�title �Implementation of Windows Telephony in Windows 95�

Note: This specification is provided under the terms of the non-disclosure agreement between your company and Microsoft Corporation. Keep all information contained in this document confidential.
�Contents
�TOC \o 1-2�1. Introduction	� GOTOBUTTON _Toc315169248 � PAGEREF _Toc315169248 �1��
2. New API Functions	� GOTOBUTTON _Toc315169249 � PAGEREF _Toc315169249 �2��
2.1 lineTranslateDialog	� GOTOBUTTON _Toc315169250 � PAGEREF _Toc315169250 �2��
2.2 lineGetCountry	� GOTOBUTTON _Toc315169251 � PAGEREF _Toc315169251 �4��
2.3 lineGetAppPriority	� GOTOBUTTON _Toc315169252 � PAGEREF _Toc315169252 �6��
2.4 lineSetAppPriority	� GOTOBUTTON _Toc315169253 � PAGEREF _Toc315169253 �8��
2.5 lineAddProvider	� GOTOBUTTON _Toc315169254 � PAGEREF _Toc315169254 �10��
2.6 lineConfigProvider	� GOTOBUTTON _Toc315169255 � PAGEREF _Toc315169255 �12��
2.7 lineRemoveProvider	� GOTOBUTTON _Toc315169256 � PAGEREF _Toc315169256 �13��
2.8 lineGetProviderList	� GOTOBUTTON _Toc315169257 � PAGEREF _Toc315169257 �14��
2.9 lineConfigDialogEdit	� GOTOBUTTON _Toc315169258 � PAGEREF _Toc315169258 �15��
2.10 lineReleaseUserUserInfo	� GOTOBUTTON _Toc315169259 � PAGEREF _Toc315169259 �18��
3. New SPI Functions	� GOTOBUTTON _Toc315169260 � PAGEREF _Toc315169260 �20��
3.1 TSPI_providerEnumDevices	� GOTOBUTTON _Toc315169261 � PAGEREF _Toc315169261 �20��
3.2 TSPI_providerCreateLineDevice	� GOTOBUTTON _Toc315169262 � PAGEREF _Toc315169262 �22��
3.3 TSPI_providerCreatePhoneDevice	� GOTOBUTTON _Toc315169263 � PAGEREF _Toc315169263 �24��
3.4 TSPI_lineDropOnClose	� GOTOBUTTON _Toc315169264 � PAGEREF _Toc315169264 �26��
3.5 TSPI_lineDropNoOwner	� GOTOBUTTON _Toc315169265 � PAGEREF _Toc315169265 �28��
3.6 TSPI_lineSetCurrentLocation	� GOTOBUTTON _Toc315169266 � PAGEREF _Toc315169266 �30��
3.7 TSPI_lineConfigDialogEdit	� GOTOBUTTON _Toc315169267 � PAGEREF _Toc315169267 �32��
3.8 TSPI_lineReleaseUserUserInfo	� GOTOBUTTON _Toc315169268 � PAGEREF _Toc315169268 �34��
4. API Messages	� GOTOBUTTON _Toc315169269 � PAGEREF _Toc315169269 �36��
4.1 LINE_CREATE	� GOTOBUTTON _Toc315169270 � PAGEREF _Toc315169270 �36��
4.2 PHONE_CREATE	� GOTOBUTTON _Toc315169271 � PAGEREF _Toc315169271 �37��
4.3 LINE_ADDRESSSTATE	� GOTOBUTTON _Toc315169272 � PAGEREF _Toc315169272 �38��
4.4 LINE_CALLSTATE	� GOTOBUTTON _Toc315169273 � PAGEREF _Toc315169273 �39��
4.5 LINE_LINEDEVSTATE	� GOTOBUTTON _Toc315169274 � PAGEREF _Toc315169274 �40��
4.6 PHONE_STATE	� GOTOBUTTON _Toc315169275 � PAGEREF _Toc315169275 �41��
5. SPI Messages	� GOTOBUTTON _Toc315169276 � PAGEREF _Toc315169276 �42��
5.1 LINE_CREATE	� GOTOBUTTON _Toc315169277 � PAGEREF _Toc315169277 �42��
5.2 PHONE_CREATE	� GOTOBUTTON _Toc315169278 � PAGEREF _Toc315169278 �44��
5.3 LINE_ADDRESSSTATE	� GOTOBUTTON _Toc315169279 � PAGEREF _Toc315169279 �45��
5.4 LINE_CALLSTATE	� GOTOBUTTON _Toc315169280 � PAGEREF _Toc315169280 �46��
5.5 LINE_LINEDEVSTATE	� GOTOBUTTON _Toc315169281 � PAGEREF _Toc315169281 �47��
5.6 PHONE_STATE	� GOTOBUTTON _Toc315169282 � PAGEREF _Toc315169282 �48��
6. Changes to Data Structures	� GOTOBUTTON _Toc315169283 � PAGEREF _Toc315169283 �49��
6.1 LINEADDRESSCAPS	� GOTOBUTTON _Toc315169284 � PAGEREF _Toc315169284 �49��
6.2 LINECARDENTRY	� GOTOBUTTON _Toc315169285 � PAGEREF _Toc315169285 �50��
6.3 LINECOUNTRYLIST	� GOTOBUTTON _Toc315169286 � PAGEREF _Toc315169286 �51��
6.4 LINECOUNTRYENTRY	� GOTOBUTTON _Toc315169287 � PAGEREF _Toc315169287 �52��
6.5 LINEDEVCAPS	� GOTOBUTTON _Toc315169288 � PAGEREF _Toc315169288 �54��
6.6 LINELOCATIONENTRY	� GOTOBUTTON _Toc315169289 � PAGEREF _Toc315169289 �55��
6.7 LINEPROVIDERLIST	� GOTOBUTTON _Toc315169290 � PAGEREF _Toc315169290 �57��
6.8 LINEPROVIDERENTRY	� GOTOBUTTON _Toc315169291 � PAGEREF _Toc315169291 �58��
6.9 PHONEBUTTONINFO	� GOTOBUTTON _Toc315169292 � PAGEREF _Toc315169292 �59��
7. Changes to Constants	� GOTOBUTTON _Toc315169293 � PAGEREF _Toc315169293 �60��
7.1 LINEADDRESSSTATE_	� GOTOBUTTON _Toc315169294 � PAGEREF _Toc315169294 �60��
7.2 LINEBEARERMODE_	� GOTOBUTTON _Toc315169295 � PAGEREF _Toc315169295 �61��
7.3 LINECALLFEATURE_	� GOTOBUTTON _Toc315169296 � PAGEREF _Toc315169296 �62��
7.4 LINECALLORIGIN_	� GOTOBUTTON _Toc315169297 � PAGEREF _Toc315169297 �63��
7.5 LINECALLREASON_	� GOTOBUTTON _Toc315169298 � PAGEREF _Toc315169298 �64��
7.6 LINECARDOPTION_ Constants	� GOTOBUTTON _Toc315169299 � PAGEREF _Toc315169299 �65��
7.7 LINECONNECTEDMODE_ Constants	� GOTOBUTTON _Toc315169300 � PAGEREF _Toc315169300 �66��
7.8 LINEDEVSTATE_	� GOTOBUTTON _Toc315169301 � PAGEREF _Toc315169301 �67��
7.9 LINEDISCONNECTMODE_	� GOTOBUTTON _Toc315169302 � PAGEREF _Toc315169302 �69��
7.10 LINEFORWARDMODE_	� GOTOBUTTON _Toc315169303 � PAGEREF _Toc315169303 �70��
7.11 LINELOCATIONOPTION_ Constants	� GOTOBUTTON _Toc315169304 � PAGEREF _Toc315169304 �71��
7.12 LINEMEDIAMODE_	� GOTOBUTTON _Toc315169305 � PAGEREF _Toc315169305 �72��
7.13 LINEOFFERINGMODE_ Constants	� GOTOBUTTON _Toc315169306 � PAGEREF _Toc315169306 �73��
7.14 LINETRANSLATEOPTION_	� GOTOBUTTON _Toc315169307 � PAGEREF _Toc315169307 �74��
7.15 PHONEBUTTONSTATE_	� GOTOBUTTON _Toc315169308 � PAGEREF _Toc315169308 �75��
7.16 PHONESTATE_	� GOTOBUTTON _Toc315169309 � PAGEREF _Toc315169309 �76��
8. Appendix A: Passthrough Mode	� GOTOBUTTON _Toc315169310 � PAGEREF _Toc315169310 �77��
�
�Introduction
As work has progressed on migrating Windows Telephony from Windows 3.1 to Windows 95, and on development of Windows 95components that will be clients of the Windows Telephony Application Programming Interface (TAPI), several areas have been identified in which extensions to TAPI are required. These include:
Plug ’n’ Play — Class installers, including the Telephony class installer, need the ability to cause Telephony service providers to be added or removed from the Telephony system without user interaction with the Telephony control panel. Also, service providers need to be able to dynamically create new devices without restarting the entire Telephony system.
User interface improvements and commonality �— The “Change Options and Redial” functionality of Dialer and the ability to select Telephony locations and calling cards are common to all telephony applications. It makes sense to have a common dialog accessible to all applications through TAPI, so that this function looks the same in all applications and users have to learn it only once.
Access to additional information — Applications desire to be able to present information to the user which TAPI has but has not previously been exposed, such as the list of country codes.
Elimination of application calls directly into Telephony control panel — To avoid the necessity of producing a thunk layer so that Win32 applications can call control panel functions, all access to control panel functions will be through TAPI. Only TAPI.DLL will have a thunk layer.
VoiceView support — Software implementing the Microsoft/Radish initiative in alternate voice/data support in modems will be ready to ship in the same time frame as Windows 95, so we must make the (minimal) changes to add the VoiceView media mode to the existing media modes supported in TAPI.
The following sections describe the changes needed in the Windows Telephony API and SPI specifications to meet these new requirements.
�New API Functions
lineTranslateDialog
Syntax
LONG lineTranslateDialog (hLineApp, dwDeviceID, dwAPIVersion, hwndOwner, lpszAddressIn)
This function displays an application-modal dialog which allows the user to change the current location, adjust location and calling card parameters, and see the effect on a phone number about to be dialed.
Parameters
HLINEAPP hLineApp
Specifies the application handle returned by lineInitialize.
DWORD dwDeviceID
Specifies the device ID for the line device upon which the call is intended to be dialed, so that variations in dialing procedures on different lines can be applied to the translation process.
DWORD dwAPIVersion
Indicates the highest version of TAPI supported by the application (not necessarily the value negotiated by lineNegotiateAPIVersion on the line device indicated by dwDeviceID).
HWND hwndOwner
Specifies a handle to a window to which the dialog is to be attached.
LPCSTR lpszAddressIn
Specifies a far pointer to a NULL-terminated ASCII string containing a phone number which will be used, in the lower portion of the dialog, to show the effect of the user’s changes to the location parameters. The number must be in canonical format; if non-canonical, the phone number portion of the dialog will not be displayed. This pointer can be left NULL, in which case the phone number portion of the dialog will not be displayed. If the AddressIn contains a subaddress or name field, or additional addresses separated from the first address by ASCII CR and LF characters, only the first address is used in the dialog.
Return Value
Returns zero if the request is successful or a negative error number if an error has occurred. Possible return values are:
�symbol 183 \f "Symbol" \s 10 \h��	LINEERR_BADDEVICEID
The line-device ID specified in dwDeviceID is invalid.
�symbol 183 \f "Symbol" \s 10 \h��	LINEERR_INCOMPATIBLEAPIVERSION
The specified version is outside the supported range.
�symbol 183 \f "Symbol" \s 10 \h��	LINEERR_INIFILECORRUPT
The stored address translation parameters of the telephony system have been corrupted or are inconsistent, and corrections could not be made or were refused by the user.
�symbol 183 \f "Symbol" \s 10 \h��	LINEERR_INUSE
The dialog is already displayed by another application, and cannot be open more than once. TAPI brings the existing dialog to the front. This error indicates that any particulars related to the address passed in by the current application have not been handled, since that address was not processed by the function.
�symbol 183 \f "Symbol" \s 10 \h��	LINEERR_INVALADDRESS
The contents of lpszAddressIn could not be interpreted; it may contain invalid characters or be improperly structure (if canonical).
�symbol 183 \f "Symbol" \s 10 \h��	LINEERR_INVALAPPHANDLE
The application handle specified in hLineApp is invalid or not recognized.
�symbol 183 \f "Symbol" \s 10 \h��	LINEERR_INVALPARAM
The specified window handle is invalid.
�symbol 183 \f "Symbol" \s 10 \h��	LINEERR_INVALPOINTER
lpszAddressIn specifies an invalid, non-NULL pointer.
�symbol 183 \f "Symbol" \s 10 \h��	LINEERR_NODRIVER
TAPIADDR.DLL could not be located.
�symbol 183 \f "Symbol" \s 10 \h��	LINEERR_NOMEM
The operation failed due to inability to allocate sufficient memory.
�symbol 183 \f "Symbol" \s 10 \h��	LINEERR_OPERATIONFAILED
The operation failed for an unspecified reason.
�symbol 183 \f "Symbol" \s 10 \h��	LINEERR_UNINITIALIZED
The operation was invoked before any application called lineInitialize.
Comments
The application must call lineGetTranslateCaps after this function to obtain any changes the user made to the telephony address translation parameters, and call lineTranslateAddress to obtain a dialable string based on the user’s new selections.
If any function related to address translation (e.g., lineGetTranslateCaps or lineTranslateAddress) returns LINEERR_INIFILECORRUPT, the application should call lineTranslateDialog. lineTranslateDialog will detect the errors and correct them, and report the action taken to the user. Note that LINEERR_INIFILECORRUPT will be returned the first time any of these functions are used after installation of Windows 95, because the parameters will be uninitialized (lineTranslateDialog will take care of initializing them, using the user-specified default country to select the default country code).
Backward Compatibility
This is a new function which older applications would not be expected to call. However, they should not be prevented from doing so; the full range of API versions supported by TAPI.DLL (0x00010003 to 0x00010004) should work the same way.
See Also
Functions: lineTranslateAddress
Messages: LINE_LINEDEVSTATE
� lineGetCountry
Syntax
LONG lineGetCountry (dwCountryID, dwAPIVersion, lpLineCountryList)
Fetches the stored dialing rules and other information related to a specified country, the first country in the country list, or all countries.
Parameters
DWORD dwCountryID
Specifies the country ID (not the country code) of the country for which information is to be obtained. If the value 1 is specified, information on the first country in the country list is obtained. If the value 0 is specified, information on all countries is obtained (which may require a great deal of memory – 20Kbytes or more).
DWORD dwAPIVersion
Indicates the highest version of TAPI supported by the application (not necessarily the value negotiated by lineNegotiateAPIVersion on some particular line device).
LPLINECOUNTRYLIST lpLineCountryList
Specifies a far pointer to a location to which a LINECOUNTRYLIST structure will be loaded. Prior to calling lineGetCountry, the application should set the dwTotalSize field of this structure to indicate the amount of memory available to TAPI.DLL for returning information.
Return Value
Returns zero if the request is successful or a negative error number if an error has occurred. Possible return values are:
�symbol 183 \f "Symbol" \s 10 \h��	LINEERR_INCOMPATIBLEAPIVERSION
The specified version is outside the supported range.
�symbol 183 \f "Symbol" \s 10 \h��	LINEERR_INIFILECORRUPT
The stored address translation parameters of the telephony system have been corrupted or are inconsistent.
�symbol 183 \f "Symbol" \s 10 \h��	LINEERR_INVALCOUNTRYCODE
The specified country ID is not valid (the entry does not exist in the country list).
�symbol 183 \f "Symbol" \s 10 \h��	LINEERR_INVALPOINTER
The specified pointer parameter is invalid or NULL.
�symbol 183 \f "Symbol" \s 10 \h��	LINEERR_NOMEM
Insufficient memory to perform the operation.
�symbol 183 \f "Symbol" \s 10 \h��	LINEERR_OPERATIONFAILED
The operation failed for unknown reasons.
�symbol 183 \f "Symbol" \s 10 \h��	LINEERR_STRUCTURETOOSMALL
The dwTotalSize field indicates that insufficient memory has been allocated to contain the fixed portion of the LINECOUNTRYLIST structure.
Comments
TBD
Backward Compatibility
This is a new function which older applications would not be expected to call. However, they should not be prevented from doing so; the function will work the same way for all applications.
See Also
TBD
� lineGetAppPriority
Syntax
LONG lineGetAppPriority(lpszAppFilename, dwMediaMode, lpExtensionID, dwRequestMode, lpExtensionName, lpdwPriority)
This function allows an application to determine whether or not it is in the handoff priority list for a particular media mode or Assisted Telephony request mode, and, if so, its position in the priority list.
Parameters
LPCSTR lpszAppFilename
Specifies a far pointer to a string containing the application executable module filename (without directory information).
DWORD dwMediaMode
Specifies the media mode for which the priority information is to be obtained. The value may be one of the LINEMEDIAMODE_ constants, or an extended media mode value defined by a service provider; only a single bit may be on. The value 0 should be used if checking application priority for Assisted Telephony requests.
LPLINEEXTENSIONID const lpExtensionID
Specifies a far pointer to structure of type LINEEXTENSIONID. This parameter is referenced only if dwMediaModes specifies a value in the range 0x01000000 through 0x80000000 (extended media modes). This parameter is ignored if dwMediaMode is 0 or specifies a LINEMEDIAMODE_ value.
DWORD dwRequestMode
If the dwMediaMode parameter is 0, this parameter specifies the Assisted Telephony request mode for which priority is to be checked. It must be either LINEREQUESTMODE_MAKECALL or LINEREQUESTMODE_MEDIACALL. This parameter is ignored if dwMediaMode is non-zero.
LPVARSTRING lpExtensionName
If dwMediaMode specifies an extended media mode, this parameter must specify a far pointer to a memory location into which a VARSTRING structure will be written by TAPI.DLL. This structure will contain the “friendly name” of the extended media mode associated with the specified media mode value and extension ID, if one exists. This parameter is ignored if dwMediaMode is 0 or specifies a LINEMEDIAMODE_ value. Prior to calling lineGetAppPriority, the application should set the dwTotalSize field of this structure to indicate the amount of memory available to TAPI.DLL for returning information.
LPDWORD lpdwPriority
Specifies a far pointer to a DWORD-size memory location into which TAPI.DLL will write the priority of the application for the specified media or request mode. The value 0 will be returned if the application is not in the stored priority list and is does not currently have any line device open with ownership requested of the specified media mode or having registered for the specified request mode. The value -1 (0xFFFFFFFF) is returned if the application has the line open for the specified media mode or has registered for the specified requests, but the application is not in the stored priority list (i.e., it is in the temporary priority list only). Otherwise, the value will indicate the application’s position in the list (with 1 being highest priority, and increasing values indicating decreasing priority).
Return Value
Returns zero if the request is successful or a negative error number if an error has occurred. Possible return values are:
�symbol 183 \f "Symbol" \s 10 \h��	LINEERR_INIFILECORRUPT
The stored address translation parameters of the telephony system have been corrupted or are inconsistent.
�symbol 183 \f "Symbol" \s 10 \h��	LINEERR_INVALAPPNAME
The specified application name is not a proper file name.
�symbol 183 \f "Symbol" \s 10 \h��	LINEERR_INVALMEDIAMODE
The value specified in dwMediaMode is not 0, not a valid extended media mode, and not a LINEMEDIAMODE_ constant, or more than one bit is on in the parameter value.
�symbol 183 \f "Symbol" \s 10 \h��	LINEERR_INVALPOINTER
One or more of the specified pointer parameters is invalid.
�symbol 183 \f "Symbol" \s 10 \h��	LINEERR_INVALREQUESTMODE
The dwMediaMode parameter is 0, and the dwRequestMode parameter does not contain a valid LINEREQUESTMODE_ value.
�symbol 183 \f "Symbol" \s 10 \h��	LINEERR_NOMEM
Insufficient memory to perform the operation.
�symbol 183 \f "Symbol" \s 10 \h��	LINEERR_OPERATIONFAILED
The operation failed for unknown reasons.
�symbol 183 \f "Symbol" \s 10 \h��	LINEERR_STRUCTURETOOSMALL
An extended media mode was specified, and the dwTotalSize field of the VARSTRING structure does not indicate that sufficient memory has been allocated to contain the fixed portion of the VARSTRING structure.
Comments
TBD
Backward Compatibility
This is a new function which older applications would not be expected to call. However, they should not be prevented from doing so; the function will work the same way for all applications.
See Also
TBD
�lineSetAppPriority
Syntax
LONG lineSetAppPriority(lpszAppFilename, dwMediaMode, lpExtensionID, dwRequestMode, lpszExtensionName, dwPriority)
This function allows an application to set its priority in the handoff priority list for a particular media mode or Assisted Telephony request mode or to remove itself from the priority list.
Parameters
LPCSTR lpszAppFilename
Specifies a far pointer to a string containing the application executable module filename (without directory information).
DWORD dwMediaMode
Specifies the media mode for which the priority of the application is to be set. The value may be one of the LINEMEDIAMODE_ constants, or an extended media mode value defined by a service provider; only a single bit may be on. The value 0 should be used to set the application priority for Assisted Telephony requests.
LPLINEEXTENSIONID const lpExtensionID
Specifies a far pointer to structure of type LINEEXTENSIONID. This parameter is referenced only if dwMediaModes specifies a value in the range 0x01000000 through 0x80000000 (extended media modes). This parameter is ignored if dwMediaMode is 0 or specifies a LINEMEDIAMODE_ value.
DWORD dwRequestMode
If the dwMediaMode parameter is 0, this parameter specifies the Assisted Telephony request mode for which priority is to be set. It must be either LINEREQUESTMODE_MAKECALL or LINEREQUESTMODE_MEDIACALL. This parameter is ignored if dwMediaMode is non-zero.
LPCSTR lpszExtensionName
If dwMediaMode specifies an extended media mode, this parameter may point to a null-terminated ASCII string specifying a friendly name for the extended media mode. If the pointer is NULL, any existing name is preserved, or, if a new entry is being created in the priority list, the friendly name will be set to the empty string. This parameter is ignored if dwMediaMode is 0 or specifies a LINEMEDIAMODE_ value.
DWORD dwPriority
Specifies the new priority for the application. If the value 0 is passed, the application is removed from the priority list for the specified media or request mode (if it was already not present, no error is generated). If the value 1 is passed, the application is inserted as the highest-priority application for the media or request mode (and removed from a lower-priority position, if it was already in the list). Any other value generates an error.
Return Value
Returns zero if the request is successful or a negative error number if an error has occurred. Possible return values are:
�symbol 183 \f "Symbol" \s 10 \h��	LINEERR_INIFILECORRUPT
The stored address translation parameters of the telephony system have been corrupted or are inconsistent.
�symbol 183 \f "Symbol" \s 10 \h��	LINEERR_INVALAPPNAME
The specified application name is not a proper file name.
�symbol 183 \f "Symbol" \s 10 \h��	LINEERR_INVALMEDIAMODE
The value specified in dwMediaMode is not 0, not a valid extended media mode, and not a LINEMEDIAMODE_ constant, or more than one bit is on in the parameter value.
�symbol 183 \f "Symbol" \s 10 \h��	LINEERR_INVALPARAM
The friendly extension name contains invalid characters, or the specified priority value is invalid.
�symbol 183 \f "Symbol" \s 10 \h��	LINEERR_INVALPOINTER
One or more of the specified pointer parameters is invalid.
�symbol 183 \f "Symbol" \s 10 \h��	LINEERR_INVALREQUESTMODE
