
DIGITAL AlphaServer for Intranet Search
White Paper: The Effect of Memory Capacity on the Search Response Time
of an Intranet Search-engine Server running in the Windows NT™ Environment

Table of Contents

Abstract ...2

Introduction...3

A Search Engine Primer ..4

Response-time Test ..5

Response-time Test Results..7

Response-time Test Conclusions ..9

2

Abstract

DIGITAL customers who are planning to implement intranet
search solutions need to better understand the implications of
memory capacity on search response time. To provide this
information, engineers at DIGITAL’s Computer Special
Systems (CSS) group conducted search-response-time charac-
terization tests on the DIGITAL AlphaServer™ for Intranet
Search platform using 128 MB and 512 MB memory configura-
tions on an AlphaServer 800 running Windows NT 4.0 and the
AltaVista™ Search Intranet Private eXtensions software.

The study used two indexes of different sizes: Index 1 con-
tained 70,589 web pages while Index 2 contained 129,706 web
pages. In theory, the higher the memory capacity, the greater
the workload that can be handled. For this particular study,
though, the two indexes were both small enough to fit in 128
MB physical RAM (or nearly so). Thus there was no dramatic
improvement in response time between the 128 MB and the
512 MB memory configurations except at lower loads. Scaling
up to 512 MB is indicated if index size will be significantly
larger than Index 2, either initially or as growth occurs.

The results of the testing will serve to help customers imple-
ment appropriately sized servers for their projected indexing
requirements.

A similar study was carried out in the DIGITAL UNIX®

environment using an AlphaServer 4000 system. This study
is described in a white paper accessible on the World Web
Wide at http://www.digital.com/info/.

Introduction

Any organization installing an intranet search engine should do
so only after developing a plan for long-term growth. There
may be a surprising surge of use as users discover the search
engine and come to rely on it for an increasing number of
searches.

As time goes on, legacy data may be connected to web pages.
Some of this may be dynamic, but a good measure may be sta-
tic, or at least static enough to be targeted by a search engine.

As the index size increases, disk utilization will increase as
well. Not so obvious is the fact that an intranet’s index might
come to be seen as mission-critical. In this case, various disk
redundancy approaches may be needed. Furthermore, the search
computer itself may need to assure high availability.

As an index grows, the load of search requests can become
greater than originally anticipated. At this point, disk perfor-
mance can be improved by a variety of means including an effi-
cient compression scheme. This compression should not, how-
ever, unduly impact the time required for a search.

For a user, the elapsed search time (search request latency) is
critical. If routine searches take too long — for any reason —
the usefulness of the search engine is compromised. The search
engine platform may have to be upgraded if performance suf-
fers. This could include adding more memory, processors, disk
controllers, or other resources. Or the bottleneck affecting
search-request latency may be network bandwidth available to
the search engine.

A newly installed intranet search engine might need only an
Ethernet connection at first. As usage rises, though, it would be
wise to have a plan in place for upgrading bandwidth in a num-
ber of ways. A faster controller might help or a dedicated port
on a switch might be necessary. One can quickly run out of
simple solutions as the source of the bottleneck moves “out-
ward” into the entire network infrastructure. Local or enterprise
routers, or WAN connections into the building, might be over-
taxed. It’s even possible that another building’s network might
begin to see noticeably heavier use as the occupants discover
the new search engine.

It is impossible to anticipate every possible network and
client/server configuration. But to help quantify the perfor-
mance characteristics of intranet search implementations for
planning purposes, it is useful to have a baseline characteriza-
tion of some component of the overall system. The most obvi-
ous and quantifiable component is search-engine server mem-
ory, the subject of this study.

The next section of this report presents “A Search Engine
Primer.” If you are familiar with AltaVista search engine tech-
nology, you can skip this section.

3

A Search Engine Primer

The AltaVista search engine consists of three components.

The data collector
The first component is the data collector, also known as a
crawler, robot, or “super-spider.” The AltaVista Search Service
data collector, dubbed “Scooter” by DIGITAL, is the fastest
known super-spider in existence. The data collector finds web
pages by following URL cross-references from one or more
starting pages. One of the many things that must be done by
this component is to eliminate duplications, that is, to notice
when a “URLed” page has already been visited.

The indexer
The second component is the indexer. This component retrieves
the entire text of all found web pages (as determined by the
data collector) and indexes all words therein. Obviously, most
words will have been found on more than one web page, a fact
that must be considered in the design of the index.

The query interface
The third component is the query interface. This component
encompasses the graphical user interface that most users see. It
operates on the index (as built by the indexer) and supplies
URLs and other information about web pages which match the
criteria requested by the user.

More information is available
For a detailed explanation of the AltaVista search engine,
we recommend the following book, The AltaVista Search
Revolution, by Richard Seltzer, Eric J. Ray, and Deborah S.
Ray, published by Osborne/McGraw-Hill.

To experience AltaVista on the Internet, go to
www.altavista.digital.com.

4

Response-time Test

Test Platform
The test platform consisted of a single-CPU AlphaServer 800
model 5/400 MHz (Alpha 221164 CPU) running AltaVista
Search Intranet Private eXtensions v1.0b SP2 software as the
search engine.

The AlphaServer 800 ran BIOS v5.28. The disk drive was a
reserved 2 GB RZ28M-S on a Qlogic ISP1020 PCI controller
(fast wide SCSI, firmware v4001). This spindle was non-com-
pressed NTFS, different from the system/swap spindle. The
operating system was Windows NT v4.00.1381 (build 381 aka
SP1). Performance was set for maximum boost for foreground
applications, and to maximize throughput for networking (as
opposed to file I/O). Tests were run on two memory configura-
tions: 128 MB and 512 MB.

AltaVista Search has a feature designed to provide fairness by
subnet. This feature had to be overridden for use with one sub-
net containing a large number of requests. In httpd/config the
following settings were employed:

Sockets 100
Threads 20
SubnetSockets 100
SubnetThreads 10

Test Overview
The team built a private FDDI intranet comprising several
nodes (Figure 1). The only traffic on the test intranet was that
which resulted from the test trials. FDDI was selected as the
network medium to minimize any bandwidth-limitation effect.

Figure 1: Test network topology

The characterization testing set out to determine response times
for the AltaVista intranet product under varying workloads and
memory configurations. Workloads are defined by the number
and frequency of browser-based search requests on the test index.

This testing did not require a large number of computers
because varying workloads were simulated by a small program
with two main functions. First, to generate a search request and,
second, to record the elapsed time from request initiation to
reply reception. The program does not utilize any other
resources, such as an X display.

Load-generator Nodes and the Phrase Pool
We created a “phrase pool” consisting of a large number of
search-phrase lists. For each trial, load-generator nodes created
many separate executing shells, each emitting a “stream” of
search requests from the phrase pool in such a way that no
search phrase is ever re-used during the trial. This eliminates
the possibility of the server anticipating repeat requests.

Index
The index itself was acquired from within the Digital
Equipment Corporation intranet, and consisted of a mix of
pages, mostly technical in nature, of varying sizes. Two differ-
ent sized indices were created for use in different scenarios.
•
Index 1 contained 70,589 web pages
•
Index 2 contained 129,706 web pages

Server
The AltaVista Search engine was run on the AlphaServer 800
server. The executables and, most important, the entire index,
were placed on a separate disk drive to minimize the effect of
other system activity such as swapping. The system was “tuned”
for the task at hand, overriding as required those default values
which are more appropriate for other general purposes.

At the start of each trial, the target disk drive was deleted
and restored from a save area, thus assuring that all files were
in the same disk locations. For any one scenario, the available
system memory was varied over multiple trials for each
product configuration.

5

FDDID Concentrator

AlphaServer
800

test unit

Client

Load
Generator

Node 1

Load
Generator

Node 2

Load Generators
Two nodes were used to generate a large “background” load,
i.e., many search requests per time unit. For each scenario, a
number of trials were run, varying the number of request
streams starting from a nominal low point and ending when the
request load pushed the response time into an “unacceptable”
range of many seconds.

Client
A separate client node was lightly loaded to minimize any inter-
ference between the load generation and the response-time
measurement of a sample request stream.

Response time recording
A stream of 100 non-recurring search phrases was sent to the
server while the load generators were sending their background
load. The response time for these 100 requests was recorded
automatically. The actual timing of the start of each request was
randomized by the method of waiting for an operator to press a
key. This approach was independently checked for reliability,
and was found to be reproducible within a few percent.

Data Analysis
For each trial, the actual generated load was computed automat-
ically as the number of TCP connections made during a three-
minute time period. The values from each of the two load gen-
erators were added to form the total load measured in requests
per hour.

For that trial, the 100 client response times were subject to two
calculations. First, a simple arithmetic mean (average) was
computed. Then the 100 response times were sorted by value
and the 11th slowest time captured. 90 percent of the requests
were handled within this time, while 10% required longer. As
a further check of this method, the 10th and 9th slowest times
were also recorded. In actual trials, no anomalies (such as a big
jump among these three numbers) were seen.

One such trial, for a given scenario, would thus produce an
average time and a “90%” time for a particular load (in hits per
hour). Repeating the trial with a different number of search-
request streams on the load generators would produce another
such data point. Finally, all of the data points for each given
scenario were plotted.

Limitations: Screen-rendering time
Note that the elapsed time measured by the test program does
not include one important aspect of real browser operation,
namely the time to “paint” the screen, i.e., render the HTML.
Screen-rendering time is very dependent on client computer
characteristics including CPU, memory, and video resolution
and speed so we decided to exclude this time. In a real network
of thousands of users, each browser would be running on a sep-
arate computer and this screen-rendering time would be spread
over all these nodes. The extra time impact would only affect
each user once.

Limitations: Network bandwidth
Note also that bandwidth limitations of various network equip-
ment, including the chosen media, server controllers, and espe-
cially dial-up modems if employed, will all serve to mask the
actual underlying performance of the search engine. Modems
are usually employed as only one final link to the user, in which
case that delay would only affect each user once. However,
where a WAN link is insufficiently sized for the intended traffic,
a significant global impact will occur.

6

Response-time Test Results

The “Wall”
All of the graphs generated by this study have a characteristic
shape, relatively flat and only slowly increasing with greater
load, until a point at which the response time sharply increases
with only small increases in the load. This point is termed the
“wall” of maximum load (for a given test scenario).

X-axis Load Indirectly Controlled
An oddity of the data points is that the X-axis, described as
load or hits/hour is, in fact, not directly controlled by the test
bed. Instead, each trial can attempt a particular load, by starting
a certain number of request streams on each load generator.
However, the method of running request streams doesn’t allow
for the variable delay which occurs as a result of the server’s
load (due to other streams). Therefore, the actual load must be
measured during the test trial.

Y-axis Two Values: Average and 90%
For each actual measured load in a trial series, two Y-axis
response time values are plotted: the arithmetic mean or aver-
age, and the “90%” threshold. The former is always lower, i.e.,
represents a faster response time.

Backward Slope at High Attempted Loads
Another oddity of the graphs is that most show a negative slope
at the high end of the plotted line. This occurs because, after a
certain point, increasing the attempted load (by a larger number
of request streams) actually decreases the actual load.

Noise at High Attempted Loads
Most graphs show some “noise” at very high loads, i.e., after
the point at which the load approaches the wall of maximum
load. This is probably the result of miscellaneous effects which
are hard to quantify (but fortunately are small). Possibilities
include the exact coincidence of requests and other system
activities such as swapping and various time-outs.

Small Index Test
This is actually a decent sized index containing 70,589 indexed
web pages.

128 MB Memory Size: Small Index

Graph 1 shows that this memory size with this index size has
good response time (about .5 second) up to the wall of maxi-
mum load at about 170K hits/hour (about 47 per second).

Graph 1: AltaVista Search Server AlphaServer 800
(128 MB memory) 70k-pages index on WNT 4.0

512 MB Memory Size: Small Index

Graph 2 shows that this memory size with this index size has
no improvement over the smaller memory size. The wall of
maximum load is the same as for 128 MB in Graph 1. Some
noise is seen at the highest loads.

Graph 2: AltaVista Search Server AlphaServer 800
(512 MB memory) 70k-pages index on WNT 4.0

7

6

5

4

3

2

1

0

0 20 40 60 80 100 120 140 160 180 200

Average

90%

R
e

sp
o

ns
e

 T
im

e
 -

se
co

nd
s

Load - k-hits per hour

Load - k-hits per hour

6

5

4

3

2

1

0

0 20 40 60 80 100 120 140 160 180 200

Average

90%

R
e
sp

o
ns

e
 T

im
e

 -
se

co
nd

s

Medium Index Test
This medium sized index describes 129,706 web pages.

128 MB Memory Size: Medium Index

Graph 3 shows that this memory size with this index suffers
even at low load, when compared to the smaller index in
Graphs 1 and 2. The wall of maximum load is much lower.

In this case, the maximum load is about 120K hits/hour (about 33
per second). The backward slope at higher loads is very apparent.

Graph 3: AltaVista Search Server AlphaServer 800
(128 MB memory) 129k-pages index on WNT 4.0

8

512 MB Memory Size: Medium Index

Graph 4 shows that this memory size with this index size has no
improvement over the smaller memory size. The wall of maxi-
mum load is the same as for 128 MB in Graph 3. Some noise is
seen at the highest loads.

Graph 4: AltaVista Search Server AlphaServer 800
(512 MB memory) 129k-pages index on WNT 4

Load - k-hits per hour

6

5

4

3

2

1

0

0 20 40 60 80 100 120 140 160 180 200

Average

90%

R
e

sp
o

ns
e

 T
im

e
 -

se
co

nd
s

Load - k-hits per hour

6

5

4

3

2

1

0

0 20 40 60 80 100 120 140 160 180 200

Average

90%

R
e

sp
o

ns
e

 T
im

e
 -

se
co

nd
s

Response-Time Test Conclusions

This characterization testing set out to determine response times
for the AltaVista intranet search engine under varying work-
loads and memory configurations. Workloads are defined by the
number and frequency of browser-based search requests on the
test index.

As we have seen, all of the graphs generated by this study have
a characteristic shape: relatively flat and only slowly increasing
with greater load, until a point at which the response time
sharply increases with only small increases in the load, indi-
cated by the “knee” in the graph. This point is termed the wall
of maximum load (for a given test scenario). Response time
performance for any given index size and memory configura-
tion eventually hits the wall.

In theory, the higher the memory capacity, the greater the work-
load that can be handled. For this particular study, though, the
two indexes were both small enough to fit in 128 MB physical
RAM (or nearly so). Thus there was no dramatic improvement in
response time between the 128 MB and the 512 MB memory con-
figurations except at lower loads reaching half the wall. Scaling
up to 512 MB is strongly indicated if index size will be signifi-
cantly larger than Index 2, either initially or as growth occurs.

CPU utilization was also measured during some trials. We
determined that CPU utilization approached 100% at the maxi-
mum supported load for each memory configuration, regardless
of index size. This implies that the characterizations for this
computer are appropriate and indicates that one would probably
not achieve appreciably better search processing by adding
memory or any other resource.

9

This is a publicly available document and may be freely distributed unchanged, provided
the document source information is retained. The information in this document is subject
to change.

DIGITAL believes the information in this publication is accurate as of its publication
date; such information is subject to change without notice. DIGITAL is not responsible
for any inadvertent errors. The products described in this publication may change due
to enhancements in technology. For the most current information, contact your nearest
DIGITAL sales office.

DIGITAL conducts its business in a manner that conserves the environment and protects
the safety and health of its employees, customers, and the community.

DIGITAL, the DIGITAL logo, AlphaServer, and AltaVista are trademarks of Digital
Equipment Corporation. DIGITAL UNIX is an X/Open UNIX 93 branded product.

UNIX is a registered trademark licensed exlusively by X/Open Company, Inc.
Windows NT is a trademark of Microsoft Corporation. Pr

in
te

d
in

 U
.S

.A
. E

C
-Z

80
19

-3
6

05
 x

.x
 C

op
yr

ig
ht

 1
99

7
D

ig
ita

l E
qu

ip
m

en
t C

or
po

ra
tio

n

