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The demand for more Peripheral Computer Interconnect (PCI) device configurations beyond the limit set in the PCI local bus
specification has prompted the development of several PCI-PCI bridge solutions. This paper describes a new PCI Industrial Computer
Manufacturers Group (PICMG) PCI-ISA bus architecture implementation using  Digital Equipment Corporation PCI-PCI bridge
technology. Layered PCI bus architectures, PCI interrupt latency implications and performance optimizations for PCI-PCI bridge
designs are discussed. Reference will be made to Digital’s family of 64-bit Alpha Single Board Computers (SBCs) and PCI-ISA
backplanes which have been specifically designed to address multiple, low cost, high performance PCI requirements associated with
high speed communications and graphics in embedded applications.



Digital Equipment Corporation               2

Overview

Digital's Embedded and Real-Time line of business has
developed a series of modular computing products
supporting an open systems environment based upon the
PICMG PCI-ISA SBC standard.  Two goals of the Digital
Modular Computing Component (DMCC) program were
to:

� develop a number of PCI based backplane products
that would enable customers to procure and configure
industry standard PCI and ISA I/O option cards.

� provide extensive PCI I/O option card slots and
maintain optimum bandwidth/ performance for bridged
slots

Although the former requirement was a simple undertaking,
the latter provided a greater challenge to the platform
designers.  Reduction in bandwidth, however moderate,
could be encountered due to software or hardware
inefficiencies i.e. degraded interrupt servicing (latency) or
propagation/timing delay due to the bridge implementation.

The choice of Digital PCI-PCI bridge chip adequately
meets the required timing specification, however interrupt
lines derived from secondary bus devices are not routed
through the Digital PCI-PCI bridge chip.

This allowed the designers to thoroughly review and
improve upon the standard interrupt binding strategy for
PCI buses, where multiple devices might have to share
interrupt lines.

The PICMG single board computer connector has only four
interrupt lines assigned to it: INTA#, INTB#, INTC# and
INTD#, as does each PCI slot connector.

A routing or binding strategy is required to connect
between the PCI option I/O and the SBC INTX# line it
uses when requesting an interrupt.

In hardware terms, Figure 1, PICMG Single PCI Bus
Interrupt Binding, shows how this structure is intended to
be provided.

Figure I PICMG Single PCI Bus Interrupt Binding

The IDSEI line per slot is assigned to AD[31:28] as per the
PICMG Specification.  These are used to identify device
numbers as given in the configuration address.

The system firmware (or BIOS) code must assume an
interrupt binding architecture for its environment.  The
PICMG specified binding for the primary PCI bus (PCI
Bus 0) is shown in Figure 1, i.e. it is hard coded.  Because
only the firmware (or BIOS) knows how the PCI INTX#
lines are routed to the system controller, a mechanism is
required to inform the operating system device driver of an
interrupt occurrence.  This mechanism typically requires a
chained 'software' search of each device using a specific
hardware interrupt to identify the source.

This can be achieved by having the firmware/BIOS poll all
PCI devices to determine which originated the interrupt
request and then initiate the correct interrupt service
routine, or alternatively, have the operating system kernel
interrupt dispatch routine sequentially call each individual
device interrupt service routine until the correct source has
been identified and serviced. (The latter example is
implemented by Microsoft Windows NT).

The binding structure becomes even more congested when
additional (bridged) PCI buses are implemented in
accordance with the PCI-to-PCI Bridge Architecture
Specification Revision I.O. Their PCI bus interrupts must
be connected as per Figure 2, Secondary PCI Bus Interrupt
Binding.

INT D

INT C

INT B

INT A

INT D

INT C

INT B

INT A

INT D

INT C

INT B

INT A

INT D

INT C

INT B

INT A

D1

C1

B1

A1

SBC SLOT 1 SLOT 2 SLOT 3 SLOT 4

AD28AD29AD30AD31

ML013967



Digital Equipment Corporation 3

Figure 2 Secondary PCI Bus Interrupt Binding

This secondary binding architecture must be overlaid upon
the respective primary slot binding that the bridge now
occupies.  The net effect being illustrated in the example
for one PCI-to-PCI bridge in Figure 3, PCI-to-PCI Bridge
implementation.