The dwMediaMode parameter is 0, and the dwRequestMode parameter does not contain a valid LINEREQUESTMODE_ value.
�symbol 183 \f "Symbol" \s 10 \h��	LINEERR_NOMEM
Insufficient memory to perform the operation.
�symbol 183 \f "Symbol" \s 10 \h��	LINEERR_OPERATIONFAILED
The operation failed for unknown reasons.
�symbol 183 \f "Symbol" \s 10 \h��	LINEERR_RESOURCEUNAVAIL
The priority list for the specified mode is full (maximum number of applications listed).
Comments
This function updates to stored priority list. If the telephony system is initialized, it also sets the current, active priorities for applications then running; the new priority will be used on the next incoming call or lineHandoff based on media mode.
Additional comments TBD
Backward Compatibility
This is a new function which older applications would not be expected to call. However, they should not be prevented from doing so; the function will work the same way for all applications.
See Also
TBD
�lineAddProvider
Syntax
LONG lineAddProvider(lpszProviderFilename, hwndOwner, lpdwPermanentProviderID)
Installs a new Telephony Service Provider into the Telephony system.
Parameters
LPCSTR lpszProviderFilename
Specifies a far pointer to a NULL-terminated string containing the pathname of the service provider to be added.
HWND hwndOwner
Specifies a handle to a window to which the any dialogs which need to be displayed as part of the installation process (e.g., by the service provider’s TSPI_providerInstall function) would be attached.
LPDWORD lpdwPermanentProviderID
Specifies a far pointer to a DWORD-sized memory location into which TAPI.DLL writes the permanent provider ID of the newly-installed service provider.
Return Value
Returns zero if the request is successful or a negative error number if an error has occurred. Possible return values are:
�symbol 183 \f "Symbol" \s 10 \h��	LINEERR_INIFILECORRUPT
The stored parameters of the telephony system have been corrupted or are inconsistent.
�symbol 183 \f "Symbol" \s 10 \h��	LINEERR_INVALPARAM
The service provider could not be located or its TSPI_providerInstall function could not be invoked, or the specified window handle is invalid.
�symbol 183 \f "Symbol" \s 10 \h��	LINEERR_INVALPOINTER
One or more of the specified pointer parameters is invalid or NULL.
�symbol 183 \f "Symbol" \s 10 \h��	LINEERR_NOMEM
Insufficient memory to perform the operation.
�symbol 183 \f "Symbol" \s 10 \h��	LINEERR_OPERATIONFAILED
The operation failed for unknown reasons.
Comments
During this function call, TAPI.DLL checks to insure that it can access the service provider by calling its TSPI_providerInstall function; if this is unsuccessful (if the DLL or function cannot be found, or if TSPI_providerInstall returns an error), the function fails and the provider is not added to the telephony system. If this is successful, and the Windows Telephony system is active (one or more applications have called lineInitialize), TAPI.DLL will attempt to activate the service provider by calling TSPI_providerEnumDevices and TSPI_providerInit (and other startup functions). If these functions fail, the provider will have been installed but not activated. If the activation succeeds, applications will be informed of any new devices created via LINE_CREATE or PHONE_CREATE messages, or by a LINE_LINEDEVSTATE message requesting reinitialization (if the application does not support the CREATE messages).
This function copies no files – not the service provider DLL itself nor any supporting files; it is the responsibility of the application managing the addition of the provider to insure that the provider is installed in a directory where it can be found by TAPI.DLL (e.g., \WINDOWS, \WINDOWS\SYSTEM, or elsewhere on the path), and that all other files necessary for operation.
Additional comments TBD.
Backward Compatibility
This is a new function which older applications would not be expected to call. However, they should not be prevented from doing so; the function will work the same way for all applications.
See Also
TBD
�lineConfigProvider
Syntax
LONG lineConfigProvider(hwndOwner, dwPermanentProviderID)
Causes a service provider to display its configuration dialog.
Parameters
HWND hwndOwner
Specifies a handle to a window to which the configuration dialog (displayed by TSPI_providerConfig) will be attached.
DWORD dwPermanentProviderID
Specifies the permanent provider ID of the service provider to be configured.
Return Value
Returns zero if the request is successful or a negative error number if an error has occurred. Possible return values are:
�symbol 183 \f "Symbol" \s 10 \h��	LINEERR_INIFILECORRUPT
The stored parameters of the telephony system have been corrupted or are inconsistent.
�symbol 183 \f "Symbol" \s 10 \h��	LINEERR_INVALPARAM
The service provider could not be located or its TSPI_providerConfig function could not be invoked, or the specified window handle is invalid.
�symbol 183 \f "Symbol" \s 10 \h��	LINEERR_NOMEM
Insufficient memory to perform the operation.
�symbol 183 \f "Symbol" \s 10 \h��	LINEERR_OPERATIONFAILED
The operation failed for unknown reasons.
Comments
This is basically a straight pass-through to TSPI_providerConfig.
Additional comments TBD.
Backward Compatibility
This is a new function which older applications would not be expected to call. However, they should not be prevented from doing so; the function will work the same way for all applications.
See Also
TBD
�lineRemoveProvider
Syntax
LONG lineRemoveProvider (dwPermanentProviderID, hwndOwner)
Removes an existing Telephony Service Provider from the Telephony system.
Parameters
DWORD dwPermanentProviderID
Specifies the permanent provider ID of the service provider to be removed.
HWND hwndOwner
Specifies a handle to a window to which the any dialogs which need to be displayed as part of the removal process (e.g., a confirmation dialog by the service provider’s TSPI_providerRemove function) would be attached.
Return Value
Returns zero if the request is successful or a negative error number if an error has occurred. Possible return values are:
�symbol 183 \f "Symbol" \s 10 \h��	LINEERR_INIFILECORRUPT
The stored parameters of the telephony system have been corrupted or are inconsistent.
�symbol 183 \f "Symbol" \s 10 \h��	LINEERR_INVALPARAM
The permanent provider ID does not match any provider currently installed in the telephony system, or the specified window handle is invalid.
�symbol 183 \f "Symbol" \s 10 \h��	LINEERR_NOMEM
Insufficient memory to perform the operation.
�symbol 183 \f "Symbol" \s 10 \h��	LINEERR_OPERATIONFAILED
The operation failed for unknown reasons (may have been cancelled by the user in TSPI_providerRemove).
Comments
If the call to TSPI_providerRemove is successful, and the telephony system is active at the time, TAPI.DLL calls TSPI_lineShutdown and/or TSPI_phoneShutdown on the service provider (depending on which device types are active). Any line or phone handles still held by applications on associated devices are forcibly closed with LINE_CLOSE or PHONE_CLOSE messages (it is preferable for service providers themselves to issue these messages as part of TSPI_providerRemove, after verification with the user). The devices previously under the control of that provider are then marked as “unavailable”, so that any future attempts by applications to reference them by device ID result in LINEERR_NODRIVER.
Additional comments TBD.
Backward Compatibility
This is a new function which older applications would not be expected to call. However, they should not be prevented from doing so; the function will work the same way for all applications.
See Also
TBD
�lineGetProviderList
Syntax
LONG lineGetProviderList (dwAPIVersion, lpProviderList)
Returns a list of service providers currently installed in the telephony system.
Parameters
DWORD dwAPIVersion
Indicates the highest version of TAPI supported by the application (not necessarily the value negotiated by lineNegotiateAPIVersion on some particular line device).
LPLINEPROVIDERLIST lpProviderList
Specifies a far pointer to a memory location where TAPI.DLL will return a LINEPROVIDERLIST structure. Prior to calling lineGetProviderList, the application should set the dwTotalSize field of this structure to indicate the amount of memory available to TAPI.DLL for returning information.
Return Value
Returns zero if the request is successful or a negative error number if an error has occurred. Possible return values are:
�symbol 183 \f "Symbol" \s 10 \h��	LINEERR_INCOMPATIBLEAPIVERSION
The specified version is outside the supported range.
�symbol 183 \f "Symbol" \s 10 \h��	LINEERR_INIFILECORRUPT
The stored parameters of the telephony system have been corrupted or are inconsistent.
�symbol 183 \f "Symbol" \s 10 \h��	LINEERR_INVALPOINTER
The pointer is invalid.
�symbol 183 \f "Symbol" \s 10 \h��	LINEERR_NOMEM
Insufficient memory to perform the operation.
�symbol 183 \f "Symbol" \s 10 \h��	LINEERR_OPERATIONFAILED
The operation failed for unknown reasons.
�symbol 183 \f "Symbol" \s 10 \h��	LINEERR_STRUCTURETOOSMALL
The dwTotalSize field indicates that insufficient memory has been allocation to return the fixed portion of the LINEPROVIDERLIST structure.
Comments
TBD
Backward Compatibility
This is a new function which older applications would not be expected to call. However, they should not be prevented from doing so; the function will work the same way for all applications.
See Also
TBD
�lineConfigDialogEdit
Syntax
LONG lineConfigDialogEdit (dwDeviceID, hwndOwner, lpszDeviceClass, lpDeviceConfigIn, dwSize, lpDeviceConfigOut)
This function causes the provider of the specified line device to display a dialog (attached to hwndOwner of the application) to allow the user to configure parameters related to the line device.
Parameters
DWORD dwDeviceID
Specifies the line device to be configured.
HWND hwndOwner
Specifies a handle to a window to which the dialog is to be attached.
LPCSTR lpszDeviceClass
Specifies a far pointer to a NULL-terminated string that identifies a device class name. This device class allows the application to select a specific subscreen of configuration information applicable to that device class. This parameter is optional and can be left NULL or empty, in which case the highest level configuration is selected.
LPVOID const lpDeviceConfigIn
Specifies a far pointer to the opaque configuration data structure that was returned by lineGetDevConfig (or a previous invocation of lineConfigDialogEdit) in the variable portion of the VARSTRING structure.
DWORD dwSize
Specifies the number of bytes in the structure pointed to by lpDeviceConfigIn. This value will have been returned in the dwStringSize field in the VARSTRING structure returned by lineGetDevConfig or a previous invocation of lineConfigDialogEdit.
LPVARSTRING lpDeviceConfigOut
Specifies a far pointer to the memory location of type VARSTRING where the device configuration structure is returned. Upon successful completion of the request, this location is filled with the device configuration. The dwStringFormat field in the VARSTRING structure will be set to STRINGFORMAT_BINARY. Prior to calling lineGetDevConfig (or a future invocation of lineConfigDialogEdit), the application should set the dwTotalSize field of this structure to indicate the amount of memory available to TAPI.DLL for returning information.
Return Value
Returns zero if the request is successful or a negative error number if an error has occurred. Possible return values are:
�symbol 183 \f "Symbol" \s 10 \h��	LINEERR_BADDEVICEID
The specified device ID is invalid.
�symbol 183 \f "Symbol" \s 10 \h��	LINEERR_INVALDEVICECLASS
The specified line does not support the indicated device class.
�symbol 183 \f "Symbol" \s 10 \h��	LINEERR_INVALPARAM
The specified window handle is invalid, or the information contained in the structure pointed to by lpDeviceConfigIn is not valid for this device..
�symbol 183 \f "Symbol" \s 10 \h��	LINEERR_INVALPOINTER
One or more of the specified pointer parameters is invalid.
�symbol 183 \f "Symbol" \s 10 \h��	LINEERR_NODRIVER
The telephone service provider for the specified device found that one of its components is missing or corrupt in a way that was not detected at initialization time.
�symbol 183 \f "Symbol" \s 10 \h��	LINEERR_NOMEM
Insufficient memory to perform the operation.
�symbol 183 \f "Symbol" \s 10 \h��	LINEERR_OPERATIONFAILED
The operation failed for unknown reasons.
�symbol 183 \f "Symbol" \s 10 \h��	LINEERR_RESOURCEUNAVAIL
The service provider does not have enough resources available to complete the request.
�symbol 183 \f "Symbol" \s 10 \h��	LINEERR_STRUCTURETOOSMALL
The dwTotalSize field of the VARSTRING structure pointed to by lpDeviceConfigOut does not specify enough memory to contain the entire configuration structure. The dwNeededSize field has been set to the amount required. To the extent that user entries were reflected in information that could not be returned due to insufficient space, those edits are lost; applications should therefore allocate the maximum amount of space that may be needed by the device class to return its configuration structure (see documentation for the device class for further information).
�symbol 183 \f "Symbol" \s 10 \h��	LINEERR_UNINITIALIZED
The operation was invoked before any application called lineInitialize.
�symbol 183 \f "Symbol" \s 10 \h��	LINEERR_OPERATIONUNAVAIL
The operation is unavailable.
Comments
The lineConfigDialogEdit function causes the service provider to display a modal dialog (attached to hwndOwner of the application) to allow the user to configure parameters related to the line specified by dwDeviceID.
The lpszDeviceClass parameter allows the application to select a specific subscreen of configuration information applicable to the device class in which the user is interested; the permitted strings are the same as for lineGetID. For example, if the line supports the Comm API, passing “COMM” as lpszDeviceClass causes the provider to display the parameters related specifically to Comm (or, at least, start at the corresponding point in a multilevel configuration dialog chain, so the user doesn’t have to “dig” to find the parameters of interest).
The lpszDeviceClass parameter would be “tapi/line” , “”, or NULL to cause the provider to display the highest level configuration for the line.
The difference between this function and lineConfigDialog is the source of the parameters to edit and the result of the editing. In lineConfigDialog, the parameters edited are those currently in use on the device (or set for use on the next call), and any changes made have (to the maximum extent possible) an immediate impact on any active connection; also, the application must use lineGetDevConfig to fetch the result of parameter changes from lineConfigDialog. With lineConfigDialogEdit, the parameters to edit are passed in from the application, and the results are returned to the application, with no impact on active connections; the results of the editing are returned with this function, and the application does not need to call lineGetDevConfig. Thus, lineConfigDialogEdit permits an application to provide the ability for the user to set up parameters for future calls without having an impact on any active call. Note, however, the output of this function can be passed to lineSetDevConfig to affect the current call or next call.
See Also
lineGetDevConfig, lineSetDevConfig, lineConfigDialog
Backward Compatibility
This is a new function which older applications would not be expected to call. However, they should not be prevented from doing so; the function will work the same way for all applications.
�lineReleaseUserUserInfo
Syntax
LONG lineReleaseUserUserInfo (hCall)
This function informs the service provider that the application has processed the user-user information contained in the LINECALLINFO structure, and that subsequently received user-user information can now be written into that structure. The service provider will send a LINE_CALLINFO message indicating LINECALLINFOSTATE_USERUSERINFO when new information is available.
Parameters
HCALL hCall
Specifies a handle to the call. The application must be an owner of the call.
Return Value
Returns a positive request ID if the function will be completed asynchronously or a negative error number if an error has occurred. The dwParam2 parameter of the corresponding LINE_REPLY callback message is zero if the function is successful or it is a negative error number if an error has occurred. Possible return values are:
�symbol 183 \f "Symbol" \s 10 \h��	LINEERR_INVALCALLHANDLE
The specified call handle is invalid.
�symbol 183 \f "Symbol" \s 10 \h��	LINEERR_NOMEM
Insufficient memory to perform the operation.
�symbol 183 \f "Symbol" \s 10 \h��	LINEERR_NOTOWNER
The application does not have owner privilege to the specified call.
�symbol 183 \f "Symbol" \s 10 \h��	LINEERR_OPERATIONUNAVAIL
The operation is not available.
�symbol 183 \f "Symbol" \s 10 \h��	LINEERR_OPERATIONFAILED
The operation failed for unknown reasons.
�symbol 183 \f "Symbol" \s 10 \h��	LINEERR_RESOURCEUNAVAIL
The service provider does not have enough resources available to complete the request.
�symbol 183 \f "Symbol" \s 10 \h��	LINEERR_UNINITIALIZED
The operation was invoked before any application called lineInitialize.
Call States
hCall any
Comments
The lineReleaseUserUserInfo function allows the application to control the flow of incoming user-user information on an ISDN connection. When a new, complete user-user information message is received, the service provider informs the application using a LINE_CALLINFO message (specifying LINECALLINFOSTATE_USERUSERINFO). Any number of applications may examine the information (using lineGetCallInfo), but the application owning the call controls when the information is released so that subsequent information can be reported. The service provider will not overwrite previous user-user information in LINECALLINFO with newer information until after lineReleaseUserUserInfo has been called. It is the responsibility of the service provider to buffer subsequently received user-user information until the previous information is released by the application owning the call.
See Also
lineGetCallInfo
Backward Compatibility
This is a new function which older applications would not be expected to call. However, they should not be prevented from doing so; the function will work the same way for all applications.
�New SPI Functions
TSPI_providerEnumDevices
Syntax
LONG TSPIAPI TSPI_providerEnumDevices(dwPermanentProviderID, lpdwNumLines, lpdwNumPhones, hProvider, lpfnLineCreateProc, lpfnPhoneCreateProc)
TAPI.DLL calls this function before TSPI_providerInit to determine the number of line and phone devices supported by the service provider.
This function must be declared in the DEF file of the service provider with the ordinal value 595.
Parameters
DWORD dwPermanentProviderID
Specifies the permanent ID, unique within the service providers on this system, of the service provider being initialized.
LPDWORD lpdwNumLines
Specifies a far pointer to a DWORD-sized memory location into which the service provider must write the number of line devices it is configured to support. TAPI.DLL initializes the value to zero, so if the service provider fails to write a different value, the value 0 is assumed.
LPDWORD lpdwNumPhones
Specifies a far pointer to a DWORD-sized memory location into which the service provider must write the number of phone devices it is configured to support. TAPI.DLL initializes the value to zero, so if the service provider fails to write a different value, the value 0 is assumed.
HPROVIDER hProvider
Specifies an opaque DWORD-sized value which uniquely identifies this instance of this service provider during this execution of the Windows Telephony environment.
LINEEVENT lpfnLineCreateProc
Specifies a far pointer to the LINEEVENT callback procedure supplied by TAPI.DLL. The service provider will use this function to send LINE_CREATE messages when a new line device needs to be created. This function should not be called to send a LINE_CREATE message until after the service provider has returned from the TSPI_providerInit procedure.
PHONEEVENT lpfnPhoneCreateProc
Specifies a far pointer to the PHONEEVENT callback procedure supplied by TAPI.DLL. The service provider will use this function to send PHONE_CREATE messages when a new phone device needs to be created. This function should not be called to send a PHONE_CREATE message until after the service provider has returned from the TSPI_providerInit procedure.
Return Value
Returns zero if the request is successful or a negative error number if an error has occurred. Possible return values are:
�symbol 183 \f "Symbol" \s 10 \h��	LINEERR_NOMEM
Insufficient memory to perform the operation.
�symbol 183 \f "Symbol" \s 10 \h��	LINEERR_OPERATIONFAILED
The operation failed for unknown reasons.
Comments
In Windows Telephony version 1.0 (for Windows 3.1), TAPI.DLL examine the [Provider<ppid>] section of the TELEPHON.INI file to determine the number of lines and phones supported by the service provider. This function was added to support service providers with Plug’n’Play capability to determine the number of devices at run time without writing the number to a parameter file.
Backward Compatibility
If TAPI.DLL attempts to invoke this function and the function is found to not be declared in the service provider, it will attempt to obtain the information from TELEPHON.INI (for backward compatibility). If the information is not found there, or if TSPI_providerEnumDevices fails, the service provider will be assumed to support no lines and no phones.
See Also
TBD
�TSPI_providerCreateLineDevice
Syntax
LONG TSPIAPI TSPI_providerCreateLineDevice (dwTempID, dwDeviceID)
This provider function is called by TAPI.DLL in response to receipt of a LINE_CREATE message from the service provider, which allows the dynamic creation of a new line device.
This function must be declared in the DEF file of the service provider with the ordinal value 598.

