�

Multimedia

Writing Video Capture Drivers and Applications �for Windows 95 and Windows NT

March 3, 1995�Revision: 1.0

Information in this document is subject to change without notice and does not represent a commitment on the part of Microsoft Corporation. The software described in this document is furnished under license agreement or nondisclosure agreement. The software may be used or copied only in the accordance with the terms of the agreement. It is against the law to copy the software on any medium except as specifically allowed in the license or nondisclosure agreement. �

No part of this document may be reproduced or transmitted in any form or by any means, electronic or mechanical, including photocopying and recording, for any purpose without the express written permission of Microsoft Corporation.

This document is for informational purposes only. Microsoft makes no warranties, expressed or implied in this document.�

Microsoft, MS, MS-DOS, and the Microsoft logo are registered trademarks and Windows is a trademark of Microsoft Corporation. Other trade names mentioned herein are trademarks of their respective manufacturers.

Copyright (1995 Microsoft Corporation. All Rights Reserved.

�

Table of Contents

� TOC \o "1-3" �

Video Capture Architecture	� GOTOBUTTON _Toc318791118 � PAGEREF _Toc318791118 �5��

Video Capture Under Windows 95	� GOTOBUTTON _Toc318791119 � PAGEREF _Toc318791119 �5��

16 Bit vs. 32 Bit Video Capture in Windows 95	� GOTOBUTTON _Toc318791120 � PAGEREF _Toc318791120 �6��

Plug and Play Support	� GOTOBUTTON _Toc318791121 � PAGEREF _Toc318791121 �6��

Video Capture Under Windows NT	� GOTOBUTTON _Toc318791122 � PAGEREF _Toc318791122 �7��

Creating Capture Applications: Use AVICap32.DLL	� GOTOBUTTON _Toc318791123 � PAGEREF _Toc318791123 �8��

The AVICap32 Capture Loop	� GOTOBUTTON _Toc318791124 � PAGEREF _Toc318791124 �8��

Commands and Callbacks	� GOTOBUTTON _Toc318791125 � PAGEREF _Toc318791125 �9��

Using SMPTE Time Codes and Other Information Chunks	� GOTOBUTTON _Toc318791126 � PAGEREF _Toc318791126 �11��

Synchronizing Video with Audio	� GOTOBUTTON _Toc318791127 � PAGEREF _Toc318791127 �11��

Changed Behavior of capGetDriverDescription(Index...)	� GOTOBUTTON _Toc318791128 � PAGEREF _Toc318791128 �11��

Creating Capture Drivers for Windows 95	� GOTOBUTTON _Toc318791129 � PAGEREF _Toc318791129 �12��

Sample Capture Drivers	� GOTOBUTTON _Toc318791130 � PAGEREF _Toc318791130 �12��

The Auravision Sample Driver	� GOTOBUTTON _Toc318791131 � PAGEREF _Toc318791131 �12��

Installing Capture Drivers	� GOTOBUTTON _Toc318791132 � PAGEREF _Toc318791132 �12��

Version Checking	� GOTOBUTTON _Toc318791133 � PAGEREF _Toc318791133 �13��

Switching Between Capture and Codec	� GOTOBUTTON _Toc318791134 � PAGEREF _Toc318791134 �13��

Synchronization	� GOTOBUTTON _Toc318791135 � PAGEREF _Toc318791135 �13��

Dropped Frames	� GOTOBUTTON _Toc318791136 � PAGEREF _Toc318791136 �14��

Benchmarks and Standards	� GOTOBUTTON _Toc318791137 � PAGEREF _Toc318791137 �14��

Tools for Testing	� GOTOBUTTON _Toc318791138 � PAGEREF _Toc318791138 �14��

Device/Driver Testing for the Windows 95 Logo	� GOTOBUTTON _Toc318791139 � PAGEREF _Toc318791139 �15��

Optimizing Performance (Speed)	� GOTOBUTTON _Toc318791140 � PAGEREF _Toc318791140 �16��

Buffer Size And Contiguity	� GOTOBUTTON _Toc318791141 � PAGEREF _Toc318791141 �16��

Reducing Scatter / Gather	� GOTOBUTTON _Toc318791142 � PAGEREF _Toc318791142 �16��

Reducing File Fragmentation	� GOTOBUTTON _Toc318791143 � PAGEREF _Toc318791143 �16��

New Feature for Contiguous Files	� GOTOBUTTON _Toc318791144 � PAGEREF _Toc318791144 �16��

Choosing Hardware	� GOTOBUTTON _Toc318791145 � PAGEREF _Toc318791145 �17��

Data Rate	� GOTOBUTTON _Toc318791146 � PAGEREF _Toc318791146 �17��

Cache	� GOTOBUTTON _Toc318791147 � PAGEREF _Toc318791147 �17��

Striping	� GOTOBUTTON _Toc318791148 � PAGEREF _Toc318791148 �17��

Tools	� GOTOBUTTON _Toc318791149 � PAGEREF _Toc318791149 �17��

What's in the Future?	� GOTOBUTTON _Toc318791150 � PAGEREF _Toc318791150 �18��

Call to Action	� GOTOBUTTON _Toc318791151 � PAGEREF _Toc318791151 �18��

Using VCapTst.EXE	� GOTOBUTTON _Toc318791152 � PAGEREF _Toc318791152 �20��

What is Tested	� GOTOBUTTON _Toc318791153 � PAGEREF _Toc318791153 �20��

Description	� GOTOBUTTON _Toc318791154 � PAGEREF _Toc318791154 �20��

Requirements	� GOTOBUTTON _Toc318791155 � PAGEREF _Toc318791155 �20��

Instructions	� GOTOBUTTON _Toc318791156 � PAGEREF _Toc318791156 �20��

Troubleshooting	� GOTOBUTTON _Toc318791157 � PAGEREF _Toc318791157 �20��

Expected Results	� GOTOBUTTON _Toc318791158 � PAGEREF _Toc318791158 �20��

Using AVCapTst.EXE	� GOTOBUTTON _Toc318791159 � PAGEREF _Toc318791159 �22��

What is Tested	� GOTOBUTTON _Toc318791160 � PAGEREF _Toc318791160 �22��

Requirements	� GOTOBUTTON _Toc318791161 � PAGEREF _Toc318791161 �22��

Instructions	� GOTOBUTTON _Toc318791162 � PAGEREF _Toc318791162 �22��

Interactive Mode vs. Non-Interactive Mode	� GOTOBUTTON _Toc318791163 � PAGEREF _Toc318791163 �22��

Automatic Testing	� GOTOBUTTON _Toc318791164 � PAGEREF _Toc318791164 �23��

Testing Capture Performance	� GOTOBUTTON _Toc318791165 � PAGEREF _Toc318791165 �23��

Testing from the Command Line	� GOTOBUTTON _Toc318791166 � PAGEREF _Toc318791166 �23��

Choosing From Several Devices	� GOTOBUTTON _Toc318791167 � PAGEREF _Toc318791167 �24��

Testing Driver Installation	� GOTOBUTTON _Toc318791168 � PAGEREF _Toc318791168 �24��

Troubleshooting	� GOTOBUTTON _Toc318791169 � PAGEREF _Toc318791169 �25��

Examining/Verifying Results:	� GOTOBUTTON _Toc318791170 � PAGEREF _Toc318791170 �25��

Expected Results	� GOTOBUTTON _Toc318791171 � PAGEREF _Toc318791171 �25��

Using DiskPerf.EXE	� GOTOBUTTON _Toc318791172 � PAGEREF _Toc318791172 �26��

Test Options	� GOTOBUTTON _Toc318791173 � PAGEREF _Toc318791173 �26��

��

Writing Video Capture Drivers and Applications �for Windows 95 and Windows NT

Windows 95 and Windows NT offer significant improvements over Video for Windows 1.1 video and audio capture:

Faster data rate

Support for 32 bit capture applications

Portability of capture applications between Windows NT and Windows 95

Plug and Play support (with Windows 95)

With Windows 95 and Windows NT, Microsoft is committed to providing the system services you need for high-quality video capture and editing. We’re helping you reduce configuration and setup problems, and providing platforms that give your multimedia drivers and applications the speed they need. If you have more questions about video capture, please email hipervid@microsoft.com.

Video Capture Architecture

In Windows 95 and Windows NT, the capture architecture uses AVICap32.DLL to provide the power of 32 bit processing. Existing 16 bit applications are still supported by the 16-bit version of this DLL, AVICap.dll. However, only 32 bit applications that use AVICap32.dll will benefit from the substantial capture performance improvements that have been made. Applications using AVICap32.dll are portable without modification or even recompiling on x86 versions of Windows 95 and Windows NT.

In Windows 95 and Windows NT video capture, the capture device is opened by AVICap32 and passed a number of buffers. The device fills each buffer in turn and passes it back to AVICap32. AVICap32 then writes the contents of the buffer to an AVI file, and returns the buffer to the capture driver for reuse.

Video Capture Under Windows 95

In Windows 95, 32-bit capture uses Win32 file APIs. This allows non-buffered I/O to disk. Write operations are sector-aligned, and page-aligned buffers are allocated. Together these reduce the need for the disk subsystem to copy the data before it is written to disk. Contiguous memory is allocated when possible, which reduces scatter/gather activity by the disk subsystem.

With high bandwidth capture devices, performance of existing capture programs is improved just by running them on Windows 95, thanks to the faster disk drivers. A really big improvement in performance comes with the Windows 95 capture architecture, which eliminates many of the bottlenecks that existed in Video for Windows 1.0.

New in Windows 95 is the capability for capture devices to optionally allocate capture buffers using on-board memory, rather than using buffers allocated from the system heap. Using on-board memory instead of system RAM generally eliminates one copy operation per video frame. This feature is most useful for devices with enough onboard memory to handle more than five frames. The new messages, DVM_STREAM_ALLOCBUFFER and DVM_STREAM_FREEBUFFER, are supported by both the 32 bit and the 16 bit versions of AVICap in Windows 95.

16 Bit vs. 32 Bit Video Capture in Windows 95

Windows 95 supports both 16 bit and 32 bit applications. The architecture is shown in the following diagram.

�

Applications make calls to AVICap32 (or AVICap). The DLL in turn uses MSVideo. (MSVideo.DLL is a 16 bit library; calls from AVICap32 are passed to it through thunks.) MSVideo then uses calls to a 16-bit capture driver.

This structure allows 32 bit applications to use both 16 bit codecs and 32 bit codecs. The video capture and wave drivers are 16 bit only at this time.

NOTE: The videoxxx() API functionality in VfW 1.0 has been supplanted by AVICap32.DLL. Calls to the DLL are easier for most applications developers to use. Do not use the videoxxx() APIs. They are unavailable in Win32. Use calls to AVICap32 instead.

Plug and Play Support

When a driver is first opened, it is sent a DRV_OPEN message with a pointer to a VIDEO_OPEN_PARMS structure. To support Plug and Play, and to allow multiple instances of the same hardware to coexist in one system, the VIDEO_OPEN_PARMS structure has been expanded to include a dnDevNode field. The driver uses this value in calls to the Configuration Manager to retrieve its assigned resources such as memory window, IRQs, DMA, and ports.

Note that the contents of the VIDEO_OPEN_PARMS structure is identical to the ICOPEN structure used by video codecs. This allows you to optionally have a single driver that performs both capture and codec functions, by switching to the appropriate component based on the fccType field. Or, you can write separate drivers for the capture and codec functions.

Codecs can be 16 or 32 bit, but video capture drivers and wave drivers must be 16 bit. A single DriverProc call can be used for video capture and video codec only if all components are 16 bit. The Truevision Bravado source code, included with the VfW 1.1 Developers Kit, has some commented out sample code demonstrating how to combine codec and capture into one driver.

Video Capture Under Windows NT

Windows NT versions 3.5 and later support video capture, and offer the same improvement in performance over Windows 3.1 as Windows 95. Both Windows NT and Windows 95 use the Win32 APIs and share many features that improve performance. The asynchronous disk I/O capability in the Windows NT architecture promises additional performance advantages.

VIDCap32.EXE and AVICap32.DLL are used in Windows NT exactly as in Windows 95, but the underlying video capture driver in Windows NT is different in that it is divided into Ring 3 and Ring 0 layers. This reflects the separation of the kernel that is an essential feature of Windows NT architecture. The following diagram illustrates video capture under Windows NT:

�

In Windows NT, VIDCap32.EXE (or any other 32 bit capture application) uses calls to AVICap32, which in turn controls a capture driver that has both Ring 3 (*.DLL) and Ring 0 (*.SYS) components. These custom drivers must be written for hardware devices that are intended for use with Windows NT.

Two video capture helper libraries are provided for Windows NT: VCUser handles Ring 3 activity, and VCKernel handles Ring 0 activity. Sample Windows NT capture drivers are available on the October 1994 MSDN disk 2/2 (Premium Release).

Capture performance on Windows NT is as good as that on Windows 95. As more capture drivers become available for Windows NT, both platforms will be widely used (especially since they can use the same 32 bit capture applications).

Creating Capture Applications: Use AVICap32.DLL

For high-performance capture applications, use AVICap32.DLL. Your 32 bit application can run on both Windows 95 and Windows NT, without any rewrites and without recompiling, if you use AVICap32. A 16 bit version of this library (AVICap.DLL) is available for backward compatibility, but new applications should use the 32 bit version, since it offers much greater capture speed. VIDCap.EXE in the Windows 95 SDK uses the 32 bit DLL for this reason.

