	Procedures
	Built-In Functions
	I/O Statements
	I/O Formatting
	File Operation Statements
	Compiler Directives
	Additional Language Features
	Intrinsic Procedures

	High Performance Fortran Language Extensions
	Data Parallel Statements
	Procedure Prefixes
	Intrinsic Procedures

	Glossary
	Glossary A
	Glossary B
	Glossary C
	Glossary D
	Glossary E
	Glossary F
	Glossary G
	Glossary H
	Glossary I
	Glossary K
	Glossary L
	Glossary M
	Glossary N
	Glossary O
	Glossary P
	Glossary Q
	Glossary R
	Glossary S
	Glossary T
	Glossary U
	Glossary V
	Glossary W