Parameters
DWORD dwTempID
Specifies the temporary device ID which the service provider passed to TAPI.DLL in the LINE_CREATE message.
DWORD dwDeviceID
Specifies the device ID that TAPI.DLL will assign to this device if this function is successful.
Return Value
Returns zero if the request is successful or a negative error number if an error has occurred. Possible return values are:
�symbol 183 \f "Symbol" \s 10 \h��	LINEERR_BADDEVICEID
The service provider did not recognize dwTempID as a device ID it created.
�symbol 183 \f "Symbol" \s 10 \h��	LINEERR_NOMEM
Insufficient memory to perform the operation.
�symbol 183 \f "Symbol" \s 10 \h��	LINEERR_OPERATIONFAILED
The operation failed for unknown reasons.
Comments
When TAPI.DLL receives a LINE_CREATE message from a service provider, it calls this function (it never calls this function spontaneously). TAPI.DLL adds 1 to the number of devices of that type, and passes the resulting new, unused device ID as the dwDeviceID parameter to this function. It also passes in the function the dwParam2 from the LINE_CREATE message as dwTempID. Note that adding the new device to the end of the device list is likely to produce non-contiguous device IDs for the service provider; service providers that support dynamic device creation must also support non-contiguous device IDs (TAPI.DLL currently handles this fine; it keeps a separate pointer in each tLine to its associated driver info, so they don't have to be contiguous).
If the service provider recognizes the dwTempID and is successful in setting up the structures and such that it needs to support the new device, it saves off the dwDeviceID, and returns SUCCESS. If this function is unsuccessful, TAPI.DLL doesn't add the device, and there are no negative affects (the LINE_CREATE message is ignored). If this function completes successfully, TAPI.DLL saves the new number of devices, and creates a new entry in the device table (reallocating memory to expand the table). It then informs applications of the availability of the new device using LINE_CREATE or LINE_LINEDEVSTATE (LINEDEVSTATE_REINIT) messages.
Backward Compatibility
Older service providers will not export this function. However, they also should not send LINE_CREATE messages, which means TAPI.DLL would not try to call this function. In the unlikely event a LINE_CREATE message is received from a provider, and the provider is found to not export this function, the LINE_CREATE message is discarded and ignored.
See Also
Messages: LINE_CREATE
�TSPI_providerCreatePhoneDevice
Syntax
LONG TSPIAPI TSPI_providerCreatePhoneDevice (dwTempID, dwDeviceID)
This provider function is called by TAPI.DLL in response to receipt of a PHONE_CREATE message from the service provider, which allows the dynamic creation of a new phone device.
This function must be declared in the DEF file of the service provider with the ordinal value 599.