The AVICap32 Capture Loop

The main capture loop in AVICap32.dll contains all the functionality required to perform a streaming capture and is described below in pseudocode. Applications invoke this loop with the capCaptureSequence() command. This example assumes that capture results are streamed to disk and that all callbacks have been activated. Many details have been omitted such as the complete list of parameters used by each function, error checking, the numerous methods that can be used to terminate capture, MCI device control, asynchronous disk write operations, passing completed wave and video headers back to their respective devices, writing completed buffers after the capture loop is exited, and status and error messages.

Pseudocode for Capture Loop

// Allocate, prepare, and add video buffers�if (VideoDriverCanAllocateMemory)�	VideoDriverAllocateBuffers(CAPTUREPARMS.wNumVideoRequested);�else�	HeapAllocateVideoBuffers(CAPTUREPARMS.wNumVideoRequested);�VideoStreamInit();�PrepareVideoBuffers();�AddVideoBuffers();��// Allocate, prepare, and add audio buffers�HeapAllocateAudioBuffers (CAPTUREPARMS.wNumAudioRequested);�waveInOpen();�PrepareAudioBuffers();�AddAudioBuffers();��OpenCaptureFile();�

if (CAPTUREPARMS.fMakeUserHitOKToCapture)�	ShowHitOKToCaptureDialog();��CallBackOnControl (CONTROLCALLBACK_PREROLL);�waveInStart();�videoStreamStart();��// The main loop�while (TRUE) {�	if (lpVideoHdr.dwFlags & VHDR_DONE) {�		if (lpVideoHdr.dwTimeCaptured > ExpectedTimeForFrame())�			WriteDummyFrames();�		if (fSoftwareCompressingFrames)�			CompressUsingICM();�		CallbackOnVideoStream();�		WriteVideoFrame();�	}�	// Only draw the frame if nothing else to do�	if (!(lpNextVideoHdr.dwFlags & VHDR_DONE)) �		DrawVideoFrame();��	// Process ALL available wave buffers�	while (LPWAVEHDR.dwFlags & WHDR_DONE) {�		CallbackOnWaveStream();�		WriteAudioBuffer();�	}�	if (!CallbackOnYield ())�		break;�	if (!CallbackOnControl (CONTROLCALLBACK_CAPTURING)�		break;�	if(AnyErrors())�		break;�	if (TimeToQuitCapture())�		break;�} // end main loop��// Clean Up�videoStreamReset();�audioStreamReset();��videoStreamFini();�UnPrepareVideoBuffers();�FreeVideoBuffers();��UnPrepareAudioBuffers();�waveInClose();�FreeAudioBuffers();��WriteCaptureFileHeader();�WriteCaptureFileIndex();�CloseCaptureFile();�

Commands and Callbacks

Windows created using the AVICap window class can:

Connect to capture drivers

Preview and overlay video

Capture video and audio streams to an .AVI file

Manipulate palettes

Save DIBs

Here's a quick overview of the commands and callbacks available in the AVICap DLLs. For a full description, see the Windows 95 SDK.

The call capGetDriverDescription() is used to get a description of the drivers already available on the system. The following example uses TCHAR so that it runs on both Windows NT and Windows 95. It uses capGetDriverDescription() repeatedly to build a list of available drivers, which is presented to the user who can then choose from the list.

TCHAR szDeviceName [80];�TCHAR szDeviceVersion[80];��for (wIndex = 0; wIndex < 10; wIndex++) {� if (capGetDriverDescription(� wIndex,� szDeviceName,� sizeof (szDeviceName) /sizeof (TCHAR),� szDeviceVersion, � sizeof (szDeviceVersion) /sizeof (TCHAR)

) {� // append the name to a list � // of installed drivers� }

To create a capture window, use the call capCreateCaptureWindow(), as in the following example. The syntax is very similar to the CreateWindow() call.

hwndC = capCreateCaptureWindow (� (LPTSTR) TEXT("MyCapWin"), // if popup� WS_CHILD | WS_VISIBLE, // style

 0, 0, 160, 120, // position� (HWND) hwndParent, // parent� (int) nID); // Child ID

Once the capture window has been opened, you send messages to it as you would to any other window. Macros are supplied to encapsulate the SendMessage functions.

Here are a few of the other commonly used commands:

To do this�
Use this command�
�
Connect to a driver�
capDriverConnect (hwndC, wIndex);�
�
Capture to an .AVI file�
capCaptureSequence (hwndC);�
�
Capture a single DIB to a file�
capFileSaveDIB (hwndC, szName);�
�
Disconnect from a driver�
capDriverDisconnect (hwndC);�
�
You can do multiple connects and disconnects. It is even possible to have multiple capture windows simultaneously active.

AVICap32 also offer a number of optional callbacks. For example, in a video conferencing application you could use the commands capSetCallbackOnVideoStream() and capSequenceNoFile() to stream video buffers back to your application without writing them to an AVI file. While AVICap32 supports control of MCI video sources such as videodiscs and VCRs, you can also use the capSetCallbackOnCapControl () command for precise preroll and postroll control of media sources. These allow you, for example to do preroll on the media (for example reading SMPTE time codes) after all the preliminary opens and allocations are done but before actually capturing data.

You can also set callbacks on status, errors, yield, or wave with the associated commands:

capSetCallbackOnStatus ()

capSetCallbackOnError ()

capSetCallbackOnYield ()

capSetCallbackOnWave ().

Using SMPTE Time Codes and Other Information Chunks

When capturing from an MCI device, AVICap32 inserts a SMPTE time code (hours:minutes:seconds:frames) into the .AVI file. Capture applications that control preroll and postroll can insert their own SMPTE information, as in the following example:

CAPINFOCHUNK cic;

cic.fccInfoID = infotypeSMPTE_TIME;

cic.lpData = "00:20:30:12";

cic.cbData = strlen (cic.lpData) +1;

capFileSetInfo (hwndC, &cic);

In addition, AVICap32 inserts chunks of ISFT and IDIT information, which you can view with the RiffWalk -x command. The ISFT chunk gives the name and version number of the driver used to capture the file, along with the name of the capture application. The IDIT chunk contains a timestamp of when the file was captured. AVICap32 automatically inserts these chunks.

Synchronizing Video with Audio

If you are capturing both audio and video, you should be aware that the crystal frequency on audio cards, especially older cards, can vary by as much as 1% to 5%. If left uncorrected, this discrepancy between audio and video rates can cause synchronization problems on playback.

To address this problem, AVICap32 modifies the video frame rate specified in the .AVI file after capture is completed. It divides the number of seconds of audio actually captured by the number of frames of video captured (including dropped frames) to determine the corrected video frame rate. This results in a video frame rate which may show a slight discrepancy from the requested frame rate. This type of correction is termed “audio master”, since the audio stream is unmodified, and the video frame rate is modified to match the audio duration. Even if the audio sample clock is substantially in error, this correction will insure proper file synchronization on playback. If a title must meet rigid frames-per-second requirements, be sure to use a sound card with an accurate frequency rate. In most cases, this is simply a matter of using a newer sound card.