Figure 3 PCI-to-PCI Bridge Implementation

The use of the wire-OR (sometimes also known as shared)
binding design, means that the polling and decode of an
interrupt request can be significantly less than optimal.
The latency for this operation is also unpredictable, i.e.
with N PCI slots, determining the originator of the PCI
interrupt request could take a minimum of 1, up to a
maximum of (N-1) bus read cycles.

An alternative solution was investigated in order to improve
upon this industry standard binding architecture to avoid
compromising PCI interrupt latency performance in large
PCI systems. (Any proposal would take cognisance of, and
retain support for, the traditional wire-OR scheme.)
The design goal was to provide improved performance
while maintaining an open system architecture capable of
supporting both existing and alternative modes.

Interrupt Controller

Assumptions/Limitations

The interrupt controller must be able to support up to 4
primary PCI devices, a primary PCI device being either a
PCI bridge or a physical connector.  Each PCI bridge can
have up to 4 secondary devices implemented behind the
bridge.

The largest configuration would mean a maximum of 16
individual PCI connectors, as demonstrated in Figure 4,
Maximum Allowable PCI Configuration.

Figure 4 Maximum Allowable - PCI Configuration

This implies a maximum of 64 PCI interrupt sources.  A
controller that can service all of these product scenarios, or
some subset thereof, must do the following:

�� support up to 4 primary devices
�

�� be able to identify whether a primary device is either

INT D

INT C

INT B

INT A

INT D

INT C

INT B

INT A

INT D

INT C

INT B

INT A

INT D

INT C

INT B

INT A

D

C

B

A

SLOT S1 SLOT S2 SLOT S3 SLOT S4

S_AD28S_AD29S_AD30S_AD31

ML013968

INT D

INT C

INT B

INT A

INT D

INT C

INT B

INT A

INT D

INT C

INT B

INT A

D

C

B

A

D1

C1

B1

A1

SBC SLOT 2 SLOT 3 SLOT 4

AD28AD29AD30

INT D

INT C

INT B

INT A

INT D

INT C

INT B

INT A

INT D

INT C

INT B

INT A

INT D

INT C

INT B

INT A

SLOT S1 SLOT S2 SLOT S3 SLOT S4

S_AD28S_AD29S_AD30S_AD31

ML013969

Bridge
Chip

ML013970

PCI
Device

PCI
Device

PCI
Device

PCI
Device

PCI Bus 4

PCI
Device

PCI
Device

PCI
Device

PCI
Device

PCI Bus 3

PCI
Device

PCI
Device

PCI
Device

PCI
Device

PCI Bus 2

PCI
Device

PCI
Device

PCI
Device

PCI
Device

PCI Bus 1

PCI
Bus 0

PCI-PCI
Bridge 4

Single
Board

Computer

PCI-PCI
Bridge 3

PCI-PCI
Bridge 2

PCI-PCI
Bridge 1



Digital Equipment Corporation 4

�� an on-board PCI-PCI bridge (with up to 4
'bridged' secondary connectors behind it)    OR

�� physical connector

�� be able to uniquely identify each of the 16 potential
interrupts that can be generated from a PCI bridged
device (i.e. four interrupts from each of the 4 secondary
devices)   AND

�� be able to uniquely identify each of the 4 potential
interrupts that come from a physical connector

This implies that the controller will have the following:

�� a register (or similar feature) to detail whether a
primary device is a physical connector or an on-board
PCI-PCI bridge
�

�� a register (or similar feature) for each primary device
(i.e. 4 in total) to provide status for each PCI interrupt
supported by that primary device.  Note that the
requirements for a bridged device are very different
from those for a non-bridged device and the format of
the register will be different for each case.
�

�� a register (or similar feature) to identify which
primary device caused an interrupt (i.e. to prevent
having to read all 4 interrupt registers to determine the
interrupt source).

The backplanes developed as part of the DMCC program
are intended for use with many operating systems and
non-Alpha single board computers.

Therefore, they must also be compliant with the shared
interrupt scheme as defined in the PICMG PCI-ISA Card
Edge Connector Proposal for Single Board Computer
(SBC) Specification, Revision 2.0 and PCIPCI Bridge
Board Edge Connector for Single Board Computer
Specification.