Parameters
DWORD dwTempID
Specifies the temporary device ID which the service provider passed to TAPI.DLL in the PHONE_CREATE message.
DWORD dwDeviceID
Specifies the device ID that TAPI.DLL will assign to this device if this function is successful.
Return Value
Returns zero if the request is successful or a negative error number if an error has occurred. Possible return values are:
�symbol 183 \f "Symbol" \s 10 \h��	LINEERR_BADDEVICEID
The service provider did not recognize dwTempID as a device ID it created.
�symbol 183 \f "Symbol" \s 10 \h��	LINEERR_NOMEM
Insufficient memory to perform the operation.
�symbol 183 \f "Symbol" \s 10 \h��	LINEERR_OPERATIONFAILED
The operation failed for unknown reasons.
Comments
When TAPI.DLL receives a PHONE_CREATE message from a service provider, it calls this function (it never calls this function spontaneously). TAPI.DLL adds 1 to the number of devices of that type, and passes the resulting new, unused device ID as the dwDeviceID parameter to this function. It also passes in the function the dwParam2 from the PHONE_CREATE message as dwTempID. Note that adding the new device to the end of the device list is likely to produce non-contiguous device IDs for the service provider; service providers that support dynamic device creation must also support non-contiguous device IDs (TAPI.DLL currently handles this fine; it keeps a separate pointer in each tPhone to its associated driver info, so they don't have to be contiguous).
If the service provider recognizes the dwTempID and is successful in setting up the structures and such that it needs to support the new device, it saves off the dwDeviceID, and returns SUCCESS. If this function is unsuccessful, TAPI.DLL doesn't add the device, and there are no negative affects (the PHONE_CREATE message is ignored). If this function completes successfully, TAPI.DLL saves the new number of devices, and creates a new entry in the device table (reallocating memory to expand the table). It then informs applications of the availability of the new device using PHONE_CREATE or PHONE_STATE (PHONESTATE_REINIT) messages.
Backward Compatibility
Older service providers will not export this function. However, they also should not send PHONE_CREATE messages, which means TAPI.DLL would not try to call this function. In the unlikely event a PHONE_CREATE message is received from a provider, and the provider is found to not export this function, the PHONE_CREATE message is discarded and ignored.
See Also
Messages: PHONE_CREATE
�TSPI_lineDropOnClose
Syntax
LONG TSPIAPI TSPI_lineDropOnClose (hdCall)
This function must be declared in the DEF file of the service provider with the ordinal value 596.

Parameters
HDRVCALL hdCall
Specifies the service provider’s handle to the call to be dropped or turned over to control by external equipment.
Return Value
Returns zero if the request is successful or a negative error number if an error has occurred. Possible return values are:
�symbol 183 \f "Symbol" \s 10 \h��	LINEERR_NOMEM
Insufficient memory to perform the operation.
�symbol 183 \f "Symbol" \s 10 \h��	LINEERR_OPERATIONFAILED
The operation failed for unknown reasons.
Call States
hdCall		Any state
Comments
TAPI.DLL will call this function for each call owned by an application that calls the TAPI lineClose function, if, at the time lineClose is called, that application is the sole owner of the call.
A service provider which implements TSPI_lineDropOnClose shall dispose of the call according to the setting of the LINEDEVCAPFLAGS_CLOSEDROP bit in the dwDevCapFlags field in the LINEDEVCAPS structure returned by TSPI_lineGetDevCaps. If this bit is 1, the service provider will drop calls upon which this function is invoked. If this bit is 0, the service provider will not drop calls upon which this function is invoked, but will turn control of the calls over to an external phone or other equipment.
A service provider should be designed to drop calls upon invocation of TSPI_lineDropOnClose or TSPI_lineClose if, when no application remains as an owner of the call, there would be no external means of terminating the call (e.g., by use of physical buttons or hookswitches on a phone on the desktop).
A service provider which does not drop the call but instead turns it over to the control of external equipment may choose to “detach” the call from the API by immediately transitioning the call to the idle state (i.e., send a LINE_CALLSTATE message indicating LINECALLSTATE_IDLE) so that monitoring applications will know to call lineDeallocateCall and release their call handles. A call which is so “detached” would be idle from the point of view of the Telephony API even though it continues to be active and under the control of external equipment. Alternatively, the service provider can continue to present call state messages for the benefit of monitoring applications, up until the time the TSPI_lineCloseCall or TSPI_lineClose function is invoked.
Note that this function returns synchronously. If the service providers requires lengthy processing to drop the call (as with TSPI_lineDrop), the actual processing may be done asynchronously, but the function should return immediately indicating that the provider has accepted the request. Eventual completion of the drop or detach operation would be indicated by a LINE_CALLSTATE (idle) message.
Backward Compatibility
If a service provider does not implement TSPI_lineDropOnClose, TAPI.DLL will instead call TSPI_lineDrop on all calls for which an application is the sole owner when that application calls lineClose on the line on which those calls exist. This behavior provides for backward compatibility with the previous version of TAPI.
Background and Commentary
The LINEDEVCAPFLAGS_CLOSEDROP bit indicates whether or not calls will be forcibly dropped by the service provider when a line is closed. The CLOSEDROP flag would not previously come into play, however, when the last owner of a call closed the line but one or more monitors continued to have a handle to the line, because TSPI_lineClose is not called until all applications (owners and monitors) close the line. In order to prevent calls remaining active without owners, the previous version of TAPI.DLL insisted on “cleaning up” active calls by calling TSPI_lineDrop on all calls for which the application that called lineClose was the sole owner. This behavior rendered the CLOSEDROP bit simply “advisory” to applications that some external equipment (such as an extension phone) might keep dropped calls active, since service providers had no way of knowing if TSPI_lineDrop had been explicitly called by the application or implicitly by TAPI.DLL.
This new function was create to accommodate environments in which hardware permits calls to remain active and under the control of external devices after all telephony applications quit and TAPI shuts down, and to allow providers to know whether the request to drop a call was made by an application (user) or implicitly by TAPI.DLL.
See Also
Constants: LINEDEVCAPFLAGS_CLOSEDROP

�TSPI_lineDropNoOwner
Syntax
LONG TSPIAPI TSPI_lineDropNoOwner (hdCall)
This function must be declared in the DEF file of the service provider with the ordinal value 597.

Parameters
HDRVCALL hdCall
Specifies the service provider’s handle to the call to be dropped or turned over to control by external equipment.
Return Value
Returns zero if the request is successful or a negative error number if an error has occurred. Possible return values are:
�symbol 183 \f "Symbol" \s 10 \h��	LINEERR_NOMEM
Insufficient memory to perform the operation.
�symbol 183 \f "Symbol" \s 10 \h��	LINEERR_OPERATIONFAILED
The operation failed for unknown reasons.
Call States
hdCall		Any state
Comments
TAPI.DLL will call this function when a new call is delivered by a service provider to TAPI.DLL (via a LINE_NEWCALL message followed by an initial LINE_CALLSTATE message) if no application can be found to become an owner of the call, if there are one or more monitoring applications active on the line, and if the call is in a state other than idle or offering. This prevents calls from being present in the system for which no application has responsibility to drop the call.
A service provider should be designed to drop calls upon invocation of TSPI_lineDropNoOwner if, when no application can be found to be an owner of the call, there would be no external means of terminating the call (e.g., by use of physical buttons or hookswitches on a phone on the desktop).
A service provider which does not drop the call but instead turns it over to the control of external equipment may choose to “detach” the call from the API by immediately transitioning the call to the idle state (i.e., send a LINE_CALLSTATE message indicating LINECALLSTATE_IDLE) so that monitoring applications will know to call lineDeallocateCall and release their call handles. A call which is so “detached” would be idle from the point of view of the Telephony API even though it continues to be active and under the control of external equipment. Alternatively, the service provider can continue to present call state messages for the benefit of monitoring applications, up until the time the TSPI_lineCloseCall or TSPI_lineClose function is invoked.
Note that this function returns synchronously. If the service providers requires lengthy processing to drop the call (as with TSPI_lineDrop), the actual processing may be done asynchronously, but the function should return immediately indicating that the provider has accepted the request. Eventual completion of the drop or detach operation would be indicated by a LINE_CALLSTATE (idle) message.
Backward Compatibility
If a service provider does not implement TSPI_lineDropNoOwner, TAPI.DLL will instead call TSPI_lineDrop on all calls delivered in other then offering state for which an initial owner cannot be found. This behavior provides for backward compatibility with the previous version of TAPI.
See Also
TBD

�TSPI_lineSetCurrentLocation
Syntax
LONG TSPIAPI TSPI_lineSetCurrentLocation (dwLocation)
This function is called by TAPI.DLL whenever the address translation location is changed by the user (in the Dial Helper dialog) or an application (using the lineSetCurrentLocation function). Service providers which store parameters specific to a location (e.g., touch-tone sequences to invoke particular PBX functions) would use the location to select the set of parameters applicable to the new location.
This function must be declared in the DEF file of the service provider with the ordinal value 600.