For applications that require it, AVICap32 includes the option of not modifying the video frame rate. See the CAPTUREPARMS.AVStreamMaster flag for more details.

Changed Behavior of capGetDriverDescription(Index...)

Because Windows 95 allows driver information to be listed in both SYSTEM.INI and in the Registry, the behavior of the capGetDriverDescription(Index...) call to AVICap has been changed. In Windows 3.1, the index corresponded to the enumeration number in the msvideox= line in the [Drivers] section of that file. If there are drivers listed in both SYSTEM.INI and the Registry, the index number won't necessarily match the x in the msvideox= line in SYSTEM.INI. Therefore, there is no longer any correspondence between the msvideo number and the index value you supply in this call. Drivers for Plug and Play devices are listed first, and would correspond to lower values of Index in the call; they are followed by other drivers in the Registry, and finally the drivers listed in SYSTEM.INI.

Creating Capture Drivers for Windows 95

Capture cards and drivers for Windows 95 should support Plug and Play. This means that the devices need to include a VxD. The VxD reports back to your driver the resources (interrupts, memory, etc.) that are available on the system, and it is used by the system to negotiate the allocation of resources.

Windows 3.1 capture drivers can be used with Windows 95, although they cannot participate in Plug and Play.

Sample Capture Drivers

The Auravision sample driver, included in the Windows 95 DDK, can be used as a basis for your own capture drivers, or you can just study it before starting work on an all-new driver. The VfW 1.1 Developers’ Kit included a sample capture driver for the Truevision Bravado and Creative Labs VideoBlaster. While this older driver does not handle Plug and Play, it is generally simpler and more straightforward than the Auravision driver.

The Auravision Sample Driver

The Auravision chipset is used in a number of cards including Orchid Videola and Diamond VideoStar (pro). The sample driver for this chipset has three components, located in \DDK\MMEDIA\SAMPLES\AURAVIS in the Windows 95 DDK: AVCapt.DRV (in the \DRV subdirectory), AVWin.DLL (in the \AVWin subdirectory), and AVVxp500.VXD (in the \VXD subdirectory).

The significant entry points for AVCapt.DRV are DriverProc(), WEP(), and the Interrupt Service Routine (ISR).

AVWin.DLL is a helper file specifically for the Auravision driver; you probably will not need to deal with it directly.

AVVxp500.VXD is written in a mixture of C and assembler, and is loaded at boot time so that it can participate in negotiations for system resources. It intercepts the interrupt services and redirects them back to the capture driver. It resides in Ring 0, and is full 32 bit code.

In the sample driver, AVVxp500.VXD is only used for handling contention and Plug and Play, but you can have it do more of the work in the interrupt service routine. For example, your driver could perform the frame copy operation within the VxD, and then only return to the Ring 3 DLL to mark the buffer done and execute the frame completion callback.

The entry points are passed to the .VXD as in the following example:

pVxDEntry = GetVxDEntry(AVVXP500_DeviceID);

GetVxDInfo(pVxDEntry, &devInit);

Installing Capture Drivers

In Windows 3.1 and Windows NT 3.5, capture drivers were typically installed using the Drivers icon Control Panel. Windows 95 initiates installation for Plug and Play cards. For “legacy” cards in Windows 95, use the Install New Hardware icon in the Control Panel.

Manufacturers of new drivers for Windows 95 should provide an INF file so that the necessary information can be copied to the Registry during installation, and to make sure your IRQ, memory, and DMA requirements are detectable.

To ensure backward compatibility, drivers that are listed in the [Drivers] section of the SYSTEM.INI file are also supported: the Multimedia applet in the Control Panel copies any driver information in SYSTEM.INI to the Registry.

The Multimedia applet lets users install up to ten drivers and lists them for the user. (If a driver is listed in both the Registry and SYSTEM.INI, and the fully qualified paths are the same, it is only enumerated once.) Plug and Play drivers are listed first, by name + enumeration number. This allows multiple instances of a driver, accessing different pieces of hardware. After the Plug and Play drivers, drivers for devices that are not Plug and Play are listed as “msvideo” + enumeration number. A Disabled field in the key for the driver allows Plug and Play drivers to be disabled without being uninstalled.

To find information about installed video capture drivers in the Registry, look in HKEY_LOCAL_MACHINE\System\CurrentControlSet\Control\MediaResources\msvideo. Do not write directly to the Registry. (This is only one of the places in the Registry where video driver information is stored.)

Make sure your devices meet Plug and Play criteria:

Do not use jumpers on a device intended for Plug and Play; it defeats the concept.

Never use AUTOEXEC.BAT, CONFIG.SYS, or DOS drivers to supply configuration information.

Always use an INF file to provide configuration information for the Registry.

Make sure your driver is Plug and Play compliant.

Version Checking

VfW components must perform version checking during installation. Check the version of any files already on the system and do not install old versions over new. If you simply copy files without checking version numbers, you can create wide-ranging and catastrophic effects on the target system, with a resulting high level of customer dissatisfaction. For example, you might crash the system on which the driver is installed. The easiest way to check versions is with the Sterling’s Install Shield, which is included in the Windows 95 SDK. You can also use the Verxxx functions. But you must check version numbers.

Switching Between Capture and Codec

End-users frequently need to look at video that has just been captured, and then immediately begin capturing again. Therefore, capture drivers that implement a single hardware overlay need to provide for a smooth and quick transition between overlay within the capture window and overlay in the playback window.

Synchronization

In Windows 95, synchronization depends on a time value expressed in milliseconds, which is returned in the VIDEOHDR.dwTimeCaptured field associated with each frame. It is the responsibility of the capture driver to accurately compute this time value by counting every vertical sync pulse in the incoming video. The value is computed by the following formula, assuming interrupts are generated on a frame basis:

VIDEOHDR dwTimeCaptured = VSYNC_Count * (1/29.97 NTSC or 1/25 PAL)

It is therefore critical that VSYNC_Count be accurate. To ensure that it is:

�SYMBOL 183 \f "Symbol" \s 10 \h�	Do not turn off interrupts except in very brief intervals.

�SYMBOL 183 \f "Symbol" \s 10 \h�	Always increment VSYNC_Count even if you are still processing the previous frame. In this case, set a flag while you are processing a frame, so that when you increment VSYNC_Count you can get out if your interrupt service routine is entered recursively.

�SYMBOL 183 \f "Symbol" \s 10 \h�	To monitor the timestamps returned by your driver, the timestamps expected by AVICap32.dll, and a count of frames dropped, you can enable logging to the clipboard by setting a flag in Win.ini:

	[avicap.32]

	Clipboardlogging=1

Dropped Frames

When frames are dropped by the driver, AVICap32 detects that a frame has been dropped and inserts a “dropped frame” placeholder. During playback, when one or more dropped frame placeholders are encountered the last captured frame is redisplayed until the next captured frame is reached. Codecs also reuse the last captured frame in this instance.

Each dropped frame placeholder occupies only 8 bytes in the capture file; if there are two or more consecutive dropped frames they are stored in the same sector. (Each captured frame, or block of dropped frames, starts on a new sector). The draw devices and codecs will not see the dropped frames unless you parse the AVI file manually.

Benchmarks and Standards

A video capture driver should be able to capture 320 x 240 pixel 8-bit (palletized) video at 15 fps for 15 seconds without dropping any frames, if the clips are to be used for CD-ROM or multimedia. These assume that a contiguous 20MB capture file has been pre-allocated. If the captured data is to be edited and used in video, 640 x 480 at 30 fps should be supported. The capture file needs to pre-allocated for <duration of the video in seconds> * 1.2 MB.

Vendors need to clearly identify which of these standards -- CD-ROM / multimedia or video -- their driver supports. They should provide their customers with the minimum and maximum data rate (for a given hardware configuration) for each of the capture formats the driver supports. And, of course, capture drivers should be able to support the leading third-party applications.

The capture driver must respond correctly to all of the AVICap32 and AVICap APIs. It also needs to be compatible with the JPEG and YUV specifications.

Tools for Testing

Any video capture driver designed for use with Windows 95 or Windows NT must work well with the AVICap32 APIs, since they are the basis of capture applications on these operating systems. Two tools, VCaptTst.EXE (only for Windows 95 capture drivers) and AVCapTst.EXE, are available to help you test your driver against these APIs. Instructions on the use of these tools are included at the end of this paper. See the most recent Windows 95 SDK or DDK for these tools, or find them on Compuserve (go winmm, lib 4) or via ftp (ftp://ftp.microsoft.com/developr/drg/multimedia).

Because VCapTst and AVCapTst test both the application level API and the low level driver capabilities, they indicate the capabilities of the driver under the most extreme conditions.

VCaptTst tests the driver for support of all the standard video capture driver messages used by the Video for Windows driver model, along with limited testing of parameter validation. It does not test for support of custom messages that might be sent by a particular application. This test can be used starting early in the development cycle.

Later in the development cycle, use AVCapTst to test actual capture rate that your driver can offer applications that use the AVICap32 or AVICap APIs. AVCapTst verifies that the video capture driver responds correctly to each AVICap API. For example, it verifies that:

The capture driver can be selected from inside an application.

Audio and video formats can be changed.

Palettes can be created and applied.

Single frames as well as video sequences can be captured.

MCI controlled captures can be done.

Live video can be seen in overlay or preview mode.

In addition, a performance test accessible through the Performance option in the Capture menu estimates the video capture performance of the device and driver on a particular system.

There are several variations of AVCapTst. For Windows 95 capture drivers, use both AVCapT16 and AVCapT32 to test the driver using AVICap and AVICap32 APIs. For drivers written to use Windows NT, use AVCapT32 or AVCapTNT.

Device/Driver Testing for the Windows 95 Logo

Video capture cards may be sent to the Microsoft Compatibility Lab (MCL) for testing, in order for the packaging to display the Windows 95 and/or Windows NT logo. For more information please contact MCL at

MICROSOFT CORPORATION�One Microsoft Way�Redmond, WA 98052-6399�Attention: Windows Logo Department

The fee for testing capture cards for compliance with the Windows 95 logo requirements has not been set, but will be somewhere between $1,000 and $2,000. Testing will include the following:

Cards will be tested for Plug-and-Play compliance.

Video capture throughput will be measured and the results will be reported only to the card’s vendor, who will be told if the card is relatively slow. These results will be kept confidential. Slow drivers will be able to qualify for the Windows 95 logo, but Microsoft is actively working to improve the throughput and quality of capture cards.

Compatibility with the AVI JPEG file spec is required. For 30 field JPEG, Mediamatics, Miro, and VideoLogic are known to be in spec. For 60 field JPEG, TrueVision will supply sample movies once the JPEG spec has been revised. YUV 4:2:2 JPEG implementations are encouraged over YUV 4:1:1. All current generation JPEG chips support YUV 4:2:2. Compatibility will be checked by playing representative movies on the candidate card and on compliant cards.

The cards will be tested with AVCapTst, VCaptTst, AVIedit, and VIDCap. This will test all compression formats that a card can support, such as YUV 4:2:2 and JPEG. In addition, representative commercial capture/editing applications will be used to test for capabilities such as step capture, realtime capture, scrubbing preview, and clip playback. Long test scripts will be followed using one 16 bit commercial application and two 32 bit commercial applications.

If the capture card simultaneously captures audio and video, the audio system will be thoroughly exercised.

Your capture card will be installed and tested on at least 3 different hardware configurations. If your card does not have on-board audio, we will supply three different audio cards, including a SoundBlaster 16.

Windows NT capture drivers are NOT required for a Windows 95 logo.

Contact MCL for any additional information you need concerning submission requirements, test hardware configurations, and test suites used to test devices submitted for certification.

Optimizing Performance (Speed)

Performance depends on both the hardware you’re using and on the drivers and application code. We have some suggestions for hardware selection, and also some tricks that AVICap32 uses. Any application that relies on rapid data streaming will benefit from these techniques.

Buffer Size And Contiguity

The Win32 file APIs offer improved performance when using contiguous buffers. Here are a few tips:

�SYMBOL 183 \f "Symbol" \s 10 \h�	Use FILE_FLAG_NO_BUFFERING with the CreateFile call. This forces all writes to be sector-aligned.

�SYMBOL 183 \f "Symbol" \s 10 \h�	Use big buffers (64 kB or more).

�SYMBOL 183 \f "Symbol" \s 10 \h�	Keep scatter/gather operations at 17 or fewer -- ideally by using a contiguous block of memory

�SYMBOL 183 \f "Symbol" \s 10 \h�	Don't do memory copies. P5/90 can only do memory copies at about 15 MB per second.

Reducing Scatter / Gather

Scatter/gather operations covering more than 17 memory locations result in inefficiencies at the driver as the data is written to disk. In Windows 95, AVICap32 uses a VxD to allocate a physically contiguous block of memory for video captures, so that scatter / gather is not a problem.

Reducing File Fragmentation

Fragmented files can seriously degrade video capture performance. Maintain contiguous files whenever possible. It is generally a good idea to have one large contiguous file dedicated to capture; data is copied from this file to another, possibly non-contiguous file when the capture is complete. In general:

Either pre-allocate your capture file, or grow it in 512 kB chunks. Windows 95 will allocate contiguous disk space whenever possible.

Remember that there is a 2 GB limit on partition size in Windows 95; for compatibility with MS-DOS tools there's also a 32 kB limit on cluster size. This means an effective 2 GB limit on file size. Windows NT permits larger partitions; however AVI files larger than 2 GB have not been tested and might not be recognized.

As installable file systems are developed for video capture, problems with file fragmentation will be resolved by the file system itself.

New Feature for Contiguous Files

To cache the entire FAT for a file when reading or writing, AVICap32 seeks to the last byte of the file and reads (or writes) one byte. You can also use this technique in your own code, as in the following example:

CreateFile ();

SetFilePointer (); //to end of file

WriteFile (); //write just one byte

CloseHandle ();

When you do this for a newly allocated file, the file will be contiguous if possible. This feature is new with the Windows 95 file system. To further help eliminate file fragmentation, Windows 95 can perform either background or foreground defragmentation. Developers of capture applications can advise their end-users to use the following procedure to defragment a disk: From the Start menu, choose Programs. Then choose, in sequence, Accessories, System Tools, and finally Disk Defragmenter. To do a quick check of file fragmentation, they can use the chkdsk filename command.

Choosing Hardware

The hardware you (or your customers) use is of course a major factor in video capture performance. Here are a few things to keep in mind:

Data Rate

You'll want to base your multimedia capture drivers and applications on the fastest possible bus. VESA and EISA busses are better than ISA, but PCI busses are faster and more likely to be used in the future. Although some of the older PCI chipsets are slow, bus rates of over 40 MB per second are possible.

You'll also want a fast drive controller, with protect mode drivers. IDE drives are usually too small and too slow. SCSI 2, with synchronous negotiation and bus mastering DMA, is a good choice. If you have a bus mastering device, instead of having to do a read, write operation you can just do a bus master write operation directly into the video buffer. Wide drives double the data transfer rate, giving about 15% overall improvement.

A high data transfer rate is important, but it is also important that the data rate be consistent. Make sure data is transferred smoothly as well as quickly.

Cache

We’ve seen drives with as much as 1 MB of memory. A large cache on the driver improves speed, but there’s no obvious speed improvement to larger cache on the drive controller. Look for a drive with 5400 or 7200 RPM and a 512 kB or 1 MB drive buffer.

Striping

Striping is the use of multiple disks for a single logical drive. Information is written to each disk in turn, which helps avoid bottlenecks at individual disks. Windows NT has striping capability built in, and striping is a priority issue for future versions of Windows 95.

Two-head parallel (2HP) drives, such as the Seagate Barracuda 2HP, allow two simultaneous read/write operations, with a resulting remarkable improvement in performance over drives without this feature. This is essentially “striping” on a single disk, at the hardware level.

Some third-party vendors offer a complete subsystem (drive, controller, and so on) that, when installed, looks like a striped drive to the operating system. These can be an improvement over regular single drives, but the 2HP drives generally offer better performance.

Whenever any variety of striping is available, use it. It will improve performance noticeably.

Tools

Several tools are available from Microsoft for developers of multimedia capture drivers and capture applications. See the most recent Windows 95 SDK or DDK for these tools, or find them on Compuserve (go winmm, lib 4) or via ftp (ftp://ftp.microsoft.com/developr/drg/multimedia).

The Windows 95 SDK contains three sample capture applications. VIDCap.EXE is the reference capture application which exercises all capabilities of your capture driver. VIDCap.EXE is now a client of AVICap32, and should be viewed as the primary reference application. CapCpp.EXE is a C++ capture application which allows multiple capture windows to be created, and CapTest.EXE is a simplified test application. A version of the screen capture utility CapScrn.EXE has been updated to 32 bit and is included along with the associated driver ScrnCap.DRV.

You can also use tools supplied for general use in the Windows 95 operating system. For example, DiskPerf.EXE measures Win32 disk performance and measures memory to memory copies. Instructions on using DiskPerf are included at the end of this paper.

Two tools, VCaptTst.EXE (only for Windows 95 capture drivers) and AVCapTst.EXE, are available to help you test your driver against the AVICap32 APIs. Instructions on the use of these tools are included at the end of this paper.

The Riffwalk command dumps RIFF chunks for you to view. For example, the command

Riffwalk -f2 -m filename.avi

looks at RIFF chunks to the second level of hierarchy (-f2) and expands the movie list (-m) in the file filename.AVI.

What's in the Future?

We hope to see in the near to mid future the capability to capture directly to system RAM, without memory copies. With the advent of PCI the requirement of large quantities of dedicated RAM on capture boards is eliminated. Since PCI can burst data up to 132 MB/sec, system RAM can be used effectively instead.

We also hope to see an Installable File System (IFS) better suited to large files and data streaming. We are investigating this now, either as a feature supplied by Microsoft or as a third-party solution.

Call to Action

Multimedia provides a wide-open market to innovative hardware and software manufacturers. Specifically, this market will reward hardware developers who:

�SYMBOL 183 \f "Symbol" \s 10 \h�	Port Windows NT RAID miniport drivers to Windows 95

�SYMBOL 183 \f "Symbol" \s 10 \h�	Design capture cards that do not use onboard RAM

Design PCI bus audio cards with accurate crystals

�SYMBOL 183 \f "Symbol" \s 10 \h�	Make drives that do not require thermal recalibration

�SYMBOL 183 \f "Symbol" \s 10 \h�	Make drives tuned for write, as well as read, operations.

Software developers can take advantage of this market by:

Port existing applications to 32 bit (Win32) for greater speed.

Make your new applications Windows 95 logo compliant:

Make them Win32 executable

Follow the Windows 95 UI Style Guidelines.

Follow the Windows 95 Setup Guidelines.

Support long filenames.

Test and run on Windows NT v3.5 as well as Windows 95.

Support OLE 2.0.

Enable Universal Naming Convention (UNC).

For details, please see the document on the Windows 95 Logo Technical Criteria, available in the locations listed below. In general, these locations will always include the most up to date information available on the Logo.

On the Internet use ftp or the World-Wide-Web (ftp://ftp.microsoft.com/PerOpSys/Win_News, http://www.microsoft.com).

On The Microsoft Network, open Computers and Software, Software Companies, Microsoft, Windows 95, WinNews.

On CompuServe, type GO WINNEWS.

On Prodigy JUMP WINNEWS.

On America Online, use keyword WINNEWS.

On GEnie, download files from the WinNews area under the Windows RTC.

�
Using VCapTst.EXE

What is Tested

This application tests the driver for support of all the standard video capture driver messages that can be sent by any video capture application. It does not test any custom messages that a video capture application might send to a particular set of drivers. It also does some testing of parameter validation by the video capture driver. Actual testing of video capture needs to be done separately using a different test application, AVCapTst, that uses the AVICap APIs to actually capture video, change formats, create palettes, etc.

Description

This test verifies that the supported features of the video capture driver are implemented correctly. This includes verifying that the channels open and close as expected, and that the Video In channel can do all the streaming operations (Init, Fini, Prepare, Unprepare, AddBuffer, Start, Stop, Reset, GetError, GetPosition). It also verifies that the driver can get the error message for any error code as well as display the available dialog boxes, do video update, grab a frame of video etc. This test does not verify any custom messages unique to a particular video capture card, driver, or application.

This test is mostly automatic. It runs in about 2 minutes but this is highly dependent on how fast the capture driver loads and starts. A few manual tests that prompt the user to verify the results are done first, and then the automatic tests are run.

Requirements

At least one video capture card must be plugged into the system, and a Windows 3.1 style video capture driver must be installed.

Instructions

To run all the test cases of this test from the command line, use the command

vcaptst -p vcaptst.pro

where vcaptst.pro is a standard profile file that contains the list of all test cases (first interactive then manual), the log filename, logging options and levels, methods of verification etc. This file is available in same directory as the application.

To run the test interactively (not from command line), use the command vcaptst. In interactive mode you can select specific test cases to run individually, and set test options such as log filename. You can also set the logging level for more detailed information. See the on-line Help provided with the application for more details.

Troubleshooting

If the test causes any error, for example if it causes General Protection Fault or hangs Windows 95, restart Windows 95 and then start the test again.

The test run can be aborted at any time by pressing the Esc key a few times. The test run is then logged as “Aborted”.

Expected Results

If the test does not find a video capture driver installed, it will fail almost all test cases. If there is a video capture device and driver installed in the system then the test will run all the test cases and it is expected that all of them will pass.

The test reports an overall result (PASS if all tests pass, FAIL if any one test fails). You can examine the log file VCaptTst.LOG for detailed information about which tests failed and why.

�
Using AVCapTst.EXE

There are several variations of AVCapTst. For Windows 95 capture drivers, use both AVCapT16 and AVCapT32 as they test the driver using AVICap and AVICap32 APIs. For drivers written to use Windows NT, you can use AVCapT32 or AVCapTNT.

What is Tested

AVCapTst verifies that the driver can actually capture video, grab single frames, change format, change palette etc. It also does some parameter validation. AVCapTst tests the driver against the AVICap32 (if using AVCapT32 or AVCapTNT) and AVICap (if using AVCapT16) APIs. AVCapTst does not test the driver’s response to standard messages. This can be tested separately using VCaptTst.

The test prompts for a few parameters such as log file name, and then runs automatically for about five minutes.

Requirements

This test requires a video input device, such as a VCR with a pre-recorded videocassette or videodisk Player with a pre-recorded video disc, and the connecting cables (RCA or S-VHS in most cases, or custom cables for some video capture devices).

At least one video capture card must be plugged into the system and a Windows 3.1, Windows 95 or Windows NT video capture driver must be installed.

For the performance test to give any meaningful data, the capture file (c:\capture.avi or any custom file name) needs to be pre-allocated to sufficient size (350MB) and defragmented. It is suggested that the performance test be done separately from the other tests. The performance test estimates how fast video can be captured using the video capture driver. Note that capture speed data is highly dependent on the system (CPU, available memory, disk subsystem, etc.).

Instructions

The tests in AVCapTst can be run from the application interface in interactive or non-interactive mode. All available tests can be run in sequence by choosing Automatic Testing.

The tests can also be run from the command line.

Note: When AVCapTst is started, a message box with caption “Error# 0” and a STOP icon appears. This is a result of a test for the callback feature and nothing is wrong. Choose OK or press Enter to continue starting the application.

Interactive Mode vs. Non-Interactive Mode

The tests can be run in interactive or a non-interactive mode by turning on or off Interactive Mode in the Options menu.

With Interactive Mode turned on, you can in some cases specify the values of parameters to be used by the AVICap API, and you get the results through message boxes. If you set a log filename before starting the test, the results will also be stored in the log file.

With Interactive Mode turned off, the application uses specific values for the various settings, and the results are stored in a log file. You’ll be prompted for the log file name. First manual tests are run, that prompt you for options. Then the automatic tests are run. The entire process takes about four minutes.

Automatic Testing

Automatic testing runs all the available tests, and is started by choosing Automatic Testing from the Misc menu. This test run can be aborted at any time by pressing the Esc key (press the Esc key a couple of times). The test run is then logged as “Aborted.”

Parameter validation is tested during automatic testing only if Boundary Testing in the Options menu is turned on.

Testing Capture Performance

To test capture performance, make sure that Interactive Mode in the Options menu is turned off and then choose Performance from the Capture menu. When prompted, specify a data file to which the performance results will be stored. Performance testing can be done in interactive mode, but the results are not as good.

Testing from the Command Line

To run the test from command line, use the following syntax:

avcaptst -c alt_key_sequence [-o option=setting] [-o option=setting]

where -c is followed by the test case mnemonic (derived from the Alt key sequence to access the menu option) followed by any options, indicated with the -o switch, for example B(oundary Testing) on (1) or off (0) and I(nteractive Mode) on (1) or off (0).

To run the Automatic Testing option and the Performance test option from the command line, use the command

avcaptst -c MT -o B=1 -o I=0 -c CP -o B=0 -o I=0

This chooses Automatic Testing from the Misc menu to run all the tests (-c MT), with Boundary testing turned on (-o B=1) and Interactive Mode turned off (-o I=0). It then chooses the Performance option from the Capture menu (-c CP), with both Boundary testing and Interactive mode turned off (-o B=0 -o I=0). Note that the performance testing is done separately from the automatic tests.

Here are the menus, with the letters you’ll use for the alt key sequences under lined:

File

Get Capture File	gets the currently set capture filename

Set Capture File...	set capture file name through dialog box

Allocate File Space...	set capture file size through dialog box

Load Palette...	loads palette from file specified in dialog box

Open Frame Capture File	starts single frame capture session

Close Frame Capture File	ends single frame capture session

Save Video As...	saves captured video to file specified in dialog box

Save Palette...	saves current palette to file specified in dialog box

Save DIB...	saves current frame as DIB to file specified in dialog box

(About)	“About” box for this application

(Exit)	exits application

Driver

Disconnect From Driver	stops using current driver and unloads it

Get Driver Name	gets currently used driver's name

Get Driver Version	gets currently used driver's version

Get Driver Caps	gets currently used driver's capabilities

List of Drivers	list of drivers installed in the system

0.FirstDriver

{1.SecondDriver

2.ThirdDriver

............... }

Callback

On Error	registers/unregisters error callback

On Status	registers/unregisters status callback

On Yield	registers/unregisters yield callback

On Frame	registers/unregisters frame callback

On VideoStream	registers/unregisters video stream callback

On AudioStream	registers/unregisters audio stream callback

On CapControl	registers/unregisters capture control callback

Set Yield Max...	sets yield maximum as specified in dialog box

Format

Get Audio Format	gets audio format information

Get Audio Format Size	gets audio format information size

Set Audio Format	sets audio format specified in dialog box (through ACM or otherwise)

Get Video Format	gets video format information

Get Video Format Size	gets video format information size

Set Video Format	sets video format specified in dialog box

Dialog

Video Format Dialog	displays driver's video format dialog box

Video Source Dialog	displays driver's video source dialog box

Video Display Dialog	displays driver's video display dialog box

Video Compression Dialog	displays video compression dialog box (list of all installed CoDecs)

Display

Preview	turns preview On/Off

Preview Rate	sets preview to rate specified in dialog box

Preview Scale	turns preview scaling On/Off

Overlay	turns overlay On/Off

Set Scroll Position...	sets scroll position as specified in dialog box

Capture

Capture Video	starts capturing video sequence to a file

Capture Video No File	starts capturing video sequence to memory (NOT to file)

Capture Frame (to file)	captures a video frame to file (in single frame mode)

Stop	stops capturing video sequence (for MCI/background capture)

Abort	aborts capturing video sequence (for MCI/background capture)

Grab Frame	holds current frame in memory (stops preview)

Grab Frame No Stop	holds current frame in memory (doesn't stop preview)

Set Capture Setup	sets capture parameters as specified in dialog box

Get Capture Setup	gets capture parameters currently set

Get Status	gets current capture status info

Overlapped	starts a series of operation overlapping a background capture (2-3 min.)

Performance	starts capture performance data collection (1-1:30 hrs.)

Misc

Copy	copies current frame (or grabbed frame) to clipboard

Paste Palette	pastes palette from palette/bitmap on clipboard

Auto Palette...	creates & pastes palette according to dialog box (specify # of colors & frames)

Manual Palette...	creates & pastes palette according to dialog box (specify # of colors and select frame)

Get MCI Device	gets currently set MCI device name

Set MCI Device	sets MCI device name specified in dialog box

Get User Data	gets currently set user data value

Set User Data	sets user data value specified in dialog box

Automatic Testing	starts a series of tests that runs through all the macros & APIs

Create Capture Window	creates another AVICap window

Options

Boundary Testing	turns boundary condition testing On/Off

Interactive Mode	turns interactive mode On(message box)/Off(log file)

Set Log File...	creates a log file as specified in dialog box

Choosing From Several Devices

If you have more than one video capture device installed in your system then the drivers are installed as msvideo, msvideo1, msvideo2, ..., msvideo9. AVCapTst lists all these devices as “x.name” under the Driver menu option, where x is the msvideo index for the device. To test a particular video capture device select it from the Driver menu option in AVCapTst.

Testing Driver Installation

AVCapTst can be used to test for successful installation of the driver. To install a video capture driver, use New Device in the Control Panel. After the driver has been installed, you should not need to restart Windows if you have implemented a Plug and Play driver. To make sure that the video capture device has been installed and performs the basic functions right, test it with AVCapTst. If it starts correctly and displays digitized video the installation was successful. If the AVCapTst main window shows just the window title for the Capture Window then it hasn’t been able to find any video capture device and so there is some problem with the installation.

Troubleshooting

If the test causes any error, for example if it causes General Protection Fault or hangs or reboots Windows 95, restart Windows 95 and then restart the test.

Examining/Verifying Results:

The test reports an overall result for the automatic test (PASS if all tests pass, FAIL if any one test fails), and results of individual test cases to the encrypted log file. For the performance test, it creates a data file containing the number of frames dropped during capture.

Expected Results

If the test does not find a video capture driver installed, it will fail almost all test cases. If there is a video capture device and driver installed in the system then the test will run all the test cases and it is expected that all of them will pass. A video capture driver should be able to capture 160x120 size 8-bit (palletized) video at 15 fps for 15 seconds without dropping any frame provided that the capture file of 5 MB is pre-allocated and defragmented.

�
Using DiskPerf.EXE

DiskPerf is a tool for measuring the streaming read and write performance of hard disks in the Win32 environment. It works in Windows 95 and Windows NT 3.5. It will probably work on Windows NT 3.1 but has never been tested there.

DiskPerf is provided “as is” without any warranties etc. You have the source; please do not call Microsoft asking for support.

DiskPerf has 3 main tests, with many minor variations on each. The tests are:

Simple Win32 I/O

This test does I/O as fast as it can using only a single thread. The I/O's can be either synchronous or async (OVERLAPPED) on Windows NT. On Windows 95, async I/O requests fail.

Multithreaded Win32 I/O

This test queues I/O requests to one or more threads, which do I/O as fast as possible. The main thread uses extra cycles (if any) to display a running MB/Sec number. In cases where we are CPU bound, the display will not update until the test is over.

Memory Copy Performance

This tests measures the Win32 CopyMemory API performance in an attempt to get a maximum BUS performance number. It is highly unlikely that you will ever see a disk performance rate in MB/Sec that exceeds your memory copy rate MB/Sec, so this gives us a theoretical upper bound to strive for in disk performance. With large stripe sets and multiple SCSI controllers, this performance number becomes very important.

Choose Run Test from the Options menu to begin running the current test. On completion of the test, a summary line will be appended to \Diskperf.log

Test Options

From the Options menu, it is possible to change some of the parameters of the current test by choosing the following menu items:

Block Size

Choose the size of each I/O request or each call to CopyMemory. Several block sizes corresponding to common uncompressed video frames are available.

Create Flags

Choose flags for the CreateFile call for the I/O Tests. Use this to compare buffered/unbuffered performance. Other flags have little effect. Memory Copy test is unaffected.

Do Read Test

When Checked, we do streaming read test rather then streaming write (Default is Write for all tests).

Time Critical

When Checked tests run at THREAD_PRIORITY_TIME_CRITICAL.

Other test options can be modified by direct manipulation in the test window. Just right click with the mouse on the label or value of a test option to get an edit window for that option. Not all options are editable, and there is no way to tell by looking which are editable. If you right click on an item, and nothing happens, then it is not editable.

All tests default to a reasonable values, and nearly all editable values can be read from DiskPerf.ini. Here is an example showing default values:

---- diskperf.ini -----

[DiskPerf]

Window=0,0,400,400

[SimpleIO]

File=c:\capture.avi

Prio=15

Async=0

DoRead=0

FileSize=512

; file size is in MB

BlockSize=10

; block size is in Kbytes

[QueuedIO]

File=c:\capture.avi

FileSize=512

; file size is in MB

BlockSize=10

; block size is in Kbytes

Prio=15

DoRead=0

ThreadCount=1

; number of threads doing I/O

BufferCount=4

; number of buffers (shared by all threads)

MaxCopies=100

MinCopies=100

; max an min copies are a percentage of buffer size

DoCopies=0

; if DoCopies is TRUE data is copied into/out of the buffer before each I/O

; amount of data is determined by MaxCopies & MinCopies with the actual

; amount being the largest value that can be copied without affecting

; the data rate to/from disk

PreloadFat=1

; if True, an attempt is made to force FAT to preload the extents of the

; file so that reading the fat will not cause head seeks during streaming

Seek=0

; if true does a Seek before each I/O

;

[MemTest]

FileSize=32

; total size in MB to copy.

BlockSize=512

; size in K for each transfer. if this number is less than the size

; of the secondary cache for the processor the resulting MB/Sec will

; be strongly affected by secondary cache and may not reflect bus

; speeds very well

�

Writing Video Capture Drivers and Applications for Windows