To meet this two fold requirement the proposed controller
supports two unique modes of operation with some means
of switching between them.  For convenience this was
determined to be software selectable.

The default mode, at power-up, makes the backplane
compliant to the PICMG specification.  This will be known
as PICMG Mode.

Operating systems (OS) needing to make use of the
interrupt controller must explicitly switch, via software, to
the desired mode of operation.

A bonus of this design is that the hardware is (in simple
terms) a form of hardware interrupt accelerator usable by
multiple operating systems and hardware platforms, if their
corresponding BIOS or firmware code is appropriately
configured.  This mode is known as the Accelerator Mode.
Generic Architecture

The basic form of the Interrupt controller is shown in
Figure 5, DMCC Interrupt Controller Block Diagram.  The
interrupt controller is split into multiple functional blocks,
each section's usage being dependent on the desired mode of
operation; either PICMG Mode or Accelerator Mode.
These modes are mutually exclusive and are discussed in
the following sections.

Figure 5 DMCC Interrupt Controller Block Diagram

The example and illustrations used throughout this paper
refer to a specific Alpha 21064A PICMG PCI-ISA single
board computer implementation.  The concepts are generic
and can be fully utilised by alternative platforms.  In Figure
5, the interrupt controller functionality is shown within the
shaded area and is physically located on the backplane; the
System I/O and CPU are resident on the actual SBC.
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PICMG Mode

This is the default mode for the Interrupt Controller on
power-up.  The Register Logic blocks are disabled and all
inputs are fed into the Interrupt Routing Logic block.  It
implements the necessary binding to be compliant with the
appropriate PICMG specification (as per figures I & 2) and
addresses the routing for 64 individual interrupt request
lines to 4 outputs, i.e. the four SBC INTX#.  When in this
mode, the Interrupt Controller appears as shown in Figure
6, DMCC Interrupt Controller Block Diagram - PICMG
Mode.

Interrupt Registers

The Master Interrupt Register and Interrupt Registers 1
through 4 are not available and have no meaning when
accessed (i.e. writes are not stored and reads give
indeterminable results).

Configuration Register

The Configuration Register again has no real meaning in
this mode, however it is always active since it is the means
to switch to Accelerator mode.  See later for details on
how this is achieved.

PCI Interrupt Routing

In PICMG mode, PCI device interrupts are taken directly
to the Interrupt Routing Logic where they are simply wire-
ORed, to provide INTA, INTB, INTC and INTD, as
specified in the PICMG PCI-ISA Card Edge Connector
Proposal for Single Board Computer (SBC) Specification,
Revision 2.0 and PICMG PCI-PCI Bridge Board Edge
Connector Proposal for Single Board Computer (SBC),
Revision 1. These are routed to the System I/O IRQ lines in
the demonstration example provided.

Figure 6 DMCC Interrupt Controller Block Diagram
PICMG Mode

Accelerator Mode

The interrupt controller or Accelerator Mode can be
enabled via software only.  To enable this mode, the
Control Register must be written to, prior to enabling
interrupts.

When in this mode the Interrupt Controller looks as shown
in Figure 7, DMCC Interrupt Controller Block Diagram -
Accelerator Mode.

Figure 7 DMCC Interrupt Controller Block Diagram
Accelerator Mode

ML013972

Interrupt Register 4

Interrupt Register 3

Interrupt Register 2

Interrupt Register 1

Configuration Register

Master Interrupt Register

Interrupt Controller

Interrupt Routing Logic

PCI Device 4
(16 Interrupts)

PCI Device 3
(16 Interrupts)

PCI Device 2
(16 Interrupts)

PCI Device 1
(16 Interrupts)

21064A
CPUSystem I/O

SIO
Intel 82378ISA Interrupts

PCI-ISA Interrupt

IRQ<2>
IRQ<1>

PCI INT A thru D

ML013973

Interrupt Register 4

Interrupt Register 3

Interrupt Register 2

Interrupt Register 1

Configuration Register

Master Interrupt Register

Interrupt Controller
Int 4

Int 3

Int 2

Int 1

Interrupt Routing Logic

PCI Device 4
(16 Interrupts)

PCI Device 3
(16 Interrupts)

PCI Device 2
(16 Interrupts)

PCI Device 1
(16 Interrupts)

21064A
CPUSystem I/O

SIO
Intel 82378ISA Interrupts

PCI-ISA Interrupt

IRQ<2>
IRQ<1>

PCI Interrupt



Digital Equipment Corporation 6

The software sequence for enabling Accelerator Mode is
shown in Figure 8, Accelerator Mode - Software Enabling

Sequence.