Parameters
DWORD dwLocation
Specifies the permanent location ID of the selected location.
Return Value
Returns zero if the request is successful or a negative error number if an error has occurred. Possible return values are:
�symbol 183 \f "Symbol" \s 10 \h��	LINEERR_NOMEM
Insufficient memory to perform the operation.
�symbol 183 \f "Symbol" \s 10 \h��	LINEERR_OPERATIONFAILED
The operation failed for unknown reasons.
Comments
Service providers which store sets of parameters based on the user’s current location should identify those sets by the permanent location ID of the location.
If the service provider does not implement specific parameters by location, this function can be omitted.
If the value passed in to the service provider by this function is not recognized by the service provider (for example, because no location-specific parameters have yet been set for the specified location), the service provider should use a default set of parameters.
Note that TAPI.DLL ignores the value returned by the service provider for this function; it is returned for debugging purposes only.
The service provider can synchronize its stored location-specific parameters with the locations stored by TAPI.DLL whenever the TSPI_providerConfig or TSPI_lineConfigDialog function is called, by using the lineGetTranslateCaps function to obtain a table of current locations. Newly-defined locations and removed locations can be detected at this time, and appropriate adjustments made to the service provider’s stored location parameters (including prompting the user to make settings for new locations).
Backward Compatibility
If the service provider does not export this function, TAPI.DLL will not call it, and no ill effects will result.
See Also
TBD
�TSPI_lineConfigDialogEdit
Syntax
LONG TSPI_lineConfigDialogEdit (dwDeviceID, hwndOwner, lpszDeviceClass, lpDeviceConfigIn, dwSize, lpDeviceConfigOut)
This function causes the provider of the specified line device to display a modal dialog as a child window of hwndOwner to allow the user to configure parameters related to the line device.
This function must be declared in the DEF file of the service provider with the ordinal value 601.
Parameters
DWORD dwDeviceID
Specifies the line device to be configured.
HWND hwndOwner
Specifies a handle to a window to which the dialog is to be attached.
LPCSTR lpszDeviceClass
Specifies a far pointer to a NULL-terminated string that identifies a device class name. This device class allows the caller to select a specific subscreen of configuration information applicable to that device class. If this parameter is NULL or points to an empty string, the highest level configuration should be selected. The permitted strings are the same as for TSPI_lineGetID.
LPVOID const lpDeviceConfigIn
Specifies a far pointer to the opaque configuration data structure that was returned by TSPI_lineGetDevConfig (or a previous invocation of TSPI_lineConfigDialogEdit) in the variable portion of the VARSTRING structure.
DWORD dwSize
Specifies the number of bytes in the structure pointed to by lpDeviceConfigIn. This value will have been returned in the dwStringSize field in the VARSTRING structure returned by TSPI_lineGetDevConfig or a previous invocation of TSPI_lineConfigDialogEdit.
LPVARSTRING lpDeviceConfigOut
Specifies a far pointer to the memory location of type VARSTRING where the device configuration structure is returned. Upon successful completion of the request, this location is filled with the device configuration. The dwStringFormat field in the VARSTRING structure will be set to STRINGFORMAT_BINARY. Prior to calling lineGetDevConfig (or a future invocation of lineConfigDialogEdit), the application should set the dwTotalSize field of this structure to indicate the amount of memory available to TAPI.DLL for returning information.
Return Value
Returns zero if the request is successful or a negative error number if an error has occurred. Possible return values are:
�symbol 183 \f "Symbol" \s 10 \h��	LINEERR_INVALDEVICECLASS
The specified line does not support the indicated device class.
�symbol 183 \f "Symbol" \s 10 \h��	LINEERR_INVALPARAM
The he information contained in the structure pointed to by lpDeviceConfigIn is not valid for this device..
�symbol 183 \f "Symbol" \s 10 \h��	LINEERR_NODRIVER
The telephony service provider for the specified device found that one of its components is missing or corrupt in a way that was not detected at initialization time.
�symbol 183 \f "Symbol" \s 10 \h��	LINEERR_NOMEM
Insufficient memory to perform the operation.
�symbol 183 \f "Symbol" \s 10 \h��	LINEERR_OPERATIONFAILED
The operation failed for unknown reasons.
�symbol 183 \f "Symbol" \s 10 \h��	LINEERR_RESOURCEUNAVAIL
The service provider does not have enough resources available to complete the request.
�symbol 183 \f "Symbol" \s 10 \h��	LINEERR_OPERATIONUNAVAIL
The operation is unavailable.
Comments
This function causes the service provider to display a modal dialog (attached to hwndOwner) to allow the user to configure parameters related to the line specified by dwDeviceID.
The lpszDeviceClass parameter selects a specific subscreen of configuration information applicable to the device class in which the user is interested; the permitted strings are the same as for TSPI_lineGetID. For example, if the line supports the Comm API, passing “COMM” as lpszDeviceClass causes the provider to display the parameters related specifically to Comm (or, at least, start at the corresponding point in a multilevel configuration dialog chain, so the user doesn’t have to “dig” to find the parameters of interest).
The lpszDeviceClass parameter would be “tapi/line” , “”, or NULL to cause the provider to display the highest level configuration for the line.
The difference between this function and TSPI_lineConfigDialog is the source of the parameters to edit and the result of the editing. In TSPI_lineConfigDialog, the parameters edited are those currently in use on the device (or set for use on the next call), and any changes made have (to the maximum extent possible) an immediate impact on any active connection; also, the application must use lineGetDevConfig to fetch the result of parameter changes from TSPI_lineConfigDialog. With TSPI_lineConfigDialogEdit, the parameters to edit are passed in from the application, and the results are returned to the application, with no impact on active connections; the results of the editing are returned with this function, and the application does not need to call lineGetDevConfig. Thus, TSPI_lineConfigDialogEdit permits an application to provide the ability for the user to set up parameters for future calls without having an impact on any active call. Note, however, the output of this function can be passed to TSPI_lineSetDevConfig to affect the current call or next call.
See Also
TSPI_lineGetDevConfig, TSPI_lineSetDevConfig, TSPI_lineConfigDialog
Backward Compatibility
This function will not be exported by older service providers. TAPI.DLL will detect this condition and report LINEERR_OPERATIONUNAVAIL should an application attempt to call this function on an older provider.
�TSPI_lineReleaseUserUserInfo
Syntax
LONG TSPI_lineReleaseUserUserInfo (dwRequestID, hdCall)
This function informs the service provider that the user-user information contained in the LINECALLINFO structure has been processed, and that subsequently received user-user information can now be written into that structure. The service provider sends a LINE_CALLINFO message indicating LINECALLINFOSTATE_USERUSERINFO when new information is available.
This function must be declared in the DEF file of the service provider with the ordinal value 602.
Parameters
DRV_REQUESTID dwRequestID
Specifies the identifier of the asynchronous request.
HDRVCALL hdCall
Specifies the service provider’s handle to the call for which user-user information is to be released.
Return Value
Returns dwRequestID, or a negative error number if an error has occurred. The lResult actual parameter of the corresponding ASYNC_COMPLETION is zero if the function is successful, or a negative error number if an error has occurred. Possible return values are as follows:
�symbol 183 \f "Symbol" \s 10 \h��	LINEERR_INVALCALLHANDLE
The specified call handle is invalid.
�symbol 183 \f "Symbol" \s 10 \h��	LINEERR_NOMEM
Insufficient memory to perform the operation.
�symbol 183 \f "Symbol" \s 10 \h��	LINEERR_OPERATIONFAILED
The operation failed for unknown reasons.
�symbol 183 \f "Symbol" \s 10 \h��	LINEERR_RESOURCEUNAVAIL
The service provider does not have enough resources available to complete the request.
Call States
hdCall any
Comments
The TSPI_lineReleaseUserUserInfo function permits control of the flow of incoming user-user information on an ISDN connection. When a new, complete user-user information message is received, the service provider informs TAPI.DLL using a LINE_CALLINFO message (specifying LINECALLINFOSTATE_USERUSERINFO). The user-user information and other fields in LINECALLINFO may be examined by multiple calls to TSPI_lineGetCallInfo. The service provider shall not overwrite previous user-user information in LINECALLINFO with newer information until after TSPI_lineReleaseUserUserInfo has been called. It is the responsibility of the service provider to buffer subsequently received user-user information until the previous information is released. Any remaining buffered information may be discarded when TSPI_lineCloseCall is invoked.
If this function is invoked while there is no user-user information in LINECALLINFO, the service provider should nevertheless return an indication of success.
See Also
lineGetCallInfo
Backward Compatibility
TAPI.DLL will automatically return LINEERR_OPERATIONUNAVAIL if this function is invoked for a call on a line under the control of a service provider which does not export the function.

�
 API Messages
LINE_CREATE
This message is issued to applications by TAPI.DLL to inform them of the creation of a new line device.
Parameters
DWORD dwDevice
Unused.
DWORD dwCallbackInstance
Unused.
DWORD dwParam1
Specifies the dwDeviceID of the newly-created device.
DWORD dwParam2
Unused.
DWORD dwParam3
Unused.
Comments and Backward Compatibility
Older applications (which negotiated an API version prior to the creation of this feature) are sent a LINE_LINEDEVSTATE message specifying LINEDEVSTATE_REINIT, which requires them to shut down their use of the API and call lineInitialize again to obtain the new number of devices. Unlike previous versions of TAPI.DLL, however, this version does not require all applications to shut down before allowing applications to reinitialize; reinitialization can take place immediately when a new device is created (complete shutdown is still required when a service provider is removed from the system).
Applications supporting this and subsequent versions of the API are sent a LINE_CREATE message. This informs them of the existence of the new device and its new device ID. The application can then choose whether or not to attempt working with the new device at its leisure. This message will be sent to all applications supporting this or subsequent versions of the API which have called lineInitialize, including those that do not have any line devices open at the time.
�PHONE_CREATE
This message is issued to applications by TAPI.DLL to inform them of the creation of a new phone device.
Parameters
HPHONE hPhone
Unused.
DWORD dwCallbackInstance
Unused.
DWORD dwParam1
Specifies the dwDeviceID of the newly-created device.
DWORD dwParam2
Unused.
DWORD dwParam3
Unused.
Comments and Backward Compatibility
Older applications (which negotiated an API version prior to the creation of this feature) are sent a PHONE_STATE message specifying PHONESTATE_REINIT, which requires them to shut down their use of the API and call phoneInitialize again to obtain the new number of devices. Unlike previous versions of TAPI.DLL, however, this version does not require all applications to shut down before allowing applications to reinitialize; reinitialization can take place immediately when a new device is created (complete shutdown is still required when a service provider is removed from the system).
Applications supporting this and subsequent versions of the API are sent a PHONE_CREATE message. This informs them of the existence of the new device and its new device ID. The application can then choose whether or not to attempt working with the new device at its leisure. This message will be sent to all applications supporting this or subsequent versions of the API which have called phoneInitialize, including those that do not have any line devices open at the time.
�LINE_ADDRESSSTATE
The following information is added to the description of the LINE_ADDRESSSTATE message.
Add the following to the description of the parameter dwParam2:

LINEADDRESSSTATE_CAPSCHANGE
Indicates that, due to configuration changes made by the user or other circumstances, one or more of the fields in the LINEADDRESSCAPS structure for the address have changed. The application should use lineGetAddressCaps to read the updated structure. Applications which support API versions less than 0x00010004 will receive a LINEDEVSTATE_REINIT message, requiring them to shutdown and reinitialize their connection to TAPI.DLL in order to obtain the updated information.
�LINE_CALLSTATE
The following information is added to the description of the LINE_CALLSTATE message.
Add the following to the description of the parameter dwParam2:

If dwParam1 is LINECALLSTATE_CONFERENCED, dwParam2 contains the hConfCall of the parent call of the conference of which the subject hCall is a member. If the call specified in dwParam2 was not previously considered by the application to be a parent conference call (hConfCall), the application must do so as a result of this message. If the application does not have a handle to the parent call of the conference (because it has previously called lineDeallocateCall on that handle, dwParam2 will be set to null.)
Backward Compatibility
Older applications will not be expecting any particular value in dwParam2 of a LINECALLSTATE_CONFERENCED message. TAPI.DLL will therefore pass the parent call hConfCall in dwParam2 regardles of the API version of the application receiving the message. In the case of a conference call initiated by the service provider, the older application will not be aware that the parent call has become a conference call unless it happens to spontaneously examine other information (e.g., call lineGetConfRelatedCalls)
�LINE_LINEDEVSTATE
The following information is added to the description of the LINE_LINEDEVSTATE message.
Add the following to the description of the parameter dwParam1:

LINEDEVSTATE_CAPSCHANGE
Indicates that, due to configuration changes made by the user or other circumstances, one or more of the fields in the LINEDEVCAPS structure for the address have changed. The application should use lineGetDevCaps to read the updated structure.
LINEDEVSTATE_CONFIGCHANGE
Indicates that configuration changes have been made to one or more of the media devices associated with the line device. The application, if it desires, may use lineGetDevConfig to read the updated information.
LINEDEVSTATE_TRANSLATECHANGE
Indicates that, due to configuration changes made by the user or other circumstances, one or more of the fields in the LINETRANSLATECAPS structure have changed. The application should use lineGetTranslateCaps to read the updated structure.
LINEDEVSTATE_COMPLCANCEL
Indicates that the call completion identified by the completion ID contained in parameter dwParam2 of the LINE_LINEDEVSTATE message has been externally cancelled and is no longer considered valid (if that value were to be passed in a subsequent call to lineUncompleteCall, the function would fail with LINEERR_INVALCOMPLETIONID).
Add the following to the description of the parameter dwParam2:

If dwParam1 is LINEDEVSTATE_REINIT, and the message was issued by TAPI.DLL as a result of translation of a new API message into a REINIT message, then dwParam2 contains the dwMsg parameter of the original message (e.g., LINE_CREATE or LINE_LINEDEVSTATE). If dwParam2 is zero, this indicates that the REINIT message is a “real” REINIT message that requires the application to call lineShutdown at its earliest convenience.
Add the following to the description of the parameter dwParam3:

If dwParam1 is LINEDEVSTATE_REINIT, and the message was issued by TAPI.DLL as a result of translation of a new API message into a REINIT message, then dwParam3 contains the dwParam1 parameter of the original message (e.g., LINEDEVSTATE_TRANSLATECHANGE or some other LINEDEVSTATE_ value, if dwParam2 is LINE_LINEDEVSTATE, or the new device ID, if dwParam2 is LINE_CREATE).
Backward Compatibility
See section � REF _Ref296322067 \n �7.7� for information on translation by TAPI.DLL of LINE_LINEDEVSTATE messages containing these values.
�PHONE_STATE
The following information is added to the description of the LINE_LINEDEVSTATE message.
Add the following to the description of the parameter dwParam1:

PHONESTATE_CAPSCHANGE
Indicates that, due to configuration changes made by the user or other circumstances, one or more of the fields in the PHONECAPS structure have changed. The application should use phoneGetDevCaps to read the updated structure.
Backward Compatibility
See section � REF _Ref296322247 \n �0� for information on translation by TAPI.DLL of PHONE_STATE messages containing this value.

� SPI Messages
LINE_CREATE
A service provider sends a LINE_CREATE message to TAPI.DLL when it desires to create a new device. This can occur when a new device is detected by Plug’n’Play, or dynamically enabled by the user through a provider configuration function. across the TSPI. During the LINEEVENT callback procedure, TAPI.DLL simply queues this message for later processing. When the message is received from the queue, the TSPI_providerCreateLineDevice function will be called in the context of the TAPIEXE.EXE process.
Sent to
LINEEVENT
Parameters
HTAPILINE htLine
Unused
HTAPICALL htCall
Unused
DWORD dwMsg
The value LINE_CREATE
DWORD dwParam1
Specifies the service provider handle (hProvider) as received in TSPI_providerInit.
DWORD dwParam2
Contains a temporary device ID generated by the service provider. TAPI.DLL will use this value in a subsequent call to TSPI_providerCreateLineDevice to assist the provider in associating the message and the function call (in the event that multiple devices are being created).
DWORD dwParam3
Unused.
Comments
Service providers may (and should) continue to make “static” device allocations at startup time when TAPI.DLL calls TSPI_providerEnumDevices. Creating known devices using this mechanism, instead of always using LINE_CREATE, involves lower overhead for applications (since they don’t have to process LINE_CREATE messages, updated device information, etc.). The LINE_CREATE mechanism is intended to be used only if new devices are created while the service provider is active (i.e., between TSPI_providerInit and TSPI_providerShutdown).
This message is sent to the LINEEVENT callback entry point in TAPI.DLL. The service provider receives a pointer to this callback in the TSPI_providerEnumDevices function and in each TSPI_lineOpen function; the LINE_CREATE message can be sent to the LINEEVENT callback function given to any open line or at startup.
Devices cannot be removed dynamically. If a service provider desires to remove a line from service, it would send a LINE_LINEDEVSTATE (LINEDEVSTATE_OUTOFSERVICE) message. It would then refuse (e.g., by returning LINEERR_INVALLINESTATE) to perform any operation with the device until it returns to service or the provider is shutdown and restarted (in which case the device could be not declared in TSPI_providerEnumDevices, effectively removing it from the system).
Backward Compatibility
Older service providers would not be expected to send this message. If they do, the message should be treated in the same manner as described above for new service providers.
�PHONE_CREATE
A service provider sends a PHONE_CREATE message to TAPI.DLL when it desires to create a new device. This can occur when a new device is detected by Plug’n’Play, or dynamically enabled by the user through a provider configuration function. across the TSPI. During the PHONEEVENT callback procedure, TAPI.DLL simply queues this message for later processing. When the message is received from the queue, the TSPI_providerCreatePhoneDevice function will be called in the context of the TAPIEXE.EXE process.
Sent to
PHONEEVENT
Parameters
HTAPIPHONE htPhone
Unused
DWORD dwMsg
The value PHONE_CREATE
DWORD dwParam1
Specifies the service provider handle (hProvider) as received in TSPI_providerInit.
DWORD dwParam2
Contains a temporary device ID generated by the service provider. TAPI.DLL will use this value in a subsequent call to TSPI_providerCreatePhoneDevice to assist the provider in associating the message and the function call (in the event that multiple devices are being created).
DWORD dwParam3
Unused.
Comments
Service providers may (and should) continue to make “static” device allocations at startup time when TAPI.DLL calls TSPI_providerEnumDevices. Creating known devices using this mechanism, instead of always using PHONE_CREATE, involves lower overhead for applications (since they don’t have to process PHONE_CREATE messages, updated device information, etc.). The PHONE_CREATE mechanism is intended to be used only if new devices are created while the service provider is active (i.e., between TSPI_providerInit and TSPI_providerShutdown).
This message is sent to the PHONEEVENT callback entry point in TAPI.DLL. The service provider receives a pointer to this callback in the TSPI_providerEnumDevices function and in each TSPI_phoneOpen function; the PHONE_CREATE message can be sent to the PHONEEVENT callback function given to any open phone or at startup.
Devices cannot be removed dynamically. If a service provider desires to remove a phone from service, it would send PHONE_STATE (PHONESTATE_DISCONNECTED) message. It would then refuse (e.g., by returning PHONEERR_INVALPHONESTATE) to perform any operation with the device until it returns to service or the provider is shutdown and restarted (in which case the device could be not declared in TSPI_providerEnumDevices, effectively removing it from the system).
Backward Compatibility
Older service providers would not be expected to send this message. If they do, the message should be treated in the same manner as described above for new service providers.
�LINE_ADDRESSSTATE
The following information is added to the description of the LINE_ADDRESSSTATE message.
Add the following to the description of the parameter dwParam2:

LINEADDRESSSTATE_CAPSCHANGE
Indicates that, due to configuration changes made by the user or other circumstances, one or more of the fields in the LINEADDRESSCAPS structure for the address have changed. If a service provider sends a LINE_ADDRESSSTATE message containing this value to TAPI.DLL, TAPI will pass it along to applications which have negotiated this or a subsequent API version; applications negotiating a previous API version will receive LINE_LINEDEVSTATE messages specifying LINEDEVSTATE_REINIT, requiring them to shutdown and reinitialize their connection to TAPI.DLL in order to obtain the updated information.
Backwards Compatibility
Older service providers would not be expected to generate this value in a LINE_ADDRESSSTATE message. If they do, they message should be handled in the same manner as for newer service providers (as described above).

�LINE_CALLSTATE
The following information is added to the description of the LINE_CALLSTATE message.
Add the following to the description of the parameter dwParam2:

If dwParam1 is LINECALLSTATE_CONFERENCED, dwParam2 contains the htCall of the parent call of the conference of which the subject htCall is a member. If the call specified in dwParam2 was not previously considered by TAPI.DLL to be a parent conference call, this message causes it to be so treated. The call specified in dwParam2 must already exist; it was most likely previously created by a LINE_NEWCALL message and set to LINECALLSTATE_ONHOLDPENDCONF.
Backward Compatibility
Older service providers will not pass a valid htCall in dwParam2. TAPI.DLL must check the value passed, and ignore it if it is not a calid htCall. If the value is a valid htCall, TAPI.DLL will also check the API version in use on the line device, and establish a conference call internally only if the API version is 0x00010004 or greater (i.e., if the API version on the line is older the 0x00010004, this parameter should be ignored).
�LINE_LINEDEVSTATE
The following information is added to the description of the LINE_LINEDEVSTATE message.
Add the following to the description of the parameter dwParam1:

LINEDEVSTATE_CAPSCHANGE
Indicates that, due to configuration changes made by the user or other circumstances, one or more of the fields in the LINEDEVCAPS structure for the address have changed. If a service provider sends a LINE_LINEDEVSTATE message containing this value to TAPI.DLL, TAPI will pass it along to applications which have negotiated this or a subsequent API version; applications negotiating a previous API version will receive LINE_LINEDEVSTATE messages specifying LINEDEVSTATE_REINIT, requiring them to shutdown and reinitialize their connection to TAPI.DLL in order to obtain the updated information.
LINEDEVSTATE_CONFIGCHANGE
Indicates that configuration changes have been made to one or more of the media devices associated with the line device. If a service provider sends a LINE_LINEDEVSTATE message containing this value to TAPI.DLL, TAPI will pass it along to applications which have negotiated this or a subsequent API version; applications negotiating a previous API version will not receive any notification.
LINEDEVSTATE_COMPLCANCEL
Indicates that the call completion identified by the completion ID contained in parameter dwParam2 of the LINE_LINEDEVSTATE message has been externally cancelled and is no longer considered valid (if that value were to be passed in a subsequent call to lineUncompleteCall, the function would fail with LINEERR_INVALCOMPLETIONID). If a service provider sends a LINE_LINEDEVSTATE message containing this value to TAPI.DLL, TAPI will pass it along to applications which have negotiated this or a subsequent API version; applications negotiating a previous API version will not receive any notification.
Backward Compatibility
Older service providers would not be expected to generate these values. If they do, TAPI.DLL will treat them the same as if the service provider were using API version 0x00010004 or greater (i.e., as described above).
�PHONE_STATE
The following information is added to the description of the PHONE_STATE message.
Add the following to the description of the parameter dwParam1:

PHONESTATE_CAPSCHANGE
Indicates that, due to configuration changes made by the user or other circumstances, one or more of the fields in the PHONECAPS structure have changed. If a service provider sends a PHONE_STATE message containing this value to TAPI.DLL, TAPI will pass it along to applications which have negotiated this or a subsequent API version; applications negotiating a previous API version will receive PHONE_STATE messages specifying PHONESTATE_REINIT, requiring them to shutdown and reinitialize their connection to TAPI.DLL in order to obtain the updated information.
Backwards Compatibility
Older service providers would not be expected to generate this value in a PHONE_STATE message. If they do, they message should be handled in the same manner as for newer service providers (as described above).

�Changes to Data Structures
LINEADDRESSCAPS
Add the following field to the end of the LINEADDRESSCAPS structure:

	DWORD	dwAddressFeatures;�
Add the following field description:
dwAddressFeatures
This field specifies the features available for this address using the LINEADDRFEATURE_ constants. Invoking a supported feature requires the address to be in the proper state and the underlying line device to be opened in a compatible mode. A zero in a bit position indicates that the corresponding feature is never available. A one indicates that the corresponding feature may be available if the address is in the appropriate state for the operation to be meaningful. This field allows an application to discover which address features can be (and which can never be) supported by the address.
Backward Compatibility
Older applications will have been compiled without this field in the LINEADDRESSCAPS structure, and using a SIZEOF LINEADDRESSCAPS smaller than the new size. The application passes in a dwAPIVersion parameter with the lineGetAddressCaps function, which can be used for guidance by TAPI.DLL in handling this situation. If the application passes in a dwTotalSize less than the size of the fixed portion of the structure as defined in the dwAPIVersion specified, LINEERR_STRUCTURETOOSMALL will be returned. If sufficient memory has been allocated by the application, before calling TSPI_lineGetAddressCaps, TAPI.DLL will set the dwNeededSize and dwUsedSize fields to the fixed size of the structure as it existed in the specified API version.
New service providers (which support the new API version) must examine the API version passed in. If the API version is less than the highest version supported by the provider, the service provider must not fill in fields not supported in older API versions, as these would fall in the variable portion of the older structure.
New applications must be cognizant of the API version negotiated, and not examine the contents of fields in the fixed portion beyond the original end of the fixed portion of the structure for the negotiated API version.
�LINECARDENTRY
Add the following fields to the end of the LINECARDENTRY structure:

	DWORD	dwCardNumberDigits;�	DWORD	dwSameAreaRuleSize;�	DWORD	dwSameAreaRuleOffset;�	DWORD	dwLongDistanceRuleSize;�	DWORD	dwLongDistanceRuleOffset;�	DWORD	dwInternationalRuleSize;�	DWORD	dwInternationalRuleOffset;�	DWORD	dwOptions;�
Add the following field descriptions:
dwCardNumberDigits
Specifies the number of digits in the existing card number. The card number itself is not return for security reasons (it is stored in scrambled form by TAPI.DLL). The application can use this to insert filler bytes into a text control in “password” mode to show that a number exists.
dwSameAreaRuleSize�dwSameAreaRuleOffset
Specifies the offset in bytes from the beginning of the LINETRANSLATECAPS structure and the total number of bytes in the dialing rule defined for calls to numbers in the same area code. The rule is a null-terminated ASCII string.
dwLongDistanceRuleSize�dwLongDistanceRuleOffset
Specifies the offset in bytes from the beginning of the LINETRANSLATECAPS structure and the total number of bytes in the dialing rule defined for calls to numbers in the other areas in the same country. The rule is a null-terminated ASCII string.
dwInternationalRuleSize�dwInternationalRuleOffset
Specifies the offset in bytes from the beginning of the LINETRANSLATECAPS structure and the total number of bytes in the dialing rule defined for calls to numbers in other countries. The rule is a null-terminated ASCII string.
dwOptions
Indicates other settings associated with this calling card, using the LINECARDOPTION_ set of constants.
Backward Compatibility
Older applications will have been compiled without knowledge of these new fields, and using a SIZEOF LINECARDENTRY smaller than the new size. Since this is an array in the variable portion of a LINETRANSLATECAPS structure, it is imperitive that older applications receive LINECARDENTRY structures in the format they previously expected, or they will not be able to index through the array properly. The application passes in a dwAPIVersion parameter with the lineGetTranslateCaps function, which can be used for guidance by TAPI.DLL in handling this situation. lineGetTranslateCaps should use the LINECARDENTRY fields and size that match the indicated API version, when building the LINETRANSLATECAPS structure to be returned to the application.
�LINECOUNTRYLIST
The LINECOUNTRYLIST structure describes a list of countries. A structure of this type is returned by the function lineGetCountry.

	typedef struct linecountrylist_tag {�	DWORD	dwTotalSize;�	DWORD	dwNeededSize;�	DWORD	dwUsedSize;�	�	DWORD	dwNumCountries;�	DWORD	dwCountryListSize;�	DWORD	dwCountryListOffset;�} LINECOUNTRYLIST, FAR *LPLINECOUNTRYLIST;

Fields
The LINECOUNTRYLIST structure contains the following fields:
dwTotalSize
The total size in bytes allocated to this data structure.
dwNeededSize
The size in bytes for this data structure that is needed to hold all the returned information.
dwUsedSize
The size in bytes of the portion of this data structure that contains useful information.
dwNumCountries
Specifies the number of LINECOUNTRYENTRY structures present in the array denominated by dwCountryListSize and dwCountryListOffset.
dwCountryListSize�dwCountryListOffset
The size in bytes and the offset in bytes from the beginning of this data structure of an array of LINECOUNTRYENTRY elements which provide the information on each country.
Extensibility
None.
See Also
TBD
Backward Compatibility
Because this structure is returned by a new function, backward compatibility is not an issue at this time.

�LINECOUNTRYENTRY
The LINECOUNTRYENTRY structure provides the information for a single country entry. An array of 1 or more of these structures is returned as part of the LINECOUNTRYLIST structure returned by the function lineGetCountry.

	typedef struct linecountryentry_tag {�	DWORD	dwCountryID;�	DWORD	dwCountryCode;�	DWORD	dwNextCountryID;�	DWORD	dwCountryNameSize;�	DWORD	dwCountryNameOffset;�	DWORD	dwSameAreaRuleSize;�	DWORD	dwSameAreaRuleOffset;�	DWORD	dwLongDistanceRuleSize;�	DWORD	dwLongDistanceRuleOffset;�	DWORD	dwInternationalRuleSize;�	DWORD	dwInternationalRuleOffset;�} LINECOUNTRYENTRY, FAR *LPLINECOUNTRYENTRY;

Fields
The LINECOUNTRYENTRY structure contains the following fields:
dwCountryID
Specifies the country ID of the entry. The country ID is an internal identifier which allows multiple entries to exist in the country list with the same country code (for example, all countries in North America and the Caribbean share country code 1, but require separate entries in the list).
dwCountryCode
Specifies the actual country code of the country represented by the entry (i.e., the digits that would be dialed in an international call). Only this value should ever be displayed to users (country IDs should never be displayed, as they would be confusing).
dwNextCountryID
Specifies the country ID of the next entry in the country list. Because country codes and IDs are not assigned in any regular numeric sequence, the country list is a single linked list, with each entry pointing to the next. The last country in the list has a dwNextCountryID value of 0. When the LINECOUNTRYLIST structure is used to obtain the entire list, the entries in the list will be in sequence as linked by their dwNextCountryID fields.
dwCountryNameSize�dwCountryNameOffset
The size in bytes and the offset in bytes from the beginning of the LINECOUNTRYLIST structure of a null-terminated string giving the name of the country.
dwSameAreaRuleSize�dwSameAreaRuleOffset
The size in bytes and the offset in bytes from the beginning of the LINECOUNTRYLIST structure of a null-terminated ASCII string containing the dialing rule for direct-dialed calls to the same area code.
dwLongDistanceRuleSize�dwLongDistanceRuleOffset
The size in bytes and the offset in bytes from the beginning of the LINECOUNTRYLIST structure of a null-terminated ASCII string containing the dialing rule for direct-dialed calls to other areas in the same country.
dwInternationalRuleSize�dwInternationalRuleOffset
The size in bytes and the offset in bytes from the beginning of the LINECOUNTRYLIST structure of a null-terminated ASCII string containing the dialing rule for direct-dialed calls to other countries.
Extensibility
None.
See Also
TBD
Backward Compatibility
Because this structure is returned by a new function, backward compatibility is not an issue at this time.

�LINEDEVCAPS
Add the following field to the end of the LINEDEVCAPS structure:

	DWORD	dwLineFeatures;�
Add the following field description:
dwLineFeatures
This field specifies the features available for this line using the LINEFEATURE_ constants. Invoking a supported feature requires the line to be in the proper state and the underlying line device to be opened in a compatible mode. A zero in a bit position indicates that the corresponding feature is never available. A one indicates that the corresponding feature may be available if the line is in the appropriate state for the operation to be meaningful. This field allows an application to discover which line features can be (and which can never be) supported by the device.
Backward Compatibility
Older applications will have been compiled without this field in the LINEDEVCAPS structure, and using a SIZEOF LINEDEVCAPS smaller than the new size. The application passes in a dwAPIVersion parameter with the lineGetDevCaps function, which can be used for guidance by TAPI.DLL in handling this situation. If the application passes in a dwTotalSize less than the size of the fixed portion of the structure as defined in the dwAPIVersion specified, LINEERR_STRUCTURETOOSMALL will be returned. If sufficient memory has been allocated by the application, before calling TSPI_lineGetDevCaps, TAPI.DLL will set the dwNeededSize and dwUsedSize fields to the fixed size of the structure as it existed in the specified API version.
New service providers (which support the new API version) must examine the API version passed in. If the API version is less than the highest version supported by the provider, the service provider must not fill in fields not supported in older API versions, as these would fall in the variable portion of the older structure.
New applications must be cognizant of the API version negotiated, and not examine the contents of fields in the fixed portion beyond the original end of the fixed portion of the structure for the negotiated API version.
�LINELOCATIONENTRY
Add the following fields to the end of the LINELOCATIONENTRY structure:

	DWORD	dwLocalAccessCodeSize;�	DWORD	dwLocalAccessCodeOffset;�	DWORD	dwLongDistanceAccessCodeSize;�	DWORD	dwLongDistanceAccessCodeOffset;�	DWORD	dwTollPrefixListSize;�	DWORD	dwTollPrefixListOffset;
	DWORD	dwCountryID;
	DWORD	dwOptions;
	DWORD	dwCancelCallWaitingSize;
	DWORD	dwCancelCallWaitingOffset;�
Add the following field descriptions:
dwLocalAccessCodeSize�dwLocalAccessCodeOffset
The size in bytes and the offset in bytes from the beginning of the LINETRANSLATECAPS structure of a null-terminated ASCII string containing the access code to be dialed before calls to addresses in the local calling area.
dwLongDistanceAccessCodeSize�dwLongDistanceAccessCodeOffset
The size in bytes and the offset in bytes from the beginning of the LINETRANSLATECAPS structure of a null-terminated ASCII string containing the access code to be dialed before calls to addresses outside the local calling area.
dwTollPrefixListSize�dwTollPrefixListOffset
The size in bytes and the offset in bytes from the beginning of the LINETRANSLATECAPS structure of a null-terminated ASCII string containing the toll prefix list for the location. The string will contain only prefixes consisting of the digits “0” through “9”, separated from each other by a single “,” (comma) character.
dwCountryID
Specifies the country ID of the country selected for the location. This can be used with the lineGetCountry function to obtain additional information about the specific country, such as the country name (the dwCountryCode field cannot be used for this purpose because country codes are not unique).
dwOptions
Indicates options in effect for this location, with values taken from the LINELOCATIONOPTION_ set of constants.
dwCancelCallWaitingSize�dwCancelCallWaitingOffset
The size in bytes and the offset in bytes from the beginning of the LINETRANSLATECAPS structure of a null-terminated ASCII string containing the dial digits and modifier characters that should be prefixed to the dialable string (after the pulse/tone character) when an application sets the LINETRANSLATEOPTION_CANCELCALLWAITING bit in the dwTranslateOptions parameter of lineTranslateAddress. If no prefix is defined, this may be indicated by dwCancelCallWaitingSize being set to 0, or by it being set to 1 and dwCancelCallWaitingOffset pointing to an empty string (single null byte).
Backward Compatibility
Older applications will have been compiled without knowledge of these new fields, and using a SIZEOF LINELOCATIONENTRY smaller than the new size. Since this is an array in the variable portion of a LINETRANSLATECAPS structure, it is imperitive that older applications receive LINELOCATIONENTRY structures in the format they previously expected, or they will not be able to index through the array properly. The application passes in a dwAPIVersion parameter with the lineGetTranslateCaps function, which can be used for guidance by TAPI.DLL in handling this situation. lineGetTranslateCaps should use the LINELOCATIONENTRY fields and size that match the indicated API version, when building the LINETRANSLATECAPS structure to be returned to the application.

�LINEPROVIDERLIST
The LINEPROVIDERLIST structure describes a list of service providers. A structure of this type is returned by the function lineGetProviderList.

	typedef struct lineproviderlist_tag {�	DWORD	dwTotalSize;�	DWORD	dwNeededSize;�	DWORD	dwUsedSize;�	�	DWORD	dwNumProviders;�	DWORD	dwProviderListSize;�	DWORD	dwProviderListOffset;�} LINEPROVIDERLIST, FAR *LPLINEPROVIDERLIST;

Fields
The LINEPROVIDERLIST structure contains the following fields:
dwTotalSize
The total size in bytes allocated to this data structure.
dwNeededSize
The size in bytes for this data structure that is needed to hold all the returned information.
dwUsedSize
The size in bytes of the portion of this data structure that contains useful information.
dwNumProviders
Specifies the number of LINEPROVIDERENTRY structures present in the array denominated by dwProviderListSize and dwProviderListOffset.
dwProviderListSize�dwProviderListOffset
The size in bytes and the offset in bytes from the beginning of this data structure of an array of LINEPROVIDERENTRY elements which provide the information on each service provider.
Extensibility
None.
See Also
TBD
Backward Compatibility
Because this structure is returned by a new function, backward compatibility is not an issue at this time.

�LINEPROVIDERENTRY
The LINEPROVIDERENTRY structure provides the information for a single service provider entry. An array of these structures is returned as part of the LINEPROVIDERLIST structure returned by the function lineGetProviderList.

	typedef struct lineproviderentry_tag {�	DWORD	dwPermanentProviderID;�	DWORD	dwProviderFilenameSize;�	DWORD	dwProviderFilenameOffset;�} LINEPROVIDERENTRY, FAR *LPLINEPROVIDERENTRY;

Fields
The LINEPROVIDERENTRY structure contains the following fields:
dwPermanentProviderID
Specifies the permanent provider ID of the entry.
dwProviderFilenameSize�dwProviderFilenameOffset
The size in bytes and the offset in bytes from the beginning of the LINEPROVIDERLIST structure of a null-terminated ASCII string containing the filename (pathname) of the service provider DLL (.TSP) file.
Extensibility
None.
See Also
TBD
Backward Compatibility
Because this structure is returned by a new function, backward compatibility is not an issue at this time.
�
PHONEBUTTONINFO
Add the following field to the end of the PHONEBUTTONINFO structure:

	DWORD	dwButtonState;�
Add the following field description:
dwButtonState
For the phoneGetButtonInfo function, this field indicates the current state of the button, using the PHONEBUTTONSTATE_ constants. This field is ignored by the phoneSetButtonInfo function.
Backward Compatibility
Older applications will have been compiled without this field in the PHONEBUTTONINFO structure, and using a SIZEOF PHONEBUTTONINFO smaller than the new size. The application passes in a dwAPIVersion parameter with the phoneOpen function, which can be used for guidance by TAPI.DLL in handling this situation. If the application passes in a dwTotalSize less than the size of the fixed portion of the structure as defined in the dwAPIVersion specified, PHONEERR_STRUCTURETOOSMALL will be returned. If sufficient memory has been allocated by the application, before calling TSPI_phoneGetButtonInfo, TAPI.DLL will set the dwNeededSize and dwUsedSize fields to the fixed size of the structure as it existed in the specified API version.
New service providers (which support the new API version) must examine the API version passed in. If the API version is less than the highest version supported by the provider, the service provider must not fill in fields not supported in older API versions, as these would fall in the variable portion of the older structure.
New applications must be cognizant of the API version negotiated, and not examine the contents of fields in the fixed portion beyond the original end of the fixed portion of the structure for the negotiated API version.

�Changes to Constants
LINEADDRESSSTATE_
Add the following value to those already defined in the LINEADDRESSSTATE_ set of constants. These must also be added to the LINE_ADDRESSSTATE message.

LINEADDRESSSTATE_CAPSCHANGE			0x00000100�
Add the following value description:
LINEADDRESSSTATE_CAPSCHANGE
Indicates that, due to configuration changes made by the user or other circumstances, one or more of the fields in the LINEADDRESSCAPS structure for the address have changed. The application should use lineGetAddressCaps to read the updated structure. If a service provider sends a LINE_ADDRESSSTATE message containing this value to TAPI.DLL, TAPI will pass it along to applications which have negotiated this or a subsequent API version; applications negotiating a previous API version will receive LINE_LINEDEVSTATE messages specifying LINEDEVSTATE_REINIT, requiring them to shutdown and reinitialize their connection to TAPI.DLL in order to obtain the updated information.
�LINEBEARERMODE_
Add the following value to those already defined in the LINEBEARERMODE_ set of constants. This must also be referenced in the LINECALLINFO, LINECALLPARAMS, and LINEDEVCAPS structures, and the lineDrop, lineMakeCall, and lineSetCallParams functions.

LINEBEARERMODE_PASSTHROUGH			0x00000040�
Add the following value description:
LINEBEARERMODE_PASSTHROUGH
When a call is active in LINEBEARERMODE_PASSTHROUGH, the service provider gives direct access to the attached hardware for control by the application. This mode is used primarily by applications desiring temporary direct control over asynchronous modems, accessed via the Win32 comm functions, for the purpose of configuring or using special features not otherwise supported by the service provider. See Appendix A for further information.
�LINECALLFEATURE_
Add the following value to those already defined in the LINECALLFEATURE_ set of constants:

LINECALLFEATURE_RELEASEUSERUSER				0x10000000�
Backward Compatibility
No considerations. A service provider may elect to return this value in relevant fields (in LINEADDRESSCAPS and LINECALLSTATUS) even when older API versions have been negotiated on the line device.�
LINECALLORIGIN_
Add the following value to those already defined in the LINECALLORIGIN_ set of constants:

LINECALLORIGIN_INBOUND					0x00000080�
Add the following value description:
LINECALLORIGIN_INBOUND
The call originated as an inbound call, but the service provider is unable to determine whether it came from another station on the same switch or from an external line.

Revise the following value descriptions:
LINECALLORIGIN_UNKNOWN
The call origin is currently unknown but may become known later.
LINECALLORIGIN_UNAVAIL
The call origin is not available and will never become known for this call.
Backward Compatibility
It is the responsibility of the service provider to examine the negotiated API version on the line, and to not use the LINECALLORIGIN_INBOUND value if it is not supported on the negotiated version (LINECALLORIGIN_UNAVAIL may be substituted).

�LINECALLREASON_
Add the following values to those already defined in the LINECALLREASON_ set of constants:

LINECALLREASON_INTRUDE					0x00001000�LINECALLREASON_PARKED					0x00002000�
Add the following value descriptions:
LINECALLREASON_INTRUDE
The call intruded onto the line, either by a call completion action invoked by another station or by operator action. Depending on switch implementation, the call may appear either in the connected state, or conferenced with an existing active call on the line.
LINECALLREASON_PARKED
The call was parked on the address. Usually, it appears initially in the onhold state.
Backward Compatibility
It is the responsibility of the service provider to examine the negotiated API version on the line, and to not use these LINECALLREASON_ values if not supported on the negotiated version (LINECALLREASON_UNAVAIL may be substituted).
�LINECARDOPTION_ Constants
The LINECARDOPTION_ constants define values used in the dwOptions field of the LINECARDENTRY structure returned as part of the LINETRANSLATECAPS structure returned by lineGetTranslateCaps.

LINECARDOPTION_PREDEFINED					0x00000001
LINECARDOPTION_HIDDEN						0x00000002
Values
The LINECARDOPTION_ constant has the following values:
LINECARDOPTION_PREDEFINED
This calling card is one of the predefined calling card definitions included by Microsoft with Windows Telephony. It cannot be removed entirely using Dial Helper; if the user attempts to remove it, it will become HIDDEN. It thus continues to be accessible for copying of dialing rules.
LINECARDOPTION_HIDDEN
This calling card has been hidden by the user. It is not shown by Dial Helper in the main listing of available calling cards, but will be shown in the list of cards from which dialing rules can be copied.
Extensibility
None. All 32 bits are reserved.
See Also
Functions:	lineTranslateAddress
Structures:	LINECARDENTRY, LINETRANSLATECAPS

�LINECONNECTEDMODE_ Constants
The LINECONNECTEDMODE_ bit-flag constants describe different substates of a connected call. A mode is available as call status to the application after the call state transitions to connected, and within the LINE_CALLSTATE message indicating the call is in LINECALLSTATE_CONNECTED. These values are used when the call is on an address that is shared (bridged) with other stations (see the LINEADDRESSSHARING_ constants), primarily electronic key systems.

LINECONNECTEDMODE_ACTIVE					0x00000001
LINECONNECTEDMODE_INACTIVE				0x00000002
Values
The LINECONNECTEDMODE_ constants have the following values:
LINECONNECTEDMODE_ACTIVE
Indicates that the call is connected at the current station (the current station is a participant in the call). If the call state mode is 0 (zero), the application should assume that the value is "active" (which would be the situation on a non-bridged address). The mode may switch between ACTIVE and INACTIVE during a call if the user joins and leaves the call through manual action. In such a bridged situation, a lineDrop or lineHold operation may possibly not actually drop the call or place it on hold, since the status of other stations on the call may govern (e.g., attempting to "hold" a call when other stations are particating won't be possible); instead, the call may simply be changed to the INACTIVE mode if it remains CONNECTED at other stations.
LINECONNECTEDMODE_INACTIVE
Indicates that the call is active at one or more other stations, but the current station is not a participant in the call. If the call state mode is ZERO, the application should assume that the value is "active" (which would be the situation on a non-bridged address). A call in the INACTIVE state may be joined using the lineAnswer. Many operations which are valid in calls in the CONNECTED state may be impossible in the INACTIVE mode, such as monitoring for tones and digits, since the station is not actually participating in the call; monitoring is usually suspended (although not cancelled) while the call is in the INACTIVE mode.
Extensibility
None. All 32 bits are reserved.
Backward Compatibility
It is the responsibility of the service provider to examine the negotiated API version on the line, and to not use these LINECONNECTEDMODE_ values if not supported on the negotiated version. It should be noted that applications which are not cognizant of LINECONNECTEDMODE_ will most likely assume that a call that is in LINECALLSTATE_CONNECTED is in LINECONNECTEDMODE_ACTIVE.

�LINEDEVSTATE_
Add the following values to those already defined in the LINEDEVSTATE_ set of constants. These must also be added to the LINE_LINEDEVSTATE message.