Figure 8 Accelerator Mode - Software Enabling
Sequence

All registers are implemented as 32 bit registers
addressable in ISA space. (The interrupt controller could as
easily have been implemented as a PCI device, however it
would then be counted as a full PCI device load and could
have had an adverse impact on the total 10-load limit.)

Configuration and Master Interrupt Register

Table 1, Configuration and Master Interrupt Register,
defines the register bit allocation.  The Configuration
Register is always active and is the only means of
controlling the Interrupt Controller's behaviour.  The
Configuration and Master Interrupt Register is located at
ISA I/O address 0500h - 0503h.

Apart from having the mode enable bit (MODE), it also
stores the high order ISA I/O address bits for Interrupt
Registers 1 through 4 (ADR[15:4]).  The low order address
bits (ADR[3:0]) are fixed at 0000, 0100, 1000, 1100
respectively.

The backplane configuration details are stored in
CFG[4:1], (bits [19:16] of the Configuration Register),
defining which primary PCI slots are connectors and which
are bridge chips i.e. which have four versus sixteen
potentially active interrupt lines.

Table I Configuration and Master
Interrupt Register

In PICMG Mode, the PCIE bit defines
whether the four INTX# interrupts are
routed to the System I/O or whether the
one PCI interrupt line is routed directly to
the CPU.  In typical PICMG applications
ISA interrupts are heavily used and the
PCEE bit can free up to four ISA
interrupts.  It is always set in Accelerator
Mode.

MSKEN is used to support interrupt polling.  When
enabled, the interrupt status bits in the four interrupt
registers are dependent upon their corresponding MASK
bits.  When disabled, they match the status of the interrupt
source.

The Master Interrupt Register is only enabled when in
accelerator mode.  This register gets its input from the 4
Interrupt Registers and is used to determine which Interrupt
Register should be read to find the source of the PCI
interrupt.

INT[D:A] reflects the status of the corresponding Interrupt
Register[4:1], i.e. INTD status is the logical ORing of the
sixteen Interrupt Status bits stored in Interrupt Register 4.
INT[D:A] can be correspondingly masked by MINT[D:A].

In this way the PCI interrupt source can be determined in
two ISA read cycles; one to the Master Interrupt Register
and one to the specific Interrupt Register.

Interrupt Registers[4:1]

Each of the 4 Interrupt Registers represents a primary PCI
device.  The following table maps the primary PCI device
to it's associated Interrupt registers.  The address of these
interrupt registers is defined by the contents of the ADR
bits in the Configuration Register.
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Table 2, Interrupt Register Mapping,                 defines the
Configuration Space Address for each of the primary PCI
devices and gives an example of possible ISA I/O addresses
for each Interrupt register.

Table 2 Interrupt Register Mapping

The exact format of each interrupt register is dependent on
whether a primary PCI device is a physical PCI connector
or a PCI-PCI bridge.  The format of Interrupt Register 1
through 4 is defined by the CFG bits within the
Configuration Register.  This can be used to determine the
exact configuration of the backplane, and hence the
number of potentially active interrupt lines.  Table 3,
Interrupt Registers[4:1], defines the register bit allocation.

Table 3 Interrupt Registers[4: 11].
If the primary PCI device is a connector, the Interrupt
Register stores only the status and MASK bits for four
interrupt lines, i.e. only bits [3:0] and [19:16] have any
meaning.

Figure 9 Interrupt/ Mask Operation

When the primary PCI device is a PCI-PCI bridge, the
corresponding Interrupt Register must store the status of up
to 16 interrupt lines for 4 secondary connectors
implemented behind the PCI-PCI bridge and also the
MASK bits for each individual interrupt line (i.e. all [31:0]
bits are valid).

The interrupt STATUS bits [15:0] are ANDed with their
corresponding 16 Interrupt Register MASK bits.  The
results of each AND operation are then ORed together to
form a single INTX# signal that is routed to the Master
Interrupt Register, as illustrated in Figure 9 Interrupt /
Mask Operation.

Note : If a multifunction option card (i.e. an option with a
bridge) is plugged into a physical connector, there is
support for the 4 primary interrupts from behind its on-

board bridge.  If more than four interrupts are used (i.e. via
sharing), they are not supported.

Accelerator Interrupt Decode

Hardware Interrupt Architecture

In Accelerator Mode, INT[D:A] in the Master Interrupt
Register reflects the status of the corresponding Interrupt
Register[4:1] (i.e. INT[D:A] status is the logical ORing of
the sixteen Interrupt Status bits stored in each Interrupt
Register [4: 1]).

This two stage interrupt register strategy allows rapid
decoding of the interrupt source without expanding any
individual register set beyond 32 bits.

Figure 10 Interrupt Decode Schematics
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The INT[D:A] interrupt status bits are ANDed with their
corresponding 4 Master Interrupt Register MASK bits.
The results of each AND operation are then ORed
together to form the PCI interrupt request signal that is
routed to a single IRQ on the CPU, as illustrated in Figure
10 Interrupt Decode Schematics.

The final logical routing of the Master Interrupt register is
not limited by the MSKEN bit status.  Routing of the
INT[D:A] interrupts is determined only by the value of the
interrupt status bit and it's corresponding mask bit.

Firmware/BIOS Interrupt Decode

The interrupt accelerator decode architecture influences the
host CPU firmware/BIOS, and is usually transparent to the
target operating system.  The firmware/BIOS must
implement a decode routine as per Figure I 1 Software
Decode Steps.

Figure 11 Software Decode Steps - Accelerator Mode

The predictable and repeatable time to dispatch the
appropriate interrupt vector (service routine), after receipt

of an interrupt request, is two bus read cycles.  The decode
operation logically occurs in parallel with the read cycle.

Interrupt Latency

The interrupt dispatch latency is the elapsed time from
receipt of an interrupt request t-o dispatch to the interrupt
service routine.

The interrupt service latency is the elapsed time from entry
of the interrupt service routine to its completion.

Exact interrupt latency, for a given system configuration,
will be operating system dependent (i.e. the interrupt
service latency may vary significantly between operating
systems even when the dispatch latency in firmware/BIOS
is identical).

Operating systems vary in interrupt service routine
efficiency and can be equally dissimilar across hardware
platforms.  The interrupt accelerator optimises the
hardware aspect of this process.

PICMG Mode

The wire-ORed binding strategy is not optimal in large PCI
slot configurations and most PCI-PCI bridge
implementations.

It directly impacts the achievable interrupt dispatch
latency, and some interrupt service methodologies (e.g.
round robin, etc.) can further reduce efficiency in these
types of environments.
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The dispatch latency is also unpredictable i.e. with N PCI
slots, determining the originator of the PCI interrupt
request could take a minimum of 1, up to a maximum of
(N-1) bus read cycles.

Figure 12 Software Decode Steps - PICMG Mode

The interrupt dispatch latency in very large systems can
result in severe degradation of the system performance.
This is caused by I/O devices 'stalling' because they cannot
get serviced efficiently.  In extreme configurations, a
particular device may 'never' get its interrupt serviced,
resulting in failure of that functionality (e.g. a network
card may 'drop' in-coming packets or a serial line may
'drop' received characters).

Accelerator Mode

The accelerator architecture offers predictable and
consistent interrupt dispatch latency resulting in higher
performance for large PCI configurations. Predictability is
key in most real-time applications.

The corresponding accelerator interrupt dispatch latency is
always two Bus read cycles.

Physical Implementation

This paper is not intended to imply any particular physical
implementation.  The generic functionality for a PICMG
application can be implemented either as an ISA or PCI
based device, however it could also be supported in
alternative bus architectures.

Summary

Standard motherboard implementations provide PCI
interrupt binding (for the firmware/BIOSI decode in the
physical etch routing).

This binding structure becomes congested when additional
(bridged) PCI buses are implemented in the system.  This
means that the polling and decode of an interrupt request

can be significantly less than optimal.  The interrupt
latency is also unpredictable.

The proposed interrupt accelerator design described in this
paper results in the predictable, repeatable (consistent) and
improved interrupt dispatch latency, key for real-time
applications.
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