LINEDEVSTATE_CAPSCHANGE					0x00100000�LINEDEVSTATE_CONFIGCHANGE					0x00200000�LINEDEVSTATE_TRANSLATECHANGE				0x00400000�LINEDEVSTATE_COMPLCANCEL					0x00800000�LINEDEVSTATE_REMOVED						0x01000000�
Add the following value descriptions:
LINEDEVSTATE_CAPSCHANGE
Indicates that, due to configuration changes made by the user or other circumstances, one or more of the fields in the LINEDEVCAPS structure for the address have changed. The application should use lineGetDevCaps to read the updated structure. If a service provider sends a LINE_LINEDEVSTATE message containing this value to TAPI.DLL, TAPI will pass it along to applications which have negotiated this or a subsequent API version; applications negotiating a previous API version will receive LINE_LINEDEVSTATE messages specifying LINEDEVSTATE_REINIT, requiring them to shutdown and reinitialize their connection to TAPI.DLL in order to obtain the updated information.
LINEDEVSTATE_CONFIGCHANGE
Indicates that configuration changes have been made to one or more of the media devices associated with the line device. The application, if it desires, may use lineGetDevConfig to read the updated information. If a service provider sends a LINE_LINEDEVSTATE message containing this value to TAPI.DLL, TAPI will pass it along to applications which have negotiated this or a subsequent API version; applications negotiating a previous API version will not receive any notification.
LINEDEVSTATE_TRANSLATECHANGE
Indicates that, due to configuration changes made by the user or other circumstances, one or more of the fields in the LINETRANSLATECAPS structure have changed. The application should use lineGetTranslateCaps to read the updated structure. If a service provider sends a LINE_LINEDEVSTATE message containing this value to TAPI.DLL, TAPI will pass it along to applications which have negotiated this or a subsequent API version; applications negotiating a previous API version will receive LINE_LINEDEVSTATE messages specifying LINEDEVSTATE_REINIT, requiring them to shutdown and reinitialize their connection to TAPI.DLL in order to obtain the updated information.
LINEDEVSTATE_COMPLCANCEL
Indicates that the call completion identified by the completion ID contained in parameter dwParam2 of the LINE_LINEDEVSTATE message has been externally cancelled and is no longer considered valid (if that value were to be passed in a subsequent call to lineUncompleteCall, the function would fail with LINEERR_INVALCOMPLETIONID). If a service provider sends a LINE_LINEDEVSTATE message containing this value to TAPI.DLL, TAPI will pass it along to applications which have negotiated this or a subsequent API version; applications negotiating a previous API version will not receive any notification.
LINEDEVSTATE_REMOVED
Indicates that the device is being removed from the system by the service provider (most likely through user action, via a control panel or similar utility). A LINE_LINEDEVSTATE message with this value will normally be immediately followed by a LINE_CLOSE message on the device. Subsequent attempts to access the device prior to TAPI being reinitialized will result in LINEERR_NODEVICE being returned to the application. If a service provider sends a LINE_LINEDEVSTATE message containing this value to TAPI.DLL, TAPI will pass it along to applications which have negotiated this or a subsequent API version; applications negotiating a previous API version will not receive any notification.
�LINEDISCONNECTMODE_
Add the following values to those already defined in the LINEDISCONNECTMODE_ set of constants:

LINEDISCONNECTMODE_NODIALTONE			0x00001000�
Add the following value descriptions:
LINEDISCONNECTMODE_NODIALTONE
A dial tone was not detected within a service-provider defined timeout, at a point during dialing when one was expected (such as at a “W” in the dialable string).
Backward Compatibility
It is the responsibility of the service provider to examine the negotiated API version on the line, and to not use this LINEDISCONNECTMODE_ value if it is not supported on the negotiated version (LINEDISCONNECTMODE_NORMAL or _UNKNOWN could be used instead).
�LINEFORWARDMODE_
Add the following values to those already defined in the LINEFORWARDMODE_ set of constants:

LINEFORWARDMODE_UNKNOWN				0x00010000�LINEFORWARDMODE_UNAVAIL				0x00020000�
Add the following value descriptions:
LINEFORWARDMODE_UNKNOWN
Calls are forwarded, but the conditions under which forwarding will occur are not known at this time. It is possible that the conditions may become known at a future time.
LINEFORWARDMODE_UNAVAIL
Calls are forwarded, but the conditions under which forwarding will occur are not known, and will never be known by the service provider.
Backward Compatibility
It is the responsibility of the service provider to examine the negotiated API version on the line, and to not use these LINEFORWARDMODE_ values if i not supported on the negotiated version.
�LINELOCATIONOPTION_ Constants
The LINELOCATIONOPTION_ constants define values used in the dwOptions field of the LINELOCATIONENTRY structure returned as part of the LINETRANSLATECAPS structure returned by lineGetTranslateCaps.

LINELOCATIONOPTION_PULSEDIAL				0x00000001
Values
The LINELOCATIONOPTION_ constant has the following value:
LINELOCATIONOPTION_PULSEDIAL
The default dialing mode at this location is pulse dialing. If this bit is set, lineTranslateAddress will insert a “P” dial modifier at the beginning of the dialable string returned when this location is selected. If this bit is not set, lineTranslateAddress will insert a “T” dial modifier at the beginning of the dialable string.
Extensibility
None. All 32 bits are reserved.
See Also
Functions:	lineTranslateAddress
Structures:	LINELOCATIONENTRY, LINETRANSLATECAPS
�LINEMEDIAMODE_
Add the following value to those already defined in the LINEMEDIAMODE_ set of constants. This must also be added whereever LINEMEDIAMODE constants are referenced in functions and messages.

LINEMEDIAMODE_VOICEVIEW				0x00004000�
Add the following value description:
LINEMEDIAMODE_VOICEVIEW
The media mode of the call is VoiceView.
Backward Compatibility
It is the responsibility of the service provider to examine the negotiated API version on the line, and to not use this LINEMEDIAMODE_ value if not supported on the negotiated version.
�LINEOFFERINGMODE_ Constants
The LINEOFFERINGMODE_ bit-flag constants describe different substates of an offering call. A mode is available as call status to the application after the call state transitions to offering, and within the LINE_CALLSTATE message indicating the call is in LINECALLSTATE_OFFERING. These values are used when the call is on an address that is shared (bridged) with other stations (see the LINEADDRESSSHARING_ constants), primarily electronic key systems.

LINEOFFERINGMODE_ACTIVE					0x00000001
LINEOFFERINGMODE_INACTIVE					0x00000002
Values
The LINEOFFERINGMODE_ constants have the following values:
LINEOFFERINGMODE_ACTIVE
Indicates that the call is alerting at the current station (will be accompanied by LINEDEVSTATE_RINGING messages), and if any application is set up to automatically answer, it may do so. If the call state mode is ZERO, the application should assume that the value is "active" (which would be the situation on a non-bridged address).
LINEOFFERINGMODE_INACTIVE
Indicates that the call is being offered at more than one station, but the current station is not alerting (e.g., it may be an attendant station where the offering status is advisory, such as blinking a light); software at the station set for automatic answering should preferably not answer the call, since this should be the perogative at the primary (alerting) station, but lineAnswer may be used to connect the call.
Extensibility
None. All 32 bits are reserved.
Backward Compatibility
It is the responsibility of the service provider to examine the negotiated API version on the line, and to not use these LINEOFFERINGMODE_ values if not supported on the negotiated version. It should be noted that applications which are not cognizant of LINEOFFERINGMODE_ will most likely assume that a call that is in LINECALLSTATE_OFFERING is in LINEOFFERINGMODE_ACTIVE.

�LINETRANSLATEOPTION_
Add the following value to those already defined in the LINETRANSLATEOPTION_ set of constants. This must also be added to the description of lineTranslateAddress, where these constants are used.

LINETRANSLATEOPTION_CANCELCALLWAITING	0x00000002
LINETRANSLATEOPTION_FORCELOCAL			0x00000004
LINETRANSLATEOPTION_FORCELD				0x00000008
Add the following value description:
LINETRANSLATEOPTION_CANCELCALLWAITING
If a Cancel Call Waiting string is defined for the location, setting this bit will cause that string to be inserted at the beginning of the dialable string. This is commonly used by datamodem and fax applications to prevent interruption of calls by call waiting beeps. If no Cancel Call Waiting string is defined for the location, this bit has no affect. Note that applications using this bit are advised to also set the LINECALLPARAMFLAGS_SECURE bit in the dwCallParamFlags field of the LINECALLPARAMS structure passed in to lineMakeCall via the lpCallParams parameter, so that if the line device uses a mechanism other than dialable digits to supress call interrupts that that mechanism will be invoked.
LINETRANSLATEOPTION_FORCELOCAL
If the number is local but would have been translated as a long distance call (LINETRANSLATERESULT_INTOLLLIST bit set in the LINETRANSLATEOUTPUT structure), this option will force it to be translated as local. This is a temporary override of the toll list setting.
LINETRANSLATEOPTION_FORCELD
If the address could potentially have been a toll call, but would have been translated as a local call (LINETRANSLATERESULT_NOTINTOLLLIST bit set in the LINETRANSLATEOUTPUT structure), this option will force it to be translated as long distance. This is a temporary override of the toll list setting.
�PHONEBUTTONSTATE_
Add the following values to those already defined in the PHONEBUTTONSTATE_ set of constants:

PHONEBUTTONSTATE_UNKNOWN				0x00000004�PHONEBUTTONSTATE_UNAVAIL				0x00000008�
Add the following value descriptions:
PHONEBUTTONSTATE_UNKNOWN
Indicates that the up or down state of the button is not known at this time, but may become known at a future time.
PHONEBUTTONSTATE_UNAVAIL
Indicates that the up or down state of the button is not known to the service provider, and will not become known at a future time.
Backward Compatibility
It is the responsibility of the service provider to examine the negotiated API version on the phone, and to not use these PHONEBUTTONSTATE_ values if not supported on the negotiated version.

�PHONESTATE_
Add the following value to those already defined in the PHONESTATE_ set of constants. This must also be added to the PHONE_STATE message.

PHONESTATE_CAPSCHANGE					0x00400000�PHONESTATE_REMOVED						0x00800000
�Add the following value description:
PHONESTATE_CAPSCHANGE
Indicates that, due to configuration changes made by the user or other circumstances, one or more of the fields in the PHONECAPS structure have changed. The application should use phoneGetDevCaps to read the updated structure. If a service provider sends a PHONE_STATE message containing this value to TAPI.DLL, TAPI will pass it along to applications which have negotiated this or a subsequent API version; applications negotiating a previous API version will receive PHONE_STATE messages specifying PHONESTATE_REINIT, requiring them to shutdown and reinitialize their connection to TAPI.DLL in order to obtain the updated information.
PHONESTATE_REMOVED
Indicates that the device is being removed from the system by the service provider (most likely through user action, via a control panel or similar utility). A PHONE_STATE message with this value will normally be immediately followed by a PHONE_CLOSE message on the device. Subsequent attempts to access the device prior to TAPI being reinitialized will result in PHONEERR_NODEVICE being returned to the application. If a service provider sends a PHONE_STATE message containing this value to TAPI.DLL, TAPI will pass it along to applications which have negotiated this or a subsequent API version; applications negotiating a previous API version will not receive any notification.
�Appendix A: Passthrough Mode

Windows 95 defines a new LINEBEARERMODE_PASSTHROUGH value (0x00000040). When a call is active in LINEBEARERMODE_PASSTHROUGH, the service provider gives direct access to the attached hardware for control by the application. This mode is for use by applications desiring temporary direct control over asynchronous modems, accessed via the Win32 comm functions, for the purpose of configuring or using special features not otherwise supported by the service provider, such as facsimile (Class 1, 2, etc.). This bearer mode is supported by the Universal Modem Driver (UNIMODEM) service provider included with Windows 95.
Service providers that support LINEBEARERMODE_PASSTHROUGH indicate it in the dwBearerModes field of the LINEDEVCAPS structure. When LINEBEARERMODE_PASSTHROUGH is indicated, the Unimodem service provider will also include in the DevSpecific area of the LINEDEVCAPS structure the registry key used to access information about the modem associated with the line device, in the following format:
 struct� {� DWORD dwContents; // Set to 1 (indicates containing key) � DWORD dwKeyOffset; // Offset to key from start of this� // structure (not from start of� // LINEDEVCAPS structure). 8 in� // our case. � BYTE rgby[...]; // place containing null-terminated� // registry key. � }
For example:
 00000001 00000008 74737953 435c6d65 System\C� 65727275 6f43746e 6f72746e 7465536c urrentControlSet� 7265535c 65636976 6c435c73 5c737361 urrentControlSet� 65646f4d 30305c6d xx003030 xxxxxxxx Modem\0000.

This registry key could then be opened using this function:
	RegOpenKey(HKEY_LOCAL_MACHINE, pszDevSpecificRegKey, &phkResult)

Passthrough mode is invoked most often using the lineMakeCall function, by setting the LINEBEARERMODE_PASSTHROUGH bit in the dwBearerMode field of the LINECALLPARAMS structure pointed to by the lpCallParams parameter. When this is done, the service provider will open the serial port to the modem and immediately place the call into LINECALLSTATE_CONNECTED. The application can then use the lineGetID function with the device class “comm/datamodem” to obtain an open Win32 file handle to read from and write to the comm port.
Passthrough mode can be invoked in response to an incoming call as well. Generally, applications will invoke passthrough mode while the call is in LINECALLSTATE_OFFERING, before the call has been answered. Instead of calling lineAnswer, the applications calls lineSetCallParams, passing LINEBEARERMODE_PASSTHROUGH as the dwBearerMode parameter. When this is done, as with lineMakeCall, the call will immediately be placed into LINECALLSTATE_CONNECTED by the service provider, and the application can obtain a handle to the open port using lineGetID. lineSetCallParams may be called when the call is in LINECALLSTATE_OFFERING, LINECALLSTATE_ACCEPTED, or LINECALLSTATE_CONNECTED.
Passthrough mode is normally terminated by calling lineDrop on the call handle obtained from lineMakeCall or the first LINE_CALLSTATE message (if the call was an incoming call). The service provider will close the port, and restore the modem to its default state. The application must call CloseHandle on the handle it received from lineGetID.
Passthrough mode can also be terminated by calling lineSetCallParams with the dwBearerMode parameter set to LINEBEARERMODE_VOICE. The media mode set by lineSetMediaMode is presumed to be in effect. If LINEMEDIAMODE_DATAMODEM is active, the service provider will take over the call as though it was a datamodem call already in progress; if lineDrop is subsequently called, the service provider will issue the appropriate modem commands or interface state changes to drop a data call.

Microsoft Confidential and Proprietary		Microsoft Personal Operating Systems Division

�title�Implementation of Windows Telephony in Windows 95�	�styleref 1�Introduction�

�title�Implementation of Windows Telephony in Windows 95�	Contents

Microsoft Confidential and Proprietary	Page �page�ii�	�savedate \@ "MMMM d, yyyy"�January 19, 1995�

�title�Implementation of Windows Telephony in Windows 95�	�styleref 1�Appendix A: Passthrough Mode�

Microsoft Confidential and Proprietary	Page �page�66�	�savedate \@ "MMMM d, yyyy"�January 19, 1995�

