
1 Direct Review

2 Data Management:

3 X/Open Database Connectivity (XDBC), Version 2

4 X/Open Company Ltd.

5 1996, X/Open Company Limited

6 All rights reserved. No part of this publication may be reproduced, stored in a retrieval system,
7 or transmitted, in any form or by any means, electronic, mechanical, photocopying, recording or
8 otherwise, without the prior permission of the copyright owners.

9 Direct Review

10 Data Management: X/Open Database Connectivity (XDBC), Version 2

11 X/Open Document Number: To be defined

12 This is a working draft that was typeset in Palatino by Spike, 76 Scrabble Road, Brentwood,
13 New Hampshire 03833 USA for the benefit of X/Open Company Ltd. The typesetting
14 technology differs from that used by X/Open; this will cause minor stylistic differences that do
15 not warrant comments by readers. Published by X/Open.

16 Any comments relating to the material contained in this document may be submitted to X/Open
17 at:

18 X/Open Company Limited
19 Apex Plaza
20 Forbury Road
21 Reading
22 Berkshire, RG1 1AX
23 United Kingdom

24 or by Electronic Mail to:

25 XoSpecs@xopen.co.uk

ii Direct Review (Build ID 96KAV) (Draft XDBC.33, August 1996)

26 Contents

27 Chapter 1 Introduction 1
28 1.1 Development of XDBC 1
29 1.2 This Issue 2
30 1.3 Relation to Other X/Open Documents7
31 1.3.1 Conceptual Differences from Embedded SQL7
32 1.4 Relation to Standards8
33 1.5 Compliance Policy 9
34 1.5.1 Language Binding 9
35 1.5.2 SQL Statement Text9
36 1.5.3 Distributed Transaction Delimitation10
37 1.6 Compliance Terminology 11
38 1.7 XDBC Compliance Levels 13
39 1.8 SQL Registry 21

40 Chapter 3 XDBC Architecture 23
41 3.1 XDBC Implementation 24
42 3.2 Implementation Architecture 25
43 3.3 Applications 26
44 3.4 Data Sources 27
45 3.5 Client and Server 28
46 3.6 System Information 30
47 3.7 Tables and Views 31

48 Chapter 4 Fundamentals 33
49 4.1 Handles 34
50 4.1.1 Environment Handles 35
51 4.1.2 Connection Handles35
52 4.1.3 Statement Handles 36
53 4.1.4 Descriptor Handles 36
54 4.2 State Transitions 37
55 4.3 Buffers 38
56 4.3.1 Deferred Buffers 39
57 4.3.2 Allocating and Freeing Buffers 39
58 4.3.3 Using Data Buffers 40
59 4.3.4 Data Buffer Type 41
60 4.3.5 Using Length/Indicator Values 42
61 4.3.6 Data Length, Buffer Length, and Truncation 43
62 4.3.7 Character Data and C Strings44
63 4.4 Data Types in XDBC 46
64 4.4.1 TypeIdentifiers 46
65 4.4.2 SQL Data Types in XDBC 46
66 4.4.3 C Data Types in XDBC 47
67 4.4.4 Data Type Conversions 48

Data Management: X/Open Database Connectivity (XDBC), Version 2 iii

Contents

68 4.5 Environment, Connection, and Statement Attributes 49

69 Chapter 5 Basic Application Steps 51
70 5.1 Basic Control Flow 52
71 5.2 Example Control Flow for SQL Statement Processing 54

72 Chapter 6 Connecting to a Data Source 57
73 6.1 Allocating the Environment Handle 58
74 6.2 Allocating a Connection Handle 59
75 6.3 Connection Attributes60
76 6.4 Establishing a Connection 61
77 6.4.1 Default Data Source61
78 6.4.2 Connecting with SQLConnect() 61
79 6.4.3 Connection String 61
80 6.4.4 Connecting with SQLDriverConnect() 62
81 6.4.5 Connecting with SQLBrowseConnect() 62
82 6.5 Disconnecting from a Data Source 64

83 Chapter 7 Catalog Functions 65
84 7.1 Uses of Catalog Data 66
85 7.2 Catalog Functions 67
86 7.3 Data Returned by Catalog Functions 68
87 7.3.1 COLUMN_DEF Column 68
88 7.4 Arguments in Catalog Functions 69

89 Chapter 8 SQL Statements 75
90 8.1 Building SQL Statements 76
91 8.1.1 Hard-Coded SQL Statements76
92 8.1.2 SQL Statements Built at Run Time 78
93 8.1.3 SQL Statements Entered by the User79
94 8.2 Interoperability of SQL Statements 80
95 8.2.1 Constructing Interoperable SQL Statements 81
96 8.3 Escape Clauses 84
97 8.3.1 Date, Time and Timestamp Literals 84
98 8.3.2 Interval Literals 86
99 8.3.3 Scalar Function Calls86
100 8.3.4 LIKE Predicate Escape Character 86
101 8.3.5 Outer Joins 87
102 8.3.6 Procedure Calls 88

103 Chapter 9 Executing Statements 91
104 9.1 Allocating a Statement Handle92
105 9.2 Statement Attributes 93
106 9.2.1 TemporaryChanges to Statement Attribute Value 93
107 9.3 Executing a Statement94
108 9.3.1 Direct Execution 95
109 9.3.2 PreparedExecution 96
110 9.3.3 Procedures 97
111 9.3.4 Batches of SQL Statements 99
112 9.3.5 Executing Catalog Functions101
113 9.4 Statement Parameters102

iv Direct Review (Build ID 96KAV) (Draft XDBC.33, August 1996)

Contents

114 9.4.1 Binding Parameters 102
115 9.4.2 Setting Parameter Values 104
116 9.4.3 Sending Long Data 105
117 9.4.4 Procedure Parameters 109
118 9.4.5 Arrays of Parameter Values 109
119 9.5 Asynchronous Execution 116
120 9.5.1 Levels of Asynchronous Support 116
121 9.5.2 Enabling Asynchrony 118
122 9.5.3 Steps in Asynchronous Execution 118
123 9.5.4 Cancelling an Asynchronously-executing Function 119
124 9.5.5 Example Asynchronous Control Flow 121
125 9.5.6 Asynchrony Combined with Other XDBC Features 122
126 9.5.7 Limits on Concurrency 123
127 9.5.8 Example Asynchrony Code 123
128 9.6 Freeing a Statement Handle 124

129 Chapter 10 Retrieving Results (Basic) 125
130 10.1 Was a Result Set Created? 126
131 10.2 Result Set Metadata 127
132 10.2.1 How is Metadata Used? 127
133 10.2.2 SQLDescribeCol() and SQLColAttribute() 127
134 10.3 Binding Result Set Columns 129
135 10.3.1 Overview 129
136 10.3.2 Using SQLBindCol()130
137 10.4 Fetching Data133
138 10.4.1 Cursors 133
139 10.4.2 Fetching a Row of Data 133
140 10.4.3 Row Status 134
141 10.4.4 Getting Long Data 135
142 10.5 Closing the Cursor 137

143 Chapter 11 Retrieving Results (Advanced) 139
144 11.1 Multi-row Fetch 140
145 11.1.1 Binding Styles 141
146 11.1.2 Additional Result Information 145
147 11.1.3 Using Multi-row Fetch 145
148 11.2 Scrollable Cursors 147
149 11.2.1 Scrollable Cursor Types 147
150 11.2.2 Using Scrollable Cursors 150
151 11.2.3 Relative and Absolute Scrolling 153
152 11.2.4 Bookmarks 154
153 11.3 Multiple Results 156

154 Chapter 12 Updating Data 157
155 12.1 UPDATE,DELETE, and INSERT Statements 158
156 12.1.1 Positioned UPDATEand DELETE 158
157 12.1.2 Code Example 158
158 12.1.3 Simulating Positioned UPDATEand DELETE160
159 12.2 Determining the Number of Affected Rows 162
160 12.3 Using SQLSetPos() 163
161 12.3.1 Updating Rows with SQLSetPos() 163

Data Management: X/Open Database Connectivity (XDBC), Version 2 v

Contents

162 12.3.2 Deleting Rows with SQLSetPos() 164
163 12.4 Using SQLBulkOperations() 165
164 12.4.1 Updating Rows by Bookmark with SQLBulkOperations() 165
165 12.4.2 Deleting Rows by Bookmark with SQLBulkOperations() 166
166 12.4.3 Inserting Rows with SQLBulkOperations() 166
167 12.4.4 Long Data and SQLBulkOperations()/SQLSetPos() 167
168 12.4.5 Code Example 168

169 Chapter 13 Descriptors 170
170 13.1 Types of Descriptor 171
171 13.2 Descriptor Fields 173
172 13.2.1 Count of Records 174
173 13.2.2 Bound Descriptor Records 174
174 13.3 Operations on Descriptors 175
175 13.3.1 Concise Functions 176
176 13.4 Deferred Fields 178

177 Chapter 14 Transactions 181
178 14.1 Transaction Support in XDBC 182
179 14.1.1 Determining Level of Support 182
180 14.1.2 Commit Mode and Transaction Completion 182
181 14.1.3 Side-effects of Transaction Completion 184
182 14.2 Transaction Isolation 186
183 14.2.1 Serializability 186
184 14.2.2 Transaction Isolation Levels186
185 14.2.3 Setting the Transaction Isolation Level 188
186 14.2.4 Scrollable Cursors and Transaction Isolation 188
187 14.3 Concurrency Control191
188 14.3.1 Concurrency Types 191
189 14.3.2 Optimistic Concurrency 192

190 Chapter 15 Diagnostics 193
191 15.1 Return Codes194
192 15.2 Diagnostic Records 195
193 15.3 SQLSTATE 196
194 15.4 Application Usage 200
195 15.4.1 Per-row Diagnostics201

196 Chapter 20 Interface Overview 203

197 Chapter 21 Reference Manual Pages 207
198 SQLAllocHandle() 208
199 SQLBindCol() 212
200 SQLBindParam() 220
201 SQLBindParameter() 221
202 SQLBrowseConnect() 234
203 SQLBulkOperations() 239
204 SQLCancel() 247
205 SQLCloseCursor() 250
206 SQLColAttribute() 252
207 SQLColumnPrivileges() 256

vi Direct Review (Build ID 96KAV) (Draft XDBC.33, August 1996)

Contents

208 SQLColumns() 261
209 SQLConnect() 269
210 SQLCopyDesc()272
211 SQLDataSources() 275
212 SQLDescribeCol() 277
213 SQLDescribeParam() 281
214 SQLDisconnect() 284
215 SQLDriverConnect() 286
216 SQLDrivers() 291
217 SQLEndTran() 294
218 SQLExecDirect()297
219 SQLExecute() 302
220 SQLFetch() 307
221 SQLFetchScroll() 316
222 SQLForeignKeys() 326
223 SQLFreeHandle() 333
224 SQLFreeStmt() 336
225 SQLGetConnectAttr() 338
226 SQLGetCursorName() 341
227 SQLGetData() 343
228 SQLGetDescField() 350
229 SQLGetDescRec() 354
230 SQLGetDiagField() 358
231 SQLGetDiagRec() 364
232 SQLGetEnvAttr() 367
233 SQLGetFunctions() 369
234 SQLGetInfo() 372
235 SQLGetStmtAttr() 407
236 SQLGetTypeInfo() 410
237 SQLMoreResults() 417
238 SQLNativeSql()420
239 SQLNumParams() 423
240 SQLNumResultCols() 425
241 SQLParamData() 427
242 SQLPrepare() 430
243 SQLPrimaryKeys() 434
244 SQLProcedureColumns()438
245 SQLProcedures()445
246 SQLPutData() 449
247 SQLRowCount()454
248 SQLSetConnectAttr() 456
249 SQLSetCursorName() 462
250 SQLSetDescField() 464
251 SQLSetDescRec() 484
252 SQLSetEnvAttr() 488
253 SQLSetPos() 491
254 SQLSetStmtAttr() 503
255 SQLSpecialColumns() 516
256 SQLStatistics()522
257 SQLTablePrivileges() 528
258 SQLTables() 533

Data Management: X/Open Database Connectivity (XDBC), Version 2 vii

Contents

259 Appendix A Diagnostic Reference Information 539
260 A.1 Class and Subclass Origin 539
261 A.2 SQLSTATECross-reference (Non-normative) 540

262 Appendix B State Tables 547
263 B.1 Environment State Transitions548
264 B.2 Connection State Transitions 549
265 B.3 Statement Transitions550
266 B.3.1 Data-at-execute Dialogue 553
267 B.4 Asynchrony State Transitions 554
268 B.5 Descriptor State Transitions 554

269 Appendix D Data Types 555
270 D.1 SQL Data Types 556
271 D.2 C Data Types560
272 D.2.1 Date/time Structures 561
273 D.2.2 64-bit Integer Structures 561
274 D.3 Attributes of Data Types 562
275 D.3.1 Column Size562
276 D.3.2 Decimal Digits 564
277 D.3.3 TransferOctet Length 565
278 D.3.4 Display Size567
279 D.3.5 Constraints on Date/time Values 568
280 D.4 Interval Data Types 569
281 D.5 Using Data Type Identifiers 572
282 D.6 Converting Data from SQL to C Data Types 576
283 D.6.1 SQL to C Data Conversion Examples585
284 D.7 Converting Data from C to SQL Data Types 587
285 D.7.1 C to SQL Data Conversion Examples597

286 Appendix F Scalar Functions 599
287 F.1 String Functions 601
288 F.2 Numeric Functions 603
289 F.3 Time, Date, and Interval Functions 605
290 F.4 System Functions 608
291 F.5 Explicit Data Type Conversion609

292 Appendix I Driver Manager Implementation (Optional) 613
293 I.1 Introduction 614
294 I.1.1 The Driver Manager614
295 I.1.2 Drivers 615
296 I.2 Choosing a Data Source 617
297 I.3 Role of the Driver Manager in the Connection Process 620
298 I.4 Other Architectural Issues 621
299 I.5 Implementation of the Diagnostic Area622
300 I.5.1 Role of the Driver Manager 623
301 I.5.2 Role of the Driver 624
302 I.6 Changes to the Reference Manual Pages 625
303 I.6.1 Information on Specific XDBC Functions 625
304 I.6.2 SQLSTATEsof Specific XDBC Functions 634

viii Direct Review (Build ID 96KAV) (Draft XDBC.33, August 1996)

Contents

305 Glossary 639

306 List of Figures

307 5-1 Initiation, Termination and Transaction Completion 52
308 5-2 Example Control Flow for Statement Processing54
309 7-1 Sales Order Database Structure 65
310 9-1 Providing Parameter Data at Execute Time 106
311 9-2 Example Control Flow for Asynchrony 121
312 11-1 Application Buffer for Column-wise Binding 141
313 11-2 Application Buffer for Row-wise Binding 143
314 11-3 Fetching next, prior, first, and last row-sets 151
315 11-4 Fetching absolute, relative, and bookmarked row-sets 152

316 List of Tables

317 7-1 Interpretation of String Arguments of Catalog Functions70
318 9-1 Functions for which Asynchrony is Permitted 117
319 13-1 The Four Types of Descriptor 171
320 13-2 List of Descriptor Header Fields173
321 13-3 List of Descriptor Record Fields173
322 13-4 Descriptor Fields that Relate to Statement Attributes 174
323 20-1 XDBC Functions 203
324 B-1 State Table for Connection Handles 549
325 B-2 State Table for Statement Handles 551
326 B-3 State Table for Statement Handles (Data-at-Execute Dialogue) 553
327 B-4 State Table for Asynchrony 554

Data Management: X/Open Database Connectivity (XDBC), Version 2 ix

Contents

x Direct Review (Build ID 96KAV) (Draft XDBC.33, August 1996)

328 Chapter 1

329 Introduction

330 The X/Open Database Connectivity (XDBC) interface is an application programming interface
331 (API) for database access. XDBC is an alternative invocation technique to dynamic SQL that
332 provides essentially equivalent operations. XDBC is a set of functions that application programs
333 call directly using normal function call facilities, whereas embedded SQL is typically converted
334 by a preprocessor.

335 The definition of XDBC relies heavily on the referenced X/Open SQL specification, which
336 defines a database and the intended result of executing SQL statements.

337 This chapter traces the development of XDBC, explains its relationship to the X/Open SQL
338 specification and the ISO SQL standard, and defines terms used to gauge compliance with this
339 specification.

340 1.1 Development of XDBC

341 SQL was originally developed as a way to embed, in an application program, static or dynamic
342 operations on a database. Embedded SQL code is typically converted by an implementation-
343 specific preprocessor into code that is compiled and executed.

344 Dynamic SQL makes SQL more flexible and applies it to cases where the database operations are |
345 not defined when the application program is written. For example, in fourth-generation |
346 languages, these operations are often based on interaction with the user. Dynamic SQL lets SQL
347 statement text reside in host-language character strings. The application generates them and the
348 SQL implementation interprets them dynamically during the course of the program’s execution.
349 Dynamic SQL is still an embedded invocation technique and still typically works through a
350 preprocessor. The X/Open SQL specification specifies both static and dynamic SQL.

351 XDBC advances SQL further in the following areas:

352 • Portability and interoperability

353 Use of XDBC lets database applications be written to more easily interwork with a variety of |
354 databases. Application writers can produce portable object modules containing SQL |
355 database operations (‘‘shrink-wrapped applications’’), provided the operating system |
356 provides a mechanism to dynamically load libraries.1 The following features facilitate |
357 portability and interoperability:

358 — Preprocessor-independence

359 Embedded SQL’s assumption of a preprocessor typically requires that portable
360 applications are distributed as source code. Developers are reluctant to disclose |
361 proprietary source code. XDBC does not require implementation-specific transformations |
362 on source code at compile-time; implementation-specific features and added value reside |
363 in the XDBC run-time library.

364 __________________ |
365 1. Binary portability of object modules may be restricted by factors outside the scope of this document, such as choice of the |||

processor, operating system and, sometimes, memory model. |||

Data Management: X/Open Database Connectivity (XDBC), Version 2 1

Development of XDBC Introduction

366 — Standard coding using escape sequences

367 Implementations of embedded SQL language vary widely in their approach to certain |
368 useful features. XDBC defines a standard escape syntax for these features, which can be
369 translated to the SQL dialect the data source accepts.

370 — Support for optional two-level architecture

371 An XDBC implementation that implements the optional Driver Manager architecture (see |
372 Appendix I) lets the application select any supported data source at run time without any |
373 recompilation or modification.

374 • Client/server architecture •

375 Databases are increasingly structured as clients and servers. Both the ISO SQL standard and |
376 the X/Open SQL specification conceptualise SQL in terms of client and server operations. |
377 When clients and servers are separated, the application writer may not know what |
378 operations it is to perform or even the structure of the database.

379 XDBC is ideally suited for a client/server environment, in which the target database is not |
380 known when the application program is built. XDBC provides the same syntax to execute |
381 any SQL data definition or data manipulation statement.

382 • Concurrent processing

383 Applications are increasingly specifying concurrent processing, including concurrent
384 database operations. The existence of global data areas in SQL raises the question of the
385 scope and visibility of each change to such data.

386 XDBC eliminates global data areas, associating all implementation data that is accessible to
387 the application with a specific handle that the implementation passes to the application.

388 • Distributed transaction processing (DTP)

389 DTP distributes work between processors, with the guarantee that either all operations or
390 none are committed (global atomicity). The referenced X/Open DTP, XA and Transaction
391 Demarcation specifications address this topic.

392 The X/Open SQL specification delimits transactions using the COMMIT and ROLLBACK
393 statements. A transaction begins implicitly when the application operates on a database. The
394 X/Open SQL specification mentions a technique to permit SQL work to be completed
395 atomically with non-SQL work, and to permit the application more precisely to delimit
396 transactions.

397 In XDBC, the basic model is that each connection to a data source is a separate transaction. |
398 The ability for a transaction to span data sources is implementation-defined. For |
399 implementations that let a transaction span data sources, the X/Open DTP specifications |
400 help show how to delimit and identify units of work by global transaction identification.

401 • Stored procedures

402 Stored procedures are database routines that reside at the server. The application invokes
403 such a procedure by name. In a client/server architecture, use of procedures may enhance
404 performance by minimising traffic between client and server.

405 The application can use XDBC to describe the parameters to a stored procedure and to query
406 the metadata and determine the procedures that are present in a database and the parameters
407 that pertain to a specific procedure.

2 Direct Review (Build ID 96KAV) (Draft XDBC.33, August 1996)

Introduction This Issue

408 1.2 This Issue
409 This section describes the major differences between this issue and the predecessor document,
410 the X/Open Call Level Interface (CLI) CAE Specification (March 1995).

411 Alignment with Popular Implementations

412 The marketplace accepted the March 1995 issue as a basis for the basic XDBC features. Both
413 X/Open and software vendors continued development of advanced features, some of which are
414 listed below. In many areas, vendor developments outpaced work both in X/Open and
415 standards organisations.

416 In 1996, X/Open elected to align its publication with interfaces gaining acceptance in the
417 marketplace, subject to the usual process of review and consensus. One effect of this approach is
418 a complete replacement of the reference manual pages of the March 1995 issue. In some cases,
419 the text is totally different even though it specifies essentially the same syntax and semantics.

420 Each reference manual page contains a CHANGE HISTORY indicating whether there is an
421 analogous manual page in the March 1995 issue. However, these histories do not try to compare
422 the lexical changes. The syntax and semantics of functions that existed in the March 1995 issue
423 has not changed even though many of the descriptions have changed. Enhancements are
424 implemented in backward-compatible ways, such as additional legal values of some arguments.
425 This level of detail is generally not addressed by the CHANGE HISTORY sections.

426 The March 1995 issue was not the subject of any X/Open branding programme or software
427 testing.

428 New Features

429 Alignment with popular implementations has had the effect of adding the following areas of
430 specification to this issue:

431 • Bookmarks

432 Bookmarks mark a position in a result set. Bookmarks can be of fixed or variable length. The
433 application can use SQLFetch() and SQLFetchScroll() to fetch by bookmark. Update, delete,
434 and re-fetch operations, of one row or many at a time, using bookmarks on discontiguous
435 rows are supported.

436 • Binding to an array of parameters

437 The SQLBindParameter() function can be called with the address of an array of data pointers,
438 rather than a single data pointer.

439 • Quick rebinding by offset

440 An application can specify that an offset be added to buffer addresses specified for row data
441 or dynamic parameters. This lets an application change column and parameter bindings
442 without extra function calls. When new addresses always occur at a fixed offset from old
443 addresses, this enables more efficient processing.

444 • Batch

445 XDBC lets the application query how implementation reports the results of a batch of SQL
446 statements. A batch can result either from execution of a stored procedure or of a sequence
447 of statements executed in a single call to SQLExecDirect() or SQLExecute().

448 • Positioned UPDATEand DELETE via function call |

449 The new SQLSetPos() function permits positioned UPDATE and DELETE operations. These |
450 operations were achieved in the March 1995 issue exclusively by executing the UPDATE or

Data Management: X/Open Database Connectivity (XDBC), Version 2 3

This Issue Introduction

451 DELETE statements of embedded SQL.

452 • Additional catalog functions |

453 Additional functions for querying the metadata appear in this issue. They are
454 SQLColumnPrivileges(), SQLForeignKey(), SQLPrimaryKey(), SQLProcedureColumns(),
455 SQLProcedures(), and SQLTablePrivileges().

456 • Escape clauses |

457 To allow a standard method of coding in cases where implementations of embedded SQL |
458 language vary, XDBC provides escape clauses for outer joins, scalar functions, date/time and |
459 interval literals, and stored procedures. The XDBC implementation translates the escape |
460 clause to the dialect the data source accepts.

461 • On-demand descriptor population

462 The March 1995 issue contained an optional feature that provided that, on implementations
463 that had capabilities analogous to the DESCRIBE INPUT statement of embedded SQL,
464 implementation parameter descriptors could be populated. In the current issue, this
465 population occurs only on demand. The application requests this behaviour by setting a
466 statement attribute.

467 • Enhanced diagnostics

468 Parameter status arrays are included in this issue. In addition, after a multi-row fetch,
469 diagnostic information is available that indicates the status of each row fetched. The
470 application can also determine the column number to which any diagnostic information
471 applies.

472 • New data types

473 This issue includes interval buffer types, integer application buffer types with specific bit |
474 lengths up to 64 bits, binary buffer types, signed and unsigned integer buffer types, and |
475 buffer types for NUMERIC, DECIMAL, DATE,TIME, and TIMESTAMP data.

476 • Connection enhancements

477 The new SQLBrowseConnect() function gives the application an iterative method of
478 determining the capabilities of the available data sources in order to choose a suitable data
479 source to which to connect using SQLConnect().

480 The new SQLDriverConnect() function is added as an alternative to SQLConnect(). |
481 SQLDriverConnect() supports data sources that require more connection information than the
482 three arguments of SQLConnect(). SQLDriverConnect() also provides that the implementation |
483 interacts with the user to obtain any connection information that the caller fails to specify.

484 OP • Asynchrony

485 An optional asynchronous calling mode lets XDBC functions return before the requested |
486 operation has completed. The application can perform other operations concurrently, can
487 determine when the requested operation has completed, and can obtain the status of that
488 operation.

489 OP • Multi-row fetch

490 An optional multi-row fetch feature lets individual calls to SQLFetch() and SQLFetchScroll() |
491 return row-sets consisting of more than one row.

492 In a multi-row fetch, the deferred fields are redefined as pointers to arrays, so that they can |
493 be bound to the column data of an entire row-set. New data structures are defined to |
494 indicate diagnostic events that pertain to the multi-row fetch at large and to specific rows. |

4 Direct Review (Build ID 96KAV) (Draft XDBC.33, August 1996)

Introduction This Issue

495 The diagnostics sequencing rules are extended to cover the case of a multi-row fetch.

496 • Row-wise binding

497 When retrieving multiple rows at a time, each column can be bound to an array of column
498 buffers (‘‘column-wise binding’’). Alternatively, each column can be bound to a member of a
499 structure, and an array of these structures represents the multiple rows (‘‘row-wise
500 binding’’). (In the case of single-row fetch, these methods are equivalent.) Row-wise binding
501 better matches the way applications tend to want to deal with data from result sets once it is
502 fetched. Row-wise binding also applies to dynamic parameters (and is important in the case
503 of arrays of parameters) because of the symmetry of the descriptor model.

504 • Support for stored routines

505 The new SQLProcedureColumns() and SQLProcedures() functions perform metadata queries
506 relating to stored procedures.

507 For implementations in which stored routines can be registered with the capability to return |
508 ad hoc result sets, this specification envisages that all such result sets are returned on a single
509 statement handle and can be processed serially. The SQLMoreResults() function determines
510 whether any more result sets exist on a statement handle and move to the next result set.

511 • New items in SQLGetInfo()

512 The information available through SQLGetInfo() has been expanded, with the intent of
513 enabling the application to use SQLGetInfo() to determine the status of the implementation’s
514 support for most features that this specification designates as implementation-defined.

515 This facility lets an application determine an implementation’s ISO SQL compliance level and |
516 degree of support for SQL. The new information items are listed in Changes to Information
517 Items in SQLGetInfo() on page 405.

518 • SQLNativeSql()

519 The new SQLNativeSql() function returns a specified dynamic SQL statement as modified by
520 a specified implementation, without actually executing the statement. It is this statement |
521 that the XDBC implementation would send to the data source if the application requested the |
522 execution of the specified statement.

523 • SQLNumParams()

524 In the March 1995 issue, applications could determine the number of parameters that an SQL
525 statement contains by obtaining the SQL_DESC_COUNT field of the implementation
526 parameter descriptor. In the current issue, SQLNumParams() is a new, concise function that
527 achieves the same result without requiring a descriptor handle.

528 Lists of certain new values for data structures appear in the CHANGE HISTORY section of the
529 relevant Set function:

530 • New Connection Attributes in Version 2 on page 461
531 • Descriptor Fields Added in Version 2 on page 483 |
532 • New Statement Attributes in Version 2 on page 515

Data Management: X/Open Database Connectivity (XDBC), Version 2 5

This Issue Introduction

533 Dropped Features

534 This issue drops the following features that were present in the March 1995 issue:

535 • Use of embedded SQL as basis

536 The March 1995 issue envisaged that one possible implementation of the API was to base it
537 on an X/Open-compliant embedded SQL implementation. A small number of deviations
538 from this rule was enumerated and marked with the EX margin legend. The current issue
539 does not retain this assumption and does not flag aspects of XDBC that do not map to the
540 X/Open SQL specification.

541 • COBOL bindings

542 This issue specifies a set of C functions. It does not preclude bindings to other languages.
543 The function synopses are given in C language; a method of translating the synopses to other
544 languages is outside the scope of this specification. The code examples are now exclusively
545 in C.

546 Text in the March 1995 that accommodated programming languages that do not provide
547 pointer capabilities does not appear in this issue.

548 • Call-by-reference

549 The March 1995 issue envisaged two sets of functions: a call-by-value variant, with the prefix
550 SQL, and a call-by-reference variant, with the prefix SQLR. Call-by-reference would be the
551 variant used in languages such as COBOL.

552 The current issue specifies only the call-by-value variant.

553 The March 1995 issue described the API in a manner that did not specify the variant. For
554 example, there was a reference manual page for Fetch(). In the current issue, the
555 corresponding page appears under SQLFetch() and specifies the call-by-value variant.

556 • SQLBindParam()

557 The function BindParam() was specified in the March 1995 issue. The current issue specifies
558 SQLBindParameter(), which subsumes all the material formerly in BindParam(). It also allows
559 for input, output, and input/output parameters.

560 • SQL_ATTR_METADATA_IDconnection attribute

561 In the March 1995 issue, SQL_ATTR_METADATA_ID was defined as both a connection
562 attribute and a statement attribute. In the current issue, it appears only as a statement
563 attribute. However, this issue lets the application set any statement attributes on a
564 connection handle, in order to specify a default value for all statement handles allocated on
565 the connection handle. This rule covers the behaviour of SQL_ATTR_METADATA_IDas it
566 was formerly specified as a connection attribute.

567 • Formerly deprecated functions now removed

568 The following functions were labelled deprecated in the March 1995 issue, with a warning
569 that applications should convert to the preferred functions and that X/Open would delete |
570 the functions from a future issue. These have now been deleted:

571 • AllocConnect () — Use SQLAllocHandle() with SQL_HANDLE_DBC as HandleType.
572 • AllocEnv() — Use SQLAllocHandle() with SQL_HANDLE_ENV as HandleType.
573 • AllocStmt() — Use SQLAllocHandle() with SQL_HANDLE_STMT as HandleType.
574 • ColAttributes() — Use SQLColAttribute().
575 • Error() — Use SQLGetDiagField() or SQLGetDiagRec().
576 • FreeConnect() — Use SQLFreeHandle() with SQL_HANDLE_DBC as HandleType.
577 • FreeEnv() — Use SQLFreeHandle() with SQL_HANDLE_ENV as HandleType.

6 Direct Review (Build ID 96KAV) (Draft XDBC.33, August 1996)

Introduction This Issue

578 • GetConnectOption() — Use SQLGetConnectAttr().
579 • GetStmtOption() — Use SQLGetStmtAttr().
580 • SetConnectOption() — Use SQLSetConnectAttr().
581 • SetParam() — Use BindParameter().
582 • SetStmtOption() — Use SQLSetStmtAttr().
583 • Transact() — Use SQLEndTran().

584 Additional details for converting to non-deprecated methods appear in Chapter 8 of the
585 March 1995 issue.

586 • Formerly deprecated function now undeprecated

587 The FreeStmt() function was deprecated in the March 1995 issue. The SQL_DROP option is
588 deleted from this issue. The other options are documented in this issue, and are no longer
589 deprecated, because there was no equivalent work-around.

590 The RowCount() function was deprecated in the March 1995 issue. It is no longer deprecated. |
591 It provides behaviour not available elsewhere — a count of rows with a longer persistence |
592 than the count in the diagnostics area.

Data Management: X/Open Database Connectivity (XDBC), Version 2 7

Relation to Other X/Open Documents Introduction

593 1.3 Relation to Other X/Open Documents

594 1.3.1 Conceptual Differences from Embedded SQL

595 XDBC introduces a new style of application program binding for SQL that contains elements of
596 X/Open embedded SQL and of direct invocation as defined in the referenced ISO SQL standard.
597 However, XDBC is conceptually different from prior SQL implementations in the following
598 ways:

599 • Execution model

600 XDBC introduces a new model for the execution of any SQL statement that is preparable in
601 dynamic SQL. XDBC does not require explicit declaration of cursors, nor does it require a
602 different SQL verb (OPEN as opposed to EXECUTE) depending on the SQL text.

603 • Cursor

604 The XDBC cursor model is a mixture of the current dynamic and direct invocation binding
605 styles. Executing a cursor-specification 2 can return multiple rows even though the application
606 does not explicitly declare a cursor. The application can also use the normal cursor fetch
607 model on such cursor-specifications ; it can also use positioned UPDATE and DELETE
608 statements. This follows from the rule that any preparable SQL statement can be executed
609 using XDBC.

610 • Statement handles

611 A statement handle is a variable that refers to an implementation-defined data structure used
612 to contain all information related to an SQL statement. The statement handle corresponds
613 roughly to the diagnostics area and SQLSTATE of embedded SQL (see Section 4.1 on page
614 34).

615 • Environment, connection and descriptor handles

616 These other handles take the place of all remaining global variables, of connection-specific
617 state, and of SQL descriptor areas in embedded SQL (see Section 4.1 on page 34).

618 • Automatic sizing of data structures

619 For data structures with a variable number of records, such as a diagnostics area or an SQL
620 descriptor, the XDBC implementation takes any necessary action to accommodate however
621 many records are written to the data structure. The application does not have to declare a |
622 number of records when it allocates the data structure.

623 • Automatic data conversion

624 In XDBC, the application can specify the host-language buffer format for dynamic
625 parameters and column data. If this differs from the format used for communication with the
626 server, the client automatically converts data when it sends dynamic arguments to the
627 database and when it fetches columns from the database.

628 __________________
629 2. Throughout this specification, cursor-specification refers to the entire syntax of the cursor-specification (SELECT statement) defined

in the X/Open SQL specification. This does not include the SELECT...INTO syntax of the dynamic FETCH statement.

8 Direct Review (Build ID 96KAV) (Draft XDBC.33, August 1996)

Introduction Relation to Standards

630 1.4 Relation to Standards
631 X/Open’s goal is that implementations be able to comply both to XDBC and to the ISO CLI |
632 International Standard, and that application writers have clear guidelines for writing
633 applications with maximum portability.

634 XDBC includes many features not yet included in the ISO CLI International Standard.3 The |
635 XDBC functions that are not yet included in the ISO CLI International Standard are

636 • The catalog functions SQLColumnPrivileges(), SQLColumns(), SQLForeignKey(), SQLModules(), |
637 SQLPrimaryKey(), SQLProcedureColumns(), SQLProcedures(), SQLSpecialColumns(), |
638 SQLStatistics(), SQLTablePrivileges(), and SQLTables(). |

639 • The non-catalog functions SQLBulkOperations(), SQLDescribeParam(), and SQLSetPos().

640 The ISO CLI International Standard includes some features that XDBC does not:

641 • The ISO CLI International Standard takes advantage of some data types defined in advanced |
642 levels of the ISO SQL standard, while XDBC does not. These data types are BIT, BIT |
643 VARYING, NATIONAL CHARACTER, NATIONAL CHARACTER VARYING, TIME WITH |
644 TIMEZONE, and TIMESTAMP WITH TIMEZONE. The SQL_BIT data type defined in this |
645 specification is not the same as the BIT data type of the ISO CLI International Standard.

646 • The ISO CLI International Standard contains functions that appear in XDBC but are marked
647 deprecated.

648 • The ISO CLI International Standard contains descriptor fields that specify a character set and |
649 a collation, while XDBC does not. |

650 • XDBC does not have descriptor fields relating to stored routine parameters, as described in |
651 the emerging ISO PSM standard.

652 Where both XDBC and the ISO CLI International Standard define the same feature, X/Open
653 intends that the XDBC definition permit an implementation that also complies to the ISO CLI |
654 International Standard. When this is not the case (for instance, in cases of oversights or editorial
655 errors), X/Open intends to issue a statement explicitly deferring to the ISO CLI International
656 Standard, so that it is the authority by which any discrepancies are resolved.

657 __________________ |
658 3. Most of these are listed in New Features on page 2. That list compares this specification to the March 1995 issue, which was |||

similar in features to the ISO CLI International Standard. |||

Data Management: X/Open Database Connectivity (XDBC), Version 2 9

Compliance Policy Introduction

659 1.5 Compliance Policy

660 1.5.1 Language Binding

661 This document describes a set of XDBC functions that are callable from C. Some XDBC products
662 support additional languages.

663 The goal of this X/Open specification is the ability to write portable programs. Compliance to |
664 this specification means that the XDBC implementation must include bindings to an X/Open-
665 compliant C implementation. It is implementation-defined whether the implementation
666 provides bindings to other languages. X/Open intends to publish, for each XDBC product it
667 brands, the extent to which purchasers can use the product to write portable applications.

668 1.5.2 SQL Statement Text

669 This specification gives applications a way to provide SQL statement text for execution. The |
670 SQL statement text is typically a statement from the database language specified in the X/Open
671 SQL specification. Compliance with this document is separate from, and does not presume,
672 compliance with the X/Open SQL specification. However, X/Open recommends that
673 implementations comply with both this specification and the X/Open SQL specification.

674 On an implementation that complies with both this specification and the X/Open SQL
675 specification, valid SQL statement text for execution using XDBC is defined as any SQL
676 statement that can be prepared in dynamic SQL, as specified by the X/Open SQL specification:
677 ALTER, CREATE, cursor-specification , searched DELETE, positioned DELETE, DROP, GRANT,
678 INSERT, REVOKE, searched UPDATE, positioned UPDATE and the vendor escape clause. The
679 COMMIT and ROLLBACK statements of dynamic SQL are specifically excluded from execution
680 using XDBC, as this specification provides other methods of transaction delimitation (see |
681 Chapter 14).

682 In addition, any dynamic arguments must appear so that their data type can be deduced, and
683 prefixes, terminators, comments and embedded variable names are prohibited. Refer, in the
684 X/Open SQL specification, to the explanation of the ’42000’ diagnostic for the PREPARE
685 statement.

686 Other SQL Dialects for XDBC Testing

687 Testing an XDBC implementation involves, among other things, submitting requests to modify a
688 database, requesting the revised contents of the database, and verifying that the contents seem to
689 have been modified correctly. One method of doing this is to submit SQL statement text. This
690 method must be tested, and doing so requires an assumption about what SQL grammar is
691 available for use. There are model SQL dialects less complete than the language the X/Open
692 SQL specification defines, but complete enough to enable XDBC testing while avoiding the
693 features of SQL whose implementation varies. If the implementation does not accept the SQL
694 grammar defined in the X/Open SQL specification, it must satisfy any assumptions the testing
695 software makes about what set of SQL statements can be submitted.

10 Direct Review (Build ID 96KAV) (Draft XDBC.33, August 1996)

Introduction Distributed Transaction Delimitation

696 1.5.3 Distributed Transaction Delimitation

697 Chapter 14 discusses transactions, which are sequences of database operations with certain |
698 collective characteristics such as atomicity. Transaction delimitation must exist in order to
699 define the grouping of database operations into transactions.

700 All transactions must be delimited in exactly one of the following ways, selected based on
701 implementation-defined criteria:

702 • A transaction begins implicitly when an application operates on a database, as defined in |
703 Chapter 14. The transaction ends when the application calls SQLEndTran().

704 • A transaction begins when an application executes the tx_begin() function described in the
705 X/Open TX specification; and ends when it executes tx_end().

706 • An implementation-defined transaction delimitation interface is used.

707 The application must mark the end of a transaction using the same technique it used to mark the
708 start of a transaction.

709 X/Open-compliant XDBC implementations that also comply with the support the second
710 option for all transactions. The tx_begin() and tx_end() functions call a transaction manager,
711 which coordinates completion of SQL and non-SQL work to provide global atomicity. The
712 XDBC implementation supports the X/Open XA interface, in the role of a Resource Manager
713 (RM). The XA interface lets the transaction manager inform the XDBC implementation of the
714 delimitation and disposition of transactions.

Data Management: X/Open Database Connectivity (XDBC), Version 2 11

Compliance Terminology Introduction

715 1.6 Compliance Terminology

716 The following compliance terms convey the same meanings as defined in the X/Open SQL
717 specification.

718 Optional features
719 An optional feature serves as guidance to implementors on the preferred syntax for a
720 feature that is not yet widespread. X/Open does not currently enforce the implementation •
721 of optional features, but intends to make them mandatory in future issues of the XPG, in the
722 manner in which they are specified in this edition. At that time, implementations will be
723 required to provide the feature.

724 X/Open may test implementations to see if they implement optional features as specified in
725 this document. X/Open would make the results available to prospective purchasers.

726 Application writers may use optional features that are known to be available on the
727 implementation in use, at the risk of reduced portability.

728 Discussions of optional features are shaded with the OP margin notation, as shown below.

729 OP The following features are optional:

730 — The ability to have the implementation describe dynamic parameters in prepared
731 statements.

732 — The scalar functions specified in Appendix F. |

733 — The architecture, specified in Appendix I, in which an implementation is divided into a |
734 Driver Manager and various drivers. |

735 — An implementation need not provide all data types defined in Section D.1 on page 556. |
736 An application calls SQLGetTypeInfo() to discover which data types are supported.

737 Deprecated features
738 Deprecated features include syntax that X/Open views as obsolete or non-optimal.
739 Implementors must provide features labelled deprecated, in the interest of backward-
740 compatibility. Application writers using deprecated features are advised that X/Open
741 intends to remove them from future issues of this specification.

742 Each deprecated feature lists a preferred method of performing the same function.
743 X/Open’s policy on deprecated features is to maintain the deprecated designation for at
744 least one issue of the XPG. This gives application writers adequate notice to change their
745 coding to the recommended method. When X/Open reissues the XPG with a feature
746 omitted, implementations may remove support for the feature.

747 Deprecated features in XDBC are as follows:

748 • The BindParam() function binds a parameter in an SQL statement to an application
749 variable. Applications should now use SQLBindParameters(), which also supports
750 output and input/output parameters.

751 • The SQL_FETCH_DIRECTION and SQL_SCROLL_CONCURRENCY values of InfoItem
752 in calls to SQLGetInfo() determine details of the implementation of cursors. A new
753 technique using bitmasks gives the application much more information, regarding the
754 implementation of each of four types of cursors, in a symmetric manner. The new
755 technique is discussed in Detecting Cursor Capabilities with SQLGetInfo() on page
756 402.

757 Compliance
758 An XDBC implementation is X/Open-compliant if it supports all the assertions this
759 document makes that are not labelled optional. The implementation may also support the

12 Direct Review (Build ID 96KAV) (Draft XDBC.33, August 1996)

Introduction Compliance Terminology

760 features labelled optional, or other features not specifically identified in this document. |
761 Implementors are free not to implement features marked optional, but if they implement |
762 such a feature, they must do so as specified in this document.

763 An application program is X/Open-compliant if it uses only the syntax contained in this
764 document that is not labelled optional.

765 Implementation-defined
766 Implementation-defined means that the resolution of the issue in question may vary
767 between implementations, and that each X/Open-compliant implementation must publish
768 information on how it resolves that issue.

769 Undefined
770 Undefined means that the resolution of the issue in question may vary between
771 implementations, and that an X/Open-compliant implementation need not publish
772 information on how it resolves that issue.

773 Footnotes are used as a technique to improve readability of the main text. However, information
774 in footnotes is as much a part of this specification as information in the main text. |

Data Management: X/Open Database Connectivity (XDBC), Version 2 13

XDBC Compliance Levels Introduction

775 1.7 XDBC Compliance Levels |

776 An XDBC implementation may give the application access to diverse data sources. The |
777 implementation lets the application determine at run time what XDBC capabilities the |
778 implementation and each data source supports. |

779 To simplify specification of compliance, XDBC defines three levels. Compliance with a given |
780 level implies complete compliance with all lower levels. Compliance levels do not always |
781 divide neatly into support for a specific list of XDBC functions, but specify supported features4 |

782 as listed in the following sections. To provide support for a feature, an implementation must |
783 support some or all forms of calls to certain XDBC functions (see also Function Cross-reference |
784 on page 17), setting certain attributes (see also Attribute Cross-reference on page 18), and |
785 certain descriptor fields (see also Descriptor Field Cross-reference on page 19). |

786 The application determines the XDBC compliance level after connecting to a data source by |
787 calling SQLGetInfo() with the SQL_XDBC_INTERFACE_CONFORMANCE option. |

788 Implementations are free to implement features beyond the level to which they claim complete |
789 compliance. Applications discover any such additional capabilities by calling SQLGetFunctions() |
790 (to determine which XDBC functions are present) and SQLGetInfo() (to query various other |
791 XDBC capabilities). |

792 Core-level XDBC Compliance |

793 All XDBC implementations exhibit at least Core-level compliance. This lets the implementation |
794 work with most applications and corresponds to the non-optional features defined in the March |
795 1995 issue of the X/Open CLI specification. A Core-level-compliant XDBC implementation lets |
796 the application do all of the following: |

797 1 Allocate and free all types of handle, by calling SQLAllocHandle() and SQLFreeHandle(). |

798 2 Use all forms of the SQLFreeStmt() function. |

799 3 Bind result set columns, by calling SQLBindCol(). |

800 4 Handle dynamic parameters, including arrays of parameters, in the input direction only, |
801 by calling SQLBindParameter() and SQLNumParams(). (Parameters in the output direction |
802 are feature 203.) |

803 5 Specify a bind offset. |

804 6 Use the data-at-execution dialogue, involving calls to SQLParamData() and SQLPutData(). |

805 7 Manage cursors and cursor names, by calling SQLCloseCursor(), SQLGetCursorName(), |
806 and SQLSetCursorName(). |

807 8 Gain access to the description (metadata) of result sets, by calling SQLColAttribute(), |
808 SQLDescribeCol(), SQLNumResultCols(), and SQLRowCount(). (Use of these functions on |
809 column number 0 to retrieve bookmark metadata is feature 204.) |

810 9 Query the data dictionary, by calling the catalog functions SQLColumns(), |
811 SQLGetTypeInfo(), SQLStatistics(), and SQLTables(). (The implementation is not required |
812 to support multi-part names of database tables and views.5 See also features 101 and |
813 201.) |

814 __________________ |
815 4. The features listed in the following sections are numbered for ease of reference. The numbers are not official and the sequencing |||

of the list and manner of grouping the material into discrete features is not relevant to compliance. |||
816 5. However, certain features of the X/Open SQL specification, such as column qualification and names of indexes, are syntactically |||

comparable to multi-part naming. The present list of XDBC features is not intended to introduce new optionality into these |||
817 aspects of the X/Open SQL specification. |||

14 Direct Review (Build ID 96KAV) (Draft XDBC.33, August 1996)

Introduction XDBC Compliance Levels

818 10 Manage data sources and connections, by calling SQLConnect(), SQLDataSources(), |
819 OP SQLDisconnect(), and SQLDriverConnect(). Also, in implementations that support the |
820 optional Driver Manager architecture (see Appendix I on page 613), obtain information on |
821 drivers, no matter which XDBC level they support, by calling SQLDrivers(). |

822 11 Prepare and execute SQL statements, by calling SQLExecDirect(), SQLExecute(), and |
823 SQLPrepare(). |

824 12 Fetch one row of a result set or multiple rows, in the forward direction only, by calling |
825 SQLFetch(), or by calling SQLFetchScroll() with FetchOrientation set to SQL_FETCH_NEXT. |

826 13 Obtain an unbound column in parts, by calling SQLGetData(). |

827 14 Obtain current values of all attributes, by calling SQLGetConnectAttr(), SQLGetEnvAttr(), |
828 and SQLGetStmtAttr(); and set all attributes to their default values and set certain |
829 attributes to non-default values (see Attribute Cross-reference on page 18), by calling |
830 SQLSetConnectAttr(), SQLSetEnvAttr(), and SQLSetStmtAttr(). |

831 15 Manipulate certain fields of descriptors, by calling SQLCopyDesc(), SQLGetDescField(), |
832 SQLGetDescRec(), SQLSetDescField(), and SQLSetDescRec(). See Descriptor Field Cross- |
833 reference on page 19. |

834 16 Obtain diagnostic information, by calling SQLGetDiagField() and SQLGetDiagRec(). |

835 17 Detect implementation capabilities, by calling the "introspection" functions |
836 SQLGetFunctions() and SQLGetInfo(). Also, detect the result of any text substitutions |
837 made to an SQL statement before it is sent to the data source, by calling SQLNativeSql(). |

838 18 Use the syntax of SQLEndTran() to commit a transaction. But a Core-level |
839 implementation need not support true transactions; therefore, the application cannot |
840 specify SQL_ROLLBACK, nor specify SQL_AUTOCOMMIT_OFF for the |
841 SQL_ATTR_AUTOCOMMIT connection attribute. See feature 109. |

842 19 Call SQLCancel() to cancel the data-at-execution dialogue and, in multithread |
843 environments, to cancel an XDBC function executing in another thread. Core-level |
844 compliance does not mandate support for asynchrony nor the use of SQLCancel() to |
845 cancel an XDBC function executing asynchronously. |

846 Nothing in this specification requires that the platform or the XDBC implementation be |
847 multithreaded (that the implementation conduct independent activities at the same time). |
848 However, in multithread environments, the XDBC implementation must be thread-safe. |
849 Serialization of requests from the application is a compliant way to implement this |
850 specification (even though it may create serious performance problems). |

851 20 Obtain the SQL_BEST_ROWID row-identifying column of tables, by calling |
852 SQLSpecialColumns(). Support for SQL_ROWVER is feature 208. |

853 Level 1 XDBC Compliance |

854 Level 1 compliance includes all features required for Core compliance, and additional features |
855 that let the application do all of the following: |

856 101 Specify the schema of database tables and views (using two-part naming, as discussed in |
857 Three-part Object Naming on page 28). See also feature 201. |

858 102 Invoke true asynchronous execution of XDBC functions, where applicable XDBC |
859 functions are all synchronous or all asynchronous on a given connection. |

860 103 Use scrollable cursors, and thereby achieve access to a result set in methods other than |
861 forward-only, by calling SQLFetchScroll() with FetchOrientation other than |
862 SQL_FETCH_NEXT (but SQL_FETCH_BOOKMARK is feature 204). |

Data Management: X/Open Database Connectivity (XDBC), Version 2 15

XDBC Compliance Levels Introduction

863 104 Obtain primary keys of tables, by calling SQLPrimaryKeys(). |

864 105 Use stored procedures, through the XDBC escape clause for procedure calls; and query |
865 the data dictionary regarding stored procedures, by calling SQLProcedureColumns() and |
866 SQLProcedures(). (The process by which procedures are created and stored on the data |
867 source is outside the scope of this specification.) |

868 106 Connect to a data source by interactively browsing the available servers, by calling |
869 SQLBrowseConnect(). |

870 107 Use XDBC functions instead of SQL statements to perform certain database operations: |
871 SQLBulkOperations() with SQL_ADD and SQLSetPos() with SQL_POSITION and |
872 SQL_REFRESH. |

873 108 Gain access to the contents of multiple result sets generated by batches and stored |
874 procedures, by calling SQLMoreResults(). |

875 109 Delimit transactions spanning several XDBC functions, with true atomicity and the ability |
876 to specify SQL_ROLLBACK in SQLEndTran(). |

877 Level 2 XDBC Compliance |

878 Level 2 compliance includes all features required for Core and Level 1 compliance, plus |
879 additional features that let the application do all of the following: |

880 201 Use three-part names of database tables and views (see Three-part Object Naming on |
881 page 28). See also feature 101. |

882 202 Describe dynamic parameters, by calling SQLDescribeParam(). |

883 203 Use not only input parameters but output and input/output parameters, and result |
884 values of stored procedures. |

885 204 Use bookmarks: Retrieve bookmarks by calling SQLDescribeCol() and SQLColAttribute() |
886 on column number 0; fetch based on a bookmark by calling SQLFetchScroll() with |
887 FetchOrientation set to SQL_FETCH_BOOKMARK; and call SQLBulkOperations() with |
888 SQL_UPDATE_BY_BOOKMARK, SQL_DELETE_BY_BOOKMARK, and |
889 SQL_FETCH_BY_BOOKMARK. |

890 205 Retrieve advanced information on the data dictionary, by calling SQLColumnPrivileges(), |
891 SQLForeignKeys(), and SQLTablePrivileges(). |

892 206 Use XDBC functions instead of SQL statements to perform additional database |
893 operations, by calling SQLSetPos() with SQL_DELETE, SQL_UPDATE. Includes support |
894 for calls to SQLSetPos() with LockType set to SQL_LOCK_EXCLUSIVE and |
895 SQL_LOCK_UNLOCK. |

896 207 Enable asynchronous execution of XDBC functions for specified individual statements. |

897 208 Obtain the SQL_ROWVER row-identifying column of tables, by calling |
898 SQLSpecialColumns(). See also feature 20. |

899 209 Set the SQL_ATTR_CONCURRENCY statement attribute to at least one value other than |
900 SQL_CONCUR_READ_ONLY. |

901 210 Set the SQL_ATTR_OUTPUT_NTS to SQL_FALSE to disable null-termination of output |
902 character strings. |

903 211 Execute transactions with the "serializable" level of isolation. |

16 Direct Review (Build ID 96KAV) (Draft XDBC.33, August 1996)

Introduction XDBC Compliance Levels

904 Optional at All Levels |

905 Features specified as optional are not required to be supported regardless of the |
906 implementation’s compliance level. See Section 1.6 on page 11 for a list of optional features. |

Data Management: X/Open Database Connectivity (XDBC), Version 2 17

XDBC Compliance Levels Introduction

907 Function Cross-reference |

908 The following table indicates the compliance level of each XDBC function, where this is well- |
909 defined. |

910 SQLAllocHandle(): Core |
911 SQLBindCol(): Core |
912 SQLBindParam() DE : Core * |
913 SQLBindParameter(): Core * |
914 SQLBrowseConnect(): Level 1 |
915 SQLBulkOperations(): Level 1 * |
916 SQLCancel(): Core * |
917 SQLCloseCursor(): Core |
918 SQLColAttribute(): Core * |
919 SQLColumnPrivileges(): Level 2 |
920 SQLColumns(): Core |
921 SQLConnect(): Core |
922 SQLCopyDesc(): Core |
923 SQLDataSources(): Core |
924 SQLDescribeCol(): Core * |
925 SQLDescribeParam(): Level 2 |
926 SQLDisconnect(): Core |
927 SQLDriverConnect(): Core |
928 SQLDrivers() OP : Core |
929 SQLEndTran(): Core * |
930 SQLExecDirect(): Core |
931 SQLExecute(): Core |
932 SQLFetch(): Core |
933 SQLFetchScroll(): Core * |
934 SQLForeignKeys(): Level 2 |
935 SQLFreeHandle(): Core |
936 SQLFreeStmt(): Core |
937 SQLGetConnectAttr(): Core |
938 SQLGetCursorName(): Core |
939 SQLGetData(): Core |
940 SQLGetDescField(): Core |

SQLGetDescRec(): Core |
SQLGetDiagField(): Core |
SQLGetDiagRec(): Core |
SQLGetEnvAttr(): Core |
SQLGetFunctions(): Core |
SQLGetInfo(): Core |
SQLGetStmtAttr(): Core |
SQLGetTypeInfo(): Core |
SQLMoreResults(): Level 1 |
SQLNativeSql(): Core |
SQLNumParams(): Core |
SQLNumResultCols(): Core |
SQLParamData(): Core |
SQLPrepare(): Core |
SQLPrimaryKeys(): Level 1 |
SQLProcedureColumns(): Level 1 |
SQLProcedures(): Level 1 |
SQLPutData(): Core |
SQLRowCount(): Core |
SQLSetConnectAttr(): Core ** |
SQLSetCursorName(): Core |
SQLSetDescField(): Core |
SQLSetDescRec(): Core |
SQLSetEnvAttr(): Core ** |
SQLSetPos(): Level 1 * |
SQLSetStmtAttr(): Core ** |
SQLSpecialColumns(): Core * |
SQLStatistics(): Core |
SQLTablePrivileges(): Level 2 |
SQLTables(): Core |

941 __________________ |
942 * But significant features of this function are available only at higher compliance levels. |||
943 ** Setting certain attributes to non-default values depends on the compliance level; see Attribute Cross-reference on page 18. |||

18 Direct Review (Build ID 96KAV) (Draft XDBC.33, August 1996)

Introduction XDBC Compliance Levels

944 Attribute Cross-reference |

945 All XDBC implementations let applications obtain the current value of any attribute by calling |
946 SQLGetConnAttr(), SQLGetEnvAttr(), or SQLGetStmtAttr(). All XDBC implementations allow |
947 calls to SQLSetConnAttr(), SQLSetEnvAttr(), or SQLSetStmtAttr() that simply reassert the default |
948 value of the attribute. The ability to set an attribute to a non-default value depends on the |
949 compliance level, as follows: |

950 Connection attributes |

951 SQL_ATTR_ACCESS_MODE: Core |
952 SQL_ATTR_ASYNC_ENABLE: * |
953 SQL_ATTR_AUTO_IPD: Level 2 |
954 SQL_ATTR_AUTOCOMMIT: Level 1 |
955 SQL_ATTR_CONNECTION_TIMEOUT: Level 2 |
956 SQL_ATTR_CURRENT_CATALOG: Level 2 |
957 SQL_ATTR_LOGIN_TIMEOUT: Level 2 |
958 SQL_ATTR_PACKET_SIZE: Level 2 |
959 SQL_ATTR_QUIET_MODE: Core |
960 SQL_ATTR_TXN_ISOLATION: 6 |

961 Environment attribute |

962 SQL_ATTR_OUTPUT_NTS: Level 2 |

963 Statement attributes |

964 SQL_ATTR_APP_PARAM_DESC: Core |
965 SQL_ATTR_APP_ROW_DESC: Core |
966 SQL_ATTR_ASYNC_ENABLE: * |
967 SQL_ATTR_CONCURRENCY: 7 |

968 SQL_ATTR_CURSOR_TYPE: 8 |

969 SQL_ATTR_ENABLE_AUTO_IPD: Level 2 |
970 SQL_ATTR_FETCH_BOOKMARK_PTR: Level 2 |
971 SQL_ATTR_IMP_PARAM_DESC: Core |
972 SQL_ATTR_IMP_ROW_DESC: Core |
973 SQL_ATTR_KEYSET_SIZE: Level 2 |
974 SQL_ATTR_MAX_LENGTH: Level 1 |
975 SQL_ATTR_MAX_ROWS: Level 1 |
976 SQL_ATTR_METADATA_ID:Core |
977 SQL_ATTR_NOSCAN: Core |
978 SQL_ATTR_PARAM_BIND_OFFSET_PTR: Core |
979 SQL_ATTR_PARAM_BIND_TYPE: Core |
980 SQL_ATTR_PARAM_OPERATION_PTR: Core |
981 SQL_ATTR_PARAM_STATUS_PTR: Core |

982 __________________ |
983 6. For Level 1 compliance, the implementation must support one value in addition to the implementation-defined default value |||

(available by calling SQLGetInfo() with the SQL_DEFAULT_TXN_ISOLATION option). For Level 2 compliance, the |||
984 implementation must also support SQL_TXN_SERIALIZABLE. |||
985 * Applications that support connection-level asynchrony (required for Level 1) must support setting this statement attribute to |||

SQL_TRUE by calling SQLSetConnectAttr(); the attribute need not be settable to a value other than its default value through |||
986 SQLSetStmtAttr(). Applications that support statement-level asynchrony (required for Level 2) must support setting this |||

attribute to SQL_TRUE using either function. |||
987 7. For Level 2 compliance, the implementation must support SQL_CONCUR_READ_ONLY and at least one other value. |||
988 8. For Level 1 compliance, the implementation must support SQL_CURSOR_FORWARD_ONLY and at least one other value. For |||

Level 2 compliance, the implementation must support all values defined in this specification. |||

Data Management: X/Open Database Connectivity (XDBC), Version 2 19

XDBC Compliance Levels Introduction

989 SQL_ATTR_PARAMS_PROCESSED_PTR: Core |
990 SQL_ATTR_PARAMSET_SIZE: Core |
991 SQL_ATTR_QUERY_TIMEOUT: Level 1 |
992 SQL_ATTR_RETRIEVE_DATA: Level 1 |
993 SQL_ATTR_ROW_ARRAY_SIZE: Core |
994 SQL_ATTR_ROW_BIND_OFFSET_PTR: Core |
995 SQL_ATTR_ROW_BIND_TYPE: Core |
996 SQL_ATTR_ROW_NUMBER: Level 1 |
997 SQL_ATTR_ROW_OPERATION_PTR: Level 1 |
998 SQL_ATTR_ROW_STATUS_PTR: Core |
999 SQL_ATTR_ROWS_FETCHED_PTR: Core |
1000 SQL_ATTR_SIMULATE_CURSOR: Level 2 |
1001 SQL_ATTR_USE_BOOKMARKS: Level 2 |

1002 Descriptor Field Cross-reference |

1003 Header fields |

1004 SQL_DESC_ALLOC_TYPE: Core |
1005 SQL_DESC_ARRAY_SIZE: Core |
1006 SQL_DESC_ARRAY_STATUS_PTR: Core (for APD); Level 1 (for ARD). |
1007 SQL_DESC_BIND_OFFSET_PTR: Level 1 |
1008 SQL_DESC_BIND_TYPE: Core |
1009 SQL_DESC_COUNT: Core |
1010 SQL_DESC_ROWS_PROCESSED_PTR: Core |

1011 Record fields |

1012 SQL_DESC_AUTO_UNIQUE_VALUE: Level 2 |
1013 SQL_DESC_BASE_COLUMN_NAME: Core |
1014 SQL_DESC_BASE_TABLE_NAME: Level 1 |
1015 SQL_DESC_CASE_SENSITIVE: Core |
1016 SQL_DESC_CATALOG_NAME: Level 2 |
1017 SQL_DESC_CONCISE_TYPE: Core |
1018 SQL_DESC_DATA_PTR: Core |
1019 SQL_DESC_DATETIME_INTERVAL_CODE: Core * |
1020 SQL_DESC_DATETIME_INTERVAL_PRECISION: Core * |
1021 SQL_DESC_DISPLAY_SIZE: Core |
1022 SQL_DESC_FIXED_PREC_SCALE: Core |
1023 SQL_DESC_INDICATOR_PTR: Core |
1024 SQL_DESC_LABEL: Level 2 |
1025 SQL_DESC_LENGTH: Core |
1026 SQL_DESC_LITERAL_PREFIX: Core |
1027 SQL_DESC_LITERAL_SUFFIX: Core |
1028 SQL_DESC_LOCAL_TYPE_NAME: Core |
1029 SQL_DESC_NAME: Core |
1030 SQL_DESC_NULLABLE: Core |
1031 SQL_DESC_OCTET_LENGTH: Core |
1032 SQL_DESC_OCTET_LENGTH_PTR: Core |
1033 SQL_DESC_PARAMETER_TYPE: 9 |

1034 __________________ |
1035 * Support for these record fields is only required if the implementation supports the applicable data types. |||

20 Direct Review (Build ID 96KAV) (Draft XDBC.33, August 1996)

Introduction XDBC Compliance Levels

1036 SQL_DESC_PRECISION: Core |
1037 SQL_DESC_SCALE: Core |
1038 SQL_DESC_SCHEMA_NAME: |
1039 SQL_DESC_SEARCHABLE: Core |
1040 SQL_DESC_TABLE_NAME: Level 1 |
1041 SQL_DESC_TYPE: Core |
1042 SQL_DESC_TYPE_NAME: Core |
1043 SQL_DESC_UNNAMED: Core |
1044 SQL_DESC_UNSIGNED: Core |
1045 SQL_DESC_UPDATABLE: Core |

1046 __________________ |
1047 9. For Core-level compliance, the implementation must support SQL_PARAM_INPUT. For Level 2 compliance, the |||

implementation must also support SQL_PARAM_INPUT_OUTPUT and SQL_PARAM_OUTPUT. |||

Data Management: X/Open Database Connectivity (XDBC), Version 2 21

XDBC Compliance Levels Introduction

1048 1.8 SQL Registry |

1049 X/Open maintains a registry of values associated with the Structured Query Language |
1050 (database language SQL) and the Call-Level Interface (CLI) for SQL. This registry provides |
1051 several different categories of values, such as return values of CLI functions and character |
1052 strings representing different implementations. For each category, the registry may indicate that |
1053 a specific value, a list of values, or a range of values is reserved for the ISO standard, to X/Open, |
1054 or to a vendor of a related product. |

1055 Implementors and vendors of SQL-related products should consult this registry whenever |
1056 assigning values for any relevant category. Vendors of SQL or CLI products should request |
1057 registry of values (or ranges of values) specific to their implementations. (See Submitting |
1058 Requests to the Registry below.) |

1059 Obtaining Copies of the Registry |

1060 Copies of the X/Open SQL registry (including CLI) are available from X/Open as follows: |

1061 • On the World-Wide Web using the following Universal Resource Locators (URL): |

1062 — Plain text in http://www.xopen.org/infosrv/SQL_Registry/registry.txt |

1063 — Acrobat PDF in http://www.xopen.org/infosrv/SQL_Registry/registry.pdf |

1064 — HTML in http://www.xopen.org/infosrv/SQL_Registry/registry.htm |

1065 — PostScript in http://www.xopen.org/infosrv/SQL_Registry/registry.ps |

1066 Links to these can be found on the public pages for the X/Open SQL Access Group at |
1067 http://www.xopen.org/public/tech/datam/index.htm |

1068 • X/Open offers anonymous access to a File Transfer Protocol (FTP) server. Access to the |
1069 service is available only over the Internet. Anonymous FTP allows on-line access to a |
1070 restricted area of filestore, where publically available files are stored. Users can retrieve them |
1071 interactively. |

1072 The text below describes the anonymous ftp service. |

1073 — From a machine with FTP capabilities and access to the Internet, type: |

1074 ftp ftp.xopen.co.uk ||

1075 — At the login prompt, enter anonymous or ftp as your user name. |

1076 — You will then be prompted for a password. Respond by typing your full e-mail address |
1077 including Internet domain. You will be granted access to any of the files that have been |
1078 made available for anonymous FTP, but not to other files on the system. |

1079 — Select the SQL Registry by typing: |

1080 cd pub/SQL_Registry ||

1081 — Retrieve registry information by typing one of the following: |

1082 get registry.pdf for the Acrobat PDF version |
1083 get registry.ps for the PostScript version |
1084 get registry.txt for a plain text version |

1085 There are also password-protected FTP services that disclose information to validated users |
1086 on a need-to-know basis. Full instructions for use of the FTP server are accessible on the |
1087 World Wide Web as http://www.xopen.org/connections/ftpserver |

22 Direct Review (Build ID 96KAV) (Draft XDBC.33, August 1996)

Introduction SQL Registry

1088 Submitting Requests to the Registry |

1089 Before submitting a request, obtain a copy of the registry, as described above, and determine the |
1090 table in the registry in which your organisation requires entries. |

1091 To register one or more values (or ranges of values), an electronic mail message should be sent to |
1092 sql.registry@xopen.co.uk. The message should contain the character string SQL REGISTRY |
1093 REQUEST in the From: field. Failure to include this string, exactly as shown, including the use |
1094 of all upper-case letters, may delay the response. |

1095 The text of the message must specify: |

1096 • The organization on whose behalf the request is being made |

1097 • The name of the individual making the request |

1098 • The exact title of each table in the Registry into which values should be allocated |

1099 • For each category of values, an approximation of the number of values needed. |

1100 In most cases, the registrar will assign a limited range of values, similar to the ranges assigned to |
1101 other requestors, as shown in the existing registry. Requirements for a large number of values |
1102 should please include a justification. |

1103 All requests will be answered within a month. The registrar’s response will indicate the specific |
1104 values or ranges assigned for each category for which a request was made. When the registrar |
1105 determines that values and/or ranges have already been assigned to the requesting organization; |
1106 the response will point the requestor to the previous requestor from the same organization, thus |
1107 avoiding redundancy.

Data Management: X/Open Database Connectivity (XDBC), Version 2 23

Introduction

24 Direct Review (Build ID 96KAV) (Draft XDBC.33, August 1996)

•

1108 Chapter 3

1109 XDBC Architecture

1110 The XDBC architecture has the following components: |

1111 • Application

1112 Performs processing and calls XDBC functions to perform database operations. A typical |
1113 way of doing this is by using XDBC to submit SQL statements for execution and to retrieve |
1114 results. Applications are discussed further in Section 3.3 on page 26. |

1115 • XDBC Implementation |

1116 This specification uses ‘‘XDBC implementation’’ to refer to the software that accepts the |
1117 requests and performs the database operations. The implementation may be spread over |
1118 physical locations and over discrete software components. |

1119 • Data source |

1120 The data to which the user wants to gain access, along with its associated operating system |
1121 and any network platform used to gain access to the data. Also called database, database |
1122 management system (DBMS), or database engine. Data sources are discussed further in |
1123 Section 3.4 on page 27. |

Data Management: X/Open Database Connectivity (XDBC), Version 2 25

XDBC Implementation XDBC Architecture

1124 3.1 XDBC Implementation |

1125 It is implementation-defined whether the XDBC implementation comprises multiple |
1126 components that are visible to the application writer or user. In the simplest case, an |
1127 application, through the way it is linked or through administrative action, might be permanently |
1128 associated with a single data source. Typically, however, it is important that the application or |
1129 the user be able to select the data source from many choices. |

1130 For maximum portability — especially in the case where the application is a software product |
1131 that is sold to and used by many users in many organisations — it is desirable that the |
1132 application be applicable not just to multiple data sources but to a variety of database |
1133 architectures. |

1134 The SQL language defined in the ISO SQL standard and the X/Open SQL specification has |
1135 achieved some uniformity among data sources, but implementations of SQL still vary; there are |
1136 still proprietary SQL dialects and vendor-specific enhancements to SQL that are useful. |

26 Direct Review (Build ID 96KAV) (Draft XDBC.33, August 1996)

XDBC Architecture Implementation Architecture

1137 3.2 Implementation Architecture |

1138 OP A technique that lets the XDBC implementation dynamically adapt to diverse data sources, |
1139 including data sources yet to be invented, is to divide the implementation into a Driver Manager |
1140 and one or more drivers: |

1141 • Driver Manager

1142 Loads and unloads drivers on behalf of an application. Processes XDBC function calls or
1143 passes them to a driver.

1144 • Driver

1145 Processes XDBC function calls, submits SQL requests to a specific data source, and returns
1146 results to the application. If necessary, the driver modifies an application’s request so that the |
1147 request complies with syntax supported by the associated data source. |

1148 It is implementation-defined whether an implementation uses this divided architecture; but if it |
1149 does so, it must do so as specified in Appendix I. |

Data Management: X/Open Database Connectivity (XDBC), Version 2 27

Applications XDBC Architecture

1150 3.3 Applications |

1151 An XDBC application is a program that calls the XDBC API to gain access to data. Although |
1152 many types of applications are possible, most fall into three categories, which are used as |
1153 examples throughout this specification: |

1154 • Generic applications |

1155 These are also referred to as shrink-wrapped applications or off-the-shelf applications. |
1156 Generic applications are designed to work with a variety of different data sources. Examples |
1157 include a spreadsheet or statistics package that uses XDBC to import data for further analysis |
1158 and a word processor that uses XDBC to get a mailing list from a database. |

1159 An important sub-category of generic applications are application development |
1160 environments. Although the application constructed with these environments will probably |
1161 work only with a single data source, the environment itself needs to work with multiple data |
1162 sources. |

1163 What all generic applications have in common is that they are highly interoperable among |
1164 data sources and they need to use XDBC in a relatively generic manner. |

1165 • Vertical applications |

1166 Vertical applications perform a single type of task, such as order entry or tracking |
1167 manufacturing data, and work with a database schema that is controlled by the developer of |
1168 the application. For a specific customer, the application works with a single data source. |

1169 The application uses XDBC in such a manner that the application is not tied to any one data |
1170 source, although it might be tied to a limited number of data sources that provide similar |
1171 features. Thus, the application developer can sell the application independently from the |
1172 data source. Vertical applications are interoperable when they are developed but are |
1173 sometimes modified to include noninteroperable code once the customer has chosen a data |
1174 source. |

1175 • Custom applications |

1176 Custom applications are used to perform a specific task in a single company. For example, |
1177 an application in a large company might gather sales data from several divisions (each of |
1178 which uses a different data source) and create a single report. XDBC is a common interface |
1179 that saves programmers from having to learn multiple interfaces. Such applications are |
1180 generally not interoperable and are written to specific data sources.

1181 A number of tasks are common to all applications, no matter how they use XDBC. Taken
1182 together, they largely define the flow of any XDBC application. The tasks are:

1183 • Select a data source and connect to it.
1184 • Submit an SQL statement for execution.
1185 • Retrieve results (if any).
1186 • Process errors.
1187 • Commit or roll back the transaction enclosing the SQL statement.
1188 • Disconnect from the data source.

1189 Because the majority of data access work is done with SQL, the primary task for which |
1190 applications use XDBC is to submit SQL statements and retrieve the results (if any) generated by |
1191 those statements. Other tasks for which applications use XDBC include determining and |
1192 adjusting to capabilities of different data sources and browsing the database catalog. |

28 Direct Review (Build ID 96KAV) (Draft XDBC.33, August 1996)

XDBC Architecture Data Sources

1193 3.4 Data Sources |

1194 A data source is any source of the data an application manipulates with XDBC. The data can be in |
1195 files, in a hierarchy of tables, or any other information a computer can acquire. (The creation of |
1196 data sources is outside the scope of this specification.) |

1197 The purpose of a data source is to gather all of the technical information needed to access the |
1198 data — the network address, connection technology, and so on — into a single place and conceal |
1199 any technical details from the user. The user should be able to look at a list that includes Payroll, |
1200 Inventory, and Personnel, choose Payroll from the list, and have the application connect to the |
1201 payroll data, without having to know where the payroll data resides or how the application got |
1202 to it. |

1203 A data source can be file-based , in which each table (or perhaps each catalog) maps directly to a |
1204 file in the underlying operating system. The filename or pathname is part of the information |
1205 required to select the table. Alternatively, a data source can be SQL-based, in which case any |
1206 relationship between the database objects and actual files is not exposed to the application using |
1207 XDBC. |

1208 Data sources are stored on the system with a user-defined name. Associated with the data source |
1209 name is all of the information the implementation needs to connect to the data source. For a |
1210 file-based data source, this might include the full path of the directory containing the relevant |
1211 files and options that indicate how to use those files (such as single-user mode or read-only). For |
1212 an SQL-based data source, this might include a specification of the catalog and schema names. |
1213 (User identification and password are typically not part of the information associated with a |
1214 data source, but are obtained by interacting with the user.) |

1215 Later, the application passes the name of a data source to the implementation, which uses this |
1216 name to retrieve the necessary data. |

1217 Several other terms can be confused with data source. In this specification, database refers to a |
1218 database program or engine. A further distinction is made between desktop databases, designed to |
1219 run on personal computers and often lacking in full SQL and transaction support, and server |
1220 databases, designed to run in a client/server situation and characterized by a standalone database |
1221 engine and rich SQL and transaction support. |

1222 Database also refers to a particular collection of data, such as a collection of Xbase files in a |
1223 directory or a database on SQL Server. It’s generally equivalent to the term catalog , used |
1224 elsewhere in this specification. |

Data Management: X/Open Database Connectivity (XDBC), Version 2 29

Client and Server XDBC Architecture

1225 3.5 Client and Server |

1226 The operation of a database system effectively involves two processors, a client and a server. |
1227 The terms client and server in this document always mean SQL client and SQL server. The |
1228 SQLConnect() function manages the associations between a client and one or more servers. |

1229 When an application program is active, it is bound in an implementation-defined manner to a |
1230 single client that processes the first implicit or explicit SQLConnect() call. The client |
1231 communicates with one or more servers, manages connections to servers, maintains the |
1232 diagnostics area, and allocates data structures and handles. The server processes other XDBC |
1233 functions, including all operations on the database. Following these operations, diagnostic |
1234 information is passed (in an undefined way) into the diagnostics area of the client. |

1235 Metadata and Data |

1236 Each server provides a database, which consists of metadata and data. |

1237 • Metadata is the definitions of all active base tables, viewed tables, indexes, stored modules, |
1238 stored routines, privileges and user names. (An item of metadata is active if it has been |
1239 defined and has not subsequently been dropped.) |

1240 • Data comprises every value in every active table. |

1241 Schemata |

1242 A schema is a collection of related objects. A schema may contain base tables, and contains any |
1243 indexes that are defined on the base tables. Namespace issues and ownership of schemata are |
1244 discussed in the X/Open SQL specification. |

1245 Three-part Object Naming |

1246 A server may support catalogs, in which case every schema resides in a catalog. An application |
1247 can uniquely identify a table or index by qualifying the table or index identifier (preceding it |
1248 with its catalog and schema name). The use of catalog, schema, and object name is called three- |
1249 part naming. Periods separate the catalog, schema, and object name. |

1250 It is implementation-defined which of the following object naming systems is supported10 as |
1251 valid syntax for the qualifier: |

1252 • catalog-name.schema-name |

1253 • schema-name |

1254 On servers that support catalog names, there may be a catalog that does not have a name. |

1255 Certain XDBC catalog functions (see Chapter 7) return result sets whose TABLE_CAT column |
1256 indicates the catalog name of an object. For objects that do not have a catalog name, this column |
1257 contains a zero-length string, except that if the implementation does not support catalog names, |
1258 the column may instead be null. |

1259 The catalog-name and schema-name are each syntactically a user-defined-name. Other |
1260 implementation-defined object naming systems may also be supported. In all cases, use of |
1261 qualification is optional for the application program. |

1262 __________________ |
1263 10. An application can determine whether the server supports catalog names by obtaining the |||

SQL_CATALOG_NAME characteristic from a call to SQLGetInfo(). |||

30 Direct Review (Build ID 96KAV) (Draft XDBC.33, August 1996)

XDBC Architecture Client and Server

1264 (Some implementations impose other restrictions on qualification; see the X/Open SQL |
1265 specification.) |

Data Management: X/Open Database Connectivity (XDBC), Version 2 31

System Information XDBC Architecture

1266 3.6 System Information |

1267 It is implementation-defined how an XDBC installation stores initialization information, |
1268 installation preferences, default values, and any other information required to establish a |
1269 connection to a data source based on a data source name. This specification refers to such |
1270 information as the system information . |

1271 Depending on the method used to store the system information, there may be implementation- |
1272 defined restrictions on the characters that are valid for use in keywords in connection strings (see |
1273 SQLBrowseConnect() and SQLDriverConnect()). However, alphabetic and numeric characters are |
1274 always valid for use in these strings. |

32 Direct Review (Build ID 96KAV) (Draft XDBC.33, August 1996)

XDBC Architecture Tables and Views

1275 3.7 Tables and Views |

1276 XDBC functions apply equally to tables and views. The term table is used for both tables and |
1277 views, except where the term view is used explicitly. |

Data Management: X/Open Database Connectivity (XDBC), Version 2 33

XDBC Architecture |

34 Direct Review (Build ID 96KAV) (Draft XDBC.33, August 1996)

1278 Chapter 4 |

1279 Fundamentals |

1280 This chapter covers a number of concepts fundamental to writing XDBC applications: |

1281 • Handles |
1282 • Buffers |
1283 • Data types |
1284 • Environment, connection, and statement attributes |

Data Management: X/Open Database Connectivity (XDBC), Version 2 35

Handles Fundamentals

1285 4.1 Handles |

1286 Handles are opaque, 32-bit values that identify a particular item: an environment, connection, |
1287 statement, or descriptor. When the application calls SQLAllocHandle(), the implementation |
1288 creates a new item of the specified type and returns the handle to it to the application. The |
1289 application later uses the handle to identify that item when calling XDBC functions. The |
1290 implementation uses the handle to locate information about the item. The application calls |
1291 SQLFreeHandle() to free a handle. |

1292 The following example code uses two statement handles (hstmtOrder and hstmtLine) to identify |
1293 the statements on which to create result sets of sales orders and sales order line numbers. It later |
1294 uses these handles to identify which result set to fetch data from. |

1295 SQLHSTMT hstmtOrder, hstmtLine; // Statement handles. |
1296 SQLUINTEGER OrderID; |
1297 SQLINTEGER OrderIDInd = 0; |
1298 SQLRETURN rc; |

1299 // Prepare the statement that retrieves line number information. |
1300 SQLPrepare(hstmtLine, ’SELECT * FROM Lines WHERE OrderID = ?’, SQL_NTS); |

1301 // Bind OrderID to the parameter in the preceding statement. |
1302 SQLBindParameter(hstmtLine, 1, SQL_PARAM_INPUT, SQL_C_ULONG, SQL_INTEGER, |
1303 5, 0, &OrderID, 0, &OrderIDInd); |

1304 // Bind the result sets for the Order table and the Lines table. Bind |
1305 // OrderID to the OrderID column in the Orders table. When each row is |
1306 // fetched, OrderID will contain the current order ID, which will then |
1307 // be passed as a parameter to the statement to fetch line number |
1308 // information. Code not shown. |
1309 // Create a result set of sales orders. |
1310 SQLExecDirect(hstmtOrder, ’SELECT * FROM Orders’, SQL_NTS); |

1311 // Fetch and display the sales order data. Code to check if rc equals |
1312 // SQL_ERROR or SQL_SUCCESS_WITH_INFO not shown. |
1313 while ((rc = SQLFetch(hstmtOrder) != SQL_NO_DATA) { |

1314 // Display the sales order data. Code not shown. |

1315 // Create a result set of line numbers for the current sales order. |
1316 SQLExecute(hstmtLine); |

1317 // Fetch and display the sales order line number data. Code to check |
1318 // if rc equals SQL_ERROR or SQL_SUCCESS_WITH_INFO not shown. |
1319 while ((rc = SQLFetch(hstmtLine) != SQL_NO_DATA) { |

1320 // Display the sales order line number data. Code not shown. |

1321 } |
1322 // Close the sales order line number result set. |
1323 SQLCloseCursor(hstmtLine); |
1324 } |

1325 // Close the sales order result set. |
1326 SQLCloseCursor(hstmtOrder); |

1327 For example, suppose the implementation in the preceding example allocates a structure to store |
1328 information about a statement and returns the pointer to this structure as the statement handle. |
1329 When the application calls SQLPrepare(), it passes an SQL statement and the handle of the |
1330 statement used for sales order line numbers. The implementation sends the SQL statement to the |

36 Direct Review (Build ID 96KAV) (Draft XDBC.33, August 1996)

Fundamentals Handles

1331 data source, which prepares it and returns an access plan identifier. The implementation uses the |
1332 handle to find the structure in which to store this identifier. |

1333 Later, when the application calls SQLExecute() to generate the result set of line numbers for a |
1334 particular sales order, it passes the same handle. The implementation again uses the handle, this |
1335 time to retrieve the access plan identifier from the structure. It sends the identifier to the data |
1336 source to tell it which plan to execute. |

1337 4.1.1 Environment Handles |

1338 An environment is a global context in which to access data; associated with an environment is any |
1339 information that is global in nature, such as: |

1340 • The environment’s state |
1341 • The current environment-level diagnostics |
1342 • The handles of connections currently allocated on the environment |
1343 • The current settings of each environment attribute |

1344 Environment handles are allocated with SQLAllocHandle() and freed with SQLFreeHandle(). |
1345 They are always used in calls to SQLDataSources() and SQLDrivers() and sometimes used in calls |
1346 to SQLEndTran(), SQLGetDiagField(), and SQLGetDiagRec(). |

1347 Some implementations limit the number of active environments they support; the |
1348 SQL_ACTIVE_ENVIRONMENTS option in SQLGetInfo() specifies how many active |
1349 environments are supported. |

1350 Notes to Reviewers |
1351 This section with side shading will not appear in the final copy. - Ed. |

1352 Active environments and active connections need to be discussed. |

1353 4.1.2 Connection Handles |

1354 A connection comprises a data source and whatever connection technology is required to gain |
1355 access to it. A connection handle identifies each connection. The connection handle identifies a |
1356 structure that contains connection information, such as: |

1357 • The connection’s state |

1358 • The current connection-level diagnostics |

1359 • The handles of statements and descriptors currently allocated on the connection |

1360 • The current settings of each connection attribute |

1361 Connection handles are allocated with SQLAllocHandle() and freed with SQLFreeHandle(). |
1362 Connection handles are used primarily when connecting to the data source (SQLConnect(), |
1363 SQLDriverConnect(), or SQLBrowseConnect()), disconnecting from the data source |
1364 (SQLDisconnect()), getting information about the connection (SQLGetInfo()), retrieving |
1365 diagnostics (SQLGetDiagField() and SQLGetDiagRec()) and performing transactions |
1366 (SQLEndTran()). They are also used when setting and getting connection attributes |
1367 (SQLSetConnectAttr() and SQLGetConnectAttr()) and when getting the native format of an SQL |
1368 statement (SQLNativeSql()). |

1369 Some implementations limit the number of active connections they support; the |
1370 SQL_MAX_DRIVER_CONNECTIONS option in SQLGetInfo() specifies how many active |
1371 connections are supported. |

Data Management: X/Open Database Connectivity (XDBC), Version 2 37

Statement Handles Fundamentals

1372 4.1.3 Statement Handles |

1373 A statement is most easily thought of as an SQL statement, such as SELECT * FROM Employee. |
1374 However, a statement is more than just an SQL statement — it consists of all the information |
1375 associated with that SQL statement, such as any result sets created by the statement and |
1376 parameters used in the execution of the statement. The application does not always define an |
1377 SQL statement. For example, a catalog function such as SQLTables() conceptually executes a |
1378 predefined SQL statement that returns a list of table names. |

1379 Each statement is identified by a statement handle. A statement is associated with a single |
1380 connection, and there can be multiple statements on that connection. Some implementations |
1381 limit the number of active statements they support; the |
1382 SQL_MAX_CONCURRENT_ACTIVITIES option in SQLGetInfo() specifies how many active |
1383 statements are supported on a specified connection. A statement is defined to be active if it has |
1384 results pending, where results are either a result set or the count of rows affected by an INSERT, |
1385 UPDATE,or DELETE statement, or data is being sent with multiple calls to SQLPutData(). |

1386 The statement handle identifies a structure that contains statement information, such as: |

1387 • The statement’s state |

1388 • The current statement-level diagnostics |

1389 • The addresses of the application variables bound to the statement’s parameters and result set |
1390 columns |

1391 • The current settings of each statement attribute. |

1392 Statement handles are allocated with SQLAllocHandle() and freed with SQLFreeHandle(). |
1393 Statement handles are used in the functions to bind parameters and result set columns |
1394 (SQLBindParameter() and SQLBindCol()), prepare and execute statements (SQLPrepare(), |
1395 SQLExecute(), and SQLExecDirect()), retrieve metadata (SQLColAttribute() and SQLDescribeCol()), |
1396 fetch results (SQLFetch()), and retrieve diagnostics (SQLGetDiagField() and SQLGetDiagRec()). |
1397 They are also used in catalog functions (SQLColumns(), SQLTables(), and so on) and a number of |
1398 other functions. |

1399 4.1.4 Descriptor Handles |

1400 Descriptors (see Chapter 13) are data structures that holds information about either column data |
1401 or dynamic parameters. Applications use handles to refer to descriptors. |

38 Direct Review (Build ID 96KAV) (Draft XDBC.33, August 1996)

Fundamentals State Transitions

1402 4.2 State Transitions |

1403 XDBC defines discrete states for each environment, connection, and statement. For example, the |
1404 environment can be in the unallocated, allocated, and connected state. |

1405 Such an item, as identified by its handle, changes state (makes a state transition) when the |
1406 application calls a certain function and passes that handle. For example, allocating an |
1407 environment handle with SQLAllocHandle() changes its state from unallocated to allocated. |
1408 XDBC defines legal state transitions, which requires that XDBC functions be called in a certain |
1409 sequence. Some functions do not affect an item’s state. Some functions affect the state of more |
1410 than one item; for example, allocating a connection handle with SQLAllocHandle() affects the |
1411 state of the connection and also changes the state of the environment to connected. |

1412 Some functions cannot be called except when an item is in a specified state. If an application |
1413 calls a function out of order, the function returns a state transition error, denoted by a SQLSTATE |
1414 of HY010 (Function sequence error). For example, if an environment is in the connected state |
1415 and the application calls SQLFreeHandle() with that environment handle, SQLFreeHandle() |
1416 returns a state transition error, because it can be called only when the environment is in the |
1417 allocated state. By defining this as an invalid state transition, XDBC prevents the application |
1418 from freeing the environment while there are active connections. |

1419 Some state transitions are intuitively obvious considering the design of XDBC. For example, |
1420 SQLExecute() executes a prepared statement. If the statement handle passed to it isn’t in the |
1421 prepared state, SQLExecute() returns a state transition error. Well-written applications whose |
1422 sequence of calls to XDBC is logical in all cases do not encounter state transition errors. |

1423 Some logic errors are not state transition errors. For example, one can’t allocate a connection |
1424 handle without first allocating an environment handle, because the function that allocates a |
1425 connection handle requires an environment handle. Calling SQLAllocHandle() in this case cannot |
1426 be a state transition error of the environment, because there is no environment. Instead, the |
1427 application must have passed SQLAllocHandle() an erroneous item as the environment handle. |

1428 Logic errors based not just on sequence of function calls but on use of other XDBC data |
1429 structures are not included in state transition errors. For example, an XDBC function called in an |
1430 inappropriate sequence based on the state of a cursor instead sets SQLSTATE to 24000 (Invalid |
1431 cursor state). |

1432 This specification tends not to explicitly mention state transitions. Instead, it describes the order |
1433 in which functions must be called. For a complete description of states and state transitions, see |
1434 Appendix B. |

Data Management: X/Open Database Connectivity (XDBC), Version 2 39

Buffers Fundamentals

1435 4.3 Buffers |

1436 A buffer is any piece of application memory used to pass data between the application and the |
1437 implementation. For example, application buffers can be associated with, or bound to, result set |
1438 columns with SQLBindCol(). As each row is fetched, the data is returned for each column in |
1439 these buffers. Input buffers are used to pass data from the application to the implementation; |
1440 output buffers are used to return data from the implementation to the application. |

1441 This discussion concerns itself primarily with buffers of indeterminate type. The addresses of |
1442 these buffers appear as arguments of type SQLPOINTER, such as the TargetValuePtrargument in |
1443 SQLBindCol(). However, some of the items discussed here, such as the arguments used with |
1444 buffers, also apply to arguments used to pass strings to the implementation, such as the |
1445 TableName argument in SQLTables(). |

1446 These buffers generally come in pairs. Data buffers are used to pass the data itself, while |
1447 length/indicator buffers are used to pass the length of the data in the data buffer or a special value |
1448 such as SQL_NULL_DATA, which indicates that the data is NULL. The length of the data in a |
1449 data buffer is different from the length of the data buffer itself. |

1450 A length/indicator buffer is required any time the data buffer contains variable-length data, such |
1451 as character or binary data. If the data buffer contains fixed-length data, such as an integer or |
1452 date structure, a length/indicator buffer is needed only to pass indicator values because the |
1453 length of the data is already known. If an application uses a length/indicator buffer with fixed- |
1454 length data, the implementation ignores any lengths passed in it. |

1455 The length of both the data buffer and the data it contains is measured in octets as opposed to |
1456 characters. For programs that use character sets in which each character occupies a single octet, |
1457 lengths in octets and characters are the same. However, applications should be coded to |
1458 preserve the distinction in order to be adaptable to other code sets for which there is not a one- |
1459 to-one correspondence between octets and characters. |

1460 SQL_IS_POINTER |

1461 The XDBC implementation can determine how to treat values of descriptor fields, diagnostic |
1462 fields, and attributes in one of the following ways: |

1463 • For fields and attributes defined in XDBC, XDBC specifies the data type. |

1464 • If the length buffer contains a value greater than zero, the value is a string. |

1465 If neither is true — that is, when gaining access to values of a fixed-length descriptor field, |
1466 diagnostic field, or attribute that is not defined by XDBC — the application must inform the |
1467 XDBC implementation whether to interpret the contents of the data buffer as an actual value or |
1468 as a pointer. The application places one of the following constants in the length buffer: |

1469 SQL_IS_POINTER |
1470 The data buffer contains a pointer to data whose length is fixed. |

1471 SQL_IS_NOT_POINTER |
1472 The data buffer contains not a pointer but an actual data value. |

1473 These values indicate only whether the data buffer11 is a pointer or not; in the case of |

1474 __________________ |
1475 11. The data buffer is an argument of the XDBC ‘‘Set’’ function that sets the value, and is |||

pointed to by an argument of the XDBC ‘‘Get’’ function that retrieves the value. The |||
1476 argument of the Get function is an output argument and thus a pointer, but this is not what |||

SQL_IS_POINTER refers to. |||

40 Direct Review (Build ID 96KAV) (Draft XDBC.33, August 1996)

Fundamentals Buffers

1477 SQL_IS_POINTER, there is nothing in the XDBC interface to indicate the data type of the thing |
1478 pointed to. |

1479 4.3.1 Deferred Buffers |

1480 A deferred buffer is one whose value is used not at the time it is specified in a function call but at a |
1481 later point in time. For example, SQLBindParameter() is used to associate, or bind, a data buffer |
1482 with a parameter in an SQL statement. The application specifies the number of the parameter |
1483 and passes the address, octet length, and type of the buffer. The implementation saves this |
1484 information but doesn’t examine the contents of the buffer. Later, when the application executes |
1485 the statement, the implementation retrieves the information and uses it to retrieve the parameter |
1486 data and send it to the data source. Thus, the input of data in the buffer is deferred. Because |
1487 deferred buffers are specified in one function and used in another, it is an application |
1488 programming error to free a deferred buffer while the implementation still expects it to exist; for |
1489 more information, see Section 4.3.2 on page 39. |

1490 Both input and output buffers can be deferred. The following table summarizes the uses of |
1491 deferred buffers. Note that deferred buffers bound to result set columns are specified with |
1492 SQLBindCol() and deferred buffers bound to SQL statement parameters are specified with |
1493 SQLBindParameter(). |

1494 Buffer use Type Specified with Used by ||
1495 Sending data for input Deferred SQLBindParameter() SQLExecute() |
1496 parameters input SQLExecDirect() |

1497 Sending data to update or Deferred SQLBindCol() SQLSetPos() |
1498 insert a row in a result set |

1499 Returning data for output and Deferred SQLBindParameter() SQLExecute() |
1500 input/output parameters output SQLExecDirect() |

1501 Returning result set data Deferred SQLBindCol() SQLFetch() |
1502 output SQLFetchScroll() |
1503 SQLSetPos() |

1504 4.3.2 Allocating and Freeing Buffers |

1505 All buffers are allocated and freed by the application. If a buffer isn’t deferred, it need only exist |
1506 for the duration of the call to a function. For example, SQLGetInfo() returns the value associated |
1507 with a particular option in the buffer pointed to by the InfoValuePtr argument. This buffer can be |
1508 freed immediately after the call to SQLGetInfo(), as shown in the following code example: |

1509 SQLSMALLINT InfoValueLen; |
1510 SQLCHAR *InfoValuePtr = malloc(50); // Allocate InfoValuePtr. |
1511 SQLGetInfo(hdbc, SQL_DBMS_NAME, (SQLPOINTER)InfoValuePtr, |
1512 sizeof(InfoValuePtr), &InfoValueLen); |
1513 free(InfoValuePtr); // OK to free InfoValuePtr. |

1514 Because deferred buffers are specified in one function and used in another, it is an application |
1515 programming error to free a deferred buffer while the implementation still expects it to exist. |
1516 For example, the address of the *ValuePtr buffer is passed to SQLBindCol() for later use by |
1517 SQLFetch(). This buffer cannot be freed until the column is unbound, such as with a call to |
1518 SQLBindCol() or SQLFreeStmt() as shown in the following code example: |

1519 SQLRETURN rc; |
1520 SQLINTEGER ValueLenOrInd; |

Data Management: X/Open Database Connectivity (XDBC), Version 2 41

Allocating and Freeing Buffers Fundamentals

1521 // Allocate ValuePtr |
1522 SQLCHAR *ValuePtr = malloc(50); |

1523 // Bind ValuePtr to column 1. It is an error to free ValuePtr here. |
1524 SQLBindCol(hstmt, 1, SQL_C_CHAR, ValuePtr, sizeof(ValuePtr), |
1525 &ValueLenOrInd); |

1526 // Fetch each row of data and place the value for column 1 in |
1527 // *ValuePtr. Code to check if rc equals SQL_ERROR or |
1528 // SQL_SUCCESS_WITH_INFO not shown. |
1529 while ((rc = SQLFetch(hstmt)) != SQL_NO_DATA) { |

1530 // It is an error to free ValuePtr here. |
1531 } |

1532 // Unbind ValuePtr from column 1. It is now OK to free ValuePtr. |
1533 SQLFreeStmt(hstmt, SQL_UNBIND); |
1534 free(ValuePtr); |

1535 Such an error is easily made by declaring the buffer locally in a function; the buffer is freed when |
1536 the application leaves the function. For example, the following code causes undefined and |
1537 probably fatal behavior in the implementation: |

1538 SQLRETURN rc; |
1539 BindAColumn(hstmt); |
1540 // Fetch each row of data and try to place the value for column 1 |
1541 // in *ValuePtr. Because ValuePtr has been freed, the behavior is |
1542 // undefined and probably fatal. Code to check if rc equals |
1543 // SQL_ERROR or SQL_SUCCESS_WITH_INFO not shown. |
1544 while ((rc = SQLFetch(hstmt)) != SQL_NO_DATA) {} |
1545 . |
1546 . |
1547 . |
1548 void BindAColumn(SQLHSTMT hstmt) // WARNING! This function won’t work! |
1549 { |
1550 // Declare ValuePtr locally. |
1551 SQLCHAR ValuePtr[50]; |
1552 SQLINTEGER ValueLenOrInd; |
1553 // Bind rgbValue to column. |
1554 SQLBindCol(hstmt, 1, SQL_C_CHAR, ValuePtr, sizeof(ValuePtr), |
1555 &ValueLenOrInd); |
1556 // ValuePtr is freed when BindAColumn exits. |
1557 } |

1558 4.3.3 Using Data Buffers |

1559 Data buffers are described by three pieces of information: their type, address, and octet length. |
1560 Whenever a function needs one of these pieces of information and doesn’t already know it, it has |
1561 an argument with which the application passes it. |

42 Direct Review (Build ID 96KAV) (Draft XDBC.33, August 1996)

Fundamentals Data Buffer Type

1562 4.3.4 Data Buffer Type |

1563 The C data type of a buffer is specified by the application. In the case of a single variable, this |
1564 occurs when the application allocates the variable. In the case of generic memory — that is, |
1565 memory pointed to by a pointer of type void * — this occurs when the application casts the |
1566 memory to a particular type. There are two ways in which the implementation discovers this |
1567 type: |

1568 • Data buffer type argument |

1569 Buffers used to transfer parameter values and result set data, such as the buffer bound with |
1570 TargetValuePtr in SQLBindCol(), usually have an associated type argument, such as the |
1571 TargetType argument in SQLBindCol(). In this argument, the application passes the C type |
1572 identifier corresponding to the type of the buffer. For example, in the following call to |
1573 SQLBindCol(), the value SQL_C_TYPE_DATE tells the implementation that the Date buffer is |
1574 a SQL_DATE_STRUCT. |

1575 SQL_DATE_STRUCT Date; |
1576 SQLINTEGER DateInd; |
1577 SQLBindCol(hstmt, 1, SQL_C_TYPE_DATE, &Date, 0, &DateInd); |

1578 For more information on type identifiers, see Section 4.4 on page 46. |

1579 • Predefined type |

1580 Buffers used to send and retrieve options or attributes, such as the buffer pointed to by the |
1581 InfoValuePtr argument in SQLGetInfo(), have a fixed type that depends on the option |
1582 specified. The implementation assumes that the data buffer is of this type; it is the |
1583 application’s responsibility to allocate a buffer of this type. For example, in the following call |
1584 to SQLGetInfo(), the implementation assumes the buffer is a 32-bit integer because this is |
1585 what the SQL_STRING_FUNCTIONS option requires: |

1586 SQLUINTEGER StringFuncs; |
1587 SQLGetInfo(hdbc, SQL_STRING_FUNCTIONS, (SQLPOINTER) |
1588 &StringFuncs, 0, NULL); |

1589 The implementation uses the C data type to interpret the data in the buffer. |

1590 Data Buffer Address |

1591 The application passes the address of the data buffer to the implementation in an argument with |
1592 a name such as ValuePtr. For example, in the following call to SQLBindCol(), the application |
1593 specifies the address of the Date variable. |

1594 SQL_DATE_STRUCT Date; |
1595 SQLINTEGER DateInd; |
1596 SQLBindCol(hstmt, 1, SQL_C_TYPE_DATE, &dsDate, 0, &DateInd); |

1597 As mentioned in Section 4.3.2 on page 39, the address of a deferred buffer must remain valid |
1598 until the buffer is unbound. |

1599 Unless it is specifically prohibited, the address of a data buffer can be a null pointer. For buffers |
1600 used to send data to the implementation, this makes the implementation ignore the information |
1601 normally contained in the buffer. For buffers used to retrieve data from the implementation, this |
1602 inhibits the implementation from returning a value. In both cases, the implementation ignores |
1603 the corresponding data buffer length argument. |

Data Management: X/Open Database Connectivity (XDBC), Version 2 43

Data Buffer Type Fundamentals

1604 Data Buffer Length |

1605 The application passes the octet length of the data buffer to the implementation in an argument |
1606 with a name such as BufferLength. For example, in the following call to SQLBindCol(), the |
1607 application specifies the length of the *ValuePtr buffer (sizeof(ValuePtr)). |

1608 SQLCHAR *ValuePtr[50]; |
1609 SQLINTEGER ValueLenOrInd; |
1610 SQLBindCol(hstmt, 1, SQL_C_CHAR, ValuePtr, sizeof(ValuePtr), |
1611 &ValueLenOrInd); |

1612 Data buffer lengths are required only for output buffers; the implementation uses them to avoid |
1613 writing past the end of the buffer. However, the implementation checks the data buffer length |
1614 only when the buffer contains variable-length data, such as character or binary data. If the buffer |
1615 contains fixed-length data, such as an integer or date structure, the implementation ignores the |
1616 data buffer length and assumes the buffer is large enough to hold the data; that is, it never |
1617 truncates fixed-length data. It is therefore important for the application to allocate a large |
1618 enough buffer for fixed-length data. |

1619 Data buffer lengths aren’t required for input buffers because the implementation doesn’t write to |
1620 these buffers. |

1621 4.3.5 Using Length/Indicator Values |

1622 The length/indicator buffer is used to pass the octet length of the data in the data buffer or a |
1623 special indicator such as SQL_NULL_DATA,which indicates that the data is NULL. Depending |
1624 on the function in which it is used, a length/indicator buffer is defined to be an SQLINTEGER or |
1625 an SQLSMALLINT. Therefore, a single argument is needed to describe it. If the data buffer is a |
1626 non-deferred input buffer, this argument contains the octet length of the data itself or an |
1627 indicator value. It is often named StrLen_or_Ind or a similar name. For example, the following |
1628 code calls SQLPutData() to pass a buffer full of data; the octet length (ValueLen) is passed directly |
1629 because the data buffer (ValuePtr) is an input buffer. |

1630 SQLCHAR ValuePtr[50]; |
1631 SQLINTEGER ValueLen; |

1632 // Call local function to place data in ValuePtr. In ValueLen, |
1633 // return the number of octets of data placed in ValuePtr. If there |
1634 // is not enough data, this will be less than 50. |
1635 FillBuffer(ValuePtr, sizeof(ValuePtr), &ValueLen); |

1636 // Call SQLPutData to send the data. |
1637 SQLPutData(hstmt, ValuePtr, ValueLen); |

1638 If the data buffer is a deferred input buffer, a non-deferred output buffer, or an output buffer, the |
1639 argument contains the address of the length/indicator buffer. It is often named StrLen_or_IndPtr |
1640 or a similar name. For example, the following code calls SQLGetData() to retrieve a buffer full of |
1641 data; the octet length is returned to the application in the length/indicator buffer |
1642 (ValueLenOrInd), whose address is passed to SQLGetData() because the corresponding data |
1643 buffer (ValuePtr) is a non-deferred output buffer. |

1644 SQLCHAR ValuePtr[50]; |
1645 SQLINTEGER ValueLenOrInd; |
1646 SQLGetData(hstmt, 1, SQL_C_CHAR, ValuePtr, sizeof(ValuePtr), |
1647 &ValueLenOrInd); |

1648 Unless it is specifically prohibited, a length/indicator buffer argument can be 0 (if non-deferred |
1649 input) or a null pointer (if output or deferred input). For input buffers, this causes the |
1650 implementation to ignore the octet length of the data. This is an error when passing variable- |

44 Direct Review (Build ID 96KAV) (Draft XDBC.33, August 1996)

Fundamentals Using Length/Indicator Values

1651 length data but is common when passing non-null fixed-length data, as neither a length nor an |
1652 indicator value is needed. For output buffers, this causes the implementation to not return the |
1653 octet length of the data or an indicator value. This is an error if the data returned by the |
1654 implementation is NULL but is common when retrieving fixed-length, non-nullable data as |
1655 neither a length nor an indicator value is needed. |

1656 As with the address of a deferred data buffer, the address of a deferred length/indicator buffer |
1657 must remain valid until the buffer is unbound. |

1658 The following lengths are valid as length/indicator values: |

1659 • A length greater than 0. |

1660 • 0. |

1661 • SQL_NTS. A string sent to the implementation in the corresponding data buffer is null |
1662 terminated; this is a convenient way for C programmers to pass strings without having to |
1663 calculate their octet length. This value is legal only when the application sends data to the |
1664 implementation. When the implementation returns data to the application, it always returns |
1665 the actual octet length of the data. |

1666 The following special length/indicator value can appear in the INDICATOR_PTR field: |

1667 • SQL_NULL_DATA.The data is a NULL data value and the value in the corresponding data |
1668 buffer is ignored. This value is legal only for SQL data sent to or retrieved from the |
1669 implementation. |

1670 The following special length/indicator values can appear in the OCTET_LENGTH_PTR field: |

1671 • SQL_DATA_AT_EXEC.The data buffer doesn’t contain any data. Instead, the data will be |
1672 sent with SQLPutData() when the statement is executed or SQLBulkOperations() or |
1673 SQLSetPos() is called. This value is legal only for SQL data sent to the implementation. For |
1674 more information, see SQLBindParameter() and SQLSetPos(). |

1675 • Result of the SQL_LEN_DATA_AT_EXEC(length) macro. This value is similar to |
1676 SQL_DATA_AT_EXEC.For more information, see Section 9.4.3 on page 105. |

1677 • SQL_NO_TOTAL. The implementation cannot determine the number of octets of long data |
1678 still available to return in an output buffer. This value is legal only for SQL data retrieved |
1679 from the implementation. |

1680 • SQL_DEFAULT_PARAM.A procedure is to use the default value of an input parameter in a |
1681 procedure instead of the value in the corresponding data buffer. |

1682 • SQL_IGNORE. The value in the data buffer should be ignored. When SQLSetPos() updates a |
1683 row of data, the column value isn’t changed. When SQLBulkOperations() or SQLSetPos() |
1684 inserts a new row of data, the column value is set to its default or, if the column doesn’t have |
1685 a default, to NULL. |

1686 4.3.6 Data Length, Buffer Length, and Truncation |

1687 The data length is the octet length of the data as it would be stored in the application’s data |
1688 buffer, not as it is stored in the data source. This distinction is important because the data is often |
1689 stored in different types in the data buffer and in the data source. Thus, for data being sent to the |
1690 data source, this is the octet length of the data before conversion to the data source’s type. For |
1691 data being retrieved from the data source, this is the octet length of the data after conversion to |
1692 the data buffer’s type and before any truncation is done. |

1693 For fixed-length data, such as an integer or a date structure, the octet length of the data is always |
1694 the size of the data type. In general, applications allocate a data buffer that is the size of the data |
1695 type. If the application allocates a smaller buffer, the consequences are undefined as the |

Data Management: X/Open Database Connectivity (XDBC), Version 2 45

Data Length, Buffer Length, and Truncation Fundamentals

1696 implementation assumes the data buffer is the size of the data type and doesn’t truncate the data |
1697 to fit into a smaller buffer. If the application allocates a larger buffer, the extra space is never |
1698 used. |

1699 For variable-length data, such as character or binary data, it is important to recognize that the |
1700 octet length of the data is separate from and often different from the octet length of the buffer. If |
1701 the octet length of the data is greater than the octet length of the buffer, the implementation |
1702 truncates data being fetched to the octet length of the buffer and returns |
1703 SQL_SUCCESS_WITH_INFO with SQLSTATE 01004 (Data truncated). However, the returned |
1704 octet length is the length of the untruncated data. |

1705 For example, suppose an application allocates 50 octets for a binary data buffer. If the |
1706 implementation has 10 octets of binary data to return, it returns those 10 octets in the buffer. The |
1707 octet length of the data is 10 and the octet length of the buffer is 50. If the implementation has 60 |
1708 octets of binary data to return, it truncates the data to 50 octets, returns those octets in the buffer |
1709 and returns SQL_SUCCESS_WITH_INFO. The octet length of the data is 60 (the length before |
1710 truncation) and the octet length of the buffer is still 50. |

1711 A diagnostic record is created for each column that is truncated. Because it takes time for the |
1712 implementation to create these records and for the application to process them, truncation can |
1713 degrade performance. Usually, an application can avoid this problem by allocating large enough |
1714 buffers, although this might not be possible when working with long data. When data truncation |
1715 occurs, the application can sometimes allocate a larger buffer and refetch the data; this isn’t true |
1716 in all cases. |

1717 4.3.7 Character Data and C Strings |

1718 Null Termination |

1719 Input parameters that reference variable-length character data (such as column names, dynamic |
1720 parameters and string attribute values) have an associated length parameter. If the application |
1721 terminates strings with the null character, as is typical in C, then it provides as an argument |
1722 either the length in octets of the string (not including the null terminator) or SQL_NTS (Null- |
1723 terminated String). |

1724 Thus, a non-negative length argument specifies the actual length of the associated string. The |
1725 length argument may be 0 to specify a zero-length string, which is distinct from a null value. The |
1726 negative value SQL_NTS directs the implementation to determine the length of the string by |
1727 locating the null terminator. |

1728 Because character data can be held in a non-null-terminated array and its octet length passed |
1729 separately, it is possible to embed null characters in character data. However, the behavior of |
1730 XDBC functions in this case is undefined. Thus, portable applications should always handle |
1731 character data that can contain embedded null characters as binary data. |

1732 When character data is passed from the application to the implementation, the application can |
1733 null-terminate it; this is required only when the application passes SQL_NTS instead of the |
1734 actual octet length of the data in the length/indicator buffer. If the data source does not use null |
1735 termination, the implementation strips any null terminator from the end of the string before |
1736 sending it to the data source. |

1737 When character data is returned from the implementation to the application, the implementation |
1738 must always null terminate it. This gives the application the choice of whether to handle the data |
1739 as a string or a character array. If the application buffer isn’t large enough to return all of the |
1740 character data, the implementation truncates it to the octet length of the buffer less the number |
1741 of octets required by the null terminator, null-terminates the truncated data, and stores it in the |
1742 buffer. Thus, applications must always allocate extra space for the null terminator in buffers |

46 Direct Review (Build ID 96KAV) (Draft XDBC.33, August 1996)

Fundamentals Character Data and C Strings

1743 used to retrieve character data. For example (assuming a single-octet character set), a 51-octet |
1744 buffer is needed to retrieve 50 characters of data. |

1745 Special care must be taken by both the application and implementation when sending or |
1746 retrieving long character data in parts with SQLPutData() or SQLGetData(). If the data is passed |
1747 as a series of null-terminated strings, the null terminator on these strings must be stripped before |
1748 the data can be reassembled. |

1749 C Language |

1750 When C strings are used to hold character data, the null terminator isn’t considered to be part of |
1751 the data and isn’t counted as part of its octet length. For example, the character data ’ABC’ can be |
1752 held as the C string ’ABC\0’ or the character array {’A’, ’B’, ’C’}. The octet length of the data is |
1753 three regardless of whether it is treated as a string or a character array. |

1754 Although applications and implementations commonly use C strings (null-terminated arrays of |
1755 characters) to hold character data, there is no requirement to do this. In C, character data can also |
1756 be treated as an array of characters (without null termination) and its octet length passed |
1757 separately in the length/indicator buffer. |

Data Management: X/Open Database Connectivity (XDBC), Version 2 47

Data Types in XDBC Fundamentals

1758 4.4 Data Types in XDBC |

1759 XDBC provides for two varieties of data types: |

1760 • SQL data types describe how values are represented at the data source. |

1761 • C data types describe how values are represented in application variables, using the C |
1762 language as a model. |

1763 4.4.1 Type Identifiers |

1764 To describe SQL and C data types, XDBC defines two sets of type identifiers. A type identifier |
1765 describes the type of an SQL column or a C buffer. It is a #define value and is generally passed |
1766 as a function argument or returned in metadata. For example, the following call to |
1767 SQLBindParameter() binds a variable of type SQL_DATE_STRUCT to a date parameter in an SQL |
1768 statement. The C type identifier SQL_C_TYPE_DATE specifies the type of the Date variable and |
1769 the SQL type identifier SQL_TYPE_DATE specifies the type of the dynamic parameter. |

1770 SQL_DATE_STRUCT Date; |
1771 SQLINTEGER DateInd = 0; |
1772 SQLBindParameter(hstmt, 1, SQL_PARAM_INPUT, SQL_C_TYPE_DATE, |
1773 SQL_TYPE_DATE, 0, 0, &Date, 0, &DateInd); |

1774 4.4.2 SQL Data Types in XDBC |

1775 SQL data types are the types in which data is stored in the data source. |

1776 SQL Type Identifiers |

1777 Each data source defines its own SQL data types. XDBC defines SQL type identifiers and |
1778 describes the general characteristics of the SQL data types that might be mapped to each type |
1779 identifier. It is implementation-defined how each data type in the underlying data source maps |
1780 to an SQL type identifier of XDBC. |

1781 For example, SQL_CHAR is the type identifier for a character column with a fixed length, |
1782 typically between 1 and 254 characters. These characteristics correspond to the CHAR data type |
1783 found in many SQL data sources. Thus, when an application discovers that the type identifier for |
1784 a column is SQL_CHAR, it can assume it is probably dealing with a CHAR column. However, it |
1785 should still check the octet length of the column before assuming it is between 1 and 254 |
1786 characters; the implementation for a non-SQL data source, for example, might map a fixed- |
1787 length character column of 500 characters to SQL_CHAR or SQL_LONGVARCHAR, since |
1788 neither is an exact match. |

1789 XDBC defines a wide variety of SQL type identifiers. However, the implementation isn’t |
1790 required to use all of these identifiers. Instead, it only uses those identifiers it needs to expose the |
1791 SQL data types supported by the underlying data source. If the underlying data source supports |
1792 SQL data types to which no type identifier corresponds, the implementation can define |
1793 additional type identifiers. |

1794 For a complete description of SQL type identifiers, see Appendix D. |

48 Direct Review (Build ID 96KAV) (Draft XDBC.33, August 1996)

Fundamentals SQL Data Types in XDBC

1795 Retrieving Data Type Information with SQLGetTypeInfo() |

1796 Because the mappings from underlying SQL data types to XDBC type identifiers are |
1797 approximate, XDBC provides a function (SQLGetTypeInfo()) through which a implementation |
1798 can completely describe each SQL data type in the data source. This function returns a result set, |
1799 each row of which describes the characteristics of a single data type, such as name, type |
1800 identifier, precision, scale, and nullability. |

1801 This information is generally used by generic applications that allow the user to create and alter |
1802 tables. Such applications call SQLGetTypeInfo() to retrieve the data type information and then |
1803 present some or all of it to the user. Such applications need to be aware of two things: |

1804 • More than one SQL data type can map to a single type identifier, which can make it difficult |
1805 to determine which data type to use. To solve this, the result set is ordered first by type |
1806 identifier and second by closeness to the type identifier’s definition. In addition, data source- |
1807 defined data types take precedence over user-defined data types. For example, suppose that a |
1808 data source defines the INTEGER and COUNTER data types to be the same except that |
1809 COUNTER is auto-incrementing. Suppose also that the user-defined type WHOLENUM is a |
1810 synonym of INTEGER. Each of these types maps to SQL_INTEGER. In the SQLGetTypeInfo() |
1811 result set, INTEGER appears first, followed by WHOLENUM and then COUNTER. |
1812 WHOLENUM appears after INTEGER because it is user-defined but before COUNTER |
1813 because it more closely matches the definition of the SQL_INTEGER type identifier. |

1814 • XDBC doesn’t define data type names for use in CREATE TABLE and ALTER TABLE |
1815 statements, since the names of SQL data types vary (more widely than other aspects of SQL). |
1816 Instead, the application should use the name returned in the TYPE_NAME column of the |
1817 result set returned by SQLGetTypeInfo(). Rather than forcing implementations to parse SQL |
1818 statements and replace standard data type names with data-source-specific data type names, |
1819 XDBC requires applications to use the data-source-specific names in the first place. |

1820 SQLGetTypeInfo() doesn’t necessarily describe all data types an application can encounter. In |
1821 particular, result sets might contain data types not directly supported by the data source. For |
1822 example, the data types of the columns in result sets returned by catalog functions are defined |
1823 by XDBC and these data types might not be supported by the data source. To determine the |
1824 characteristics of the data types in a result set, an application calls SQLColAttribute(). |

1825 4.4.3 C Data Types in XDBC |

1826 XDBC defines the C data types that are used by application variables and their corresponding |
1827 type identifiers. Among other things, these are used by the buffers that are bound to result set |
1828 columns and statement parameters. For example, suppose an application wants to retrieve data |
1829 from a result set column in character format. It declares a variable with the SQLCHAR * data |
1830 type and binds this variable to the result set column with a type identifier of SQL_C_CHAR. For |
1831 a complete list of C data types and type identifiers, see Appendix D. |

1832 XDBC also defines a default mapping from each SQL data type to a C data type. For example, a |
1833 2-octet integer in the data source is mapped to a 2-octet integer in the application. To use the |
1834 default mapping, an application specifies the SQL_C_DEFAULT type identifier. However, use of |
1835 this identifier is discouraged for interoperability reasons. |

Data Management: X/Open Database Connectivity (XDBC), Version 2 49

Data Type Conversions Fundamentals

1836 4.4.4 Data Type Conversions |

1837 Data can be converted from one type to another at one of four times: when data is transferred |
1838 from one application variable to another (C to C), when data in an application variable is sent to |
1839 a statement parameter (C to SQL), when data in a result set column is returned in an application |
1840 variable (SQL to C), and when data is transferred from one data source column to another (SQL |
1841 to SQL). |

1842 Any conversion that occurs when data is transferred from one application variable to another is |
1843 outside the scope of this specification. |

1844 When an application binds a variable to a result set column or statement parameter, it implicitly |
1845 specifies a data type conversion in its choice of the data type of the application variable. For |
1846 example, suppose a column contains integer data. If the application binds an integer variable to |
1847 the column, it specifies that no conversion be done; if it binds a character variable to the column, |
1848 it specifies that the data be converted from integer to character. |

1849 XDBC defines how data is converted between each SQL and C data type. Basically, it supports |
1850 all reasonable conversions, such as character to integer and integer to float, and doesn’t support |
1851 ill-defined conversions, such as float to date. Implementations are required to support all |
1852 conversions for each SQL data type they support. For a complete list of conversions from SQL to |
1853 C data types, see Section D.6 on page 576. For a complete list of conversions from C to SQL data |
1854 types, see Section D.7 on page 587. |

1855 The following functions convert data at the data source from one SQL data type to another: |

1856 • The CAST function defined in the X/Open SQL specification. |

1857 • The CONVERT scalar function defined in Section F.5 on page 609. An escape sequence by |
1858 which portable applications can invoke CONVERT is described in Section 8.3.3 on page 86. |

1859 An XDBC implementation maps the CONVERT scalar function to the underlying scalar |
1860 function or functions defined to perform conversions in the data source. Because it is |
1861 mapped to data-source-specific functions, XDBC doesn’t define how these conversions work |
1862 or what conversions must be supported. |

50 Direct Review (Build ID 96KAV) (Draft XDBC.33, August 1996)

Fundamentals Environment, Connection, and Statement Attributes

1863 4.5 Environment, Connection, and Statement Attributes |

1864 A number of attributes are associated with the environment, connection, or statement. |

1865 Environment attributes affect the entire environment, such as whether strings can be null- |
1866 terminated. Environment attributes are set with SQLSetEnvAttr() and retrieved with |
1867 SQLGetEnvAttr(). |

1868 Connection attributes affect each connection individually, such as how long an implementation |
1869 should wait while attempting to connect to a data source before timing out. Connection |
1870 attributes are set with SQLSetConnectAttr() and retrieved with SQLGetConnectAttr(). Connection |
1871 attributes are discussed further in Section 6.3 on page 60. |

1872 Statement attributes affect each statement individually, such as whether a statement should be |
1873 executed asynchronously. Statement attributes are set with SQLSetStmtAttr() and retrieved with |
1874 SQLGetStmtAttr(). Statement attributes can also be set with SQLSetConnectAttr(), in which case |
1875 it applies to all statements on the connection and becomes the default for any new statements. |
1876 However, statement attributes cannot be retrieved by calling SQLGetConnectAttr(). Statement |
1877 attributes are discussed further in Section 9.2 on page 93. |

1878 A few statement attributes are read-only attributes and cannot be set. For example, the |
1879 SQL_ATTR_ROW_NUMBER statement attribute is used to retrieve the number of the current |
1880 row in the cursor. |

1881 In addition to attributes defined by XDBC, an implementation can define its own connection and |
1882 statement attributes. Vendor-defined attributes must be registered with X/Open (see Section 1.8 |
1883 on page 21) to ensure that two vendors do not assign the same integer value to different, |
1884 proprietary attributes. |

1885 For a complete list of attributes, see SQLSetConnectAttr(), SQLSetStmtAttr(), and |
1886 SQLGetStmtAttr(). Most attributes are also described in the description of the XDBC function |
1887 that they affect. |

Data Management: X/Open Database Connectivity (XDBC), Version 2 51

Fundamentals |

52 Direct Review (Build ID 96KAV) (Draft XDBC.33, August 1996)

1888 Chapter 5 |

1889 Basic Application Steps |

1890 The following diagrams show the basic flow of control for the use of XDBC functions. These |
1891 diagrams assume (and do not illustrate) that the application performs error checking where |
1892 appropriate using SQLGetDiagField() or SQLGetDiagRec(). |

1893 For more detailed information concerning control flow and function sequencing rules, refer to |
1894 the state transition tables in Appendix B. |

Data Management: X/Open Database Connectivity (XDBC), Version 2 53

Basic Control Flow Basic Application Steps

1895 5.1 Basic Control Flow |

1896 The following figure shows the initiation sequence, the termination sequence and an overview of |
1897 transaction completion. A discussion of the major steps, and references to other sections of this |
1898 specification, follow the figure. |

1899 L
L
L
L
L
L
L
L
L
L
L
L
L
L
L
L
L
L
L
L
L
L
L
L
L
L
L
L
L
L
L
L
L
L
L
L ||
__ ||

L
L
L
L
L
L
L
L
L
L
L
L
L
L
L
L
L
L
L
L
L
L
L
L
L
L
L
L
L
L
L
L
L
L
L
L ||__ ||

SQLAllocHandle(Environment) ||

SQLAllocHandle(Connection) ||

SQLConnect() ||

L
L
L
L
L
L ||
______________________ ||

L
L
L
L
L
L ||______________________ ||L

L
L
L
L
L ||
____________________ ||

L
L
L
L
L
L ||____________________ ||

More ||
statements? ||

||

No ||
Yes ||

More ||
transactions? ||

||

No ||
Yes ||

||||||

||||||

||LL
L
L
L
L
L ||

||||||||||

||||||
SQLEndTran() ||

||||||

___________ ||L
L
L
L
L
L
L
L
L
L
L
L
L
L
L ||

||||________ ||||||

||||||

Statement Processing ||

(see Figure 5-2) ||

SQLDisconnect() ||

SQLFreeHandle(Connection) ||

SQLFreeHandle(Environment) ||

1900 Figure 5-1. Initiation, Termination and Transaction Completion ||

1901 Connecting to the Data Source |

1902 The first step in connecting to the data source is to allocate the environment handle with |
1903 SQLAllocHandle(). For more information, see Section 6.1 on page 58. |

1904 Next, the application allocates a connection handle with SQLAllocHandle() and connects to the |
1905 data source with SQLConnect(), SQLDriverConnect(), or SQLBrowseConnect(). For more |
1906 information on allocating a connection handle, see Section 6.2 on page 59. Various connection |
1907 methods are discussed later in Chapter 6. |

1908 The application then sets any connection attributes, such as whether to manually commit |
1909 transactions. For more information, see Section 6.3 on page 60. |

1910 After connecting to a data source, it is also typical to call SQLGetInfo() to determine its |
1911 capabilities. |

54 Direct Review (Build ID 96KAV) (Draft XDBC.33, August 1996)

Basic Application Steps Basic Control Flow

1912 Completing the Transaction |

1913 The application calls SQLEndTran() to commit or roll back the transaction. The application only |
1914 performs this step if it set the transaction commit mode to manual commit; if the transaction |
1915 commit mode is auto-commit, which is the default, the transaction is automatically committed |
1916 when the statement is executed. For more information, see Chapter 14. |

1917 Disconnecting from the Data Source |

1918 The application frees any statement handles by calling SQLFreeHandle(). For more information, |
1919 see Section 9.6 on page 124. Next, the application disconnects from the data source with |
1920 SQLDisconnect() and frees the connection handle with SQLFreeHandle(). For more information, |
1921 see Section 6.5 on page 64. |

1922 Finally, the application frees the environment handle with SQLFreeHandle(). For more |
1923 information, see Section 6.1 on page 58. |

Data Management: X/Open Database Connectivity (XDBC), Version 2 55

Example Control Flow for SQL Statement Processing Basic Application Steps

1924 5.2 Example Control Flow for SQL Statement Processing |

1925 Figure 5-2 on page 54 shows typical control flow for processing SQL statements, including the |
1926 allocation and release of a statement handle. |

1927 While this is the basic control flow for SQL statements executed interactively, there are other |
1928 valid sequences, such as modifying the buffer descriptor between successive fetches. A |
1929 discussion of the major steps, and references to other sections of this specification, follow the |
1930 figure. |

1931 LL
L
L
L
L
L
L
L
L
L
L
L
L
L
L
L
L
L
L
L
L
L
L
L
L
L
L
L
L
L
L
L
L
L
L
L
L
L
L
L
L
L
L
L
L
L
L ||
___ ||

LL
L
L
L
L
L
L
L
L
L
L
L
L
L
L
L
L
L
L
L
L
L
L
L
L
L
L
L
L
L
L
L
L
L
L
L
L
L
L
L
L
L
L
L
L
L
L ||___ ||

Want repeatable ||
execution? ||

||

From Figure 5-1 ||

||||||
SQLAllocHandle (Statement) ||

||||||

Yes ||No ||

||||||

__________ ||
||||||

__________ ||

||||||SQLPrepare() ||

||||||
Specify dynamic arguments ||

SQLExecute() ||

Specify dynamic arguments ||

||||||
SQLExecDirect() ||

SQLGetDiagField () ||
to get stmt. type ||

||

Others ||LL
L
L
L
L
L
L
L
L
L
L
L
L ||||||

||____________________ ||||||||____________________ ||||||
||||||

cursor-specification ||__________ ||
LL
L ||||||

Get number and type of columns ||
Bind column variables ||

||||||
SQLFetch() ||

Process column data ||

More rows? ||||

||||||

||No ||||____________________ ||||||||

Yes ||
||LL

L
L
L
L
L ||
______________ ||||||

DELETE, ||
INSERT ||

or UPDATE ||

__________ ||
L
L
L
L
L
L
L ||||||

SQLRowCount () ||

LL
L
L
L
L
L ||____________________ ||||||

Want to ||
repeat statement? ||

||Yes ||||_______________________ ||L
L
L
L
L
L
L
L
L
L
L
L
L
L
L
L
L
L
L
L
L
L
L
L
L
L ||

______________ ||||||

||||||

||||||No ||
SQLFreeHandle(Statement) ||

||||||
To Figure 5-1 ||

1932 Figure 5-2. Example Control Flow for Statement Processing |

56 Direct Review (Build ID 96KAV) (Draft XDBC.33, August 1996)

Basic Application Steps Example Control Flow for SQL Statement Processing

1933 Allocating a Statement Handle |

1934 All applications need to allocate a statement handle with SQLAllocHandle() as described in |
1935 Section 9.1 on page 92. After doing this, many applications set statement attributes, such as the |
1936 cursor type, with SQLSetStmtAttr(), as described in Section 9.2 on page 93. |

1937 Building and Executing an SQL Statement |

1938 There are many ways to generate and execute an SQL statements. The application might prompt |
1939 the user to enter the statement, build the statement based on user input, or use a hard-coded SQL |
1940 statement. For more information, see Chapter 8. |

1941 If the SQL statement contains parameters, the application binds them to application variables by |
1942 calling SQLBindParameter() for each parameter. For more information, see Section 9.4 on page |
1943 102. |

1944 After the SQL statement is built and any parameters are bound, the statement is executed with |
1945 SQLExecDirect(). If the statement will be executed multiple times, it can be prepared with |
1946 SQLPrepare() and executed with SQLExecute(). For more information, see Section 9.3 on page 94. |

1947 Instead of executing an SQL statement, the application might call a function to return a result set |
1948 containing catalog information, such as the available columns or tables. For more information, |
1949 see Chapter 7. |

1950 What the application does next depends on the type of SQL statement executed: |

1951 • If the SQL statement is a SELECT statement or a catalog function, the application can call |
1952 SQLNumResultCols() to determine the number of columns in the result set. |

1953 The application can retrieve the name, data type, precision, and scale of each result set |
1954 column with SQLDescribeCol(). Again, this isn’t necessary for applications such as vertical |
1955 and custom applications that already know this information. It passes this information to |
1956 SQLBindCol(), which binds an application variable to a column in the result set. |

1957 The application now calls SQLFetch() to retrieve the first row of data and place the data from |
1958 that row in the variables bound with SQLBindCol(). If there is any long data in the row, it |
1959 then calls SQLGetData() to retrieve that data. The application continues to call SQLFetch() |
1960 and SQLGetData() to retrieve additional data. After it has finished fetching data, it calls |
1961 SQLCloseCursor() to close the cursor. |

1962 For a complete description of retrieving results, see Chapter 10 and Chapter 11. |

1963 • If the statement executed was DELETE, INSERT, or UPDATE, the application can retrieve the |
1964 count of affected rows with SQLRowCount(). For more information, see Section 12.2 on page |
1965 162. |

Data Management: X/Open Database Connectivity (XDBC), Version 2 57

Basic Application Steps |

58 Direct Review (Build ID 96KAV) (Draft XDBC.33, August 1996)

1966 Chapter 6 |

1967 Connecting to a Data Source |

1968 An application can be connected to any number of XDBC implementations. These can be a |
1969 variety of client-side implementations and data sources, the same implementation and a variety |
1970 of data sources, or multiple connections to the same implementation and data source. |

Data Management: X/Open Database Connectivity (XDBC), Version 2 59

Allocating the Environment Handle Connecting to a Data Source

1971 6.1 Allocating the Environment Handle |

1972 Before an application can call any other XDBC function, it must initialize the XDBC environment |
1973 and allocate an environment handle. To do this: |

1974 • The application declares a variable of type SQLHENV. It then calls SQLAllocHandle() and |
1975 passes the address of this variable and the SQL_HANDLE_ENV option. For example: |

1976 SQLHENV henv1; |
1977 SQLAllocHandle(SQL_HANDLE_ENV, SQL_NULL_HANDLE, &henv1); |

1978 • The XDBC implementation initializes itself, allocates a structure in which to store |
1979 information about the environment, and returns the environment handle in the variable. |

1980 When the application has finished using XDBC, it frees the environment handle with |
1981 SQLFreeHandle(). After freeing the environment, it’s an application programming error to use |
1982 the environment’s handle in a call to an XDBC function; doing so has undefined but probably |
1983 fatal consequences. |

1984 When SQLFreeHandle() is called, the implementation releases the structure used to store |
1985 information about the environment. SQLFreeHandle() cannot be called for an environment |
1986 handle until after all connection handles on that environment handle have been freed. |

1987 For more information about the environment handle, see Section 4.1.1 on page 35. |

60 Direct Review (Build ID 96KAV) (Draft XDBC.33, August 1996)

Connecting to a Data Source Allocating a Connection Handle

1988 6.2 Allocating a Connection Handle |

1989 Before the application can connect to a data source, it must allocate a connection handle. To do |
1990 this: |

1991 • The application declares a variable of type SQLHDBC. It then calls SQLAllocHandle() and |
1992 passes the address of this variable, the handle of the environment in which to allocate the |
1993 connection, and the SQL_HANDLE_DBC option. For example: |

1994 SQLHDBC hdbc1; |
1995 SQLAllocHandle(SQL_HANDLE_DBC, henv1, &hdbc1); |

1996 • The implementation allocates a structure in which to store information about the statement |
1997 and returns the connection handle in the variable. |

1998 For more information about connection handles, see Section 4.1.2 on page 35. |

Data Management: X/Open Database Connectivity (XDBC), Version 2 61

Connection Attributes Connecting to a Data Source

1999 6.3 Connection Attributes |

2000 Connection attributes are characteristics of the connection. For example, because transactions |
2001 occur at the connection level, the transaction isolation level is a connection attribute. Similarly, |
2002 the login timeout, or number of seconds to wait while trying to connect before timing out, is a |
2003 connection attribute. |

2004 Connection attributes are set with SQLSetConnectAttr() and their current settings retrieved with |
2005 SQLGetConnectAttr(). There is no requirement that an application set any connection attributes; |
2006 all connection attributes have defaults, some of which are implementation-specific. |

2007 The proper time to set a connection attribute varies among attributes: |

2008 • The login timeout (SQL_ATTR_LOGIN_TIMEOUT) and the network packet size |
2009 (SQL_ATTR_PACKET_SIZE) apply to the connection process and must be set before |
2010 connecting. |

2011 • For certain other connection attributes, portable applications must specify any changes to the |
2012 default values before connecting. These include the attributes to specify whether a data |
2013 source is read-only or read-write (SQL_ATTR_ACCESS_MODE) and the current catalog |
2014 (SQL_ATTR_CURRENT_CATALOG). Some implementations also let applications change |
2015 these after connecting. |

2016 • Other connection attributes can be set at any time. |

2017 For more information, see SQLSetConnectAttr(). |

62 Direct Review (Build ID 96KAV) (Draft XDBC.33, August 1996)

Connecting to a Data Source Establishing a Connection

2018 6.4 Establishing a Connection |

2019 After allocating environment and connection handles and setting any connection attributes, the |
2020 application is ready to connect to the data source. There are three different functions the |
2021 application can use to do this: SQLConnect(), SQLDriverConnect(), and SQLBrowseConnect(). |
2022 Each of the three is designed to be used in a different scenario. Before connecting, the |
2023 application can determine which of these functions is supported with the ConnectFunctions |
2024 keyword returned by SQLDrivers(). |

2025 Note: Some implementations limit the number of active connections they support. An |
2026 application calls SQLGetInfo() with the SQL_MAX_DRIVER_CONNECTIONS option to |
2027 determine how many active connections are supported. |

2028 6.4.1 Default Data Source |

2029 The implementation may select a data source, called the default data source, in certain cases where |
2030 the application does not explicitly specify one: |

2031 • In a call to SQLConnect() where ServerName is a zero-length string, a null pointer, or |
2032 DEFAULT. |

2033 • In a call to SQLDriverConnect() where InConnectionString either specifies DSN=DEFAULT or |
2034 specifies with DSN a data source that is not contained in the system information. |

2035 It is implementation-defined how the default data source is specified. This may involve |
2036 administrative action and may depend on the user. |

2037 6.4.2 Connecting with SQLConnect() |

2038 SQLConnect() is the simplest connection function. It requires a data source name and accepts an |
2039 optional user ID and password. It works well for applications that hard code a data source name |
2040 and don’t require a user ID or password. It also works well for applications that want to control |
2041 their own ‘‘look and feel.’’ Such applications can build a list of data sources using |
2042 SQLDataSources(); prompt the user for data source, user ID, and password; and then call |
2043 SQLConnect(). SQLConnect() is also appropriate for applications that do not have a user |
2044 interface. |

2045 6.4.3 Connection String |

2046 A connection string is a string. A complete connection string contains all the information needed |
2047 to establish a connection. The connection string is a series of keyword/value pairs separated by |
2048 semicolons. (For the complete syntax of a connection string, see the reference manual entry.) |
2049 The connection string is used by: |

2050 • SQLDriverConnect() (see Section 6.4.4), which completes it by interaction with the user. |

2051 • SQLBrowseConnect() (see Section 6.4.5 on page 62), which completes it iteratively with the |
2052 data source. |

2053 SQLConnect() does not use a connection string; using SQLConnect() is analogous to connecting |
2054 using a connection string with exactly three keyword/value pairs (for data source name, and |
2055 optionally user ID and password). |

Data Management: X/Open Database Connectivity (XDBC), Version 2 63

Connecting with SQLDriverConnect() Connecting to a Data Source

2056 6.4.4 Connecting with SQLDriverConnect() |

2057 SQLDriverConnect() is used instead of SQLConnect() for the following reasons: |

2058 • To let the application use implementation-specific connection information. |

2059 • To request that the implementation prompt the user for connection information. |

2060 • To connect without specifying a data source. |

2061 If the application uses SQLConnect() and needs to prompt the user for any connection |
2062 information, such as a user name and password, it must do so itself. This lets the application |
2063 control the user interface but might force it to contain implementation-specific connection |
2064 information. This is infeasible for generic applications, which must work with any and all |
2065 implementations, including implementations that don’t exist when the application is written. |

2066 SQLDriverConnect() can prompt the user for connection information. For example, a custom |
2067 program could pass the following connection string to SQLDriverConnect(): |

2068 DSN=XYZ Corp; |

2069 The implementation might then display a dialog box to prompt for user IDs and passwords. |

2070 The ability to prompt for connection information is particularly useful to generic and vertical |
2071 applications because it keeps implementation-specific information out of the application. This is |
2072 shown by the previous example. By passing only the data source name to the implementation, |
2073 the application didn’t contain any implementation-specific information and was therefore not |
2074 tied to a particular implementation. (An application could also pass SQLDriverConnect() a |
2075 complete connection string, even though this would tie the application to an implementation |
2076 that could interpret that string.) |

2077 A generic application might take this one step further and not even specify a data source. When |
2078 SQLDriverConnect() receives an empty connection string, the implementation interacts with the |
2079 user. After the user selects a data source, the implementation constructs a connection string |
2080 specifying that data source. |

2081 6.4.5 Connecting with SQLBrowseConnect() |

2082 By using SQLBrowseConnect(), an application can construct a complete connection string at run |
2083 time. This lets the application do two things: |

2084 • Build its own dialog boxes to prompt for this information, thereby retaining control over its |
2085 ‘‘look and feel.’’ |

2086 • Browse the system for data sources that can be used by a particular implementation, possibly |
2087 in several steps. For example, the user might first browse the network for servers and, after |
2088 choosing a server, browse the server for databases accessible by the implementation. |

2089 The application calls SQLBrowseConnect() and passes a connection string, known as the browse |
2090 request connection string, that specifies a data source. The implementation returns a connection |
2091 string, known as the browse result connection string, that contains keywords, possible values (if the |
2092 keyword accepts a discrete set of values), and user-friendly names. The application builds a |
2093 dialog box with the user-friendly names and prompts the user for values. It then builds a new |
2094 browse request connection string from these values and returns this to the implementation with |
2095 another call to SQLBrowseConnect(). |

2096 Because connection strings are passed back and forth, the implementation can provide several |
2097 levels of browsing by returning a new connection string when the application returns the old |
2098 one. For example, the first time an application calls SQLBrowseConnect(), the implementation |
2099 might return keywords to prompt the user for a server name. When the application returns the |
2100 server name, the implementation might return keywords to prompt the user for a database. The |

64 Direct Review (Build ID 96KAV) (Draft XDBC.33, August 1996)

Connecting to a Data Source Connecting with SQLBrowseConnect()

2101 browsing process would be complete after the application returned the database name. |

2102 Each time SQLBrowseConnect() returns a new browse result connection string, it returns |
2103 SQL_NEED_DATAas its return code. This tells the application that the connection process isn’t |
2104 complete. Until SQLBrowseConnect() returns SQL_SUCCESS, the connection is in a Need Data |
2105 state and cannot be used for other purposes, such as to set a connection attribute. The |
2106 application can terminate the connection browsing process by calling SQLDisconnect(). |

Data Management: X/Open Database Connectivity (XDBC), Version 2 65

Disconnecting from a Data Source Connecting to a Data Source

2107 6.5 Disconnecting from a Data Source |

2108 When an application has finished using a data source, it calls SQLDisconnect(). This frees any |
2109 statements that are allocated on the connection and disconnects from the data source. It returns |
2110 an error if a transaction is in process. |

2111 After disconnecting, the application can call SQLFreeHandle() to free the connection. After |
2112 freeing the connection, it’s an application programming error to use the connection’s handle in a |
2113 call to an XDBC function; doing so has undefined but probably fatal consequences. When |
2114 SQLFreeHandle() is called, the implementation releases the structure used to store information |
2115 about the connection. |

2116 The application can also reuse the connection, either to connect to a different data source or |
2117 reconnect to the same data source. The decision to remain connected, as opposed to |
2118 disconnecting and reconnecting later, requires that the application writer consider the relative |
2119 costs of each option; both connecting to a data source and remaining connected can be relatively |
2120 costly depending on the connection medium. In making a correct trade-off, the application must |
2121 also make assumptions about the likelihood and timing of further operations on the same data |
2122 source. |

66 Direct Review (Build ID 96KAV) (Draft XDBC.33, August 1996)

2123 Chapter 7 |

2124 Catalog Functions |

2125 All databases have a structure that outlines how data will be stored in the database. For example, |
2126 a simple sales order database might have the structure shown in the following figure, in which |
2127 the ID columns are used to link the tables. |

|
2128 Orders Table Lines Table ||

2129 OrderID: INTEGER OrderID: INTEGER |
2130 CustID: INTEGER Line: INTEGER |
2131 OpenDate: DATE PartID: INTEGER |
2132 SalesPerson: CHAR(10) Quantity: INTEGER |
2133 Status: CHAR(6)

||

||
|

2134 Customers Table Parts Table Pictures Table ||

2135 CustID: INTEGER PartID: INTEGER PartID: INTEGER |
2136 Name: CHAR(50) Description: CHAR(50) Picture: LONG VARBINARY |
2137 Address: CHAR(50) Price: REAL |
2138 Phone: CHAR(10) ||

||||||

2139 Figure 7-1. Sales Order Database Structure |

2140 This structure, along with other information such as privileges, is stored in a set of system tables |
2141 called the database’s catalog, which is also known as a data dictionary. |

2142 An application can discover this structure through calls to the catalog functions. The catalog |
2143 functions return information in result sets. For example, an application might request a result |
2144 set containing information about all the tables on the system or all the columns in a particular |
2145 table. |

Data Management: X/Open Database Connectivity (XDBC), Version 2 67

Uses of Catalog Data Catalog Functions

2146 7.1 Uses of Catalog Data |

2147 Here are some common ways in which applications use catalog data: |

2148 • Constructing SQL statements at run time. |

2149 Vertical applications, such as an order entry application, contain hard-coded SQL statements. |
2150 The tables and columns that are used by the application are fixed ahead of time, as are the |
2151 statements that access these tables. For example, an order entry application usually contains |
2152 a single, parameterized INSERT statement for adding new orders to the system. |

2153 Generic applications, such as a spreadsheet program that uses XDBC to retrieve data, often |
2154 construct SQL statements at run time based on input from the user. Such an application |
2155 could require the user to type the names of the tables and columns to use. However, it would |
2156 be easier for the user if the application displayed lists of tables and columns from which the |
2157 user could make selections. To build these lists, the application would call SQLTables() and |
2158 SQLColumns(). |

2159 • Constructing SQL statements during development. |

2160 Application development environments typically allow the programmer to create database |
2161 queries while developing a program. The queries are then hard-coded in the application |
2162 being built. |

2163 Such environments could also use SQLTables() and SQLColumns() to create lists from which |
2164 the programmer could make selections. They might also use SQLPrimaryKeys() and |
2165 SQLForeignKeys() to automatically determine and show relationships between selected |
2166 tables, and use SQLStatistics() to determine and highlight indexed fields so the programmer |
2167 can create efficient queries. |

2168 • Constructing cursors. |

2169 An application, XDBC implementation, or other software component that simulates |
2170 scrollable cursors, can use SQLSpecialColumns() to determine which column or columns |
2171 uniquely identify a row. The program could build a keyset containing the values of these |
2172 columns for each row that has been fetched. When the application scrolls back to the row, it |
2173 would then use these values to fetch the most recent data for the row. For more information |
2174 about scrollable cursors and keysets, see Chapter 11. |

68 Direct Review (Build ID 96KAV) (Draft XDBC.33, August 1996)

Catalog Functions Catalog Functions

2175 7.2 Catalog Functions |

2176 XDBC contains the following catalog functions: |

2177 Returns a list of catalogs, schemas, tables, or table types in the ||
2178 data source. ||

SQLTables() |

2179 Returns a list of columns in one or more tables. ||SQLColumns() |

2180 Returns a list of statistics about a single table. Also returns a list ||
2181 of indexes associated with that table. ||

SQLStatistics() |

2182 Returns a list of columns that uniquely identifies a row in a ||
2183 single table. Also returns a list of columns in that table that are ||
2184 automatically updated. ||

SQLSpecialColumns() |

2185 Returns a list of columns that compose the primary key of a ||
2186 single table. ||

SQLPrimaryKeys() |

2187 Returns a list of foreign keys in a single table or a list of foreign ||
2188 keys in other tables that refer to a single table. ||

SQLForeignKeys() |

2189 Returns a list of privileges associated with one or more tables. ||SQLTablePrivileges() |

2190 Returns a list of privileges associated with one or more columns ||
2191 in a single table. ||

SQLColumnPrivileges() |

2192 Returns a list of procedures in the data source. ||SQLProcedures() |

2193 Returns a list of input and output parameters, the return value, ||
2194 and the columns in the result set of a single procedure. ||

SQLProcedureColumns() |

2195 Returns a list of the SQL data types supported by the data ||
2196 source. These data types are generally used in CREATE and ||
2197 ALTER TABLE statements. ||

SQLGetTypeInfo() |

2198 SQLTables(), SQLColumns(), SQLStatistics(), SQLSpecialColumns(), and SQLGetTypeInfo() are in |
2199 XDBC Level 1. The remaining catalog functions in XDBC Level 2. |

Data Management: X/Open Database Connectivity (XDBC), Version 2 69

Data Returned by Catalog Functions Catalog Functions

2200 7.3 Data Returned by Catalog Functions |

2201 Each catalog function returns data as a result set. This result set is no different from any other |
2202 result set. It is usually generated by a predefined, parameterized SELECT statement that is hard- |
2203 coded in the implementation or stored in a procedure in the data source. For information on how |
2204 to retrieve data from a result set, see Chapter 10. |

2205 The result set for each catalog function is described in the reference entry for that function. In |
2206 addition to the listed columns, the result set can contain implementation-defined columns after |
2207 the last predefined column. |

2208 Applications should bind implementation-defined columns relative to the end of the result set. |
2209 That is, they should calculate the number of an implementation-defined column as the number |
2210 of the last column (retrieved with SQLNumResultCols()) less the number of columns that occur |
2211 after the column to be bound. This obviates changing the application when new columns are |
2212 added to the result set in future XDBC implementations. (For this scheme to work, new |
2213 implementation-defined columns must be located before old implementation-defined columns, |
2214 so that column numbers don’t change relative to the end of the result set.) |

2215 Identifiers that are returned in the result set aren’t quoted, even if they contain special characters. |
2216 For example, suppose the identifier quote character (which is implementation-defined and |
2217 returned through SQLGetInfo()) is a double quotation mark and the Accounts Payable table |
2218 contains a column named Customer Name. In the row returned by SQLColumns() for this |
2219 column, the value of the TABLE_NAME column is Accounts Payable, not "Accounts Payable", |
2220 and the value of the COLUMN_NAME column is Customer Name, not "Customer Name". To |
2221 retrieve the names of customers in the Accounts Payable table, the application would quote |
2222 these names: |

2223 SELECT "Customer Name" FROM "Accounts Payable" |

2224 For more information, see Quoted Identifiers on page 82. |

2225 The result sets returned by the catalog functions are almost never updatable and applications |
2226 shouldn’t expect to be able to change the structure of the database by changing the data in these |
2227 result sets. |

2228 7.3.1 COLUMN_DEF Column |

2229 In the result set returned by the SQLColumns() and SQLProcedureColumns() catalog functions, |
2230 there is a COLUMN_DEF column that specifies a column default value. |

2231 The value of COLUMN_DEF uses legal syntax for default-value in the column-definition of the |
2232 CREATE TABLE or ALTER TABLE statement defined in the X/Open SQL specification. If the |
2233 default value is a character string, then this column is that string enclosed in single quotes. If the |
2234 default value is a numeric literal, then this column contains the original character representation |
2235 with no enclosing single quotes. If the default value is a date/time or interval literal, then the |
2236 column contains the appropriate keyword followed by the date/time or interval value enclosed |
2237 in single quotes; and, for an interval literal, terminated by the interval-qualifier syntactic element |
2238 defined in the X/Open SQL specification (for example, ’YEAR TO MONTH’) If the default value |
2239 is a pseudo-literal , then this column contains the keyword, such as CURRENT_DATE, with no |
2240 enclosing single quotes. |

2241 If NULL was specified as the default value, then this column is the word NULL, not enclosed in |
2242 quotes. If the default value cannot be represented without truncation, then this column contains |
2243 TRUNCATED with no enclosing single quotes. If no default value was specified, then this |
2244 column is null. |

2245 The value of COLUMN_DEF is suitable for use in generating a new column-definition , except |
2246 when it contains the value TRUNCATED. |

70 Direct Review (Build ID 96KAV) (Draft XDBC.33, August 1996)

Catalog Functions Arguments in Catalog Functions

2247 7.4 Arguments in Catalog Functions |

2248 All catalog functions accept arguments with which an application can restrict the scope of the |
2249 data returned. For example, the first and second calls to SQLTables() in the following code return |
2250 a result set containing information about all tables, while the third call returns information about |
2251 the Orders table: |

2252 SQLTables(hstmt1, NULL, 0, NULL, 0, NULL, 0, NULL, 0); |
2253 SQLTables(hstmt2, NULL, 0, NULL, 0, ’%’, SQL_NTS, NULL, 0); |
2254 SQLTables(hstmt3, NULL, 0, NULL, 0, ’Orders’, SQL_NTS, NULL, 0); |

Data Management: X/Open Database Connectivity (XDBC), Version 2 71

Arguments in Catalog Functions Catalog Functions

2255 Catalog function string arguments can be interpreted in four different ways. The arguments are |
2256 termed ordinary arguments (OA), pattern value arguments (PV), identifier arguments (ID), and |
2257 value list arguments (VL); these types are defined following the table. Interpretation usually |
2258 depends on the value of the SQL_ATTR_METADATA_IDstatement attribute. The following |
2259 table specifies the interpretation of each argument of each catalog function. |

2260 SQL_ATTR_METADATA_ID= |
2261 Function Argument SQL_FALSE SQL_TRUE ||
2262 SQLColumnPrivileges() CatalogName OA ID |
2263 SchemaName OA ID |
2264 TableName OA ID |
2265 ColumnName PV ID |

2266 SQLColumns() CatalogName OA ID |
2267 SchemaName PV ID |
2268 TableName PV ID |
2269 ColumnName PV ID |

2270 SQLForeignKeys() PKCatalogName OA ID |
2271 PKSchemaName OA ID |
2272 PKTableName OA ID |
2273 FKCatalogName OA ID |
2274 FKSchemaName OA ID |
2275 FKTableName OA ID |

2276 SQLPrimaryKeys() CatalogName OA ID |
2277 SchemaName OA ID |
2278 TableName OA ID |

2279 SQLProcedureColumns() CatalogName OA ID |
2280 SchemaName PV ID |
2281 ProcName PV ID |
2282 ColumnName PV ID |

2283 SQLProcedures() CatalogName OA ID |
2284 SchemaName PV ID |
2285 ProcName PV ID |

2286 SQLSpecialColumns () CatalogName OA ID |
2287 SchemaName OA ID |
2288 TableName OA ID |

2289 SQLStatistics () CatalogName OA ID |
2290 SchemaName OA ID |
2291 TableName OA ID |

2292 SQLTablePrivileges() CatalogName OA ID |
2293 SchemaName PV ID |
2294 TableName PV ID |

2295 SQLTables() CatalogName PV ID |
2296 SchemaName PV ID |
2297 TableName PV ID |
2298 TableType VL VL |

2299 Table 7-1. Interpretation of String Arguments of Catalog Functions |

72 Direct Review (Build ID 96KAV) (Draft XDBC.33, August 1996)

Catalog Functions Arguments in Catalog Functions

2300 Ordinary Arguments (OA) |

2301 When a catalog function string argument is an ordinary argument, it is treated as a literal string. |
2302 An ordinary argument accepts neither a string search pattern nor a list of values. The case of an |
2303 ordinary argument is significant, and quote characters in the string are taken literally. These |
2304 arguments are treated as ordinary arguments if the SQL_ATTR_METADATA_ID statement |
2305 attribute is set to SQL_FALSE; they are treated as identifier arguments instead if this attribute is |
2306 set to SQL_TRUE. |

2307 If an ordinary argument is set to a null pointer and the argument is a required argument, the |
2308 function returns SQL_ERROR and SQLSTATE HY009 (Invalid use of null pointer). The |
2309 following arguments are required arguments: |

2310 Function Arguments that cannot be a null pointer ||
2311 SQLColumnPrivileges() TableName |
2312 SQLForeignKeys() PKTableName, FKTableName |
2313 SQLPrimaryKeys() TableName |
2314 SQLSpecialColumns() TableName |
2315 SQLStatistics() TableName |

2316 Pattern Value (PV) Arguments |

2317 Some arguments in the catalog functions, such as the TableName argument in SQLTables(), accept |
2318 search patterns. These arguments accept search patterns if the SQL_ATTR_METADATA_ID |
2319 statement attribute is set to SQL_FALSE; they are identifier arguments that do not accept a |
2320 search pattern if this attribute is set to SQL_TRUE. |

2321 The search pattern characters are: |

2322 • An underscore (_), which represents any single character. |

2323 • A percent sign (%), which represents any sequence of zero or more characters. |

2324 • An escape character, which is implementation-defined and is used to include underscores, |
2325 percent signs, and the escape character as literals. |

2326 The escape character is retrieved with the SQL_SEARCH_PATTERN_ESCAPE option in |
2327 SQLGetInfo(). It must precede any underscore, percent sign, or escape character in an argument |
2328 that accepts search patterns to include that character as a literal. For example: |

2329 Search pattern Description ||
2330 %A% All identifiers containing the letter A. |

2331 ABC_ All four-character identifiers starting with ABC. |

2332 ABC_ The identifier ABC_ (assuming the escape character is a backslash). |

2333 All identifiers starting with a backslash (assuming the escape ||
2334 character is a backslash). ||

\\% |

2335 Special care must be taken to escape search pattern characters in arguments that accept search |
2336 patterns. This is particularly true for the underscore character, which is commonly used in |
2337 identifiers. A common mistake in applications is to retrieve a value from one catalog function |
2338 and pass that value to a search pattern argument in another catalog function. For example, |
2339 suppose an application retrieves the table name MY_TABLE from the result set for SQLTables() |
2340 and passes this to SQLColumns() to retrieve a list of columns in MY_TABLE. Instead of getting |
2341 the columns for MY_TABLE, the application will get the columns for all the tables that match the |

Data Management: X/Open Database Connectivity (XDBC), Version 2 73

Arguments in Catalog Functions Catalog Functions

2342 search pattern MY_TABLE,such as MY_TABLE,MY1TABLE,MY2TABLE,and so on. |

2343 Passing a null pointer to a search pattern argument doesn’t constrain the search for that |
2344 argument; that is, a null pointer and the search pattern % (any characters) are equivalent. |
2345 However, a zero-length search pattern — that is, a valid pointer to a string of length zero — |
2346 matches only the empty string (’’). |

2347 Identifier (ID) Arguments |

2348 An identifier argument is treated as a quoted identifier whether or not it is actually quoted. If the |
2349 string is quoted, the implementation removes leading and trailing blanks, and treats the string |
2350 within the quotation marks literally. If the string is not quoted, the implementation removes |
2351 trailing blanks, and folds the string to uppercase. Setting an identifier argument to a null pointer |
2352 returns SQL_ERROR and SQLSTATEHY009 (Invalid use of null pointer), unless the argument is |
2353 a catalog name and catalogs are not supported. |

2354 These arguments are treated as identifier arguments if the SQL_ATTR_METADATA_ID |
2355 statement attribute is set to SQL_TRUE; they are treated as either an ordinary argument or a |
2356 pattern argument, depending on the argument, if this attribute is set to SQL_FALSE. |

2357 Although identifiers containing special characters must be quoted in SQL statements, they must |
2358 not be quoted when passed as catalog function arguments, because quote characters passed to |
2359 catalog functions are interpreted literally. For example, suppose the identifier quote character |
2360 (which is implementation-defined and returned through SQLGetInfo()) is a double quotation |
2361 mark. The first call to SQLTables() returns a result set containing information about the Accounts |
2362 Payable table, while the second call returns information about a table whose name included |
2363 double quotation marks: |

2364 SQLTables(hstmt1, NULL, 0, NULL, 0, ’Accounts Payable’, SQL_NTS); |
2365 SQLTables(hstmt2, NULL, 0, NULL, 0, ’"Accounts Payable"’, SQL_NTS); |

2366 Quoted identifiers should be used to distinguish a true column name from a pseudo-column of |
2367 the same name, such as ROWID in Oracle. If ’ROWID’ is passed in an argument of a catalog |
2368 function, the function will work with the ROWID pseudo-column if it exists, or with the |
2369 ’ROWID’ column if the pseudo-column does not exist. |

2370 For more information about quoted identifiers, see Quoted Identifiers on page 82. |

2371 Value List (VL) Arguments |

2372 A value list argument consists of a list of comma-separated values to be used for matching. |
2373 Pattern values are legal within the list, and a null pointer is the same as a list containing a single |
2374 value of ’%’. These arguments are not affected by the SQL_ATTR_METADATA_IDstatement |
2375 attribute. There is only one value list argument in the XDBC catalog functions: the TableType |
2376 argument in SQLTables(). |

2377 Schema Views |

2378 An application can retrieve metadata information from the data source either by calling XDBC |
2379 catalog functions or by using INFORMATION_SCHEMA views. These views provide |
2380 applications with an alternative method for retrieving metadata. The views are defined by the |
2381 ISO SQL standard. |

2382 If supported by the implementation, the INFORMATION_SCHEMA views provide a more |
2383 powerful and comprehensive means of retrieving metadata than the XDBC catalog functions |
2384 provide. An application can execute its own custom SQL query against one of these views, can |
2385 join views, or can perform a union on views. While offering greater utility and a wider range of |
2386 metadata, INFORMATION_SCHEMA views are often not supported. This may change as |

74 Direct Review (Build ID 96KAV) (Draft XDBC.33, August 1996)

Catalog Functions Arguments in Catalog Functions

2387 compliance with ISO SQL standard becomes more widespread. |

2388 To determine which views are supported, an application calls SQLGetInfo() with the |
2389 SQL_INFO_SCHEMA_VIEWS option. To retrieve metadata from a supported view, the |
2390 application executes a SELECT statement that specifies the schema information required. |

Data Management: X/Open Database Connectivity (XDBC), Version 2 75

Catalog Functions |

76 Direct Review (Build ID 96KAV) (Draft XDBC.33, August 1996)

2391 Chapter 8 |

2392 SQL Statements |

2393 XDBC applications perform almost all of their database access by submitting SQL statements to |
2394 the XDBC implementation for execution. |

2395 Section 8.1 on page 76 discusses different methods by which the text of the SQL statement is |
2396 built. Section 8.2 on page 80 discusses the choice of portable SQL or proprietary SQL, and |
2397 discusses several aspects of SQL grammar that affect an application’s portability. Section 8.3 on |
2398 page 84 defines the XDBC escape clause, which provides a standard syntax for features for |
2399 which data sources tend to specify different syntax. |

Data Management: X/Open Database Connectivity (XDBC), Version 2 77

Building SQL Statements SQL Statements

2400 8.1 Building SQL Statements |

2401 SQL statements can be built in one of three ways: hard-coded during development, built at run |
2402 time, or entered directly by the user. The choice of method depends on the needs of the |
2403 application. |

2404 8.1.1 Hard-Coded SQL Statements |

2405 Applications that perform a fixed task usually contain hard-coded SQL statements. For example, |
2406 an order entry system might use the following call to list open sales orders: |

2407 SQLExecDirect(hstmt, "SELECT OrderID FROM Orders WHERE Status = ’OPEN’", |
2408 SQL_NTS); |

2409 There are several advantages to hard-coded SQL statements: they can be tested when the |
2410 application is written, they are simpler to implement than statements built at run time, and they |
2411 simplify the application. |

2412 Using statement parameters and preparing statements provide even better ways to use hard- |
2413 coded SQL statements. For example, suppose the Parts table contains the PartID, Description, |
2414 and Price columns. One way to insert a new row into this table would be to generate and execute |
2415 an INSERT statement: |

2416 SQLUINTEGER PartID; |
2417 SQLCHAR *Desc, *Statement; |
2418 SQLREAL Price; |

2419 // Allocate memory for Desc and Statement. Code not shown. |

2420 // Set part ID, description, and price. |
2421 GetNewValues(&PartID, &Desc, &Price); |

2422 // Build INSERT statement. |
2423 sprintf(Statement, "INSERT INTO Parts (PartID, Description,Price) \ |
2424 VALUES (%d, ’%s’, %f)", PartID, Desc, Price); |

2425 // Execute the statement |
2426 SQLExecDirect(hstmt, Statement, SQL_NTS); |

2427 An even better way is to use a hard-coded, parameterized statement. This has two advantages |
2428 over a statement with hard-coded data values. First, it is easier to build a parameterized |
2429 statement because the data values can be sent in their native types, such as integers and floating |
2430 point numbers, rather than converting them to strings. Second, such a statement can be easily |
2431 used more than once by simply changing the parameter values and reexecuting it; there is no |
2432 need to rebuild it. |

2433 SQLCHAR *Statement = "INSERT INTO Orders (PartID, Description, Price) \ |
2434 VALUES (?, ?, ?)"; |
2435 SQLUINTEGER PartID; |
2436 SQLCHAR Desc[51]; |
2437 SQLREAL Price; |
2438 SQLINTEGER PartIDInd = 0, DescLenOrInd = SQL_NTS, PriceInd = 0; |

2439 // Bind the parameters. We are assuming that the octet length of the |
2440 // Description column is known to be 50. |
2441 SQLBindParameter(hstmt, 1, SQL_PARAM_INPUT, SQL_C_ULONG, SQL_INTEGER, |
2442 5, 0, &PartID, 0, &PartIDInd); |
2443 SQLBindParameter(hstmt, 2, SQL_PARAM_INPUT, SQL_C_CHAR, SQL_CHAR, |
2444 50, 0, Desc, sizeof(Desc), &DescLenOrInd); |
2445 SQLBindParameter(hstmt, 3, SQL_PARAM_INPUT, SQL_C_FLOAT, SQL_REAL, |

78 Direct Review (Build ID 96KAV) (Draft XDBC.33, August 1996)

SQL Statements Hard-Coded SQL Statements

2446 7, 0, &Price, 0, &PriceInd); |

2447 // Set part ID, description, and price. |
2448 GetNewValues(&PartID, &Desc, &Price); |

2449 // Execute the statement |
2450 SQLExecDirect(hstmt, Statement, SQL_NTS); |

2451 Assuming this statement is to be executed more than once, it can be prepared for even greater |
2452 efficiency: |

2453 SQLCHAR *Statement = "INSERT INTO Orders (PartID, Description, Price) \ |
2454 VALUES (?, ?, ?)"; |
2455 SQLUINTEGER PartID; |
2456 SQLCHAR Desc[51]; |
2457 SQLREAL Price; |
2458 SQLINTEGER PartIDInd = 0, DescLenOrInd = SQL_NTS, PriceInd = 0; |

2459 // Prepare the INSERT statement. |
2460 SQLPrepare(hstmt, Statement, SQL_NTS); |

2461 // Bind the parameters. We are assuming that the octet length of the |
2462 // Description column is known to be 50. |
2463 SQLBindParameter(hstmt, 1, SQL_PARAM_INPUT, SQL_C_ULONG, SQL_INTEGER, |
2464 5, 0, &PartID, 0, PartIDInd); |
2465 SQLBindParameter(hstmt, 2, SQL_PARAM_INPUT, SQL_C_CHAR, SQL_CHAR, |
2466 50, 0, Desc, sizeof(Desc), &DescLenOrInd); |
2467 SQLBindParameter(hstmt, 3, SQL_PARAM_INPUT, SQL_C_FLOAT, SQL_REAL, |
2468 7, 0, &Price, 0, &PriceInd); |

2469 // Loop to continually get new values and insert them. |
2470 while (GetNewValues(&PartID, &Desc, &Price)) |
2471 SQLExecute(hstmt); |

2472 Perhaps the most efficient way to use the statement is to build a procedure containing the |
2473 statement, as shown in the following code example. Because the procedure is built at |
2474 development time and stored on the data source, it doesn’t need to be prepared at run time. The |
2475 syntax for creating procedures is data-source-specific and procedures must be built separately |
2476 for each data source on which the application is to run. |

2477 SQLUINTEGER PartID; |
2478 SQLCHAR Desc[51]; |
2479 SQLREAL Price; |
2480 SQLINTEGER PartIDInd = 0, DescLenOrInd = SQL_NTS, PriceInd = 0; |

2481 // Bind the parameters. Assume that the octet length of the |
2482 // Description column is known to be 50. |
2483 SQLBindParameter(hstmt, 1, SQL_PARAM_INPUT, SQL_C_ULONG, SQL_INTEGER, |
2484 5, 0, &PartID, 0, PartIDInd); |
2485 SQLBindParameter(hstmt, 2, SQL_PARAM_INPUT, SQL_C_CHAR, SQL_CHAR, |
2486 50, 0, Desc, sizeof(Desc), &DescLenOrInd); |
2487 SQLBindParameter(hstmt, 3, SQL_PARAM_INPUT, SQL_C_FLOAT, SQL_REAL, |
2488 7, 0, &Price, 0, &PriceInd); |

2489 // Loop to continually get new values and insert them. |
2490 while (GetNewValues(&PartID, &Desc, &Price)) |
2491 SQLExecDirect(hstmt, "{call InsertPart(?, ?, ?)}", SQL_NTS); |

Data Management: X/Open Database Connectivity (XDBC), Version 2 79

Hard-Coded SQL Statements SQL Statements

2492 For more information on parameters, prepared statements, and procedures, see Chapter 9. |

2493 8.1.2 SQL Statements Built at Run Time |

2494 Applications that perform ad hoc analysis may build SQL statements at run time. For example, a |
2495 spreadsheet might allow a user to select columns from which to retrieve data: |

2496 SQLCHAR *Statement, *TableName; |
2497 SQLCHAR **TableNamesArray, **ColumnNamesArray; |
2498 BOOL *ColumnSelectedArray; |
2499 BOOL CommaNeeded; |
2500 SQLSMALLINT i, NumColumns; |

2501 // Use SQLTables to build a list of tables (TableNamesArray[]). Let |
2502 // the user select a table and store the selected table in TableName. |
2503 // Use SQLColumns to build a list of the columns in the selected table |
2504 // (ColumnNamesArray). Set NumColumns to the number of columns in the |
2505 // table. Let the user select one or more columns and flag these |
2506 // columns in ColumnSelectedArray[]. Build a SELECT statement from |
2507 // the selected columns. |
2508 CommaNeeded = FALSE; |
2509 strcpy(Statement, "SELECT "); |
2510 for (i = 0; i = NumColumns; i++) { |
2511 if ColumnSelectedArray[i] { |
2512 if CommaNeeded strcat(Statment, ",") else CommaNeeded = TRUE; |
2513 strcat(Statement, ColumnNamesArray[i]); |
2514 } |
2515 } |
2516 strcat(Statement, " FROM "); |
2517 strcat(Statement, TableName); |

2518 // Execute the statement directly. Because it will only be executed |
2519 // once, do not prepare it. |
2520 SQLExecDirect(hstmt, Statement, SQL_NTS); |

2521 Another class of applications that commonly build SQL statements at run time are application |
2522 development environments. However, the statements they build are hard-coded in the |
2523 application they are building, where they can usually be optimized and tested. |

2524 Applications that build SQL statements at run time give powerful flexibility to the user. As seen |
2525 in the preceding example, which didn’t even support such common operations as WHERE |
2526 clauses, ORDER BY clauses, or joins, building SQL statements at run time is vastly more |
2527 complex than hard-coding statements. Furthermore, testing such applications is problematic, as |
2528 they can build an arbitrary number of SQL statements. |

2529 Building SQL statements at run time takes more time than using a hard-coded statement. This is |
2530 rarely a problem because the time the application spends building SQL statements is generally |
2531 small compared to the time the user spends entering criteria. |

80 Direct Review (Build ID 96KAV) (Draft XDBC.33, August 1996)

SQL Statements SQL Statements Entered by the User

2532 8.1.3 SQL Statements Entered by the User |

2533 Applications that perform ad hoc analysis often let the user enter SQL statements directly. For |
2534 example: |

2535 SQLCHAR *Statement, SqlState[6], Msg[SQL_MAX_MESSAGE_LENGTH - 1]; |
2536 SQLINTEGER i, NativeError, MsgLen; |
2537 SQLRETURN rc1, rc2; |

2538 // Allocate memory for Statement. Code not shown. |
2539 // Prompt user for SQL statement. |
2540 GetSQLStatement(Statement); |

2541 // Execute the statement directly. Because it will only be executed |
2542 // once, do not prepare it. |
2543 rc1 = SQLExecDirect(hstmt, Statement, SQL_NTS); |

2544 // Process any errors or returned information. |
2545 if ((rc1 == SQL_ERROR) || rc1 == SQL_SUCCESS_WITH_INFO)) { |
2546 i = 1; |
2547 while ((rc2 = SQLGetDiagRec(SQL_HANDLE_STMT, hstmt, i, |
2548 SqlState, &NativeError, Msg, |
2549 sizeof(Msg), &MsgLen)) != SQL_NO_DATA) { |
2550 DisplayError(SqlState, NativeError, Msg, MsgLen); |
2551 i++; |
2552 } |
2553 } |

2554 This approach simplifies application coding; the application relies on the user to build the SQL |
2555 statement and on the data source to check the statement’s validity. It is sufficiently hard to write |
2556 a graphical user interface that adequately exposes the intricacies of SQL that simply asking the |
2557 user to enter the SQL statement text may be a preferable alternative. However, it requires the |
2558 user to know not only SQL but the schema of the data source being queried. Some applications |
2559 provide a graphical user interface by which the user can create a basic SQL statement, and a text |
2560 interface with which the user can modify it. |

Data Management: X/Open Database Connectivity (XDBC), Version 2 81

Interoperability of SQL Statements SQL Statements

2561 8.2 Interoperability of SQL Statements |

2562 SQL statements must obey some grammar, portable or vendor-specific, in order to be acceptable |
2563 to any data source. The choice of using portable or vendor-specific SQL statements depends on |
2564 the type of application. Custom applications are less likely to use portable SQL because they |
2565 usually exploit the capabilities of one or two data sources. Generic applications use portable SQL |
2566 in order to work with a variety of data sources. |

2567 • Portable SQL |

2568 The ISO SQL standard defines a standard SQL language and specifies various levels of |
2569 compliance. The X/Open SQL specification follows the standard closely but includes some |
2570 other features based on their presence in the marketplace. FIPS 127-2 is a U.S. Government |
2571 procurement specification for SQL databases. The X/Open SQL specification aligns with the |
2572 Transitional Level defined in FIPS 127-2. |

2573 • Proprietary SQL |

2574 Virtually every data source vendor defines its own grammar, some parts of which are non- |
2575 standard. If the application takes advantage of proprietary SQL grammar, it can exploit |
2576 vendor-specific features not available using portable SQL. |

2577 • Effects of XDBC on the SQL language |

2578 X/Open intends that compliance to XDBC be independent of compliance to SQL. However, |
2579 there are interdependencies; the compliance policy is defined in Section 1.5.2 on page 9. |

2580 XDBC includes one aspect that directly affects the grammar of SQL statements: It defines |
2581 escape clauses containing standard grammar for commonly available language features, such |
2582 as a large number of scalar functions, that aren’t specified in the X/Open SQL specification. |
2583 See Section 8.3 on page 84. |

2584 Implementations scan SQL statements for escape clauses and perform text substitution to |
2585 produce text that is acceptable to the data source. (This can be disabled by setting the |
2586 SQL_ATTR_NOSCAN statement attribute.) The implementation need not parse SQL |
2587 statements. When an implementation encounters grammar it doesn’t recognize, it assumes |
2588 the grammar is data-source-specific and passes the SQL statement without modification to |
2589 the data source for execution. |

2590 XDBC also defines escape clauses for language features, such as outer join, that have recently |
2591 been incorporated in the X/Open SQL specification, but for which implementations have |
2592 diverged. If the application codes these escape clauses, even in preference to the syntax |
2593 specified in the X/Open SQL specification, then XDBC-compliant implementations |
2594 guarantee to translate the escape clauses to the data-source-specific SQL text. |

2595 Thus, portable applications should use X/Open SQL with XDBC escape clauses. Custom |
2596 applications can use this or a proprietary SQL. |

2597 If the application includes escape clauses in its SQL statements, it can determine how the |
2598 implementation modifies them using the optional SQLNativeSql() function. This is often useful |
2599 when debugging applications. SQLNativeSql() accepts an SQL statement and returns it after the |
2600 implementation has modified it. |

82 Direct Review (Build ID 96KAV) (Draft XDBC.33, August 1996)

SQL Statements Constructing Interoperable SQL Statements

2601 8.2.1 Constructing Interoperable SQL Statements |

2602 Even portable applications that elect to use X/Open SQL grammar may need to use a feature, |
2603 such as outer joins, that isn’t supported by all data sources. The application writer must decide |
2604 which language features are required and which are optional. The application can respond to the |
2605 failure of a particular data source to support a feature that it requires by simply refusing to run |
2606 with that data source; or through a work-around, such as disabling parts of the interface that let |
2607 the user select the feature. |

2608 The application can call SQLGetInfo() to determine support for various features of SQL, and can |
2609 call SQLGetTypeInfo() for information about the data types supported. |

2610 The following sections list considerations when building interoperable SQL statements. |

2611 Catalog and Schema Usage |

2612 Data sources don’t necessarily support catalog and schema names as object name qualifiers in all |
2613 SQL statements. Data sources might support catalog and schema names in one or more of the |
2614 following classes of SQL statements: Data Manipulation Language (DML) statements, procedure |
2615 calls, table definition statements, index definition statements, and privilege definition |
2616 statements. To determine the classes of SQL statements in which catalog and schema names can |
2617 be used, an application calls SQLGetInfo() with the SQL_CATALOG_USAGE and |
2618 SQL_SCHEMA_USAGE options. |

2619 Catalog Position |

2620 The position of a catalog name in an identifier and how it is separated from the rest of the |
2621 identifier varies among data sources. For example, in an Xbase data source, the catalog name is a |
2622 directory; there is no schema name; the table is an operating-system file; and the catalog name is |
2623 usually separated from the table name by a backslash (\). The following figure illustrates this |
2624 condition. |

2625 <--Catalog Name-> <--Table--> |
2626 \XBASE\SALES\CORP\PARTS.DBF |
2627 ↑ |
2628 Catalog Separator (\) |

2629 In an SQL Server data source, the catalog is a database and is separated from the schema and |
2630 table names by a period. |

2631 Sales.Corporate.Parts |
2632 ↑ ↑ ↑ ↑ |
2633 Catalog | Schema Table |
2634 | |
2635 Catalog Separator (.) |

Data Management: X/Open Database Connectivity (XDBC), Version 2 83

Constructing Interoperable SQL Statements SQL Statements

2636 In an Oracle data source, the catalog is also the database, but follows the table name and is |
2637 separated from the schema and table names by an at sign (@). |

2638 Corporate.Parts@Sales |
2639 ↑ ↑ ↑ ↑ |
2640 Schema Table | Catalog |
2641 | |
2642 Catalog Separator (@) |

2643 To determine the catalog separator and the location of the catalog name, an application calls |
2644 SQLGetInfo() with the SQL_QUALIFIER_NAME_SEPARATOR and |
2645 SQL_QUALIFIER_LOCATION options. Interoperable applications should build identifiers |
2646 according to these values. |

2647 When quoting identifiers that contain more than one part, applications must be careful to quote |
2648 each part separately and not quote the character that separates the identifiers. For example, the |
2649 following statement to select all of the rows and columns of an Xbase table quotes the catalog |
2650 (\XBASE\SALES\CORP) and table (PARTS.DBF) names, but not the catalog separator (\): |

2651 SELECT * FROM ’\XBASE\SALES\CORP’\’PARTS.DBF’ |

2652 The following statement to select all of the rows and columns of an Oracle table quotes the |
2653 catalog (Sales), schema (Corporate), and table (Parts) names, but not the catalog (@) or schema (.) |
2654 separators: |

2655 SELECT * FROM ’Corporate’.’Parts’@’Sales’ |

2656 Quoted Identifiers |

2657 In an SQL statement, identifiers containing special characters or reserved keywords must be |
2658 enclosed in identifier quote characters; these identifiers are known as quoted identifiers. For example, |
2659 the Accounts Payable identifier is quoted in the following SELECT statement: |

2660 SELECT * FROM ’Accounts Payable’ |

2661 Quoting identifiers makes the statement parseable. For example, if Accounts Payable weren’t |
2662 quoted in the previous statement, the parser would assume there were two tables, Accounts and |
2663 Payable, and return a syntax error that they weren’t separated by a comma. The identifier quote |
2664 character is implementation-specific and is retrieved with the |
2665 SQL_IDENTIFIER_QUOTE_CHAR option in SQLGetInfo(). The lists of special characters and of |
2666 keywords are retrieved with the SQL_SPECIAL_CHARACTERS and SQL_KEYWORDS options |
2667 in SQLGetInfo(). |

2668 To be safe, interoperable applications often quote all identifiers except those for pseudo- |
2669 columns. SQLSpecialColumns() returns a list of pseudo-columns. |

2670 Identifier Case |

2671 In SQL statements and catalog function arguments, identifiers and quoted identifiers can be |
2672 either case sensitive or case insensitive. An application determines which they are by calling |
2673 SQLGetInfo() with the SQL_IDENTIFIER_CASE and SQL_QUOTED_IDENTIFIER_CASE |
2674 options. |

2675 Each of these options has four possible return values: one stating that the identifier or quoted |
2676 identifier case is sensitive and three stating that it is insensitive. The three case insensitive values |
2677 further describe the case in which identifiers are stored in the system catalog. How identifiers are |
2678 stored in the system catalog is relevant only for display purposes, such as when an application |
2679 displays the results of a catalog function; it doesn’t change the case sensitivity of identifiers. |

84 Direct Review (Build ID 96KAV) (Draft XDBC.33, August 1996)

SQL Statements Constructing Interoperable SQL Statements

2680 Literal Prefixes and Suffixes |

2681 In an SQL statement, a literal is a character representation of an actual data value. For example, |
2682 in the following statement, ABC, FFFF, and 10 are literals: |

2683 SELECT CharCol, BinaryCol, IntegerCol FROM MyTable |
2684 WHERE CharCol = ’ABC’ AND BinaryCol = 0xFFFF AND IntegerCol = 10 |

2685 Literals for some data types require special prefixes and suffixes. In the preceding example, the |
2686 character literal (ABC) requires a single quotation mark (’) as both a prefix and a suffix, the |
2687 binary literal (FFFF) requires the characters 0x as a prefix but no suffix, and the integer literal (10) |
2688 doesn’t require a prefix or suffix. |

2689 For all data types except date, time, and timestamps, interoperable applications should use the |
2690 values returned in the LITERAL_PREFIX and LITERAL_SUFFIX columns in the result set |
2691 created by SQLGetTypeInfo(). For date, time, timestamp, and date/time interval literals, |
2692 interoperable applications should use the escape clauses discussed in the previous section. |

2693 Parameter Markers in Procedure Calls |

2694 When calling procedures that accept parameters, interoperable applications should use |
2695 parameter markers instead of literal parameter values. Some data sources don’t support the use |
2696 of literal parameter values in procedure calls. For more information about parameters, see |
2697 Section 9.4 on page 102. For more information about calling procedures, see Section 8.3.6 on |
2698 page 88. |

2699 DDL Statements |

2700 Data Definition Language (DDL) statements vary among data sources. X/Open SQL defines |
2701 statements for the most common data definition operations: creating and dropping tables, |
2702 indexes, and views, altering tables, and granting and revoking privileges. Other data-source- |
2703 specific DDL operations are best left to the proprietary database administration software |
2704 shipped with most data sources. |

2705 In addition, data type names also vary among data sources. Rather than defining standard data |
2706 type names and forcing implementations to convert them to data-source-specific names, |
2707 SQLGetTypeInfo() lets applications determine data-source-specific data type names. |
2708 Interoperable applications should use these names in SQL statements to create and alter tables. |

Data Management: X/Open Database Connectivity (XDBC), Version 2 85

Escape Clauses SQL Statements

2709 8.3 Escape Clauses |

2710 A number of language features, such as outer joins and scalar function calls, are commonly |
2711 implemented by data sources. However, the syntax for these features tend to be data-source- |
2712 specific, even where the X/Open SQL specification defines standard syntax. Because of this, |
2713 XDBC defines escape clauses that contain standard syntaxes for the following language features: |

2714 • Date/time, timestamp, and interval literals |
2715 • Scalar functions such as numeric, string, and data type conversion functions |
2716 • LIKE predicate escape character |
2717 • Outer joins |
2718 • Procedure calls |

2719 Because the implementation translates escape clauses to data-source-specific syntax, an |
2720 application can use either the escape clause or data-source-specific syntax. However, use of the |
2721 escape clause promotes portability. |

2722 When using the escape clause, applications must not set the SQL_ATTR_NOSCAN statement |
2723 attribute, which directs the implementation to send SQL text directly to the data source. Sending |
2724 XDBC escape clauses to the data source usually causes a syntax error. |

2725 Implementations only support those escape clauses that they can map to underlying language |
2726 features. For example, if the data source doesn’t support outer joins, neither does the |
2727 implementation. To determine which escape clauses are supported, an application calls |
2728 SQLGetTypeInfo() and SQLGetInfo(). |

2729 Syntax |

2730 An escape clause consists of an extension to standard SQL enclosed within braces:12 |

2731 { extension } |

2732 8.3.1 Date, Time and Timestamp Literals |

2733 The X/Open SQL specification specifies the format of date, time, and timestamp literals |
2734 compatibly with the ISO SQL standard. An application can determine if the implementation |
2735 supports this format for literals by calling SQLGetInfo() with the |
2736 SQL_ANSI_SQL_DATETIME_LITERALSoption. |

2737 The XDBC escape clause for date, time and timestamp literals is: |

2738 { literal-type ’ value ’} |

2739 where literal-type is one of the following: |

2740 __________________ |
2741 12. SQL-language escape clauses. Section 7.2 of the X/Open SQL specification defines a separate escape clause to be used for |||

extensions to SQL. Two forms are defined, one for extensions by future formal standards, and a vendor-escape-clause for vendor |||
2742 extensions, which has the following format: |||

2743 --(* VENDOR(vendor-name), PRODUCT(product-name) extension *)-- |||

2744 Some implementations may accept the vendor-escape-clause, where vendor-name and product-name are specified by the vendor, and |||
where extension is one of the same extensions to SQL documented in this specification. |||

2745 Use of a vendor-escape-clause raises the same potential portability problems as use of other vendor-specific SQL syntax. Moreover, |||
for an unrecognised XDBC escape clause, extension is passed to the data source without change, whereas the X/Open SQL |||

2746 specification specifies that the SQL implementation "conceptually deletes the entire" unrecognized escape clause. |||

86 Direct Review (Build ID 96KAV) (Draft XDBC.33, August 1996)

SQL Statements Date, Time and Timestamp Literals

2747 literal-type Meaning Format of value ||
2748 d Date yyyy−mm−dd |
2749 t Time hh:mm:ss |
2750 ts Timestamp yyyy−mm−dd hh:mm:ss[.fff] |

2751 To determine if an implementation supports the XDBC escape clauses for date, time, timestamp, |
2752 or date/time interval literals, an application calls SQLGetTypeInfo(). If the data source supports a |
2753 date, time, timestamp, or interval data type, it must also support the corresponding escape |
2754 clause. |

2755 Examples |

2756 Each of the following SQL statements updates the open date of sales order 1023 in the Orders |
2757 table. The first statement uses standard syntax from the X/Open SQL specification. The second |
2758 statement uses an XDBC escape clause. The third statement uses proprietary syntax for a certain |
2759 data source and is not portable. |

2760 UPDATE Orders SET OpenDate=DATE ’1995-01-15’ WHERE OrderID=1023 |
2761 UPDATE Orders SET OpenDate={d ’1995-01-15’} WHERE OrderID=1023 |
2762 UPDATE Orders SET OpenDate=’15-Jan-1995’ WHERE OrderID=1023 |

2763 The escape clause for a date, time, or timestamp literal can also be placed in a character variable |
2764 bound to a date, time, or timestamp parameter. For example, the following code uses a date |
2765 parameter bound to a character variable to update the open date of sales order 1023 in the |
2766 Orders table: |

2767 SQLCHAR OpenDate[56]; // The size of a date literal is 55. |
2768 SQLINTEGER OpenDateLenOrInd = SQL_NTS; |

2769 // Bind the parameter |
2770 SQLBindParameter(hstmt, 1, SQL_PARAM_INPUT, SQL_C_CHAR, SQL_TYPE_DATE, |
2771 0, 0, OpenDate, sizeof(OpenDate), &OpenDateLenOrInd); |

2772 // Place the date in the OpenDate variable. |
2773 strcpy(OpenDate, "{d ’1995-01-15’}"); |

2774 // Execute the statement |
2775 SQLExecDirect(hstmt, "UPDATE Orders SET OpenDate=? WHERE OrderID = 1023", |
2776 SQL_NTS); |

2777 However, it is usually more efficient to bind the parameter directly to a date structure: |

2778 SQL_DATE_STRUCT OpenDate; |
2779 SQLINTEGER OpenDateInd = 0; |

2780 // Bind the parameter |
2781 SQLBindParameter(hstmt, 1, SQL_PARAM_INPUT, SQL_C_TYPE_DATE, SQL_TYPE_DATE, |
2782 0, 0, &OpenDate, 0, &OpenDateLen); |

2783 // Place the date in the dsOpenDate structure. |
2784 OpenDate.year = 1995; |
2785 OpenDate.month = 1; |
2786 OpenDate.day = 15; |

2787 // Execute the statement |
2788 SQLExecDirect(hstmt, "UPDATE Employee SET OpenDate=? WHERE OrderID = 1023", |
2789 SQL_NTS); |

Data Management: X/Open Database Connectivity (XDBC), Version 2 87

Interval Literals SQL Statements

2790 8.3.2 Interval Literals |

2791 The X/Open SQL specification specifies the format of interval literals compatibly with the ISO |
2792 SQL standard. An application can determine if the implementation supports this format for |
2793 literals by calling SQLGetInfo() with the SQL_ANSI_SQL_DATETIME_LITERALSoption. |

2794 The XDBC escape clause for interval literals is: |

2795 { interval-literal ’} |

2796 where interval-literal is exactly the interval literal defined in the ISO SQL standard. The first |
2797 syntactic element within an interval-literal is always the word INTERVAL; this distinguishes this |
2798 escape clause from other escape clauses. |

2799 Here is an example of an XDBC escape clause for an interval literal representing minus five |
2800 hours: |

2801 {INTERVAL − ’5:00:00’ HOUR TO SECOND} |

2802 To determine if an implementation supports the XDBC escape clauses for date, time, timestamp, |
2803 or date/time interval literals, an application calls SQLGetTypeInfo(). If the data source supports |
2804 an interval data type, it must also support the corresponding escape clause. |

2805 8.3.3 Scalar Function Calls |

2806 Scalar functions return a value for each row. For example, the absolute value scalar function |
2807 takes a numeric column as an argument and returns the absolute value of each value in the |
2808 column. The escape clause for calling a scalar function is: |

2809 {fn scalar-function } |

2810 where scalar-function is one of the functions listed in Appendix F. For example, the following |
2811 SQL statements create the same result set of upper-case customer names. The second statement |
2812 uses proprietary syntax and is not portable: |

2813 SELECT {fn UCASE(Name)} FROM Customers |
2814 SELECT uppercase(Name) FROM Customers |

2815 It is valid but not portable for an application to mix calls uses of proprietary syntax and XDBC |
2816 escape clauses in the same SQL statement. |

2817 Appendix F contains more details and indicates how an application determines which scalar |
2818 functions the data source supports. |

2819 8.3.4 LIKE Predicate Escape Character |

2820 In a LIKE predicate, the percent character (%) matches zero or more of any character and the |
2821 underscore character (_) matches any one character. To match an actual percent or underscore |
2822 characters in a LIKE predicate, an escape character must precede the percent or underscore |
2823 character. |

2824 Standard syntax for outer joins is defined in the ISO SQL standard. The X/Open SQL |
2825 specification presents the same syntax. Applications can determine if the data source supports |
2826 standard outer join syntax by calling SQLGetInfo() with the SQL_ANSI_SQL_CONFORMANCE |
2827 option. If it discloses any compliance (Entry level or above) then the standard LIKE...ESCAPE |
2828 clause is available. |

2829 The escape clause that defines the LIKE predicate escape character is: |

2830 {escape ’ escape-character ’} |

88 Direct Review (Build ID 96KAV) (Draft XDBC.33, August 1996)

SQL Statements LIKE Predicate Escape Character

2831 where escape-character is any character supported by the data source. |

2832 For example, the following SQL statements create the same result set of customer names that |
2833 start with the characters ’%AAA’. The second statement uses proprietary syntax and is not |
2834 portable. (The second percent character in each LIKE predicate is a wild card that matches zero |
2835 or more of any character.) |

2836 SELECT Name FROM Customers WHERE Name LIKE ’\%AAA%’ {escape ’\’} |
2837 SELECT Name FROM Customers WHERE Name LIKE ’[%]AAA%’ |

2838 To determine whether the LIKE predicate escape character is supported by a data source, an |
2839 application calls SQLGetInfo() with the SQL_LIKE_ESCAPE_CLAUSE option. |

2840 8.3.5 Outer Joins |

2841 Standard syntax for outer joins is defined in the ISO SQL standard. The X/Open SQL |
2842 specification presents the same syntax. Applications can determine if the data source supports |
2843 standard outer join syntax by calling SQLGetInfo() with the |
2844 SQL_SQL92_RELATIONAL_JOIN_OPERATORS option (and testing the |
2845 SQL_SRJO_FULL_OUTER_JOIN, SQL_SRJO_LEFT_OUTER_JOIN, and |
2846 SQL_SRJO_RIGHT_OUTER_JOIN bitmasks). |

2847 The XDBC escape clause for outer joins is: |

2848 {oj outer-join } |

2849 where outer-join is: |

2850 table-reference {LEFT | RIGHT | FULL} OUTER JOIN |

2851 { table-reference | outer-join } ON search-condition |

2852 and table-reference specifies a table name, and search-condition specifies the join condition between |
2853 the table-references. An outer join request must appear after the FROM keyword and before any |
2854 WHERE clause. |

2855 For example, the following SQL statements create the same result set that lists all customers and |
2856 shows which has open orders. The second statement uses proprietary syntax and is not |
2857 portable. |

2858 SELECT Customers.CustID, Customers.Name, Orders.OrderID, Orders.Status |
2859 FROM {oj Customers LEFT OUTER JOIN Orders ON Customers.CustID=Orders.CustID} |
2860 WHERE Orders.Status=’OPEN’ |

2861 SELECT Customers.CustID, Customers.Name, Orders.OrderID, Orders.Status |
2862 FROM Customers , Orders |
2863 WHERE (Orders.Status=’OPEN’) AND (Customers.CustID= Orders.CustID(+)) |

2864 To determine whether the data source supports outer joins and the implementation supports the |
2865 outer join escape clause, an application calls SQLGetInfo() with the SQL_OUTER_JOIN option. |
2866 To determine the types of outer joins a data source and implementation support, an application |
2867 calls SQLGetInfo() with the SQL_OJ_CAPABILITIES option. The types of outer joins that might |
2868 be supported are left, right, full, or nested outer joins; outer joins in which the column names in |
2869 the ON clause don’t have the same order as their respective table names in the OUTER JOIN |
2870 clause; inner joins in conjunction with outer joins; and outer joins using any XDBC comparison |
2871 operator. |

Data Management: X/Open Database Connectivity (XDBC), Version 2 89

Procedure Calls SQL Statements

2872 8.3.6 Procedure Calls |

2873 A procedure is an executable object stored on the data source (see Section 9.3.3 on page 97). There |
2874 is not yet standard syntax for calling a procedure. Applications can determine whether the |
2875 implementation supports procedure calls and the XDBC escape clause defined below by calling |
2876 SQLGetInfo() with the SQL_PROCEDURES option. |

2877 The escape clause for calling a procedure is: |

2878 {[?=] call procedure-name [([parameter][,...])]} |

2879 where procedure-name specifies the name of a procedure and parameter specifies a procedure |
2880 parameter. |

2881 Procedure Parameters |

2882 A procedure can have zero or more parameters. Each parameter can be an input parameter (used |
2883 only to supply a value from the calling application to the procedure), output parameter (used only |
2884 to return a value from the procedure to the calling application), or an input/output parameter |
2885 (capable of both uses). |

2886 A procedure can also return a value, as indicated by the optional parameter marker ?= at the |
2887 start of the syntax. The return value mechanism provides the same capabilities as an output |
2888 parameter. The writer of a procedure should disclose to its callers information on the number |
2889 and meaning of parameters when calling the procedure. |

2890 The application must use a dynamic parameter marker for the procedure’s output parameters. |
2891 Portable applications should code a dynamic parameter marker for each procedure parameter. |
2892 Parameter markers must be bound with SQLBindParameter() before the procedure call statement |
2893 is executed. |

2894 Some SQL implementations at the data source allow the following coding options: |

2895 • The use of a literal as an input or input/output procedure parameter |

2896 • The omission of an input or input/output procedure parameter. When omitting a parameter, |
2897 the comma separating it from other parameters must still appear. The procedure uses the |
2898 default value of the parameter. A portable way to direct the procedure to use the default |
2899 value of an input or input/output parameter is to set the associated length/indicator buffer |
2900 to SQL_DEFAULT_PARAM. |

2901 All XDBC implementations accept these options in the XDBC escape clause for procedure calls |
2902 and translate them into appropriate SQL syntax for the data source. If these options are invalid |
2903 at the data source, either the XDBC implementation or the data source may issue diagnostics. |

2904 If a procedure includes parentheses with nothing between them, it implies a single, omitted |
2905 parameter. This optional syntax is not valid in some SQL implementations. To call a procedure |
2906 that does not accept parameters, omit the parentheses. |

2907 If an input/output parameter is omitted or if a literal is supplied for the parameter, the |
2908 implementation discards the output value. Similarly, if the parameter marker for the return |
2909 value of a procedure is omitted, the implementation discards the return value. Finally, if an |
2910 application specifies a return value parameter for a procedure that doesn’t return a value, the |
2911 implementation sets the value of the length/indicator buffer bound to the parameter to |
2912 SQL_NULL_DATA. |

90 Direct Review (Build ID 96KAV) (Draft XDBC.33, August 1996)

SQL Statements Procedure Calls

2913 Example |

2914 Suppose the procedure PARTS_IN_ORDERS creates a result set containing a list of orders which |
2915 contain a particular part number. The following code calls this procedure for part number 544: |

2916 SQLUINTEGER PartID; |
2917 SQLINTEGER PartIDInd = 0; |

2918 // Bind the parameter. |
2919 SQLBindParameter(hstmt, 1, SQL_PARAM_INPUT, SQL_C_SLONG, |
2920 SQL_INTEGER, 0, 0, &PartID, 0, PartIDInd); |

2921 // Place the department number in PartID. |
2922 PartID = 544; |

2923 // Execute the statement. |
2924 SQLExecDirect(hstmt, "{call PARTS_IN_ORDERS(?)}", SQL_NTS); |

2925 To determine if a data source supports procedures, an application calls SQLGetInfo() with the |
2926 SQL_PROCEDURES option. |

2927 Notes to Reviewers |
2928 This section with side shading will not appear in the final copy. - Ed. |

2929 We need to update this section to discuss named parameters. This information will be added to |
2930 the ODBC specification. |

Data Management: X/Open Database Connectivity (XDBC), Version 2 91

SQL Statements |

92 Direct Review (Build ID 96KAV) (Draft XDBC.33, August 1996)

2931 Chapter 9 |

2932 Executing Statements |

2933 XDBC applications perform almost all of their database access by executing SQL statements. The |
2934 general sequence of events is to allocate a statement handle, set any statement attributes, execute |
2935 the statement, retrieve any results, and free the statement handle. |

Data Management: X/Open Database Connectivity (XDBC), Version 2 93

Allocating a Statement Handle Executing Statements

2936 9.1 Allocating a Statement Handle |

2937 Before the application can execute a statement, it must allocate a statement handle. To do this, |
2938 The application declares a variable of type HSTMT. It then calls SQLAllocHandle() with the |
2939 address of this variable, the handle of the connection in which to allocate the statement, and the |
2940 SQL_HANDLE_STMT option. For example: |

2941 SQLHSTMT hstmt1; |
2942 SQLAllocHandle(SQL_HANDLE_STMT, hdbc1, &hstmt1); |

2943 The statement handle identifies which statement to use when calling XDBC functions. For more |
2944 information about statement handles, see Section 4.1.3 on page 36. |

94 Direct Review (Build ID 96KAV) (Draft XDBC.33, August 1996)

Executing Statements Statement Attributes

2945 9.2 Statement Attributes |

2946 Statement attributes are characteristics of the statement. For example, whether to use |
2947 bookmarks and what kind of cursor to use with the statement’s result set are statement |
2948 attributes. |

2949 Statement attributes are set with SQLSetStmtAttr() and their current settings retrieved with |
2950 SQLGetStmtAttr(). Statement attributes can also be set with SQLSetConnectAttr(); this applies |
2951 the new value to all statements on a connection and makes it the default for any new statements. |
2952 There is no requirement that an application set any statement attributes; all statement attributes |
2953 have defaults, some of which are implementation-defined. |

2954 When a statement attribute can be set depends on the attribute itself. The |
2955 SQL_ATTR_CONCURRENCY, SQL_ATTR_CURSOR_TYPE, SQL_ATTR_SIMULATE_CURSOR, |
2956 and SQL_ATTR_USE_BOOKMARKS statement attributes must be set before the statement is |
2957 executed. The SQL_ATTR_ASYNC_ENABLE and SQL_ATTR_NOSCAN statement attributes |
2958 can be set at any time, but are not applied until the statement is used again. |
2959 SQL_ATTR_MAX_LENGTH, SQL_ATTR_MAX_ROWS, and SQL_ATTR_QUERY_TIMEOUT |
2960 statement attributes can be set at any time, but it’s implementation-defined whether they are |
2961 applied before the statement is used again. The remaining statement attributes can be set at any |
2962 time. |

2963 For more information, see SQLSetStmtAttr(). |

2964 9.2.1 Temporary Changes to Statement Attribute Value |

2965 When an application calls SQLExecDirect(), SQLExecute(), SQLGetTypeInfo(), or SQLPrepare() it is |
2966 possible that the current values of the following statement attributes are incompatible with the |
2967 capabilities of the implementation or the data source: |

2968 SQL_ATTR_CONCURRENCY ||
2969 SQL_ATTR_CURSOR_TYPE ||
2970 SQL_ATTR_KEYSET_SIZE ||
2971 SQL_ATTR_MAX_LENGTH ||
2972 SQL_ATTR_MAX_ROWS ||
2973 SQL_ATTR_QUERY_TIMEOUT ||
2974 SQL_ATTR_SIMULATE_CURSOR ||

2975 Thus the SQL statement could not be executed or other operations specified by the XDBC |
2976 function could not be completed with the specified statement attributes. |

2977 Under implementation-defined criteria, the implementation may temporarily substitute a value |
2978 for one or more of these statement attributes. In this case, the XDBC function succeeds, returns |
2979 SQL_SUCCESS_WITH_INFO, and sets SQLSTATE to 01S02 (Attribute value changed). The |
2980 application can call SQLGetStmtAttr() for the attributes listed above to obtain the current value |
2981 and thereby determine what changes the implementation made. |

2982 The substitute value is valid for the statement handle until the first of the following occurs: |

2983 • The cursor is closed by any means. |

2984 • SQLMoreResults() is called on the statement handle. |

2985 • SQLCloseCursor() is called on the statement handle. |
2986 At this point, the statement attribute reverts to its previous value. |

Data Management: X/Open Database Connectivity (XDBC), Version 2 95

Executing a Statement Executing Statements

2987 9.3 Executing a Statement |

2988 There are four ways to execute a statement, depending on when they are compiled (prepared) by |
2989 the database engine and who defines them: |

2990 • Direct execution |

2991 The application defines the SQL statement. It is prepared and executed at run time in a single |
2992 step. |

2993 • Prepared execution |

2994 The application defines the SQL statement. It is prepared and executed at run time in |
2995 separate steps. The statement can be prepared once and executed multiple times. |

2996 • Procedures |

2997 One or more SQL statements are compiled at some time before the application executes and |
2998 are stored on the data source as a procedure. The provider of the data source may provide |
2999 built-in procedures. The procedure is executed one or more times at run time. The |
3000 application can call SQLProcedures() to determine what procedures are available for |
3001 execution. |

3002 • Catalog functions |

3003 The application calls a catalog function of XSQL. This function conceptually executes a |
3004 predefined SQL statement, or calls a procedure created for this purpose, which returns a |
3005 result set. The function is executed one or more times at run time. |

3006 A particular statement (identified by its statement handle) can be executed any number of times. |
3007 The statement can be executed with a variety of different SQL statements or it can be repeatedly |
3008 executed with the same SQL statement. For example, the following code uses the same |
3009 statement handle (hstmt1) to retrieve and display the tables in the Sales database. It then reuses |
3010 this handle to retrieve the columns in a table selected by the user. |

3011 SQLHSTMT hstmt1; |
3012 SQLCHAR *Table; |

3013 // Create a result set of all tables in the Sales database. |
3014 SQLTables(hstmt1, ’Sales’, SQL_NTS, ’sysadmin’, SQL_NTS, NULL, 0, NULL, 0); |

3015 // Fetch and display the table names, then close the cursor. |
3016 // Code not shown. |

3017 // Have the user select a particular table. |
3018 SelectTable(Table); |

3019 // Reuse hstmt1 to create a result set of all columns in *Table. |
3020 SQLColumns(hstmt1, ’Sales’, SQL_NTS, ’sysadmin’, SQL_NTS, Table, SQL_NTS, NULL, 0); |

3021 // Fetch and display the column names in Table, then close the cursor. |
3022 // Code not shown. |

3023 The following code shows how a single handle is used to repeatedly execute the same statement |
3024 to delete rows from a table. |

3025 SQLHSTMT hstmt1; |
3026 SQLUINTEGER OrderID; |
3027 SQLINTEGER OrderIDInd = 0; |

3028 // Prepare a statement to delete orders from the Orders table. |
3029 SQLPrepare(hstmt1, ’DELETE FROM Orders WHERE OrderID = ?’, SQL_NTS); |

3030 // Bind OrderID to the parameter for the OrderID column. |
3031 SQLBindParameter(hstmt, 1, SQL_PARAM_INPUT, SQL_C_ULONG, SQL_INTEGER, 5, 0, |
3032 &OrderID, 0, &OrderIDInd); |

3033 // Repeatedly execute hstmt1 with different values of OrderID. |
3034 while ((OrderID = GetOrderID()) != 0) { |

96 Direct Review (Build ID 96KAV) (Draft XDBC.33, August 1996)

Executing Statements Executing a Statement

3035 SQLExecute(hstmt1); |
3036 } |

3037 On many implementations, allocating statements is costly, so reusing the same statement in this |
3038 manner is usually more efficient than freeing existing statements and allocating new ones. |
3039 Applications that create result sets on a statement must be careful to close the cursor over the |
3040 result set before reexecuting the statement; for more information, see Section 10.5 on page 137. |

3041 Reusing statements also forces the application to avoid a limitation in some implementations of |
3042 the number of statements that can be active at one time. A statement is active if it has been |
3043 prepared or has been executed and still has results available. For example, after an INSERT |
3044 statement has been prepared, it’s generally considered to be active; after a SELECT statement has |
3045 been executed and the cursor is still open, it’s generally considered to be active; after a CREATE |
3046 TABLE statement has been executed, it’s not generally considered to be active. |

3047 An application determines how many statements can be active at one time by calling |
3048 SQLGetInfo() with the SQL_MAX_CONCURRENT_ACTIVITIES option. Applications should |
3049 observe this limit and limit concurrent activities by executing statements in sequence rather than |
3050 concurrently. Another option is to open multiple connections to the data source, but opening |
3051 and maintaining multiple connections is relatively costly. |

3052 Applications can limit the amount of time allotted for a statement to execute with the |
3053 SQL_ATTR_QUERY_TIMEOUT statement attribute. Setting a timeout provides that the |
3054 statement fails if it does not complete by the end of this interval. It returns diagnostic |
3055 information that indicates that the nature of the failure was a timeout. By default, there is no |
3056 timeout. |

3057 9.3.1 Direct Execution |

3058 Direct execution is the simplest way to execute a statement. When the statement is submitted |
3059 for execution, the data source compiles it into an access plan and then executes that access plan. |

3060 Direct execution is commonly used by generic applications that build and execute statements at |
3061 run time. For example, the following code builds an SQL statement and executes it a single time: |

3062 SQLCHAR *SQLStatement; |

3063 // Build an SQL statement. |
3064 BuildStatement(SQLStatement); |

3065 // Execute the statement. |
3066 SQLExecDirect(hstmt, SQLStatement, SQL_NTS); |

3067 Direct execution is most suited to statements executed a single time. SQLExecDirect() should not |
3068 be used to execute the same statement repeatedly because it will prepare the statement again, |
3069 which is unnecessary. The application cannot retrieve information about any result set created |
3070 by the statement until after the statement is executed; this is possible if the statement is prepared |
3071 and executed in two separate steps. |

3072 To execute a statement directly, the application: |

3073 • Sets the values of any parameters. For more information, see Section 9.4 on page 102. |

3074 • Calls SQLExecDirect() and passes it a string containing the SQL statement. |

3075 When SQLExecDirect() is called, the implementation: |

3076 • Performs text substitutions for any escape clauses (see Section 8.3 on page 84). |

3077 • Retrieves the current parameter values and converts them as necessary. For more |
3078 information, see Section 9.4 on page 102. |

3079 • Sends the statement and converted parameter values to the data source for execution. |

Data Management: X/Open Database Connectivity (XDBC), Version 2 97

Direct Execution Executing Statements

3080 • Returns diagnostic information (see Chapter 15. |

3081 9.3.2 Prepared Execution |

3082 Prepared execution is an efficient way to execute a statement more than once. The statement is |
3083 first compiled, or prepared, into an access plan. The access plan is then executed one or more |
3084 times at a later time. |

3085 Prepared execution is commonly used by vertical and custom applications to repeatedly execute |
3086 the same, parameterized SQL statement. For example, the following code prepares a statement |
3087 to update the prices of different parts. It then executes the statement multiple times with |
3088 different parameter values each time. |

3089 SQLREAL Price; |
3090 SQLUINTEGER PartID; |
3091 SQLINTEGER PartIDInd = 0, PriceInd = 0; |

3092 // Prepare a statement to update salaries in the Employees table. |
3093 SQLPrepare(hstmt, ’UPDATE Parts SET Pric e = ? WHERE PartID = ?’, SQL_NTS); |

3094 // Bind Price to the parameter for the Price column and PartID to |
3095 // the parameter for the PartID column. |
3096 SQLBindParameter(hstmt, 1, SQL_PARAM_INPUT, SQL_C_FLOAT, SQL_REAL, 7, 0, |
3097 &Price, 0, &PriceInd); |
3098 SQLBindParameter(hstmt, 2, SQL_PARAM_INPUT, SQL_C_ULONG, SQL_INTEGER, 10, 0, |
3099 &PartID, 0, PartIDInd); |

3100 // Repeatedly execute the statement. |
3101 while (GetPrice(&PartID, &Price)) { |
3102 SQLExecute(hstmt); |
3103 } |

3104 Prepared execution is faster than direct execution for statements executed more than once, |
3105 primarily because the statement is compiled only once; statements executed directly are |
3106 compiled each time they are executed. Prepared execution may also reduce network traffic if the |
3107 data source lets the implementation send it an access plan identifier each time the statement is |
3108 executed, rather than an entire SQL statement. |

3109 Prepared execution shouldn’t be used for statements executed a single time. For such |
3110 statements, it’s slightly slower than direct execution because it requires an additional XDBC |
3111 function call. |

3112 Transaction completion may have side-effects on cursors and on access plans of prepared |
3113 statements. See Section 14.1.3 on page 184. |

3114 To prepare and execute a statement, the application: |

3115 1. Calls SQLPrepare() and passes it a string containing the SQL statement. |

3116 2. Sets the values of any parameters. (This can also be done before Step 1.) For more |
3117 information, see Section 9.4 on page 102. |

3118 The application can also retrieve the metadata (see Section 10.2 on page 127) for the result |
3119 set now. (However, see Performance Note on page 279.) |

3120 3. Calls SQLExecute() and does any additional processing that is necessary, such as fetching |
3121 data. |

3122 4. Repeats steps 2 and 3 as necessary. |

3123 When SQLPrepare() is called, the implementation: |

3124 • Performs text substitutions for any escape clauses (see Section 8.3 on page 84). |

98 Direct Review (Build ID 96KAV) (Draft XDBC.33, August 1996)

Executing Statements Prepared Execution

3125 • Sends the statement to the data source for preparation. The data source compiles the |
3126 statement and prepares an access plan. |

3127 • Stores the returned access plan identifier for later execution (if the preparation succeeded) or |
3128 returns diagnostic information (if the preparation failed). (See Chapter 15). |

3129 Note: Some implementations defer the reporting of errors until a catalog function is called or |
3130 until the statement is executed. Thus, SQLPrepare() might appear to have succeeded when in |
3131 fact it has failed. |

3132 When SQLExecute() is called, the implementation: |

3133 • Retrieves the current parameter values and converts them as necessary. For more |
3134 information, see Section 9.4 on page 102. |

3135 • Sends the access plan identifier and converted parameter values to the data source. |

3136 • Returns diagnostic errors (see Chapter 15). |

3137 A data source need not support statement preparation. The data source might accept the SQL |
3138 statement at SQLPrepare() but take no other action until SQLExecute(). If the data source |
3139 supports syntax checking without execution, the implementation might submit the statement for |
3140 checking when SQLPrepare() is called and submit the statement for execution when |
3141 SQLExecute() is called. |

3142 If the implementation cannot emulate statement preparation, it stores the statement when |
3143 SQLPrepare() is called and submits it for execution when SQLExecute() is called. |

3144 Because emulated statement preparation isn’t perfect, SQLExecute() can return any errors |
3145 normally returned by SQLPrepare(). |

3146 9.3.3 Procedures |

3147 A procedure is an executable object stored on the data source. Generally, it’s one or more SQL |
3148 statements that have been precompiled. |

3149 Procedures can be invoked using input parameters and output parameters. |

3150 The term procedure in this specification encompasses procedures that can return a single value |
3151 that is used in the syntactic context in which the procedure appears. This type of procedure is |
3152 also known as a function. |

3153 When to Use Procedures |

3154 The advantages to using procedures are based on the fact that using procedures moves SQL |
3155 statements from the application to the data source. What is left in the application is an |
3156 interoperable procedure call. These advantages include: |

3157 • Performance |

3158 Procedures are usually the fastest way to execute SQL statements. Like prepared execution, |
3159 the statement is compiled and executed in two separate steps. Unlike prepared execution, |
3160 compilation occurs in advance and only execution occurs when the application runs. |

3161 • Business Rules |

3162 A business rule is a rule about the way in which a company does business. For example, only |
3163 someone with the title Sales Person might be allowed to add new sales orders. Placing these |
3164 rules in procedures allows individual companies to customize vertical applications by |
3165 rewriting the procedures called by the application without having to modify the application |
3166 code. For example, an order entry application might call the procedure InsertOrder with a |
3167 fixed number of parameters; exactly how InsertOrder is implemented can vary from |

Data Management: X/Open Database Connectivity (XDBC), Version 2 99

Procedures Executing Statements

3168 company to company. |

3169 • Replaceability |

3170 Closely related to placing business rules in procedures is the fact that procedures can be |
3171 replaced without recompiling the application. If a business rule changes after a company has |
3172 bought and installed an application, the company can change the procedure containing that |
3173 rule. From the application’s standpoint, nothing has changed; it still calls a particular |
3174 procedure to accomplish a particular task. |

3175 • Data-source-specific SQL |

3176 Procedures provide a way for applications to exploit data-source-specific SQL and still |
3177 remain interoperable. For example, a procedure on a data source that supports control-of- |
3178 flow statements in SQL might trap and recover from errors, while a procedure on a data |
3179 source that doesn’t support control-of-flow statements might simply return an error. |

3180 • Procedures Survive Transactions |

3181 On some data sources, the access plans for all prepared statements on a connection are |
3182 deleted when a transaction is committed or rolled back. By placing SQL statements in |
3183 procedures, which are permanently stored in the data source, the statements survive the |
3184 transaction. Whether the procedures survive in a prepared, partially prepared, or unprepared |
3185 state is data-source-specific. |

3186 • Separate Development |

3187 Procedures can be developed separately from the rest of the application. In large |
3188 corporations, this might provide a way to further exploit the skills of specialized |
3189 programmers: Application programmers write user interface code and database |
3190 programmers write procedures. |

3191 Procedures are generally used by vertical and custom applications. These applications tend to |
3192 perform fixed tasks and it’s possible to hard-code procedure calls in them. For example, an order |
3193 entry application might call the procedures InsertOrder, DeleteOrder, UpdateOrder, and |
3194 GetOrders. |

3195 There is little reason to call procedures from generic applications. Procedures are generally |
3196 written to perform a task in the context of a particular application and so have no use to generic |
3197 applications. For example, a spreadsheet has no reason to call the InsertOrder procedure just |
3198 mentioned. Furthermore, generic applications shouldn’t construct procedures at run time in |
3199 hopes of providing faster statement execution; not only is this likely to be slower than prepared |
3200 or direct execution, it also requires data-source-specific SQL statements. |

3201 An exception to this is application development environments, which often provide a way for |
3202 programmers to build SQL statements that execute procedures and may provide a way for |
3203 programmers to test procedures. Such environments call SQLProcedures() to list available |
3204 procedures and SQLProcedureColumns() to list the input, input/output, and output parameters, |
3205 the procedure return value, and the columns of any result sets created by a procedure. However, |
3206 such procedures must be developed beforehand on each data source; doing so requires data- |
3207 source-specific SQL statements. |

3208 There are three major disadvantages to using procedures. The first is that procedures must be |
3209 written and compiled for each data source with which the application is to run. While this isn’t a |
3210 problem for custom applications, it can significantly increase development and maintenance |
3211 time for vertical applications designed to run with a number of data sources. |

3212 The second disadvantage is that many data sources don’t support procedures. Again, this is |
3213 most likely to be a problem for vertical applications designed to run with a number of data |
3214 sources. To determine whether procedures are supported, an application calls SQLGetInfo() with |

100 Direct Review (Build ID 96KAV) (Draft XDBC.33, August 1996)

Executing Statements Procedures

3215 the SQL_PROCEDURES option. |

3216 The third disadvantage, which is particularly applicable to application development |
3217 environments, is that X/Open SQL doesn’t define a standard grammar for creating procedures. |
3218 Thus, although applications can call procedures interoperably, they cannot create them |
3219 interoperably. |

3220 Executing Procedures |

3221 XDBC defines a standard escape clause for executing procedures in Section 8.3.6 on page 88. |

3222 To execute a procedure, an application: |

3223 • Sets the values of any parameters. For more information, see Section 9.4 on page 102. |

3224 • Calls SQLExecDirect() and passes it a string containing the SQL statement that executes the |
3225 procedure. This statement can use the escape clause defined by XDBC or data-source-specific |
3226 syntax; statements that use data-source-specific syntax aren’t interoperable. |

3227 When SQLExecDirect() is called, the implementation: |

3228 • Retrieves the current parameter values and converts them as necessary. For more |
3229 information, see Section 9.4 on page 102. |

3230 • Calls the procedure in the data source and sends it the converted parameter values. |

3231 • Returns the values of any input/output or output parameters or the procedure return value, |
3232 assuming the procedure succeeds. Note that these values might not be available until after all |
3233 other results (row counts and result sets) generated by the procedure have been processed. If |
3234 the procedure fails, the implementation returns any errors. |

3235 9.3.4 Batches of SQL Statements |

3236 A batch of SQL statements is a sequence of two or more SQL statements or a single SQL |
3237 statement that has the same effect as such a sequence. An entire batch is submitted together for |
3238 execution. This is often more efficient than submitting statements separately, as network traffic |
3239 can often be reduced and the data source can sometimes optimize execution of a batch. Batches |
3240 take the following forms: |

3241 • Explicit batches |

3242 An explicit batch is two or more SQL statements separated by semicolons (;). For example, |
3243 the following batch of SQL statements opens a new sales order. This requires inserting rows |
3244 into both the Orders and Lines tables. Note that there is no semicolon after the last statement. |

3245 INSERT INTO Orders (OrderID, CustID, OpenDate, SalesPerson, Status) |
3246 VALUES (2002, 1001, {fn CURDATE()}, ’Garcia’, ’OPEN’); |
3247 INSERT INTO Lines (OrderID, Line, PartID, Quantity) |
3248 VALUES (2002, 1, 1234, 10); |
3249 INSERT INTO Lines (OrderID, Line, PartID, Quantity) |
3250 VALUES (2002, 2, 987, 8); |
3251 INSERT INTO Lines (OrderID, Line, PartID, Quantity) |
3252 VALUES (2002, 3, 566, 17); |
3253 INSERT INTO Lines (OrderID, Line, PartID, Quantity) |
3254 VALUES (2002, 4, 412, 500) |

3255 • Procedures |

3256 A procedure that contains more than one SQL statement is a batch. |

Data Management: X/Open Database Connectivity (XDBC), Version 2 101

Batches of SQL Statements Executing Statements

3257 • Arrays of Parameters |

3258 Arrays of parameters can be used with a parameterized SQL statement as an effective way to |
3259 perform bulk operations. For example, arrays of parameters can be used with the following |
3260 INSERT statement to insert multiple rows into the Lines table while only executing a single |
3261 SQL statement: |

3262 INSERT INTO Lines (OrderID, Line, PartID, Quantity) |
3263 VALUES (?, ?, ?, ?) |

3264 If a data source doesn’t support arrays of parameters, the implementation can emulate them |
3265 by executing the SQL statement once for each set of parameters. For more information, see |
3266 Section 9.4 on page 102 and Section 9.4.5 on page 109. |

3267 Results of a Batch |

3268 The result of an SQL statement includes the following information: |

3269 • A result set, for certain SQL statements such as SELECT. |

3270 • A row count, for certain SQL statements such as UPDATEand DELETE. |

3271 The term batch as used in this specification refers only to batches of result-generating statements. |

3272 When different types of batch are nested, the method of retrieving results is undefined. For |
3273 example, after executing an explicit batch that includes procedure calls, an explicit batch that |
3274 uses arrays of parameters, or a procedure call that uses arrays of parameters, the method of |
3275 retrieving result set and row count is undefined. |

3276 Executing Batches |

3277 Before an application executes a batch of statements, it should first check the level of support. |
3278 To do this, the application calls SQLGetInfo() with the following options: |

3279 • The SQL_BATCH_SUPPORT option indicates whether row count and result set generating |
3280 statements are supported in explicit batches and procedures. |

3281 • The SQL_PARAM_ARRAY_ROW_COUNTS and SQL_PARAM_ARRAY_SELECTS options |
3282 indicate how these statements behave with arrays of parameters. |

3283 Batches of statements are executed through SQLExecute() or SQLExecDirect(). For example, the |
3284 following call executes an explicit batch of statements to open a new sales order. |

3285 SQLCHAR *BatchStmt = |
3286 ’INSERT INTO Orders (OrderID, CustID, OpenDate, SalesPerson, Status)’ |
3287 ’VALUES (2002, 1001, {fn CURDATE()}, ’Garcia’, ’OPEN’);’ |
3288 ’INSERT INTO Lines (OrderID, Line, PartID, Quantity) VALUES (2002, 1, 1234, 10);’ |
3289 ’INSERT INTO Lines (OrderID, Line, PartID, Quantity) VALUES (2002, 2, 987, 8);’ |
3290 ’INSERT INTO Lines (OrderID, Line, PartID, Quantity) VALUES (2002, 3, 566, 17);’ |
3291 ’INSERT INTO Lines (OrderID, Line, PartID, Quantity) VALUES (2002, 4, 412, 500)’;’ |
3292 SQLExecDirect(hstmt, BatchStmt, SQL_NTS); |

3293 When a batch of result-generating statements is executed, it returns one or more row counts or |
3294 result sets. For information about how to retrieve these, see Section 11.3 on page 156. |

3295 If a batch of statements includes parameter markers, these are numbered from left to right as |
3296 they are in any other statement. For example, the following batch of statements has parameters |
3297 numbered from 1 to 21; those in the first INSERT statement are numbered 1 to 5 and those in the |
3298 last INSERT statement are numbered 18 to 21. |

3299 INSERT INTO Orders (OrderID, CustID, OpenDate, SalesPerson, Status) |
3300 VALUES (?, ?, ?, ?, ?); |
3301 INSERT INTO Lines (OrderID, Line, PartID, Quantity) VALUES (?, ?, ?, ?); |
3302 INSERT INTO Lines (OrderID, Line, PartID, Quantity) VALUES (?, ?, ?, ?); |

102 Direct Review (Build ID 96KAV) (Draft XDBC.33, August 1996)

Executing Statements Batches of SQL Statements

3303 INSERT INTO Lines (OrderID, Line, PartID, Quantity) VALUES (?, ?, ?, ?); |
3304 INSERT INTO Lines (OrderID, Line, PartID, Quantity) VALUES (?, ?, ?, ?); |

3305 For more information about parameters, see Section 9.4 on page 102. |

3306 Errors |

3307 When an error occurs while executing a batch of SQL statements, one of four things can happen; |
3308 which one happens is data source-specific and may even depend on the statements included in |
3309 the batch. |

3310 • No statements in the batch are executed. |
3311 • No statements in the batch are executed and the transaction is rolled back. |
3312 • All of the statements before the error statement are executed. |
3313 • All of the statements except the error statement are executed. |

3314 In the first two cases, SQLExecute() and SQLExecDirect() return SQL_ERROR. In the latter two |
3315 cases, it is implementation-defined whether they return SQL_SUCCESS or |
3316 SQL_SUCCESS_WITH_INFO. In any case, further error information can be retrieved with |
3317 SQLGetDiagField() or SQLGetDiagRec(). However, the nature and depth of this information is |
3318 data-source-specific. Furthermore, this information is unlikely to exactly identify the statement |
3319 in error. |

3320 Retrieving Results from a Batch |

3321 Section 11.3 on page 156 describes how to determine the implementation’s level of support for |
3322 returning multiple results, and describes calling SQLMoreResults() to discard the results of one |
3323 SQL statement and move to the results of the next statement. |

3324 It is implementation-defined which of the following is true: |

3325 • The entire batch is executed as a unit (to the extent possible; see Errors above) and then |
3326 results are made available. |

3327 • The batch is executed up to the point at which it produces results, then control is returned to |
3328 the application, which can retrieve and process results. When the application calls |
3329 SQLMoreResults() to indicate readiness to receive the next result, execution of the batch |
3330 continues up to the point at which it produces more results; this process repeats until the |
3331 batch is completed. |

3332 9.3.5 Executing Catalog Functions |

3333 Calling a catalog functions is similar in effect to executing an SQL statement that generates a |
3334 result set. (Catalog functions are often implemented by executing predefined SQL statements.) |
3335 The rules for retrieving result sets apply equally to catalog functions. For example, the |
3336 SQL_ATTR_MAX_ROWS statement attribute limits the number of rows returned by the catalog |
3337 function, just as it limits the number of rows returned by a SELECT statement. |

3338 For more information about catalog functions, see Chapter 7. |

Data Management: X/Open Database Connectivity (XDBC), Version 2 103

Statement Parameters Executing Statements

3339 9.4 Statement Parameters |

3340 A parameter is a variable in an SQL statement. For example, suppose a Parts table has columns |
3341 named PartID, Description, and Price. To add a part without parameters would require |
3342 constructing an SQL statement such as: |

3343 INSERT INTO Parts (PartID, Description, Price) |
3344 VALUES (2100, ’Drive shaft’, 50.00) |

3345 Although this statement inserts a new order, it’s not a good solution for an order entry |
3346 application because the values to insert cannot be hard-coded in the application. An alternative |
3347 is to construct the SQL statement at run time, using the values to be inserted. This also isn’t a |
3348 good solution, due to the complexity of constructing statements at run time. The best solution is |
3349 to replace the elements of the VALUES clause with question marks, or parameter markers: |

3350 INSERT INTO Parts (PartID, Description, Price) VALUES (?, ?, ?) |

3351 The parameter markers are then bound to application variables. To add a new row, the |
3352 application has only to set the values of the variables and execute the statement. The |
3353 implementation then retrieves the current values of the variables and sends them to the data |
3354 source. If the statement will be executed multiple times, the application can make the process |
3355 even more efficient by preparing the statement. |

3356 The statement just shown might be hard-coded in an order entry application to insert a new row. |
3357 However, parameter markers aren’t limited to vertical applications. For any application, they |
3358 ease the difficulty of constructing SQL statements at run time by avoiding conversions to and |
3359 from text. For example, the part ID just shown is most likely stored in the application as an |
3360 integer. If the SQL statement is constructed without parameter markers, the application must |
3361 convert the part ID to text and the data source must convert it back to an integer. By using a |
3362 parameter marker, the application can send the part ID to the implementation as an integer, |
3363 which usually can send it to the data source as an integer, thereby saving two conversions. For |
3364 long data values this is critical, as the text forms of such values often exceed the allowable length |
3365 of an SQL statement. |

3366 Parameters are legal only in certain places in SQL statements. Refer, in the X/Open SQL |
3367 specification, to the explanation of the ’42000’ diagnostic for the PREPARE statement. |

3368 9.4.1 Binding Parameters |

3369 Each parameter in an SQL statement must be associated, or bound, to a variable in the application |
3370 before the statement is executed. When the application binds a variable to a parameter, it |
3371 describes that variable — address, C data type, and so on — to the implementation. It also |
3372 describes the parameter itself — SQL data type, precision, and so on. The implementation stores |
3373 this information in the structure it maintains for that statement and uses the information to |
3374 retrieve the value from the variable when the statement is executed. |

3375 Parameters can be bound or rebound at any time before a statement is executed. If a parameter is |
3376 rebound after a statement is executed, the binding doesn’t apply until the statement is executed |
3377 again. To bind a parameter to a different variable, an application simply rebinds the parameter |
3378 with the new variable; the previous binding is automatically released. |

3379 A variable remains bound to a parameter until a different variable is bound to the parameter, all |
3380 parameters are unbound by calling SQLFreeStmt() with the SQL_RESET_PARAMS option, or the |
3381 statement is released. For this reason, the application must be sure that variables aren’t freed |
3382 until after they are unbound. For more information, see Section 4.3.2 on page 39. |

3383 Because parameter bindings are just information stored in the structure maintained by the |
3384 implementation for the statement, they can be set in any order. They are also independent of the |
3385 SQL statement that is executed. For example, suppose an application binds three parameters and |

104 Direct Review (Build ID 96KAV) (Draft XDBC.33, August 1996)

Executing Statements Binding Parameters

3386 then executes the following SQL statement: |

3387 INSERT INTO Parts (PartID, Description, Price) VALUES (?, ?, ?) |

3388 If the application then immediately executes the SQL statement: |

3389 SELECT * FROM Orders WHERE OrderID = ?, OpenDate = ?, Status = ? |

3390 on the same statement handle, the parameter bindings for the INSERT statement are used |
3391 because those are the bindings stored in the statement structure. In most cases, this is a poor |
3392 programming practice and should be avoided. Instead, the application should call |
3393 SQLFreeStmt() with the SQL_RESET_PARAMS option to unbind all the old parameters and then |
3394 bind new ones. |

3395 Using SQLBindParameter() |

3396 The application binds parameters by calling SQLBindParameter(). SQLBindParameter() binds one |
3397 parameter at a time. With it, the application specifies: |

3398 • The parameter number. Parameters are numbered from left to right in the SQL statement, |
3399 starting with the number 1. While it’s legal to specify a parameter number that is higher than |
3400 there are parameters in the SQL statement, the parameter value is ignored when the |
3401 statement is executed. |

3402 • The parameter type (input, input/output, or output). Except for parameters in procedure |
3403 calls, all parameters are input parameters. For more information, see Section 9.4.4 on page |
3404 109. |

3405 • The C data type, address, and octet length of the variable bound to the parameter. The |
3406 implementation must be able to convert the data from the C data type to the SQL data type |
3407 or an error is returned. For a list of supported conversions, see Appendix D. |

3408 • The SQL data type, precision, and scale of the parameter itself. |

3409 • The address of a length/indicator buffer. It provides the octet length of binary or character |
3410 data, specifies that the data is NULL, or specifies that the data will be sent with |
3411 SQLPutData(). |

3412 For example, the following code binds SalesPerson and CustID to parameters for the SalesPerson |
3413 and CustID columns. Because SalesPerson contains character data, which is variable length, the |
3414 code specifies the octet length of SalesPerson (11) and binds SalesPersonLenOrInd to contain the |
3415 octet length of the data in SalesPerson. This information isn’t necessary for CustID because it |
3416 contains integer data, which is of fixed length. |

3417 SQLCHAR SalesPerson[11]; |
3418 SQLINTEGER SalesPersonLenOrInd, CustIDInd; |
3419 SQLUINTEGER CustID; |

3420 // Bind SalesPerson to the parameter for the SalesPerson column and |
3421 // CustID to the parameter for the CustID column. |
3422 SQLBindParameter(hstmt1, 1, SQL_PARAM_INPUT, SQL_C_CHAR, SQL_CHAR, 10, 0, |
3423 SalesPerson, sizeof(SalesPerson), &SalesPersonLenOrInd); |
3424 SQLBindParameter(hstmt1, 2, SQL_PARAM_INPUT, SQL_C_ULONG, SQL_INTEGER, 10, 0, |
3425 &CustID, 0, &CustIDInd); |

3426 // Set the values of the salesperson and customer ID variables and length/indicators. |
3427 strcpy(SalesPerson, ’Garcia’); |
3428 SalesPersonLenOrInd = SQL_NTS; |
3429 CustID = 1331; |
3430 CustIDInd = 0; |

3431 // Execute a statement to get data for all orders made to the specified |
3432 // customer by the specified salesperson. |
3433 SQLExecDirect(hstmt1,’SELECT * FROM Orders WHERE SalesPerson=? AND CustID=?’,SQL_NTS); |

Data Management: X/Open Database Connectivity (XDBC), Version 2 105

Binding Parameters Executing Statements

3434 When SQLBindParameter() is called, the implementation associates this information with the |
3435 statement. When the statement is executed, it uses the information to retrieve the parameter data |
3436 and send it to the data source. |

3437 Describing Parameters |

3438 SQLBindParameter() has arguments that describe the parameter: its SQL type, precision, and |
3439 scale. The implementation uses this information, or metadata, to convert the parameter value to |
3440 the type needed by the data source. At first glance, it might seem that the implementation is in a |
3441 better position to know the parameter metadata than the application; after all, the |
3442 implementation can easily discover the metadata for a result set column. As it turns out, this |
3443 isn’t the case. First, most data sources don’t provide a way for the implementation to discover |
3444 parameter metadata. Second, most applications already know the metadata. |

3445 If an SQL statement is hard-coded in the application, then the application writer already knows |
3446 the type of each parameter. If an SQL statement is constructed by the application at run time, |
3447 the application can determine the metadata as it builds the statement. For example, when the |
3448 application constructs the clause |

3449 WHERE OrderID = ? |

3450 it can call SQLColumns() for the OrderID column. |

3451 To determine the parameter metadata is when the user enters a parameterized statement, the |
3452 application calls SQLPrepare() to prepare the statement, SQLNumParams() to determine the |
3453 number of parameters, and SQLDescribeParam() to describe each parameter. |

3454 9.4.2 Setting Parameter Values |

3455 To set the value of a parameter, the application sets the value of the variable bound to the |
3456 parameter. This can be done at any time before the statement is executed, before or after binding |
3457 the variable. The value can be changed without limit. When the statement is executed, the |
3458 implementation retrieves the current value of the variable. This is particularly useful when a |
3459 prepared statement is executed more than once; the application sets new values for some or all |
3460 of the variables each time the statement is executed. For an example of this, see Section 9.3.2 on |
3461 page 96. |

3462 If a length/indicator buffer was bound in the call to SQLBindParameter(), it must be set to one of |
3463 the following values before the statement is executed: |

3464 • The octet length of the data in the bound variable. The implementation checks this length |
3465 only if the variable is character or binary (if ValueTypeis SQL_C_CHAR or SQL_C_BINARY). |

3466 • SQL_NTS. The data is a null-terminated string. |

3467 • SQL_NULL_DATA.The data value is NULL and the implementation ignores the value of the |
3468 bound variable. |

3469 • SQL_DATA_AT_EXECor the result of the SQL_LEN_DATA_AT_EXECmacro. The value of |
3470 the parameter is to be sent with SQLPutData(). For more information, see Section 9.4.3 on |
3471 page 105. |

106 Direct Review (Build ID 96KAV) (Draft XDBC.33, August 1996)

Executing Statements Setting Parameter Values

3472 The following table shows the values of the bound variable and the length/indicator buffer that |
3473 the application sets for a variety of parameter values. |

3474 Parameter Parameter (SQL) Variable (C) Value in bound Value in length/ |
3475 Value Data type Data type Variable Indicator buffer d |

|
3476 "ABC" SQL_CHAR SQL_C_CHAR ABC\0 a SQL_NTS or 3 |

3477 10 SQL_INTEGER SQL_C_SLONG 10 -- |

3478 10 SQL_INTEGER SQL_C_CHAR 10\0 a SQL_NTS or 2 |

3479 1 P.M. SQL_TYPE_TIME SQL_C_TYPE_TIME 13,0,0 b -- |

3480 1 P.M. SQL_TYPE_TIME SQL_C_CHAR {t ’13:00:00’} a,c SQL_NTS or 14 |

3481 NULL SQL_SMALLINT SQL_C_SSHORT -- SQL_NULL_DATA |

3482 a ‘‘\0’’ represents a null terminator. The null terminator is required only if the value in the |
3483 length/indicator buffer is SQL_NTS. |

3484 b The numbers in this list are the numbers stored in the fields of the TIME_STRUCT structure. |

3485 c The string uses the XDBC date escape clause. For more information, see Section 8.3.1 on |
3486 page 84. |

3487 d Implementations must always check this value to see if it’s a special value such as |
3488 SQL_NULL_DATA. |

3489 What an implementation does with a parameter value at execution time is implementation- |
3490 defined. If necessary, the implementation converts the value from the C data type and octet |
3491 length of the bound variable to the SQL data type, precision, and scale of the parameter. In most |
3492 cases, the implementation then sends the value to the data source. In some cases, it formats the |
3493 value as text and inserts it into the SQL statement before sending the statement to the data |
3494 source. |

3495 9.4.3 Sending Long Data |

3496 Data sources define long data as any character or binary data over a certain size, such as 254 |
3497 characters. It may be infeasible to store an entire item of long data in memory, such as when the |
3498 item represents a long document or a bitmap. Therefore, the data source sends it to the |
3499 implementation in parts with SQLPutData() when the statement is executed.13 Parameters for |
3500 which data is sent at execution time are known as data-at-execution parameters. |

3501 Input Parameters |

3502 To indicate that a bound input parameter will be a data-at-execute parameter, the application |
3503 does the following: |

3504 • Sets the OCTET_LENGTH_PTR field in the corresponding record of the application |
3505 parameter descriptor to a variable that, at execute time, will contain the value |
3506 SQL_DATA_AT_EXEC. This indicates that the data for the parameter will be sent with |
3507 SQLPutData(). |

3508 __________________ |
3509 13. An application can actually send any type of data at execution time with SQLPutData(), although only character and binary data |||

can be sent in parts. However, if the data is small enough to fit in a single buffer, there is generally no reason to use |||
3510 SQLPutData(). It’s much easier to bind the buffer and let the implementation retrieve the data from the buffer. |||

Data Management: X/Open Database Connectivity (XDBC), Version 2 107

Sending Long Data Executing Statements

3511 Alternatively, the application can set this field to the result of the |
3512 SQL_LEN_DATA_AT_EXEC(length) macro. This also indicates that the data for the |
3513 parameter will be sent with SQLPutData(). SQL_LEN_DATA_AT_EXEC(length) is used |
3514 when sending long data to a data source that needs to know how many octets of long data |
3515 will be sent so that it can preallocate space. To determine if a data source requires this value, |
3516 the application calls SQLGetInfo() with the SQL_NEED_LONG_DATA_LEN option. All |
3517 implementations must support this macro; if the data source doesn’t require the octet length, |
3518 the implementation can ignore it. |

3519 • If there is more than one such field, it sets each DATA_PTR field to some value that it will |
3520 recognise as uniquely identifying the field in question. The implementation does not analyze |
3521 this value. |

3522 (The application can make these settings directly by calling SQLSetDescField() or |
3523 SQLSetDescRec(), or by providing suitable StrLen_or_Ind and ParameterValue arguments in a call |
3524 to SQLBindParam()). |

3525 When the application calls SQLExecDirect() or SQLExecute(), if there are any data-at-execute |
3526 parameters, the call returns [SQL_NEED_DATA]. The application responds as follows: |

3527 1. It calls SQLParamData() to advance to the first such parameter. This function returns |
3528 [SQL_NEED_DATA] and provides the contents of the DATA_PTR field of the application |
3529 parameter descriptor to identify the information required. |

3530 2. It calls SQLPutData() to pass the actual data for the parameter. Long dynamic arguments |
3531 can be sent in pieces by calling SQLPutData() repeatedly. |

3532 3. It calls SQLParamData() again after it has provided the complete dynamic argument. |

3533 If more data-at-execute parameters exist, SQLParamData() returns [SQL_NEED_DATA] |
3534 and the application repeats steps 2 and 3 above. |

3535 When no more data-at-execute parameters exist, SQLParamData() completes execution of |
3536 the SQL statement. The SQLParamData() function produces a return value and diagnostics |
3537 as the original SQLExecDirect() or SQLExecute() statement would have produced. |

3538 The following flowchart illustrates this technique: |

108 Direct Review (Build ID 96KAV) (Draft XDBC.33, August 1996)

Executing Statements Sending Long Data

3539 LL
L
L ||
_________________________ ||

LL
L
L ||_________________________ ||

Call SQLExecDirect() ||
or SQLExecute() ||

3540 Function returned ||
3541 [SQL_NEED_DATA]? ||

||
Yes ||

3542 No ||

3543 LL
L
L
L ||
_________________________ ||

LL
L
L
L ||_________________________ ||

Last XDBC call executed ||
the SQL statement; ||

examine results ||

LL
L
L ||
_________________________ ||

LL
L
L ||_________________________ ||

Call SQLParamData() ||
to get next dynamic param. ||

Function returned ||
[SQL_NEED_DATA]? ||

||

3544 Yes ||

No ||

3545 LL
L ||
_________________________ ||

LL
L ||_________________________ ||

Call SQLPutData() ||

3546 More text in this ||
3547 dynamic argument? ||

||

No ||Yes ||

LL
L
L ||||||

LL
L ||||||

||||||

L
L
L
L
L
L ||||||

_____ ||||||

LL
L ||||||

_____ ||||||

L
L
L ||||||

L
L
L ||||||

_____ ||L
L
L
L
L
L ||
_____ ||||||

_____ ||LL
L
L
L
L
L
L
L
L
L
L
L
L
L
L
L
L ||

_____ ||||||

3548 Figure 9-1. Providing Parameter Data at Execute Time ||

3549 While the data-at-execute dialogue is in progress, the only XDBC functions the application can |
3550 call are: |

3551 • The SQLParamData() and SQLPutData() functions, as discussed above |

3552 • The SQLCancel() function, to cancel the data-at-execute dialogue and force an orderly exit |
3553 from the loop shown above without executing the SQL statement |

3554 • The diagnostic functions. |

3555 Moreover, the application cannot end the transaction (see Chapter 14) nor set any connection |
3556 attribute that would have an impact on the treatment of the statement handle. |

3557 Output Parameters |

3558 For output dynamic parameters, the application may retrieve arguments in one of the following |
3559 ways: |

3560 • If the application has used an application parameter descriptor to bind parameters, then |
3561 output values are present in the application variables to which the respective parameters are |
3562 bound. |

3563 • If the parameters are unbound, the application can read argument values by calling |
3564 SQLGetData(). |

3565 • The application may use both the above techniques if some parameters are bound and some |
3566 are unbound. |

Data Management: X/Open Database Connectivity (XDBC), Version 2 109

Sending Long Data Executing Statements

3567 To bind output dynamic parameters to application variables, the application sets the DATA_PTR |
3568 field of the corresponding records of the application parameter descriptor. The application sets |
3569 other descriptor fields to define the data type, type attributes and variables that will hold |
3570 indicator and length information. |

3571 If the data type is character-string, the application sets the LENGTH field to the maximum |
3572 number of characters of the parameter and sets the OCTET_LENGTH_PTR field to a variable |
3573 that, at execute time, will describe the length in octets of the dynamic argument. |

3574 The application can call SQLBindParam() or SQLSetDescRec() to make a complete specification |
3575 for an output dynamic parameter, or can call SQLSetDescField() to set individual descriptor |
3576 fields. |

3577 If the application parameter descriptor specifies different data types or type attributes from the |
3578 implementation parameter descriptor, the implementation performs type conversion on the |
3579 affected parameters when it moves the data values. |

3580 Unbound Output Parameters |

3581 For output dynamic arguments, the application may elect to not bind any of the parameters. In |
3582 this instance, it need not reference the parameter descriptor but may obtain parameter data for |
3583 these unbound parameters by calling SQLGetData(). |

3584 All dynamic arguments whose mode is IN or INOUT must be bound. |

3585 Bound and Unbound Output Parameters |

3586 If the application is binding some but not all output dynamic arguments, the application must |
3587 reference the parameter descriptor for those argument, but need not specify any field of a |
3588 descriptor record that pertains to an unbound parameter. |

3589 For bound output parameters, after execution of the SQL statement, the implementation |
3590 implicitly copies dynamic argument values to the application variables to which the parameters |
3591 are bound, and may perform type conversion of the bound parameter data, as described above. |

3592 For unbound output parameters following the highest-numbered bound parameter, portable |
3593 applications obtain the parameter data by calling GetData() in ascending order of parameter |
3594 number (from left to right). It is implementation-defined whether an application can obtain |
3595 parameter data in a different sequence. It is implementation- defined whether parameter data for |
3596 lower-numbered, unbound parameters is available.14 |

3597 The application can achieve type conversion of the parameter data by specifying in the call to |
3598 SQLGetData() either the desired target type or the value SQL_APD_TYPE, which means that the |
3599 application parameter descriptor indicates the desired target type even though the parameter is |
3600 unbound. |

3601 For bound output parameters, the application uses its knowledge of the parameters to allocate |
3602 the maximum memory the value could occupy, in order to avoid truncation of the value. For |
3603 unbound output parameters, the value can be arbitrarily long. If the length of the parameter |
3604 value exceeds the length of the application’s buffer, a feature of SQLGetData() lets the |
3605 application use repeated calls to obtain the value of a single parameter of CHAR or VARCHAR |
3606 type in pieces of manageable size. |

3607 __________________ |
3608 14. The application can call SQLGetInfo() with SQL_GETPARAM_EXTENSIONS to determine whether the implementation supports |||

this capability. |||

110 Direct Review (Build ID 96KAV) (Draft XDBC.33, August 1996)

Executing Statements Procedure Parameters

3609 9.4.4 Procedure Parameters |

3610 Parameters in procedure calls can be input, input/output, or output parameters. This is different |
3611 from parameters in all other SQL statements, which are always input parameters. |

3612 Input parameters are used to send values to the procedure. For example, suppose the Parts table |
3613 has PartID, Description, and Price columns. The InsertPart procedure might have an input |
3614 parameter for each column in the table. For example: |

3615 {call InsertPart(?, ?, ?)} |

3616 Input/output parameters are used both to send values to procedures and retrieve values from |
3617 procedures. |

3618 Output parameters are used to retrieve the procedure return value and to retrieve values from |
3619 procedure arguments; procedures that return values are sometimes known as functions. For |
3620 example, suppose the GetCustID procedure just mentioned returns a value that indicates |
3621 whether it was able to find the order. In the following call, the first parameter is an output |
3622 parameter used to retrieve the procedure return value, the second parameter is an input |
3623 parameter used to specify the order ID, and the third parameter is an output parameter used to |
3624 retrieve the customer ID: |

3625 {? = call GetCustID(?, ?)} |

3626 Implementations handle values for input and input/output parameters in procedures no |
3627 differently from input parameters in other SQL statements. When the statement is executed, they |
3628 retrieve the values of the variables bound to these parameters and send them to the data source. |

3629 After the statement has been executed, implementations store the returned values of |
3630 input/output and output parameters in the variables bound to those parameters. Note that these |
3631 aren’t guaranteed to be set until after all results returned by the procedure have been fetched. |

3632 An application calls SQLProcedure() to determine if a procedure has a return value. It calls |
3633 SQLProcedureColumns() to determine the type (return value, input, input/output, or output) of |
3634 each procedure parameter. |

3635 9.4.5 Arrays of Parameter Values |

3636 It’s often useful for applications to pass arrays of parameters. For example, using arrays of |
3637 parameters and a parameterized INSERT statement, an application can insert a number of rows |
3638 at once. This provides the following advantages: |

3639 • If the data source supports parameter arrays, network traffic is reduced, as data for many |
3640 statements is sent in a single packet. |

3641 • Some data sources can execute SQL statements using arrays faster than executing the same |
3642 number of separate SQL statements. |

3643 • When the data is stored in an array, as often the case for screen data, the application can bind |
3644 all of the rows in a particular column with a single call to SQLBindParameter() and update |
3645 them by executing a single statement. |

3646 On a data source that does not support parameter arrays, an implementation can emulate |
3647 parameter arrays by executing an SQL statement once for each set of parameter values. This |
3648 could lead to speed increases since the implementation may be able to prepare this SQL |
3649 statement only once. It might also produce simpler application code. |

Data Management: X/Open Database Connectivity (XDBC), Version 2 111

Arrays of Parameter Values Executing Statements

3650 Binding Arrays of Parameters |

3651 Applications that use arrays of parameters bind the arrays to the parameters in the SQL |
3652 statement. There are two binding styles: |

3653 • Bind an array to each parameter. Each data structure (array) contains all the data for a single |
3654 parameter. This is called column-wise binding because it is equivalent to the way that column- |
3655 wise binding is used for column data, in which all data for a single column is bound using a |
3656 single data structure. |

3657 • Define a structure to hold the parameter data for an entire set of parameters and bind an |
3658 array of these structures. Each data structure contains the data for a single SQL statement. |
3659 This is called row-wise binding because it is equivalent to the way that row-wise binding is |
3660 used for column data, in which a structure is defined for each row of column data. |

3661 Column-wise binding is the default binding style for arrays of parameters. |

3662 As when the application binds single variables to parameters, it calls SQLBindParameter() to bind |
3663 arrays to parameters. The only difference is that the addresses passed are array addresses, not |
3664 single-variable addresses. The application sets the SQL_ATTR_PARAM_BIND_TYPE statement |
3665 attribute to specify whether it is using column-wise or row-wise binding. Column-wise binding |
3666 is the default binding style for arrays of parameters. Whether to use column-wise or row-wise |
3667 binding is largely a matter of application preference. Depending on how the processor accesses |
3668 memory, row-wise binding might be faster. However, the difference is likely to be negligible |
3669 except for very large numbers of rows of parameters. |

3670 Column-wise Binding |

3671 When using column-wise binding, an application binds one or two arrays to each parameter for |
3672 which data is to be provided. The first array holds the data values and the second array holds |
3673 length/indicator buffers. Each array contains as many elements as there are values for the |
3674 parameter. |

3675 The implementation executes the SQL statement multiple times, each time using values from |
3676 successive rows of each array. The following diagram shows how column-wise binding works. |

3677 PARAMETER A PARAMETER B PARAMETER C |
3678 -------------- ------------------ --------------------- |
3679 _____ ___ _________ ___ ____________ ___ |
3680 |_____| |___| |_________| |___| |____________| |___| |
3681 |_____| |___| |_________| |___| |____________| |___| |
3682 |_____| |___| |_________| |___| |____________| |___| |
3683 |_____| |___| |_________| |___| |____________| |___| |
3684 value len/ind value len/ind value len/ind |
3685 array array array array array array |

3686 For example, the following code binds 10-element arrays to the OrderID, SalesPerson, and Status |
3687 columns. |

3688 SQLCHAR NameArray[10], PhoneArray[10]; |
3689 SQLUINTEGER AgeArray[10]; |
3690 SQLINTEGER NameLenOrIndArray[10], PhoneLenOrIndArray[10]; |
3691 SQLUSMALLINT i; |
3692 SQLRETURN rc; |

3693 // Set the SQL_ATTR_PARAM_BIND_TYPE statement attribute to use column-wise binding. |
3694 SQLSetStmtAttr(hstmt, SQL_ATTR_PARAM_BIND_TYPE, SQL_BIND_BY_COLUMN, 0); |

3695 // Specify the number of elements in each parameter array. |
3696 SQLSetStmtAttr(hstmt, SQL_ATTR_PARAMSET_SIZE, 10, SQL_IS_NOT_POINTER); |

112 Direct Review (Build ID 96KAV) (Draft XDBC.33, August 1996)

Executing Statements Arrays of Parameter Values

3697 // Specify the address of a variable in which to return the array row number in case of an error. |
3698 SQLSetStmtAttr(hstmt, SQL_ATTR_PARAMS_PROCESSED_ARRAY, ValuePtr, SQL_IS_POINTER); |

3699 // Prepare a statement to insert data into the Employee table. |
3700 rc = SQLPrepare(StatementHandle, ’INSERT INTO EMPLOYEE (NAME, AGE, PHONE) VALUES (?, ?, ?)’, SQL_NTS);|
3701 If (rc == SQL_SUCCESS) { |

3702 // Bind arrays to the Name, Age, and Phone parameters. |
3703 SQLBindParameter(StatementHandle, 1, SQL_C_CHAR, NameArray, sizeof(NameArray[0], |
3704 NameLenOrIndArray); |
3705 SQLBindParameter(StatementHandle, 2, SQL_C_UINTEGER, AgeArray, 0, AgeIndArray); |
3706 SQLBindParameter(StatementHandle, 3, SQL_C_CHAR, PhoneArray, sizeof(PhoneArray[0]), |
3707 PhoneLenOrIndArray); |

3708 // Set the value of each element of the Name, Age, and Phone arrays. |
3709 // Execute the SQL statement 10 times to insert arrays of parameters into the table. |
3710 // Code to check if rc equals SQL_SUCCESS_WITH_INFO or SQL_ERROR |
3711 // not shown. |
3712 while ((rc = SQLExecute(StatementHandle)) != SQL_ERROR) { |
3713 for (i = 0; i < 10; i++) { |
3714 if ((RowStatusArray[i] == SQL_ROW_SUCCESS) || |
3715 (RowStatusArray[i] == SQL_ROW_SUCCESS_WITH_INFO)) { |
3716 if (OrderIDIndArray[i] == SQL_NULL_DATA) printf(’ NULL ’) |
3717 else printf(’%d’, OrderIDArray[i]); |
3718 if (SalesPersonLenOrIndArray[i] == SQL_NULL_DATA) printf(’ NULL ’) |
3719 else printf(’%s’, SalesPersonArray[i]); |
3720 if (StatusLenOrIndArray[i] == SQL_NULL_DATA) printf(’ NULL\n’) |
3721 else printf(’%s\n’, StatusArray[i]); |
3722 } |
3723 } |
3724 } |

3725 Row-wise Binding |

3726 When using row-wise binding, an application defines a structure for each set of parameters. The |
3727 structure contains one or two elements for each parameter for which data is to be provided. The |
3728 first element holds the parameter value and the second element holds the length/indicator |
3729 buffer. The application then allocates an array of these structures, which contains as many |
3730 elements as there are values for each parameter. |

3731 The application binds the addresses of the parameters in the first structure of the array. Thus, |
3732 the implementation can calculate the address of the data for a particular row and column as: |

3733 Address = Bound Address + ((Row Number - 1) * Structure Size) |

3734 where rows are numbered from 1 to the size of the parameter set. The following diagram shows |
3735 how row-wise binding works. Generally, only parameters that will be bound are included in the |
3736 structure. The parameters can be placed in the structure in any order, but are shown in |

Data Management: X/Open Database Connectivity (XDBC), Version 2 113

Arrays of Parameter Values Executing Statements

3737 sequential order for clarity. |

3738 PARAM A PARAM B PARAM C |
3739 ----------- ------------- ---------------- |
3740 ___ |
3741 |______|___|_________|___|____________|___| <--array[0] |
3742 ___ |
3743 |______|___|_________|___|____________|___| <--array[1] |
3744 ___ |
3745 |______|___|_________|___|____________|___| <--array[2] |
3746 ___ |
3747 |______|___|_________|___|____________|___| <--array[3] |
3748 ^ ^ ^ ^ ^ ^ |
3749 | | | | | | |
3750 value len/ind value len/ind value len/ind |
3751 element elem. element elem. element elem. |

3752 For example, the following code creates a structure with elements in which to provide data for |
3753 the Name, Age, and Phone parameters and length/indicators for the Name and Phone columns. |
3754 It allocates 10 of these structures, defines a ten-element array of these structures, and binds the |
3755 elements of the first structure in the array to the Name, Age, and Phone parameters. |

3756 // Define the ORDERINFO struct and allocate an array of 10 structs. |
3757 typedef struct { |
3758 SQLUINTEGER OrderID; |
3759 SQLINTEGER OrderIDInd; |
3760 SQLCHAR SalesPerson[11]; |
3761 SQLINTEGER SalesPersonLenOrInd; |
3762 SQLCHAR Status[7]; |
3763 SQLINTEGER StatusLenOrInd; |
3764 } ORDERINFO; |
3765 ORDERINFO OrderInfoArray[10]; |

3766 SQLUINTEGER NumRowsFetched; |
3767 SQLUSMALLINT RowStatusArray[10], i; |
3768 HRESULT rc; |

3769 // Specify the size of the structure with the SQL_ATTR_ROW_BIND_TYPE statement |
3770 // attribute. This also declares that row-wise binding will be used. Declare the row-set |
3771 // size with the SQL_ATTR_ROW_ARRAY_SIZE statement attribute. Set the |
3772 // SQL_ATTR_ROW_STATUS_PTR statement attribute to point to the row status array. Set |
3773 // the SQL_ATTR_ROWS_FETCHED_PTR statement attribute to point to NumRowsFetched. |
3774 SQLSetStmtAttr(hstmt, SQL_ATTR_ROW_BIND_TYPE, sizeof(ORDERINFO), 0); |
3775 SQLSetStmtAttr(hstmt, SQL_ATTR_ROW_ARRAY_SIZE, 10, 0); |
3776 SQLSetStmtAttr(hstmt, SQL_ATTR_ROW_STATUS_PTR, RowStatusArray, 0); |
3777 SQLSetStmtAttr(hstmt, SQL_ATTR_ROWS_FETCHED_PTR, &NumRowsFetched, 0); |

3778 // Bind elements of the first structure in the array to the OrderID, SalesPerson, and |
3779 // Status columns. |
3780 SQLBindCol(hstmt, 1, SQL_C_ULONG, &OrderInfoArray[0].OrderID, 0, &OrderInfoArray[0].OrderIDInd); |
3781 SQLBindCol(hstmt, 2, SQL_C_CHAR, OrderInfoArray[0].SalesPerson, |
3782 sizeof(OrderInfoArray[0].SalesPerson), |
3783 &OrderInfoArray[0].SalesPersonLenOrInd); |
3784 SQLBindCol(hstmt, 3, SQL_C_CHAR, OrderInfoArray[0].Status, |
3785 sizeof(OrderInfoArray[0].Status), &OrderInfoArray[0].StatusLenOrInd); |

3786 // Execute a statement to retrieve rows from the Orders table. |
3787 SQLExecDirect(hstmt, ’SELECT OrderID, SalesPerson, Status FROM Orders’, SQL_NTS); |

3788 // Fetch up to 10 rows at a time. Print the actual number of rows fetched; this number |
3789 // is returned in NumRowsFetched. Check the row status array to only print those rows |
3790 // successfully fetched. Code to check if rc equals SQL_SUCCESS_WITH_INFO or SQL_ERROR |
3791 // not shown. |
3792 while ((rc = SQLFetchScroll(hstmt,SQL_FETCH_NEXT,0)) != SQL_NO_DATA) { |
3793 for (i = 0; i < NumRowsFetched; i++) { |

114 Direct Review (Build ID 96KAV) (Draft XDBC.33, August 1996)

Executing Statements Arrays of Parameter Values

3794 if (RowStatusArray[i] == SQL_ROW_SUCCESS||SQL_ROW_SUCCESS_WITH_INFO) { |
3795 if (OrderInfoArray[i].OrderIDInd == SQL_NULL_DATA) |
3796 printf(’ NULL ’) |
3797 else |
3798 printf(’%d’, OrderInfoArray[i].OrderID); |
3799 if (OrderInfoArray[i].SalesPersonLenOrInd == SQL_NULL_DATA) |
3800 printf(’ NULL ’) |
3801 else |
3802 printf(’%s’, OrderInfoArray[i].SalesPerson); |
3803 if (OrderInfoArray[i].StatusLenOrInd == SQL_NULL_DATA) |
3804 printf(’ NULL\n’) |
3805 else |
3806 printf(’%s\n’, OrderInfoArray[i].Status); |
3807 } |
3808 } |
3809 } |

3810 // Close the cursor. |
3811 SQLCloseCursor(hstmt); |

3812 Bind Offsets |

3813 An application can specify that an offset be added to buffer addresses bound for parameters. |
3814 This offset is added to bound buffer addresses and the corresponding length/indicator pointers |
3815 when SQLExecDirect() or SQLExecute() is called. |

3816 Bind offsets let an application change bindings without calling SQLBindParameter() for |
3817 previously bound columns. A call to SQLBindParameter() to rebind data changes the buffer |
3818 address and the length/indicator pointer. Rebinding with an offset, on the other hand, simply |
3819 adds an offset to the existing buffer address and length/indicator pointer. A new offset can be |
3820 specified at any time, and is always added to the originally bound values. |

3821 To specify a bind offset, the application sets the SQL_ATTR_PARAM_BIND_OFFSET_PTR |
3822 statement attribute to the address of an SQLINTEGER buffer. Before the application calls a |
3823 function that uses the bindings, it places an offset in octets in this buffer. When the function is |
3824 called, the implementation adds the offset to both the address in the binding and the |
3825 length/indicator pointer as long as the address or length/indicator pointer isn’t 0 and the bound |
3826 parameter is in the SQL statement. The sum of the address and the offset must be a valid |
3827 address. (This means that the address to which the offset is added need not be a valid address, if |
3828 the offset is a valid address.) |

3829 The use of bind offsets is defined only for the case of row-wise bindings. Any bind offset value |
3830 is ignored in the case of column-wise bindings. |

3831 Using Arrays of Parameters |

3832 Using parameter arrays differs from using single parameter values in only two ways. First, the |
3833 application passes the address of a parameter value array and (if needed) a length/indicator |
3834 array to SQLBindParameter(), rather than the addresses of single variables. (This is the case when |
3835 column-wise binding is used; when row-wise binding is use, the application passes the address |
3836 of the parameter (and if needed, the length/indicator) in the first parameter structure in a call to |
3837 SQLBindParameter().) Second, it calls SQLSetStmtAttr() with an Attribute of |
3838 SQL_ATTR_PARAMSET_SIZE to specify the number of elements in each parameter array, calls |
3839 SQLSetStmtAttr() with an Attribute of SQL_ATTR_PARAMS_PROCESSED_ARRAY to specify |
3840 the address of a variable in which the implementation can return the array row number in case |
3841 of an error, and calls SQLSetStmtAttr() with an Attribute of SQL_ATTR_PARAM_STATUS_PTR |
3842 to point to an array containing status information for each row of parameter values. Note that all |
3843 parameter arrays bound to an SQL statement must have the same number of elements. The |
3844 implementation stores the array addresses, the count of array elements, and the address of the |
3845 row number variable in the structure it maintains for the statement. |

Data Management: X/Open Database Connectivity (XDBC), Version 2 115

Arrays of Parameter Values Executing Statements

3846 Before executing the statement, the application sets the value of each element of each bound |
3847 array. When the statement is executed, the implementation uses the information it stored to |
3848 retrieve the parameter values and send them to the data source; if possible, the implementation |
3849 should send these values as arrays. Although the use of arrays of parameters is best |
3850 implemented by executing the SQL statement with all of the parameters in the array with a |
3851 single call to the data source, this capability is not widely available in data sources today. Thus, |
3852 implementations can implement it by executing SQL statements individually. |

3853 Before an application uses arrays of parameters, it must be sure that they are supported by the |
3854 implementations used by the application. There are two ways to do this: |

3855 • Use only connections to data sources over which arrays of parameters are known to be |
3856 implemented. The application can hard-code parameters for such connections or the user |
3857 can be instructed to specify only such connections. Custom applications and vertical |
3858 applications commonly use a limited set of data sources. |

3859 • Check for support of arrays of parameters at run time. An implementation supports arrays of |
3860 parameters if it is possible to set the SQL_ATTR_PARAMSET_SIZE statement attribute to a |
3861 value greater than 1. Generic applications and vertical applications commonly check for |
3862 support of arrays of parameters at run time. |

3863 The application can determine the status of other implementation-defined options, relating to |
3864 arrays of parameter values, by calling SQLGetInfo() with the following options: |

3865 • The SQL_PARAM_ARRAY_ROW_COUNTS option indicates whether individual row counts |
3866 (one for each parameter set) are available (SQL_PARC_BATCH), or rows counts are rolled up |
3867 into one (SQL_PARC_NO_BATCH). |

3868 • The SQL_PARAM_ARRAY_SELECTS option indicates whether a result set is available for |
3869 each set of parameters (SQL_PAS_BATCH), or only one result set is available |
3870 (SQL_PAS_NO_BATCH). If the implementation does not allow a result-set-generating |
3871 statement to be executed with an array of parameters, SQL_PARAM_ARRAY_SELECTS |
3872 returns SQL_PAS_NO_SELECT. |

3873 It is undefined if arrays of parameters can be used in other contexts in SQL, but this usage |
3874 presupposes the use of vendor extensions to X/Open SQL grammar. |

3875 Error Processing |

3876 If an error occurs while executing the statements, the execution function returns an error and |
3877 sets the row number variable to the number of the row containing the error. It is data-source |
3878 specific whether all statements except the statement returning the row are executed, or all |
3879 statements before (but not after) the statement returning the row are executed. The |
3880 implementation sets SQL_ATTR_PARAMS_PROCESSED_PTR to the number of the row |
3881 currently being processed. If all statements except the statement returning the row are executed, |
3882 the implementation sets SQL_ATTR_PARAMS_PROCESSED_PTR to |
3883 SQL_ATTR_PARAMSET_SIZEafter all rows are processed. |

3884 If the SQL_ATTR_PARAM_STATUS_PTR statement attribute has been set, SQLExecute() or |
3885 SQLExecDirect() returns the parameter status array, which provides the status of each executed |
3886 SQL statement. The parameter status array is allocated by the application and populated by the |
3887 implementation. Its elements indicate whether the SQL statement was executed successfully for |
3888 the set of parameters, or whether an error occurred while the statement was executed. If an error |
3889 is encountered, the implementation sets the corresponding value in the parameter status array to |
3890 SQL_PARAM_ERROR, continues processing statements, and returns |
3891 SQL_SUCCESS_WITH_INFO. The application can check the status array to determine which |
3892 rows were processed. Using the row number, the application can often correct the error and |
3893 resume processing. |

116 Direct Review (Build ID 96KAV) (Draft XDBC.33, August 1996)

Executing Statements Arrays of Parameter Values

3894 The application can determine whether the implementation fills in the status array and the |
3895 parameter status array by calling SQLGetInfo() with the SQL_PARAM_ARRAY_ROW_COUNTS |
3896 and SQL_PARAM_ARRAY_SELECTSoptions. |

3897 The array pointed to by the SQL_ATTR_PARAM_OPERATION_PTRstatement attribute can be |
3898 used to ignore rows of parameters. If an element of the array is set to SQL_PARAM_IGNORE, |
3899 the set of parameters corresponding to that element is excluded from the SQLExecute() or |
3900 SQLExecDirect() call. The array pointed to by the SQL_ATTR_PARAM_OPERATION_PTR |
3901 attribute is allocated and filled in by the application, and read by the implementation. If fetched |
3902 rows are used as input parameters by calling SQLCopyDesc(), the values of the row status array |
3903 can be used in the parameter operation array, provided #defines have been set up to map the |
3904 status values such that successfully fetched values are processed as parameters and |
3905 unsuccessfully fetched values are ignored. |

3906 Data at Execution Parameters |

3907 If any of the values in the length/indicator array are SQL_DATA_AT_EXECor the result of the |
3908 SQL_LEN_DATA_AT_EXEC(length)macro, the data for those values is sent with SQLPutData() |
3909 in the usual way. Two points are notable: |

3910 • When the implementation returns SQL_NEED_DATA, it must set the address of the row |
3911 number variable to the row for which it needs data. As in the single-valued case, the |
3912 application cannot make any assumptions about the order in which the implementation |
3913 requests parameter values. If an error occurs in the execution of a data-at-execution |
3914 parameter, it is implementation-defined whether SQL_ATTR_PARAMS_PROCESSED_PTR is |
3915 reset to the lower row number. (The address of the row number variable is not updated if |
3916 SQLExecute(), SQLExecDirect(), or SQLParamData() return SQL_STILL_EXECUTING.) |

3917 • Since the implementation doesn’t interpret the value in ParameterValuePtr of |
3918 SQLBindParameter() for data-at-execution parameters, if the application provides a pointer to |
3919 an array, SQLParamData() does not extract and return an element of this array to the |
3920 application. Instead, it returns the scalar value the application had supplied. This means the |
3921 value returned by SQLParamData() is not sufficient to specify the parameter for which the |
3922 application needs to send data; the application also needs to consider the current row |
3923 number. |

3924 When only some of the elements of an array of parameters are data-at-execution parameters, |
3925 the application must pass the address of an array in ParameterValuePtr that contains elements |
3926 for all the parameters. This array is interpreted normally for the parameters that are not |
3927 data-at-execution parameters. For the data-at-execution parameters, the value that |
3928 SQLParamData() provides to the application, which normally could be used to identify the |
3929 data the implementation is requesting on this occasion, is always the address of the array. |

Data Management: X/Open Database Connectivity (XDBC), Version 2 117

Asynchronous Execution Executing Statements

3930 9.5 Asynchronous Execution |

3931 This section discusses asynchronous execution. |

3932 By default, XDBC functions execute synchronously— that is, an XDBC function does not return |
3933 control to its caller until the requested operation is complete. |

3934 However, a function executed in the optional asynchronous mode may return promptly to the |
3935 caller with the return value [SQL_STILL_EXECUTING], indicating that the requested operation |
3936 is not yet complete. This return value indicates neither success nor failure. A function executed |
3937 asynchronously may instead return any of the other defined return values and they retain their |
3938 usual meaning. |

3939 The application polls the implementation by periodically calling the same function again. The |
3940 return value [SQL_STILL_EXECUTING] may recur, indicating that the operation is not yet |
3941 complete; or the return value may indicate success or failure. The application is free to perform |
3942 other work between polling calls to the XDBC function. The application can cancel the |
3943 requested operation by calling SQLCancel(). |

3944 Asynchrony occurs only when all the following are true: |

3945 • The implementation provides some level of support, as described in Section 9.5.1 on page 116 |

3946 • Asynchrony is permitted for the XDBC function in question, as defined by Table 9-1 on page |
3947 117 |

3948 • The application has enabled asynchrony on the relevant connection or statement handle, as |
3949 described in Section 9.5.2 on page 118. |

3950 9.5.1 Levels of Asynchronous Support |

3951 Implementations may support asynchronous execution at three levels: |

3952 • No support |

3953 All XDBC functions execute synchronously; no XDBC function returns to its caller until it can |
3954 report either success or failure. |

3955 • Connection-level support |

3956 For every connection handle, either all associated statement handles are enabled for |
3957 asynchrony or none are. No connection handle has some statement handles in synchronous |
3958 mode and others in asynchronous mode. |

3959 • Statement-level support |

3960 Any connection handle can have some associated statement handles that are in asynchronous |
3961 mode and other statement handles in synchronous mode. |

3962 Determining the Support Level |

3963 The SQLGetInfo() function’s SQL_ASYNC_MODE option indicates which level of support for |
3964 asynchrony the implementation provides. SQLGetInfo() returns SQL_AM_CONNECTION if |
3965 connection-level asynchronous execution is supported, SQL_AM_STATEMENT if statement- |
3966 level asynchronous execution is supported, or SQL_AM_NONE if the implementation does not |
3967 support asynchronous execution. |

3968 An implementation may limit the number of concurrent asynchronoous statements. The |
3969 application can determine any limit on a specified connection by calling SQLGetInfo() with the |
3970 SQL_MAX_ASYNC_CONCURRENT_STATEMENTS option. |

118 Direct Review (Build ID 96KAV) (Draft XDBC.33, August 1996)

Executing Statements Levels of Asynchronous Support

3971 Functions That Can Execute Asynchronously |

3972 Asynchrony is permitted only for functions in the following table. No other XDBC function ever |
3973 returns [SQL_STILL_EXECUTING]. |

3974 SQLBulkOperations SQLForeignKeys SQLPrepare |
3975 SQLColAttribute SQLGetData SQLPrimaryKeys |
3976 SQLColumnPrivileges SQLGetDescField * SQLProcedureColumns |
3977 SQLColumns SQLGetDescRec * SQLProcedures |
3978 SQLCopyDesc SQLGetDiagField SQLPutData |
3979 SQLDescribeCol SQLGetDiagRec SQLSetPos |
3980 SQLDescribeParam SQLGetTypeInfo SQLSpecialColumns |
3981 SQLExecDirect SQLMoreResults SQLStatistics |
3982 SQLExecute SQLNumParams SQLTablePrivileges |
3983 SQLFetch SQLNumResultCols SQLTables |
3984 SQLFetchScroll SQLParamData |

3985 Table 9-1. Functions for which Asynchrony is Permitted |

3986 The above functions are those that may either submit requests to, or retrieve data from, the data |
3987 source; and hence may require extensive processing. |

3988 On multithread operating systems, executing functions on separate threads may be a useful |
3989 alternative to executing them asynchronously on the same thread. The performance effects of |
3990 using either technique are undefined. |

3991 Implementation Methods |

3992 An implementation may support asynchrony using any of the following methods: |

3993 • Activity in Parallel |

3994 The common meaning of the [SQL_STILL_EXECUTING] return value is that the initial call to |
3995 the XDBC function has initiated activity that will operate in parallel to the calling process (for |
3996 example, has submitted the request to a server) to complete the requested operation. |

3997 • Time-slicing |

3998 An acceptable alternative implementation is that each subsequent call to the XDBC function |
3999 performs another part of the operation originally requested. The function returns |
4000 [SQL_STILL_EXECUTING] to pass control back to the application with a notification that it |
4001 needs to gain control one or more times in the future to complete the operation. |

4002 • No effect |

4003 Even when the above rules permit an XDBC function to use asynchrony, the function may in |
4004 fact not return to its caller until it can report success or failure. No XDBC function is required |
4005 to return [SQL_STILL_EXECUTING] in any situation. |

4006 __________________ |
4007 * These functions can execute asynchronously only if the descriptor is an implementation descriptor, not an application descriptor. |||

Data Management: X/Open Database Connectivity (XDBC), Version 2 119

Levels of Asynchronous Support Executing Statements

4008 In a situation where the application is expecting asynchrony, the implementation may impair |
4009 application performance if it provides anything other than parallel execution.15 |

4010 9.5.2 Enabling Asynchrony |

4011 When any connection handle or statement handle is allocated, asynchrony is initially disabled on |
4012 that handle. This means no XDBC function ever returns [SQL_STILL_EXECUTING] unless the |
4013 application takes explicit action to enable asynchrony. |

4014 On all implementations that provide some level of support for asynchrony, the application can |
4015 enable asynchrony throughout a connection by setting the SQL_ATTR_ASYNC_ENABLE |
4016 attribute of a connection handle. This enables asynchrony for all of the following: |

4017 • The specified connection handle |

4018 • All statement handles subsequently associated with that connection handle. |

4019 It is implementation-defined whether enabling asynchrony on a connection handle enables |
4020 asynchrony on statement handles already associated with that connection handle. |

4021 There is also a statement attribute named SQL_ATTR_ASYNC_ENABLE. Its use depends on the |
4022 level of support for asynchrony in the implementation: |

4023 • On implementations that provide connection-level support of asynchrony: |

4024 The SQL_ATTR_ASYNC_ENABLE attribute of statement handles is a read-only attribute by |
4025 which an application can determine if asynchrony has been enabled for the connection with |
4026 which the statement handle is associated. |

4027 • On implementations that provide statement-level support of asynchrony: |

4028 The SQL_ATTR_ASYNC_ENABLE attribute of statement handles is a settable attribute. Its |
4029 initial value when the statement handle is allocated is the value of the |
4030 SQL_ATTR_ASYNC_ENABLE attribute of the associated connection handle. This indicates |
4031 whether asynchrony has been enabled or disabled for that connection. |

4032 By setting the SQL_ATTR_ASYNC_ENABLE statement attribute, the application can |
4033 override that decision for the specific statement handle. |

4034 9.5.3 Steps in Asynchronous Execution |

4035 Terminology |

4036 Of the functions for which asynchrony is defined (see Table 9-1 on page 117), some specify their |
4037 scope of operation using a connection handle; others use a statement handle. In the remainder of |
4038 this section, the term original function means the combination of an XDBC function and either a |
4039 connection handle or statement handle (whichever that function takes). |

4040 When no incomplete asynchronous operation is outstanding, the first call to the original function |
4041 that returns [SQL_STILL_EXECUTING] is called the initial call . The term subsequent call refers to |
4042 subsequent repeat calls to the original function, until and including the call that does not return |
4043 [SQL_STILL_EXECUTING] but instead reports success or failure. |

4044 __________________ |
4045 15. X/Open believes that the degree of any impairment will be measured by the marketplace and regarded as part of the quality of |||

implementation. X/Open declines to specify limits on such impairment or mandate that any specific XDBC function call operate |||
4046 using asynchrony. |||

120 Direct Review (Build ID 96KAV) (Draft XDBC.33, August 1996)

Executing Statements Steps in Asynchronous Execution

4047 Sequence |

4048 An application achieves asynchrony by performing the following steps: |

4049 1. The application either relies on private information on the level of support for asynchrony |
4050 in the associated XDBC implementation, or calls SQLGetInfo() to determine the level of |
4051 support. |

4052 2. The application enables asynchrony by setting the connection handle attribute (or, on some |
4053 applications, setting the statement handle attribute). See Section 9.5.2 on page 118. |

4054 3. The application makes an applicable initial call . (Applicable means it calls an XDBC |
4055 function for which asynchrony is defined, with a handle on which asynchrony is enabled.) |

4056 If the return value is [SQL_STILL_EXECUTING], the requested operation uses asynchrony. |
4057 Otherwise, the requested operation is complete and the sequence ends. |

4058 4. The application may perform other operations, subject to the restrictions specified in |
4059 Restrictions on Operations during Asynchrony on page 122. In particular, the application |
4060 may cancel the asynchronous operation, as described in Section 9.5.4 on page 119. |

4061 5. The application makes a subsequent call to determine whether the operation requested by |
4062 the initial call is complete. |

4063 Although this subsequent call uses the same syntax as the initial call, its only purpose is to |
4064 refer back to the initial call to poll whether the operation it requested is complete. |
4065 Therefore, the connection or statement handle on all subsequent calls must match that |
4066 used on the initial call. However, the implementation ignores all other input arguments. |

4067 For example, suppose an application calls SQLExecDirect() to execute a SELECT statement |
4068 asynchronously. On each subsequent call to SQLExecDirect(), the return value indicates the |
4069 status of the SELECT statement, even if the StatementText argument then contains an |
4070 INSERT statement. |

4071 If the subsequent call returns [SQL_STILL_EXECUTING], the operation is still not |
4072 complete and the application returns to Step 4. Otherwise, the operation is complete. |

4073 9.5.4 Cancelling an Asynchronously-executing Function |

4074 An application can use SQLCancel() to request the cancellation of an asynchronously-executing |
4075 function. Since, on some implementations, asynchrony may involve parallel processing, the |
4076 success of this request may be subject to race conditions. To avoid ambiguity, applications |
4077 should follow precisely the sequence described in this section and illustrated in Figure 9-2 on |
4078 page 121. |

4079 The application can request cancellation at any time that the most recent call to the original |
4080 function returned [SQL_STILL_EXECUTING]. |

4081 To cancel an asynchronous operation, the application performs the following steps: |

4082 • Call SQLCancel(). When and if the original function is cancelled is implementation- |
4083 dependent. |

4084 • Perform subsequent calls to the original function until such a call returns a value other than |
4085 [SQL_STILL_EXECUTING]. |

4086 That is, after requesting cancellation, the application must continue polling the original |
4087 function, as in the normal asynchrony sequence, in order to detect the conclusion of the |
4088 operation. The effect is undefined if the application makes more than one attempt to cancel |
4089 the operation. |

Data Management: X/Open Database Connectivity (XDBC), Version 2 121

Cancelling an Asynchronously-executing Function Executing Statements

4090 On the subsequent call that reports completion of the operation, the return value and the |
4091 diagnostic area indicate the operation’s status: |

4092 • A return value of [SQL_ERROR] and a SQLSTATE of HY008 (Operation canceled) indicate |
4093 that the application successfully cancelled the operation. |

4094 • Any other return value, or a return value of [SQL_ERROR] and any other SQLSTATE, |
4095 indicates that the application failed to cancel the operation. The operation is complete. The |
4096 return value and diagnostics area reflect the outcome of the operation. |

122 Direct Review (Build ID 96KAV) (Draft XDBC.33, August 1996)

Executing Statements Cancelling an Asynchronously-executing Function

4097 9.5.5 Example Asynchronous Control Flow |

4098 Figure 9-2 on page 121 illustrates the sequence of asynchronous processing for an XDBC |
4099 function f(), including the method of attempting to cancel an asynchronous operation. The |
4100 figure does not illustrate the step of detecting the level of support for asynchrony in the |
4101 implementation, nor the step of enabling asynchrony on the relevant handles. |

4102 Execute f() |
4103 L

L
L |
______________________ |

L
L
L |______________________ |

4104 f() returned |
4105 SQL_STILL_EXECUTING? |

|
No |

4106 Yes |

______ |||Function is |
complete |

4107 Want to continue |
4108 waiting for f()? |

|
Yes |

4109 No |

_______________ |L
L
L
L
L
L
L
L
L
L |
__________________ |||

4110 Call SQLCancel() |
4111 L

L
L |
______________________ |

L
L
L |______________________ |

4112 Call f() again |
4113 L

L
L |
______________________ |

L
L
L |______________________ |

4114 f() returned |
4115 SQL_STILL_EXECUTING? |

|
Yes |

4116 No |

_______________ |L
L
L
L
L |
__________________ |||

4117 f() returned |
4118 SQL_ERROR? |

|
Yes |

4119 No |

______ |||f() completed; |
cancel ineffective |

4120 Get diagnostic |
4121 information |L

L
L |
______________________ |

L
L
L |______________________ |

4122 SQLSTATE= |
4123 HY008? |

|
Yes |

4124 No |

______ |||f() failed |
with other error |

4125 f() was |
4126 successfully cancelled |

|||

|||

|||

|||

|||

|||

|||

|||

|||

4127 Figure 9-2. Example Control Flow for Asynchrony |

Data Management: X/Open Database Connectivity (XDBC), Version 2 123

Example Asynchronous Control Flow Executing Statements

4128 9.5.6 Asynchrony Combined with Other XDBC Features |

4129 Data-at-execute Dialogue |

4130 Section 9.4.3 on page 105 tells how, at the application’s request, SQLExecDirect() and |
4131 SQLExecute() may request the values of certain bound parameters at the time the function is |
4132 executed. A call to one of these functions initiates a sequence of calls to SQLParamData() and |
4133 SQLPutData() by which the application provides the values. |

4134 The time-consuming portion of SQLExecDirect() and SQLExecute() (the work for which |
4135 asynchronous execution may be necessary) is presumed to entirely precede the data-at-execute |
4136 dialogue. Therefore, a call to SQLExecDirect() or SQLExecute() can only return |
4137 [SQL_STILL_EXECUTING] before the start of the data-at-execute dialogue. As usual, |
4138 completion of the asynchronous operation is indicated by a return value other than |
4139 [SQL_STILL_EXECUTING], which reflects the status of the original function. If this return value |
4140 is [SQL_NEED_DATA], then any asynchronous operation is complete and the data-at-execute |
4141 dialogue begins. |

4142 Restrictions on Operations during Asynchrony |

4143 When an asynchronous operation is outstanding, the other work the application can initiate is |
4144 subject to the following limits: |

4145 • The only functions the application can call using a statement handle involved in an |
4146 asynchronous operation are: the original function, SQLCancel(), SQLGetDiagField() and |
4147 SQLGetDiagRec(). |

4148 • The only functions the application can call using a connection handle involved in an |
4149 asynchronous operation are: SQLAllocHandle() to allocate a statement handle, |
4150 SQLAllocStmt(), SQLGetFunctions(), SQLGetDiagField() and SQLGetDiagRec(). |

4151 Calling any other function on these handles returns SQLSTATE HY010 (Function sequence |
4152 error). The application can call any function using handles other than the original statement |
4153 handle and the original connection handle. |

4154 Diagnostics Area during Asynchrony |

4155 When an asynchronous operation is outstanding, the diagnostics area associated with the |
4156 statement handle has the following contents: |

4157 • The SQL_DIAG_RETURNCODE field in the header record contains |
4158 [SQL_STILL_EXECUTING]. |

4159 • There are 0 status records. |

4160 If the application calls SQLCancel() to try to cancel an asynchronous operation and SQLCancel() |
4161 returns [SQL_ERROR], the diagnostics area contains information pertaining to the failed call to |
4162 SQLCancel(). |

4163 After then SQLCancel() attempt, the application is required to make a subsequent call to poll the |
4164 asynchronous operation for completion. After any such call, the diagnostics area contains |
4165 information pertaining to that call. |

124 Direct Review (Build ID 96KAV) (Draft XDBC.33, August 1996)

Executing Statements Asynchrony Combined with Other XDBC Features

4166 Ordering Not Guaranteed |

4167 On implementations that support multiple concurrent asynchronous operations, no type of |
4168 ordering of XDBC operations is guaranteed (either among asynchronous operations or between |
4169 any asynchronous operation and an operation performed synchronously). It is undefined which |
4170 operation finishes first. |

4171 9.5.7 Limits on Concurrency |

4172 Some implementations may impose a numerical limit on the number of active asynchronous |
4173 operations on a connection. For example, if the limit is 1, an application cannot execute any |
4174 XDBC function asynchronously on a second statement handle until it has verified that an |
4175 asynchronous operation on a first statement handle either has completed or has been cancelled |
4176 successfully. |

4177 An application can find out how many concurrent asynchronous operations the implementation |
4178 allows by calling SQLGetInfo() to find the value of |
4179 SQL_MAXIMUM_ASYNC_CONCURRENT_STATEMENTS. |

4180 Any limit on the number of concurrent asynchronous operations is independent of the limit on |
4181 the number of statement handles that can simultaneously interact with the server. It is also |
4182 independent of the level of support for asynchrony in the implementation. |

4183 If an application initiates an asynchronous operation so as to exceed the implementation’s limit |
4184 on the number of concurrent asynchronous operations on a connection, the effect is |
4185 implementation-defined. |

4186 9.5.8 Example Asynchrony Code |

4187 The following is an example of asynchronous execution of an SQL statement: |

4188 SQLHDBC hdbc1, hdbc2; |
4189 SQLHSTMT hstmt1, hstmt2, hstmt3; |
4190 SQLCHAR *SQLStatement = ’SELECT * FROM Orders’; |
4191 SQLUINTEGER InfoValue; |
4192 SQLRETURN rc; |
4193 SQLAllocHandle(SQL_HANDLE_STMT, hdbc1, &hstmt1); |
4194 SQLAllocHandle(SQL_HANDLE_STMT, hdbc1, &hstmt2); |
4195 SQLAllocHandle(SQL_HANDLE_STMT, hdbc2, &hstmt3); |

4196 // Specify that hstmt1 is to be executed asynchronously. |
4197 SQLSetStmtAttr(hstmt1, SQL_ATTR_ASYNC_ENABLE, SQL_ASYNC_ENABLE_ON, 0); |

4198 // Execute hstmt1 asynchronously. |
4199 while ((rc = SQLExecDirect(hstmt1, SQLStatement, SQL_NTS) == SQL_STILL_EXECUTING) { |

4200 // The following calls return S1010 because the previous call to SQLExecDirect is |
4201 // still executing asynchronously on hstmt1. The first call uses hstmt1 and the |
4202 // second call uses hdbc1, on which hstmt1 is allocated. |
4203 SQLExecDirect(hstmt1, SQL, SQL_NTS); // Error! |
4204 SQLGetInfo(hdbc1, SQL_UNION, (SQLPOINTER) &InfoValue, 0, NULL); // Error! |

4205 // The following calls do not return errors. They use a statement handle other than |
4206 // hstmt1 or a connection handle other than hdbc1. |
4207 SQLExecDirect(hstmt2, SQLStatement, SQL_NTS); // OK |
4208 SQLTables(hstmt3, NULL, 0, NULL, 0, NULL, 0, NULL, 0); // OK |
4209 SQLGetInfo(hdbc2, SQL_UNION, (SQLPOINTER) &InfoValue, 0, &NULL); // OK |
4210 } |

Data Management: X/Open Database Connectivity (XDBC), Version 2 125

Freeing a Statement Handle Executing Statements

4211 9.6 Freeing a Statement Handle |

4212 As mentioned earlier, it’s more efficient to reuse statements than drop them and allocate new |
4213 ones. Before executing a new SQL statement on a statement, applications should be sure that the |
4214 current statement settings are appropriate. These include statement attributes, parameter |
4215 bindings, and result set bindings. Generally, parameters and result sets for the old SQL |
4216 statement need to be unbound (by calling SQLFreeStmt() with the SQL_RESET_PARAMS and |
4217 SQL_UNBIND options) and rebound for the new SQL statement. |

4218 When the application has finished using the statement, it calls SQLFreeHandle() to free the |
4219 statement. After freeing the statement, it’s an application programming error to use the |
4220 statement’s handle in a call to an XDBC function; doing so has undefined but probably fatal |
4221 consequences. |

4222 When SQLFreeHandle() is called, the implementation releases the structure used to store |
4223 information about the statement. SQLDisconnect() automatically frees all statements on a |
4224 connection. |

126 Direct Review (Build ID 96KAV) (Draft XDBC.33, August 1996)

4225 Chapter 10 |

4226 Retrieving Results (Basic) |

4227 A result set is the conceptual table that the implementation makes available to the application |
4228 based on a query. SELECT statements, catalog functions, and some procedures create result sets. |
4229 For example, the first SQL statement below creates a result set containing all the rows and all the |
4230 columns in the Orders table and the second SQL statement creates a result set containing |
4231 OrderID, SalesPerson, and Status columns for the rows in the Orders table in which the Status is |
4232 OPEN. |

4233 SELECT * FROM Orders |
4234 SELECT OrderID, SalesPerson, Status FROM Orders WHERE Status = ’OPEN’ |

4235 A result set can be empty, which is different from no result set at all. For example, the following |
4236 SQL statement creates an empty result set: |

4237 SELECT * FROM Orders WHERE 1 = 2 |

4238 An empty result set is no different from any other result set except that it has no rows. For |
4239 example, the application can retrieve metadata for the result set, can attempt to fetch rows, and |
4240 must close the cursor over the result set. |

4241 The process of retrieving rows from the data source and returning them to the application is |
4242 called fetching. This chapter explains the basic parts of that process. For information about more |
4243 advanced topics, such as multi-row fetch and scrollable cursors, see Chapter 11. For information |
4244 about updating, deleting, and inserting rows, see Chapter 12. |

Data Management: X/Open Database Connectivity (XDBC), Version 2 127

Was a Result Set Created? Retrieving Results (Basic)

4245 10.1 Was a Result Set Created? |

4246 In most situations, application programmers know whether or not the statements their |
4247 application executes will create a result set. This is the case if the application uses hard-coded |
4248 SQL statements written by the programmer. It’s usually the case when the application constructs |
4249 SQL statements at run time: The programmer can easily include code that flags whether a |
4250 SELECT statement or an INSERT statement is being constructed. |

4251 In a few situations, the programmer cannot know whether a statement will create a result set. |
4252 This is true if the application provides a way for the user to enter and execute an SQL statement. |
4253 It’s also true when the application constructs a statement at run time to execute a procedure. |

4254 In such cases, the application can call SQLNumResultCols() to determine the number of columns |
4255 in the result set. If this is 0, the statement didn’t create a result set; if it’s any other number, the |
4256 statement did create a result set. |

4257 The application can call SQLNumResultCols() at any time after the statement is prepared or |
4258 executed. (But see Performance Note on page 279.) |

4259 To determine the number of rows that an SQL statement returns in a result set, the application |
4260 may be able to call SQLRowCount(). The application can call SQLGetInfo() to determine the |
4261 meaning of the row count, as described in Detecting Cursor Capabilities with SQLGetInfo() on |
4262 page 402: |

4263 • The SQL_CA2_CRC_EXACT bitmask indicates that the row count is exact. The |
4264 SQL_CA2_CRC_APPROXIMATE bitmask indicates that the row count is approximate. If |
4265 neither bit is set, the data source does not provide a row count at all. |

4266 • For static and keyset-driven cursors, the application can determine the effect on the row |
4267 count of changes made through SQLBulkOperations(), SQLSetPos(), or by positioned UPDATE |
4268 or DELETE statements. |

128 Direct Review (Build ID 96KAV) (Draft XDBC.33, August 1996)

Retrieving Results (Basic) Result Set Metadata

4269 10.2 Result Set Metadata |

4270 Metadata is data that describes other data. For example, result set metadata describes the result |
4271 set, such as the number of columns in the result set, the data types of those columns, their |
4272 names, precision, nullability, and so on. |

4273 Interoperable applications should check the metadata of the columns of a result set, because this |
4274 metadata might not be the same as the metadata for the corresponding column of the underlying |
4275 table (if indeed the column is based on a single column of an underlying table). For example, on |
4276 some implementations, a column of a result set created by joining two tables is sometimes not |
4277 updatable even when the underlying columns are updatable. Even data types cannot be |
4278 assumed to be the same, as the data source might promote the data type in creating the result |
4279 set. |

4280 10.2.1 How is Metadata Used? |

4281 Applications require metadata for most result set operations. For example, the application uses |
4282 the data type of a column to determine what kind of variable to bind to that column. It uses the |
4283 octet length of a character column to determine how much space it needs to display data from |
4284 that column. How an application determines the metadata for a column depends on the type of |
4285 the application. |

4286 Vertical applications work with predefined tables and perform predefined operations on those |
4287 tables. Because the result set metadata for such applications is defined before the application is |
4288 even written and is controlled by the application developer, it can be hard-coded into the |
4289 application. For example, if an order ID column is defined as a 4-octet integer in the data source, |
4290 the application can always bind a 4-octet integer to that column. When metadata is hard-coded |
4291 in the application, a change to the tables used by the application generally implies a change to |
4292 the application code. This is rarely a problem, as such changes are generally made as part of a |
4293 new release of the application. |

4294 Like vertical applications, custom applications generally work with predefined tables and |
4295 perform predefined operations on those tables. For example, an application might be written to |
4296 transfer data among three different data sources; the data to be transferred is generally known |
4297 when the application is written. Thus, custom applications also tend to have hard-coded |
4298 metadata. |

4299 Generic applications, especially applications that support ad-hoc queries, almost never know the |
4300 metadata of the result sets they create. Therefore, they must discover the metadata at run time |
4301 using the functions SQLNumResultCols(), SQLDescribeCols(), and SQLColAttribute(), which are |
4302 described in the next section. |

4303 All applications, regardless of their type, can hard code metadata for the result sets returned by |
4304 the catalog functions. These result sets are defined in the reference section of this manual. |

4305 10.2.2 SQLDescribeCol() and SQLColAttribute() |

4306 SQLDescribeCol() and SQLColAttribute() are used to retrieve result set metadata. The difference |
4307 between these two functions is that SQLDescribeCol() always returns the same five pieces of |
4308 information (a column’s name, data type, precision, scale, and nullability), while |
4309 SQLColAttribute() returns a single piece of information requested by the application. However, |
4310 SQLColAttribute() can return a much richer selection of metadata, including a column’s case |
4311 sensitivity, display size, updatability, and searchability. |

4312 Many applications, especially ones that only display data, only require the metadata returned by |
4313 SQLDescribeCol(). For these applications, it’s faster to use SQLDescribeCol() than |
4314 SQLColAttribute() because the information is returned in a single call. Other applications, |
4315 especially ones that update data, require the additional metadata returned by SQLColAttribute() |

Data Management: X/Open Database Connectivity (XDBC), Version 2 129

SQLDescribeCol() and SQLColAttribute() Retrieving Results (Basic)

4316 and so use both functions. |

4317 An application can retrieve result set metadata at any time after a statement has been prepared |
4318 or executed and before the cursor over the result set is closed. (Applications may degrade |
4319 performance by asking for metadata before the statement is executed; see Performance Note on |
4320 page 279.) |

4321 It is often costly to retrieve metadata from the data source. Because of this, implementations |
4322 should cache any metadata they retrieve from the data source and hold it for as long as the |
4323 cursor over the result set is open. Also, applications should request only the metadata they |
4324 absolutely need. |

130 Direct Review (Build ID 96KAV) (Draft XDBC.33, August 1996)

Retrieving Results (Basic) Binding Result Set Columns

4325 10.3 Binding Result Set Columns |

4326 Data fetched from the data source is returned to the application in variables that the application |
4327 has allocated for this purpose. Before this can be done, the application must associate, or bind, |
4328 these variables to the columns of the result set; conceptually, this process is the same as binding |
4329 application variables to statement parameters. When the application binds a variable to a result |
4330 set column, it describes that variable — address, data type, and so on — to the implementation. |
4331 The implementation stores this information in the structure it maintains for that statement and |
4332 uses the information to return the value from the column when the row is fetched. |

4333 10.3.1 Overview |

4334 Applications can bind as many or as few columns of the result set as they choose, including |
4335 binding no columns at all. When a row of data is fetched, the implementation returns the data |
4336 for the bound columns to the application. Whether the application binds all of the columns in the |
4337 result set depends on the application. For example, applications that generate reports usually |
4338 have a fixed format; such applications create a result set containing all of the columns used in |
4339 the report, then bind and retrieve the data for all of these columns. Applications that display |
4340 screens full of data sometimes allow the user to decide which columns to display; such |
4341 applications create a result set containing all columns the user might want, but bind and retrieve |
4342 the data only for those columns chosen by the user. |

4343 Data can be retrieved from unbound columns by calling SQLGetData(). This is commonly called |
4344 to retrieve long data, which often exceeds the length of a single buffer and must be retrieved in |
4345 parts (see Section 10.4.4 on page 135). |

4346 Columns can be bound at any time, even after rows have been fetched. However, the new |
4347 bindings don’t take effect until the next time a row is fetched; they aren’t applied to data from |
4348 rows already fetched. |

4349 A variable remains bound to a column until the application calls SQLBindCol() to specify a |
4350 different variable to the column (or to specify a null pointer, which unbinds the column). In |
4351 addition, all columns are unbound by calling SQLFreeStmt() with the SQL_UNBIND option, and |
4352 all columns are unbound when the statement is released. The application must ensure that all |
4353 bound variables remain valid as long as they are bound. For more information, see Section 4.3.2 |
4354 on page 39. |

4355 Because column bindings are just information associated with the statement structure, they can |
4356 be set in any order. They are also independent of the result set. For example, suppose an |
4357 application binds the columns of the result set generated by the following SQL statement: |

4358 SELECT * FROM Orders |

4359 If the application then executes the SQL statement: |

4360 SELECT * FROM Lines |

4361 on the same statement handle, the column bindings for the first result set are still associated with |
4362 the statement structure. In most cases, this is a poor programming practice and should be |
4363 avoided. Instead, the application should call SQLFreeStmt() with the SQL_UNBIND option to |
4364 unbind all the old columns and then bind new ones. |

Data Management: X/Open Database Connectivity (XDBC), Version 2 131

Using SQLBindCol() Retrieving Results (Basic)

4365 10.3.2 Using SQLBindCol() |

4366 The application binds columns by calling SQLBindCol(). This function binds one column at a |
4367 time. With it, the application specifies: |

4368 • The column number. Column 0 is the bookmark column; this column isn’t included in some |
4369 result sets. All other columns are numbered starting with the number 1. It’s an error to bind a |
4370 higher numbered column than there are columns in the result set; this error cannot be |
4371 detected until the result set has been created, so it’s returned by SQLFetch(), not |
4372 SQLBindCol(). |

4373 • The C data type, address, and octet length of the variable bound to the column. It’s an error |
4374 to specify a C data type to which the SQL data type of the column cannot be converted; this |
4375 error might not be detected until the result set has been created, so it’s returned by |
4376 SQLFetch(), not SQLBindCol(). For a list of supported conversions, see Appendix D. For |
4377 information about the octet length, see Data Buffer Length on page 42. |

4378 • The address of a length/indicator buffer. The length/indicator buffer is optional. It’s used to |
4379 return the octet length of binary or character data or return SQL_NULL_DATAif the data is |
4380 NULL. For more information, see Section 4.3.5 on page 42. |

4381 When SQLBindCol() is called, the implementation associates this information with the statement. |
4382 When each row of data is fetched, it uses the information to place the data for each column in the |
4383 bound application variables. |

4384 For example, the following code binds variables to the SalesPerson and CustID columns. Data |
4385 for the columns will be returned in SalesPerson and CustID. Because SalesPerson is a character |
4386 buffer, the application specifies its octet length (11) so the implementation can determine |
4387 whether to truncate the data. The octet length of the returned title, or whether it’s NULL, will be |
4388 returned in SalesPersonLenOrInd. |

4389 Because CustID is an integer variable and has fixed length, there is no need to specify its octet |
4390 length; the implementation assumes it’s sizeof(SQLUINTEGER). The octet length of the |
4391 returned customer ID data, or whether it’s NULL, will be returned in CustIDInd. Note that the |
4392 application is only interested in whether the salary is NULL, as the octet length is always |
4393 sizeof(SQLUINTEGER). |

4394 SQLCHAR SalesPerson[11]; |
4395 SQLUINTEGER CustID; |
4396 SQLINTEGER SalesPersonLenOrInd, CustIDInd; |
4397 SQLRETURN rc; |

4398 // Bind SalesPerson to the SalesPerson column and CustID to the CustID column. |
4399 SQLBindCol(hstmt, 1, SQL_C_CHAR, SalesPerson, sizeof(SalesPerson), |
4400 &SalesPersonLenOrInd); |
4401 SQLBindCol(hstmt, 2, SQL_C_FLOAT, &CustID, 0, &CustIDInd); |

4402 // Execute a statement to get the sales person/customer of all orders. |
4403 SQLExecDirect(hstmt, ’SELECT SalesPerson, CustID FROM Orders ORDER BY SalesPerson’, |
4404 SQL_NTS); |

4405 // Fetch and print the data. Print ’NULL’ if the data is NULL. Code to check if rc |
4406 // equals SQL_ERROR or SQL_SUCCESS_WITH_INFO not shown. |
4407 while ((rc = SQLFetch(hstmt)) != SQL_NO_DATA) { |
4408 if (SalesPersonLenOrInd == SQL_NULL_DATA) printf(’NULL ’) |
4409 else printf(’%10s ’, SalesPerson); |
4410 if (CustIDInd == SQL_NULL_DATA) printf(’NULL\n’) |
4411 else printf(’%d\n’, CustID); |
4412 } |

4413 // Close the cursor. |
4414 SQLCloseCursor(hstmt); |

132 Direct Review (Build ID 96KAV) (Draft XDBC.33, August 1996)

Retrieving Results (Basic) Using SQLBindCol()

4415 The following code executes a SELECT statement entered by the user and prints each row of |
4416 data in the result set. Because the application cannot predict the shape of the result set created by |
4417 the SELECT statement, it cannot bind hard-coded variables to the result set as in the previous |
4418 example. Instead, the application allocates a buffer that holds the data and a length/indicator |
4419 buffer for each column in that row. For each column, it calculates the offset to the start of the |
4420 memory for the column and adjusts this offset so that the data and length/indicator buffers for |
4421 the column start on alignment boundaries. It then binds the memory starting at the offset to the |
4422 column. From the implementation’s point of view, the address of this memory is |
4423 indistinguishable from the address of a variable bound in the previous example. |

4424 // This application allocates a buffer at run time. For each column, this buffer |
4425 // contains memory for the column’s data and length/indicator. For example: |
4426 // |
4427 // column 1 column 2 column 3 column 4 |
4428 // <-------------><---------------><-----><------------> |
4429 // db1 li1 db2 li2 db3 li3 db4 li4 |
4430 // | | | | | | | | |
4431 // _____V_____V________V_______V___V___V______V_____V_ |
4432 // |__________|__|_____________|__|___|__|__________|__| |
4433 // |
4434 // dbn = data buffer for column n |
4435 // lin = length/indicator buffer for column n |

4436 // Define a macro to increase the size of a buffer so it is a multiple of the alignment |
4437 // size. Thus, if a buffer starts on an alignment boundary, it will end just before the |
4438 // next alignment boundary. In this example, an alignment size of 4 is used because |
4439 // this is the size of the largest data type used in the application’s buffer -- the |
4440 // size of an SQLINTEGER and of the largest default C data type are both 4. If a larger |
4441 // data type (such as _int64) was used, it would be necessary to align for that size. |
4442 #define ALIGNSIZE 4 |
4443 #define ALIGNBUF(Length) Length % ALIGNSIZE ? \ |
4444 Length + ALIGNSIZE - (Length % ALIGNSIZE) : Length |

4445 SQLCHAR SelectStmt[100]; |
4446 SQLSMALLINT NumCols, *CTypeArray, i; |
4447 SQLINTEGER *ColLenArray, *OffsetArray, SQLType; |

4448 // Get a SELECT statement from the user and execute it. |
4449 GetSelectStmt(SelectStmt, 100); |
4450 SQLExecDirect(hstmt, SelectStmt, SQL_NTS); |

4451 // Determine the number of result set columns. Allocate arrays to hold the C type, |
4452 // octet length, and buffer offset to the data. |
4453 SQLNumResultCols(hstmt1, &NumCols); |
4454 CTypeArray = (SQLSMALLINT *) malloc(NumCols * sizeof(SQLSMALLINT)); |
4455 ColLenArray = (SQLINTEGER *) malloc(NumCols * sizeof(SQLINTEGER)); |
4456 OffsetArray = (SQLINTEGER *) malloc(NumCols * sizeof(SQLINTEGER)); |

4457 OffsetArray[0] = 0; |
4458 for (i = 0; i < NumCols; i++) { |

4459 // Determine the column’s SQL type. GetDefaultCType contains a switch statement that |
4460 // returns the default C type for each SQL type. |
4461 SQLColAttribute(hstmt , i + 1, SQL_DESC_TYPE, NULL, 0, NULL, (SQLPOINTER) &SQLType); |
4462 CTypeArray[i] = GetDefaultCType(SQLType); |

4463 // Determine the column’s octet length. Calculate the offset in the buffer to the |
4464 // data as the offset to the previous column, plus the octet length of the previous |
4465 // column, plus the octet length of the previous column’s length/indicator buffer. |
4466 // Note that the octet length of the column and the length/indicator buffer are |
4467 // increased so that, assuming they start on an alignment boundary, they will end on |
4468 // the octet before the next alignment boundary. Although this might leave some holes |
4469 // in the buffer, it is a relatively inexpensive way to guarantee alignment. |
4470 SQLColAttribute(hstmt, i+1, SQL_DESC_OCTET_LENGTH, NULL, 0, NULL, &ColLenArray[i]); |
4471 ColLen[i]Array = ALIGNBUF(ColLenArray[i]); |
4472 if (i) |
4473 OffsetArray[i] = OffsetArray[i-1]+ColLenArray[i-1]+ALIGNBUF(sizeof(SQLINTEGER)); |
4474 } |

Data Management: X/Open Database Connectivity (XDBC), Version 2 133

Using SQLBindCol() Retrieving Results (Basic)

4475 // Allocate the data buffer. The size of the buffer is equal to the offset to the data |
4476 // buffer for the final column, plus the octet length of the data buffer and |
4477 // length/indicator buffer for the last column. |
4478 void *DataPtr = malloc(OffsetArray[NumCols - 1] + |
4479 ColLenArray[NumCols - 1] + ALIGNBUF(sizeof(SQLINTEGER))); |

4480 // For each column, bind the address in the buffer at the start of the memory allocated |
4481 // for that column’s data and the address at the start of the memory allocated for that |
4482 // column’s length/indicator buffer. |
4483 for (i = 0; i < NumCols; i++) |
4484 SQLBindCol(hstmt, |
4485 i + 1, |
4486 CTypeArray[i], |
4487 (SQLPOINTER)((SQLCHAR *)DataPtr + OffsetArray[i]), |
4488 ColLenArray[i], |
4489 (SQLINTEGER *)((SQLCHAR *)DataPtr + OffsetArray[i] + ColLenArray[i])); |

4490 // Retrieve and print each row. PrintData accepts a pointer to the data, its C type, |
4491 // and its octet length/indicator. It contains a switch statement that casts and prints |
4492 // the data according to its type. Code to check if rc equals SQL_ERROR or |
4493 // SQL_SUCCESS_WITH_INFO not shown. |
4494 while ((rc = SQLFetch(hstmt)) != SQL_NO_DATA) { |
4495 for (i = 0; i < NumCols; i++) { |
4496 PrintData(DataPtr[OffsetArray[i]], CTypeArray[i], |
4497 (SQLINTEGER)*DataPtr[OffsetArray[i] + ColLenArray[i]]); |
4498 } |
4499 } |

4500 // Close the cursor. |
4501 SQLCloseCursor(hstmt); |

134 Direct Review (Build ID 96KAV) (Draft XDBC.33, August 1996)

Retrieving Results (Basic) Fetching Data

4502 10.4 Fetching Data |

4503 The process of retrieving rows from the result set and returning them to the application is called |
4504 fetching. This section describes how to fetch data. |

4505 10.4.1 Cursors |

4506 A cursor is a movable pointer into a result set. The cursor indicates the current position in the |
4507 result set. |

4508 Cursors in XDBC are based on the cursor model in X/Open SQL. One notable difference |
4509 between these models is the way cursors are opened. In SQL, the application must explicitly |
4510 declare and open a cursor before using it. When the XDBC implementation executes a statement |
4511 that creates a result set, it implicitly opens a cursor and positions it before the first row of the |
4512 result set. In both SQL and XDBC, a cursor must be closed after the application has finished |
4513 using it. |

4514 The remainder of this chapter discusses the default cursor type of XDBC: the forward-only cursor |
4515 when used to fetch one row of data at a time. A forward-only cursor can only move forward |
4516 through the result set. To return to a previous row, the application must close and reopen the |
4517 cursor, then read rows from the beginning of the result set until it reaches the row. Forward-only |
4518 cursors provide a fast way to make a single pass through a result set. |

4519 Forward-only cursors are less useful for screen-based applications in which the user scrolls |
4520 backward and forward through the data. Advanced cursor types are discussed in Chapter 11. |

4521 Transaction completion may have side-effects on cursors. See Section 14.1.3 on page 184. |

4522 10.4.2 Fetching a Row of Data |

4523 To fetch a row of data in the forward direction, an application calls SQLFetch(). SQLFetch() |
4524 advances the cursor to the next row and returns the data for any columns that were bound with |
4525 calls to SQLBindCol(). When the cursor reaches the end of the result set, SQLFetch() returns |
4526 SQL_NO_DATA. The examples in Section 10.3.2 on page 130 show the use of SQLFetch(). |

4527 SQLFetch() retrieves the data for any bound columns from the data source (or returns an error if |
4528 it cannot), converts it according to the types of the bound variables, and places the converted |
4529 data in those variables. The application can continue fetching rows, but the data for the current |
4530 row is lost. For unbound columns, the implementation may retrieve and discard it or not retrieve |
4531 it at all. |

4532 The implementation also sets the values of any length/indicator buffers that have been bound. If |
4533 the data value for a column is NULL, the implementation sets the corresponding |
4534 length/indicator buffer to SQL_NULL_DATA.If the data value isn’t NULL, the implementation |
4535 sets the length/indicator buffer to the octet length of the data after conversion. If this length |
4536 cannot be determined, as is sometimes the case when long data is retrieved in pieces, the |
4537 implementation sets the length/indicator buffer to SQL_NO_TOTAL. (For fixed-length data |
4538 types, such as integers and date structures, the octet length is the size of the data type.) |

4539 For variable-length data, such as character and binary data, the implementation checks the octet |
4540 length of the converted data against the octet length of the buffer bound to the column; the |
4541 buffer’s length is specified in the BufferLength argument in SQLBindCol(). If the octet length of |
4542 the converted data is greater than the octet length of the buffer, the implementation truncates the |
4543 data to fit in the buffer, returns the untruncated length in the length/indicator buffer, returns |
4544 SQL_SUCCESS_WITH_INFO, and places SQLSTATE01004 (Data truncated) in the diagnostics. |

4545 Values of fixed-length application data types is never truncated; the implementation assumes |
4546 that the size of the bound buffer is the size of the data type. The application can avoid truncation |
4547 by determining the data length from the metadata and binding the column to a buffer of |

Data Management: X/Open Database Connectivity (XDBC), Version 2 135

Fetching a Row of Data Retrieving Results (Basic)

4548 adequate length. However, the application might explicitly bind a buffer it knows to be too |
4549 small, such as to retrieve and display just the start of a long text column. |

4550 If the SQL_ATTR_OUTPUT_NTS environment attribute is SQL_TRUE, then the implementation |
4551 null-terminates character data before returning it to the application, even if the implementation |
4552 truncated it. The null terminator isn’t included in the returned octet length, but does require |
4553 space in the bound buffer. For example, suppose an application uses a character set in which |
4554 each character occupies one octet, an implementation has 50 characters of data to return, and the |
4555 application’s buffer is 25 octets long. In the application’s buffer, the implementation returns the |
4556 first 24 characters followed by a null terminator. In the length/indicator buffer, it returns a octet |
4557 length of 50. |

4558 The application can restrict the number of rows in the result set by setting the |
4559 SQL_ATTR_MAX_ROWS statement attribute before executing the statement that creates the |
4560 result set. For example, the preview mode in an application used to format reports only needs |
4561 enough data to display the first page of the report. By restricting the size of the result set, such a |
4562 feature would run faster. This statement attribute is intended to reduce network traffic and |
4563 might not be supported by all implementations. |

4564 10.4.3 Row Status |

4565 The application can set the SQL_ATTR_ROW_STATUS_PTR to the address of an application |
4566 variable. In this case, after a fetch, the implementation places one of the following values into |
4567 the application variable: |

4568 SQL_ROW_SUCCESS |
4569 The row was successfully fetched and has not changed since it was last fetched. |

4570 SQL_ROW_SUCCESS_WITH_INFO |
4571 The row was successfully fetched and has not changed since it was last fetched. However, a |
4572 warning was returned about the row. |

4573 SQL_ROW_ERROR |
4574 An error occurred while fetching the row. |

4575 SQL_ROW_UPDATED |
4576 The row was successfully fetched and has been updated since it was last fetched. If the row |
4577 is fetched again, or refreshed by SQLSetPos(), its status is changed to the new status. |

4578 SQL_ROW_DELETED |
4579 The row has been deleted since it was last fetched. |

4580 SQL_ROW_ADDED |
4581 The row was inserted by SQLBulkOperations(). If the row is fetched again, its status is |
4582 SQL_ROW_SUCCESS. |

4583 SQL_ROW_NOROW |
4584 The row-set overlapped the end of the result set and no row was returned that |
4585 corresponded to this element of the row status array. |

4586 This same information is available after a fetch in the SQL_DESC_ARRAY_STATUS_PTRfield of |
4587 the implementation row descriptor. |

136 Direct Review (Build ID 96KAV) (Draft XDBC.33, August 1996)

Retrieving Results (Basic) Getting Long Data

4588 10.4.4 Getting Long Data |

4589 Section 9.4.3 on page 105 discussed cases in which a long data value must be sent to the data |
4590 source in pieces. The application can likewise retrieve a long data value in parts by calling |
4591 SQLGetData() after fetching the other data in the row. |

4592 Note: An application can actually retrieve any type of data with SQLGetData(), not just long |
4593 data, although only character and binary data can be retrieved in parts. However, if the data is |
4594 small enough to fit in a single buffer, there is generally no reason to use SQLGetData(). It’s much |
4595 easier to bind a buffer to the column and let the implementation return the data in the buffer. |

4596 To retrieve long data from a column, an application first calls SQLFetchScroll() or SQLFetch() to |
4597 move to a row and fetch the data for bound columns. The application then calls SQLGetData(). |
4598 SQLGetData() has the same arguments as SQLBindCol(): a statement handle, a column number, |
4599 the C data type, address, and octet length of an application variable, and the address of a |
4600 length/indicator buffer. Both functions have the same arguments because they perform |
4601 essentially the same task: They both describe an application variable to the implementation and |
4602 specify that the data for a particular column should be returned in that variable. The major |
4603 differences are that SQLGetData() is called after a row is fetched (and is sometimes called late |
4604 binding for this reason), and that the binding specified by SQLGetData() only lasts for the |
4605 duration of the call. |

4606 With respect to a single column, SQLGetData() behaves in the same manner as SQLFetch(): It |
4607 retrieves the data for the column, converts it to the type of the application variable, and returns it |
4608 in that variable. It also returns the octet length of the data in the length/indicator buffer. For |
4609 more information on how SQLFetch() returns data, see Section 10.4.2 on page 133. |

4610 SQLGetData() differs from SQLFetch() in one important respect. If it’s called more than once in |
4611 succession for the same column, each call returns a successive part of the data. This is how |
4612 SQLGetData() is used to retrieve long data in parts. When there is no more data to return, |
4613 SQLGetData() returns SQL_NO_DATA. The value returned in the length/indicator buffer |
4614 decreases in each call by the number of octets returned in the previous call. (If the |
4615 implementation cannot determine the amount of available data, it returns an octet length of |
4616 SQL_NO_TOTAL.) For example: |

4617 // Declare a binary buffer to retrieve 5000 octets of data at a time. |
4618 SQLCHAR BinaryPtr[5000]; |
4619 SQLUINTEGER PartID; |
4620 SQLINTEGER PartIDInd, BinaryLenOrInd, NumOctets; |
4621 SQLRETURN rc; |

4622 // Create a result set containing the ID and picture of each part. |
4623 SQLExecDirect(hstmt, ’SELECT PartID, Picture FROM Pictures’, SQL_NTS); |

4624 // Bind PartID to the PartID column. |
4625 SQLBindCol(hstmt, 1, SQL_C_ULONG, &PartID, 0, &PartIDInd); |

4626 // Retrieve and display each row of data. |
4627 while ((rc = SQLFetch(hstmt)) != SQL_NO_DATA) { |

4628 // Display the part ID and initialize the picture. |
4629 DisplayID(PartID, PartIDInd); |
4630 InitPicture(); |

4631 // Retrieve the picture data in parts. Send each part and the number of octets in |
4632 // each part to a function that displays it. The number of octets is always 5000 if |
4633 // there were more than 5000 octets available to return (cbBinaryBuffer > 5000). |
4634 // Code to check if rc equals SQL_ERROR or SQL_SUCCESS_WITH_INFO not shown. |
4635 while ((rc = SQLGetData(hstmt, 2, SQL_C_BINARY, BinaryPtr, sizeof(BinaryPtr), |
4636 &BinaryLenOrInd)) != SQL_NO_DATA) { |
4637 NumOctets = (BinaryLenOrInd > 5000) || (BinaryLenOrInd == SQL_NO_TOTAL) ? |
4638 5000 : BinaryLenOrInd; |
4639 DisplayNextPictPart(BinaryPtr, NumOctets); |
4640 } |

Data Management: X/Open Database Connectivity (XDBC), Version 2 137

Getting Long Data Retrieving Results (Basic)

4641 } |

4642 // Close the cursor. |
4643 SQLCloseCursor(hstmt); |

4644 Portable applications should either assume the implementation enforces the following |
4645 restrictions on access to columns using SQLGetData(), or should call SQLGetInfo() with the |
4646 SQL_GETDATA_EXTENSIONS option to determine if the current data source enforces the |
4647 restrictions: |

4648 • Columns must be accessed in order of increasing column number. For example, it’s an error |
4649 to call SQLGetData() for column 5 and then call it for column 4. |

4650 • SQLGetData() cannot be used to gain access to bound columns. |

4651 • The column requested must have a higher column number than the last bound column. For |
4652 example, if the last bound column is column 3, it’s an error to call SQLGetData() for column 2. |
4653 For this reason, applications should place long data columns at the end of the select list. |

4654 • SQLGetData() cannot be used if a multi-row fetch was performed (see Section 11.1.3 on page |
4655 145). |

4656 If the application doesn’t need all of the data in a character or binary data column, it can reduce |
4657 network traffic in data-source-based implementations by setting the |
4658 SQL_ATTR_MAX_LENGTH statement attribute before executing the statement. This restricts |
4659 the number of octets of data that will be returned for any character or binary column. For |
4660 example, suppose a column contains long text documents. An application that browses the table |
4661 containing this column might only need to display the first page of each document. Although |
4662 this statement attribute can be simulated in the implementation, there is no reason to do so. In |
4663 particular, if an application wants to truncate character or binary data, it should bind a small |
4664 buffer to the column with SQLBindCol() and let the implementation truncate the data. |

138 Direct Review (Build ID 96KAV) (Draft XDBC.33, August 1996)

Retrieving Results (Basic) Closing the Cursor

4665 10.5 Closing the Cursor |

4666 When an application has finished using a cursor, it calls SQLCloseCursor() to close the cursor. For |
4667 example: |

4668 SQLCloseCursor(hstmt); |

4669 Until the application closes the cursor, the statement on which the cursor is opened cannot be |
4670 used for most other operations, such as executing another SQL statement. For a complete list of |
4671 functions that can be called while a cursor is open, see Appendix B. |

4672 Cursors remain open until they are explicitly closed. In particular, reaching the end of the result |
4673 set, when SQLFetch() returns SQL_NO_DATA, doesn’t close a cursor. Even cursors on empty |
4674 result sets (result sets created when a statement executed successfully but which returned no |
4675 rows) must be explicitly closed. |

4676 (On some data sources, completing a transaction implicitly closes all cursors on the connection. |
4677 The application can determine whether this is the case by calling SQLGetInfo() with the |
4678 SQL_CURSOR_COMMIT_BEHAVIOR or SQL_CURSOR_ROLLBACK_BEHAVIOR options.) |

Data Management: X/Open Database Connectivity (XDBC), Version 2 139

Retrieving Results (Basic) |

140 Direct Review (Build ID 96KAV) (Draft XDBC.33, August 1996)

4679 Chapter 11 |

4680 Retrieving Results (Advanced) |

4681 The simple model of forward-only cursors that retrieve a single row at a time is not optimal in |
4682 two broad areas: |

4683 • Multi-row fetch |

4684 Network traffic and certain other overhead can be reduced by requesting more than one row |
4685 of a result set with a single fetch. (See Section 11.1 on page 140.) |

4686 • Scrolling |

4687 Some screen-based applications let the user scroll backward and forward through the data. |
4688 The use of forward-only cursors prevents the user from scrolling backward. A scrollable |
4689 cursor can move backward and forward in the result set. (See Section 11.2 on page 147.) |

4690 (Alternatives to scrollable cursors, such as closing and reopening the cursor, then fetching |
4691 forward until the cursor reaches the target row, or cacheing some or all rows and |
4692 implementing scrolling in the application, are less advantageous, especially as the size of the |
4693 result set increases.) |

Data Management: X/Open Database Connectivity (XDBC), Version 2 141

Multi-row Fetch Retrieving Results (Advanced)

4694 11.1 Multi-row Fetch |

4695 An application declares that each call to SQLFetch() and SQLFetchScroll() should fetch multiple |
4696 rows, and that certain operations of SQLSetPos() should affect multiple rows, by setting the |
4697 SQL_ATTR_ROW_ARRAY_SIZE statement attribute (or, equivalently, setting the |
4698 SQL_DESC_ARRAY_SIZE field of the application row descriptor). |

4699 The application always has this option. On data sources from which only one row at a time can |
4700 be fetched, the XDBC implementation simulates the feature; for example, by translating the |
4701 application’s request for multiple rows into multiple requests from the data source. As more |
4702 data sources implement multi-row fetch natively, applications written to request multiple rows |
4703 will get faster. |

4704 Terminology |

4705 When multiple rows are fetched, this set of fetched rows is called the row-set. The result set is |
4706 maintained at the data source, while the row-set is a movable window into the result set whose |
4707 data are in application buffers. |

4708 To perform XDBC operations that operate on a single row when multiple rows have been |
4709 fetched, the application must first indicate which row is the current row . These single-row |
4710 operations are calls to SQLGetData() and positioned UPDATE and DELETE statements. When a |
4711 row-set is fetched, the current row is the first row of the row-set. To change the current row, the |
4712 application calls SQLSetPos(). For more information, see Section 11.1.3 on page 145 and Section |
4713 12.3 on page 163. Use of multi-row fetch does not require use of a scrollable cursor (see Section |
4714 11.2 on page 147). For example, a report generator can perform multi-row fetches to reduce |
4715 network traffic, but it does not need a scrollable cursor if it can do its work through forward-only |
4716 access to the result set. |

4717 Block Cursor |

4718 A multi-row fetch can be described in terms of the cursor and the current row-set size. |
4719 However, some data sources may implement a multi-row fetch using an operation that treats |
4720 every row in the current (fetched) row-set as active. The full implications of this are |
4721 implementation-defined. For example, isolation and cursor sensitivity may be defined based on |
4722 this row-set. Such effects at the data source make useful the concept of a block cursor or fat cursor |
4723 — that the execution of a multi-row fetch has widened the cursor so that it effectively points to |
4724 all the rows of the current row-set simultaneously. |

4725 The block cursor typically points to a row-set. The row-set can be empty, full, or partial. The |
4726 block cursor can instead be positioned before the start or after the end of the result set. In these |
4727 cases, or if the result set is empty, the block cursor points to an empty row-set. |

4728 _____ _________________ |
4729 ^ | | |
4730 | | | |
4731 | _____ |_________________| __ |
4732 | ^ | Current row | | |
4733 Result | | | | |
4734 Set Row-set | | |<-- Block cursor |
4735 | | | | | points here |
4736 | __v__ |_________________| __| |
4737 | | | |
4738 | | | |
4739 __v__ |_________________| |

142 Direct Review (Build ID 96KAV) (Draft XDBC.33, August 1996)

Retrieving Results (Advanced) Multi-row Fetch

4740 Results for Each Row Fetched |

4741 For each column in a fetched row, the following information can be returned into variables the |
4742 application binds: |

4743 • The data value. |

4744 • The length/indicator information. |

4745 • If desired, indicator information can be returned separately from length information. |

4746 In a multi-row fetch (that is, whenever the value of SQL_ATTR_ROW_ARRAY_SIZE is greater |
4747 than 1), each of these pieces of information is bound not to a single variable but to an array that |
4748 contains as many elements as there are rows in the row-set. |

4749 As when the application binds single variables to columns, it calls SQLBindCol() to bind arrays |
4750 to columns. The only difference is that the addresses passed are array addresses, not single |
4751 variable addresses. |

4752 11.1.1 Binding Styles |

4753 There are two binding styles: |

4754 • Column-wise Binding |

4755 The application binds an array to each column. |

4756 • Row-wise Binding |

4757 The application defines a structure to hold the data for an entire row. It binds an array of |
4758 these structures. |

4759 The application sets the SQL_ATTR_ROW_BIND_TYPE statement attribute to specify whether it |
4760 is using column-wise or row-wise binding. Row-wise binding often corresponds more closely to |
4761 the application’s layout of data in processor memory. |

4762 Column-wise Binding |

4763 With column-wise binding, the application binds arrays to hold the information described in |
4764 Results for Each Row Fetched on page 141. The application binds to each column an array of |
4765 variables instead of a single variable. These arrays are called the row-set buffers. The |
4766 implementation returns the data for each row in successive rows of each array. The following |
4767 diagram shows how column-wise binding works. |

4768 Column A Column B Column C |
4769 Value Len/Ind Value Len/Ind Value Len/Ind |
4770 array array array array array array |||

||

||

||

||

|

||||||||||||

4771 Figure 11-1. Application Buffer for Column-wise Binding |
4772 For example, the following code binds 10-element arrays to the OrderID, SalesPerson, and Status |
4773 columns. |

4774 SQLUINTEGER OrderIDArray[10], NumRowsFetched; |
4775 SQLCHAR SalesPersonArray[10][11], StatusArray[10][7]; |
4776 SQLINTEGER OrderIDIndArray[10], SalesPersonLenOrIndArray[10], |

Data Management: X/Open Database Connectivity (XDBC), Version 2 143

Binding Styles Retrieving Results (Advanced)

4777 StatusLenOrIndArray[10]; |
4778 SQLUSMALLINT RowStatusArray[10], i; |
4779 SQLRETURN rc; |

4780 // Set the SQL_ATTR_ROW_BIND_TYPE statement attribute to use column-wise binding. |
4781 // Declare the row-set size with the SQL_ATTR_ROW_ARRAY_SIZE statement attribute. |
4782 // Set the SQL_ATTR_ROW_STATUS_PTR statement attribute to point to the row status |
4783 // array. Set the SQL_ATTR_ROWS_FETCHED_PTR statement attribute to point to |
4784 // cRowsFetched. |
4785 SQLSetStmtAttr(hstmt, SQL_ATTR_ROW_BIND_TYPE, SQL_BIND_BY_COLUMN, 0); |
4786 SQLSetStmtAttr(hstmt, SQL_ATTR_ROW_ARRAY_SIZE, 10, 0); |
4787 SQLSetStmtAttr(hstmt, SQL_ATTR_ROW_STATUS_PTR, RowStatusArray, 0); |
4788 SQLSetStmtAttr(hstmt, SQL_ATTR_ROWS_FETCHED_PTR, &NumRowsFetched, 0); |

4789 // Bind arrays to the OrderID, SalesPerson, and Status columns. |
4790 SQLBindCol(hstmt, 1, SQL_C_ULONG, OrderIDArray, 0, OrderIDIndArray); |
4791 SQLBindCol(hstmt, 2, SQL_C_CHAR, SalesPersonArray, sizeof(SalesPersonArray[0]), |
4792 SalesPersonLenOrIndArray); |
4793 SQLBindCol(hstmt, 3, SQL_C_CHAR, StatusArray, sizeof(StatusArray[0]), |
4794 StatusLenOrIndArray); |

4795 // Execute a statement to retrieve rows from the Orders table. |
4796 SQLExecDirect(hstmt, ’SELECT OrderID, SalesPerson, Status FROM Orders’, SQL_NTS); |

4797 // Fetch up to 10 rows at a time. Print the actual number of rows fetched; this number |
4798 // is returned in NumRowsFetched. Check the row status array to only print those rows |
4799 // successfully fetched. Code to check if rc equals SQL_SUCCESS_WITH_INFO or SQL_ERROR |
4800 // not shown. |
4801 while ((rc = SQLFetchScroll(hstmt,SQL_FETCH_NEXT,0)) != SQL_NO_DATA) { |
4802 for (i = 0; i < NumRowsFetched; i++) { |
4803 if ((RowStatusArray[i] == SQL_ROW_SUCCESS) || |
4804 (RowStatusArray[i] == SQL_ROW_SUCCESS_WITH_INFO)) { |
4805 if (OrderIDIndArray[i] == SQL_NULL_DATA) printf(’ NULL ’) |
4806 else printf(’%d’, OrderIDArray[i]); |
4807 if (SalesPersonLenOrIndArray[i] == SQL_NULL_DATA) printf(’ NULL ’) |
4808 else printf(’%s’, SalesPersonArray[i]); |
4809 if (StatusLenOrIndArray[i] == SQL_NULL_DATA) printf(’ NULL\n’) |
4810 else printf(’%s\n’, StatusArray[i]); |
4811 } |
4812 } |
4813 } |

4814 // Close the cursor. |
4815 SQLCloseCursor(hstmt); |

4816 Row-wise Binding |

4817 When using row-wise binding, an application defines a structure containing fields for the |
4818 information described in Results for Each Row Fetched on page 141, repeated for each column |
4819 to be fetched. The application then allocates an array of these structures, which contains at least |
4820 as many elements as there are rows in the row-set. |

4821 The application, by setting the SQL_ATTR_ROW_BIND_TYPE statement attribute to a positive |
4822 value, not only selects row-wise binding but informs the implementation of the length of the |
4823 application’s structure. The address that the application binds as the pointer to the column data |
4824 is the address of the member that represents that column in the first element of the application’s |
4825 array. Using this information, the implementation can calculate the address of the data for a |
4826 particular row and column as: |

4827 Address = Bound Address + ((Row Number − 1) * Structure Size) ||

4828 The above subtraction relates the numbering of rows (which begins with 1) to the numbering of |
4829 array elements in the C language (which begins with 0). |

4830 Since the application binds each column separately, and in this way reports to the |
4831 implementation the location of column data within the application structure, the columns need |

144 Direct Review (Build ID 96KAV) (Draft XDBC.33, August 1996)

Retrieving Results (Advanced) Binding Styles

4832 not appear in the structure in sequence, and the structure can also contain fields for the |
4833 application’s own use. |

4834 Generally, the application includes in the structure only the columns it will bind. The following |
4835 diagram illustrates an application array for use with row-wise binding: |

4836 Column A Column B Column C |
4837 Value Len/Ind Value Len/Ind Value Len/Ind |
4838 elem. elem. elem. elem. elem. elem. |||
4839 ← array[0] ||||
4840 ← array[1] ||||
4841 ← array[2] ||||
4842 ← array[3] ||

4843 Figure 11-2. Application Buffer for Row-wise Binding |
4844 The following code creates a structure with elements in which to return data for the OrderID, |
4845 SalesPerson, and Status columns and length/indicators for the SalesPerson and Status columns. |
4846 It allocates 10 of these structures and binds them to the OrderID, SalesPerson, and Status |
4847 columns. |

4848 // Define the ORDERINFO struct and allocate an array of 10 structs. |
4849 typedef struct { |
4850 SQLUINTEGER OrderID; |
4851 SQLINTEGER OrderIDInd; |
4852 SQLCHAR SalesPerson[11]; |
4853 SQLINTEGER SalesPersonLenOrInd; |
4854 SQLCHAR Status[7]; |
4855 SQLINTEGER StatusLenOrInd; |
4856 } ORDERINFO; |
4857 ORDERINFO OrderInfoArray[10]; |

4858 SQLUINTEGER NumRowsFetched; |
4859 SQLUSMALLINT RowStatusArray[10], i; |
4860 HRESULT rc; |

4861 // Specify the size of the structure with the SQL_ATTR_ROW_BIND_TYPE |
4862 // statement attribute. This also declares that row-wise binding will |
4863 // be used. Declare the row-set size with the SQL_ATTR_ROW_ARRAY_SIZE |
4864 // statement attribute. Set the SQL_ATTR_ROW_STATUS_PTR statement |
4865 // attribute to point to the row status array. Set the |
4866 // SQL_ATTR_ROWS_FETCHED_PTR statement attribute to point to |
4867 // NumRowsFetched. |
4868 SQLSetStmtAttr(hstmt, SQL_ATTR_ROW_BIND_TYPE, sizeof(ORDERINFO), 0); |
4869 SQLSetStmtAttr(hstmt, SQL_ATTR_ROW_ARRAY_SIZE, 10, 0); |
4870 SQLSetStmtAttr(hstmt, SQL_ATTR_ROW_STATUS_PTR, RowStatusArray, 0); |
4871 SQLSetStmtAttr(hstmt, SQL_ATTR_ROWS_FETCHED_PTR, &NumRowsFetched, 0); |

4872 // Bind elements of the first structure in the array to the OrderID, |
4873 // SalesPerson, and Status columns. |
4874 SQLBindCol(hstmt, 1, SQL_C_ULONG, &OrderInfoArray[0].OrderID, 0, |
4875 &OrderInfoArray[0].OrderIDInd); |
4876 SQLBindCol(hstmt, 2, SQL_C_CHAR, OrderInfoArray[0].SalesPerson, |
4877 sizeof(OrderInfoArray[0].SalesPerson), |
4878 &OrderInfoArray[0].SalesPersonLenOrInd); |

Data Management: X/Open Database Connectivity (XDBC), Version 2 145

Binding Styles Retrieving Results (Advanced)

4879 SQLBindCol(hstmt, 3, SQL_C_CHAR, OrderInfoArray[0].Status, |
4880 sizeof(OrderInfoArray[0].Status), |
4881 &OrderInfoArray[0].StatusLenOrInd); |

4882 // Execute a statement to retrieve rows from the Orders table. |
4883 SQLExecDirect(hstmt, ’SELECT OrderID, SalesPerson, Status FROM Orders’, |
4884 SQL_NTS); |

4885 // Fetch up to 10 rows at a time. Print the actual number of rows |
4886 // fetched; this number is returned in NumRowsFetched. Check the row |
4887 // status array to only print those rows successfully fetched. Code to |
4888 // check if rc equals SQL_SUCCESS_WITH_INFO or SQL_ERROR not shown. |
4889 while ((rc = SQLFetchScroll(hstmt,SQL_FETCH_NEXT,0)) != SQL_NO_DATA) { |
4890 for (i = 0; i < NumRowsFetched; i++) { |
4891 if (RowStatusArray[i] == SQL_ROW_SUCCESS||SQL_ROW_SUCCESS_WITH_INFO) { |
4892 if (OrderInfoArray[i].OrderIDInd == SQL_NULL_DATA) |
4893 printf(’ NULL ’) |
4894 else |
4895 printf(’%d’, OrderInfoArray[i].OrderID); |
4896 if (OrderInfoArray[i].SalesPersonLenOrInd == SQL_NULL_DATA) |
4897 printf(’ NULL ’) |
4898 else |
4899 printf(’%s’, OrderInfoArray[i].SalesPerson); |
4900 if (OrderInfoArray[i].StatusLenOrInd == SQL_NULL_DATA) |
4901 printf(’ NULL\n’) |
4902 else |
4903 printf(’%s\n’, OrderInfoArray[i].Status); |
4904 } |
4905 } |
4906 } |

4907 // Close the cursor. |
4908 SQLCloseCursor(hstmt); |

4909 Bind Offsets |

4910 When using row-wise binding, an application can specify that an offset be added to buffer |
4911 addresses that are bound to column data. The fetch functions (SQLFetch(), SQLFetchScroll(), and |
4912 SQLSetPos()) add this offset to bound buffer addresses to obtain the effective address. A bind |
4913 offset is measured in terms of octets. |

4914 A bind offset is not added to a pointer whose value is 0. These pointers are not bound. If a bind |
4915 offset is used, the pointers do not have to contain valid addresses, but the sum of the pointer and |
4916 the offset must be a valid address at the time the fetch function is called. |

4917 To specify a bind offset, the application sets the SQL_ATTR_ROW_BIND_OFFSET_PTR |
4918 statement attribute to the address of an application variable of type SQLINTEGER. Before the |
4919 application calls a fetch function, it places an offset in this variable. |

4920 Bind offsets let an application change bindings without calling SQLBindCol() again. The |
4921 application can change the bind offset at any time; all subsequent fetches use the new bind |
4922 offset. |

146 Direct Review (Build ID 96KAV) (Draft XDBC.33, August 1996)

Retrieving Results (Advanced) Additional Result Information

4923 11.1.2 Additional Result Information |

4924 The application can bind two additional statement attributes to application variables to obtain |
4925 more information about a multi-row fetch: |

4926 SQL_ATTR_ROWS_FETCHED_PTR |
4927 If the application sets this attribute to point to an application variable of type |
4928 SQLUINTEGER, a fetch function sets the variable to the number of rows in the row-set that |
4929 it fetched, SQLSetPos() sets the variable to the number of rows that the operation affected, |
4930 and SQLBulkOperations() sets the variable to the number of rows fetched if Operation is |
4931 SQL_FETCH_BY_BOOKMARK. In all cases, this is the same value as the |
4932 SQL_DESC_ROWS_PROCESSED_PTR field of the implementation descriptor. |

4933 SQL_ATTR_ROW_STATUS_PTR |
4934 If the row-set size is greater than 1, then if the application chooses to set this statement |
4935 attribute, it points it not to a scalar variable but to an array of elements of type |
4936 SQLUINTEGER. A fetch function uses this array as the row status array , in which each |
4937 element provides the status of one fetched row, using the values listed in Section 10.4.3 on |
4938 page 134. |

4939 In cases where an error fetching a single row does not prevent the implementation from |
4940 fetching subsequent rows, the fetch function returns SQL_SUCCESS_WITH_INFO and the |
4941 application uses the row status array to identify the row that produced the error. |

4942 Both of the buffers pointed to by these fields are allocated by the application and populated by |
4943 the implementation. As with other bound variables, the application must ensure that the buffers |
4944 remain allocated as long as the cursor is open. |

4945 11.1.3 Using Multi-row Fetch |

4946 To perform a multi-row fetch, the application sets the row-set size to a number greater than 1, |
4947 selects the binding style, binds application variables to hold the results, may set the |
4948 SQL_ATTR_ROWS_FETCHED_PTR and SQL_ATTR_ROW_STATUS_PTR statement attributes, |
4949 and calls SQLFetch() or SQLFetchScroll(). |

4950 Choice of Row-set Size |

4951 The application typically selects a row-set size based on one of the following: |

4952 • Screen-based applications commonly set the row-set size to the number of rows displayed on |
4953 the screen. In this case, the various values of the FetchOrientation argument of |
4954 SQLFetchScroll() map directly to typical keystroke operations, such as requests to display the |
4955 first, previous, or next screenful. |

4956 • Setting the row-set size to the largest value the application can reasonably handle effects the |
4957 maximum reduction of network traffic and overhead. The optimal value depends on the size |
4958 of each row and the amount of available memory. |

4959 Changes to Row-set Size |

4960 The application can change the row-set size and/or bind new row-set buffers (by calling |
4961 SQLBindCol() or specifying a bind offset) even after rows have been fetched. The implications of |
4962 changing the row-set size depend on the function: |

4963 • SQLFetch() and SQLFetchScroll() use the row-set size at the time of the call to determine how |
4964 many rows to fetch. (But SQLFetchScroll() with SQL_FETCH_NEXT increments the cursor |
4965 based on the row-set of the previous fetch, then fetches a row-set based on the current row- |
4966 set size.) |

Data Management: X/Open Database Connectivity (XDBC), Version 2 147

Using Multi-row Fetch Retrieving Results (Advanced)

4967 • SQLSetPos() uses the row-set size in effect as of the preceding call to SQLFetch() or |
4968 SQLFetchScroll(), because SQLSetPos() operates on a row-set that has already been set. |

4969 • SQLBulkOperations() uses the row-set size at the time of the call, since it performs operations |
4970 on a table independent of any fetched row-set. |

4971 SQLGetData() and Multi-row Fetch |

4972 SQLGetData() operates on a single column in order to obtain long data in parts. On some |
4973 implementations, SQLGetData() can be used when more than one row was fetched, but the |
4974 application must first call SQLSetPos() to position the cursor on a single row. It then calls |
4975 SQLGetData() for a column in that row. To determine if an implementation supports the use of |
4976 SQLGetData() after a multi-row fetch, an application calls SQLGetInfo() with the |
4977 SQL_GETDATA_EXTENSIONSoption (SQL_GD_BLOCK bit). |

148 Direct Review (Build ID 96KAV) (Draft XDBC.33, August 1996)

Retrieving Results (Advanced) Scrollable Cursors

4978 11.2 Scrollable Cursors |

4979 A scrollable cursor is a cursor that can move backward and forward over the result set. These are |
4980 common in screen-based applications in which the user scrolls back and forth through the data. |
4981 However, applications should use scrollable cursors only when forward-only cursors won’t do |
4982 the job, as scrollable cursors are generally more expensive than forward-only cursors. |

4983 To cover the needs of different applications, XDBC defines four different types of scrollable |
4984 cursors. The four types of scrollable cursors are: static, dynamic, keyset-driven, and mixed. |
4985 These cursors vary both in expense and in their ability to detect changes to the result set. |

4986 Detecting Changes to Tables |

4987 The ability to move backward, and to re-read rows of a table that may be subject to change from |
4988 multiple sources raises the question of whether the cursor ‘‘sees’’ these changes.16 When fetching |
4989 a row previously fetched, should a scrollable cursor fetch the same values it fetched before, or |
4990 should it fetch the most current values? Different types of scrollable cursor answer this question |
4991 in different ways. |

4992 The ability to detect changes is sometimes useful, sometimes not. For example, an accounting |
4993 application needs a cursor that ignores all changes; balancing books is impossible if the cursor |
4994 shows the latest changes. On the other hand, an airline reservations system needs a cursor that |
4995 shows the latest changes to the data; without such a cursor, it must continually re-query the |
4996 database to accurately show available seating. |

4997 11.2.1 Scrollable Cursor Types |

4998 Static cursors detect few or no changes, but are relatively cheap to implement. Dynamic cursors |
4999 detect all changes, but are expensive to implement. Keyset-driven and mixed cursors lie in |
5000 between, detecting most changes but at less expense than dynamic cursors. |

5001 The following terms are used to define the characteristics of each type of scrollable cursor: |

5002 • Own updates, deletes, and inserts. Updates, deletes, and inserts made through the cursor, |
5003 using any technique in XDBC. |

5004 • Other updates, deletes, and inserts. Updates, deletes, and inserts not made by the cursor, |
5005 including those made by other operations in the same transaction, those made through other |
5006 transactions, and those made by other applications.17 |

5007 • Membership. The set of rows in the result set. |

5008 • Order. The order in which rows are returned by the cursor. |

5009 • Values. The values in each row in the result set. |

5010 __________________ |
5011 16. This discussion only concerns the information fetched when an application re-fetches rows. This specification does not envisage |||

any technique by which the implementation alerts the application to changes to tables at other times, such as changes to the rows |||
5012 currently fetched. |||
5013 17. Visibility of changes made outside the transaction also depends on the transaction isolation level. See Section 14.2.4 on page 188. |||

Data Management: X/Open Database Connectivity (XDBC), Version 2 149

Scrollable Cursor Types Retrieving Results (Advanced)

5014 Static Cursors |

5015 A static cursor is one in which the result set appears to be static. It does not usually detect |
5016 changes made to the membership, order, or values of the result set after the cursor is opened. |
5017 For example, suppose a static cursor fetches a row and another application then updates that |
5018 row. If the static cursor refetches the row, the values it sees are unchanged, in spite of the |
5019 changes made by the other application. |

5020 Static cursors may detect their own updates, deletes, and inserts, although they are not required |
5021 to do so. An application can determine whether static cursors detect these changes as described |
5022 in Detecting Cursor Capabilities with SQLGetInfo() on page 402. Static cursors never detect |
5023 other updates, deletes, and inserts. |

5024 The row status array specified by the SQL_ATTR_ROW_STATUS_PTR statement attribute can |
5025 contain SQL_ROW_SUCCESS, SQL_ROW_SUCCESS_WITH_INFO, or SQL_ROW_ERROR for |
5026 any row. It returns SQL_ROW_UPDATED, SQL_ROW_DELETED, or SQL_ROW_ADDED for |
5027 rows updated, deleted, or inserted by the cursor, assuming that the cursor is capable of detecting |
5028 such changes. |

5029 Static cursors are commonly implemented by locking the rows in the result set or making a copy, |
5030 or snapshot, of the result set. While locking rows is relatively easy to do, it has the drawback of |
5031 significantly reducing concurrency. Making a copy allows greater concurrency and allows the |
5032 cursor to keep track of its own updates, deletes, and inserts by modifying the copy. However, a |
5033 copy is more expensive to make and can diverge from the underlying data as that data is |
5034 changed by others. |

5035 Dynamic Cursors |

5036 A dynamic cursor can detect any changes made to the membership, order, and values of the |
5037 result set after the cursor is opened. For example, suppose a dynamic cursor fetches two rows |
5038 and another application then updates one of those rows and deletes the other. If the dynamic |
5039 cursor then attempts to refetch those rows, it won’t find the deleted row, but will return the new |
5040 values for the updated row. |

5041 Dynamic cursors detect all updates, deletes, and inserts, both their own and those made by |
5042 others. The row status array specified by the SQL_ATTR_ROW_STATUS_PTR statement |
5043 attribute reflects these changes and can contain SQL_ROW_SUCCESS, |
5044 SQL_ROW_SUCCESS_WITH_INFO, SQL_ROW_ERROR, SQL_ROW_UPDATED, and |
5045 SQL_ROW_ADDED. It cannot return SQL_ROW_DELETED because it does not return deleted |
5046 rows. |

5047 Dynamic cursors can be simulated by requiring the result set to be ordered by a unique key. |
5048 With such a restriction, fetches are made by executing a SELECT statement each time the cursor |
5049 fetches rows. For example, suppose the result set is defined by the statement: |

5050 SELECT * FROM Customers ORDER BY Name, CustID |

5051 To fetch the next row-set in this result set, the simulated cursor sets the parameters in the |
5052 following SELECT statement to the values in the last row of the current row-set, then executes it: |

5053 SELECT * FROM Customers WHERE (Name > ?) AND (CustID > ?) |
5054 ORDER BY Name, CustID |

5055 This statement creates a second result set, the first row-set of which is the next row-set in the |
5056 original result set — in this case, the set of rows in the Customers table. The cursor returns this |
5057 row-set to the application. |

5058 It is interesting to note that a dynamic cursor implemented in this manner actually creates many |
5059 result sets, which allows it to detect changes to the original result set. The application never |

150 Direct Review (Build ID 96KAV) (Draft XDBC.33, August 1996)

Retrieving Results (Advanced) Scrollable Cursor Types

5060 learns of the existence of these auxilliary result sets; it simply appears as if the cursor is able to |
5061 detect changes to the original result set. |

5062 Keyset-Driven Cursors |

5063 A keyset-driven cursor lies between a static and a dynamic cursor in its ability to do detect |
5064 changes. Like a static cursor, it does not always detect changes to the membership and order of |
5065 the result set. Like a dynamic cursor, it does detect changes to the values of rows in the result set. |

5066 When a keyset-driven cursor is opened, it saves the keys for the entire result set; this fixes the |
5067 apparent membership and order of the result set. As the cursor scrolls through the result set, it |
5068 uses the keys in this keyset to retrieve the current data values for each row. For example, suppose |
5069 a keyset-driven cursor fetches a row and another application then updates that row. If the cursor |
5070 refetches the row, the values it sees are the new ones, because it refetched the row using its key. |
5071 Because of this, the keyset-driven cursors always detect changes made by themselves and others. |

5072 When the cursor attempts to retrieve a row that has been deleted, this row appears as a hole in |
5073 the result set: the key for the row exists in the keyset but the row no longer exists in the result |
5074 set. If the key values in a row are updated, the row is considered to have been deleted and then |
5075 inserted, so such rows also appear as holes in the result set. While a keyset-driven cursor can |
5076 always detect rows deleted by others, it can optionally remove the keys for rows it deletes itself |
5077 from the keyset. Keyset-driven cursors that do this cannot detect their own deletes. |

5078 Rows inserted by others are never visible to a keyset-driven cursor because no keys for these |
5079 rows exist in the keyset. However, a keyset-driven cursor can optionally add the keys for rows it |
5080 inserts itself to the keyset. Keyset-driven cursors that do this can detect their own inserts. |

5081 An application can determine whether keyset-driven cursors detect their own inserts and deletes |
5082 as described in Detecting Cursor Capabilities with SQLGetInfo() on page 402. |

5083 The row status array specified by the SQL_ATTR_ROW_STATUS_PTR statement attribute can |
5084 contain SQL_ROW_SUCCESS, SQL_ROW_SUCCESS_WITH_INFO, or SQL_ROW_ERROR for |
5085 any row. It returns SQL_ROW_UPDATED, SQL_ROW_DELETED, or SQL_ROW_ADDED for |
5086 rows it detects as updated, deleted, or inserted. |

5087 Keyset-driven cursors are commonly implemented by creating a temporary table that contains |
5088 the keys for each row in the result set. Because the cursor must also determine if rows have been |
5089 updated, this table also commonly contains a column with row versioning information. |

5090 To scroll over the original result set, the keyset-driven cursor opens a static cursor over the |
5091 temporary table. To retrieve a row in the original result set, the cursor first retrieves the |
5092 appropriate key from the temporary table, then retrieves the current values for the row. On a |
5093 multi-row fetch, the cursor must retrieve multiple keys and rows. |

5094 Mixed Cursors |

5095 A mixed cursor is a combination of a keyset-driven cursor and a dynamic cursor. It is used when |
5096 the result set is too large to reasonably save keys for the entire result set. Mixed cursors are |
5097 implemented by creating a keyset that is smaller than the entire result set but larger than the |
5098 row-set. |

5099 As long as the application scrolls within the keyset, the behavior is keyset-driven. When the |
5100 application scrolls outside the keyset, the behavior is dynamic: the cursor fetches the requested |
5101 rows and creates a new keyset. Note that after the new keyset is created, the behavior reverts to |
5102 keyset-driven within that keyset. |

5103 For example, suppose a result set has 1000 rows and used a mixed cursor with a keyset size of |
5104 100 and a row-set size of 10. When the first row-set is fetched, the cursor creates a keyset |
5105 consisting of the keys for the first 100 rows. It then returns the first 10 rows, as requested. |

Data Management: X/Open Database Connectivity (XDBC), Version 2 151

Scrollable Cursor Types Retrieving Results (Advanced)

5106 Now suppose another application deletes rows 11 and 101. If the cursor attempts to retrieve row |
5107 11, it will encounter a hole because it has a key for this row but no row exists; this is keyset- |
5108 driven behavior. If the cursor attempts to retrieve row 101, the cursor will not detect that the row |
5109 is missing because it does not have a key for the row. Instead, it will retrieve what was |
5110 previously row 102. This is dynamic cursor behavior. |

5111 If a mixed cursor had a keyset size of 1, it would be a dynamic cursor. If a mixed cursor had a |
5112 keyset equal to the entire result set, it would be a keyset-driven cursor. |

5113 11.2.2 Using Scrollable Cursors |

5114 There are three steps to using a scrollable cursor: |

5115 • Determine the cursor capabilities. |
5116 • Set up the cursor. |
5117 • Scroll and fetch rows. |

5118 Determining Cursor Capabilities |

5119 An application can call SQLGetInfo() to determine the cursor capabilities supported through a |
5120 connection. |

5121 • The application specifies an InfoItem of SQL_SCROLL_OPTIONS to determine the supported |
5122 cursor types (forward-only, static, keyset-driven, dynamic, or mixed). All data sources must |
5123 support forward-only cursors. |

5124 • The application can determine what operations are valid on various types of cursor, and to |
5125 determine other attributes of various types of cursor, as described in Detecting Cursor |
5126 Capabilities with SQLGetInfo() on page 402. |

5127 Generic applications typically determine cursor capabilities at run time by calling SQLGetInfo(). |
5128 Vertical and custom applications may determine cursor capabilities during development and |
5129 assumptions about them may be coded into the application. |

5130 Setting Up the Cursor |

5131 The application can specify the cursor type before executing a statement that creates a result set |
5132 by setting the SQL_ATTR_CURSOR_TYPE statement attribute. If the application does not |
5133 explicitly specify a type, a forward-only cursor is used. To get a mixed cursor, an application |
5134 specifies a keyset-driven cursor but declares a keyset size less than the result set size. |

5135 For keyset-driven and mixed cursors, the application can also specify the keyset size. It does this |
5136 with the SQL_ATTR_KEYSET_SIZE statement attribute. If the keyset size is set to 0-which is the |
5137 default-the keyset size is set to the result set size and a keyset-driven cursor is used. Note that |
5138 the keyset size can be changed after the cursor has been opened. |

5139 The application can also set the row-set size; for more information, see Section 11.1.3 on page |
5140 145. |

152 Direct Review (Build ID 96KAV) (Draft XDBC.33, August 1996)

Retrieving Results (Advanced) Using Scrollable Cursors

5141 Scrolling and Fetching Rows |

5142 When using a scrollable cursor, applications call SQLFetchScroll() to position the cursor and fetch |
5143 rows. SQLFetchScroll() supports relative scrolling (next, prior, and relative n rows), absolute |
5144 scrolling (first, last, and row n), and positioning by bookmark. The FetchOrientation and |
5145 FetchOffset arguments in SQLFetchScroll() specify which row-set to fetch, as shown in the |
5146 following diagrams. |

|
5147 Row-set returned with |
5148 FetchOrientation = |
5149 SQL_FETCH_FIRST |||||

|
5150 Row-set returned with |
5151 FetchOrientation = |
5152 SQL_FETCH_PRIOR |||

5153 Current row-set ||

|
5154 Row-set returned with |
5155 FetchOrientation = |
5156 SQL_FETCH_NEXT |||||

|
5157 Row-set returned with |
5158 FetchOrientation = |
5159 SQL_FETCH_LAST ||

||

5160 Figure 11-3. Fetching next, prior, first, and last row-sets |

Data Management: X/Open Database Connectivity (XDBC), Version 2 153

Using Scrollable Cursors Retrieving Results (Advanced)

|
5161 Start of result set + |
5162 | FetchOffset (for SQL_FETCH_ABSOLUTE) |
5163 | is measured from the start of the result set |
5164 | |
5165 Row-set returned with + |
5166 FetchOrientation = |
5167 SQL_FETCH_ABSOLUTE |||

|
5168 + |
5169 Current row-set | |
5170 | FetchOffset (for SQL_FETCH_RELATIVE) |
5171 | is measured from the start of the current row-set |
5172 | |
5173 | |
5174 Row-set returned with + |
5175 FetchOrientation = |
5176 SQL_FETCH_RELATIVE |||

5177 Bookmarked row + |
5178 | FetchOffset (for SQL_FETCH_BOOKMARK) |
5179 | is measured from the bookmarked row |
5180 Row-set returned with + |
5181 FetchOrientation = |
5182 SQL_FETCH_BOOKMARK |||

|

||

5183 Figure 11-4. Fetching absolute, relative, and bookmarked row-sets |

5184 SQLFetchScroll() positions the cursor to the specified row and returns the rows in the row-set |
5185 starting with that row. If there are fewer rows remaining in the result set than the row-set size, |
5186 SQLFetchScroll() returns a partial row-set. If a cursor position is specified that is before the start |
5187 of the result set, SQLFetchScroll() moves to the first row of the result set. |

5188 In some cases, the application may want to position the cursor without retrieving any data. For |
5189 example, it might want to test whether a row exists or just get the bookmark for the row without |
5190 bringing other data across the network. To do this, it sets the SQL_ATTR_RETRIEVE_DATA |
5191 statement attribute to SQL_RD_OFF. Note that the variable bound to the bookmark column (if |
5192 any) is always updated, regardless of the setting of this statement attribute. |

5193 After the row-set has been retrieved, the application can call SQLSetPos() to position to a |
5194 particular row in the row-set or refresh rows in the row-set. For more information on using |
5195 SQLSetPos(), see Chapter 12. |

5196 In addition to data, SQLFetchScroll() can return row status, as described in Section 10.4.3 on page |
5197 134. |

154 Direct Review (Build ID 96KAV) (Draft XDBC.33, August 1996)

Retrieving Results (Advanced) Relative and Absolute Scrolling

5198 11.2.3 Relative and Absolute Scrolling |

5199 The FetchOrientation argument to SQLFetchScroll() selects an addressing mode for the new cursor |
5200 position. SQLFetchScroll() supports relative scrolling (addressing modes that depend on the |
5201 current cursor position) and absolute scrolling (addressing modes that do not depend on the |
5202 current cursor position). |

5203 Relative scrolling means a call to SQLFetchScroll() to fetch the row-set n rows from the start of |
5204 the current row-set, where a negative value of n specifies movement toward the start of the |
5205 result set. The function also supports a fetch of the next and prior row-sets. These operations |
5206 are also relative to the current row-set. |

5207 Absolute scrolling includes calls to SQLFetchScroll() to fetch the first row-set and the row-set |
5208 specified absolutely as starting at row n. The function also supports a fetch of the last row-set, |
5209 and uses negative values of n to specify rows counting back from the last row in the result set. |

5210 Absolute scrolling modes do not make sense when applied to dynamic cursors. Dynamic |
5211 cursors do not treat rows as occupying a fixed, numbered position, but detect rows inserted into |
5212 and deleted from the result set. Therefore, dynamic cursors cannot retrieve the row at a |
5213 particular number except by reading from the start of the result set, which is likely to be slow. |
5214 Furthermore, absolute fetching is not very useful in dynamic cursors because row numbers |
5215 change as rows are inserted and deleted; thus, successively fetching the same row number can |
5216 yield different rows. |

5217 Applications that use SQLFetchScroll() only for its multi-row fetch capabilities, such as report |
5218 generators, are likely to pass through the result set a single time, using only the option to fetch |
5219 the next row-set. Screen-based applications, on the other hand, can take advantage of all of the |
5220 capabilities of SQLFetchScroll(). If the application sets the row-set size to the number of rows |
5221 displayed on the screen and binds the screen buffers to the result set, it can translate scroll bar |
5222 operations directly to calls to SQLFetchScroll(): |

5223 Scroll bar operation SQLFetchScroll() scrolling operation ||
5224 Page up SQL_FETCH_PRIOR |
5225 Page down SQL_FETCH_NEXT |
5226 Line up SQL_FETCH_RELATIVE with FetchOffset = −1 |
5227 Line down SQL_FETCH_RELATIVE with FetchOffset = 1 |
5228 Scroll box at top SQL_FETCH_FIRST |
5229 Scroll box at bottom SQL_FETCH_LAST |
5230 Arbitrary scroll box position SQL_FETCH_ABSOLUTE |

5231 Such applications also need to position the scroll box after a scrolling operation, which requires |
5232 the current row number and the number of rows. For the current row number, applications can |
5233 either keep track of the current row number or call SQLGetStmtAttr() with the |
5234 SQL_ATTR_ROW_NUMBER attribute to retrieve it. |

5235 The number of rows fetched, which is the size of the current row-set, is available as the |
5236 SQL_DIAG_CURSOR_ROW_COUNT field of the diagnostic header. It is implementation- |
5237 defined whether row counts are available for various cursor types; the application can determine |
5238 the level of support as described in Detecting Cursor Capabilities with SQLGetInfo() on page |
5239 402. Applications can also determine the number of rows affected by the fetch operation by |
5240 calling SQLRowCount() (see Section 12.2 on page 162). |

Data Management: X/Open Database Connectivity (XDBC), Version 2 155

Bookmarks Retrieving Results (Advanced)

5241 11.2.4 Bookmarks |

5242 A bookmark is a value used to identify a row of data. The meaning of the bookmark value is |
5243 known only to the implementation or data source. The value is sufficient to enable the |
5244 implementation or data source to directly move to the associated row. |

5245 To determine whether bookmarks are supported for a given cursor type, see Detecting Cursor |
5246 Capabilities with SQLGetInfo() on page 402. To determine the persistence of bookmarks, call |
5247 SQLGetInfo() with the SQL_BOOKMARK_PERSISTENCE option. |

5248 Bookmark Types |

5249 Bookmarks are variable-length data structures. A bookmark could be based on a primary key or |
5250 a unique index associated with a table or could be a 32-bit value. To specify that a bookmark is |
5251 used with a cursor, the application sets the SQL_ATTR_USE_BOOKMARKstatement attribute to |
5252 SQL_UB_VARIABLE. |

5253 The SQL_DESC_OCTET_LENGTH field of record 0 of the IRD contains the maximum length of |
5254 a bookmark. An application can call SQLColAttribute() or SQLGetDescField() with a FieldIdentifier |
5255 of SQL_DESC_OCTET_LENGTH to obtain the length of the bookmark. (Describing a bookmark |
5256 column between the preparation and the execution of an SQL statement has performance |
5257 implications; see Performance Note on page 279.) Since a bookmark can be a long value, an |
5258 application should not bind to column 0 unless it will use the bookmark for many of the rows in |
5259 the row-set. |

5260 Retrieving Bookmarks |

5261 The application must set the SQL_ATTR_USE_BOOKMARKS statement attribute before |
5262 preparing or executing a statement that uses bookmarks. The default is to not use bookmarks |
5263 because building and maintaining bookmarks can be costly. |

5264 Bookmarks are returned as column 0 of the result set. The application can retrieve them in any of |
5265 the following ways: |

5266 • Bind column 0 of the result set. SQLFetch() or SQLFetchScroll() returns the bookmarks for |
5267 each row in the row-set along with the data for other bound columns. |

5268 • Call SQLSetPos() to position to a row in the row-set, then call SQLGetData() for column 0. (If |
5269 an implementation supports bookmarks, it must always support the ability to call |
5270 SQLGetData() for column 0, even if it does not let applications call SQLGetData() for other |
5271 columns before the last bound column.) |

5272 • Call SQLBulkOperations() with an Operation of SQL_ADD to return the bookmark of an |
5273 inserted row, if column 0 is bound. |

5274 Scrolling by Bookmark |

5275 When fetching rows with SQLFetchScroll(), the application can use a bookmark as a basis for |
5276 selecting the starting row. This is a form of absolute addressing because it does not depend on |
5277 the current cursor position. To scroll to a bookmarked row, the application calls SQLFetchScroll() |
5278 with a FetchOrientation of SQL_FETCH_BOOKMARK. This operation uses the bookmark |
5279 pointed to by the SQL_ATTR_FETCH_BOOKMARK_PTR statement attribute. It returns the |
5280 row-set starting with the row identified by that bookmark. An application can specify an offset |
5281 for this operation in FetchOffset. When an offset is specified, the first row of the returned row-set |
5282 is determined by adding FetchOffset to the number of the row identified by the bookmark. |

156 Direct Review (Build ID 96KAV) (Draft XDBC.33, August 1996)

Retrieving Results (Advanced) Bookmarks

5283 Comparing Bookmarks |

5284 Bookmarks can be compared for equality or inequality by treating each bookmark as an array of |
5285 octets and comparing two bookmarks octet-by-octet. Since bookmarks are guaranteed to be |
5286 distinct only within a result set, it makes no sense to compare bookmarks obtained from |
5287 different result sets. |

Data Management: X/Open Database Connectivity (XDBC), Version 2 157

Multiple Results Retrieving Results (Advanced)

5288 11.3 Multiple Results |

5289 A batch (see Section 9.3.4 on page 99) can generate multiple results (result sets and/or row |
5290 counts). |

5291 To determine the implementation’s level of support for multiple results, the application can call |
5292 SQLGetInfo() with the SQL_MULT_RESULT_SETS option. This provides a rough indication on |
5293 whether multiple results are supported. |

5294 The application can get more detailed information on the level of support for various types of |
5295 batch by calling SQLGetInfo() as follows: |

5296 For explicit batches and procedures: |
5297 Explicit batches and procedures always return multiple result sets when they include |
5298 multiple result-set-generating statements. The SQL_BATCH_SUPPORT option of |
5299 SQLGetInfo() indicates whether row-count-generating statements are allowed in batches; |
5300 the SQL_BATCH_ROW_COUNT option indicates whether these row counts are returned to |
5301 the application. |

5302 For arrays of parameters: |
5303 The SQL_PARAM_ARRAY_SELECTS option of SQLGetInfo() indicates whether result sets |
5304 are returned. The SQL_PARAM_ARRAY_ROW_COUNTS option indicates whether row |
5305 counts are returned. |

5306 These options indicate whether the data source returns a total row count for the batch or |
5307 individual row counts for each statement in the batch; and, in the case of a result-set-generating |
5308 statement executed with an array of parameters, whether the data source returns a single result |
5309 set for all sets of parameters or individual result sets for each set of parameters. |

5310 To process multiple results, an application calls SQLMoreResults(). This function discards any |
5311 current result and makes the next result available. It returns SQL_NO_DATA when no more |
5312 results are available. |

5313 For example, suppose the following statements are executed as a batch. |

5314 SELECT * FROM Parts WHERE Price > 100.00; |
5315 UPDATE Parts SET Price = 0.9 * Price WHERE Price > 100.00 |

5316 After these statements are executed, the application fetches rows from the result set created by |
5317 the SELECT statement. When it is done fetching rows, it calls SQLMoreResults() to discard the |
5318 result set and make available the number of parts that were repriced. If necessary, |
5319 SQLMoreResults() discards unfetched rows and closes the cursor. The application then calls |
5320 SQLRowCount() to determine how many parts were repriced by the UPDATEstatement. |

5321 Because this example was coded as a batch, the caller cannot first inspect the list of parts and |
5322 then decide whether to update them. The entire batch statement is executed before any results |
5323 are available; SQLMoreResults() simply makes each result available in turn. |

5324 If one of the statements in a batch fails, SQLMoreResults() returns one of the following: |

5325 SQL_ERROR |
5326 if the batch was aborted when the statement failed, or if the statement that failed was the |
5327 last statement in the batch. |

5328 SQL_SUCCESS_WITH_INFO |
5329 if a statement before the last statement failed and execution of the batch continued. |

5330 SQL_SUCCESS_WITH_INFO indicates that at least one result set or count was generated. |

158 Direct Review (Build ID 96KAV) (Draft XDBC.33, August 1996)

5331 Chapter 12 |

5332 Updating Data |

5333 Applications can update data either by executing the UPDATE, DELETE, and INSERT |
5334 statements of SQL (see Section 12.1 on page 158) or by calling SQLBulkOperations() or |
5335 SQLSetPos() (see Section 12.3 on page 163). |

5336 Searched UPDATE, DELETE, and INSERT statements contain a specification of the rows to |
5337 change and and are usually supported. Positioned UPDATE and DELETE statements and |
5338 SQLSetPos() act on the data source through a cursor and are less widely supported. |

5339 Whether cursors can detect changes made to the result set with the methods described in this |
5340 chapter depends on the type of the cursor and how it is implemented. Forward-only cursors do |
5341 not revisit rows and therefore do not detect changes. For information about whether scrollable |
5342 cursors can detect changes, see Section 11.2 on page 147. |

Data Management: X/Open Database Connectivity (XDBC), Version 2 159

UPDATE, DELETE, and INSERT Statements Updating Data

5343 12.1 UPDATE, DELETE, and INSERT Statements |

5344 SQL-based applications make changes to tables by executing the UPDATE, DELETE, and |
5345 INSERT statements. For the general syntax definition of these statements, see the X/Open SQL |
5346 specification. Searched UPDATE and DELETE specify the rows to update or delete. Positioned |
5347 UPDATEand DELETE rely on a cursor (see Section 12.1). |

5348 Use of Parameters |

5349 Like other SQL statements, UPDATE, DELETE, and INSERT are often more efficient when they |
5350 use parameters. For example, the following statement can be prepared and repeatedly executed |
5351 to insert multiple rows in the Orders table: |

5352 INSERT INTO Orders (PartID, Description, Price) VALUES (?, ?, ?) |

5353 This efficiency can be increased by passing arrays of parameter values. For more information |
5354 about statement parameters and arrays of parameter values, see Section 9.4 on page 102. |

5355 12.1.1 Positioned UPDATE and DELETE |

5356 Applications can update or delete the current row in a result set with a positioned UPDATE or |
5357 DELETE statement. The X/Open SQL specification defines the syntax of these statements. |

5358 Not all data sources support these statements. To determine whether a data source supports |
5359 them for various types of cursors, see Detecting Cursor Capabilities with SQLGetInfo() on |
5360 page 402 (the SQL_CA1_POSITIONED_UPDATE and SQL_CA1_POSITIONED_DELETE |
5361 bitmasks). |

5362 To use a positioned UPDATE or DELETE statement, the application must create a result set with |
5363 a SELECT FOR UPDATE statement. The application then positions the cursor on the row to be |
5364 updated or deleted. It can do this by calling SQLFetchScroll() to retrieve a row-set containing the |
5365 row it requires and calling SQLSetPos() to select a current row from the row-set. The application |
5366 then executes the positioned UPDATE or DELETE statement, using a different statement handle |
5367 from the one it used to generate the result set. |

5368 The UPDATE and DELETE statements require a cursor name. The application can either specify |
5369 a cursor name with SQLSetCursorName() before executing the statement that creates the result |
5370 set or it can let the data source automatically generate a cursor name when the cursor is created. |
5371 In the latter case, the application retrieves this cursor name for use in positioned UPDATE and |
5372 DELETE statements by calling SQLGetCursorName(). |

5373 12.1.2 Code Example |

5374 For example, the following code lets a user scroll through the Customers table and deletes |
5375 customer records or update their address and phone number. It calls SQLSetCursorName() to |
5376 specify a cursor name before it creates the result set of customers and uses three statement |
5377 handles: hstmtCust for the result set, hstmtUpdate for a positioned UPDATE statement, and |
5378 hstmtDelete for a positioned DELETE statement. Although the code could bind separate variables |
5379 to the parameters in the positioned UPDATE statement, it updates the row-set buffers and binds |
5380 the elements of these buffers. This keeps the row-set buffers synchronized with the updated |
5381 data. |

5382 #define POSITIONED_UPDATE 100 |
5383 #define POSITIONED_DELETE 101 |

5384 SQLUINTEGER CustIDArray[10]; |
5385 SQLCHAR NameArray[10][51], AddressArray[10][51], PhoneArray[10][11]; |
5386 SQLINTEGER CustIDIndArray[10], NameLenOrIndArray[10], AddressLenOrIndArray[10], |
5387 PhoneLenOrIndArray[10]; |
5388 SQLUSMALLINT RowStatusArray[10], Action, RowNum; |

160 Direct Review (Build ID 96KAV) (Draft XDBC.33, August 1996)

Updating Data Code Example

5389 SQLHSTMT hstmtCust, hstmtUpdate, hstmtDelete; |

5390 // Set the SQL_ATTR_BIND_TYPE statement attribute to use column-wise binding. Declare |
5391 // the row-set size with the SQL_ATTR_ROW_ARRAY_SIZE statement attribute. Set the |
5392 // SQL_ATTR_ROW_STATUS_PTR statement attribute to point to the row status array. |
5393 SQLSetStmtAttr(hstmtCust, SQL_ATTR_BIND_TYPE, SQL_BIND_BY_COLUMN, 0); |
5394 SQLSetStmtAttr(hstmtCust, SQL_ATTR_ROW_ARRAY_SIZE, 10, 0); |
5395 SQLSetStmtAttr(hstmtCust, SQL_ATTR_ROW_STATUS_PTR, RowStatusArray, SQL_IS_POINTER); |

5396 // Bind arrays to the CustID, Name, Address, and Phone columns. |
5397 SQLBindCol(hstmtCust, 1, SQL_C_ULONG, CustIDArray, 0, CustIDIndArray); |
5398 SQLBindCol(hstmtCust, 2, SQL_C_CHAR, NameArray, sizeof(NameArray[0]), |
5399 NameLenOrIndArray); |
5400 SQLBindCol(hstmtCust, 3, SQL_C_CHAR, AddressArray, sizeof(AddressArray[0]), |
5401 AddressLenOrIndArray); |
5402 SQLBindCol(hstmtCust, 4, SQL_C_CHAR, PhoneArray, sizeof(PhoneArray[0]), |
5403 PhoneLenOrIndArray); |

5404 // Set the cursor name to Cust. |
5405 SQLSetCursorName(hstmtCust, ’Cust’, SQL_NTS); |

5406 // Prepare positioned UPDATE and DELETE statements. |
5407 SQLPrepare(hstmtUpdate, |
5408 ’UPDATE Customers SET Address = ?, Phon e = ? WHERE CURRENT OF Cust’, |
5409 SQL_NTS); |
5410 SQLPrepare(hstmtDelete, ’DELETE FROM Customers WHERE CURRENT OF Cust’, SQL_NTS); |

5411 // Execute a statement to retrieve rows from the Customers table. |
5412 SQLExecDirect(hstmtCust, |
5413 ’SELECT CustID, Name, Address, Phone FROM Customers FOR UPDATE OF Address, Phone’, |
5414 SQL_NTS); |

5415 // Fetch and display the first 10 rows. |
5416 SQLFetchScroll(hstmtCust, SQL_FETCH_NEXT, 0); |
5417 DisplayData(CustIDArray, CustIDIndArray, NameArray, NameLenOrIndArray, AddressArray, |
5418 AddressLenOrIndArray, PhoneArray, PhoneLenOrIndArray, RowStatusArray); |

5419 // Call GetAction to get an action and a row number from the user. |
5420 while (GetAction(&Action, &RowNum)) { |
5421 switch (Action) { |
5422 case SQL_FETCH_NEXT: |
5423 case SQL_FETCH_PRIOR: |
5424 case SQL_FETCH_FIRST: |
5425 case SQL_FETCH_LAST: |
5426 case SQL_FETCH_ABSOLUTE: |
5427 case SQL_FETCH_RELATIVE: |
5428 // Fetch and display the requested data. |
5429 SQLFetchScroll(hstmtCust, Action, RowNum); |
5430 DisplayData(CustIDArray, CustIDIndArray, NameArray, NameLenOrIndArray, |
5431 AddressArray, AddressLenOrIndArray, PhoneArray, |
5432 PhoneLenOrIndArray, RowStatusArray); |
5433 break; |

5434 case POSITIONED_UPDATE: |
5435 // Get the new data and place it in the row-set buffers. |
5436 GetNewData(AddressArray[RowNum - 1], &AddressLenOrIndArray[RowNum - 1], |
5437 PhoneArray[RowNum - 1], &PhoneLenOrIndArray[RowNum - 1]); |
5438 // Bind the elements of the arrays at position RowNum-1 to the parameters |
5439 // of the positioned UPDATE statement. |
5440 SQLBindParameter(hstmtUpdate, 1, SQL_PARAM_INPUT, SQL_C_CHAR, SQL_CHAR, |
5441 50, 0, AddressArray[RowNum - 1], sizeof(AddressArray[0]), |
5442 &AddressLenOrIndArray[RowNum - 1]); |
5443 SQLBindParameter(hstmtUpdate, 2, SQL_PARAM_INPUT, SQL_C_CHAR, SQL_CHAR, |
5444 10, 0, PhoneArray[RowNum - 1], sizeof(PhoneArray[0]), |
5445 &PhoneLenOrIndArray[RowNum - 1]); |
5446 // Define RowNum as the current row of the row-set. |
5447 SQLSetPos(hstmtCust, RowNum, SQL_POSITION, SQL_LOCK_NO_CHANGE); |
5448 // Execute the positioned UPDATE statement to update the row. |
5449 SQLExecute(hstmtUpdate); |
5450 break; |

Data Management: X/Open Database Connectivity (XDBC), Version 2 161

Code Example Updating Data

5451 case POSITIONED_DELETE: |
5452 // Define RowNum as the current row of the row-set. |
5453 SQLSetPos(hstmtCust, RowNum, SQL_POSITION, SQL_LOCK_NO_CHANGE); |
5454 // Execute the positioned DELETE statement to delete the row. |
5455 SQLExecute(hstmtDelete); |
5456 break; |
5457 } |
5458 } |

5459 // Close the cursor. |
5460 SQLCloseCursor(hstmtCust); |

5461 12.1.3 Simulating Positioned UPDATE and DELETE |

5462 If the data source does not support positioned UPDATE and DELETE statements, the |
5463 implementation may simulate them by converting positioned statements to searched ones. It |
5464 would replace the WHERE CURRENT OF clause with a searched WHERE clause that identifies |
5465 the current row. |

5466 For example, if the implementation determines that the value of the CustID column uniquely |
5467 identifies each row in the Customers table, it might convert the following positioned DELETE |
5468 statement: |

5469 DELETE FROM Customers WHERE CURRENT OF CustCursor |

5470 to the following: |

5471 DELETE FROM Customers WHERE (CustID = ?) |

5472 The implementation may use one of the following row identifiers in such a WHERE clause: |

5473 • Columns whose values serve to uniquely identify every row in the table. For example, |
5474 calling SQLSpecialColumns() with SQL_BEST_ROWID returns the optimal columns or set of |
5475 columns that serve this purpose. |

5476 • Pseudo-columns, provided by some data sources, for the purpose of uniquely identifying |
5477 every row. These may also be retrievable by calling SQLSpecialColumns() |

5478 • A unique index, if available |

5479 • All the columns in the result set |

5480 On some data sources, determining a row identifier can be costly. However, it is faster to execute |
5481 and guarantees that a simulated statement updates or deletes at most one row. Using all the |
5482 columns in the result set is usually easier to set up. However, it is slower to execute and, if the |
5483 columns do not uniquely identify a row, can result in rows being unintentionally updated or |
5484 deleted, especially when the select list for the result set doesn’t contain all the columns that exist |
5485 in the underlying table. |

5486 If the data source supports both strategies, applications can choose one with the |
5487 SQL_ATTR_SIMULATE_CURSOR statement attribute. The application removes the risk that a |
5488 simulated operation will affect multiple rows by ensuring that the columns in the result set |
5489 uniquely identify each row in the result set. This keeps the implementation from having to |
5490 generate a row identifier. |

5491 If the implementation chooses to use a row identifier, it intercepts the SELECT FOR UPDATE |
5492 statement that creates the result set. If the columns in the select list do not effectively identify a |
5493 row, the implementation adds the necessary columns to the end of the select list. (Some data |
5494 sources have a single column that always uniquely identifies each row. Otherwise, the |
5495 implementation uses the information available to the application through SQLSpecialColumns(), |
5496 for each table in the FROM clause, to retrieve a list of the columns that uniquely identify each |
5497 row. A common restriction that results from this technique is that cursor simulation fails if there |

162 Direct Review (Build ID 96KAV) (Draft XDBC.33, August 1996)

Updating Data Simulating Positioned UPDATE and DELETE

5498 is more than one table in the FROM clause.) |

5499 No matter how the data source identifies rows, the implementation usually strips the FOR |
5500 UPDATE OF clause off the SELECT FOR UPDATEstatement before sending it to the data source. |
5501 The FOR UPDATEOF clause is only used with positioned UPDATEand DELETE statements and |
5502 data sources that do not support positioned UPDATE and DELETE statements generally do not |
5503 support it. |

5504 When the application submits a positioned UPDATE or DELETE statement for execution, the |
5505 implementation replaces the WHERE CURRENT OF clause with a WHERE clause containing |
5506 the row identifier. The values of these columns are retrieved from a cache maintained by the |
5507 implementation for each column it uses in the WHERE clause. After the implementation has |
5508 replaced the WHERE clause, it sends the statement to the data source for execution. |

5509 For example, suppose that the application submits the following statement to create a result set: |

5510 SELECT Name, Address, Phone FROM Customers FOR UPDATE OF Phone, Address |

5511 If the application has set SQL_ATTR_SIMULATE_CURSORto request a guarantee of uniqueness |
5512 and if the data source does not provide a pseudo-column that always uniquely identifies a row, |
5513 the implementation calls SQLSpecialColumns() for the Customers table, discovers that CustID is |
5514 the key to the Customers table, adds this to the select list, and strips the FOR UPDATE OF |
5515 clause: |

5516 SELECT Name, Address, Phone, CustID FROM Customers |

5517 If the application has not requested a guarantee of uniqueness, the implementation only strips |
5518 the FOR UPDATEOF clause: |

5519 SELECT Name, Address, Phone FROM Customers |

5520 Suppose the application scrolls through the result set and submits the following positioned |
5521 UPDATEstatement for execution, where Cust is the name of the cursor over the result set: |

5522 UPDATE Customers SET Address = ?, Phon e = ? WHERE CURRENT OF Cust |

5523 If the application has requested a guarantee of uniqueness, the implementation replaces the |
5524 WHERE clause and binds the CustID parameter to the variable in its cache: |

5525 UPDATE Customers SET Address = ?, Phon e = ? WHERE (CustID = ?) |

5526 If the application has not requested a guarantee of uniqueness, the implementation replaces the |
5527 WHERE clause and binds the Name, Address, and Phone parameters in this clause to the |
5528 variables in its cache: |

5529 UPDATE Customers SET Address = ?, Phone = ? |
5530 WHERE (Name = ?) AND (Address = ?) AND (Phone = ?) |

Data Management: X/Open Database Connectivity (XDBC), Version 2 163

Determining the Number of Affected Rows Updating Data

5531 12.2 Determining the Number of Affected Rows |

5532 After an application updates, deletes, or inserts rows, it can call SQLRowCount() to determine |
5533 how many rows were affected. SQLRowCount() returns this value regardless of whether the |
5534 rows were updated, deleted, or inserted by executing an UPDATE, DELETE, or INSERT |
5535 statement, by executing a positioned UPDATE or DELETE statement, or by calling |
5536 SQLBulkOperations() or SQLSetPos(). |

5537 If a batch of SQL statements is executed (see Section 9.3.4 on page 99), the count of affected rows |
5538 might be a total count for all statements in the batch or individual counts for each statement in |
5539 the batch. For more information, see Section 11.3 on page 156. |

5540 The number of affected rows is also returned in the SQL_DIAG_ROW_COUNT header field in |
5541 the diagnostic area associated with the statement handle. However, this field is reset after every |
5542 function call on the same statement handle, whereas the value returned by SQLRowCount() |
5543 remains the same until a call to SQLBulkOperations(), SQLExecDirect(), SQLExecute(), |
5544 SQLPrepare(), or SQLSetPos(). |

164 Direct Review (Build ID 96KAV) (Draft XDBC.33, August 1996)

Updating Data Using SQLSetPos()

5545 12.3 Using SQLSetPos() |

5546 Applications can update or delete any row in the row-set or insert new rows with SQLSetPos(). |
5547 Calling SQLSetPos() is a convenient alternative to constructing and executing an SQL statement. |
5548 It lets an XDBC implementation support positioned updates even when the data source doesn’t |
5549 support positioned SQL statements. It is part of the paradigm of achieving complete database |
5550 access by means of function calls. |

5551 An application can determine which SQLSetPos() operations are supported for various cursor |
5552 types, as described in Detecting Cursor Capabilities with SQLGetInfo() on page 402. |

5553 On SQL-based data sources, a call to SQLSetPos() may be implemented by constructing and |
5554 executing an UPDATEor DELETE statement. |

5555 Row Addressing |

5556 SQLSetPos() operates within the current row-set and can be used only after a call to |
5557 SQLFetchScroll(). The application specifies the number of the row to update, delete, or insert, |
5558 using the RowNumber argument, and the implementation retrieves the new data for that row |
5559 from the row-set buffers. SQLSetPos() can also be used to re-fetch a specified row of the row-set |
5560 from the data source or to designate a specified row as the current row. |

5561 The first row in the row-set is row number 1. RowNumber must identify a row in the row-set — |
5562 that is, its value must be in the range between 1 and the number of rows that were most recently |
5563 fetched (which may be less than the row-set size), inclusive; except that setting RowNumber to 0 |
5564 has special meaning for some values of Operation . |

5565 SQLSetPos() ignores any changes made to the row-set size since the rows were fetched, because |
5566 it operates on the rows in the fetched row-set. |

5567 12.3.1 Updating Rows with SQLSetPos() |

5568 The update operation of SQLSetPos() makes the data source update one or more selected rows of |
5569 a table, using data in the application buffers for each bound column (except when the value in |
5570 the length/indicator buffer is SQL_COLUMN_IGNORE). Unbound columns are not updated. |

5571 To update rows with SQLSetPos(), the application: |

5572 • Places the new data values in the row-set buffers. For information on how to send long data |
5573 with SQLSetPos(), see Section 12.4.4 on page 167. |

5574 • Sets the value in the length/indicator buffer of each column as necessary. This is the octet |
5575 length of the data or SQL_NTS for columns bound to string buffers, the octet length of the |
5576 data for columns bound to binary buffers, and SQL_NULL_DATAfor any columns to be set |
5577 to NULL. |

5578 • Sets the value in the length/indicator buffer of those columns which are not to be updated to |
5579 SQL_COLUMN_IGNORE. Although the application can skip this step and resend existing |
5580 data, this is inefficient and risks sending values to the data source that were truncated when |
5581 they were read. |

5582 • Calls SQLSetPos() with Operation set to SQL_UPDATE and RowNumber set to the number of |
5583 the row to update. If RowNumber is 0, all rows in the row-set are updated. |

5584 The update operation of SQLSetPos() does not affect which row of the row-set is the current row. |

5585 When updating all rows of the row-set (RowNumber = 0), an application can disable the update of |
5586 certain rows by setting the corresponding elements in the row operation array (pointed to by the |
5587 SQL_ATTR_ROW_OPERATION_PTRstatement attribute) to SQL_ROW_IGNORE. |

Data Management: X/Open Database Connectivity (XDBC), Version 2 165

Updating Rows with SQLSetPos() Updating Data

5588 The row operation array corresponds in size and number of elements to the row status array |
5589 (pointed to by the SQL_ATTR_ROW_STATUS_ARRAY statement attribute). To update only |
5590 those rows in the result set that were successfully fetched and have not been deleted from the |
5591 row-set, the application uses the row status array from the function that fetched the row-set as |
5592 the row operation array to SQLSetPos().18 |

5593 For every row that is sent to the data source as an update, the application buffers should have |
5594 valid row data. If the application buffers were filled by fetching and if a row status array has |
5595 been maintained, its value at each of these row positions should not be SQL_ROW_DELETED, |
5596 SQL_ROW_ERROR, or SQL_ROW_NOROW. |

5597 12.3.2 Deleting Rows with SQLSetPos() |

5598 The delete operation of SQLSetPos() makes the data source delete one or more selected rows of a |
5599 table. |

5600 To delete rows with SQLSetPos(), the application calls SQLSetPos() with Operation set to |
5601 SQL_DELETE and RowNumber set to the number of the row to delete. If RowNumber is 0, all |
5602 rows in the row-set are deleted. |

5603 After SQLSetPos() returns, the deleted row is the current row, and its status is |
5604 SQL_ROW_DELETED. The row cannot be used in any further positioned operations, such as |
5605 calls to SQLGetData() or SQLSetPos(). |

5606 When deleting all rows of the row-set (RowNumber = 0), the application can prevent the |
5607 implementation from deleting certain rows by using the row operation array, in the same way as |
5608 for the update operation of SQLSetPos() (see Section 12.3.1 on page 163). |

5609 Every row that is deleted should be a row that exists in the result set. If the application buffers |
5610 were filled by fetching and if a row status array has been maintained, its value at each of these |
5611 row positions should not be SQL_ROW_DELETED, SQL_ROW_ERROR, or |
5612 SQL_ROW_NOROW. |

5613 __________________ |
5614 18. Values of the row status array that indicate a successfully fetched row that is still present (SQL_SUCCESS, SQL_UPDATED, etc.) |||

are equivalent to SQL_ROW_PROCEED, while values of the row status array that indicate rows that were not successfully |||
5615 fetched or are no longer present (SQL_ERROR or SQL_DELETED) are equivalent to SQL_ROW_IGNORE. |||

166 Direct Review (Build ID 96KAV) (Draft XDBC.33, August 1996)

Updating Data Using SQLBulkOperations()

5616 12.4 Using SQLBulkOperations() |

5617 The SQLBulkOperations() functions performs operations on database tables. |
5618 SQLBulkOperations() requires a result set and a cursor, but uses them solely to specify the |
5619 underlying table on which to operate. SQLBulkOperations() does not base its operations on, nor |
5620 does it change, the position of any cursor, the selected row, or the current row-set. |

5621 12.4.1 Updating Rows by Bookmark with SQLBulkOperations() |

5622 When updating by bookmark, SQLBulkOperations() makes the data source update one or more |
5623 rows of the table. The rows are identified by the bookmark in a bound bookmark column. The |
5624 row is updated using data in the application buffers for each bound column (except when the |
5625 value in the length/indicator buffer is SQL_COLUMN_IGNORE). Unbound columns are not |
5626 updated. |

5627 To update by bookmark with SQLBulkOperations(), the application: |

5628 • Retrieves and caches the bookmarks of all rows to be updated. If there is more than one |
5629 bookmark, and column-wise binding is used, the bookmarks are stored in an array; if there is |
5630 more than one bookmark and row-wise binding is used, the bookmarks are stored in an array |
5631 of row structures. |

5632 • Sets the SQL_ATTR_ROW_ARRAY_SIZE statement attribute to the number of bookmarks, |
5633 and binds the buffer containing the bookmark value, or the array of buffers containing the |
5634 bookmark values, to column 0. |

5635 • Places the new data values in the row-set buffers. For information on how to send long data |
5636 with SQLBulkOperations(), see Section 12.4.4 on page 167. |

5637 • Sets the value in the length/indicator buffer of each column as necessary. This is the octet |
5638 length of the data or SQL_NTS for columns bound to string buffers, the octet length of the |
5639 data for columns bound to binary buffers, and SQL_NULL_DATAfor any columns to be set |
5640 to NULL. |

5641 • Sets the value in the length/indicator buffer of those columns that are not to be updated to |
5642 SQL_COLUMN_IGNORE. Although the application can skip this step and resend existing |
5643 data, this is inefficient and risks sending values to the data source that were truncated when |
5644 they were read. |

5645 • Calls SQLBulkOperations() with Operation set to SQL_UPDATE_BY_BOOKMARK. |

5646 The application can prevent the implementation from updating certain rows by using the row |
5647 operation array, in the same way as for the update operation of SQLSetPos() (see Section 12.3.1 |
5648 on page 163). |

5649 For every row that is sent to the data source as an update, the application buffers should have |
5650 valid row data. If the application buffers were filled by fetching and if a row status array has |
5651 been maintained, its value at each of these row positions should not be SQL_ROW_DELETED, |
5652 SQL_ROW_ERROR, or SQL_ROW_NOROW. |

Data Management: X/Open Database Connectivity (XDBC), Version 2 167

Deleting Rows by Bookmark with SQLBulkOperations() Updating Data

5653 12.4.2 Deleting Rows by Bookmark with SQLBulkOperations() |

5654 When deleting by bookmark, SQLBulkOperations() makes the data source delete one or more |
5655 selected rows of the table. The rows are identified by the bookmark in a bound bookmark |
5656 column. |

5657 To delete by bookmark with SQLBulkOperations(), the application: |

5658 • Retrieves and caches the bookmarks of all rows to be deleted. If there is more than one |
5659 bookmark, and column-wise binding is used, the bookmarks are stored in an array; if there is |
5660 more than one bookmark and row-wise binding is used, the bookmarks are stored in an array |
5661 of row structures. |

5662 • Sets the SQL_ATTR_ROW_ARRAY_SIZE statement attribute to the number of bookmarks, |
5663 and binds the buffer containing the bookmark value, or the array of buffers containing the |
5664 bookmark values, to column 0. |

5665 • Calls SQLBulkOperations() with Operation set to SQL_DELETE_BY_BOOKMARK. |

5666 After SQLBulkOperations() returns, the status of all deleted rows is SQL_ROW_DELETED. These |
5667 rows cannot be used in any further positioned operations, such as calls to SQLGetData() or |
5668 SQLSetPos(). |

5669 The application can prevent the implementation from updating certain rows by using the row |
5670 operation array, in the same way as for the update operation of SQLSetPos() (see Section 12.3.1 |
5671 on page 163). |

5672 Every row that is deleted should be a row that exists in the result set. If the application buffers |
5673 were filled by fetching and if a row status array has been maintained, its value at each of these |
5674 row positions should not be SQL_ROW_DELETED, SQL_ROW_ERROR, or |
5675 SQL_ROW_NOROW. |

5676 12.4.3 Inserting Rows with SQLBulkOperations() |

5677 Inserting data with SQLBulkOperations() is similar to updating data with SQLBulkOperations(), as |
5678 it uses data from application buffers. |

5679 To insert rows with SQLBulkOperations(), the application: |

5680 • Sets the SQL_ATTR_ROW_ARRAY_SIZEstatement attribute to the number of rows to insert, |
5681 and places the new data values in the row-set buffers. For information on how to send long |
5682 data with SQLBulkOperations(), see Section 12.4.4 on page 167. |

5683 • Sets the length/indicator buffer of each column as follows: |

5684 — For columns bound to string buffers: The octet length of the data or SQL_NTS. |

5685 — For columns bound to binary buffers: The octet length of the data. |

5686 — For columns to be set to NULL: SQL_NULL_DATA. |

5687 — For columns to be set to their default value (or to the null value if no default is defined for |
5688 the column): SQL_IGNORE. In this case, the column must either have a defined default |
5689 value or must allow the null value. |

5690 So that each column in the new row has a value, all bound columns with a length/indicator |
5691 value of SQL_IGNORE and all unbound columns must either accept NULL values or have a |
5692 default. |

5693 • Calls SQLBulkOperations() with Operation set to SQL_ADD. |

5694 The application can prevent the implementation from inserting certain rows by using the row |
5695 operation array, in the same way as for the update operation of SQLSetPos() (see Section 12.3.1 |

168 Direct Review (Build ID 96KAV) (Draft XDBC.33, August 1996)

Updating Data Inserting Rows with SQLBulkOperations()

5696 on page 163). |

5697 12.4.4 Long Data and SQLBulkOperations()/SQLSetPos() |

5698 Long data can be sent in parts when updating or inserting rows with SQLBulkOperations() or |
5699 SQLSetPos(), in the same way as long parameters are sent in parts (see Section 9.4.3 on page 105). |

5700 The data is sent in parts with multiple calls to SQLPutData(). Columns for which data is sent at |
5701 execution time are known as data-at-execution columns. |

5702 SQLBulkOperations() and SQLSetPos() operate only on bound columns. An application must |
5703 bind the affected columns in order to use one of these functions. The application can unbind the |
5704 column after calling the function so that it can call SQLGetData() to retrieve data from the |
5705 column. |

5706 To send data at execution time, the application: |

5707 1. Places a 32-bit value in the row-set buffer instead of a data value. This value will be |
5708 returned to the application later, so the application should set it to a meaningful value, |
5709 such as the number of the column or the handle of a file containing data. |

5710 2. Sets the value in the length/indicator buffer to the result of the |
5711 SQL_LEN_DATA_AT_EXEC(length) macro. This value indicates to the implementation |
5712 that the data for the parameter will be sent with SQLPutData(). The length value is used |
5713 when sending long data to a data source that needs to know how many octets of long data |
5714 will be sent so that it can preallocate space. To determine if a data source requires this |
5715 value, the application calls SQLGetInfo() with the SQL_NEED_LONG_DATA_LENoption. |
5716 All implementations must support the SQL_LEN_DATA_AT_EXEC(length)macro; if the |
5717 data source does not require the octet length, the implementation can ignore it. |

5718 3. Calls SQLBulkOperations() or SQLSetPos(). The implementation discovers that a |
5719 length/indicator buffer contains the result of the SQL_LEN_DATA_AT_EXEC(length) |
5720 macro and returns SQL_NEED_DATAas the return value of the function. |

5721 4. Calls SQLParamData() in response to the SQL_NEED_DATA return value. In the buffer |
5722 pointed to by ValuePtr, the implementation returns the value the application placed in the |
5723 row-set buffer. If there is more than one data-at-execution column, the application uses this |
5724 value to determine which column to send data for; the implementation is not required to |
5725 request data for data-at-execution columns in any particular order. |

5726 5. Calls SQLPutData() to send the column data to the implementation. If the column data |
5727 does not fit in a single buffer, as is often the case with long data, the application calls |
5728 SQLPutData() repeatedly to send the data in parts, and the implementation reassembles |
5729 the data. If the application passes null-terminated string data, the implementation removes |
5730 the null terminator as part of the reassembly process. |

5731 6. Calls SQLParamData() again to indicate that it has sent all of the data for the column. If |
5732 there are any data-at-execution columns for which data has not been sent, the |
5733 implementation returns SQL_NEED_DATA and the application returns to step 5. If data |
5734 has been sent for all data-at-execution columns, the data for the row is sent to the data |
5735 source. SQLParamData() can then return any SQLSTATE that SQLBulkOperations() or |
5736 SQLSetPos() can return. |

5737 After SQLBulkOperations() or SQLSetPos() returns SQL_NEED_DATA and before data has been |
5738 completely sent for the last data-at-execution column, the statement is in a Need Data state. |
5739 While a statement is in a Need Data state, the application can call only SQLPutData(), |
5740 SQLParamData(), or SQLCancel(); all other functions return SQLSTATE HY010 (Function |
5741 sequence error). Calling SQLCancel() cancels execution of the statement and returns it to its |
5742 previous state. For more information, see Appendix B. |

Data Management: X/Open Database Connectivity (XDBC), Version 2 169

Code Example Updating Data

5743 12.4.5 Code Example |

5744 The following code lets a user scroll through the Customers table and update, delete, or add new |
5745 rows. It places the new data in the row-set buffers before calling SQLSetPos() to update or add |
5746 new rows. An extra row is allocated at the end of the row-set buffers to hold new rows; this |
5747 prevents existing data from being overwritten when data for a new row is placed in the buffers. |

5748 #define UPDATE_ROW 100 |
5749 #define DELETE_ROW 101 |
5750 #define ADD_ROW 102 |

5751 SQLUINTEGER CustIDArray[11]; |
5752 SQLCHAR NameArray[11][51], AddressArray[11][51], PhoneArray[11][11]; |
5753 SQLINTEGER CustIDIndArray[11], NameLenOrIndArray[11], AddressLenOrIndArray[11], |
5754 PhoneLenOrIndArray[11]; |
5755 SQLUSMALLINT RowStatusArray[10], Action, RowNum; |

5756 // Set the SQL_ATTR_BIND_TYPE statement attribute to use column-wise binding. Declare |
5757 // the row-set size with the SQL_ATTR_ROW_ARRAY_SIZE statement attribute. Set the |
5758 // SQL_ATTR_ROW_STATUS_PTR statement attribute to point to the row status array. |
5759 SQLSetStmtAttr(hstmt, SQL_ATTR_BIND_TYPE, SQL_BIND_BY_COLUMN, 0); |
5760 SQLSetStmtAttr(hstmt, SQL_ATTR_ROW_ARRAY_SIZE, 10, 0); |
5761 SQLSetStmtAttr(hstmt, SQL_ATTR_ROW_STATUS_PTR, RowStatusArray, 0); |

5762 // Bind arrays to the CustID, Name, Address, and Phone columns. |
5763 SQLBindCol(hstmt, 1, SQL_C_ULONG, CustIDArray, 0, CustIDIndArray); |
5764 SQLBindCol(hstmt, 2, SQL_C_CHAR, NameArray, sizeof(NameArray[0]), NameLenOrIndArray); |
5765 SQLBindCol(hstmt, 3, SQL_C_CHAR, AddressArray, sizeof(AddressArray[0]), |
5766 AddressLenOrIndArray); |
5767 SQLBindCol(hstmt, 4, SQL_C_CHAR, PhoneArray, sizeof(PhoneArray[0]), |
5768 PhoneLenOrIndArray); |

5769 // Execute a statement to retrieve rows from the Customers table. |
5770 SQLExecDirect(hstmt, ’SELECT CustID, Name, Address, Phone FROM Customers’, SQL_NTS); |

5771 // Fetch and display the first 10 rows. |
5772 rc = FetchScroll(hstmt, SQL_FETCH_NEXT, 0); |
5773 DisplayData(CustIDArray, CustIDIndArray, NameArray, NameLenOrIndArray, AddressArray, |
5774 AddressLenOrIndArray, PhoneArray, PhoneLenOrIndArray, RowStatusArray); |

5775 // Call GetAction to get an action and a row number from the user. |
5776 while (GetAction(&Action, &RowNum)) { |
5777 switch (Action) { |
5778 case SQL_FETCH_NEXT: |
5779 case SQL_FETCH_PRIOR: |
5780 case SQL_FETCH_FIRST: |
5781 case SQL_FETCH_LAST: |
5782 case SQL_FETCH_ABSOLUTE: |
5783 case SQL_FETCH_RELATIVE: |
5784 // Fetch and display the requested data. |
5785 SQLFetchScroll(hstmt, Action, RowNum); |
5786 DisplayData(CustIDArray, CustIDIndArray, |
5787 NameArray, NameLenOrIndArray, |
5788 AddressArray, AddressLenOrIndArray, |
5789 PhoneArray, PhoneLenOrIndArray, RowStatusArray); |
5790 break; |

5791 case UPDATE_ROW: |
5792 // Place the new data in the row-set buffers and update the specified row. |
5793 GetNewData(&CustIDArray[RowNum - 1], &CustIDIndArray[RowNum - 1], |
5794 NameArray[RowNum - 1], &NameLenOrIndArray[RowNum - 1], |
5795 AddressArray[RowNum - 1], &AddressLenOrIndArray[RowNum - 1], |
5796 PhoneArray[RowNum - 1], &PhoneLenOrIndArray[RowNum - 1]); |
5797 SQLSetPos(hstmt, RowNum, SQL_UPDATE, SQL_LOCK_NO_CHANGE); |
5798 break; |

5799 case DELETE_ROW: |
5800 // Delete the specified row. |
5801 SQLSetPos(hstmt, RowNum, SQL_DELETE, SQL_LOCK_NO_CHANGE); |

170 Direct Review (Build ID 96KAV) (Draft XDBC.33, August 1996)

Updating Data Code Example

5802 break; |

5803 case ADD_ROW: |
5804 // Place the new data in the row-set buffers at index 10. This is an extra |
5805 // element for new rows so row-set data is not over-written. Insert the new |
5806 // row. Row 11 corresponds to index 10. |
5807 GetNewData(&CustIDArray[10], &CustIDIndArray[10], |
5808 NameArray[10], &NameLenOrIndArray[10], |
5809 AddressArray[10], &AddressLenOrIndArray[10], |
5810 PhoneArray[10], &PhoneLenOrIndArray[10]); |
5811 SQLBulkOperations(hstmt, 11, SQL_ADD); |
5812 break; |
5813 } |
5814 } |

5815 // Close the cursor. |
5816 SQLCloseCursor(hstmt); |

Data Management: X/Open Database Connectivity (XDBC), Version 2 171

5817 Chapter 13 |

5818 Descriptors |

5819 A descriptor handle refers to a data structure that holds information about either columns or |
5820 dynamic parameters. A XDBC descriptor is analogous to the SQL descriptor area. ‘‘Descriptor’’ |
5821 in this document means the XDBC data structure, not the data structure from SQL. |

5822 XDBC functions that operate on column and parameter data implicitly get and set descriptor |
5823 fields. For instance, when SQLBindCol() is called to bind column data, it sets descriptors fields |
5824 that completely describe the binding. When SQLColAttribute() is called to describe column data, |
5825 it returns data stored in descriptor fields. |

5826 An application calling these XDBC functions need not concern itself with descriptors. No |
5827 database operation requires that the application gain direct19 access to descriptors. However, for |
5828 some applications, gaining direct access to descriptors streamlines many operations. For |
5829 example, direct access to descriptors provides a way to rebind column data that may be more |
5830 efficient than calling SQLBindCol() again. |

5831 __________________ |
5832 19. XDBC does not define the physical representation of a descriptor. Applications gain ‘‘direct’’ access to the descriptor only by |||

manipulating its fields using XDBC functions and the descriptor handle. |||

172 Direct Review (Build ID 96KAV) (Draft XDBC.33, August 1996)

Descriptors Types of Descriptor

5833 13.1 Types of Descriptor |

5834 A descriptor is used to describe one of the following: |

5835 1. A set of zero or more parameters. A parameter descriptor can be used to describe: |

5836 — the application parameter buffer, which contains either the input dynamic arguments as |
5837 set by the application or the output dynamic arguments following the execution of a |
5838 CALL statement of SQL |

5839 — the implementation parameter buffer. For input dynamic arguments, this contains the |
5840 same arguments as the application parameter buffer, after any data conversion the |
5841 application may specify.* For output dynamic arguments, this contains the returned |
5842 arguments, before any data conversion the application may specify. |

5843 For input dynamic arguments, the application must operate on an application parameter |
5844 descriptor before executing any SQL statement that contains dynamic parameter markers. |
5845 For both input and output dynamic arguments, the application may specify different data |
5846 types from those in the implementation parameter descriptor to achieve data conversion. |

5847 2. A single row of database data. A row descriptor can be used for: |

5848 — the implementation row buffer, which contains the row from the database* |

5849 — the application row buffer, which contains the row, following any data conversion the |
5850 application may specify, in which form the data is presented to the application. |

5851 The application operates on the application row descriptor in any case where column data |
5852 from the database must appear in application variables. The application may specify |
5853 different data types from those in the implementation row descriptor to achieve data |
5854 conversion of column data. |

5855 The following table summarises the descriptor types: |

|
5856 Rows Dynamic Parameters ||
5857 Application Application Row Application Parameter |
5858 Buffer Descriptor Descriptor ||
5859 Implementation Implementation Row Implementation Parameter |
5860 Buffer Descriptor Descriptor ||

||||

5861 Table 13-1. The Four Types of Descriptor |

5862 For either the parameter or row buffers, if the application specifies different data types in |
5863 corresponding records of the implementation and application descriptors, the XDBC |
5864 implementation performs data conversion when it uses the descriptors. For example, it may |
5865 convert numeric and date/time values to character-string format. For valid combinations and |
5866 their effects, see Section D.6 on page 576 and Section D.7 on page 587. |

5867 A descriptor may perform different roles. Different statements can share any descriptor that the |
5868 application explicitly allocates. A row descriptor in one statement can serve as a parameter |
5869 descriptor in another statement.20 |

5870 __________________ |
5871 * The implementation buffers are conceptually the data as written to, or read from, the database. However, X/Open does not |||

specify the stored form of database data, and a data source could perform additional conversion on the data from its form in the |||
5872 implementation buffer. |||
5873 20. By reusing a row descriptor that contains a fetched row of a table as a parameter descriptor of an INSERT statement, an |||

application could copy rows between tables without specifying copying of the data at the application level. However, an |||
5874 application can copy rows between different databases in this way only if the implementation supports simultaneous access to |||

multiple connections, because the descriptor is valid only while connected. |||

Data Management: X/Open Database Connectivity (XDBC), Version 2 173

Types of Descriptor Descriptors

5875 It is always known whether a given descriptor is an application descriptor or an implementation |
5876 descriptor, even if the descriptor has not yet been used in a database operation. For the |
5877 descriptors that the implementation implicitly allocates, the implementation records the |
5878 predefined role relative to the statement handle. Any descriptor the application allocates using |
5879 SQLAllocHandle() is an application descriptor. |

174 Direct Review (Build ID 96KAV) (Draft XDBC.33, August 1996)

Descriptors Descriptor Fields

5880 13.2 Descriptor Fields |

5881 The fields of a descriptor are listed in this section, and described completely in the reference |
5882 manual entry for SQLSetDescField(). |

5883 Header Fields |

5884 A descriptor contains a single copy of the following fields: |

5885 SQL_DESC_ALLOC_TYPE SQL_DESC_BIND_TYPE |
5886 SQL_DESC_ARRAY_SIZE SQL_DESC_COUNT |
5887 SQL_DESC_ARRAY_STATUS_PTR SQL_DESC_ROWS_PROCESSED_PTR |
5888 SQL_DESC_BIND_OFFSET_PTR |

5889 Table 13-2. List of Descriptor Header Fields |
5890 For more information on each field, see Fields of the Descriptor Header on page 472. |

5891 Record Fields |

5892 A descriptor contains zero or more descriptor records21 each containing a single copy of the |
5893 following fields: |

5894 SQL_DESC_AUTO_UNIQUE_VALUE SQL_DESC_LOCAL_TYPE_NAME |
5895 SQL_DESC_BASE_COLUMN_NAME SQL_DESC_NAME |
5896 SQL_DESC_BASE_TABLE_NAME SQL_DESC_NULLABLE |
5897 SQL_DESC_CASE_SENSITIVE SQL_DESC_OCTET_LENGTH |
5898 SQL_DESC_CATALOG_NAME SQL_DESC_OCTET_LENGTH_PTR |
5899 SQL_DESC_CONCISE_TYPE SQL_DESC_PARAMETER_TYPE |
5900 SQL_DESC_DATA_PTR SQL_DESC_PRECISION |
5901 SQL_DESC_DATETIME_INTERVAL_CODE SQL_DESC_SCALE |
5902 SQL_DESC_DATETIME_INTERVAL_PRECISION SQL_DESC_SCHEMA_NAME |
5903 SQL_DESC_DISPLAY SQL_DESC_SEARCHABLE |
5904 SQL_DESC_FIXED_PREC_SCALE SQL_DESC_TABLE_NAME |
5905 SQL_DESC_INDICATOR_PTR SQL_DESC_TYPE |
5906 SQL_DESC_LABEL SQL_DESC_TYPE_NAME |
5907 SQL_DESC_LENGTH SQL_DESC_UNNAMED |
5908 SQL_DESC_LITERAL_PREFIX SQL_DESC_UNSIGNED |
5909 SQL_DESC_LITERAL_SUFFIX SQL_DESC_UPDATABLE |

5910 Table 13-3. List of Descriptor Record Fields |
5911 For more information on each field, see Fields of Each Descriptor Record on page 476. |

5912 Fields that Relate to Statement Attributes |

5913 Many statement attributes correspond to the header field of a descriptor. Setting such an |
5914 attribute by calling SQLSetStmtAttr() and setting the corresponding descriptor header field by |
5915 calling SQLSetDescField() have the same effect. Likewise, the same value can be obtained by |
5916 calling SQLGetStmtAttr() as by calling SQLSetDescField() for the corresponding descriptor header |
5917 field. Calling the statement functions instead of the descriptor functions has the advantage that |
5918 a descriptor handle does not have to be retrieved. |

5919 The following descriptor header fields can be set by setting statement attributes: |

5920 ____________________ |
5921 21. These records correspond to the item descriptor areas in the SQL descriptor area of SQL. |||

Data Management: X/Open Database Connectivity (XDBC), Version 2 175

Descriptor Fields Descriptors

5922 SQL_DESC_ARRAY_SIZE SQL_DESC_BIND_TYPE |
5923 SQL_DESC_ARRAY_STATUS_PTR SQL_DESC_ROWS_PROCESSED_PTR |
5924 SQL_DESC_BIND_OFFSET_PTR |

5925 Table 13-4. Descriptor Fields that Relate to Statement Attributes |

5926 13.2.1 Count of Records |

5927 The SQL_DESC_COUNT header field of a descriptor indicates the number of records that are |
5928 present in that descriptor. It can range from 0 up to and including an implementation-defined |
5929 maximum. When a descriptor is allocated, the initial value of SQL_DESC_COUNT is 0. |

5930 The XDBC implementation takes any necessary action to allocate and maintain whatever storage |
5931 it requires to hold descriptor information. The application does not explicitly specify the size of |
5932 a descriptor nor allocate new records. When the application provides information for a |
5933 descriptor record whose number is higher than the value of SQL_DESC_COUNT, the |
5934 implementation automatically increments SQL_DESC_COUNT. When the application unbinds |
5935 the highest-numbered descriptor record (see Section 13.2.2), the implementation automatically |
5936 decrements SQL_DESC_COUNT to contain the number of the highest remaining bound record. |

5937 13.2.2 Bound Descriptor Records |

5938 When the application sets the SQL_DESC_DATA_PTR field of a descriptor record, so that it no |
5939 longer contains the null value, the record is said to be bound. |

5940 If the descriptor is an application parameter descriptor, then each bound record constitutes a |
5941 bound parameter. |

5942 • For input dynamic parameters, the application must bind a parameter for each dynamic |
5943 parameter marker in the SQL statement before executing the statement (see Section 9.4 on |
5944 page 102). |

5945 • For output dynamic parameters, the application need not bind the parameter. The |
5946 application retrieves data from bound and unbound output dynamic parameters using |
5947 different methods (see Section 9.4.3 on page 105). |

5948 If the descriptor is an application row descriptor, which describes a row of database data, then |
5949 each bound record constitutes a bound column . The application retrieves data from bound and |
5950 unbound columns using different methods (see Section 10.4 on page 133). (For methods of |
5951 retrieving data from a row-set after a multi-row fetch, see Section 11.3 on page 156.) |

176 Direct Review (Build ID 96KAV) (Draft XDBC.33, August 1996)

Descriptors Operations on Descriptors

5952 13.3 Operations on Descriptors |

5953 Implicit Allocation/Freeing |

5954 When an application allocates a statement handle, the implementation implicitly allocates one |
5955 set of four descriptors.22 The application can obtain the handles of these implicitly-allocated |
5956 descriptors as attributes of the statement handle. When the application frees the statement |
5957 handle, the implementation frees all implicitly-allocated descriptors on that handle. |

5958 Explicit Allocation/Freeing |

5959 The application can explicitly allocate an application descriptor on a connection at any time it is |
5960 actually connected to a database. By specifying that descriptor handle as an attribute of a |
5961 statement handle using SQLSetStmtAttr(), the application directs the implementation to use that |
5962 descriptor in place of the respective implicitly-allocated application descriptor. (The application |
5963 cannot specify alternative implementation descriptors.) |

5964 The application can associate an explicitly-allocated descriptor with more than one statement. |
5965 The application can free such a descriptor explicitly, or implicitly by freeing its connection. |

5966 Obtaining a Descriptor Handle |

5967 The application obtains the handle of any explicitly-allocated descriptor as an output argument |
5968 of the call to SQLAllocHandle(). The handle of an implicitly-allocated descriptor is available by |
5969 calling SQLGetStmtAttr(). |

5970 Initialisation of Fields |

5971 When an application row descriptor record is allocated, its fields receive initial values as |
5972 specified in Initialization of Descriptor Fields on page 467. The initial value of the |
5973 SQL_DESC_TYPE field is SQL_DEFAULT. This provides for a standard treatment of database |
5974 data for presentation to the application (see Cautions Regarding SQL_DEFAULT on page 219). |
5975 The application may specify different treatment of the data by setting fields of the descriptor |
5976 record. |

5977 The initial value of SQL_DESC_ARRAY_SIZE in the descriptor header is 1. The application can |
5978 modify this field to enable multi-row fetch (see Section 11.1 on page 140. |

5979 Access to Fields |

5980 The application can call SQLGetDescField() to obtain a single field of a descriptor record. |
5981 SQLGetDescField() gives the application access to all the descriptor fields defined in the X/Open |
5982 SQL specification, and to other fields as well. SQLGetDescField() returns one field per call. The |
5983 function is extensible, using additional argument values, to return future or implementation- |
5984 defined fields. |

5985 To modify fields of a descriptor, the application can call SQLSetDescField(), an extensible |
5986 function that sets a single descriptor field per call. Some fields are read-only and cannot be set |
5987 by SQLSetDescField(); refer to the table in the reference manual entry for SQLSetDescField(). |

5988 When setting fields individually, the application should follow the sequence defined in [X-ref |
5989 err—setdescfield]. Setting some fields causes the XDBC implementation to set other fields. |

5990 __________________ |
5991 22. The implementation has the option of deferring allocation of any descriptor until the point at which it is actually used. |||

Data Management: X/Open Database Connectivity (XDBC), Version 2 177

Operations on Descriptors Descriptors

5992 These cases, directly analogous to cases defined in the X/Open SQL specification, ensure that a |
5993 descriptor is always ready to use once the application has specified a data type. When the |
5994 application sets the SQL_DESC_DATA_PTR field, the implementation checks that other fields |
5995 that specify the type are valid and consistent (see Consistency Checks on page 486). |

5996 Copying Descriptors |

5997 The SQLCopyDesc() function copies the fields of one descriptor to another descriptor. Fields can |
5998 only be copied to an application descriptor or an implementation parameter descriptor, but not |
5999 to an implementation row descriptor. Fields can be copied from either an application or an |
6000 implementation descriptor. Only those fields that are defined for both the source and target |
6001 descriptors are copied. SQLCopyDesc() does not copy the SQL_DESC_ALLOC_TYPE field, |
6002 because a descriptor’s allocation type cannot be changed. Copied values overwrite the existing |
6003 values. |

6004 An ARD on one statement handle can serve as the APD on another statement handle. This lets |
6005 an application copy rows between tables without copying data at the application level. To do |
6006 this, a row descriptor that describes a fetched row of a table is reused as a parameter descriptor |
6007 for a parameter in an INSERT statement. The SQL_MAX_CONCURRENT_ACTIVITIES |
6008 information item must be greater than 1 for this operation to succeed. |

6009 Freeing Handles |

6010 Explicitly allocated descriptors can be freed either explicitly by calling SQLFreeHandle() with a |
6011 HandleType of SQL_HANDLE_DESC and the appropriate Handle , or implicitly when the |
6012 connection handle is freed. When an explicitly-allocated descriptor is freed, all statement |
6013 handles to which the freed descriptor applied automatically revert to the implicitly-allocated |
6014 descriptors. |

6015 Implicitly-allocated descriptors can only be freed by calling SQLDisconnect(), which drops any |
6016 statements or descriptors open on the connection, or by calling SQLFreeHandle() with a |
6017 HandleType of SQL_HANDLE_STMT to free a statement handle and all the implicitly-allocated |
6018 descriptors associated with the statement. Implicitly-allocated descriptor handles cannot be |
6019 freed by calling SQLFreeHandle() with a HandleTypeof SQL_HANDLE_DESC. |

6020 13.3.1 Concise Functions |

6021 Some XDBC functions gain implicit access to descriptors. Application writers may find them |
6022 more convenient than calling SQLSetDescField() and SQLGetDescField(). Concise functions can |
6023 be called without first retrieving a descriptor handle for use as an argument. The functions |
6024 imply one or more descriptors based on a statement handle used as an argument. |

6025 Some concise functions let an application set or retrieve several related descriptor fields in a |
6026 single function call. Some concise functions perform more tasks than simply setting descriptor |
6027 fields. |

6028 The concise functions SQLBindCol() and SQLBindParameter() bind a column or parameter, |
6029 respectively, by setting the descriptor fields that correspond to their arguments. These functions |
6030 performs more tasks than simply setting descriptors. (The reference manual entries for these |
6031 functions specify sequences of XDBC calls that are conceptually equivalent to calling |
6032 SQLBindCol() and SQLBindParameter().) These functions completely specify the binding of a |
6033 data column or dynamic parameter. However, an application can change individual details of a |
6034 binding by calling SQLSetDescField() or SQLSetDescRec(), and can completely bind a column or |
6035 parameter by making a series of suitable calls to these functions. |

6036 The concise functions SQLColAttribute(), SQLDescribeCol(), SQLDescribeParam(), |
6037 SQLNumParams(), and SQLNumResultCols() retrieve values in descriptor fields. |

178 Direct Review (Build ID 96KAV) (Draft XDBC.33, August 1996)

Descriptors Concise Functions

6038 SQLSetDescRec() and SQLGetDescRec() are concise functions that set or get multiple descriptor |
6039 fields with one call. SQLSetStmtAttr() and SQLGetStmtAttr() serve as concise functions in some |
6040 cases (see Fields that Relate to Statement Attributes on page 173). |

Data Management: X/Open Database Connectivity (XDBC), Version 2 179

Deferred Fields Descriptors

6041 13.4 Deferred Fields |

6042 The following fields are deferred fields: |

6043 • The SQL_DESC_DATA_PTRand SQL_DESC_INDICATOR_PTR fields of a descriptor record. |

6044 • The SQL_DESC_OCTET_LENGTH_PTR field of an application descriptor record. |

6045 • In the case of a multi-row fetch, the SQL_DESC_ARRAY_STATUS_PTR, |
6046 SQL_DESC_DIAG_INDEX_PTR and SQL_DESC_ROWS_PROCESSED_PTR fields of a |
6047 descriptor header. |

6048 When the application sets these fields by calling SQLSetDescField(), the implementation does not |
6049 use the current value of the application variables, but saves the addresses of the variables in the |
6050 descriptor for a deferred effect as follows: |

6051 • For an application parameter descriptor, the implementation uses the contents of the |
6052 variables at the time of the call to SQLExecDirect() or SQLExecute(). |

6053 • For an application row descriptor, the application can set the |
6054 SQL_DESC_ARRAY_STATUS_PTR, SQL_DESC_DIAG_INDEX_PTR and |
6055 SQL_DESC_ROWS_PROCESSED_PTR fields in preparation for a multi-row fetch. The |
6056 implementation assigns values to the SQL_DESC_DATA_PTR, |
6057 SQL_DESC_INDICATOR_PTR and SQL_DESC_OCTET_LENGTH_PTR variables at the time |
6058 of the fetch. |

6059 When a descriptor is allocated, the deferred fields of each descriptor record initially have a null |
6060 value. The meaning of the null value is as follows: |

6061 • If SQL_DESC_ARRAY_STATUS_PTRhas the null value, a multi-row fetch fails to return this |
6062 component of the per-row diagnostic information (see Diagnostic Messages on page 201). |

6063 • If SQL_DESC_DATA_PTRhas the null value, the record is unbound. |

6064 • If SQL_DESC_DIAG_INDEX_PTR has the null value, a multi-row fetch fails to return this |
6065 component of the per-row diagnostic information (see Diagnostic Messages on page 201). |

6066 • If SQL_DESC_INDICATOR_PTR has the null value: |

6067 — For an application parameter descriptor, there is no indicator information for the |
6068 descriptor record. For dynamic arguments, this prevents the application from using the |
6069 buffer to specify null input dynamic arguments, and prevents the implementation from |
6070 returning indicator information for output arguments. |

6071 — For an application row descriptor, a null SQL_DESC_INDICATOR_PTR prevents the |
6072 implementation from returning indicator information for that column. (As in SQL, the |
6073 implementation needs an indicator to report the fetch of a null value; in this case, failure |
6074 to bind SQL_DESC_INDICATOR_PTR is an error.) |

6075 • If SQL_DESC_OCTET_LENGTH_PTR has the null value: |

6076 — For an application parameter descriptor, SQL_DESC_OCTET_LENGTH_PTR indicates |
6077 the length in octets of character-string dynamic arguments. For input dynamic |
6078 arguments, a null value directs the implementation to assume the string is null- |
6079 terminated. For output dynamic arguments, a null value prevents the implementation |
6080 from returning length information. (If TYPE does not indicate a character-string dynamic |
6081 argument or character-string stored routine argument, |
6082 SQL_DESC_OCTET_LENGTH_PTR is ignored.) |

6083 — For an application row descriptor, the implementation does not return length information |
6084 for that column. |

180 Direct Review (Build ID 96KAV) (Draft XDBC.33, August 1996)

Descriptors Deferred Fields

6085 The application can obtain the value of a deferred field by calling SQLGetDescField(). Such a call |
6086 returns not the actual data but a pointer to the associated application variable.23 A routine that |
6087 takes as an argument a descriptor handle could call SQLGetDescField() to obtain pointers to the |
6088 data, indicator or length of any descriptor record. |

6089 Once the application has associated a deferred field with an application pointer, it can specify a |
6090 different application pointer, or specify the null pointer to return the deferred field to the initial, |
6091 unbound state. To reuse the same application descriptor with a different number and position of |
6092 bound records, an application can free the descriptor and allocate a new one, or overwrite the |
6093 previous bindings and change the SQL_DESC_COUNT field. |

6094 The application must not deallocate or discard variables used for deferred fields between the |
6095 time it associates them with the fields and the time the XDBC implementation reads or writes |
6096 them. |

6097 __________________ |
6098 23. The call returns the null pointer if the field is not associated with an application variable. In the case of multi-row fetches, |||

SQL_DESC_DATA_PTR, SQL_DESC_INDICATOR_PTR and SQL_DESC_OCTET_LENGTH_PTR each point to an array whose |||
6099 cardinality is the value of SQL_DESC_ARRAY_SIZE (see Section 11.1 on page 140). |||

Data Management: X/Open Database Connectivity (XDBC), Version 2 181

Descriptors |

182 Direct Review (Build ID 96KAV) (Draft XDBC.33, August 1996)

6100 Chapter 14 |

6101 Transactions |

6102 A transaction is a unit of work that is done as an single, atomic operation; that is, the operation |
6103 succeeds or fails as a whole. |

6104 For example, consider a banking application that transfers money from one bank account to |
6105 another. This involves two steps: withdrawing the money from the first account and depositing |
6106 it in the second. The application requires that both steps succeed; it is not acceptable for one step |
6107 to succeed and the other to fail. A database that supports transactions is able to guarantee this. |

6108 Transactions can be completed either by being committed or by being rolled back. When a |
6109 transaction is committed, the changes made in that transaction are made permanent. When a |
6110 transaction is rolled back, the affected rows are returned to their state when the transaction |
6111 began. To extend the account transfer example, an application executes one SQL statement to |
6112 debit the first account and a different SQL statement to credit the second account. If both |
6113 statements succeed, the application then commits the transaction. If either statement fails for any |
6114 reason, the application rolls back the transaction. In both cases, the database is in a consistent |
6115 state at the end of the transaction. |

6116 A single transaction can encompass multiple database operations, which occur at different times. |
6117 If other transactions had complete access to the intermediate results, the transactions might |
6118 interfere with one another. For example, suppose one transaction inserts a row, a second |
6119 transaction reads that row, and the first transaction is rolled back. The second transaction now |
6120 has data for a row that does not exist. |

6121 To solve this problem, there are various schemes to isolate transactions from each other. |
6122 Transaction isolation is generally implemented by locking rows, which precludes more than one |
6123 transaction from using the same row at the same time. In some databases, locking a row may |
6124 also lock other rows. |

6125 With increased transaction isolation comes reduced concurrency, or the ability of two |
6126 transactions to use the same data at the same time. This is discussed in Section 14.3 on page 191. |

Data Management: X/Open Database Connectivity (XDBC), Version 2 183

Transaction Support in XDBC Transactions

6127 14.1 Transaction Support in XDBC |

6128 Transactions in XDBC are completed at the connection level; that is, when an application |
6129 completes a transaction, it commits or rolls back all work done through all statement handles on |
6130 that connection. |

6131 14.1.1 Determining Level of Support |

6132 The degree of support for transactions is implementation-defined. XDBC is designed to be |
6133 implementable on a single-user or desktop database which has no need to manage multiple |
6134 updates to its data. Moreover, some databases that support transactions do so only for the Data |
6135 Manipulation Language (DML) statements of SQL; there are restrictions or special transaction |
6136 semantics regarding the use of Data Definition Language (DDL) when a transaction is active. |
6137 That is, there may be transaction support for multiple simultaneous updates to tables, but not for |
6138 changing the number and definition of tables during a transaction. |

6139 An application determines whether transactions are supported, whether DDL can be included in |
6140 a transaction, and any special effects of including DDL in a transaction, by calling SQLGetInfo() |
6141 with the SQL_TXN_CAPABLE option. |

6142 If the implementation does not support transactions, but the application has the ability (using an |
6143 API other than XDBC) to lock and unlock data, applications can achieve transaction isolation by |
6144 locking and unlocking records and tables as needed. To implement the account-transfer example, |
6145 the application would lock the records for both accounts, copy the current values, debit the first |
6146 account, credit the second account, and unlock the records; if any steps failed, the application |
6147 would reset the accounts using the copies. |

6148 Some data sources that support transactions do not support more than one transaction at a time |
6149 within an environment. Applications call SQLGetInfo() with the SQL_MULTIPLE_ACTIVE_TXN |
6150 option to determine whether a data source can support simultaneous active transactions on |
6151 more than one connection in the same environment. Because there is one transaction per |
6152 connection, this is only interesting to applications that have multiple connections to the same |
6153 data source. |

6154 14.1.2 Commit Mode and Transaction Completion |

6155 An XDBC connection can be in either auto-commit mode or manual-commit mode. |

6156 Auto-commit Mode |

6157 In auto-commit mode, every database operation24 is a transaction that is committed when |
6158 performed. This mode is suitable for many real-world transactions that consist of a single SQL |
6159 statement. It is unnecessary to delimit or specify completion of these transactions. In databases |
6160 without transaction support, auto-commit mode is the only supported mode. |

6161 In auto-commit mode, there is no way to specify that work be rolled back. |

6162 If the data source does not support auto-commit mode, the implementation can emulate it by |
6163 explicitly committing each SQL statement as it is executed. |

6164 __________________ |
6165 24. SELECT statements do not make any changes to the database and it is meaningless to commit them. SELECT statements open a |||

cursor, through which operations such as DELETE, INSERT, and UPDATE can be performed. In auto-commit mode, these |||
6166 operations are the auto-committing transactions. |||

184 Direct Review (Build ID 96KAV) (Draft XDBC.33, August 1996)

Transactions Commit Mode and Transaction Completion

6167 Auto-committing a Batch |

6168 When a batch is executed in auto-commit mode, it is implementation-defined which of the |
6169 following is true: |

6170 • The entire batch is treated as an auto-commitable unit |

6171 • Each statement in a batch is treated as an auto-commitable unit. |

6172 Some data sources may support both these behaviors and may provide a way of selecting one or |
6173 the other. |

6174 In particular, if an error occurs in the middle of the batch, it is implementation-defined whether |
6175 statements already executed are committed or rolled back. Thus, interoperable applications that |
6176 use batches and require them to be committed or rolled back as a whole should only execute |
6177 batches in manual-commit mode. |

6178 Manual-commit Mode |

6179 In manual-commit mode, the application must explicitly complete transactions by calling |
6180 SQLEndTran(). Manual-commit mode is the usual method of working with most relational |
6181 databases. |

6182 XDBC follows the model used in X/Open SQL in which the application does not explicitly |
6183 initiate a transaction. Instead, a transaction begins implicitly whenever the application starts |
6184 operating on the database. |

6185 If the data source requires explicit transaction initiation, the XDBC implementation must |
6186 provide it whenever the application executes a statement requiring a transaction and there is no |
6187 current transaction. |

6188 To achieve atomic completion encompassing XDBC database operations and other operations, |
6189 on an implementation that complies both with XDBC and with the X/Open TX specification, the |
6190 application delimits transactions by preceding all work with a call to tx_begin() and following it |
6191 with a call to tx_end() (see the X/Open TX specification). |

6192 Setting the Commit Mode |

6193 Applications specify the transaction mode with the SQL_ATTR_AUTOCOMMIT connection |
6194 attribute. By default, XDBC transactions are in auto-commit mode.25 It is implementation- |
6195 defined whether switching from manual-commit mode to auto-commit mode commits any open |
6196 transaction on the connection. |

6197 Committing and Rolling Back Transactions |

6198 To commit or roll back a transaction in manual-commit mode, an application calls |
6199 SQLEndTran(). |

6200 Note: Applications should not commit or roll back transactions by executing COMMIT or |
6201 ROLLBACK statements with SQLExecute() or SQLExecDirect(). The effects of doing this are |
6202 undefined. They should instead call SQLEndTran(). |

6203 If an application passes the environment handle to SQLEndTran() but does not pass a connection |
6204 handle, the implementation conceptually calls SQLEndTran() for each active connection in the |

6205 __________________ |
6206 25. An implementation’s default for SQL_ATTR_AUTOCOMMIT may be incompatible with implementations complying with the |||

March 1995 issue, because that issue did not specify a default. |||

Data Management: X/Open Database Connectivity (XDBC), Version 2 185

Commit Mode and Transaction Completion Transactions

6207 specified environment. This calling mode does not imply the use of two-phase commit26 to |
6208 ensure atomicity across connections; it is merely a convenient alternative to calling |
6209 SQLEndTran() once for each connections in the environment. |

6210 14.1.3 Side-effects of Transaction Completion |

6211 It is implementation-defined which of the following is the case when a transaction is completed |
6212 (committed or rolled back): |

6213 • Cursors are closed and access plans for prepared statements are deleted. |

6214 • Cursors are closed and access plans for prepared statements remain intact. |

6215 • Cursors remain open and access plans for prepared statements remain intact. |

6216 For example, suppose a data source exhibits the first behavior in the list above, and that an |
6217 application does the following: |

6218 1. Sets the commit mode to manual commit. |

6219 2. Creates a result set of sales orders on statement 1. |

6220 3. Creates a result set of the lines in a sales order on statement 2 when the user highlights that |
6221 order. |

6222 4. Calls SQLExecute() to execute a positioned UPDATE statement that has been prepared on |
6223 statement 3 when the user updates a line. |

6224 5. Calls SQLEndTran() to commit the positioned UPDATEstatement. |

6225 Because of the data source’s behavior, the call to SQLEndTran() in step 5 causes it to close the |
6226 cursors on statements 1 and 2 and to delete the access plan on statement 3. The application must |
6227 reexecute statements 1 and 2 to recreate the result sets and reprepare the statement on statement |
6228 3. |

6229 In auto-commit mode, functions other than SQLEndTran() commit transactions: |

6230 • SQLExecute() or SQLExecDirect(). In the previous example, the call to SQLExecute() in step 4 |
6231 commits a transaction. This causes the data source to close the cursors on statements 1 and 2 |
6232 and delete the access plan on statement 3. |

6233 • SQLBulkOperations() or SQLSetPos(). In the previous example, suppose that in step 4 the |
6234 application calls SQLSetPos() with the SQL_UPDATE option on statement 2 instead of |
6235 executing a positioned update statement on statement 3. This commits a transaction and |
6236 causes the data source to close the cursors on statements 1 and 2. |

6237 • SQLCloseCursor(). In the previous example, suppose that, when the user highlights a |
6238 different sales order, the application calls SQLCloseCursor() on statement 2 before creating a |
6239 result of the lines for the new sales order. The call to SQLCloseCursor() commits the SELECT |
6240 statement that created the result set of lines and causes the data source to close the cursor on |
6241 statement 1. |

6242 Applications, especially screen-based applications in which the user scrolls around the result set |
6243 and updates or deletes rows, must be careful to code around this rather surprising behavior. |

6244 __________________ |
6245 26. A two-phase commit is generally used to commit transactions that are spread across multiple data sources. In its first phase, the |||

data sources are polled as to whether they can commit their part of the transaction. If all data sources respond affirmatively to |||
6246 the poll, then the second phase commits the transaction on all data sources. If any data source responds negatively to the poll, |||

then the second phase rolls back the transaction on all data sources. |||

186 Direct Review (Build ID 96KAV) (Draft XDBC.33, August 1996)

Transactions Side-effects of Transaction Completion

6247 To determine how a data source behaves when a transaction is commited or rolled back, an |
6248 application calls SQLGetInfo() with the SQL_CURSOR_COMMIT_BEHAVIOR and |
6249 SQL_CURSOR_ROLLBACK_BEHAVIOR options. |

Data Management: X/Open Database Connectivity (XDBC), Version 2 187

Transaction Isolation Transactions

6250 14.2 Transaction Isolation |

6251 Transaction isolation refers to the degree of interaction between multiple concurrent transactions. |
6252 To see why this is important, we will first look at the idea of serializability. |

6253 14.2.1 Serializability |

6254 Ideally, transactions should be serializable. Transactions are said to be serializable if the results of |
6255 running transactions simultaneously are the same as the results of running them in some serial |
6256 order. It is not important which transaction executes first, only that the result does not reflect |
6257 any mixing of the transactions. |

6258 For example, suppose transaction A doubles a number and transaction B adds 1 to it. Now |
6259 suppose that there are two data values: 0 and 10. If these transactions are run one after another, |
6260 the new values will be 1 and 21 if the transaction A is run first or 2 and 22 if the transaction B is |
6261 run first. But what if the order in which the two transactions are run is different for each value? If |
6262 transaction A is run first on the first value and transaction B is run first on the second value, the |
6263 new values will be 1 and 22. If this order is reversed, the new values are 2 and 21. The |
6264 transactions are serializable if 1, 21 and 2, 22 are the only possible results. The transactions are |
6265 not serializable if 1, 22 or 2, 21 is a possible result. |

6266 So why is serializability desirable? In other words, why is it important that it appears that one |
6267 transaction finishes before the next transaction starts? Consider the following problem. A |
6268 salesman is entering orders at the same time a clerk is sending out bills. Suppose the salesman |
6269 enters an order from Company X but does not commit it; the salesman is still talking to the |
6270 representative from Company X. The clerk requests a list of all open orders and discovers the |
6271 order for Company X and sends them a bill. Now the representative from Company X decides |
6272 they want to change their order, so the salesman changes it before committing the transaction. |
6273 Company X gets an incorrect bill. |

6274 If the salesman’s and clerk’s transactions were serializable, this problem would never have |
6275 occurred. Either the salesman’s transaction would have finished before the clerk’s transaction |
6276 started, in which case the clerk would have sent out the correct bill, or the clerk’s transaction |
6277 would have finished before the salesman’s transaction started, in which case the clerk would not |
6278 have sent a bill to Company X at all. |

6279 14.2.2 Transaction Isolation Levels |

6280 Transaction isolation levels are a measure of the extent to which transaction isolation succeeds. In |
6281 particular, transaction isolation levels are defined by the presence or absence of the following |
6282 phenomena: |

6283 • Dirty reads |

6284 A dirty read occurs when a transaction reads data that has not yet been committed. For |
6285 example, suppose transaction 1 updates a row. Transaction 2 reads the updated row before |
6286 transaction 1 commits the update. If transaction 1 rolls back the change, transaction 2 will |
6287 have read data that is considered never to have existed. |

6288 • Nonrepeatable reads |

6289 A nonrepeatable read occurs when a transaction reads the same row twice but gets different |
6290 data each time. For example, suppose transaction 1 reads a row. Transaction 2 updates or |
6291 deletes that row and commits the update or delete. If transaction 1 rereads the row, it |
6292 retrieves different row values or discovers that the row has been deleted. |

6293 • Phantoms |
6294 A phantom is a row that matches the search criteria but is not initially seen. For example, |
6295 suppose transaction 1 reads a set of rows that satisfy some search criteria. Transaction 2 |

188 Direct Review (Build ID 96KAV) (Draft XDBC.33, August 1996)

Transactions Transaction Isolation Levels

6296 generates a new row (either through an update or insert) that matches the search criteria for |
6297 transaction 1. If transaction 1 reexecutes the statement that reads the rows, it gets a different |
6298 set of rows. |

6299 The ISO SQL standard defines four transaction isolation levels in terms of these phenomena. In |
6300 the following table, an ’X’ marks each phenomenon that can occur: |

6301 Dirty Nonrepeatable |
6302 Transaction isolation level Reads Reads Phantoms ||
6303 Read Uncommitted X X X |
6304 Read Committed -- X X |
6305 Repeatable Read -- -- X |
6306 Serializable -- -- -- |

6307 The following describes simple ways that a data source might implement the transaction |
6308 isolation levels. (Most data sources use more complex schemes than these in order to increase |
6309 concurrency. These examples are provided for illustrative purposes only. In particular, it is |
6310 undefined how a particular data source isolates transactions from each other.) |

6311 Read Uncommitted |
6312 Transactions are not isolated from each other. If the data source supports other transaction |
6313 isolation levels, it ignores whatever mechanism it uses to implement those levels. So that |
6314 they don’t adversely affect other transactions, transactions running at the Read |
6315 Uncommitted level are usually read only. |

6316 Read Committed |
6317 The transaction waits until rows write-locked by other transactions are unlocked; this |
6318 prevents it from reading any ‘‘dirty’’ data. |

6319 The transaction holds a read lock (if it only reads the row) or write lock (if it updates or |
6320 deletes the row) on the current row to prevent other transactions from updating or deleting |
6321 it. The transaction releases read locks when it moves off the current row. It holds write locks |
6322 until it is committed or rolled back. |

6323 Repeatable Read |
6324 The transaction waits until rows write-locked by other transactions are unlocked; this |
6325 prevents it from reading any ‘‘dirty’’ data. |

6326 The transaction holds read locks on all rows it returns to the applicationand write locks on |
6327 all rows it inserts, updates, or deletes. For example, if the transaction includes the SQL |
6328 statement SELECT * FROM Orders, the transaction read-locks rows as the application |
6329 fetches them. If the transaction includes the SQL statement DELETE FROM Orders |
6330 WHERE Status = ’CLOSED’ , the transaction write-locks rows as it deletes them. |

6331 Because other transactions cannot update or delete these rows, the current transaction |
6332 avoids any nonrepeatable reads. The transaction releases its locks when it is committed or |
6333 rolled back. |

6334 Serializable |
6335 The transaction waits until rows write-locked by other transactions are unlocked; this |
6336 prevents it from reading any ‘‘dirty’’ data. The transaction holds a read lock (if it only reads |
6337 rows) or write lock (if it can update or delete rows) on the range of rows it affects. For |
6338 example, if the transaction includes the SQL statement SELECT * FROM Orders, the |
6339 range is the entire Orders table; the transaction read-locks the table and does not allow any |
6340 new rows to be inserted into it. If the transaction includes the SQL statement DELETE |
6341 FROM Orders WHERE Status = ’CLOSED’ , the range is all rows with a Status of |
6342 CLOSED; the transaction write-locks all rows in the Orders table with a Status of CLOSED |

Data Management: X/Open Database Connectivity (XDBC), Version 2 189

Transaction Isolation Levels Transactions

6343 and does not allow any rows to be inserted or updated such that the resulting row has a |
6344 Status of CLOSED. Because other transactions cannot update or delete the rows in the |
6345 range, the current transaction avoids any nonrepeatable reads. |

6346 Because other transactions cannot insert any rows in the range, the current transaction |
6347 avoids any phantoms. The transaction releases its lock when it is committed or rolled back. |

6348 Transaction isolation never prevents a transaction from seeing its own changes. For example, a |
6349 transaction might consist of two UPDATE statements, the first of which raises the pay of all |
6350 employees by ten percent and the second of which sets the pay of any employees over some |
6351 maximum amount to that amount. This succeeds as a single transaction only because the second |
6352 UPDATEstatement can see the results of the first. |

6353 14.2.3 Setting the Transaction Isolation Level |

6354 To set the transaction isolation level, an application uses the SQL_ATTR_TXN_ISOLATION |
6355 connection attribute. If the data source does not support the requested isolation level, it can set a |
6356 higher level. To determine what transaction isolation levels a data source supports and what the |
6357 default isolation level is, an application calls SQLGetInfo() with the |
6358 SQL_TXN_ISOLATION_OPTION and SQL_DEFAULT_TXN_ISOLATIONoptions, respectively. |

6359 Higher levels of transaction isolation offer the most protection for the integrity of database data. |
6360 Serializable transactions are guaranteed to be unaffected by other transactions and therefore |
6361 guaranteed to maintain database integrity. |

6362 However, a higher level of transaction isolation can cause slower performance because it |
6363 increases the chances that the application will have to wait for locks on data to be released. An |
6364 application may specify a lower level of isolation in order to increase performance in the |
6365 following cases: |

6366 • When it can be guaranteed that no other transactions exist that might interfere with an |
6367 application’s transactions. This situation occurs only in limited circumstances, such as when |
6368 one person in a small company maintains files and does not share them. |

6369 • When speed is more critical than accuracy and any errors are likely to be inconsequential. |
6370 For example, suppose that a company makes many small sales and that large sales are rare. A |
6371 transaction that estimates the total value of all open sales might safely use the Read |
6372 Uncommitted isolation level. Although the transaction would include orders in the process of |
6373 being opened or closed that are subsequently rolled back, these would tend to cancel each |
6374 other out and the transaction would be faster because it is not blocked each time it |
6375 encounters such an order. |
6376 See also Section 14.3.2 on page 192. |

6377 14.2.4 Scrollable Cursors and Transaction Isolation |

6378 One of the distinguishing characteristics of a certain type of scrollable cursor — static, keyset- |
6379 driven, or dynamic — is its ability to detect changes made by other operations in the same |
6380 transaction and by other transactions. Because the transaction isolation level also determines |
6381 what changes are visible to the cursor, it seems fair to ask what the relationship is between these |
6382 two. |

6383 The answer is simple. The transaction isolation level dictates what changes in other transactions |
6384 might be visible to the cursor while the cursor type dictates which of those changes are actually |
6385 visible. For example, suppose the transaction containing the cursor is running at the Read |
6386 Committed isolation level: Committed changes made by other transactions are visible to the |
6387 cursor’s transaction. However, the cursor sees these only if it is a keyset-driven or dynamic |
6388 cursor; if it is a static cursor, it can’t see any changes at all. |

190 Direct Review (Build ID 96KAV) (Draft XDBC.33, August 1996)

Transactions Scrollable Cursors and Transaction Isolation

6389 Note that the transaction isolation level does not affect a cursor’s ability to see its own changes |
6390 — those made with positioned UPDATE or DELETE statements or through SQLSetPos() — or |
6391 those made by other operations in the same transaction. Whether the cursor can see its own |
6392 changes depends on the cursor type and how it is implemented. Whether the cursor can see |
6393 changes made by other operations in the same transaction depends on the cursor type. For more |
6394 information, see Section 11.2 on page 147. |

6395 The following table lists the factors governing the visibility of changes. |

6396 Changes made by: Visibility depends on: ||
6397 Cursor Cursor type, cursor implementation |
6398 Other statements in same transaction Cursor type |
6399 Statements in other transactions Cursor type, transaction isolation level |

6400 This is shown in the following diagram: |

|
6401 Cursor’s Transaction Other Transactions ||

6402 Visibility of changes made Visibility of changes made here |
6403 here is governed by is governed by the cursor type |
6404 cursor type. and the transaction isolation |
6405 level. ||
6406 Cursor ||

6407 Visibility of changes |
6408 made here is governed |
6409 by the cursor type |
6410 and the implementation |
6411 of the cursor. |

||

|

6412 Transaction isolation |
6413 works at this boundary. |

|

6414 Depending on the application, certain combinations of cursor type and transaction isolation level |
6415 do not make sense. For example, suppose an online telephone book uses a dynamic cursor to |
6416 read and display telephone numbers and that a separate application is used to maintain the |
6417 database of telephone numbers. To be effective, the cursor used to read telephone numbers |
6418 needs to detect all committed changes to the database. If the transaction containing this cursor is |
6419 run at the Repeatable Read or Serializable isolation level, the cursor will detect few or no |
6420 changes and is essentially a slow, expensive static cursor. Instead, the transaction containing the |
6421 cursor should be run at the Read Committed isolation level. |

6422 The following table summarizes the ability of each cursor type to detect changes made by itself, |
6423 by other operations in its own transaction, and by other transactions. The visibility of the latter |
6424 changes depends on the cursor type and the isolation level of the transaction containing the |
6425 cursor. |

6426 Own Other transactions a |

6427 Self Transaction Read Unc. Read Com. Repeatable Serializable ||

Data Management: X/Open Database Connectivity (XDBC), Version 2 191

Scrollable Cursors and Transaction Isolation Transactions

6428 Static Maybe b No No No No No ||
6429 Keyset- |
6430 driven |
6431 Insert Maybe b No No No No No |
6432 Update Yes yes Yes Yes No No |
6433 Delete Maybe b Yes Yes Yes No No ||
6434 Dynamic |
6435 Insert Yes Yes Yes Yes Yes No |
6436 Update Yes Yes Yes Yes No No |
6437 Delete Yes Yes Yes Yes No No ||

6438 a The legends here indicate the four transaction isolation levels; see Section 14.2.2 on page |
6439 186. |

6440 b It depends on how the cursor is implemented. The application can determine whether |
6441 various types of cursor can detect such changes by calling SQLGetInfo() as described in |
6442 Detecting Cursor Capabilities with SQLGetInfo() on page 402. |

192 Direct Review (Build ID 96KAV) (Draft XDBC.33, August 1996)

Transactions Concurrency Control

6443 14.3 Concurrency Control |

6444 With increased transaction isolation usually comes reduced concurrency, or the ability of two |
6445 transactions to use the same data at the same time. The reason for this is that transaction |
6446 isolation is usually implemented by locking rows and, as more rows are locked, fewer |
6447 transactions can be completed without being blocked at least temporarily by a locked row. While |
6448 reduced concurrency is generally accepted as a trade-off for the higher transaction isolation |
6449 levels necessary to maintain database integrity, it can become a problem in interactive |
6450 applications that use cursors. |

6451 For example, suppose an application executes the SQL statement SELECT * FROM Orders. It |
6452 calls SQLFetchScroll() to scroll around the result set and allows the user to update, delete or |
6453 insert orders. After the user updates, deletes, or inserts an order, the application commits the |
6454 transaction. |

6455 If the isolation level is Repeatable Read, the transaction might — depending on how it is |
6456 implemented — lock each row returned by SQLFetchScroll(). If the isolation level is Serializable, |
6457 the transaction might lock the entire Orders table. In either case, the transaction releases its locks |
6458 only when it is committed or rolled back. Thus, if the user spends a lot of time reading orders |
6459 and very little time updating, deleting, or inserting them, the transaction could easily lock a large |
6460 number of rows, making them unavailable to other users. |

6461 This is a problem even if the cursor is read-only and the application only lets the user read |
6462 existing orders. In this case, the application commits the transaction — and releases locks — |
6463 when it calls SQLCloseCursor() (in manual commit mode) or SQLEndTran() (in auto-commit |
6464 mode). |

6465 14.3.1 Concurrency Types |

6466 To solve the problem of reduced concurrency in cursors, XDBC exposes four different types of |
6467 cursor concurrency: |

6468 • Read only |

6469 The cursor can only read data but cannot update or delete data. This is the default |
6470 concurrency type. Although the data source might lock rows to enforce the Repeatable Read |
6471 and Serializable isolation levels, it can use read locks instead of write locks. This results in |
6472 higher concurrency because other transactions can at least read the data. |

6473 • Locking |

6474 The cursor uses the lowest level of locking necessary to ensure that it can update or delete |
6475 rows in the result set. This usually results in very low concurrency levels, especially at the |
6476 Repeatable Read and Serializable transaction isolation levels. |

6477 • Optimistic concurrency using row versions |
6478 and optimistic concurrency using values |

6479 The cursor uses optimistic concurrency: It updates or deletes rows only if they have not |
6480 changed since they were last read. To detect changes, it compares row versions or values. |
6481 There is no guarantee that the cursor will be able to update or delete a row, but concurrency |
6482 is much higher than when locking is used. For more information, see the following section. |

6483 An application specifies what type of concurrency it wants the cursor to use with the |
6484 SQL_ATTR_CONCURRENCY statement attribute. |

Data Management: X/Open Database Connectivity (XDBC), Version 2 193

Optimistic Concurrency Transactions

6485 14.3.2 Optimistic Concurrency |

6486 Optimistic concurrency derives its name from the optimistic assumption that collisions between |
6487 transactions rarely occur; a collision is said to have occurred when another transaction updates |
6488 or deletes a row of data between the time it is read by the current transaction and it is updated or |
6489 deleted. It is the opposite of pessimistic concurrency, or locking, which uses the assumption that |
6490 such collisions are commonplace. |

6491 In optimistic concurrency, a row is left unlocked until the time comes to update or delete it. At |
6492 that point, the row is reread and checked to see if it has been changed since it was last read. If the |
6493 row has changed, the update or delete fails and must be tried again. |

6494 To determine whether a row has been changed, its new version is checked against a cached |
6495 version of the row. This checking can be based on a row version or the values of each column in |
6496 the row. Some data sources do not support row versions. |

6497 Optimistic concurrency can be implemented by the XDBC implementation or by the application. |
6498 In either case, the application should use a low transaction isolation level such as Read |
6499 Committed; using a higher level negates the increased concurrency gained by using optimistic |
6500 concurrency. |

6501 • If optimistic concurrency is implemented by the XDBC implementation, the application sets |
6502 the SQL_ATTR_CONCURRENCY statement attribute to SQL_CONCUR_ROWVER or |
6503 SQL_CONCUR_VALUES. To update or delete a row, it executes a positioned UPDATE or |
6504 DELETE statement or calls SQLSetPos() just as it would with pessimistic concurrency; the |
6505 implementation returns SQLSTATE 01001 (Cursor operation conflict) if the update or delete |
6506 fails due to a collision. |

6507 • If the application implements optimistic concurrency itself, then it sets the |
6508 SQL_ATTR_CONCURRENCY statement attribute to SQL_CONCUR_READ_ONLY to read a |
6509 row. If it will compare row versions and does not know the row version column, it calls |
6510 SQLSpecialColumns() with the SQL_ROWVER option to determine the name of this column. |

6511 The application updates or deletes the row by increasing the concurrency to |
6512 SQL_CONCUR_LOCK (to gain write access to the row) and executing an UPDATE or |
6513 DELETE statement with a WHERE clause that specifies the version or values the row had |
6514 when the application read it. If the row has been changed since then, the statement will fail. |
6515 If the WHERE clause does not uniquely identify the row, the statement might also update or |
6516 delete other rows; row versions always uniquely identify rows, but row values uniquely |
6517 identify rows only if they include the primary key. ||

194 Direct Review (Build ID 96KAV) (Draft XDBC.33, August 1996)

6518 Chapter 15 |

6519 Diagnostics |

6520 Functions in XDBC return diagnostic information in the following ways: |

6521 • The return code (see Section 15.1 on page 194) indicates the overall success or failure of the |
6522 function |

6523 • Diagnostic records (see Section 15.2 on page 195 provide detailed information about the |
6524 function. The diagnostics area may contain information about multiple diagnostic events |
6525 associated with a function invocation. |

6526 • SQLSTATE(see Section 15.3 on page 196 is a five-character standardized error code. |

6527 Section 15.4 on page 200 provides information on how applications use the above diagnostic |
6528 information. |

6529 Diagnostic information is used at development time to catch programming errors such as invalid |
6530 handles. It is used at run time to catch run time errors and warnings such as data truncation, |
6531 access violations, and errors in the execution of SQL statements. |

Data Management: X/Open Database Connectivity (XDBC), Version 2 195

Return Codes Diagnostics

6532 15.1 Return Codes |

6533 Each function in XDBC returns a code, known as its return code , that indicates the overall success |
6534 or failure of the function. |

6535 XDBC defines the following return codes: |

6536 SQL_SUCCESS |
6537 Function completed successfully. The application can call SQLGetDiagField() to retrieve |
6538 additional information from the header record. |

6539 SQL_SUCCESS_WITH_INFO |
6540 Function completed successfully, possibly with a nonfatal error (warning). The application |
6541 can call SQLGetDiagRec() or SQLGetDiagField() to retrieve additional information. |

6542 SQL_ERROR |
6543 Function failed. The application can call SQLGetDiagRec() or SQLGetDiagField() to retrieve |
6544 additionalinformation. |

6545 SQL_INVALID_HANDLE |
6546 Function failed due to an invalid environment, connection, statement, or descriptor handle. |
6547 This indicates a programming error. No additional information is available from |
6548 SQLGetDiagRec() or SQLGetDiagField(). This code is only returned when the handle is a null |
6549 pointer or is the wrong type, such as when a statement handle is passed for an argument |
6550 that requires a connection handle. |

6551 SQL_NO_DATA |
6552 No more data was available. The application can call SQLGetDiagRec() or SQLGetDiagField() |
6553 to retrieve additional information. One or more implementation-defined status records in |
6554 class 02xxx may be returned. |

6555 SQL_NEED_DATA |
6556 More data is needed, such as when parameter data is sent at execution time or additional |
6557 connection information is required. The application can call SQLGetDiagRec() or |
6558 SQLGetDiagField() to retrieve additional information, if any. |

6559 SQL_STILL_EXECUTING |
6560 A function that was started asynchronously is still executing. The application can call |
6561 SQLGetDiagRec() or SQLGetDiagField() to retrieve additional information, if any. |

6562 The return code SQL_INVALID_HANDLE always indicates a programming error and should |
6563 never be encountered at run time. All other return codes provide run-time information, |
6564 although SQL_ERROR may indicate a programming error. |

196 Direct Review (Build ID 96KAV) (Draft XDBC.33, August 1996)

Diagnostics Diagnostic Records

6565 15.2 Diagnostic Records |

6566 Associated with each environment, connection, statement, and descriptor handle are diagnostic |
6567 records. These records contain diagnostic information about the last function called that used a |
6568 particular handle. The records are replaced only when another function is called using that |
6569 handle. |

6570 There are two types of diagnostic records: a header record and zero or more status records . The |
6571 header record is record 0; the status records are records 1 and above. Diagnostic records are |
6572 composed of a number of separate fields. These fields are different for the header record and the |
6573 status records. In addition, XDBC components can define their own diagnostic record fields. |

6574 The stored format of the diagnostic data structure is undefined. |

6575 Fields in diagnostic records are retrieved with SQLGetDiagField(). The SQLSTATE, native error |
6576 number, and diagnostic message fields of status records can be retrieved in a single call with |
6577 SQLGetDiagRec(). |

6578 Header Record |

6579 The fields in the header record contain general information about a function’s execution, |
6580 including the return code, row count, number of status records, and type of statement executed. |
6581 The header record is always created unless the function returns SQL_INVALID_HANDLE. For a |
6582 complete list of fields in the header record, see SQLGetDiagField(). |

6583 Status Records |

6584 The fields in the status records contain information about specific errors or warnings, including |
6585 the SQLSTATE, native error number, diagnostic message, column number, and row number. |
6586 Status records can be created only if the function returns SQL_ERROR, |
6587 SQL_SUCCESS_WITH_INFO, or SQL_NEED_DATA. For a complete list of fields in the status |
6588 records, see SQLGetDiagField(). |

Data Management: X/Open Database Connectivity (XDBC), Version 2 197

SQLSTATE Diagnostics

6589 15.3 SQLSTATE |

6590 The SQLSTATE code is a five-character, standardized diagnostic code. that provides detailed |
6591 information about the cause of a warning or error. |

6592 The first two characters are the class and the final three characters are the subclass. In many |
6593 cases, applications need only consider the class code and do not need the specific information |
6594 provided by the subclass. (See Appendix A for a list of XSQL SQLSTATE values with cross- |
6595 references. For conditions under which a specific XDBC function may return a SQLSTATEvalue, |
6596 see the DIAGNOSTICS section of the reference manual pages.) |

6597 The format, values, and usage of SQLSTATE are the same as defined in the ISO SQL standard |
6598 and the X/Open SQL specification, in diagnostic conditions that also occur in SQL. |

6599 The X/Open SQL specification (SQLSTATEStatus Variable) reserves all class and subclass codes |
6600 starting with 0-4 or A-H for definition by an international standard. |

6601 The X/Open SQL specification (SQLSTATE Values) is the authoritative reference for a |
6602 description of each SQLSTATE code. Using XDBC to execute SQL text whose syntax or usage |
6603 violates the X/Open SQL specification produces the error code specified by the X/Open SQL |
6604 specification. |

6605 XDBC defines addition SQLSTATEvalues in two classes: |

6606 HY XDBC-specific codes.27 Their definition in XDBC is consistent with that in the ISO CLI |
6607 International Standard. Implementation-defined errors pertaining to the application’s |
6608 use of XDBC specify class HY and subclasses 500 to 9ZZ inclusive and I00 to ZZZ |
6609 inclusive. (X/Open reserves subclass codes S00 to SZZ inclusive.) |

6610 IM XDBC-specific codes reporting errors specific to a data source. |

6611 Sequence of Status Records |

6612 Status records are first sorted by the SQL_DIAG_ROW_NUMBER diagnostic field, then sorted |
6613 according to the ranking of the SQLSTATEcode, as described below. |

6614 Sorting by Row Number |

6615 In diagnostics that pertain to a multi-row fetch, the sequence of the records is determined first by |
6616 row number. The following rules determine the sequence of errors by row: |

6617 • Records for which the row number is unknown appear in front of all other records, because |
6618 SQL_ROW_NUMBER_UNKNOWN is defined to be −1. |

6619 • Records that do not correspond to any row appear in front of records that correspond to a |
6620 particular row, because SQL_NO_ROW_NUMBER is defined to be 0. |

6621 • For all records that pertain to specific rows, records are sorted by the value in the |
6622 SQL_DIAG_ROW_NUMBER field. Diagnostics pertaining to the first row affected are listed, |
6623 then diagnostics pertaining to the next row affected, and so on. |

6624 Ranking by Severity |

6625 Within a row, or for all those records that do not correspond to a row or for which the row |
6626 number is unknown, or for diagnostics that do not apply to a multi-row fetch, the first record in |
6627 the diagnostics area is the record with the highest rank according to the following rules: |

6628 __________________ |
6629 27. Standards organizations have begun using the classes at the end of their reserved range for standards adopted since the adoption |||

of the ISO SQL standard. The class HZ was assigned to remote database access errors. |||

198 Direct Review (Build ID 96KAV) (Draft XDBC.33, August 1996)

Diagnostics SQLSTATE

6630 • Errors |

6631 Status records that describe errors have the highest rank. Among error records, the following |
6632 rules are followed to sort errors: |

6633 — Records that indicate or suggest a transaction failure outrank all other records. |

6634 — If two or more records describe the same error condition, then SQLSTATEs defined in the |
6635 ISO CLI International Standard (classes 03 through HZ) outrank XDBC- and |
6636 implementation-defined SQLSTATEs. |

6637 • Implementation-defined No Data values |

6638 Status records that describe implementation-defined No Data values (class 02) have the |
6639 second highest rank. |

6640 • Warnings |

6641 Status records that describe warnings (class 01) have the lowest rank. If two or more records |
6642 describe the same warning condition, then warning SQLSTATEs defined in the ISO CLI |
6643 International Standard outrank XDBC- and implementation-defined SQLSTATEs. |

6644 If there are two or more records with the highest rank, it is undefined which record is the first |
6645 record. The order of all other records is undefined. In particular, warnings may appear before |
6646 errors. Applications should check all status records when a function returns a value other than |
6647 SQL_SUCCESS. |

6648 The software component that generated a record is not relevant to its rank. If the XDBC |
6649 implementation collects diagnostic information from several sources, it assembles the |
6650 information so as to comply with the above rules. |

6651 Implementation Variability |

6652 Unlike return codes, the SQLSTATEs in this manual are guidelines; implementations are not |
6653 required to return them. Thus, while implementations should return the proper SQLSTATE for |
6654 any error or warning they are capable of detecting, applications should not count on this always |
6655 occurring. The reasons for this situation are two-fold: |

6656 • Incompleteness. Although this manual lists a large number of diagnostics and their possible |
6657 causes, it is not complete and probably never will be; implementations simply vary too much |
6658 for this to ever occur. Thus, any given implementation probably won’t return all of the |
6659 SQLSTATEslisted in this manual and might return SQLSTATEsnot listed in this manual. |

6660 • Complexity. Some database engines — particularly relational database engines — return |
6661 thousands of diagnostics. The implementations for such engines are unlikely to map all of |
6662 these diagnostics to SQLSTATEs because of the effort involved, the inexactness of the |
6663 mappings, the large size of the resulting code, and the low value of the resulting code, which |
6664 often returns programming errors that should never be encountered at run time. Thus, |
6665 implementations should map as many diagnostics as seems reasonable and be sure to map |
6666 those diagnostics on which application logic might be based, such as SQLSTATE01004 (Data |
6667 truncated). |

6668 Most applications react to an error by simply displaying the SQLSTATE,diagnostic message text, |
6669 and the native error code. This is often sufficient; for example, when the application submits |
6670 SQL statements typed by the user, a typical error based on SQL statement failure cannot be |
6671 corrected by the application. Instead, the user must edit or re-type the SQL statement, assisted |
6672 by the knowledge of which error occurred. |

6673 Any application that bases its logic on SQLSTATEsshould be prepared for the SQLSTATEnot to |
6674 be returned or for a different SQLSTATEto be returned. Exactly which SQLSTATEsare returned |

Data Management: X/Open Database Connectivity (XDBC), Version 2 199

SQLSTATE Diagnostics

6675 reliably can be based only on experience with numerous implementations. However, a general |
6676 guideline is that SQLSTATEs for errors that occur in the XDBC implementation, as opposed to |
6677 the data source, are more likely to be returned reliably. For example, most implementations |
6678 probably return SQLSTATE HYC00 (Optional feature not implemented) while fewer |
6679 implementations probably return SQLSTATE42S21 (Column already exists). |

6680 The following SQLSTATEs indicate run time errors or warnings and are good candidates on |
6681 which to base programming logic. However, there is no guarantee that all implementations |
6682 return them. |

6683 • 01004 (Data truncated) |
6684 • 01S02 (Attribute value changed) |
6685 • HY008 (Operation canceled) |
6686 • HY010 (Function sequence error) |
6687 • HYC00 (Optional feature not implemented) |
6688 • HYT00 (Timeout expired) |

6689 It is particularly desirable for an application to detect SQLSTATE HYC00 (Optional feature not |
6690 implemented), because it is the only way the application can determine whether a data source |
6691 supports a particular statement or connection attribute. |

6692 Diagnostic Messages |

6693 A diagnostic message is returned with each SQLSTATE. |

6694 The SQLSTATEsin this specification are accompanied by a sample diagnostic message. This text |
6695 is not normative. Implementations are not required to return these messages. Implementations |
6696 typically pass through to the application whatever message the data source provides. |

6697 Moreover, it is not mandatory that diagnostic messages be consistent within a given SQLSTATE |
6698 value. For example, in the case of SQLSTATE 42000 (Syntax error or access violation), |
6699 implementations are not required to return the diagnostic message in parentheses, and are more |
6700 likely to return a variety of messages that are more specific. |

6701 Applications may display diagnostic messages to the user, along with the SQLSTATEand native |
6702 error code. This helps the user and support personnel determine the cause of any problems. The |
6703 component information embedded in the message is particularly helpful in doing this. |
6704 Application logic should never be based on the specific text of a diagnostic message. |

6705 Diagnostic messages come from data sources and other software components in an XDBC |
6706 connection. Typically, data sources do not directly support XDBC. Consequently, if a |
6707 component in an XDBC connection receives a message from a data source, it must identify the |
6708 data source as the source of the message. It must also identify itself as the component that |
6709 received the message. |

6710 If the source of a diagnostic is a component itself, the diagnostic message must explain this. |
6711 Therefore, the text of messages has two different formats. Brackets ([]) in the following formats |
6712 do not indicate optionality but must appear in the message. |

6713 Messages for diagnostics that do not occur in a data source use this format: |

6714 [vendor-identifier][XDBC-component-identifier] |
6715 component-supplied-text |

6716 Messages for diagnostics that occur in a data source use this format: |

6717 [vendor-identifier][XDBC-component-identifier] |
6718 [data-source-identifier] data-source-supplied-text |

200 Direct Review (Build ID 96KAV) (Draft XDBC.33, August 1996)

Diagnostics SQLSTATE

6719 The components in these messages are defined as follows: |

6720 vendor-identifier |
6721 Identifies the vendor of the component in which the error or warning occurred or that |
6722 received the error or warning directly from the data source. |

6723 XDBC-component-identifier |
6724 Identifies the component in which the error or warning occurred or that received the error |
6725 or warning directly from the data source. |

6726 data-source-identifier |
6727 Identifies the data source. For file-based data sources, this is typically a file format, such as |
6728 Xbase.28 For other data sources, this is the data source product. |

6729 component-supplied-text |
6730 Generated by the XDBC component. |

6731 data-source-supplied-text |
6732 Generated by the data source. |

6733 __________________ |
6734 28. In this case, the driver is acting as both the driver and the data source. |||

Data Management: X/Open Database Connectivity (XDBC), Version 2 201

Application Usage Diagnostics

6735 15.4 Application Usage |

6736 Program logic is generally based on return codes. |

6737 For example, the following code calls SQLFetch() to retrieve the rows in a result set. It checks the |
6738 return code of the function to determine if the end of the result set was reached |
6739 (SQL_NO_DATA), if any warning information was returned (SQL_SUCCESS_WITH_INFO), or |
6740 if an error occurred (SQL_ERROR). |

6741 SQLRETURN rc; |
6742 while ((rc=SQLFetch(hstmt) != SQL_NO_DATA) { |
6743 if (rc == SQL_SUCCESS_WITH_INFO) { |
6744 // Call function to display warning information. |
6745 } else if (rc == SQL_ERROR) { |
6746 // Call function to display error information. |
6747 break; |
6748 } |
6749 // Process row. |
6750 } |

6751 Applications call SQLGetDiagRec() or SQLGetDiagField() to retrieve diagnostic information. |
6752 These functions accept an environment, connection, statement, or descriptor handle and return |
6753 diagnostics from the function that last used that handle. The diagnostics logged on a particular |
6754 handle are discarded when a new function is called using that handle. If the function returned |
6755 multiple diagnostic records, the application calls these functions multiple times; the total |
6756 number of status records is retrieved by calling SQLGetDiagField() for the header record (record |
6757 0) with the SQL_DIAG_NUMBER option. |

6758 Applications retrieve individual diagnostic fields by calling SQLGetDiagField() and specifying |
6759 the field to retrieve. Certain diagnostic fields do not have any meaning for certain types of |
6760 handle; see SQLGetDiagField() for more information. For a list of diagnostic fields and their |
6761 meaning, see SQLGetDiagField(). |

6762 Applications can retrieve the SQLSTATE, native error code, and diagnostic message in a single |
6763 call by calling SQLGetDiagRec(). This function does not retrieve information from the header |
6764 record. |

6765 For example, the following code prompts the user for an SQL statement and executes it. If any |
6766 diagnostic information was returned, it calls SQLGetDiagField() to get the number of status |
6767 records and SQLGetDiagRec() to get the SQLSTATE, native error code, and diagnostic message |
6768 from those records. |

6769 SQLCHAR SqlState[6], Msg[SQL_MAX_MESSAGE_LENGTH - 1]; |
6770 SQLINTEGER i, NativeError, MsgLen; |
6771 SQLRETURN rc1, rc2; |

6772 // Prompt the user for an SQL statement. |
6773 GetSQLStmt(SQLStmt); |

6774 // Execute the SQL statement and return any errors or warnings. |
6775 rc1 = SQLExecDirect(hstmt, SQLStmt, SQL_NTS); |
6776 if ((rc1 == SQL_SUCCESS_WITH_INFO) || (rc1 == SQL_ERROR)) { |

6777 // Get the status records. |
6778 i = 1; |
6779 while ((rc2 = SQLGetDiagRec(SQL_HANDLE_STMT, hstmt, i, SqlState, |
6780 &NativeError, Msg, sizeof(Msg), |
6781 &MsgLen)) != SQL_NO_DATA) { |
6782 DisplayError(SqlState,NativeError,Msg,MsgLen); |

202 Direct Review (Build ID 96KAV) (Draft XDBC.33, August 1996)

Diagnostics Application Usage

6783 i++; |
6784 } |
6785 } |
6786 if ((rc1 == SQL_SUCCESS) || (rc1 == SQL_SUCCESS_WITH_INFO)) { |
6787 // Process statement results, if any. |
6788 } |

6789 15.4.1 Per-row Diagnostics |

6790 A multi-row fetch (see Section 11.1 on page 140) uses two arrays to disclose to applications the |
6791 diagnostic status of individual rows. The implementation row descriptor header has two |
6792 deferred fields, SQL_DESC_ARRAY_STATUS_PTRand SQL_DESC_DIAG_INDEX_PTR, that the |
6793 application can bind to arrays it has allocated. |

6794 A multi-row fetch describes the outcome of fetching each row of the row-set by setting the |
6795 corresponding element of the arrays pointed to by SQL_DESC_ARRAY_STATUS_PTR and of |
6796 SQL_DESC_DIAG_INDEX_PTR. The element of SQL_DESC_ARRAY_STATUS_PTR contains |
6797 one of the following: |

6798 SQL_ROW_SUCCESS |
6799 If the row was fetched and populated without errors or warnings. |

6800 SQL_ROW_SUCCESS_WITH_INFO |
6801 If the row was fetched and populated but there is a warning associated with the row. |

6802 SQL_ROW_ERROR |
6803 If there was an error fetching or populating the row. The contents of the corresponding row |
6804 buffers is undefined. |

6805 SQL_ROW_NOROW |
6806 If the row could not be fetched because it was before the start or after the end of a partial |
6807 row-set. |

6808 The element of SQL_DESC_DIAG_INDEX_PTR contains the following: |

6809 • For any element of SQL_DESC_ARRAY_STATUS_PTRthat contains SQL_ROW_SUCCESS or |
6810 SQL_ROW_NOROW, the corresponding element of SQL_DESC_DIAG_INDEX_PTR |
6811 contains 0 to indicate that there is no per-row diagnostic information for this row. |

6812 • For any element of SQL_DESC_ARRAY_STATUS_PTR that contains |
6813 SQL_ROW_SUCCESS_WITH_INFO or SQL_ROW_ERROR, the corresponding element of |
6814 SQL_DESC_DIAG_INDEX_PTR contains the record number of the first diagnostic record |
6815 that pertains to that row. Successive diagnostic records may also pertain to that row. |

6816 Every diagnostic record contains a field SQL_DIAG_ROW_NUMBER. For diagnostics produced |
6817 during a multi-row fetch, this field specifies the row number to which the diagnostic pertains. |
6818 The first row of the multi-row fetch is row number 1. The SQL_DIAG_ROW_NUMBER field is a |
6819 cross-reference back to the two arrays defined above. It also lets the application obtain complete |
6820 per-row diagnostic information using the following algorithm. |

Data Management: X/Open Database Connectivity (XDBC), Version 2 203

Per-row Diagnostics Diagnostics

6821 Example Application Algorithm |

6822 The application can obtain complete diagnostic information on a multi-row fetch using the |
6823 following procedure, which depends on the return code of the fetch function: |

6824 [SQL_SUCCESS] |
6825 Inspect the value pointed to by the SQL_DESC_ROWS_PROCESSED_PTR field in the |
6826 implementation row descriptor header to determine how many rows were fetched. |

6827 [SQL_SUCCESS_WITH_INFO] |
6828 Inspect each element in the array pointed to by the SQL_DESC_ARRAY_STATUS_PTRfield |
6829 in the header of the implementation row descriptor. For any element that contains |
6830 SQL_ROW_SUCCESS_WITH_INFO or SQL_ROW_ERROR: |

6831 • Get the value of the corresponding element of the array pointed to by |
6832 SQL_DESC_DIAG_INDEX_PTR. Let this value be i. |

6833 • Call GetDiagField() with RecNumber = i to obtain information from the first status record |
6834 that pertains to this row position. |

6835 • Continue to call GetDiagField() for incremented values of i until either the |
6836 SQL_DIAG_ROW_NUMBER diagnostic field indicates that the status record pertains to |
6837 a different row, or GetDiagField() returns [SQL_NO_DATA], indicating that there are no |
6838 more status records. |

6839 Truncation can also be detected by examining the column’s length or indicator information. |

6840 [SQL_ERROR] |
6841 Call GetDiagField() for more information on an error that pertains to the entire fetch. ||

204 Direct Review (Build ID 96KAV) (Draft XDBC.33, August 1996)

6842 Chapter 20 |

6843 Interface Overview |

6844 This chapter lists the XDBC functions and gives a section reference for specific overview |
6845 information. For detailed information, see the appropriate reference manual page, which |
6846 appears in alphabetical order in Chapter 21. |
6847 Table 20-1. XDBC Functions |

|
6848 XDBC Function Description Overview Section ||
6849 Allocate and Deallocate ||
6850 Allocate memory for environment, ||
6851 connection, statement, or descriptor handles. ||

Section 4.1 on page 34 ||SQLAllocHandle () |

6852 Free resources associated with a specific ||
6853 handle. ||

Section 4.1 on page 34 ||SQLFreeHandle() |

6854 Stop processing associated with a specific ||
6855 statement, close any open cursors associated ||
6856 with the statement, or discard pending ||
6857 results. ||

Section 9.6 on page 124 ||SQLFreeStmt() |

|

|
6858 Get and Set Attributes ||
6859 Return the current setting of a connection ||
6860 attribute. ||

Section 4.5 on page 49 ||SQLGetConnectAttr() |

6861 Return the current setting of an environment ||
6862 attribute. ||

Section 4.5 on page 49 ||SQLGetEnvAttr () |

6863 Return the current setting of a statement ||
6864 attribute. ||

Section 9.2 on page 93 ||SQLGetStmtAttr () |

6865 Set attributes that govern aspects of ||
6866 connections. ||

Section 4.5 on page 49 ||SQLSetConnectAttr () |

6867 Set attributes that govern aspects of ||
6868 environments. ||

Section 4.5 on page 49 ||SQLSetEnvAttr () |

6869 Section 9.2 on page 93 ||SQLSetStmtAttr () Set attributes related to a statement. |

|

|
6870 Connection ||
6871 Iterative method of discovering and ||
6872 enumerating the attributes and attribute ||
6873 values required to connect to a data source. ||

Section 6.4.5 on page 62 ||SQLBrowseConnect() |

6874 Establish connections to a data source. ||Section 6.4.2 on page 61 ||SQLConnect() |

6875 Connect to a data source using ||
6876 implementation-defined interaction with the ||
6877 user. ||

Section 6.4.4 on page 62 ||SQLDriverConnect() |

6878 List driver descriptions and driver attribute ||
6879 keywords. ||

Section I.2 on page 617 ||SQLDrivers() OP |

6880 Close the connection associated with a ||
6881 specific connection handle. ||

Section 6.5 on page 64 ||SQLDisconnect() |

|

|

||

|

Data Management: X/Open Database Connectivity (XDBC), Version 2 205

Interface Overview

|
6882 XDBC Function Description Overview Section ||
6883 Descriptor Access ||
6884 Return descriptor information for a column ||
6885 in a result set. ||

Section 13.3.1 on page ||
176 ||

SQLColAttributes () |

6886 Copy descriptor information from one ||
6887 descriptor handle to another. ||

Section 13.3.0 on page ||
176 ||

SQLCopyDesc() |

6888 Return the current settings of a single field of ||
6889 a descriptor record. ||

Chapter 13 ||SQLGetDescField() |

6890 Return the current settings of multiple fields ||
6891 of a descriptor record. ||

Section 13.3.1 on page ||
176 ||

SQLGetDescRec() |

6892 Set the value of a single field of a descriptor ||
6893 record. ||

Chapter 13 ||SQLSetDescField() |

6894 Section 13.3.1 on page ||
6895 176 ||

SQLSetDescRec() Set multiple descriptor fields. |

|

|
6896 Executing SQL Statements ||
6897 SQLBindParam() DE |
6898 Bind a buffer to a parameter marker in an ||
6899 SQL statement. ||

Section 9.4.1 on page 102 ||SQLBindParameter() |

6900 Execute a preparable statement, using the ||
6901 current values of the parameter marker ||
6902 variables if any parameters exist in the ||
6903 statement. ||

Section 9.3 on page 94 ||SQLExecDirect() |

6904 Execute a prepared statement, using the ||
6905 current values of the parameter marker ||
6906 variables if any parameter markers exist in ||
6907 the statement. ||

Section 9.3 on page 94 ||SQLExecute() |

6908 Return the cursor name associated with a ||
6909 specified statement. ||

Section 12.1 on page 158 ||SQLGetCursorName() |

6910 Supply parameter data at statement ||
6911 execution time. ||

Section 9.4.3 on page 105 ||SQLParamData() |

6912 Prepare an SQL statement for execution. ||Section 9.3.2 on page 96 ||SQLPrepare() |

6913 Supply data for a parameter or column at ||
6914 statement execution time. ||

Section 9.4.3 on page 105 ||SQLPutData () |

6915 Section 12.1 on page 158 ||SQLSetCursorName() Set the name of a cursor. |

|

|
6916 Call-level Database Access ||
6917 Perform bulk insertions and bulk bookmark ||
6918 operations, including update, delete, and ||
6919 fetch by bookmark. T}‘T{ Section 12.4 on ||
6920 page 165 ||

SQLBulkOperations () |

6921 Set the cursor position in a row-set and ||
6922 refresh, update, or delete data in the result ||
6923 set. ||

SQLSetPos() |

|

|
6924 Function Cancellation ||
6925 Cancel the processing of a statement. ||SQLCancel() |

|

|

||

|

206 Direct Review (Build ID 96KAV) (Draft XDBC.33, August 1996)

Interface Overview

|
6926 XDBC Function Description Overview Section ||
6927 Receiving Results ||
6928 Bind application data buffers to columns in ||
6929 the result set. ||

Section 10.3.2 on page ||
130 ||

SQLBindCol () |

6930 Close a cursor that has been opened on a ||
6931 statement, discarding pending results. ||

Section 10.5 on page 137 ||SQLCloseCursor() |

6932 Return the result descriptor for one column ||
6933 in the result set. ||

Section 13.3.1 on page ||
176 ||

SQLDescribeCol() |

6934 Return the description of a parameter marker ||
6935 associated with a prepared SQL statement. ||

Section 13.3.1 on page ||
176 ||

SQLDescribeParam() |

6936 Fetch the next row-set of data from the result ||
6937 set and return data for all bound columns. ||

Section 10.4.2 on page ||
133 ||

SQLFetch() |

6938 Fetch the specified row-set of data from the ||
6939 result set and return data for all bound ||
6940 columns. ||

Chapter 11 ||SQLFetchScroll() |

6941 Retrieve data for a single column in the result ||
6942 set. ||

SQLGetData () |

6943 Determine whether there are more results ||
6944 available on a statement containing SELECT, ||
6945 UPDATE, INSERT, or DELETE statements ||
6946 and, if so, initialize processing for those ||
6947 results. ||

Section 11.3 on page 156 ||SQLMoreResults() |

6948 Return the number of parameters in an SQL ||
6949 statement. ||

Section 13.3.1 on page ||
176 ||

SQLNumParams() |

6950 Return the number of columns in a result set. ||Section 13.3.1 on page ||
6951 176 ||

SQLNumResultCols() |

6952 Return the number of rows affected by ||
6953 certain database operations. ||

Section 13.3.1 on page ||
176 ||

SQLRowCount () |

|

|
6954 Catalog Functions ||
6955 Return a list of columns and associated ||
6956 privileges for the specified table as a result ||
6957 set. ||

Chapter 7 ||SQLColumnPrivileges() |

6958 Return the list of column names in specified ||
6959 tables as a result set. ||

Chapter 7 ||SQLColumns() |

6960 Return a list of foreign keys for a specified ||
6961 table. ||

Chapter 7 ||SQLForeignKeys() |

6962 Return as a result set the column names of ||
6963 the primary key of a table. ||

Chapter 7 ||SQLPrimaryKeys() |

6964 Return as a result set the list of input and ||
6965 output parameters, and the columns of the ||
6966 result set, for the specified procedures. ||

Chapter 7 ||SQLProcedureColumns() |

6967 Return the list of procedure names stored in ||
6968 a specified data source. ||

Chapter 7 ||SQLProcedureColumns() |

|

|

||

|

Data Management: X/Open Database Connectivity (XDBC), Version 2 207

Interface Overview

|
6969 XDBC Function Description Overview Section ||
6970 Catalog Functions (continued) ||
6971 Retrieve information about row-identifying ||
6972 columns of a table. ||

Chapter 7 ||SQLSpecialColumns () |

6973 Retrieve as a result set a list of statistics ||
6974 about a single table and the indexes ||
6975 associated with it. ||

Chapter 7 ||SQLStatistics () |

6976 Return as a result set a list of tables and the ||
6977 privileges associated with each table. ||

Chapter 7 ||SQLTablePrivileges() |

6978 Return as a result set the list of table, catalog, ||
6979 or schema names, and table types, stored in a ||
6980 specified data source. ||

Chapter 7 ||SQLTables() |

|

|
6981 Introspection ||
6982 Return information about a data source. ||SQLDataSources() |

6983 Indicate the level of support for a specified ||
6984 XDBC function. ||

SQLGetFunctions() |

6985 Return general information about the data ||
6986 source and the connection to it. ||

SQLGetInfo () |

6987 Return information about data types ||
6988 supported by the data source. ||

Section 4.4.2 on page 46 ||SQLGetTypeInfo() |

6989 Return the text of a specified SQL statement ||
6990 as modified by the implementation, without ||
6991 executing the statement. ||

Section 8.2 on page 80 ||SQLNativeSql () |

|

|
6992 Transaction Control ||
6993 Request commit or rollback of all active ||
6994 operations on all statements associated with ||
6995 a connection, or for all connections ||
6996 associated with an environment. ||

Chapter 14 ||SQLEndTran() |
|

|
6997 Diagnostic Information ||
6998 Return the current value of a field of a ||
6999 diagnostic data structure that contains error, ||
7000 warning, and status information. ||

Chapter 15 ||SQLGetDiagField () |

7001 Return the current values of multiple fields ||
7002 of a diagnostic record. ||

Chapter 15 ||SQLGetDiagRec() |

|

|

||

||

208 Direct Review (Build ID 96KAV) (Draft XDBC.33, August 1996)

7003 Chapter 21 |

7004 Reference Manual Pages |

7005 The following pages describe each XDBC function in alphabetic order. Each function is defined |
7006 as a C programming language function. Descriptions include the following: |

7007 • Source of the function |

7008 This text appears at the center of each page. The label is one or more of the following: |

7009 ISO 92 |
7010 The function appears here based on its definition in the ISO CLI International Standard. |

7011 X/Open CLI |
7012 The function appears here based on its definition in the March 1995 issue of the X/Open |
7013 Call Level Interface (CLI) specification. |

7014 XDBC |
7015 The function is published here for the first time in any X/Open specification and is not in |
7016 the ISO CLI International Standard. |

7017 • NAME |

7018 The function name and a brief summary of its effects. |

7019 • SYNOPSIS |

7020 A sample C-language declaration of the function. The parameter names used in this |
7021 declaration are also used throughout the entry to refer to the respective parameters. |

7022 • ARGUMENTS |

7023 The argument to be supplied for each function parameter. |

7024 • RETURN VALUES |

7025 The values the XDBC function can return. The valid return values are listed and described in |
7026 Section 15.1 on page 194. |

7027 • DIAGNOSTICS |

7028 The entire list of possible XDBC-defined errors and warnings that the function can report, |
7029 sorted by SQLSTATE values. For a cross-reference of all SQLSTATE values, listing the |
7030 functions that return each, see Appendix A. |

7031 For information on handling diagnostic information, see SQLGetDiagField(). The text |
7032 associated with SQLSTATEvalues is included to provide a description of the condition, but is |
7033 not intended to prescribe specific text. |

7034 • COMMENTS |

7035 A description of the function, including comments about usage and implementation. |

7036 • SEE ALSO |

7037 References to related functions. ||

Data Management: X/Open Database Connectivity (XDBC), Version 2 209

SQLAllocHandle() ISO 92 Reference Manual Pages

7038 NAME |
7039 SQLAllocHandle — Allocate memory for environment, connection, statement, or descriptor |
7040 handles. |

7041 SYNOPSIS |
7042 SQLRETURN SQLAllocHandle(|
7043 SQLSMALLINT HandleType , |
7044 SQLHANDLEInputHandle , |
7045 SQLHANDLE * OutputHandlePtr); |

7046 ARGUMENTS |

7047 HandleType [Input] |
7048 The type of handle to be allocated by SQLAllocHandle(). Must be one of the following |
7049 values: |

7050 SQL_HANDLE_ENV ||
7051 SQL_HANDLE_DBC ||
7052 SQL_HANDLE_STMT ||
7053 SQL_HANDLE_DESC ||

7054 InputHandle [Input] |
7055 The handle that describes the data structure in whose context the new data structure is to be |
7056 allocated. If HandleType is SQL_HANDLE_ENV, this is SQL_NULL_HANDLE. If |
7057 HandleType is SQL_HANDLE_DBC, this must be an environment handle, and if it is |
7058 SQL_HANDLE_STMT or SQL_HANDLE_DESC, it must be a connection handle. |

7059 OutputHandlePtr [Output] |
7060 Pointer to a buffer in which to return the handle to the newly allocated data structure. |

7061 RETURN VALUE |
7062 SQL_SUCCESS, SQL_SUCCESS_WITH_INFO, SQL_INVALID_HANDLE,or SQL_ERROR. |

7063 When allocating a handle other than an environment handle, if SQLAllocHandle() returns |
7064 SQL_ERROR, it sets OutputHandlePtr to SQL_NULL_HDBC, SQL_NULL_HSTMT, or |
7065 SQL_NULL_HDESC, depending on the value of HandleType, unless the output argument is a |
7066 null pointer. The application can then obtain additional information from the diagnostic data |
7067 structure associated with the handle in InputHandle . Environment Handle Allocation Errors If |
7068 the implementation cannot allocate memory for *OutputHandlePtr when SQLAllocHandle() with |
7069 a HandleType of SQL_HANDLE_ENV is called, or the application provides a null pointer for |
7070 OutputHandlePtr, SQLAllocHandle() returns SQL_ERROR. The implementation sets |
7071 *OutputHandlePtr to SQL_NULL_HENV (unless the application provided a null pointer). There |
7072 is no handle with which to associate additional diagnostic information. |

7073 DIAGNOSTICS |
7074 When SQLAllocHandle() returns SQL_ERROR or SQL_SUCCESS_WITH_INFO, an associated |
7075 SQLSTATE value can be obtained by calling SQLGetDiagRec() with the appropriate HandleType |
7076 and Handle set to the value of InputHandle . SQL_SUCCESS_WITH_INFO (but not SQL_ERROR) |
7077 can be returned for OutputHandle. The following SQLSTATE values are commonly returned by |
7078 SQLAllocHandle(). The return code associated with each SQLSTATE value is SQL_ERROR, |
7079 except that for SQLSTATEvalues in class 01, the return code is SQL_SUCCESS_WITH_INFO. |

7080 01000 — General warning |
7081 Implementation-defined informational message. |

7082 08003 — Connection does not exist |
7083 HandleType was SQL_HANDLE_STMT or SQL_HANDLE_DESC, but the connection |
7084 specified by InputHandle was not open. The connection process must be completed |
7085 successfully (and the connection must be open) to allocate a statement or descriptor handle. |

210 Direct Review (Build ID 96KAV) (Draft XDBC.33, August 1996)

Reference Manual Pages ISO 92 SQLAllocHandle()

7086 HY000 — General error |
7087 An error occurred for which there was no specific SQLSTATE and for which no |
7088 implementation-specific SQLSTATE was defined. The error message returned by |
7089 SQLGetDiagRec() in the *MessageTextbuffer describes the error and its cause. |

7090 HY001 — Memory allocation error |
7091 The implementation failed to allocate memory for the specified handle. |

7092 HY009 — Invalid use of null pointer |
7093 OutputHandlePtr was a null pointer. |

7094 HY013 — Memory management error |
7095 The HandleType argument was SQL_HANDLE_DBC, SQL_HANDLE_STMT, or |
7096 SQL_HANDLE_DESC; and the function call could not be processed because the underlying |
7097 memory objects could not be accessed, possibly because of low memory conditions. |

7098 HY014 — Limit on the number of handles exceeded |
7099 The implementation-defined limit for the number of handles that can be allocated for the |
7100 type of handle indicated by HandleTypehas been reached. |

7101 HY092 — Invalid attribute identifier |
7102 HandleType was not: SQL_HANDLE_ENV, SQL_HANDLE_DBC, SQL_HANDLE_STMT, or |
7103 SQL_HANDLE_DESC. |

7104 HYT01 — Connection timeout expired |
7105 The connection timeout period expired before the data source responded to the request. The |
7106 connection timeout period is set through SQLSetConnectAttr(), |
7107 SQL_ATTR_CONNECTION_TIMEOUT. |

7108 IM001 — Function not supported |
7109 The function is not supported on the current connection to the data source. |

7110 COMMENTS |

7111 SQLAllocHandle() allocates handles for environments, connections, statements, and descriptors. |

7112 It is implementation-defined how many environment, connection, and statement handles an |
7113 application can allocate at a time. The application can determine these limits by calling |
7114 SQLGetInfo() with one of the following options: SQL_ACTIVE_ENVIRONMENTS, |
7115 SQL_MAX_DRIVER_CONNECTIONS, or SQL_MAX_CONCURRENT_ACTIVITIES (for |
7116 statements). An attempt to allocate more than the supported number of environments, |
7117 connections, or statements produces SQLSTATE HY014 (Limit on the number of handles |
7118 exceeded). There is no limit on the number of descriptor handles that can be allocated. |

7119 If the application calls SQLAllocHandle() with *OutputHandlePtr set to a handle already in use, |
7120 the implementation typically overwrites information associated with the handle. The |
7121 implementation need not check to see whether *OutputHandlePtr is already in use, nor check the |
7122 previous contents of a handle before overwriting them. |

7123 On operating systems that support multiple threads, applications can use the same |
7124 environment, connection, statement, or descriptor handle on different threads. Implementations |
7125 must therefore support safe, multithreaded access to this information, for example, through the |
7126 use of a critical section or a semaphore. |

Data Management: X/Open Database Connectivity (XDBC), Version 2 211

SQLAllocHandle() ISO 92 Reference Manual Pages

7127 Allocating an Environment Handle |

7128 An environment handle provides access to global information such as valid connection handles |
7129 and active connection handles. To request an environment handle, an application calls |
7130 SQLAllocHandle() with HandleType of SQL_HANDLE_ENV and InputHandle of |
7131 SQL_NULL_HANDLE. The implementation allocates memory for the environment |
7132 information, and passes the value of the associated handle back in *OutputHandlePtr. The |
7133 application uses OutputHandle in all subsequent calls that require an environment handle |
7134 argument. |

7135 Allocating a Connection Handle |

7136 A connection handle provides access to information such as the valid statement and descriptor |
7137 handles on the connection and whether a transaction is currently open. To request a connection |
7138 handle, an application calls SQLAllocHandle() with HandleType of SQL_HANDLE_DBC. The |
7139 InputHandle argument is set to an environment handle, returned by another call to |
7140 SQLAllocHandle(), for the environment on which to allocate the connection handle. |

7141 The implementation allocates memory for the connection information, and passes the value of |
7142 the associated handle back in *OutputHandlePtr. The application uses *OutputHandlePtr in all |
7143 subsequent calls that require a connection handle. |

7144 Allocating a Statement Handle |

7145 A statement handle provides access to statement information, such as error messages, the cursor |
7146 name, and status information for SQL statement processing. To request a statement handle |
7147 before submitting SQL statements, an application connects to a data source, and then calls |
7148 SQLAllocHandle() with HandleType set to SQL_HANDLE_STMT and InputHandle set to the |
7149 connection handle for the connection on which the statement handle is to be allocated. |

7150 The implementation allocates memory for the statement information, associates the statement |
7151 handle with the connection specified, and passes the value of the associated handle back in |
7152 *OutputHandlePtr. The application uses *OutputHandlePtr in all subsequent calls that require a |
7153 statement handle. |

7154 Allocating a Descriptor Handle |

7155 When the statement handle is allocated, the implementation automatically allocates a set of four |
7156 descriptors, and assigns the handles for these descriptors to the SQL_ATTR_APP_ROW_DESC, |
7157 SQL_ATTR_APP_PARAM_DESC, SQL_ATTR_IMP_ROW_DESC, and |
7158 SQL_ATTR_IMP_PARAM_DESC statement attributes. Use of explicitly-allocated application |
7159 descriptors instead of the automatically-allocated ones is discussed next. |

7160 The application can call SQLAllocHandle() with a HandleTypeof SQL_HANDLE_DESC to allocate |
7161 an application descriptor explicitly. The application can use such a descriptor in place of an |
7162 automatically-allocated one by calling the SQLSetStmtAttr() function with Attribute set to |
7163 SQL_ATTR_APP_ROW_DESC or SQL_ATTR_APP_PARAM_DESC. |

7164 The application cannot use explicitly-allocated descriptor handles as the implementation |
7165 descriptors, nor specify an implementation descriptor in a SQLSetStmtAttr() call. |

7166 Explicitly-allocated descriptors are associated with a connection handle rather than a statement |
7167 handle (as automatically allocated descriptors are). Descriptors can be associated with a |
7168 connection handle only when an application is actually connected to the database. Since |
7169 explicitly-allocated descriptors are associated with a connection handle, an application can |
7170 explicitly associate an allocated descriptor with more than one statement within a connection. |
7171 An automatically-allocated application descriptor, on the other hand, cannot be associated with |
7172 more than one statement handle. Explicitly-allocated descriptor handles can either be freed |

212 Direct Review (Build ID 96KAV) (Draft XDBC.33, August 1996)

Reference Manual Pages ISO 92 SQLAllocHandle()

7173 explicitly by the application, by calling SQLFreeHandle() with a HandleType of |
7174 SQL_HANDLE_DESC, or freed implicitly when the connection handle is freed upon disconnect. |

7175 When the application associates an explicitly-allocated application descriptor with a statement, |
7176 the automatically-allocated descriptor that is superseded remains associated with the connection |
7177 handle. When the application frees the explicitly-allocated descriptor, the automatically- |
7178 allocated descriptor once again takes effect, as though SQLSetStmtAttr() had been called to set |
7179 SQL_ATTR_APP_ROW_DESC or SQL_ATTR_APP_PARAM_DESC to the automatically- |
7180 allocated descriptor handle. This is true for all statements that were associated with the |
7181 explicitly-allocated descriptor on the connection. |

7182 When a descriptor is first used, the initial value of its SQL_DESC_TYPE field is |
7183 SQL_C_DEFAULT. DATA_PTR, INDICATOR_PTR, and OCTET_LENGTH_PTR are all initially |
7184 set to null pointers. For the initial values of other fields, see SQLSetDescField(). |

7185 SEE ALSO |

7186 For information about ||See |||
|

7187 Executing an SQL statement ||SQLExecDirect() |||

7188 Executing a prepared SQL statement ||SQLExecute() |||

7189 Freeing an environment, connection, statement, or ||
7190 descriptor handle ||

SQLFreeHandle() |||

7191 Preparing a statement for execution ||SQLPrepare() |||

7192 Setting a connection attribute ||SQLSetConnectAttr() |||

7193 Setting a descriptor field; initial values of descriptor fields ||SQLSetDescField() |||

7194 Setting an environment attribute ||SQLSetEnvAttr() |||

7195 Setting a statement attribute ||SQLSetStmtAttr() |||

7196 CHANGE HISTORY |

7197 Version 2 |
7198 Revised generally. See Alignment with Popular Implementations on page 2. ||

Data Management: X/Open Database Connectivity (XDBC), Version 2 213

SQLBindCol() ISO 92 Reference Manual Pages

7199 NAME |
7200 SQLBindCol — Bind application data buffers to columns in the result set. |

7201 SYNOPSIS |
7202 SQLRETURN SQLBindCol(|
7203 SQLHSTMTStatementHandle , |
7204 SQLUSMALLINT ColumnNumber , |
7205 SQLSMALLINT TargetType , |
7206 SQLPOINTER TargetValuePtr , |
7207 SQLINTEGER BufferLength , |
7208 SQLINTEGER * StrLen_or_IndPtr); |

7209 ARGUMENTS |

7210 StatementHandle [Input] |
7211 Statement handle. |

7212 ColumnNumber [Input] |
7213 Number of the result set column to bind. The first column is column 0, the bookmark |
7214 column. If bookmarks are not used (if the SQL_ATTR_USE_BOOKMARKS statement |
7215 attribute is SQL_UB_OFF) then the first column is column 1. |

7216 TargetType[Input] |
7217 The identifier of the C data type of the *TargetValuePtr buffer. When retrieving data from |
7218 the data source with SQLFetch(), SQLFetchScroll(), or SQLSetPos(), the implementation |
7219 converts the data to to this type; when sending data to the data source with |
7220 SQLBulkOperations() or SQLSetPos(), the implementation converts the data from this type. |
7221 For a list of valid C data types and type identifiers, see Section D.2 on page 560. Appendix |
7222 D gives details of data type conversion. |

7223 If TargetType is an interval data type, the default interval leading precision and default |
7224 interval seconds precision (as set in the SQL_DESC_DATETIME_INTERVAL_PRECISION |
7225 and SQL_DESC_PRECISION fields of the ARD, respectively) are used for the data. If |
7226 TargetType is a SQL_C_NUMERIC data type, the default precision and default scale (as set |
7227 in the SQL_DESC_PRECISION and SQL_DESC_SCALE fields of the ARD) are used for the |
7228 data. If any default precision or scale is not appropriate, the application should explicitly |
7229 set the descriptor field by a call to SQLSetDescField() or SQLSetDescRec(). |

7230 TargetValuePtr[Deferred Input/Output] |
7231 Pointer to the data buffer to bind to the column. SQLFetch() and SQLFetchScroll() return |
7232 data in this buffer. SQLBulkOperations() retrieves data from this buffer when Operation is |
7233 SQL_ADD, SQL_UPDATE_BY_BOOKMARK, or SQL_DELETE_BY_BOOKMARK. |
7234 SQLSetPos() returns data in this buffer when Operation is SQL_REFRESH; it retrieves data |
7235 from this buffer when Operation is SQL_UPDATE. |

7236 If TargetValuePtr is a null pointer, the implementation unbinds the column. (An application |
7237 can unbind all columns by calling SQLFreeStmt() with the SQL_UNBIND option.) |

7238 BufferLength [Input] |
7239 Length of the *TargetValuePtrbuffer in octets. |

7240 The implementation uses BufferLength to avoid writing past the end of the *TargetValuePtr |
7241 buffer when returning variable-length data, such as character or binary data. This value |
7242 includes the null terminator. *TargetValuePtr must therefore contain space for the null |
7243 terminator or the implementation truncates the data. |

7244 When retrieving fixed-length data from the data source, such as an integer or a date |
7245 structure, the implementation ignores BufferLength and assumes the buffer is large enough |
7246 to hold the data. The application must allocate sufficient buffer space or the implementation |

214 Direct Review (Build ID 96KAV) (Draft XDBC.33, August 1996)

Reference Manual Pages ISO 92 SQLBindCol()

7247 writes past the end of the buffer. |

7248 SQLBindCol() returns SQLSTATEHY090 (Invalid string or buffer length) when BufferLength |
7249 is less than 0.29 |

7250 StrLen_or_IndPtr [Deferred Input/Output] |
7251 Pointer to the length/indicator buffer to bind to the column. SQLFetch() and |
7252 SQLFetchScroll() return a value in this buffer. SQLBulkOperations() retrieves a value from |
7253 this buffer when Operation is SQL_ADD, SQL_UPDATE_BY_BOOKMARK, or |
7254 SQL_DELETE_BY_BOOKMARK. SQLSetPos() returns a value in this buffer when Operation |
7255 is SQL_REFRESH; it retrieves a value from this buffer when Operation is SQL_UPDATE. |

7256 SQLFetch(), SQLFetchScroll(), and SQLSetPos() can return the following values in the |
7257 length/indicator buffer: |

7258 • The length of the data available to return |
7259 • SQL_NO_TOTAL |
7260 • SQL_NULL_DATA |

7261 The application can place the following values in the length/indicator buffer for use with |
7262 SQLBulkOperations() or SQLSetPos(): |

7263 • The length of the data being sent |
7264 • SQL_NTS |
7265 • SQL_NULL_DATA |
7266 • SQL_DATA_AT_EXEC |
7267 • The result of the SQL_LEN_DATA_AT_EXECmacro |
7268 • SQL_COLUMN_IGNORE |

7269 If StrLen_or_IndPtr is a null pointer, no length or indicator value is used. This is an error |
7270 when fetching data and the data is NULL. It is also an error when sending character or |
7271 binary data. |

7272 For more information, see Section 4.3.5 on page 42. |

7273 RETURN VALUE |
7274 SQL_SUCCESS, SQL_SUCCESS_WITH_INFO, SQL_ERROR, or SQL_INVALID_HANDLE. |

7275 DIAGNOSTICS |
7276 When SQLBindCol() returns SQL_ERROR or SQL_SUCCESS_WITH_INFO, an associated |
7277 SQLSTATE value can be obtained by calling SQLGetDiagRec() with a HandleType of |
7278 SQL_HANDLE_STMT and a Handle of StatementHandle. The following SQLSTATE values are |
7279 commonly returned by SQLBindCol(). The return code associated with each SQLSTATEvalue is |
7280 SQL_ERROR, except that for SQLSTATE values in class 01, the return code is |
7281 SQL_SUCCESS_WITH_INFO. |

7282 01000 — General warning |
7283 Implementation-defined informational message. |

7284 07006 — Restricted data type attribute violation |
7285 ColumnNumber was 0 and TargetTypewas not SQL_C_VARBOOKMARK. |

7286 07009 — Invalid descriptor index |
7287 The value specified for ColumnNumber exceeded the maximum number of columns in the |

7288 __________________ |
7289 29. It is no longer an error to specify a BufferLength of 0, but it was an error (HY090) in the X/Open CLI specification (1995). |||

Applications should not specify a value of 0. |||

Data Management: X/Open Database Connectivity (XDBC), Version 2 215

SQLBindCol() ISO 92 Reference Manual Pages

7290 result set. |

7291 HY000 — General error |
7292 An error occurred for which there was no specific SQLSTATE and for which no |
7293 implementation-specific SQLSTATE was defined. The error message returned by |
7294 SQLGetDiagRec() in the *MessageTextbuffer describes the error and its cause. |

7295 HY001 — Memory allocation error |
7296 The implementation failed to allocate memory required to support execution or completion |
7297 of the function. |

7298 HY003 — Invalid application buffer type |
7299 TargetTypewas neither a valid data type nor SQL_C_DEFAULT. |

7300 HY010 — Function sequence error |
7301 An asynchronously executing function was called for StatementHandle and was still |
7302 executing when this function was called. |

7303 SQLBulkOperations(), SQLExecDirect(), SQLExecute(), or SQLSetPos() was called for |
7304 StatementHandle and returned SQL_NEED_DATA.This function was called before data was |
7305 sent for all data-at-execution parameters or columns. |

7306 HY021 — Inconsistent descriptor information |
7307 The descriptor consistency check failed (see Consistency Checks on page 486). |

7308 HY090 — Invalid string or buffer length |
7309 BufferLength was less than 0. |

7310 HYC00 — Optional feature not implemented |
7311 The implementation does not support the conversion specified by the combination of |
7312 TargetType and the SQL data type of the corresponding column. This error only applies |
7313 when the SQL data type of the column was mapped to an implementation-defined SQL |
7314 data type. |

7315 ColumnNumber was 0 and the data source does not support bookmarks. |

7316 HYT01 — Connection timeout expired |
7317 The connection timeout period expired before the data source responded to the request. The |
7318 connection timeout period is set through SQLSetConnectAttr(), |
7319 SQL_ATTR_CONNECTION_TIMEOUT. |

7320 IM001 — Function not supported |
7321 The function is not supported on the current connection to the data source. |

7322 COMMENTS |

7323 Overview |

7324 SQLBindCol() associates, or binds, columns in the result set to data buffers and length/indicator |
7325 buffers in the application. When the application calls SQLFetch(), SQLFetchScroll(), or |
7326 SQLSetPos() to fetch data, the implementation returns the data for the bound columns in the |
7327 specified buffers. When the application calls SQLBulkOperations() to update or insert a row, or |
7328 SQLSetPos() to update a row, the implementation retrieves the data for the bound columns from |
7329 the specified buffers. |

7330 Columns do not have to be bound to retrieve data from them. An application can bind some |
7331 columns of a row and call SQLGetData() for others. Certain restrictions exist; see Restrictions on |
7332 Use of SQLGetData() on page 347. |

216 Direct Review (Build ID 96KAV) (Draft XDBC.33, August 1996)

Reference Manual Pages ISO 92 SQLBindCol()

7333 Binding, Unbinding, and Rebinding Columns |

7334 A column can be bound, unbound, or rebound at any time, even after data has been fetched from |
7335 the result set. The new binding takes effect the next time a function that uses bindings is called. |
7336 In particular, SQLBindCol() does not access the newly bound buffers. For example, suppose an |
7337 application binds the columns in a result set and calls SQLFetch(). The data is returned in the |
7338 bound buffers. Now suppose the application binds the columns to a different set of buffers. The |
7339 data for the just-fetched row does not move to the newly-bound buffers. But subsequent calls to |
7340 SQLFetch() place the data for subsequent rows in the newly-bound buffers. |

7341 Binding Columns |

7342 To bind a column, an application calls SQLBindCol() and passes the column number, the type, |
7343 address, and length of a data buffer, and the address of a length/indicator buffer. For |
7344 information on how these addresses are used, see Buffer Addresses on page 217. |

7345 The use of these buffers is deferred. That is, the application binds them in SQLBindCol() but the |
7346 implementation uses their values only when retrieving data from the data source. The |
7347 application must ensure that the pointers specified in SQLBindCol() remain valid as long as the |
7348 binding remains in effect. If the application lets these pointers become invalid — for example, if |
7349 it frees a buffer — and then calls a function that depends on their values, the consequences are |
7350 undefined. For more information, see Section 4.3.1 on page 39. |

7351 The binding remains in effect until it is replaced by a new binding, the column is unbound, the |
7352 statement is freed, or the SQL_DESC_COUNT field is set to 0 in the ARD. |

7353 Unbinding Columns |

7354 To unbind a single column, an application calls SQLBindCol() with ColumnNumber set to the |
7355 number of that column and TargetValuePtr set to a null pointer. If ColumnNumber refers to an |
7356 unbound column, SQLBindCol() still returns SQL_SUCCESS. |

7357 To unbind all columns, an application calls SQLFreeStmt() with fOption set to SQL_UNBIND. |

7358 The application can also unbind all columns (except any bookmark) by setting the |
7359 SQL_DESC_COUNT field in the header record of the ARD to 0. |

7360 Rebinding Columns |

7361 An application can perform either of two operations to change a binding: |

7362 • Call SQLBindCol() to specify a new binding for a column that is already bound. The |
7363 implementation overwrites the old binding with the new one. |

7364 • Specify an offset to be added to the buffer address that was specified by the binding call to |
7365 SQLBindCol(). For more information, see Bind Offsets. |

7366 Binding Arrays |

7367 If the row-set size (the value of the SQL_ATTR_ROW_ARRAY_SIZE statement attribute) is |
7368 greater than 1, the application binds arrays of buffers rather than single buffers. The application |
7369 can either bind separate data and length/indicator arrays to each column of data (known as |
7370 column-wise binding) or to each row of data (row-wise binding). |

7371 The application can bind arrays in two ways: |

7372 • Bind an array to each column. This is called column-wise binding because each data |
7373 structure (array) contains data for a single column. |

Data Management: X/Open Database Connectivity (XDBC), Version 2 217

SQLBindCol() ISO 92 Reference Manual Pages

7374 • Define a structure to hold the data for an entire row and bind an array of these structures. |
7375 This is called row-wise binding because each data structure contains the data for a single |
7376 row. |

7377 Each array of buffers must have at least as many elements as the size of the row-set. |

7378 Note: An application must verify that alignment is valid. |

7379 Column-Wise Binding |

7380 In column-wise binding, the application binds separate data and length/indicator arrays to each |
7381 column. |

7382 To use column-wise binding, the application first sets the SQL_ATTR_ROW_BIND_TYPE |
7383 statement attribute to SQL_BIND_BY_COLUMN (this is the default). For each column to be |
7384 bound, it: |

7385 • Allocates a data buffer array. |

7386 • Allocates an array of length/indicator buffers. |

7387 • Calls SQLBindCol(): |

7388 — TargetTypeis the type of a single element in the data buffer array. |

7389 — TargetValuePtr is the address of the data buffer array. |

7390 — BufferLength is the size of a single element in the data buffer array. BufferLength is ignored |
7391 when the data is fixed-length data. |

7392 — StrLen_or_IndPtr is the address of the length/indicator array. |

7393 For more information on how this information is used, see Buffer Addresses on page 217. |

7394 Row-Wise Binding |

7395 In row-wise binding, the application defines a structure containing data and length/indicator |
7396 buffers for each column to be bound. |

7397 To use row-wise binding, the application: |

7398 • Defines a structure to hold a single row of data (including both data and length/indicator |
7399 buffers) and allocates an array of these structures. |

7400 • Sets the SQL_ATTR_ROW_BIND_TYPE statement attribute to the size of the structure |
7401 containing a single row of data, or to the size of an instance of a buffer into which the results |
7402 columns will be bound. The length must include space for all of the bound columns, and any |
7403 padding of the structure or buffer to ensure that when the address of a bound column is |
7404 incremented with the specified length, the result will point to the beginning of the same |
7405 column in the next row. When using the sizeof operator in ANSI C, this behavior is |
7406 guaranteed. |

7407 • Calls SQLBindCol() for each column to be bound: |

7408 — TargetTypeis the type of the data buffer member to be bound to the column. |

7409 — TargetValuePtr is the address of the data buffer member in the first array element. |

7410 — BufferLength is the size of the data buffer member. |

7411 — StrLen_or_IndPtr is the address of the length/indicator member to be bound. |

7412 For more information on how this information is used, see Buffer Addresses. |

218 Direct Review (Build ID 96KAV) (Draft XDBC.33, August 1996)

Reference Manual Pages ISO 92 SQLBindCol()

7413 Bind Offsets |

7414 A bind offset is a value that is added to the addresses of the data and length/indicator buffers |
7415 (as specified in TargetValuePtr and StrLen_or_IndPtr) before they are dereferenced. When offsets |
7416 are used, the bindings are a template of how the application’s buffers are laid out and the |
7417 application can move this template to different areas of memory by changing the offset. Because |
7418 the same offset is added to each address in each binding, the relative offsets between buffers for |
7419 different columns must be the same within each set of buffers. This is always true when row- |
7420 wise binding is used; the application must carefully lay out its buffers for this to be true when |
7421 column-wise binding is used. |

7422 Using a binding offset has much the same effect as rebinding a column by calling SQLBindCol(). |
7423 The difference is that a new call to SQLBindCol() specifies new addresses for the data buffer and |
7424 length/indicator buffer, while use of a bind offset does not change the addresses, but merely |
7425 adds an offset to them. The application can specify a new offset whenever it wants and this |
7426 offset is always added to the originally-bound addresses. In particular, if the offset is set to 0 or if |
7427 the statement attribute is set to a null pointer, the implementation uses the originally-bound |
7428 addresses. |

7429 To specify a bind offset, the application sets the SQL_ATTR_ROW_BIND_OFFSET_PTR |
7430 statement attribute to the address of an SQLINTEGER buffer. Before the application calls a |
7431 function that uses bindings, it places an offset in octets in this buffer. To determine the address |
7432 of the buffer to use, the implementation adds the offset to the address in the binding. The sum of |
7433 the address and the offset must be a valid address, but the address to which the offset is added |
7434 need not be a valid address. For more information on how bind offsets are used, see Buffer |
7435 Addresses on page 217. |

7436 Buffer Addresses |

7437 The buffer address is the actual address of the data or length/indicator buffer. It is calculated from |
7438 the following formula, which uses the addresses specified in the TargetValuePtr and |
7439 StrLen_or_IndPtr arguments, the bind offset, and the row number: |

7440 Bound Address + Bind Offset + ((Row Number - 1) x Element Size) |

7441 where |

7442 Variable Description ||
7443 For data buffers, the address specified with TargetValuePtr in SQLBindCol(). ||

7444 For length/indicator buffers, the address specified with StrLen_or_IndPtr in ||
7445 SQLBindCol(). ||

7446 For more information, see Additional Comments on page 314. ||

7447 If the bound address is 0, no data value is returned, even if the address as ||
7448 calculated by the formula above is non-zero. ||

Bound Address |

7449 If row-wise binding is used, the value stored at the address specified with the ||
7450 SQL_ATTR_ROW_BIND_OFFSET_PTR statement attribute. If this attribute is a ||
7451 null pointer, Bind Offset is 0. ||

7452 If column-wise binding is used, Bind Offset is 0. ||

Bind Offset |

7453 The 1-based number of the row in the row-set. For single-row fetches, which are ||
7454 the default, this is 1. ||

Row Number |

Data Management: X/Open Database Connectivity (XDBC), Version 2 219

SQLBindCol() ISO 92 Reference Manual Pages

7455 The size of an element in the bound array. ||

7456 If column-wise binding is used, this is sizeof(SQLINTEGER) for ||
7457 length/indicator buffers. For data buffers, it is the value of the BufferLength ||
7458 argument in SQLBindCol() if the data type is variable length and the size of the ||
7459 data type if the data type is fixed length. ||

7460 If row-wise binding is used, this is the value of the ||
7461 SQL_ATTR_ROW_BIND_TYPE statement attribute for both data and ||
7462 length/indicator buffers. ||

Element Size |

7463 Descriptors and SQLBindCol() |

7464 The following sections describe how SQLBindCol() interacts with descriptors. |

7465 Caution: Calling SQLBindCol() for one statement affects other statements if the ARD associated |
7466 with the statement is explicitly allocated and is also associated with other statements. Any |
7467 modifications made to a descriptor with SQLBindCol() apply to all statements with which the |
7468 descriptor is associated. To prevent this effect, the application must dissociate this descriptor |
7469 from the other statements before calling SQLBindCol(). |

7470 Argument Mappings |

7471 Conceptually, SQLBindCol() performs the following steps in sequence: |

7472 • Calls SQLGetStmtAttr() to obtain the application row descriptor handle. |

7473 • Calls SQLGetDescField() to get this descriptor’s COUNT field, and if ColumnNumber exceeds |
7474 the value of COUNT, calls SQLSetDescField() to increase the value of COUNT to |
7475 ColumnNumber. |

7476 • Calls SQLSetDescField() multiple times to assign values to the following fields of the |
7477 application row descriptor: |

7478 — sets TYPE to the value of TargetType |

7479 — sets OCTET_LENGTH to the value of BufferLength |

7480 — sets DATA_PTRto the value of TargetValue |

7481 — sets INDICATOR_PTR to the value of StrLen_or_Ind (see below) |

7482 — sets OCTET_LENGTH_PTR to the value of StrLen_or_Ind (see below). |
7483 The variable that StrLen_or_Ind references is used for both indicator and length information. |
7484 If a fetch encounters a null value for the column, it stores SQL_NULL_DATAin this variable; |
7485 otherwise it stores the data length in this variable. Passing a null pointer as StrLen_or_Ind |
7486 keeps the fetch operation from returning the data length, but makes the fetch fail if it |
7487 encounters a null value and has no way to return SQL_NULL_DATA. |

7488 If the call to SQLBindCol() fails, the content of the descriptor fields it would have set are |
7489 undefined. |

220 Direct Review (Build ID 96KAV) (Draft XDBC.33, August 1996)

Reference Manual Pages ISO 92 SQLBindCol()

7490 Implicit Resetting of COUNT Field |

7491 SQLBindCol() sets SQL_DESC_COUNT to ColumnNumber only when this would serve to |
7492 increase the value of SQL_DESC_COUNT. If TargetValuePtr is a null pointer and ColumnNumber |
7493 is equal to SQL_DESC_COUNT (that is, when unbinding the highest bound column), then |
7494 SQL_DESC_COUNT is set to the number of the highest remaining bound column. |

7495 Cautions Regarding SQL_DEFAULT |

7496 To retrieve column data successfully, the application must determine correctly the length and |
7497 starting point of the data in the application buffer. When the application specifies an explicit |
7498 TargetType, application misconceptions are readily detected. However, when the application |
7499 specifies a TargetType of SQL_DEFAULT,SQLBindCol() can be applied to a column of a different |
7500 data type from the one intended by the application, either from changes to the metadata or by |
7501 applying the code to a different column. In this case, the application may fail to determine the |
7502 start or length of the fetched column data. This can lead to unreported data errors or memory |
7503 violations. |

7504 Other Descriptor Fields |

7505 The SQL_DESC_BIND_OFFSET_PTR descriptor field is also related to binding columns. This |
7506 header field in the ARD can be set through SQLSetDescField() or through the |
7507 SQL_ATTR_ROW_BIND_OFFSET_PTR statement attribute. |

7508 SEE ALSO |

7509 For information about ||See |||
|

7510 Returning information about a column in a result set ||SQLDescribeCol() |||

7511 Fetching a block of data or scrolling through a result set ||SQLFetchScroll() |||

7512 Fetching multiple rows of data ||SQLFetch() |||

7513 Freeing a statement handle ||SQLFreeStmt() |||

7514 Fetching part or all of a column of data ||SQLGetData() |||

7515 Returning the number of result set columns ||SQLNumResultCols() |||

7516 CHANGE HISTORY |

7517 Version 2 |
7518 Revised generally. See Alignment with Popular Implementations on page 2. ||

Data Management: X/Open Database Connectivity (XDBC), Version 2 221

SQLBindParam() Reference Manual Pages

7519 NAME |
7520 SQLBindParam — Bind a dynamic parameter |

7521 SYNOPSIS |
7522 DE SQLRETURN BindParam |
7523 (SQLHSTMT StatementHandle , |
7524 SQLUSMALLINT ParameterNumber , |
7525 SQLSMALLINT ValueType , |
7526 SQLSMALLINT ParameterType , |
7527 SQLUINTEGERColumnSize , |
7528 SQLSMALLINT DecimalDigits , |
7529 SQLPOINTER ParameterValue , |
7530 SQLINTEGER * StrLen_or_Ind) |
7531 RETURNS (SMALLINT) |RETURNS (SMALLINT) ||

7532 DESCRIPTION |
7533 The BindParam() function is identical in effect to an equivalent call to SQLBindParameter(). ||

222 Direct Review (Build ID 96KAV) (Draft XDBC.33, August 1996)

Reference Manual Pages XDBC SQLBindParameter()

7534 NAME |
7535 SQLBindParameter — Bind a buffer to a parameter marker in an SQL statement. |

7536 SYNOPSIS |
7537 SQLRETURN SQLBindParameter(|
7538 SQLHSTMTStatementHandle , |
7539 SQLUSMALLINT ParameterNumber , |
7540 SQLSMALLINT InputOutputType , |
7541 SQLSMALLINT ValueType , |
7542 SQLSMALLINT ParameterType , |
7543 SQLUINTEGERColumnSize , |
7544 SQLSMALLINT DecimalDigits , |
7545 SQLPOINTER ParameterValuePtr , |
7546 SQLINTEGER BufferLength , |
7547 SQLINTEGER * StrLen_or_IndPtr); |

7548 ARGUMENTS |

7549 StatementHandle [Input] |
7550 Statement handle. |

7551 ParameterNumber [Input] |
7552 Parameter number, ordered sequentially left to right, starting at 1. |

7553 InputOutputType [Input] |
7554 The type of the parameter; see InputOutputTypeArgument on page 223. |

7555 ValueType[Input] |
7556 The C data type of the parameter; see ValueTypeArgument on page 224. |

7557 ParameterType[Input] |
7558 The SQL data type of the parameter; see ParameterTypeArgument on page 224. |

7559 ColumnSize [Input] |
7560 The size of the column or expression of the corresponding parameter marker; see |
7561 ColumnSize Argument on page 225. |

7562 DecimalDigits [Input] |
7563 The decimal digits of the column or expression of the corresponding parameter marker; see |
7564 Section D.3.2 on page 564. |

7565 ParameterValuePtr[Deferred Input] |
7566 A pointer to a buffer for the parameter’s data; see ParameterValuePtr Argument on page |
7567 225. |

7568 BufferLength [Input] |
7569 Length of the ParameterValuePtrbuffer in octets; see BufferLength Argument on page 226. |

7570 StrLen_or_IndPtr [Deferred Input] |
7571 A pointer to a buffer for the parameter’s length; see StrLen_or_IndPtr Argument on page |
7572 226. |

7573 RETURN VALUE |
7574 SQL_SUCCESS, SQL_SUCCESS_WITH_INFO, SQL_ERROR, or SQL_INVALID_HANDLE. |

7575 DIAGNOSTICS |
7576 When SQLBindParameter() returns SQL_ERROR or SQL_SUCCESS_WITH_INFO, an associated |
7577 SQLSTATE value may be obtained by calling SQLGetDiagRec() with HandleType of |
7578 SQL_HANDLE_STMT and a Handle of StatementHandle. The following SQLSTATE values are |
7579 commonly returned by SQLBindParameter(). The return code associated with each SQLSTATE |

Data Management: X/Open Database Connectivity (XDBC), Version 2 223

SQLBindParameter() XDBC Reference Manual Pages

7580 value is SQL_ERROR, except that for SQLSTATE values in class 01, the return code is |
7581 SQL_SUCCESS_WITH_INFO. |

7582 01000 — General warning |
7583 Implementation-defined informational message. |

7584 07006 — Restricted data type attribute violation |
7585 The data type identified by the ValueType argument cannot be converted to the data type |
7586 identified by the ParameterType argument. Note that this error may be returned by |
7587 SQLExecDirect, SQLExecute, or SQLPutData at execution time, instead of by |
7588 SQLBindParameter. |

7589 07009 — Invalid descriptor index |
7590 The value specified for ParameterNumber was less than to 0. |

7591 HY000 — General error |
7592 An error occurred for which there was no specific SQLSTATE and for which no |
7593 implementation-specific SQLSTATE was defined. The error message returned by |
7594 SQLGetDiagRec() in the *MessageTextbuffer describes the error and its cause. |

7595 HY001 — Memory allocation error |
7596 The implementation failed to allocate memory required to support execution or completion |
7597 of the function. |

7598 HY003 — Invalid application buffer type |
7599 ValueTypewas not a valid data type or SQL_C_DEFAULT. |

7600 HY004 — Invalid SQL data type |
7601 ParameterType was neither a valid XDBC SQL data type identifier nor an implementation- |
7602 defined SQL data type identifier that the data source supports. |

7603 HY009 — Invalid use of null pointer |
7604 ParameterValuePtr and StrLen_or_IndPtr were null pointers and InputOutputType was not |
7605 SQL_PARAM_OUTPUT. |

7606 HY010 — Function sequence error |
7607 An asynchronously executing function was called for StatementHandle and was still |
7608 executing when this function was called. |

7609 SQLBulkOperations(), SQLExecDirect(), SQLExecute(), or SQLSetPos() was called for |
7610 StatementHandle and returned SQL_NEED_DATA.This function was called before data was |
7611 sent for all data-at-execution parameters or columns. |

7612 HY021 — Inconsistent descriptor information |
7613 The descriptor consistency check failed (see Consistency Checks on page 486). |

7614 The value specified for DecimalDigits was outside the range of values supported by the data |
7615 source for a column of the SQL data type specified by ParameterType. |

7616 HY090 — Invalid string or buffer length |
7617 BufferLength was less than 0. (See the description of the SQL_DESC_DATA_PTR field in |
7618 SQLSetDescField().) |

7619 HY104 — Invalid precision value |
7620 The value specified for ColumnSize or DecimalDigits was outside the range of values |
7621 supported by the data source for a column of the SQL data type specified by ParameterType. |

7622 HY105 — Invalid parameter type |
7623 InputOutputType was invalid (see InputOutputTypeArgument on page 223. |

224 Direct Review (Build ID 96KAV) (Draft XDBC.33, August 1996)

Reference Manual Pages XDBC SQLBindParameter()

7624 HYC00 — Optional feature not implemented |
7625 The implementation does not support the conversion specified by the combination of |
7626 ValueTypeand ParameterType. |

7627 HYT01 — Connection timeout expired |
7628 The connection timeout period expired before the data source responded to the request. The |
7629 connection timeout period is set through SQLSetConnectAttr(), |
7630 SQL_ATTR_CONNECTION_TIMEOUT. |

7631 IM001 — Function not supported |
7632 The function is not supported on the current connection to the data source. |

7633 COMMENTS |
7634 An application calls SQLBindParameter() to bind each parameter marker in an SQL statement. |
7635 Bindings remain in effect until the application calls SQLBindParameter() again, calls |
7636 SQLFreeStmt() with the SQL_RESET_PARAMS option, or calls SQLSetDescField() to set the |
7637 SQL_DESC_COUNT header field of the APD to 0. |

7638 ParameterNumber Argument |

7639 If ParameterNumber in the call to SQLBindParameter() is greater than the value of |
7640 SQL_DESC_COUNT, the value of the SQL_DESC_COUNT field implicitly increases to equal |
7641 ParameterNumber. |

7642 InputOutputTypeArgument |

7643 InputOutputType specifies the type of the parameter. This argument sets the |
7644 SQL_DESC_PARAMETER_TYPE field of the IPD. All parameters in SQL statements that do not |
7645 call procedures, such as INSERT statements, are input parameters. Parameters in procedure |
7646 calls can be input, input/output, or output parameters. (An application calls |
7647 SQLProcedureColumns() to determine the type of a parameter in a procedure call; parameters in |
7648 procedure calls whose type cannot be determined are assumed to be input parameters.) |

7649 InputOutputType is one of the following values: |

7650 • SQL_PARAM_INPUT. The parameter marks a parameter in an SQL statement that does not |
7651 call a procedure, such as an INSERT statement, or it marks an input parameter in a |
7652 procedure; these are collectively known as input parameters. For example, the parameters in |
7653 INSERT INTO Employee VALUES(?, ?, ?) are input parameters. |

7654 When the statement is executed, the implementation sends data for the parameter to the data |
7655 source; the *ParameterValuePtr buffer must contain a valid input value or the |
7656 *StrLen_or_IndPtr buffer must contain SQL_NULL_DATA, SQL_DATA_AT_EXEC, or the |
7657 result of the SQL_LEN_DATA_AT_EXECmacro. |

7658 If an application cannot determine the type of a parameter in a procedure call, it sets |
7659 InputOutputType to SQL_PARAM_INPUT; if the data source returns a value for the |
7660 parameter, the implementation discards it. |

7661 • SQL_PARAM_INPUT_OUTPUT. The parameter marks an input/output parameter in a |
7662 procedure. For example, the parameter in {call GetEmpDept(?)} is an input/output |
7663 parameter that accepts an employee’s name and returns the name of the employee’s |
7664 department. |

7665 When the statement is executed, the implementation sends data for the parameter to the data |
7666 source; the *ParameterValuePtr buffer must contain a valid input value or the |
7667 *StrLen_or_IndPtr buffer must contain SQL_NULL_DATA, SQL_DATA_AT_EXEC, or the |
7668 result of the SQL_LEN_DATA_AT_EXEC macro. After the statement is executed, the |
7669 implementation returns data for the parameter to the application; if the data source does not |

Data Management: X/Open Database Connectivity (XDBC), Version 2 225

SQLBindParameter() XDBC Reference Manual Pages

7670 return a value for an input/output parameter, the implementation sets the *StrLen_or_IndPtr |
7671 buffer to SQL_NULL_DATA. |

7672 • SQL_PARAM_OUTPUT. The parameter marks the return value of a procedure or an output |
7673 parameter in a procedure; these are collectively known as output parameters. For example, |
7674 the parameter in {?=call GetNextEmpID} is an output parameter that returns the next |
7675 employee ID. |

7676 After the statement is executed, the implementation returns data for the parameter to the |
7677 application, unless ParameterValuePtr and StrLen_or_IndPtr are both null pointers, in which |
7678 case the implementation discards the output value. If the data source does not return a value |
7679 for an output parameter, the implementation sets the *StrLen_or_IndPtr buffer to |
7680 SQL_NULL_DATA. |

7681 ValueTypeArgument |

7682 ValueTypespecifies the C data type of the parameter. It must be one of the values in Section D.2 |
7683 on page 560. The implementation stores this value in the SQL_DESC_TYPE, |
7684 SQL_DESC_CONCISE_TYPE, and SQL_DESC_DATETIME_INTERVAL_CODE fields of the |
7685 APD. |

7686 If ValueType is an interval data type, the implementation sets the SQL_DESC_TYPE field to |
7687 SQL_INTERVAL, sets the SQL_DESC_CONCISE_TYPE field to the concise interval data type, |
7688 and sets the SQL_DESC_DATETIME_INTERVAL_CODE field to a subcode for the specific |
7689 date/time or interval data type (see Section D.4 on page 569). The default interval leading |
7690 precision and default interval seconds precision (as set in the |
7691 SQL_DESC_DATETIME_INTERVAL_PRECISION and SQL_DESC_PRECISION fields of the |
7692 ARD, respectively) are used for the data. |

7693 If ValueType is a date/time data type, the SQL_DESC_TYPE field is set to SQL_DATETIME, the |
7694 SQL_DESC_CONCISE_TYPE field is set to the concise date/time data type, and the |
7695 SQL_DESC_DATETIME_INTERVAL_CODE field is set to a subcode for the specific date/time |
7696 data type (see Appendix D). |

7697 If ValueType is an SQL_C_NUMERIC data type, the default precision and default scale (as set in |
7698 the SQL_DESC_PRECISION and SQL_DESC_SCALE fields of the ARD) are used for the data. If |
7699 any default precision or scale is not appropriate, the application should explicitly set the |
7700 descriptor field by a call to SQLSetDescField() or SQLSetDescRec(). |

7701 If ValueTypeis SQL_C_DEFAULT,the parameter value is transferred from the default C data type |
7702 for the SQL data type specified with ParameterType. |

7703 Appendix D specifies the valid combinations of data types for type conversion, and defines the |
7704 effects of SQL_C_DEFAULT. |

7705 ParameterTypeArgument |

7706 ParameterType must be one of the SQL data types listed in Section D.1 on page 556 or an |
7707 implementation-defined value. This argument sets the SQL_DESC_TYPE, |
7708 SQL_DESC_CONCISE_TYPE, and SQL_DESC_DATETIME_INTERVAL_CODE fields of the |
7709 IPD. |

7710 If ParameterTypeis one of the date/time identifiers, the SQL_DESC_TYPE field of the IPD is set to |
7711 SQL_DATETIME, the SQL_DESC_CONCISE_TYPE field of the IPD is set to the concise |
7712 date/time data type, and the SQL_DESC_DATETIME_INTERVAL_CODE field is set to the |
7713 appropriate date/time subcode value. |

7714 If ParameterType is one of the interval identifiers, the SQL_DESC_TYPE field of the IPD is set to |
7715 SQL_INTERVAL, the SQL_DESC_CONCISE_TYPE field of the IPD is set to the concise interval |

226 Direct Review (Build ID 96KAV) (Draft XDBC.33, August 1996)

Reference Manual Pages XDBC SQLBindParameter()

7716 data type. The SQL_DESC_DATETIME_INTERVAL_CODE field of the IPD is set to the |
7717 appropriate interval subcode, the SQL_DESC_DATETIME_INTERVAL_PRECISION field of the |
7718 IPD is set to the interval leading precision, and the SQL_DESC_PRECISION field is set to the |
7719 interval seconds precision, if applicable. If the default value of |
7720 SQL_DESC_DATETIME_INTERVAL_PRECISION or SQL_DESC_PRECISION is not |
7721 appropriate, the application should explicitly set it by calling SQLSetDescField(). See the |
7722 description for these fields in SQLSetDescField(). |

7723 Appendix D describes how data is converted. |

7724 ColumnSize Argument |

7725 ColumnSize specifies the size of the column or expression corresponding to the parameter |
7726 marker, or the length of that data, or both. This argument determines the |
7727 SQL_DESC_PRECISION or the SQL_DESC_LENGTH field of the IPD, or both, depending on the |
7728 SQL data type in ParameterType. The following rules apply to this mapping: |

7729 • If ParameterType is SQL_CHAR, SQL_VARCHAR, SQL_LONGVARCHAR, SQL_BINARY, |
7730 SQL_VARBINARY, SQL_LONGVARBINARY, or one of the concise date/time or interval |
7731 data types (that is, SQL_TYPE_DATE or SQL_INTERVAL_YEAR_TO_MONTH), the |
7732 SQL_DESC_LENGTH field of the IPD is set to the value of ColumnSize . |

7733 • If ParameterType is SQL_DECIMAL, SQL_NUMERIC, SQL_FLOAT, SQL_REAL, or |
7734 SQL_DOUBLE, the SQL_DESC_PRECISION field of the IPD is set to the value of ColumnSize . |

7735 • For other data types, ColumnSize is ignored. |

7736 For more information on column size, see Section D.3.1 on page 562. Also see Passing Parameter |
7737 Values on page 227 and SQL_DATA_AT_EXECin StrLen_or_IndPtr Argument on page 226. |

7738 DecimalDigits Argument |

7739 DecimalDigits sets the SQL_DESC_SCALE field of the IPD for all numeric data types. |

7740 DecimalDigits sets the SQL_DESC_PRECISION field of the IPD for all data types that have a |
7741 seconds field (the cases in which ParameterType is SQL_TYPE_TIME, SQL_TYPE_TIMESTAMP, |
7742 SQL_TYPE_SECOND, SQL_TYPE_DAY_TO_SECOND, SQL_TYPE_HOUR_TO_SECOND, or |
7743 SQL_TYPE_MINUTE_TO_SECOND). |

7744 For other data types, DecimalDigits is ignored. |

7745 ParameterValuePtrArgument |

7746 ParameterValuePtr points to a buffer that, when SQLExecute() or SQLExecDirect() is called, |
7747 contains the actual data for the parameter. The data must be in the form specified by ValueType. |
7748 ParameterValuePtr sets the SQL_DESC_DATA_PTR field of the APD. An application can set |
7749 ParameterValuePtr to a null pointer, as long as *StrLen_or_IndPtr is SQL_NULL_DATA or |
7750 SQL_DATA_AT_EXEC. |

7751 If *StrLen_or_IndPtr is the result of the SQL_LEN_DATA_AT_EXEC(length) macro or |
7752 SQL_DATA_AT_EXEC, then ParameterValuePtr is an application-defined 32-bit value that is |
7753 associated with the parameter. It is returned to the application through SQLParamData(). For |
7754 example, ParameterValuePtr might be a token such as a parameter number, a pointer to data, or a |
7755 pointer to a structure that the application used to bind input parameters. However, if the |
7756 parameter is an input/output parameter, ParameterValuePtr must point to a buffer where the |
7757 output value will be stored. If the value in the SQL_ATTR_PARAMSET_SIZEstatement attribute |
7758 is greater than 1, the application can use the value pointed to by the |
7759 SQL_ATTR_PARAMS_PROCESSED_PTR statement attribute in conjunction with |
7760 ParameterValuePtr. For example, ParameterValuePtr might point to an array of values and the |

Data Management: X/Open Database Connectivity (XDBC), Version 2 227

SQLBindParameter() XDBC Reference Manual Pages

7761 application might use the value pointed to by SQL_ATTR_PARAMS_PROCESSED_PTR to |
7762 retrieve the correct value from the array. For more information, see Passing Parameter Values on |
7763 page 227. |

7764 If InputOutputType is SQL_PARAM_INPUT_OUTPUT or SQL_PARAM_OUTPUT, |
7765 ParameterValuePtrpoints to a buffer in which the implementation returns the output value. If the |
7766 procedure returns one or more result sets, the *ParameterValuePtr buffer is not guaranteed to be |
7767 set until all results have been fetched. |

7768 If the value in the SQL_ATTR_PARAMSET_SIZE statement attribute is greater than 1, |
7769 ParameterValuePtr points to an array. A single SQL statement processes the entire array of input |
7770 values for an input or input/output parameter and returns an array of output values for an |
7771 input/output or output parameter. |

7772 BufferLength Argument |

7773 For character and binary C data, BufferLength specifies the length of the *ParameterValuePtrbuffer |
7774 (if it is a single element) or the length of an element in the *ParameterValuePtr array (if the value |
7775 in the SQL_ATTR_PARAMSET_SIZE statement attribute is greater than 1). This argument sets |
7776 the SQL_DESC_OCTET_LENGTH record field of the APD. If the application specifies multiple |
7777 values, BufferLength is used to determine the location of values in the *ParameterValuePtr array, |
7778 both on input and on output. For input/output and output parameters, it is used to determine |
7779 whether to truncate character and binary C data on output: |

7780 • For character C data, if the number of octets available to return is greater than or equal to |
7781 BufferLength, the data in *ParameterValuePtr is truncated to BufferLength less the length of a |
7782 null terminator and is null-terminated. |

7783 • For binary C data, if the number of octets available to return is greater than BufferLength, the |
7784 data in *ParameterValuePtris truncated to BufferLength octets. |

7785 For all other types of C data, BufferLength is ignored. The length of the *ParameterValuePtr buffer |
7786 (if it is a single element) or the length of an element in the *ParameterValuePtr array (if there are |
7787 multiple values for each parameter) is assumed to be the length of the C data type. |

7788 StrLen_or_IndPtr Argument |

7789 StrLen_or_IndPtr points to a buffer that, when SQLExecute() or SQLExecDirect() is called, |
7790 contains one of the following. This argument sets the SQL_DESC_OCTET_LENGTH_PTR and |
7791 SQL_DESC_INDICATOR_PTR record fields of the application parameter pointers. |

7792 • The length of the parameter value stored in *ParameterValuePtr. This is ignored except for |
7793 character or binary C data. |

7794 • SQL_NTS. The parameter value is a null-terminated string. |

7795 • SQL_NULL_DATA.The parameter value is NULL. |

7796 • SQL_DEFAULT_PARAM.Directs a procedure to use the default value of a parameter, rather |
7797 than a value retrieved from the application. This value is valid only in a procedure called |
7798 using the XDBC escape clause (see Section 8.3 on page 84), and then only if InputOutputType |
7799 is SQL_PARAM_INPUT or SQL_PARAM_INPUT_OUTPUT. The implementation ignores |
7800 ValueType, ParameterType, ColumnSize , DecimalDigits , BufferLength, and ParameterValuePtr for |
7801 input parameters, and uses them only to define the output parameter value for input/output |
7802 parameters. |

7803 • The result of the SQL_LEN_DATA_AT_EXEC(length) macro. The data for the parameter will |
7804 be sent with SQLPutData(). If ParameterType is SQL_LONGVARBINARY, |
7805 SQL_LONGVARCHAR, or a long, data-source-specific data type, and the |

228 Direct Review (Build ID 96KAV) (Draft XDBC.33, August 1996)

Reference Manual Pages XDBC SQLBindParameter()

7806 SQL_NEED_LONG_DATA_LEN option in SQLGetInfo() returns ’Y’, then length is the |
7807 number of octets of data to be sent for the parameter; otherwise, length must be a |
7808 nonnegative value and is ignored. For more information, see Passing Parameter Values on |
7809 page 227. |

7810 For example, to specify that 10,000 octets of data will be sent with SQLPutData() for an |
7811 SQL_LONGVARCHAR parameter, an application sets *StrLen_or_IndPtr to |
7812 SQL_LEN_DATA_AT_EXEC(10000). |

7813 • SQL_DATA_AT_EXEC.The data for the parameter will be sent with SQLPutData(). |

7814 If StrLen_or_IndPtr is a null pointer, the implementation assumes that all input parameter values |
7815 are non-NULL and that character and binary data are null-terminated. If InputOutputType is |
7816 SQL_PARAM_OUTPUT and ParameterValuePtr and StrLen_or_IndPtr are both null pointers, the |
7817 implementation discards the output value. |

7818 Applications should provide valid length data, not a null pointer, through StrLen_or_IndPtr |
7819 when the data type of the parameter is SQL_C_BINARY, to prevent the implementation from |
7820 truncating SQL_C_BINARY data. |

7821 If InputOutputType is SQL_PARAM_INPUT_OUTPUT or SQL_PARAM_OUTPUT, |
7822 StrLen_or_IndPtr points to a buffer in which the implementation returns SQL_NULL_DATA,the |
7823 number of octets available to return in *ParameterValuePtr (excluding the null terminator for |
7824 character data), or SQL_NO_TOTAL if the number of octets available to return cannot be |
7825 determined. If the procedure returns one or more result sets, the *StrLen_or_IndPtr buffer is not |
7826 guaranteed to be set until all results have been fetched. |

7827 If the value in the SQL_ATTR_PARAMSET_SIZE statement attribute is greater than 1, |
7828 StrLen_or_IndPtr points to an array of SQLINTEGER values. These can be any of the values |
7829 listed earlier in this section and are processed with a single SQL statement. |

7830 Passing Parameter Values |

7831 An application can pass the value for a parameter either in the *ParameterValuePtr buffer or with |
7832 one or more calls to SQLPutData(). Parameters whose data is passed with SQLPutData() are |
7833 known as data-at-execution parameters. These are commonly used to send data for |
7834 SQL_LONGVARBINARY and SQL_LONGVARCHAR parameters and can be mixed with other |
7835 parameters. |

7836 To pass parameter values, an application: |

7837 1. Calls SQLBindParameter() for each parameter to bind buffers for the parameter’s value |
7838 (ParameterValuePtr) and length/indicator (StrLen_or_IndPtr). For data-at-execution |
7839 parameters, ParameterValuePtr is an application-defined 32-bit value such as a parameter |
7840 number or a pointer to data. The value is returned later and can be used to identify the |
7841 parameter. |

7842 2. Places values for input and input/output parameters in the *ParameterValuePtr and |
7843 *StrLen_or_IndPtr buffers: |

7844 — For normal parameters, the application places the parameter value in the |
7845 *ParameterValuePtrbuffer and the length of that value in the *StrLen_or_IndPtr buffer. |

7846 — For data-at-execution parameters, the application places the result of the |
7847 SQL_LEN_DATA_AT_EXEC(length)macro in the *StrLen_or_IndPtr buffer. |

7848 3. Calls SQLExecute() or SQLExecDirect() to execute the SQL statement. If there are no data- |
7849 at-execution parameters, the process is complete. If there are any data-at-execution |
7850 parameters, the function returns SQL_NEED_DATA. |

Data Management: X/Open Database Connectivity (XDBC), Version 2 229

SQLBindParameter() XDBC Reference Manual Pages

7851 4. Calls SQLParamData() to retrieve the application-defined value specified in |
7852 ParameterValuePtrfor the first data-at-execution parameter to be processed. |

7853 Although data-at-execution parameters are similar to data-at-execution columns, the value |
7854 returned by SQLParamData() is different for each. |

7855 — Data-at-execution parameters are parameters in an SQL statement for which data will |
7856 be sent with SQLPutData() when the statement is executed with SQLExecDirect() or |
7857 SQLExecute(). They are bound with SQLBindParameter(). The value returned by |
7858 SQLParamData() is a 32-bit value passed to SQLBindParameter() in ParameterValuePtr. |

7859 — Data-at-execution columns are columns in a row-set for which data is sent with |
7860 SQLPutData() when a row is updated or added with SQLBulkOperations() or updated |
7861 with SQLSetPos(). They are bound with SQLBindCol(). The value returned by |
7862 SQLParamData() is the address of the row in the *ParameterValuePtr buffer that is being |
7863 processed. |

7864 5. Calls SQLPutData() one or more times to send data for the parameter. More than one call is |
7865 needed if the data value is larger than the *ParameterValuePtr buffer specified in |
7866 SQLPutData(); multiple calls to SQLPutData() for the same parameter are allowed only |
7867 when sending character C data to a column with a character, binary, or data source- |
7868 specific data type or when sending binary C data to a column with a character, binary, or |
7869 data-source-specific data type. |

7870 6. Calls SQLParamData() again to signal that all data has been sent for the parameter. |

7871 7. If there are more data-at-execution parameters, SQLParamData() returns |
7872 SQL_NEED_DATA and the application-defined value for the next data-at-execution |
7873 parameter to be processed. The application repeats steps 5 and 6. |

7874 8. If there are no more data-at-execution parameters, the process is complete. If the statement |
7875 was successfully executed, SQLParamData() returns SQL_SUCCESS or |
7876 SQL_SUCCESS_WITH_INFO; if the execution failed, it returns SQL_ERROR. At this point, |
7877 SQLParamData() can return any SQLSTATE that can be returned by the function used to |
7878 execute the statement (SQLExecDirect() or SQLExecute()). |

7879 Output values for any input/output or output parameters are available in the |
7880 *ParameterValuePtr and *StrLen_or_IndPtr buffers after the application retrieves all result |
7881 sets generated by the statement. |

7882 Calling SQLExecute() or SQLExecDirect() puts the statement in a SQL_NEED_DATAstate. At this |
7883 point, the application can only call SQLCancel(), SQLGetDiagField(), SQLGetDiagRec(), |
7884 SQLGetFunctions(), SQLParamData(), or SQLPutData() with the statement or connection handle |
7885 associated with the statement. If it calls any other function with the statement or the connection |
7886 handle associated with the statement, the function returns SQLSTATE HY010 (Function |
7887 sequence error). The statement leaves the SQL_NEED_DATA state when SQLParamData() or |
7888 SQLPutData() returns an error, SQLParamData() returns SQL_SUCCESS or |
7889 SQL_SUCCESS_WITH_INFO, or the statement is cancelled. |

7890 If the application calls SQLCancel() while the implementation still needs data for data-at- |
7891 execution parameters, the implementation cancels statement execution; the application can then |
7892 call SQLExecute() or SQLExecDirect() again. |

230 Direct Review (Build ID 96KAV) (Draft XDBC.33, August 1996)

Reference Manual Pages XDBC SQLBindParameter()

7893 Using Arrays of Parameters |

7894 When an application prepares a statement with parameter markers and passes an array of |
7895 parameters, it is undefined whether the implementation uses any array-processing capabilities |
7896 of the data source or generates a sequence of SQL statements, one for each set of parameters in |
7897 the parameter array. |

7898 The effect when arrays of parameters are used with an UPDATE WHERE CURRENT OF |
7899 statement is implementation-defined. |

7900 When an array of parameters is processed, it is implementation-defined whether one result sets |
7901 and row count is available for each parameter set, or whether the result sets and row counts are |
7902 combined. An application can determine the implementation’s behavior by calling SQLGetInfo() |
7903 with the SQL_PARAM_ARRAY_ROW_COUNTS option (regarding row counts) or the |
7904 SQL_PARAM_ARRAY_SELECTSoption (regarding result sets). |

7905 In order to support arrays of parameters, the SQL_DESC_PARAMSET_SIZE statement attribute |
7906 is set to specify the number of values for each parameter. If the field is greater than 1, the |
7907 SQL_DESC_DATA_PTR, SQL_DESC_INDICATOR_PTR, and |
7908 SQL_DESC_OCTET_LENGTH_PTR fields of the APD must point to arrays. The cardinality of |
7909 each array is equal to the value of SQL_DESC_PARAMSET_SIZE. |

7910 The SQL_DESC_ROWS_PROCESSED_PTR field of the APD points to a buffer in which to return |
7911 the current row number. As each row of parameters is processed, this is set to the number of |
7912 that row. No row number is returned if this is a null pointer. The implementation generates |
7913 SQL_DESC_ROWS_PROCESSED_PTR. |

7914 Column-Wise Parameter Binding |

7915 Column-wise binding of parameters is used by setting the SQL_DESC_PARAM_BIND_TYPE |
7916 statement attribute to SQL_PARAMETER_BIND_BY_COLUMN. When column-wise binding is |
7917 used, all parameter values are stored in one array, and the associated data lengths are stored in |
7918 another array. |

7919 Row-Wise Parameter Binding |

7920 Row-wise binding can be used for parameter buffers. When row-wise binding is used, all |
7921 parameter values used in a SQL statement, and the associated data lengths, are stored in a |
7922 structure. An array of structures can be allocated to specify multiple sets of parameters for bulk |
7923 operations, such as bulk inserts. |

7924 An application assigns buffers for row-wise bound parameters by allocating an array of |
7925 structures and manipulating the application and IPDs. For more information, see Row-wise |
7926 Binding on page 111. |

7927 Error Information |

7928 If an implementation does not implement parameter arrays as batches (the |
7929 SQL_PARAM_ARRAY_ROW_COUNTS option of SQLGetInfo() is equal to |
7930 SQL_PARC_NO_BATCH), error situations are handled as if one statement was executed. If the |
7931 implementation does implement parameter arrays as batches, an application can use the |
7932 SQL_DESC_ARRAY_STATUS_PTRheader field of the IPD to determine which parameter of an |
7933 SQL statement, or which parameter in an array of parameters, caused SQLExecDirect() or |
7934 SQLExecute() to return an error. This field contains status information for each row of parameter |
7935 values. If the field indicates that an error has occurred, fields in the diagnostic data structure will |
7936 indicate the row and parameter number of the parameter that failed. The number of elements in |
7937 the array will be defined by the SQL_DESC_ARRAY_SIZE header field in the IPD. |

Data Management: X/Open Database Connectivity (XDBC), Version 2 231

SQLBindParameter() XDBC Reference Manual Pages

7938 When SQLExecute() or SQLExecDirect() returns SQL_ERROR, the elements in the array pointed |
7939 to by the SQL_DESC_ARRAY_STATUS_PTRfield of the IPD will contain SQL_PARAM_ERROR, |
7940 SQL_PARAM_SUCCESS, SQL_PARAM_SUCCESS_WITH_INFO, SQL_PARAM_UNUSED, or |
7941 SQL_PARAM_DIAG_UNAVAILABLE. |

7942 For each SQL_PARAM_ERROR in this array, the diagnostic data structure contains one or more |
7943 status records. The SQL_DESC_ROW_NUMBER field of the structure indicates the row number |
7944 of the parameter values that caused the error. If it is possible to determine the particular |
7945 parameter in a row of parameters that caused the error, then the parameter number is stored in |
7946 the SQL_DIAG_COLUMN_NUMBER field. |

7947 SQL_PARAM_UNUSED is entered when a parameter has not been used because an error |
7948 occurred in an earlier parameter that forced SQLExecute() or SQLExecDirect() to abort. For |
7949 example, if there are 50 parameters, and an error occurred while executing the 40th set of |
7950 parameters that caused SQLExecute() or SQLExecDirect() to abort, then the implementation |
7951 stores SQL_PARAM_UNUSED in the status array for parameters 41 through 50. |

7952 SQL_PARAM_DIAG_UNAVAILABLE is stored when the implementation treats arrays of |
7953 parameters as a unit and does not generate this level of error information. |

7954 Some errors in the processing of a single set of parameters terminate processing of subsequent |
7955 sets of parameters in the array. Other errors do not affect the processing of subsequent |
7956 parameters. It is implementation-defined which errors stop processing. If processing is not |
7957 stopped, all parameters in the array are processed, SQL_SUCCESS_WITH_INFO is returned as a |
7958 result of the error, and the buffer defined by SQL_ATTR_PARAMS_PROCESSED_PTR is set to |
7959 the total number of parameters processed, including error rows. (This is the value pointed to by |
7960 SQL_ATTR_PARAMSET_SIZE.) |

7961 When SQLExecute() or SQLExecDirect() returns before completing the processing of all |
7962 parameter sets in a parameter array, such as when it returns SQL_ERROR or SQL_NEED_DATA, |
7963 the status array contains elements for those parameters that have already been processed. The |
7964 location pointed to by the SQL_DESC_ROWS_PROCESSED_PTR field in the IPD will contain |
7965 the row number in the parameter array that caused the SQL_ERROR or SQL_NEED_DATAerror |
7966 code. When an array of parameters is sent to a SELECT statement, status array values are |
7967 available after all result sets are fetched. On some implementations, they may be available after |
7968 the statement has been executed. |

7969 Ignoring a Set of Parameters |

7970 The application parameter status array can be used to direct the implementation to ignore a set |
7971 of bound parameters in a SQL statement. The application performs the following steps: |

7972 • Call SQLSetDescField() to set the SQL_DESC_ARRAY_STATUS_PTRheader field of the APD |
7973 to point to an array of SQLUSMALLINTs to contain status information. This field can also be |
7974 set by calling SQLSetStmtAttr() with an Attribute of SQL_ATTR_PARAM_STATUS_PTR, |
7975 which allows an application to set the field without obtaining a descriptor handle. |

7976 • For each row to be excluded from statement execution, set the corresponding element of the |
7977 application row status array to SQL_PARAM_IGNORE. For other rows, set the element to |
7978 SQL_PARAM_PROCEED (which is defined as 0 in the header file). |

7979 • Call SQLExecute() to execute the prepared statement. |

7980 The application parameter status array is a null pointer by default. If it is a null pointer when a |
7981 prepared statement is executed, then all rows are updated, as if all elements were set to |
7982 SQL_PARAM_PROCEED. |

7983 Enabling inclusion of a row using the application parameter status array does not guarantee that |
7984 the operation occurs on that row. |

232 Direct Review (Build ID 96KAV) (Draft XDBC.33, August 1996)

Reference Manual Pages XDBC SQLBindParameter()

7985 An application can set the SQL_DESC_ARRAY_STATUS_PTRin the APD to point to the same |
7986 array as that pointed to by the SQL_DESC_ARRAY_STATUS_PTRfield in the IRD. This is useful |
7987 when binding parameters to row data. Parameters can then be ignored according to the status of |
7988 the row data. The following codes cause a parameter in a SQL statement to be ignored, in |
7989 addition to SQL_PARAM_IGNORE: SQL_ROW_DELETED, SQL_ROW_UPDATED, and |
7990 SQL_ROW_ERROR. The following codes cause a SQL statement to proceed, in addition to |
7991 SQL_PARAM_PROCEED: SQL_ROW_SUCCESS, SQL_ROW_SUCCESS_WITH_INFO, and |
7992 SQL_ROW_ADDED. |

7993 Rebinding with Offsets |

7994 When row-wise binding is used, rebinding of parameters can be performed by either making |
7995 another call to SQLBindParameter(), or adding an offset to the binding pointers to rebind the |
7996 parameter. This is especially useful when an application has a buffer area setup that is capable |
7997 of containing many parameters, but a call to SQLExecDirect() or SQLExecute() uses only a few of |
7998 the parameters. The remaining space in the buffer area can be used for the next set of parameters |
7999 by modifying the existing binding by an offset. |

8000 The SQL_DESC_BIND_OFFSET_PTR header field in the APD points to the bind offset. If the |
8001 field is non-null, the implementation dereferences the pointer and if none of the values in the |
8002 SQL_DESC_DATA_PTR, SQL_DESC_INDICATOR_PTR, and |
8003 SQL_DESC_OCTET_LENGTH_PTR fields is a null pointer, adds the dereferenced value to those |
8004 fields in the descriptor records at execution time. The new pointer values are used when the SQL |
8005 statements are executed. The offset remains valid after rebinding. Because |
8006 SQL_DESC_BIND_OFFSET_PTR is a pointer to the offset, rather than the offset itself, an |
8007 application can change the offset directly, without having to call SQLSetDescField() or |
8008 SQLSetDescRec() to change the descriptor field. The pointer is set to null by default. The |
8009 SQL_DESC_BIND_OFFSET_PTR field of the ARD can be set by a call to SQLSetDescField() or by |
8010 a call to SQLSetStmtAttr() with an fAttribute of SQL_ATTR_PARAM_BIND_OFFSET_PTR. |

8011 The bind offset is always added directly to the values in the SQL_DESC_DATA_PTR, |
8012 SQL_DESC_INDICATOR_PTR, and SQL_DESC_OCTET_LENGTH_PTR fields. If the offset is |
8013 changed to a different value, the new value is still added directly to the value in each descriptor |
8014 field. The new offset is not added to the field value plus any earlier offsets. |

8015 Descriptors |

8016 How a parameter is bound is determined by fields of the APD and IPDs. The arguments in |
8017 SQLBindParameter() are used to set those descriptor fields. The fields can also be set by |
8018 SQLSetDescField() although SQLBindParameter() is more efficient to use because the application |
8019 does not have to obtain a descriptor handle to call SQLBindParameter(). |

8020 Caution: Calling SQLBindParameter() for one statement affects other statements if the ARD |
8021 associated with the statement is explicitly allocated and is also associated with other statements. |
8022 Any modifications made to a descriptor with SQLBindParameter() apply to all statements with |
8023 which the descriptor is associated. To prevent this effect, the application must dissociate this |
8024 descriptor from the other statements before calling SQLBindParameter(). |

Data Management: X/Open Database Connectivity (XDBC), Version 2 233

SQLBindParameter() XDBC Reference Manual Pages

8025 Conceptually, SQLBindParameter() performs the following steps in sequence: |

8026 • calls SQLGetStmtAttr() to obtain the application parameter descriptor handle |

8027 • calls SQLGetDescField() to get this descriptor’s COUNT field, and if ColumnNumber exceeds |
8028 the value of COUNT, calls SQLSetDescField() to increase the value of COUNT to |
8029 ColumnNumber |

8030 • calls SQLSetDescField() multiple times to assign values to the following fields of the |
8031 application parameter descriptor: |

8032 — sets TYPE to the value of ValueType |

8033 — sets DATA_PTRto the value of ParameterValue |

8034 — sets OCTET_LENGTH_PTR to the value of StrLen_or_Ind |

8035 — sets INDICATOR_PTR also to the value of StrLen_or_Ind. |

8036 The StrLen_or_Ind parameter specifies both the indicator information and the length for the |
8037 parameter value. |

8038 • calls SQLGetStmtAttr() to obtain the implementation parameter descriptor handle |

8039 • calls SQLGetDescField() to get this descriptor’s COUNT field, and if ColumnNumber exceeds |
8040 the value of COUNT, calls SQLSetDescField() to increase the value of COUNT to |
8041 ColumnNumber |

8042 • calls SQLSetDescField() multiple times to assign values to the following fields of the |
8043 implementation parameter descriptor: |

8044 — sets TYPE to the value of ParameterType, except that if ParameterType is one of the concise |
8045 identifiers of a date/time or interval subtype (see Data Type Identification in |
8046 Descriptors on page 574), it sets TYPE to SQL_DATETIME or SQL_INTERVAL |
8047 respectively, and sets DATETIME_INTERVAL_CODEto the corresponding date/time or |
8048 interval subcode |

8049 — sets one or more of LENGTH, PRECISION and DATETIME_INTERVAL_PRECISION,as |
8050 appropriate for ParameterType30 |

8051 — sets SCALE to the value of DecimalDigits . |

8052 If the call to SQLBindParameter() fails, the content of any descriptor fields that it would have set |
8053 are undefined. |

8054 SEE ALSO |

8055 For information about ||See |||

8056 __________________ |
8057 30. For date/time data types, LENGTH is set to the total length in characters of a literal of that type. If the type has a seconds |||

component, then PRECISION is set to DecimalDigits ; otherwise, PRECISION is set to 0. If this result is positive, then the total |||
8058 length includes the length of the fractional part of the seconds component. |||

8059 For interval data types, LENGTH is set to ColumnSize. If the type has a seconds component, then PRECISION is set to |||
DecimalDigits ; otherwise, PRECISION is set to 0. DATETIME_INTERVAL_PRECISIONis set to the leading field precision. This |||

8060 is the number of columns of ColumnSize that are available as the leading field, after subtracting the size of the fixed fields, and the |||
size of the fractional part of the seconds component, if one is indicated by the subtype and by the value of DecimalDigits . |||

234 Direct Review (Build ID 96KAV) (Draft XDBC.33, August 1996)

Reference Manual Pages XDBC SQLBindParameter()
|

8061 Returning information about a parameter in a statement ||SQLDescribeParam() |||

8062 Executing an SQL statement ||SQLExecDirect() |||

8063 Executing a prepared SQL statement ||SQLExecute() |||

8064 Returning the number of statement parameters ||SQLNumParams() |||

8065 Returning the next parameter to send data for ||SQLParamData() |||

8066 Sending parameter data at execution time ||SQLPutData() |||

8067 CHANGE HISTORY |

8068 Version 2 |
8069 Revised generally. See Alignment with Popular Implementations on page 2. ||

Data Management: X/Open Database Connectivity (XDBC), Version 2 235

SQLBrowseConnect() XDBC Reference Manual Pages

8070 NAME |
8071 SQLBrowseConnect — Iterative method of discovering and enumerating the attributes and |
8072 attribute values required to connect to a data source. |

8073 SYNOPSIS |
8074 SQLRETURN SQLBrowseConnect(|
8075 SQLHDBCConnectionHandle , |
8076 SQLCHAR * InConnectionString , |
8077 SQLSMALLINT StringLength1 , |
8078 SQLCHAR * OutConnectionString , |
8079 SQLSMALLINT BufferLength , |
8080 SQLSMALLINT * StringLength2Ptr); |

8081 ARGUMENTS |

8082 ConnectionHandle [Input] |
8083 Connection handle. |

8084 InConnectionString [Input] |
8085 Browse request connection string; see InConnectionString Argument on page 236. |

8086 StringLength1 [Input] |
8087 Length of *InConnectionString. |

8088 OutConnectionString [Output] |
8089 Pointer to a buffer in which to return the browse result connection string; see |
8090 OutConnectionString Argument on page 236. |

8091 BufferLength [Input] |
8092 Length of the *OutConnectionString buffer. |

8093 StringLength2Ptr [Output] |
8094 The total number of octets (excluding the null terminator) available to return in |
8095 *OutConnectionString. If the number of octets available to return is greater than or equal to |
8096 BufferLength, the connection string in *OutConnectionString is truncated to BufferLength |
8097 minus the length of a null terminator. |

8098 RETURN VALUE |
8099 SQL_SUCCESS, SQL_SUCCESS_WITH_INFO, SQL_NEED_DATA, SQL_ERROR, or |
8100 SQL_INVALID_HANDLE. |

8101 DIAGNOSTICS |
8102 When SQLBrowseConnect() returns SQL_ERROR, SQL_SUCCESS_WITH_INFO, or |
8103 SQL_NEED_DATA,an associated SQLSTATEvalue can be obtained by calling SQLGetDiagRec() |
8104 with a HandleType of SQL_HANDLE_STMT and a Handle of ConnectionHandle . The following |
8105 SQLSTATE values are commonly returned by SQLBrowseConnect(). The return code associated |
8106 with each SQLSTATE value is SQL_ERROR, except that for SQLSTATE values in class 01, the |
8107 return code is SQL_SUCCESS_WITH_INFO except as noted below. |

8108 01000 — General warning |
8109 Implementation-defined informational message. |

8110 01004 — String data, right truncation |
8111 The buffer *OutConnectionString was not large enough to return the entire browse result |
8112 connection string, so the string was truncated. |

8113 The buffer *StringLength2Ptr contains the length of the untruncated browse result |
8114 connection string. |

236 Direct Review (Build ID 96KAV) (Draft XDBC.33, August 1996)

Reference Manual Pages XDBC SQLBrowseConnect()

8115 01S00 — Invalid connection string attribute |
8116 An invalid attribute keyword was specified in InConnectionString . (The function returns |
8117 SQL_NEED_DATA.) |

8118 An attribute keyword was specified in InConnectionString that does not apply to the current |
8119 connection level. (The function returns SQL_NEED_DATA.) |

8120 01S02 — Attribute value changed |
8121 The data source did not support the specified value of the ValuePtr argument in |
8122 SQLSetConnectAttr() and substituted a similar value. |

8123 08001 — Client unable to establish connection |
8124 The implementation could not establish a connection to the data source. |

8125 08002 — Connection name in use |
8126 The specified connection had already been used to establish a connection with a data source |
8127 and the connection was open. |

8128 08004 — Data source rejected the connection |
8129 The data source rejected the establishment of the connection for implementation-defined |
8130 reasons. |

8131 08S01 — Communication link failure |
8132 The communication link to the data source failed before the function completed processing. |

8133 28000 — Invalid authorization specification |
8134 Either the user identifier or the authorization string or both as specified in |
8135 InConnectionString violated restrictions defined by the data source. |

8136 HY000 — General error |
8137 An error occurred for which there was no specific SQLSTATE and for which no |
8138 implementation-specific SQLSTATE was defined. The error message returned by |
8139 SQLGetDiagRec() in the *MessageTextbuffer describes the error and its cause. |

8140 HY001 — Memory allocation error |
8141 The implementation failed to allocate memory required to support execution or completion |
8142 of the function. |

8143 HY090 — Invalid string or buffer length |
8144 StringLength1 was less than 0 and was not equal to SQL_NTS. |

8145 BufferLength was less than 0. |

8146 HYT00 — Timeout expired |
8147 The login timeout period expired before the connection to the data source completed. The |
8148 timeout period is set through SQLSetConnectAttr(), SQL_ATTR_LOGIN_TIMEOUT. |

8149 HYT01 — Connection timeout expired |
8150 The connection timeout period expired before the data source responded to the request. The |
8151 connection timeout period is set through SQLSetConnectAttr(), |
8152 SQL_ATTR_CONNECTION_TIMEOUT. |

8153 IM001 — Function not supported |
8154 The function is not supported on the current connection to the data source. |

8155 IM002 — Data source not found and no default driver specified |
8156 The data source name specified in the browse request connection string (InConnectionString) |
8157 was not found in the system information, nor was there a default data source specification. |

8158 COMMENTS |
8159 The application uses SQLBrowseConnect() to perform an iterative process resulting in connection |

Data Management: X/Open Database Connectivity (XDBC), Version 2 237

SQLBrowseConnect() XDBC Reference Manual Pages

8160 to a data source. Each call to SQLBrowseConnect() informs the application of the next level of |
8161 detail that the application must specify. When the application has specified sufficient |
8162 information, SQLBrowseConnect() returns SQL_SUCCESS or SQL_SUCCESS_WITH_INFO, |
8163 provides in OutConnectionString a completed connection string, and completes a connection to |
8164 the data source. |

8165 InConnectionString Argument |

8166 InConnectionString contains a browse request connection string with the following syntax: |

8167 connection-string ::= attribute [;] | attribute ; connection-string |

8168 attribute ::= attribute-keyword =attribute-value |

8169 attribute-keyword ::= DSN | UID | PWD |
8170 | implementation-defined-attribute-keyword |

8171 attribute-value ::= character-string |
8172 implementation-defined-attribute-keyword ::= identifier |

8173 where character-string has zero or more characters; identifier has one or more characters; |
8174 attribute-keyword is not case-sensitive; attribute-value may be case-sensitive; and the value of the |
8175 DSN keyword does not consist solely of blanks. Keywords and attribute values should not |
8176 contain the characters [] { } () , ; ? * = ! @ \ |

8177 If in InConnectionString any keywords are repeated, or if the same or different keywords are used |
8178 in ways that would be contradictory, the implementation uses the one that appears first. |

8179 OutConnectionString Argument |

8180 Each call to SQLBrowseConnect() returns in OutConnectionString a browse result connection |
8181 string. This is a list of connection attributes. Each connection attribute consists of an attribute |
8182 keyword and a corresponding attribute value. |

8183 The browse result connection string has the following syntax: |

8184 connection-string ::= attribute [;] | attribute ; connection-string |

8185 attribute ::= [*] attribute-keyword=attribute-value |
8186 attribute-keyword ::= XDBC-attribute-keyword |
8187 | implementation-defined-attribute-keyword |

8188 XDBC-attribute-keyword = {UID | PWD}[: localized-identifier] |
8189 implementation-defined-attribute-keyword ::= identifer [: localized-identifier]|

8190 attribute-value ::= { attribute-value-list } | ? |
8191 (The braces are returned literally in OutConnectionString.) |

8192 attribute-value-list ::= character-string [:localized-character-string] |
8193 | character-string [:localized-character-string], attribute-value-list |

8194 where character-string and localized-character string have zero or more characters; identifier and |
8195 localized-identifier have one or more characters; attribute-keyword is not case-sensitive; and |
8196 attribute-value may be case sensitive. Keywords, localized identifiers, and attribute values |
8197 should not contain the characters [] { } () , ; ? * = ! @ \ |

8198 The browse result connection string syntax is used according to the following semantic rules: |

238 Direct Review (Build ID 96KAV) (Draft XDBC.33, August 1996)

Reference Manual Pages XDBC SQLBrowseConnect()

8199 • If an asterisk (*) precedes an attribute-keyword , the attribute is optional: The application is not |
8200 required to provide a value for this attribute in the next call to SQLBrowseConnect(). |

8201 • The attribute keywords UID and PWD have the same meaning as defined in |
8202 SQLDriverConnect(). |

8203 • An implementation-defined-attribute-keyword names the kind of attribute for which an attribute |
8204 value may be supplied. For example, it might be SERVER, DATABASE, HOST, or DBMS. |

8205 • All attribute keywords include a localized or user-friendly version of the keyword. |
8206 Applications might use this to interact with the user. However, the application must use the |
8207 attribute keyword, not the localized version, when forming InConnectionString for the next |
8208 call to SQLBrowseConnect(). |

8209 • An attribute-value-list enumerates actual values valid for the corresponding attribute-keyword . |
8210 For example, it might be a list of valid data sources. The application must select one element |
8211 of the list when forming InConnectionString for the next call. |

8212 If the attribute-value is a question mark, a single value corresponds to the attribute-keyword . |
8213 For example, SQLBrowseConnect() might provide UID=?; PWD=? to report that the selected |
8214 data source requires that a user identifier and password be specified. The application |
8215 specifies a value by substituting it for the question mark when forming InConnectionString for |
8216 the next call. |

8217 • Each call to SQLBrowseConnect() returns only the information the application requires to |
8218 form the browse request string for the next call. The implementation associates sufficient |
8219 information with ConnectionHandle to be able to determine the correct context for each call. |

8220 Using SQLBrowseConnect() |

8221 SQLBrowseConnect() requires an allocated connection handle. It is undefined whether the |
8222 implementation establishes a connection with the data source during the browsing process. If |
8223 SQLBrowseConnect() returns SQL_ERROR, it terminates any outstanding connections it has |
8224 made and returns ConnectionHandle to the unconnected state. |

8225 When SQLBrowseConnect() is called for the first time on a connection, InConnectionString must |
8226 contain the DSN keyword. |

8227 On each call to SQLBrowseConnect(), the application specifies the connection attribute values in |
8228 InConnectionString . The implementation returns successive levels of attributes and attribute |
8229 values in OutConnectionString ; it returns SQL_NEED_DATA as long as there are connection |
8230 attributes that have not yet been enumerated in InConnectionString . The application uses the |
8231 contents of OutConnectionString to build InConnectionString for the next call to |
8232 SQLBrowseConnect(). The application must include all mandatory attributes (those not preceded |
8233 by an asterisk in OutConnectionString) in the next call to SQLBrowseConnect(). |

8234 The application cannot specify different attribute values from those it specified in previous calls |
8235 during the same browse process. If, before completing the dialogue, the application elects to |
8236 change its selection of a data source or connection parameters, it must terminate the browse |
8237 process (see below) and start over. |

8238 When the application calls SQLBrowseConnect() with a sufficiently-complete InConnectionString |
8239 to establish a connection, SQLBrowseConnect() establishes the connection, returns |
8240 SQL_SUCCESS, and returns in OutConnectionString a connection string that the application |
8241 could provide to SQLDriverConnect() to establish a future connection to the same data source |
8242 with the same connection parameters. However, this string is not useful to shorten the dialogue |
8243 in future calls to SQLBrowseConnect(); to achieve the same connection again using |
8244 SQLBrowseConnect(), the entire sequence of calls must be repeated. |

Data Management: X/Open Database Connectivity (XDBC), Version 2 239

SQLBrowseConnect() XDBC Reference Manual Pages

8245 SQLBrowseConnect() returns SQL_NEED_DATA if there are recoverable, nonfatal errors during |
8246 the browse process (for example, if the application supplies an invalid password or an invalid |
8247 attribute keyword). When SQL_NEED_DATA is returned and the browse result connection |
8248 string is unchanged, an error has occurred and the application can call SQLGetDiagRec() to |
8249 return the SQLSTATE for browse-time errors. This lets the application correct the attribute and |
8250 continue the browse. |

8251 An application may terminate the browse process at any time by calling SQLDisconnect(). The |
8252 implementation terminates any outstanding connections and returns ConnectionHandle to the |
8253 unconnected state. |

8254 SEE ALSO |

8255 For information about ||See |||
|

8256 Overview of function ||Section 6.4.5 on page 62 |||

8257 Allocating a connection handle ||SQLAllocHandle() |||

8258 Connecting to a data source ||SQLConnect() |||

8259 Disconnecting from a data source ||SQLDisconnect() |||

8260 Connecting to a data source using a connection string or ||
8261 dialog box ||

SQLDriverConnect() |||

8262 Freeing a connection handle ||SQLFreeHandle() |||

8263 CHANGE HISTORY |

8264 Version 2 |
8265 Function added in this version. ||

240 Direct Review (Build ID 96KAV) (Draft XDBC.33, August 1996)

Reference Manual Pages XDBC SQLBulkOperations()

8266 NAME |
8267 SQLBulkOperations — Perform bulk insertions and bulk bookmark operations, including |
8268 update, delete, and fetch by bookmark. |

8269 SYNOPSIS |
8270 SQLRETURN SQLBulkOperations(|
8271 SQLHSTMTStatementHandle , |
8272 SQLUSMALLINT Operation); |

8273 ARGUMENTS |

8274 StatementHandle [Input] |
8275 Statement handle. |

8276 Operation [Input] |
8277 Operation to perform: |

8278 • SQL_ADD |
8279 • SQL_UPDATE_BY_BOOKMARK |
8280 • SQL_DELETE_BY_BOOKMARK |
8281 • SQL_FETCH_BY_BOOKMARK |

8282 RETURN VALUE |
8283 SQL_SUCCESS, SQL_SUCCESS_WITH_INFO, SQL_NEED_DATA, SQL_STILL_EXECUTING, |
8284 SQL_ERROR, or SQL_INVALID_HANDLE. |

8285 DIAGNOSTICS |
8286 When SQLBulkOperations() returns SQL_ERROR or SQL_SUCCESS_WITH_INFO, an associated |
8287 SQLSTATE value can be obtained by calling SQLGetDiagRec() with a HandleType of |
8288 SQL_HANDLE_STMT and a Handle of StatementHandle. The following SQLSTATE values are |
8289 commonly returned by SQLBulkOperations(). |

8290 The return code associated with each SQLSTATE value is SQL_ERROR, except that for |
8291 SQLSTATEvalues in class 01, the return code is SQL_SUCCESS_WITH_INFO, and except that, if |
8292 the row-set size is greater than 1 and the operation was applied to at least one row successfully, |
8293 the return code is SQL_SUCCESS_WITH_INFO. |

8294 01000 — General warning |
8295 Implementation-defined informational message. |

8296 01004 — String data, right truncation |
8297 String or binary data returned for a column or columns with a data type of SQL_C_CHAR |
8298 or SQL_C_BINARY resulted in the truncation of non-blank character or non-NULL binary |
8299 data. |

8300 01S01 — Error in row |
8301 The SQL_ATTR_ROW_ARRAY_SIZE statement attribute was greater than 1, Operation was |
8302 SQL_ADD, and an error occurred in one or more rows while performing the operation, but |
8303 at least one row was successfully added. |

8304 01S07 — Fractional truncation |
8305 Operation was SQL_FETCH_BY_BOOKMARK, the data type of the application buffer was |
8306 not SQL_C_CHAR or SQL_C_BINARY, and the data returned to application buffers for one |
8307 or more columns was truncated. For numeric data types, the fractional part of the number |
8308 was truncated. For time, timestamp, and interval data types containing a time component, |
8309 the fractional portion of the time was truncated. |

8310 07006 — Restricted data type attribute violation |
8311 Operation was SQL_FETCH_BY_BOOKMARK, and the data value of a column in the result |
8312 set could not be converted to the data type specified by TargetType in the call to |

Data Management: X/Open Database Connectivity (XDBC), Version 2 241

SQLBulkOperations() XDBC Reference Manual Pages

8313 SQLBindCol(). |

8314 Operation was SQL_UPDATE_BY_BOOKMARK or SQL_ADD, and the data value in the |
8315 application buffers could not be converted to the data type of a column in the result set. |

8316 07009 — Invalid descriptor index |
8317 Operation was SQL_ADD and a column was bound with a column number greater than the |
8318 number of columns in the result set. |

8319 21S02 — Degree of derived table does not match column list |
8320 Operation was SQL_UPDATE_BY_BOOKMARKand no columns were updatable because all |
8321 columns were either unbound, read-only, or the value in the bound length/indicator buffer |
8322 was SQL_COLUMN_IGNORE. |

8323 22001 — String data, right truncation |
8324 The assignment of a character or binary value to a column in the result set resulted in the |
8325 truncation of non-blank (for characters) or non-null (for binary) characters or octets. |

8326 22003 — Numeric value out of range |
8327 Operation was SQL_ADD or SQL_UPDATE_BY_BOOKMARK, and the assignment of a |
8328 numeric value to a column in the result set caused the whole (as opposed to fractional) part |
8329 of the number to be truncated. |

8330 Operation was SQL_FETCH_BY_BOOKMARK, and returning the numeric value for one or |
8331 more bound columns would have caused a loss of significant digits. |

8332 22007 — Invalid date/time format |
8333 Operation was SQL_ADD or SQL_UPDATE_BY_BOOKMARK, and an invalid date or |
8334 timestamp value was assigned to a column in the result set. |

8335 Operation was SQL_FETCH_BY_BOOKMARK, and an invalid date or timestamp value |
8336 would have been returned for one or more bound columns. |

8337 22008 — Date/time field overflow |
8338 Operation was SQL_ADD or SQL_UPDATE_BY_BOOKMARK, and the performance of |
8339 date/time arithmetic on data being sent to or retrieved from the result set resulted in a |
8340 date/time field (that is, the year, month, day, hour, minute, or second field) of the result |
8341 being outside the permissible range of values for the field, or being invalid based on the |
8342 natural rules for date/times based on the Gregorian calendar. |

8343 22015 — Interval field overflow |
8344 Operation was SQL_ADD or SQL_UPDATE_BY_BOOKMARK, and the assignment of an |
8345 exact numeric value to a column in the result set with an interval data type caused a loss of |
8346 significant digits. |

8347 Operation was SQL_ADD or SQL_UPDATE_BY_BOOKMARK, and the assignment of an |
8348 interval value to a column in the result set with an interval data type caused a loss of |
8349 significant digits in the leading field of the interval. |

8350 Operation was SQL_ADD or SQL_UPDATE_BY_BOOKMARK, and there was no |
8351 representation of the data in the interval data type of the result set. |

8352 Operation argument was SQL_FETCH_BY_BOOKMARK, and returning an exact numeric |
8353 value to an application buffer with an interval data type caused a loss of significant digits. |

8354 Operation was SQL_FETCH_BY_BOOKMARK, and returning an interval value to an |
8355 application buffer with an interval data type caused a loss of significant digits in the leading |
8356 field of the interval. |

8357 Operation was SQL_FETCH_BY_BOOKMARK, and there was no representation of the data |
8358 in the interval C structure in the application buffer. |

242 Direct Review (Build ID 96KAV) (Draft XDBC.33, August 1996)

Reference Manual Pages XDBC SQLBulkOperations()

8359 22018 — Invalid character value for cast specification |
8360 Operation was SQL_FETCH_BY_BOOKMARK, a character column in the result set was |
8361 bound to an exact numeric or approximate numeric C buffer, and a character value in the |
8362 result set could not be cast to a valid exact numeric or approximate numeric value, |
8363 respectively. |

8364 Operation was SQL_FETCH_BY_BOOKMARK, a character column in the result set was |
8365 bound to a date, time, timestamp, or interval C buffer, and a character value in the result set |
8366 could not be cast to a valid date, time, timestamp, or interval value, respectively. |

8367 Operation was SQL_ADD or SQL_UPDATE_BY_BOOKMARK, a character column in an |
8368 application buffer was bound to an exact numeric or approximate numeric data type in the |
8369 result set, and a value in the application buffer could not be cast to a valid exact numeric or |
8370 approximate numeric value, respectively. |

8371 Operation was SQL_ADD or SQL_UPDATE_BY_BOOKMARK, a character column in an |
8372 application buffer was bound to a date, time, timestamp, or interval data type in the result |
8373 set, and a value in the application buffer could not be cast to a valid date, time, timestamp, |
8374 or interval value, respectively. |

8375 23000 — Integrity constraint violation |
8376 Operation was SQL_ADD, SQL_DELETE_BY_BOOKMARK, or |
8377 SQL_UPDATE_BY_BOOKMARK,and an integrity constraint was violated. |

8378 Operation was SQL_ADD and a column that was not bound is defined as NOT NULL or has |
8379 no default. |

8380 Operation was SQL_ADD, the length specified in the bound StrLen_or_IndPtr buffer was |
8381 SQL_COLUMN_IGNORE, and the column did not have a default value. |

8382 24000 — Invalid cursor state |
8383 StatementHandle was in an executed state but no result set was associated with |
8384 StatementHandle. |

8385 42000 — Syntax error or access violation |
8386 The data source was unable to lock the row as needed to perform the operation requested in |
8387 Operation . |

8388 HY000 — General error |
8389 An error occurred for which there was no specific SQLSTATE and for which no |
8390 implementation-specific SQLSTATE was defined. The error message returned by |
8391 SQLGetDiagRec() in the *MessageTextbuffer describes the error and its cause. |

8392 HY001 — Memory allocation error |
8393 The implementation failed to allocate memory required to support execution or completion |
8394 of the function. |

8395 HY008 — Operation canceled |
8396 Asynchronous processing was enabled for StatementHandle. The function was called and |
8397 before it completed execution, SQLCancel() was called on StatementHandle. The function |
8398 was then called again on StatementHandle. |

8399 The function was called and, before it completed execution, SQLCancel() was called on |
8400 StatementHandle from a different thread in a multithread application. |

8401 HY009 — Invalid use of null pointer |
8402 Operation was SQL_USE_ROW_OPERATION_PTR, and the |
8403 SQL_ATTR_ROW_STATUS_PTRstatement attribute was a null pointer. |

Data Management: X/Open Database Connectivity (XDBC), Version 2 243

SQLBulkOperations() XDBC Reference Manual Pages

8404 HY010 — Function sequence error |
8405 StatementHandle was not in an executed state. The function was called without first calling |
8406 SQLExecDirect(), SQLExecute(), or a catalog function. |

8407 An asynchronously executing function (not this one) was called for the StatementHandle |
8408 and was still executing when this function was called. |

8409 SQLBulkOperations(), SQLExecDirect(), SQLExecute(), or SQLSetPos() was called for |
8410 StatementHandle and returned SQL_NEED_DATA.This function was called before data was |
8411 sent for all data-at-execution parameters or columns. |

8412 HY090 — Invalid string or buffer length |
8413 Operation was SQL_ADD or SQL_UPDATE_BY_BOOKMARK, a data value was a null |
8414 pointer, and the column length value was not 0, SQL_DATA_AT_EXEC, |
8415 SQL_COLUMN_IGNORE, SQL_NULL_DATA, or less than or equal to |
8416 SQL_LEN_DATA_AT_EXEC_OFFSET. |

8417 Operation was SQL_ADD or SQL_UPDATE_BY_BOOKMARK, a data value was not a null |
8418 pointer, and the column length value was less than 0, but not equal to |
8419 SQL_DATA_AT_EXEC,SQL_COLUMN_IGNORE, SQL_NTS, or SQL_NULL_DATA,or less |
8420 than or equal to SQL_LEN_DATA_AT_EXEC_OFFSET. (This error is reported only if the |
8421 application data type is SQL_C_BINARY or SQL_C_CHAR.) |

8422 The value in a length/indicator buffer was SQL_DATA_AT_EXEC;the SQL type was either |
8423 SQL_LONGVARCHAR, SQL_WLONGVARCHAR, SQL_LONGVARBINARY, or a long, |
8424 data-source-specific data type; and the SQL_NEED_LONG_DATA_LEN option in |
8425 SQLGetInfo() was ‘‘Y’’. |

8426 HY092 — Invalid attribute identifier |
8427 Operation was invalid. |

8428 Operation was SQL_ADD, SQL_UPDATE_BY_BOOKMARK, or |
8429 SQL_DELETE_BY_BOOKMARK, and the SQL_ATTR_CONCURRENCY statement |
8430 attribute was set to SQL_CONCUR_READ_ONLY. |

8431 HYC00 — Optional feature not implemented |
8432 The implementation does not support the operation requested in Operation . |

8433 HYT00 — Timeout expired |
8434 The query timeout period expired before the data source returned the result set. The |
8435 timeout period is set through SQLSetStmtAttr() with an Attribute of |
8436 SQL_ATTR_QUERY_TIMEOUT. |

8437 HYT01 — Connection timeout expired |
8438 The connection timeout period expired before the data source responded to the request. The |
8439 connection timeout period is set through SQLSetConnectAttr(), |
8440 SQL_ATTR_CONNECTION_TIMEOUT. |

8441 IM001 — Function not supported |
8442 The function is not supported on the current connection to the data source. |

8443 COMMENTS |
8444 An application uses SQLBulkOperations() to perform the following operations on the table that |
8445 corresponds to the current query: |

8446 • Add new rows. |
8447 • Update a set of rows where each row is identified by a bookmark. |
8448 • Delete a set of rows where each row is identified by a bookmark. |
8449 • Fetch a set of rows where each row is identified by a bookmark. |

244 Direct Review (Build ID 96KAV) (Draft XDBC.33, August 1996)

Reference Manual Pages XDBC SQLBulkOperations()

8450 After a call to SQLBulkOperations(), the cursor position is undefined. The application has to call |
8451 SQLFetchScroll() in order to set the cursor position. An application should only call |
8452 SQLFetchScroll() with FetchOrientation of SQL_FETCH_FIRST, SQL_FETCH_LAST, |
8453 SQL_FETCH_ABSOLUTE, or SQL_FETCH_BOOKMARK. The cursor position is undefined if |
8454 the application calls SQLFetch(), or SQLFetchScroll() with FetchOrientation of |
8455 SQL_FETCH_PRIOR, SQL_FETCH_NEXT, or SQL_FETCH_RELATIVE. |

8456 Column can be ignored in bulk operations performed by a call to SQLBulkOperations() by setting |
8457 the column length/indicator buffer in the call to SQLBindCol() to SQL_COLUMN_IGNORE. |

8458 Performing Bulk Inserts |

8459 To insert data with SQLBulkOperations(), an application: |

8460 • Executes a query that returns a result set. |

8461 • Sets the SQL_ATTR_ROW_ARRAY_SIZE statement attribute to the number of rows that it |
8462 wants to insert. |

8463 • Calls SQLBindCol() to bind the data that it wants to insert. The data is bound to an array with |
8464 a size equal to the value of SQL_ATTR_ROW_ARRAY_SIZE. |

8465 • Optionally sets the SQL_ATTR_ROW_STATUS_PTRstatement attribute to point to an array |
8466 of elements with a size equal to the value of SQL_ATTR_ROW_ARRAY_SIZE. If the |
8467 application does not do this, then it must set SQL_ATTR_ROW_STATUS_PTRto NULL if the |
8468 value of SQL_ATTR_ROW_ARRAY_SIZE is greater than or equal to the current row-set size. |
8469 Failing to do so can result in a crash. |

8470 • Calls SQLBulkOperations(StatementHandle, SQL_ADD) to perform the insertion. |

8471 • If the application has set the SQL_ATTR_ARRAY_STATUS_PTRstatement attribute, then it |
8472 can inspect this array to see the result of the operation. |

8473 The application need not set the SQL_ATTR_OPERATION_PTRstatement attribute because it is |
8474 not used. The application selects the rows it wants to add by copying only those rows into the |
8475 bound data array. |

8476 If an application binds column 0 before calling SQLBulkOperations() with Operation of |
8477 SQL_ADD, the implementation updates the bound column 0 buffers with the bookmark values |
8478 for the newly inserted row. For this to occur, the application must have set |
8479 SQL_ATTR_USE_BOOKMARKS statement attribute to SQL_UB_VARIABLE before executing |
8480 the statement. |

8481 Long data can be added by SQLBulkOperations(). The application need not call SQLFetch() or |
8482 SQLFetchScroll() before calling SQLBulkOperations(). |

8483 It is implementation-defined what happens if the application calls SQLBulkOperations() with |
8484 Operation of SQL_ADD on a cursor that contains duplicate columns. |

8485 Performing Bulk Updates Using Bookmarks |

8486 To perform bulk updates with SQLBulkOperations(), an application: |

8487 • Sets the SQL_ATTR_USE_BOOKMARKS statement attribute to SQL_UB_VARIABLE. |

8488 • Executes a query that returns a result set. |

8489 • Sets the SQL_ATTR_ROW_ARRAY_SIZE statement attribute to the number of rows that it |
8490 wants to update. |

8491 • Calls SQLBindCol() to bind the data that it wants to update. The data is bound to an array |
8492 with a size equal to the value of SQL_ATTR_ROW_ARRAY_SIZE. It also calls SQLBindCol() |

Data Management: X/Open Database Connectivity (XDBC), Version 2 245

SQLBulkOperations() XDBC Reference Manual Pages

8493 to bind column 0 (the bookmark column). |

8494 • Copies the bookmarks for rows that it is interested in updating into the array bound to |
8495 column 0. |

8496 • Updates the data in the bound buffers. |

8497 • Optionally sets the SQL_ATTR_ROW_STATUS_PTRstatement attribute to point to an array |
8498 of elements with a size equal to the value of SQL_ATTR_ROW_ARRAY_SIZE. If the |
8499 application does not do this, then it must set SQL_ATTR_ROW_STATUS_PTRto NULL if the |
8500 value of SQL_ATTR_ROW_ARRAY_SIZE is greater than or equal to the current row-set size. |
8501 Failing to do so can result in a crash. |

8502 • Calls SQLBulkOperations(StatementHandle, SQL_UPDATE_BY_BOOKMARK). |

8503 • If the application has set the SQL_ATTR_ARRAY_STATUS_PTRstatement attribute, then it |
8504 can inspect this array to see the result of the operation. |

8505 • Optionally calls SQLBulkOperations(StatementHandle, SQL_FETCH_BY_BOOKMARK) to |
8506 fetch data into the bound application buffers to verify that the update has occurred. |

8507 The application need not set the SQL_ATTR_OPERATION_PTRstatement attribute because it is |
8508 not used. The application selects the rows it wants to update by copying only the bookmarks for |
8509 those rows into the bound bookmark array. |

8510 Bulk updates performed by SQLBulkOperations() can include long data. |

8511 If bookmarks persist across cursors, then the application need not call SQLFetch() or |
8512 SQLFetchScroll() before updating by bookmarks. It can use bookmarks that it has stored from a |
8513 previous cursor. If bookmarks do not persist across cursors, then the application has to call |
8514 SQLFetch() or SQLFetchScroll() once in order to retrieve the bookmarks. |

8515 It is implementation-defined what happens if SQLBulkOperations() with Operation argument of |
8516 SQL_UPDATE_BY_BOOKMARKis called on a cursor that contains duplicate columns. |

8517 Performing Bulk Fetches Using Bookmarks |

8518 To perform bulk fetches with SQLBulkOperations(), an application: |

8519 • Sets the SQL_ATTR_USE_BOOKMARKS statement attribute to SQL_UB_VARIABLE. |

8520 • Executes a query that returns a result set. |

8521 • Sets the SQL_ATTR_ROW_ARRAY_SIZE statement attribute to the number of rows that it |
8522 wants to fetch. |

8523 • Calls SQLBindCol() to bind the data that it wants to fetch. The data is bound to an array with |
8524 a size equal to the value of SQL_ATTR_ROW_ARRAY_SIZE. It also calls SQLBindCol() to |
8525 bind column 0 (the bookmark column). |

8526 • Copies the bookmarks for rows that it is interested in fetching into the array bound to |
8527 column 0. |

8528 • Optionally sets the SQL_ATTR_ROW_STATUS_PTRstatement attribute to point to an array |
8529 of elements with a size equal to the value of SQL_ATTR_ROW_ARRAY_SIZE. If the |
8530 application does not do this, then it must set SQL_ATTR_ROW_STATUS_PTRto NULL if the |
8531 value of SQL_ATTR_ROW_ARRAY_SIZE is greater than or equal to the current row-set size. |
8532 Failing to do so can result in a crash. |

8533 • Calls SQLBulkOperations(StatementHandle, SQL_FETCH_BY_BOOKMARK). |

8534 • If the application has set the SQL_ATTR_ARRAY_STATUS_PTRstatement attribute, then it |
8535 can inspect this array to see the result of the operation. |

246 Direct Review (Build ID 96KAV) (Draft XDBC.33, August 1996)

Reference Manual Pages XDBC SQLBulkOperations()

8536 The application need not set the SQL_ATTR_OPERATION_PTRstatement attribute because it is |
8537 not used. The application selects the rows it wants to fetch by copying only the bookmarks for |
8538 those rows into the bound bookmark array. |

8539 If bookmarks persist across cursors, then the application need not call SQLFetch() or |
8540 SQLFetchScroll() before fetching by bookmarks. It can use bookmarks that it has stored from a |
8541 previous cursor. If bookmarks do not persist across cursors, then the application has to call |
8542 SQLFetch() or SQLFetchScroll() once in order to retrieve the bookmarks. |

8543 Performing Bulk Deletes Using Bookmarks |

8544 To perform bulk deletes with SQLBulkOperations(), an application: |

8545 • Sets the SQL_ATTR_USE_BOOKMARKS statement attribute to SQL_UB_VARIABLE. |

8546 • Executes a query that returns a result set. |

8547 • Sets the SQL_ATTR_ROW_ARRAY_SIZE statement attribute to the number of rows that it |
8548 wants to delete. |

8549 • Calls SQLBindCol() to bind column 0 (the bookmark column). |

8550 • Copies the bookmarks for rows that it is interested in updating into the array bound to |
8551 column 0. |

8552 • Optionally sets the SQL_ATTR_ROW_STATUS_PTRstatement attribute to point to an array |
8553 of elements with a size equal to the value of SQL_ATTR_ROW_ARRAY_SIZE. If the |
8554 application does not do this, then it must set SQL_ATTR_ROW_STATUS_PTRto NULL if the |
8555 value of SQL_ATTR_ROW_ARRAY_SIZE is greater than or equal to the current row-set size. |
8556 Failing to do so can result in a crash. |

8557 • Calls SQLBulkOperations(StatementHandle, SQL_DELETE_BY_BOOKMARK). |

8558 • If the application has set the SQL_ATTR_ARRAY_STATUS_PTRstatement attribute, then it |
8559 can inspect this array to see the result of the operation. |

8560 The application need not set the SQL_ATTR_OPERATION_PTRstatement attribute because it is |
8561 not used. The application selects the rows it wants to delete by copying only the bookmarks for |
8562 those rows into the bound bookmark array. |

8563 If bookmarks persist across cursors, then the application need not call SQLFetch() or |
8564 SQLFetchScroll() before updating by bookmarks. It can use bookmarks that it has stored from a |
8565 previous cursor. If bookmarks do not persist across cursors, then the application has to call |
8566 SQLFetch() or SQLFetchScroll() once in order to retrieve the bookmarks. |

8567 Row Status Array |

8568 The implementation row status array contains status values for each row of data in the row-set |
8569 after a call to SQLBulkOperations(). The implementation sets the status values in this array after |
8570 a call to SQLFetch(), SQLFetchScroll,() SQLSetPos(), or SQLBulkOperations(). This array is initially |
8571 populated by a call to SQLBulkOperations() if SQLFetch() or SQLFetchScroll() has not been called |
8572 prior to SQLBulkOperations(). This array is pointed to by the SQL_ATTR_ROW_STATUS_PTR |
8573 statement attribute. The number of elements in the row status arrays must equal the number of |
8574 rows in the row-set (as defined by the SQL_ATTR_ROW_ARRAY_SIZEstatement attribute). For |
8575 information about this row status array, see the SQLFetch(). |

8576 The application row status array, used to ignore a row in a bulk operation, is not used with |
8577 SQLBulkOperations(). |

Data Management: X/Open Database Connectivity (XDBC), Version 2 247

SQLBulkOperations() XDBC Reference Manual Pages

8578 SEE ALSO |

8579 For information about ||See |||
|

8580 Binding a buffer to a column in a result set ||SQLBindCol() |||

8581 Canceling statement processing ||SQLCancel() |||

8582 Fetching a block of data or scrolling through a ||
8583 result set ||

SQLFetchScroll() |||

8584 Getting a single field of a descriptor ||SQLGetDescField() |||

8585 Getting multiple fields of a descriptor ||SQLGetDescRec() |||

8586 Setting a single field of a descriptor ||SQLSetDescField() |||

8587 Setting multiple fields of a descriptor ||SQLSetDescRec() |||

8588 Positioning the cursor, refreshing data in the row- ||
8589 set, or updating or deleting data in the row-set ||

SQLSetPos() |||

8590 Setting a statement attribute ||SQLSetStmtAttr() |||

8591 CHANGE HISTORY |

8592 Version 2 |
8593 Function added in this version. ||

248 Direct Review (Build ID 96KAV) (Draft XDBC.33, August 1996)

Reference Manual Pages ISO 92 SQLCancel()

8594 NAME |
8595 SQLCancel — Cancel the processing of a statement. |

8596 SYNOPSIS |
8597 SQLRETURN SQLCancel(|
8598 SQLHSTMTStatementHandle); |

8599 ARGUMENTS |

8600 StatementHandle [Input] |
8601 Statement handle. |

8602 RETURN VALUE |
8603 SQL_SUCCESS, SQL_SUCCESS_WITH_INFO, SQL_ERROR, or SQL_INVALID_HANDLE. |

8604 DIAGNOSTICS |
8605 When SQLCancel() returns SQL_ERROR or SQL_SUCCESS_WITH_INFO, an associated |
8606 SQLSTATE value can be obtained by calling SQLGetDiagRec() with a HandleType of |
8607 SQL_HANDLE_STMT and a Handle of StatementHandle. The following SQLSTATE values are |
8608 commonly returned by SQLCancel(). The return code associated with each SQLSTATE value is |
8609 SQL_ERROR, except that for SQLSTATE values in class 01, the return code is |
8610 SQL_SUCCESS_WITH_INFO. |

8611 01000 — General warning |
8612 Implementation-defined informational message. |

8613 HY000 — General error |
8614 An error occurred for which there was no specific SQLSTATE and for which no |
8615 implementation-specific SQLSTATE was defined. The error message returned by |
8616 SQLGetDiagRec() in the *MessageTextbuffer describes the error and its cause. |

8617 HY001 — Memory allocation error |
8618 The implementation failed to allocate memory required to support execution or completion |
8619 of the function. |

8620 HY018 — Server declined cancel request |
8621 Communication errors caused the server to decline the cancel request. |

8622 HYT01 — Connection timeout expired |
8623 The connection timeout period expired before the data source responded to the request. The |
8624 connection timeout period is set through SQLSetConnectAttr(), |
8625 SQL_ATTR_CONNECTION_TIMEOUT. |

8626 IM001 — Function not supported |
8627 The function is not supported on the current connection to the data source. |

8628 COMMENTS |
8629 An application can call SQLCancel() to cancel the following types of processing on a statement: |

8630 • A function running asynchronously on the statement. |

8631 • A function on a statement that needs data. |

8632 • A function running on the statement on another thread. |

8633 When SQLCancel() is called, diagnostic records are returned for a function running |
8634 asynchronously in a statement, or for a function on a statement that needs data; diagnostic |
8635 records are not returned, however, for a function running on a statement on another thread. |

Data Management: X/Open Database Connectivity (XDBC), Version 2 249

SQLCancel() ISO 92 Reference Manual Pages

8636 Canceling Asynchronous Processing |

8637 After an application calls a function asynchronously, it calls the function repeatedly to |
8638 determine whether it has finished processing. If the function is still processing, it returns |
8639 SQL_STILL_EXECUTING. If the function has finished processing, it returns a different code. |

8640 After any call to the function that returns SQL_STILL_EXECUTING, an application can call |
8641 SQLCancel() to cancel the function. If the cancel request is successful, SQLCancel() returns |
8642 SQL_SUCCESS. This does not indicate that the function was actually canceled; it indicates that |
8643 the cancel request was processed. The criteria under which a function is canceled are undefined. |
8644 The application must continue to call the original function until the return code is not |
8645 SQL_STILL_EXECUTING. If the function was successfully canceled, the return code is |
8646 SQL_ERROR and SQLSTATEHY008 (Operation canceled). If the function completed its normal |
8647 processing, the return code is SQL_SUCCESS or SQL_SUCCESS_WITH_INFO if the function |
8648 succeeded or SQL_ERROR and a SQLSTATE other than HY008 (Operation canceled) if the |
8649 function failed. |

8650 Canceling Functions that Need Data |

8651 After SQLExecute() or SQLExecDirect() returns SQL_NEED_DATAand before data has been sent |
8652 for all data-at-execution parameters, an application can call SQLCancel() to cancel the statement |
8653 execution. After the statement has been canceled, the application can call SQLExecute() or |
8654 SQLExecDirect() again. |

8655 After SQLBulkOperations() or SQLSetPos() returns SQL_NEED_DATA and before data has been |
8656 sent for all data-at-execution columns, an application can call SQLCancel() to cancel the |
8657 operation. After the operation has been canceled, the application can call SQLBulkOperations() |
8658 or SQLSetPos() again; canceling does not affect the cursor state or the current cursor position. |

8659 Canceling Functions in Multithreaded Applications |

8660 If neither asynchronous execution nor the data-at-execution dialogue is active on |
8661 StatementHandle, a multithread application can call SQLCancel() from one thread to try to cancel |
8662 execution of an SQL statement by another thread that is using the same connection. The |
8663 application passes SQLCancel() the statement handle used by the target function in the other |
8664 thread. The return code of SQLCancel() indicates only whether the implementation processed |
8665 the request successfully. Only SQL_SUCCESS or SQL_ERROR can be returned; no SQLSTATEs |
8666 are returned. The return code of the original function indicates whether it completed normally or |
8667 was canceled. |

8668 This document does not specify whether or how an application could get control of the |
8669 processor during SQL statement execution in order to call SQLCancel(). |

8670 If asynchronous execution or the data-at-execution dialogue is active, a call to SQLCancel() |
8671 affects these features, as described above, in precedence to canceling an operation in a different |
8672 thread. When calling SQLCancel() to try to cancel an operation in a different process or thread: |

8673 • If an XDBC function is executing asynchronously on StatementHandle, the attempt to cancel |
8674 execution may interfere with the other process’ or thread’s activity in polling the completion |
8675 of, or cancelling, its own operation. |

8676 • If the data-on-execute dialogue is in progress on StatementHandle, the attempt to cancel |
8677 execution could affect the progress of that dialogue. |

8678 This could result in the function in the other thread failing with an SQLSTATE of HY010 |
8679 (Function sequence error). |

250 Direct Review (Build ID 96KAV) (Draft XDBC.33, August 1996)

Reference Manual Pages ISO 92 SQLCancel()

8680 SEE ALSO |

8681 For information about ||See |||
|

8682 Binding a buffer to a parameter ||SQLBindParameter() |||

8683 Performing bulk insert or update operations ||SQLBulkOperations() |||

8684 Executing an SQL statement ||SQLExecDirect() |||

8685 Executing a prepared SQL statement ||SQLExecute() |||

8686 Freeing a statement handle ||SQLFreeStmt() |||

8687 Positioning the cursor in a row-set, refreshing data in the ||
8688 row-set, or updating or deleting data in the row-set ||

SQLSetPos() |||

8689 Returning the next parameter to send data for ||SQLParamData() |||

8690 Sending parameter data at execution time ||SQLPutData() |||

8691 CHANGE HISTORY |

8692 Version 2 |
8693 Revised generally. See Alignment with Popular Implementations on page 2. ||

Data Management: X/Open Database Connectivity (XDBC), Version 2 251

SQLCloseCursor() ISO 92 Reference Manual Pages

8694 NAME |
8695 SQLCloseCursor — Close a cursor that has been opened on a statement, discarding pending |
8696 results. |

8697 SYNOPSIS |
8698 SQLRETURN SQLCloseCursor(|
8699 SQLHSTMTStatementHandle); |

8700 ARGUMENTS |

8701 StatementHandle [Input] |
8702 Statement handle |

8703 RETURN VALUE |
8704 SQL_SUCCESS, SQL_SUCCESS_WITH_INFO, SQL_ERROR, or SQL_INVALID_HANDLE. |

8705 DIAGNOSTICS |
8706 When SQLCloseCursor() returns SQL_ERROR or SQL_SUCCESS_WITH_INFO, an associated |
8707 SQLSTATE value can be obtained by calling SQLGetDiagRec() with a HandleType of |
8708 SQL_HANDLE_STMT and a Handle of StatementHandle. The following SQLSTATE values are |
8709 commonly returned by SQLCloseCursor(). The return code associated with each SQLSTATE |
8710 value is SQL_ERROR, except that for SQLSTATE values in class 01, the return code is |
8711 SQL_SUCCESS_WITH_INFO. |

8712 01000 — General warning |
8713 Implementation-defined informational message. |

8714 24000 — Invalid cursor state |
8715 No cursor was open on the StatementHandle. |

8716 HY000 — General error |
8717 An error occurred for which there was no specific SQLSTATE and for which no |
8718 implementation-specific SQLSTATE was defined. The error message returned by |
8719 SQLGetDiagRec() in the *MessageTextbuffer describes the error and its cause. |

8720 HY001 — Memory allocation error |
8721 The implementation failed to allocate memory required to support execution or completion |
8722 of the function. |

8723 HY010 — Function sequence error |
8724 An asynchronously executing function was called for StatementHandle and was still |
8725 executing when this function was called. |

8726 SQLBulkOperations(), SQLExecDirect(), SQLExecute(), or SQLSetPos() was called for |
8727 StatementHandle and returned SQL_NEED_DATA.This function was called before data was |
8728 sent for all data-at-execution parameters or columns. |

8729 HYT01 — Connection timeout expired |
8730 The connection timeout period expired before the data source responded to the request. The |
8731 connection timeout period is set through SQLSetConnectAttr(), |
8732 SQL_ATTR_CONNECTION_TIMEOUT. |

8733 IM001 — Function not supported |
8734 The function is not supported on the current connection to the data source. |

8735 COMMENTS |
8736 After an application calls SQLCloseCursor(), the application can reopen the cursor later by |
8737 executing a SELECT statement again with the same or different parameter values. |

8738 SQLCloseCursor() returns SQLSTATE 24000 (Invalid cursor state) if no cursor is open. Calling |
8739 SQLCloseCursor() is equivalent to calling SQLFreeStmt() with the SQL_CLOSE option, with the |

252 Direct Review (Build ID 96KAV) (Draft XDBC.33, August 1996)

Reference Manual Pages ISO 92 SQLCloseCursor()

8740 exception that SQLFreeStmt() with SQL_CLOSE has no effect on the application if no cursor is |
8741 open on the statement, while SQLCloseCursor() returns SQLSTATE24000 (Invalid cursor state). |

8742 SEE ALSO |

8743 For information about ||See |||
|

8744 Canceling statement processing ||SQLCancel() |||

8745 Freeing a handle ||SQLFreeHandle() |||

8746 Process multiple result sets ||SQLMoreResults() |||

8747 CHANGE HISTORY |

8748 Version 2 |
8749 Revised generally. See Alignment with Popular Implementations on page 2. ||

Data Management: X/Open Database Connectivity (XDBC), Version 2 253

SQLColAttribute() ISO 92 Reference Manual Pages

8750 NAME |
8751 SQLColAttribute — Return descriptor information for a column in a result set. |

8752 SYNOPSIS |
8753 SQLRETURN SQLColAttribute (|
8754 SQLHSTMTStatementHandle , |
8755 SQLUSMALLINT ColumnNumber , |
8756 SQLUSMALLINT FieldIdentifier , |
8757 SQLPOINTER CharacterAttributePtr , |
8758 SQLSMALLINT BufferLength , |
8759 SQLSMALLINT * StringLengthPtr , |
8760 SQLPOINTER NumericAttributePtr); |

8761 ARGUMENTS |

8762 StatementHandle [Input] |
8763 Statement handle. |

8764 ColumnNumber [Input] |
8765 The number of the record in the IRD from which the field value is to be retrieved. This |
8766 argument corresponds to the column number of result data, ordered sequentially from left |
8767 to right, starting at 1. Columns may be described in any order. |

8768 Column 0 can be specified in this argument, but all values except SQL_DESC_TYPE and |
8769 SQL_DESC_OCTET_LENGTH return undefined values. |

8770 FieldIdentifier [Input] |
8771 The field in row ColumnNumber of the IRD that is to be returned (see ‘‘Comments’’). |

8772 CharacterAttributePtr [Output] |
8773 Pointer to a buffer in which to return the value in the FieldIdentifier field of the |
8774 ColumnNumber row of the IRD, if the field is a character string. Otherwise, the field is |
8775 unused. |

8776 BufferLength [Input] |
8777 The length of the *CharacterAttributePtr buffer, if the field is a character string. Otherwise, |
8778 this field is ignored. |

8779 StringLengthPtr [Output] |
8780 Pointer to a buffer in which to return the total number of octets (excluding the null |
8781 terminator for character data) available to return in *CharacterAttributePtr. |

8782 • For character data, if the number of octets available to return is greater than or equal to |
8783 BufferLength, the descriptor information in *CharacterAttributePtr is truncated to |
8784 BufferLength minus the length of a null terminator and is null-terminated. |

8785 • For all other types of data, the value of BufferLength is ignored and the implementation |
8786 assumes the size of *CharacterAttributePtr is 32 bits. |

8787 NumericAttributePtr [Output] |
8788 Pointer to an integer buffer in which to return the value in the FieldIdentifier field of the |
8789 ColumnNumber row of the IRD, if the field is numeric, such as |
8790 SQL_DESC_COLUMN_LENGTH. Otherwise, the field is unused. |

8791 RETURN VALUE |
8792 SQL_SUCCESS, SQL_SUCCESS_WITH_INFO, SQL_STILL_EXECUTING, SQL_ERROR, or |
8793 SQL_INVALID_HANDLE. |

8794 DIAGNOSTICS |
8795 When SQLColAttribute() returns SQL_ERROR or SQL_SUCCESS_WITH_INFO, an associated |

254 Direct Review (Build ID 96KAV) (Draft XDBC.33, August 1996)

Reference Manual Pages ISO 92 SQLColAttribute()

8796 SQLSTATE value can be obtained by calling SQLGetDiagRec() with a HandleType of |
8797 SQL_HANDLE_STMT and an Handle of StatementHandle. The following SQLSTATE values are |
8798 commonly returned by SQLColAttribute(). The return code associated with each SQLSTATE |
8799 value is SQL_ERROR, except that for SQLSTATE values in class 01, the return code is |
8800 SQL_SUCCESS_WITH_INFO. |

8801 01000 — General warning |
8802 Implementation-defined informational message. |

8803 01004 — String data, right truncation |
8804 The buffer *CharacterAttributePtr was not large enough to return the entire string value, so |
8805 the string value was truncated. The length of the untruncated string value is returned in |
8806 *StringLengthPtr. |

8807 07005 — Prepared statement not a cursor-specification |
8808 The statement associated with the StatementHandle did not return a result set. There were |
8809 no columns to describe. |

8810 07009 — Invalid descriptor index |
8811 ColumnNumber was 0 and the SQL_ATTR_USE_BOOKMARKS statement attribute was |
8812 SQL_UB_OFF. |

8813 ColumnNumber was less than 0. |

8814 ColumnNumber was greater than the number of columns in the result set. |

8815 HY000 — General error |
8816 An error occurred for which there was no specific SQLSTATE and for which no |
8817 implementation-specific SQLSTATE was defined. The error message returned by |
8818 SQLGetDiagField() from the diagnostic data structure describes the error and its cause. |

8819 HY001 — Memory allocation error |
8820 The implementation failed to allocate memory required to support execution or completion |
8821 of the function. |

8822 HY008 — Operation canceled |
8823 Asynchronous processing was enabled for StatementHandle. The function was called and |
8824 before it completed execution, SQLCancel() was called on StatementHandle. The function |
8825 was then called again on StatementHandle. |

8826 The function was called and, before it completed execution, SQLCancel() was called on |
8827 StatementHandle from a different thread in a multithread application. |

8828 HY010 — Function sequence error |
8829 The function was called prior to calling SQLPrepare() or SQLExecDirect() for |
8830 StatementHandle. |

8831 An asynchronously executing function (not this one) was called for StatementHandle and |
8832 was still executing when this function was called. |

8833 SQLBulkOperations(), SQLExecDirect(), SQLExecute(), or SQLSetPos() was called for |
8834 StatementHandle and returned SQL_NEED_DATA.This function was called before data was |
8835 sent for all data-at-execution parameters or columns. |

8836 HY090 — Invalid string or buffer length |
8837 BufferLength was less than 0. |

8838 HY091 — Invalid descriptor field identifier |
8839 FieldIdentifier was not one of the defined values or an implementation-defined value. |

Data Management: X/Open Database Connectivity (XDBC), Version 2 255

SQLColAttribute() ISO 92 Reference Manual Pages

8840 HYC00 — Optional feature not implemented |
8841 The data source does not support the value of FieldIdentifier . |

8842 HYT01 — Connection timeout expired |
8843 The connection timeout period expired before the data source responded to the request. The |
8844 connection timeout period is set through SQLSetConnectAttr(), |
8845 SQL_ATTR_CONNECTION_TIMEOUT. |

8846 IM001 — Function not supported |
8847 The function is not supported on the current connection to the data source. |

8848 When the application calls SQLColAttribute() after SQLPrepare() and before SQLExecute(), it can |
8849 return any SQLSTATE that can be returned by SQLPrepare() or SQLExecute(), depending on |
8850 when the data source evaluates the SQL statement associated with StatementHandle (see |
8851 Performance Note on page 279). |

8852 COMMENTS |
8853 A call to SQLColAttribute() returns one piece of descriptive information about a column of the |
8854 result set returned on StatementHandle. The information is returned in one of two ways, |
8855 indicated by (N) or (C) in the list of valid values of FieldIdentifier: |

8856 (N) The information is either an integer value or a 32-bit implementation-defined value. |
8857 SQLColAttribute() returns the information in *NumericAttributePtr and does not use or |
8858 modify CharacterAttributePtr or StringLengthPtr. |

8859 (C) The information is a character string. SQLColAttribute() returns the information in |
8860 *CharacterAttributePtr and sets StringLengthPtr. It does not use or modify |
8861 NumericAttributePtr. |

8862 Valid values of FieldIdentifier include at least all the descriptor fields that are defined for the IRD. |
8863 (This information can also be retrieved by calling SQLGetDescField() and supplying the same |
8864 values as FieldIdentifier .) Additional descriptor fields are likely to be defined to take advantage |
8865 of different data sources. |

8866 The following are the valid values of FieldIdentifier . (Header) denotes header fields; for these, |
8867 SQLColAttribute() ignores ColumnNumber. Header fields are defined in Fields of the Descriptor |
8868 Header on page 472; record fields are defined in Fields of Each Descriptor Record on page 476. |

8869 SQL_DESC_AUTO_UNIQUE_VALUE (N) SQL_DESC_LOCAL_TYPE_NAME (C) ||
8870 SQL_DESC_BASE_COLUMN_NAME (C) SQL_DESC_NAME (C) ||
8871 SQL_DESC_BASE_TABLE_NAME (C) SQL_DESC_NULLABLE (N) ||
8872 SQL_DESC_CASE_SENSITIVE (N) SQL_DESC_OCTET_LENGTH (N) ||
8873 SQL_DESC_CATALOG_NAME (C) SQL_DESC_PARAMETER_TYPE (N) ||
8874 SQL_DESC_CONCISE_TYPE (C) SQL_DESC_PRECISION (N) ||
8875 SQL_DESC_COUNT (N) (Header) SQL_DESC_SCALE (N) ||
8876 SQL_DESC_DATETIME_INTERVAL_CODE(N) SQL_DESC_SCHEMA_NAME (C) ||
8877 SQL_DESC_DATETIME_INTERVAL_PRECISION(N) SQL_DESC_SEARCHABLE (N) ||
8878 SQL_DESC_DISPLAY_SIZE (N) SQL_DESC_TABLE_NAME (C) ||
8879 SQL_DESC_FIXED_PREC_SCALE (N) SQL_DESC_TYPE (N) ||
8880 SQL_DESC_LABEL (C) SQL_DESC_TYPE_NAME (C) ||
8881 SQL_DESC_LENGTH (N) SQL_DESC_UNNAMED (N) ||
8882 SQL_DESC_LITERAL_PREFIX (C) SQL_DESC_UNSIGNED (N) ||
8883 SQL_DESC_LITERAL_SUFFIX (C) SQL_DESC_UPDATABLE(N) ||

8884 This function is an extensible alternative to SQLDescribeCol(). SQLDescribeCol() returns a fixed |
8885 set of descriptor information. SQLColAttribute() allows access to the more extensive set of |
8886 descriptor information available in the ISO SQL standard and accommodates future |
8887 enhancements and vendor extensions. |

8888 Calling SQLColAttribute() between the preparation and the execution of an SQL statement has |
8889 performance implications; see Performance Note on page 279. |

256 Direct Review (Build ID 96KAV) (Draft XDBC.33, August 1996)

Reference Manual Pages ISO 92 SQLColAttribute()

8890 SEE ALSO |

8891 For information about ||See |||
|

8892 Binding a buffer to a column in a result set ||SQLBindCol() |||

8893 Canceling statement processing ||SQLCancel() |||

8894 Returning information about a column in a result set ||SQLDescribeCol() |||

8895 Fetching a block of data or scrolling through a result set ||SQLFetchScroll() |||

8896 Fetching multiple rows of data ||SQLFetch() |||

8897 Definition of all descriptor fields ||SQLSetDescField() |||

8898 CHANGE HISTORY |

8899 Version 2 |
8900 Revised generally. See Alignment with Popular Implementations on page 2. ||

Data Management: X/Open Database Connectivity (XDBC), Version 2 257

SQLColumnPrivileges() XDBC Reference Manual Pages

8901 SQLColumnPrivileges — Return a list of columns and associated privileges for the specified table as a |
8902 result set. |

8903 SYNOPSIS |
8904 SQLRETURN SQLColumnPrivileges(|
8905 SQLHSTMTStatementHandle , |
8906 SQLCHAR * CatalogName , |
8907 SQLSMALLINT NameLength1 , |
8908 SQLCHAR * SchemaName, |
8909 SQLSMALLINT NameLength2 , |
8910 SQLCHAR * TableName , |
8911 SQLSMALLINT NameLength3 , |
8912 SQLCHAR * ColumnName, |
8913 SQLSMALLINT NameLength4); |

8914 ARGUMENTS |

8915 StatementHandle [Input] |
8916 Statement handle. |

8917 CatalogName [Input] |
8918 Catalog name. If a data source supports names for catalogs, an empty string denotes those |
8919 catalogs that do not have names. |

8920 If the SQL_ATTR_METADATA_ID statement attribute is SQL_TRUE, this argument is |
8921 interpreted as specified in Identifier (ID) Arguments on page 72. If it is SQL_FALSE, this |
8922 argument is interpreted as specified in Ordinary Arguments (OA) on page 71. |

8923 NameLength1 [Input] |
8924 Length of *CatalogName. |

8925 SchemaName [Input] |
8926 Schema name. If a data source supports schemas, an empty string denotes those tables that |
8927 do not have schemas. |

8928 If the SQL_ATTR_METADATA_ID statement attribute is SQL_TRUE, this argument is |
8929 interpreted as specified in Identifier (ID) Arguments on page 72. If it is SQL_FALSE, this |
8930 argument is interpreted as specified in Ordinary Arguments (OA) on page 71. |

8931 NameLength2 [Input] |
8932 Length of *SchemaName. |

8933 TableName [Input] |
8934 Table name. This argument cannot be a null pointer. |

8935 If the SQL_ATTR_METADATA_ID statement attribute is SQL_TRUE, this argument is |
8936 interpreted as specified in Identifier (ID) Arguments on page 72. If it is SQL_FALSE, this |
8937 argument is interpreted as specified in Ordinary Arguments (OA) on page 71. |

8938 NameLength3 [Input] |
8939 Length of *TableName. |

8940 ColumnName [Input] |
8941 String search pattern for column names. |

8942 If the SQL_ATTR_METADATA_ID statement attribute is SQL_TRUE, this argument is |
8943 interpreted as specified in Identifier (ID) Arguments on page 72. If it is SQL_FALSE, this |
8944 argument is interpreted as specified in Pattern Value (PV) Arguments on page 71 and the |
8945 application may use a search pattern. |

258 Direct Review (Build ID 96KAV) (Draft XDBC.33, August 1996)

Reference Manual Pages XDBC SQLColumnPrivileges()

8946 NameLength4 [Input] |
8947 Length of *ColumnName. |

8948 RETURN VALUE |
8949 SQL_SUCCESS, SQL_SUCCESS_WITH_INFO, SQL_STILL_EXECUTING, SQL_ERROR, or |
8950 SQL_INVALID_HANDLE. |

8951 DIAGNOSTICS |
8952 When SQLColumnPrivileges() returns SQL_ERROR or SQL_SUCCESS_WITH_INFO, an |
8953 associated SQLSTATE value can be obtained by calling SQLGetDiagRec() with a HandleType of |
8954 SQL_HANDLE_STMT and a Handle of StatementHandle. The following SQLSTATE values are |
8955 commonly returned by SQLColumnPrivileges(). The return code associated with each SQLSTATE |
8956 value is SQL_ERROR, except that for SQLSTATE values in class 01, the return code is |
8957 SQL_SUCCESS_WITH_INFO. |

8958 01000 — General warning |
8959 Implementation-defined informational message. |

8960 08S01 — Communication link failure |
8961 The communication link to the data source failed before the function completed processing. |

8962 24000 — Invalid cursor state |
8963 A cursor was open on StatementHandle. |

8964 HY000 — General error |
8965 An error occurred for which there was no specific SQLSTATE and for which no |
8966 implementation-specific SQLSTATE was defined. The error message returned by |
8967 SQLGetDiagRec() in the *MessageTextbuffer describes the error and its cause. |

8968 HY001 — Memory allocation error |
8969 The implementation failed to allocate memory required to support execution or completion |
8970 of the function. |

8971 HY008 — Operation canceled |
8972 Asynchronous processing was enabled for StatementHandle. The function was called and |
8973 before it completed execution, SQLCancel() was called on StatementHandle. The function |
8974 was then called again on StatementHandle. |

8975 The function was called and, before it completed execution, SQLCancel was called on |
8976 StatementHandle from a different thread in a multithread application. |

8977 HY009 — Invalid use of null pointer |
8978 TableName was a null pointer. |

8979 The SQL_ATTR_METADATA_IDstatement attribute was set to SQL_TRUE, CatalogName |
8980 was a null pointer, and the SQL_CATALOG_NAME option of SQLGetInfo() returns that |
8981 catalog names are supported. |

8982 The SQL_ATTR_METADATA_ID statement attribute was set to SQL_TRUE, and |
8983 SchemaName, TableName, or ColumnName was a null pointer. |

8984 The SQL_ATTR_METADATA_IDstatement attribute was set to SQL_FALSE, and TableName |
8985 was a null pointer. |

8986 HY010 — Function sequence error |
8987 An asynchronously executing function (not this one) was called for StatementHandle and |
8988 was still executing when this function was called. |

8989 SQLBulkOperations(), SQLExecDirect(), SQLExecute(), or SQLSetPos() was called for |
8990 StatementHandle and returned SQL_NEED_DATA.This function was called before data was |
8991 sent for all data-at-execution parameters or columns. |

Data Management: X/Open Database Connectivity (XDBC), Version 2 259

SQLColumnPrivileges() XDBC Reference Manual Pages

8992 HY090 — Invalid string or buffer length |
8993 The value of one of the name length arguments was less than 0, but not equal to SQL_NTS. |

8994 The value of one of the name length arguments exceeded the maximum length value for the |
8995 corresponding name (see ‘‘Comments’’). |

8996 HYC00 — Optional feature not implemented |
8997 A catalog name was specified and the implementation does not support catalogs. |

8998 A schema name was specified and the implementation does not support schemas. |

8999 A string search pattern was specified for the column name and the data source does not |
9000 support search patterns for that argument. |

9001 The data source does not support the combination of the current settings of the |
9002 SQL_ATTR_CONCURRENCY and SQL_ATTR_CURSOR_TYPE statement attributes. |

9003 The SQL_ATTR_USE_BOOKMARKS statement attribute was set to SQL_UB_VARIABLE, |
9004 and the SQL_ATTR_CURSOR_TYPE statement attribute was set to a cursor type for which |
9005 the data source does not support bookmarks. |

9006 HYT00 — Timeout expired |
9007 The query timeout period expired before the data source returned the result set. The |
9008 timeout period is set through SQLSetStmtAttr(), SQL_ATTR_QUERY_TIMEOUT. |

9009 HYT01 — Connection timeout expired |
9010 The connection timeout period expired before the data source responded to the request. The |
9011 connection timeout period is set through SQLSetConnectAttr(), |
9012 SQL_ATTR_CONNECTION_TIMEOUT. |

9013 IM001 — Function not supported |
9014 The function is not supported on the current connection to the data source. |

9015 COMMENTS |
9016 SQLColumnPrivileges() returns the results as a standard result set, ordered by TABLE_CAT, |
9017 TABLE_SCHEM, TABLE_NAME,COLUMN_NAME, and PRIVILEGE. |

9018 Note: SQLColumnPrivileges() might not return privileges for all columns. For example, a data |
9019 source might not return information about privileges for pseudo-columns. Applications can use |
9020 any valid column, regardless of whether it is returned by SQLColumnPrivileges(). |

9021 The lengths of VARCHAR columns shown in the table are maximums; the actual lengths depend |
9022 on the data source. To determine the actual lengths of the CATALOG_NAME, |
9023 SCHEMA_NAME, TABLE_NAME, and COLUMN_NAME columns, an application can call |
9024 SQLGetInfo() with the SQL_MAX_CATALOG_NAME_LEN, |
9025 SQL_MAX_SCHEMA_NAME_LEN, SQL_MAX_TABLE_NAME_LEN, and |
9026 SQL_MAX_COLUMN_NAME_LEN options. |

9027 The following table lists the columns in the result set. Additional columns beyond column 8 |
9028 (IS_GRANTABLE) can be defined by the implementation. An application should gain access to |
9029 implementation-defined columns by counting down from the end of the result set rather than by |
9030 specifying an explicit ordinal position; see Section 7.3 on page 68. |

9031 Col. Data |
9032 Column Name No. Type Comments ||
9033 Catalog identifier; NULL if not applicable to the data ||
9034 source. If a data source supports catalogs, it returns an ||
9035 empty string for those tables that do not have catalogs. ||

TABLE_CAT 1 Varchar |

260 Direct Review (Build ID 96KAV) (Draft XDBC.33, August 1996)

Reference Manual Pages XDBC SQLColumnPrivileges()

9036 Schema identifier; NULL if not applicable to the data ||
9037 source. If a data source supports schemas, it returns an ||
9038 empty string for those tables that do not have schemas. ||

TABLE_SCHEM 2 Varchar |

9039 Varchar ||
9040 not NULL ||

TABLE_NAME 3 Table identifier. |

9041 Varchar ||
9042 not NULL ||

Column identifier; an empty string for unnamed ||
columns. ||

COLUMN_NAME 4 |

9043 Identifier of the user who granted the privilege; NULL ||
9044 if not applicable to the data source. ||

9045 For all rows in which the value in the GRANTEE ||
9046 column is the owner of the object, the GRANTOR ||
9047 column is ‘‘_SYSTEM’’. ||

GRANTOR 5 Varchar |

9048 Varchar ||
9049 not NULL ||

Identifier of the user to whom the privilege was ||
granted. ||

GRANTEE 6 |

9050 Varchar ||
9051 not NULL ||

Identifies the column privilege. May be one of the ||
following or others supported by the data source when ||

9052 implementation-defined: ||

9053 SELECT: The grantee is permitted to retrieve data for ||
9054 the column. ||

9055 INSERT: The grantee is permitted to provide data for ||
9056 the column in new rows that are inserted into the ||
9057 associated table. ||

9058 UPDATE: The grantee is permitted to update data in ||
9059 the column. ||

9060 REFERENCES: The grantee is permitted to refer to the ||
9061 column within a constraint (for example, a unique, ||
9062 referential, or table check constraint). ||

PRIVILEGE 7 |

9063 Indicates whether the grantee is permitted to grant the ||
9064 privilege to other users; ‘‘YES’’, ‘‘NO’’, or NULL if ||
9065 unknown or not applicable to the data source.A ||
9066 privilege is either grantable or not grantable, but not ||
9067 both. The result set returned by SQLColumnPrivileges() ||
9068 will never contain two rows for which all columns ||
9069 except the IS_GRANTABLE column contain the same ||
9070 value. ||

IS_GRANTABLE 8 Varchar |

9071 SEE ALSO |

9072 For information about ||See |||
|

9073 Overview of catalog functions ||Chapter 7 |||

9074 Binding a buffer to a column in a result set ||SQLBindCol() |||

9075 Canceling statement processing ||SQLCancel() |||

Data Management: X/Open Database Connectivity (XDBC), Version 2 261

SQLColumnPrivileges() XDBC Reference Manual Pages

9076 Returning the columns in a table or tables ||SQLColumns() |||

9077 Fetching a block of data or scrolling through a result set ||SQLFetchScroll() |||

9078 Fetching multiple rows of data ||SQLFetch() |||

9079 Returning privileges for a table or tables ||SQLTablePrivileges() |||

9080 Returning a list of tables in a data source ||SQLTables() |||

9081 CHANGE HISTORY |

9082 Version 2 |
9083 Function added in this version. ||

262 Direct Review (Build ID 96KAV) (Draft XDBC.33, August 1996)

Reference Manual Pages CLI v1 SQLColumns()

9084 NAME |
9085 SQLColumns — Return the list of column names in specified tables as a result set. |

9086 SYNOPSIS |
9087 SQLRETURN SQLColumns(|
9088 SQLHSTMTStatementHandle , |
9089 SQLCHAR * CatalogName , |
9090 SQLSMALLINT NameLength1 , |
9091 SQLCHAR * SchemaName, |
9092 SQLSMALLINT NameLength2 , |
9093 SQLCHAR * TableName , |
9094 SQLSMALLINT NameLength3 , |
9095 SQLCHAR * ColumnName, |
9096 SQLSMALLINT NameLength4); |

9097 ARGUMENTS |

9098 StatementHandle [Input] |
9099 Statement handle. |

9100 CatalogName [Input] |
9101 Catalog name. If a data source supports catalogs, an empty string denotes those tables that |
9102 do not have catalogs. |

9103 If the SQL_ATTR_METADATA_ID statement attribute is SQL_TRUE, this argument is |
9104 interpreted as specified in Identifier (ID) Arguments on page 72. If it is SQL_FALSE, this |
9105 argument is interpreted as specified in Ordinary Arguments (OA) on page 71. |

9106 NameLength1 [Input] |
9107 Length of *CatalogName. |

9108 SchemaName [Input] |
9109 String search pattern for schema names. If a data source supports schemas, an empty string |
9110 denotes those tables that do not have schemas. |

9111 If the SQL_ATTR_METADATA_ID statement attribute is SQL_TRUE, this argument is |
9112 interpreted as specified in Identifier (ID) Arguments on page 72. If it is SQL_FALSE, this |
9113 argument is interpreted as specified in Pattern Value (PV) Arguments on page 71 and the |
9114 application may use a search pattern. |

9115 NameLength2 [Input] |
9116 Length of *SchemaName. |

9117 TableName [Input] |
9118 String search pattern for table names. |

9119 If the SQL_ATTR_METADATA_ID statement attribute is SQL_TRUE, this argument is |
9120 interpreted as specified in Identifier (ID) Arguments on page 72. If it is SQL_FALSE, this |
9121 argument is interpreted as specified in Pattern Value (PV) Arguments on page 71 and the |
9122 application may use a search pattern. |

9123 NameLength3 [Input] |
9124 Length of *TableName. |

9125 ColumnName [Input] |
9126 String search pattern for column names. |

9127 If the SQL_ATTR_METADATA_ID statement attribute is SQL_TRUE, this argument is |
9128 interpreted as specified in Identifier (ID) Arguments on page 72. If it is SQL_FALSE, this |
9129 argument is interpreted as specified in Pattern Value (PV) Arguments on page 71 and the |

Data Management: X/Open Database Connectivity (XDBC), Version 2 263

SQLColumns() CLI v1 Reference Manual Pages

9130 application may use a search pattern. |

9131 NameLength4 [Input] |
9132 Length of *ColumnName. |

9133 RETURN VALUE |
9134 SQL_SUCCESS, SQL_SUCCESS_WITH_INFO, SQL_STILL_EXECUTING, SQL_ERROR, or |
9135 SQL_INVALID_HANDLE. |

9136 DIAGNOSTICS |
9137 When SQLColumns() returns SQL_ERROR or SQL_SUCCESS_WITH_INFO, an associated |
9138 SQLSTATE value can be obtained by calling SQLGetDiagRec() with a HandleType of |
9139 SQL_HANDLE_STMT and a Handle of StatementHandle. The following SQLSTATE values are |
9140 commonly returned by SQLColumns(). The return code associated with each SQLSTATEvalue is |
9141 SQL_ERROR, except that for SQLSTATE values in class 01, the return code is |
9142 SQL_SUCCESS_WITH_INFO. |

9143 01000 — General warning |
9144 Implementation-defined informational message. |

9145 08S01 — Communication link failure |
9146 The communication link to the data source failed before the function completed processing. |

9147 24000 — Invalid cursor state |
9148 A cursor was open on StatementHandle. |

9149 HY000 — General error |
9150 An error occurred for which there was no specific SQLSTATE and for which no |
9151 implementation-specific SQLSTATE was defined. The error message returned by |
9152 SQLGetDiagRec() in the *MessageTextbuffer describes the error and its cause. |

9153 HY001 — Memory allocation error |
9154 The implementation failed to allocate memory required to support execution or completion |
9155 of the function. |

9156 HY008 — Operation canceled |
9157 Asynchronous processing was enabled for StatementHandle. The function was called and |
9158 before it completed execution, SQLCancel() was called on StatementHandle. The function |
9159 was then called again on StatementHandle. |

9160 The function was called and, before it completed execution, SQLCancel() was called on |
9161 StatementHandle from a different thread in a multithread application. |

9162 HY009 — Invalid use of null pointer |
9163 The SQL_ATTR_METADATA_IDstatement attribute was set to SQL_TRUE, CatalogName |
9164 was a null pointer, and the SQL_CATALOG_NAME option of SQLGetInfo() returns that |
9165 catalog names are supported. |

9166 The SQL_ATTR_METADATA_ID statement attribute was set to SQL_TRUE, and |
9167 SchemaName, TableName, or ColumnName was a null pointer. |

9168 HY010 — Function sequence error |
9169 An asynchronously executing function (not this one) was called for StatementHandle and |
9170 was still executing when this function was called. |

9171 SQLBulkOperations(), SQLExecDirect(), SQLExecute(), or SQLSetPos() was called for |
9172 StatementHandle and returned SQL_NEED_DATA.This function was called before data was |
9173 sent for all data-at-execution parameters or columns. |

9174 HY090 — Invalid string or buffer length |
9175 The value of one of the name length arguments was less than 0, but not equal to SQL_NTS. |

264 Direct Review (Build ID 96KAV) (Draft XDBC.33, August 1996)

Reference Manual Pages CLI v1 SQLColumns()

9176 The value of one of the name length arguments exceeded the maximum length value for the |
9177 corresponding catalog or name. The maximum length of each catalog or name may be |
9178 obtained by calling SQLGetInfo() with the SQL_MAX_CATALOG_NAME_LEN or |
9179 SQL_MAX_SCHEMA_NAME_LEN options (see ‘‘Comments’’). |

9180 HYC00 — Optional feature not implemented |
9181 A catalog name was specified and the implementation does not support catalogs. |

9182 A schema name was specified and the implementation does not support schemas. |

9183 A string search pattern was specified for the schema name, table name, or column name and |
9184 the data source does not support search patterns for one or more of those arguments. |

9185 The data source does not support the combination of the current settings of the |
9186 SQL_ATTR_CONCURRENCY and SQL_ATTR_CURSOR_TYPE statement attributes. |

9187 The SQL_ATTR_USE_BOOKMARKS statement attribute was set to SQL_UB_VARIABLE, |
9188 and the SQL_ATTR_CURSOR_TYPE statement attribute was set to a cursor type for which |
9189 the data source does not support bookmarks. |

9190 HYT00 — Timeout expired |
9191 The query timeout period expired before the data source returned the result set. The |
9192 timeout period is set through SQLSetStmtAttr(), SQL_ATTR_QUERY_TIMEOUT. |

9193 HYT01 — Connection timeout expired |
9194 The connection timeout period expired before the data source responded to the request. The |
9195 connection timeout period is set through SQLSetConnectAttr(), |
9196 SQL_ATTR_CONNECTION_TIMEOUT. |

9197 IM001 — Function not supported |
9198 The function is not supported on the current connection to the data source. |

9199 COMMENTS |
9200 This function is typically used before statement execution to retrieve information about columns |
9201 for a table or tables from the data source’s catalog. SQLColumns() can be used to retrieve data |
9202 for all types of items returned by SQLTables(), including base tables, views, synonyms, and |
9203 system tables. By contrast, SQLColAttribute() and SQLDescribeCol() describe the columns in a |
9204 result set and SQLNumResultCols() returns the number of columns in a result set. |

9205 SQLColumns() returns the results as a standard result set, ordered by TABLE_CAT, |
9206 TABLE_SCHEM, TABLE_NAME, and ORDINAL_POSITION. The order of the columns in the |
9207 column list returned by SQLColumns() is not necessarily the same as the order of the columns |
9208 returned when the application performs a SELECT statement on all columns in that table. |

9209 Note: SQLColumns() might not return all columns. For example, a data source might not return |
9210 information about pseudo-columns. Applications can use any valid column, regardless of |
9211 whether it is returned by SQLColumns(). |

9212 Some columns that can be returned by SQLStatistics() are not returned by SQLColumns(). For |
9213 example, SQLColumns() does not return the columns in an index created over an expression or |
9214 filter, such as SALARY + BENEFITS or DEPT = 0012. |

9215 The lengths of VARCHAR columns shown in the table are maximums; the actual lengths depend |
9216 on the data source. To determine the actual lengths of the TABLE_CAT, TABLE_SCHEM, |
9217 TABLE_NAME, and COLUMN_NAME columns, an application can call SQLGetInfo() with the |
9218 SQL_MAX_CATALOG_NAME_LEN, SQL_MAX_SCHEMA_NAME_LEN, |
9219 SQL_MAX_TABLE_NAME_LEN,and SQL_MAX_COLUMN_NAME_LEN options. |

Data Management: X/Open Database Connectivity (XDBC), Version 2 265

SQLColumns() CLI v1 Reference Manual Pages

9220 The following table lists the columns in the result set. Additional columns beyond column 18 |
9221 (IS_NULLABLE) can be defined by the implementation. An application should gain access to |
9222 implementation-defined columns by counting down from the end of the result set rather than by |
9223 specifying an explicit ordinal position; see Section 7.3 on page 68. |

9224 Col. Data |
9225 Column Name No. Type Comments ||
9226 Catalog identifier; NULL if not ||
9227 applicable to the data source. If a data ||
9228 source supports catalogs, it returns an ||
9229 empty string for those tables that do not ||
9230 have catalogs. ||

TABLE_CAT 1 Varchar |

9231 Schema identifier; NULL if not ||
9232 applicable to the data source. If a data ||
9233 source supports schemas, it returns an ||
9234 empty string for those tables that do not ||
9235 have schemas. ||

TABLE_SCHEM 2 Varchar |

9236 Varchar ||
9237 not NULL ||

TABLE_NAME 3 Table identifier. |

9238 Varchar ||
9239 not NULL ||

Column identifier; an empty string for ||
unnamed columns. ||

COLUMN_NAME 4 |

9240 Smallint ||
9241 not NULL ||

SQL data type. This can be an XDBC ||
SQL data type or an implementation- ||

9242 defined SQL data type. For date/time ||
9243 and interval data types, this column ||
9244 returns the concise data type (for ||
9245 example, SQL_TYPE_DATE or ||
9246 SQL_INTERVAL_YEAR_TO_MONTH) ||
9247 rather than the non-concise data type ||
9248 (SQL_DATETIME or SQL_INTERVAL). ||
9249 For a list of valid XDBC SQL data types, ||
9250 see Section D.1 on page 556. ||

DATA_TYPE 5 |

9251 Varchar ||
9252 not NULL ||

Data source-dependent data type name; ||
for example, ‘‘CHAR’’, ‘‘VARCHAR’’, ||

9253 ‘‘MONEY’’, ‘‘LONG VARBINARY’’, or ||
9254 ‘‘CHAR () FOR BIT DATA’’. ||

TYPE_NAME 6 |

266 Direct Review (Build ID 96KAV) (Draft XDBC.33, August 1996)

Reference Manual Pages CLI v1 SQLColumns()

9255 If DATA_TYPE is SQL_CHAR or ||
9256 SQL_VARCHAR, then this column ||
9257 contains the maximum length in ||
9258 characters of the column. For date/time ||
9259 data types, this is the total number of ||
9260 characters required to display the value ||
9261 when converted to characters. For ||
9262 numeric data types, this is either the ||
9263 total number of digits or the total ||
9264 number of bits allowed in the column, ||
9265 according to the NUM_PREC_RADIX ||
9266 column. For interval data types, this is ||
9267 the number of characters in the ||
9268 character representation of the interval ||
9269 literal (as defined by the interval leading ||
9270 precision, see Interval Data Type ||
9271 Length on page 571). For more ||
9272 information, see Section D.3 on page ||
9273 562. ||

COLUMN_SIZE 7 Integer |

9274 The length in octets of data transferred ||
9275 on an SQLGetData(), SQLFetch(), or ||
9276 SQLFetchScroll() operation if ||
9277 SQL_C_DEFAULT is specified. For ||
9278 numeric data, this size may be different ||
9279 from the size of the data stored on the ||
9280 data source. This value is the same as ||
9281 the COLUMN_SIZE column for ||
9282 character or binary data. For more ||
9283 information about length, see Section ||
9284 D.3 on page 562. ||

BUFFER_LENGTH 8 Integer |

9285 The total number of significant digits to ||
9286 the right of the decimal point. For ||
9287 SQL_TYPE_TIME and ||
9288 SQL_TYPE_TIMESTAMP, this column ||
9289 contains the number of digits in the ||
9290 fractional seconds component. For the ||
9291 other data types this is the scale of the ||
9292 column on the data source. For interval ||
9293 data types that contain a time ||
9294 component, this column contains the ||
9295 number of digits to the right of the ||
9296 decimal point (that is, fractional ||
9297 seconds). For interval data types that do ||
9298 not contain a time component, this ||
9299 column is 0. For more information on ||
9300 decimal digits, see Section D.3 on page ||
9301 562. NULL is returned for data types ||
9302 where scale is not applicable. ||

DECIMAL_DIGITS 9 Smallint |

Data Management: X/Open Database Connectivity (XDBC), Version 2 267

SQLColumns() CLI v1 Reference Manual Pages

9303 For numeric data types, either 10 or 2. If ||
9304 it is 10, the values in COLUMN_SIZE ||
9305 and DECIMAL_DIGITS give the number ||
9306 of decimal digits allowed for the ||
9307 column. For example, a DECIMAL(12,5) ||
9308 column returns a NUM_PREC_RADIX ||
9309 of 10, a COLUMN_SIZE of 12, and a ||
9310 DECIMAL_DIGITS of 5; A FLOAT ||
9311 column could return a ||
9312 NUM_PREC_RADIX of 10, a ||
9313 COLUMN_SIZE of 15 and a ||
9314 DECIMAL_DIGITS of NULL. ||

9315 If it is 2, the values in COLUMN_SIZE ||
9316 and DECIMAL_DIGITS give the number ||
9317 of bits allowed in the column. For ||
9318 example, a FLOAT column could return ||
9319 a RADIX of 2, a COLUMN_SIZE of 53, ||
9320 and a DECIMAL_DIGITS of NULL. ||

9321 NULL is returned for data types where ||
9322 NUM_PREC_RADIX is not applicable. ||

NUM_PREC_RADIX 10 Smallint |

9323 Smallint ||
9324 not NULL ||

SQL_NO_NULLS if the column does not ||
accept NULL values. SQL_NULLABLE ||

9325 if the column accepts NULL values. ||
9326 SQL_NULLABLE_UNKNOWN if it is ||
9327 not known if the column accepts NULL ||
9328 values. ||

9329 The value returned for this column is ||
9330 different from the value returned for the ||
9331 IS_NULLABLE column. The ||
9332 NULLABLE column indicates with ||
9333 certainty that a column can accept ||
9334 NULLs, but cannot indicate with ||
9335 certainty that a column does not accept ||
9336 NULLs. The IS NULLABLE column ||
9337 indicates with certainty that a column ||
9338 cannot accept NULLs, but cannot ||
9339 indicate with certainty that a column ||
9340 accepts NULLs. ||

NULLABLE 11 |

268 Direct Review (Build ID 96KAV) (Draft XDBC.33, August 1996)

Reference Manual Pages CLI v1 SQLColumns()

9341 REMARKS 12 Varchar A description of the column. |

9342 The default value of the column. See ||
9343 Section 7.3.1 on page 68. ||

COLUMN_DEF 13 Varchar |

9344 Smallint ||
9345 not NULL ||

SQL data type, as it appears in the ||
SQL_DESC_TYPE record field in the ||

9346 IRD. This can be an XDBC SQL data ||
9347 type or an implementation-defined SQL ||
9348 data type. This column is the same as ||
9349 the DATA_TYPEcolumn, except that for ||
9350 date/time and interval data types, this ||
9351 column returns the non-concise data ||
9352 type (SQL_DATETIME or ||
9353 SQL_INTERVAL) rather than the ||
9354 concise data type (for example, ||
9355 SQL_TYPE_DATE or ||
9356 SQL_INTERVAL_YEAR_TO_MONTH); ||
9357 in this case, the specific data type can be ||
9358 determined from the ||
9359 SQL_DATETIME_SUB column. For a ||
9360 list of valid XDBC SQL data types, see ||
9361 Section D.1 on page 556. ||

SQL_DATA_TYPE 14 |

9362 The subtype code for date/time and ||
9363 interval data types. For other data types, ||
9364 this column returns a NULL. For more ||
9365 information about date/time and ||
9366 interval subcodes, see ||
9367 ‘‘SQL_DESC_DATETIME_INTERVAL_CODE’’ ||
9368 in SQLSetDescField(). ||

SQL_DATETIME_SUB 15 Smallint |

9369 The maximum length in octets of a ||
9370 character or binary data type column. ||
9371 For all other data types, this column ||
9372 returns a NULL. ||

CHAR_OCTET_LENGTH 16 Integer |

9373 Integer ||
9374 not NULL ||

The ordinal position of the column in ||
the table. The first column in the table is ||

9375 number 1. ||

ORDINAL_POSITION 17 |

Data Management: X/Open Database Connectivity (XDBC), Version 2 269

SQLColumns() CLI v1 Reference Manual Pages

9376 ‘‘NO’’ if the column does not include ||
9377 NULLs. ‘‘YES’’ if the column could ||
9378 include NULLS. ||

9379 This column returns a zero-length string ||
9380 if nullability is unknown. ISO rules are ||
9381 followed to determine nullability. An ||
9382 ISO SQL compliant data source cannot ||
9383 return an empty string. ||

9384 The value returned for this column is ||
9385 different from the value returned for the ||
9386 NULLABLE column. (See the ||
9387 description of the NULLABLE column.) ||

IS_NULLABLE 18 Varchar |

9388 SEE ALSO |

9389 For information about ||See |||
|

9390 Overview of catalog functions ||Chapter 7 |||

9391 Binding a buffer to a column in a result set ||SQLBindCol() |||

9392 Canceling statement processing ||SQLCancel() |||

9393 Returning privileges for a column or columns ||SQLColumnPrivileges() |||

9394 Fetching a block of data or scrolling through a result set ||SQLFetchScroll() |||

9395 Fetching multiple rows of data ||SQLFetch() |||

9396 Returning columns that uniquely identify a row, or ||
9397 columns automatically updated by a transaction ||

SQLSpecialColumns() |||

9398 Returning table statistics and indexes ||SQLStatistics() |||

9399 Returning a list of tables in a data source ||SQLTables() |||

9400 Returning privileges for a table or tables ||SQLTablePrivileges() |||

9401 CHANGE HISTORY |

9402 Version 2 |
9403 Revised generally. See Alignment with Popular Implementations on page 2. ||

270 Direct Review (Build ID 96KAV) (Draft XDBC.33, August 1996)

Reference Manual Pages ISO 92 SQLConnect()

9404 NAME |
9405 SQLConnect — Establish connections to a data source. |

9406 SYNOPSIS |
9407 SQLRETURN SQLConnect(|
9408 SQLHDBCConnectionHandle , |
9409 SQLCHAR * ServerName , |
9410 SQLSMALLINT NameLength1 , |
9411 SQLCHAR * UserName, |
9412 SQLSMALLINT NameLength2 , |
9413 SQLCHAR * Authentication , |
9414 SQLSMALLINT NameLength3); |

9415 ARGUMENTS |

9416 ConnectionHandle [Input] |
9417 Connection handle. |

9418 ServerName [Input] |
9419 The name of the data source to which to connect. All leading and trailing blanks are |
9420 significant. This is a literal, not an identifier, and the value is not enclosed in quotes (either |
9421 single or double). If ServerName is a zero-length string, a null pointer or DEFAULT, then it |
9422 indicates the default data source. The length of ServerName must not exceed 128 characters. |

9423 NameLength1 [Input] |
9424 Length of *ServerName. |

9425 UserName [Input] |
9426 User identifier. |

9427 NameLength2 [Input] |
9428 Length of *UserName. |

9429 Authentication [Input] |
9430 Authentication string (typically the password). |

9431 NameLength3 [Input] |
9432 Length of *Authentication. |

9433 RETURN VALUE |
9434 SQL_SUCCESS, SQL_SUCCESS_WITH_INFO, SQL_ERROR, or SQL_INVALID_HANDLE. |

9435 DIAGNOSTICS |
9436 When SQLConnect() returns SQL_ERROR or SQL_SUCCESS_WITH_INFO, an associated |
9437 SQLSTATE value can be obtained by calling SQLGetDiagRec() with a HandleType of |
9438 SQL_HANDLE_DBC and a Handle of ConnectionHandle . The following SQLSTATE values are |
9439 commonly returned by SQLConnect(). The return code associated with each SQLSTATEvalue is |
9440 SQL_ERROR, except that for SQLSTATE values in class 01, the return code is |
9441 SQL_SUCCESS_WITH_INFO. |

9442 01000 — General warning |
9443 Implementation-defined informational message. |

9444 01S02 — Attribute value changed |
9445 The data source did not support the specified value of ValuePtr in SQLSetConnectAttr() and |
9446 substituted a similar value. |

9447 08001 — Client unable to establish connection |
9448 The implementation could not establish a connection to the data source. |

Data Management: X/Open Database Connectivity (XDBC), Version 2 271

SQLConnect() ISO 92 Reference Manual Pages

9449 08002 — Connection name in use |
9450 ConnectionHandle had already been used to establish a connection with a data source and |
9451 the connection was still open or the user was browsing for a connection. |

9452 08004 — Data source rejected the connection |
9453 The data source rejected the establishment of the connection for implementation-defined |
9454 reasons. |

9455 08S01 — Communication link failure |
9456 The communication link to the data source failed before the function completed processing. |

9457 28000 — Invalid authorization specification |
9458 UserName or Authentication violated restrictions defined by the data source. |

9459 HY000 — General error |
9460 An error occurred for which there was no specific SQLSTATE and for which no |
9461 implementation-specific SQLSTATE was defined. The error message returned by |
9462 SQLGetDiagRec() in the *MessageTextbuffer describes the error and its cause. |

9463 HY001 — Memory allocation error |
9464 The implementation failed to allocate memory required to support execution or completion |
9465 of the function. |

9466 HY090 — Invalid string or buffer length |
9467 NameLength1 was less than 0, but not equal to SQL_NTS. |

9468 NameLength1 exceeded the maximum length for a data source name. |

9469 NameLength2 was less than 0, but not equal to SQL_NTS. |

9470 NameLength3 was less than 0, but not equal to SQL_NTS. |

9471 HYT00 — Timeout expired |
9472 The query timeout period expired before the connection to the data source completed. The |
9473 timeout period is set through SQLSetConnectAttr(), SQL_ATTR_LOGIN_TIMEOUT. |

9474 HYT01 — Connection timeout expired |
9475 The connection timeout period expired before the data source responded to the request. The |
9476 connection timeout period is set through SQLSetConnectAttr(), |
9477 SQL_ATTR_CONNECTION_TIMEOUT. |

9478 IM001 — Function not supported |
9479 The function is not supported on the current connection to the data source. |

9480 IM002 — Data source not found and no default driver specified |
9481 The data source name specified in ServerName was not found in the system information; and |
9482 either no default data source was specified or information on the default data source could |
9483 not be found in the system information. |

9484 COMMENTS |
9485 Calling SQLConnect() establishes a connection to ServerName. The mapping from ServerName (or |
9486 from the default data source) to a physical database is implementation-defined. |

9487 The specified data source uses the values of UserName and Authentication and may apply other |
9488 criteria when the application calls SQLConnect() to determine whether to accept or reject the |
9489 connection. If the data source accepts the connection, then UserName becomes the name of its |
9490 current user. It is implementation-defined how the data source selects a default catalog and |
9491 schema. |

9492 ConnectionHandle references storage of all information about the connection to the data source, |
9493 including status, transaction state, and error information. |

272 Direct Review (Build ID 96KAV) (Draft XDBC.33, August 1996)

Reference Manual Pages ISO 92 SQLConnect()

9494 The application can establish more than one connection. |

9495 SEE ALSO |

9496 For information about ||See |||
|

9497 Allocating a handle ||SQLAllocHandle() |||

9498 Discovering and enumerating values required to connect ||
9499 to a data source ||

SQLBrowseConnect() |||

9500 Disconnecting from a data source ||SQLDisconnect() |||

9501 Connecting to a data source using a connection string or ||
9502 dialog box ||

SQLDriverConnect() |||

9503 Returning the setting of a connection attribute ||SQLGetConnectAttr() |||

9504 Setting a connection attribute ||SQLSetConnectAttr() |||

9505 CHANGE HISTORY |

9506 Version 2 |
9507 Revised generally. See Alignment with Popular Implementations on page 2. ||

Data Management: X/Open Database Connectivity (XDBC), Version 2 273

SQLCopyDesc() ISO 92 Reference Manual Pages

9508 NAME |
9509 SQLCopyDesc — Copy descriptor information from one descriptor handle to another. |

9510 SYNOPSIS |
9511 SQLRETURN SQLCopyDesc(|
9512 SQLHDESCSourceDescHandle , |
9513 SQLHDESCTargetDescHandle); |

9514 ARGUMENTS |

9515 SourceDescHandle [Input] |
9516 Source descriptor handle. |

9517 TargetDescHandle [Input] |
9518 Target descriptor handle. This can be a handle to an application descriptor or to an IPD. The |
9519 function returns SQLSTATEHY016 if this is a handle to an IRD. |

9520 RETURN VALUE |
9521 SQL_SUCCESS, SQL_SUCCESS_WITH_INFO, SQL_ERROR, or SQL_INVALID_HANDLE. |

9522 DIAGNOSTICS |
9523 When SQLCopyDesc() returns SQL_ERROR or SQL_SUCCESS_WITH_INFO, an associated |
9524 SQLSTATE value can be obtained by calling SQLGetDiagRec() with a HandleType of |
9525 SQL_HANDLE_DESC and a Handle of TargetDescHandle. If an invalid SourceDescHandle was |
9526 passed in the call, SQL_INVALID_HANDLE is returned, but no SQLSTATE is returned. The |
9527 following SQLSTATE values are commonly returned by SQLCopyDesc(). The return code |
9528 associated with each SQLSTATEvalue is SQL_ERROR, except that for SQLSTATEvalues in class |
9529 01, the return code is SQL_SUCCESS_WITH_INFO. |

9530 When an error is returned, the call to SQLCopyDesc() is immediately aborted, and the contents of |
9531 the fields in the TargetDescHandle descriptor are undefined. |

9532 01000 — General warning |
9533 Implementation-defined informational message. |

9534 08S01 — Communication link failure |
9535 The communication link to the data source failed before the function completed processing. |

9536 HY000 — General error |
9537 An error occurred for which there was no specific SQLSTATE and for which no |
9538 implementation-specific SQLSTATE was defined. The error message returned by |
9539 SQLGetDiagRec() in the *MessageTextbuffer describes the error and its cause. |

9540 HY001 — Memory allocation error |
9541 The implementation failed to allocate memory required to support execution or completion |
9542 of the function. |

9543 HY007 — Associated statement is not prepared |
9544 SourceDescHandle was associated with an IRD, and the associated statement handle was not |
9545 in the prepared or executed state. |

9546 HY010 — Function sequence error |
9547 The descriptor handle in SourceDescHandle or TargetDescHandle was associated with a |
9548 statement handle for which an asynchronously executing function (not this one) was called |
9549 and was still executing when this function was called. |

9550 The descriptor handle in SourceDescHandle or TargetDescHandle was associated with a |
9551 statement handle for which SQLBulkOperations(), SQLExecDirect(), SQLExecute(), or |
9552 SQLSetPos() was called and returned SQL_NEED_DATA. This function was called before |
9553 data was sent for all data-at-execution parameters or columns. |

274 Direct Review (Build ID 96KAV) (Draft XDBC.33, August 1996)

Reference Manual Pages ISO 92 SQLCopyDesc()

9554 A previous call to the same function returned SQL_STILL_EXECUTING and the present call |
9555 specified different values of SourceDescHandle or TargetDescHandle. |

9556 HY016 — Cannot modify an implementation row descriptor |
9557 TargetDescHandle was a handle for an IRD. |

9558 HY021 — Inconsistent descriptor information |
9559 The descriptor consistency check failed (see Consistency Checks on page 486). |

9560 HY092 — Invalid attribute identifier |
9561 SourceDescHandle and TargetDescHandle pertain to different XDBC implementations, and |
9562 there is at least one XDBC-defined descriptor field that the source data source supports but |
9563 the target data source does not. |

9564 HYT01 — Connection timeout expired |
9565 The connection timeout period expired before the data source responded to the request. The |
9566 connection timeout period is set through SQLSetConnectAttr(), |
9567 SQL_ATTR_CONNECTION_TIMEOUT. |

9568 IM001 — Function not supported |
9569 The function is not supported on the current connection to the data source. |

9570 COMMENTS |
9571 A call to SQLCopyDesc() copies the fields of SourceDescHandle to TargetDescHandle. |
9572 SourceDescHandle can be any type of descriptor handle; TargetDescHandle can be any type of |
9573 descriptor handle except one that pertains to an IRD. |

9574 The following fields are copied, overwriting existing information in the target descriptor: |

9575 • In no case is SQL_DESC_ALLOC_TYPE copied; it specifies whether the descriptor handle |
9576 was automatically or explicitly allocated. |

9577 • If SourceDescHandle and TargetDescHandle pertain to the same XDBC implementation, then all |
9578 other fields are copied, even if the two descriptors are on different connections or in different |
9579 environments. |

9580 • If SourceDescHandle and TargetDescHandle pertain to different XDBC implementations, only |
9581 XDBC-defined fields are copied; implementation-defined fields are not copied. |

9582 When copying a descriptor in which the SQL_DESC_DATA_PTR field is not a null pointer, the |
9583 consistency check defined in Consistency Checks on page 486 occurs. If the consistency check |
9584 fails, SQLSTATE HY021 (Inconsistent descriptor information) is returned and the call to |
9585 SQLCopyDesc() is immediately aborted. |

9586 On this and any other error, the contents of the target descriptor are undefined. |

9587 Descriptor handles can be copied across connections or environments. |

9588 Alternative to SQLCopyDesc() |

9589 An application may be able to associate descriptor information with a different statement handle |
9590 without calling SQLCopyDesc(): An explicitly-allocated descriptor can be associated with |
9591 another statement handle on the same connection by setting the SQL_ATTR_APP_ROW_DESC |
9592 or SQL_ATTR_APP_PARAM_DESC statement attribute to the handle of the explicitly-allocated |
9593 descriptor. However, if the target statement handle is on a different connection, the application |
9594 must instead use SQLCopyDesc() to copy descriptor field values to a descriptor on that |
9595 connection. |

Data Management: X/Open Database Connectivity (XDBC), Version 2 275

SQLCopyDesc() ISO 92 Reference Manual Pages

9596 Copying Rows between Tables |

9597 An ARD on one statement handle can serve as the APD on another statement handle. This lets |
9598 an application copy rows between tables without copying data at the application level. To do |
9599 this, an application calls SQLCopyDesc() to copy the fields of an ARD that describes a fetched |
9600 row of a table, to the APD for a parameter in an INSERT statement on another statement handle. |
9601 When copying across statements on the same connection, the value returned by SQLGetInfo() |
9602 with the SQL_ACTIVE_STATEMENTS option must be greater than 1 for this operation to |
9603 succeed. This is not required when copying across connections. |

9604 Copying from Implementation Descriptors |

9605 If SourceDescHandle is an IRD, the statement must be prepared, or SQLCopyDesc() fails, setting |
9606 SQLSTATEto HY007 (Associated statement is not prepared). |

9607 If SourceDescHandle is an IPD, it can be copied whether or not the statement is prepared. |
9608 However, any automatic descriptor population takes effect before the descriptor is copied. That |
9609 is, if the statement is prepared, if the implementation supports automatic population (see the |
9610 SQL_ATTR_AUTO_IPD connection attribute), if the application has enabled this feature (by use |
9611 of the SQL_ATTR_ENABLE_AUTO_IPD statement attribute), and if the prepared statement has |
9612 dynamic parameters, then the implementation populates the IPD with descriptor information, |
9613 and this information is copied to TargetDescHandle. |

9614 SEE ALSO |

9615 For information about ||See |||
|

9616 Overview of descriptors ||Chapter 13 |||

9617 Getting multiple descriptor fields ||SQLGetDescRec() |||

9618 Setting a single descriptor field; list of all descriptor fields ||SQLSetDescField() |||

9619 Setting multiple descriptor fields ||SQLSetDescRec() |||

9620 CHANGE HISTORY |

9621 Version 2 |
9622 Revised generally. See Alignment with Popular Implementations on page 2. ||

276 Direct Review (Build ID 96KAV) (Draft XDBC.33, August 1996)

Reference Manual Pages ISO 92 SQLDataSources()

9623 NAME |
9624 SQLDataSources — Return information about a data source. |

9625 SYNOPSIS |
9626 SQLRETURN SQLDataSources(|
9627 SQLHENVEnvironmentHandle , |
9628 SQLUSMALLINT Direction , |
9629 SQLCHAR * ServerName , |
9630 SQLSMALLINT BufferLength1 , |
9631 SQLSMALLINT * NameLength1Ptr , |
9632 SQLCHAR * Description , |
9633 SQLSMALLINT BufferLength2 , |
9634 SQLSMALLINT * NameLength2Ptr); |

9635 ARGUMENTS |

9636 EnvironmentHandle [Input] |
9637 Environment handle. |

9638 Direction [Input] |
9639 Specifies a method of fetching entries from the list of data sources. SQL_FETCH_FIRST |
9640 fetches from the beginning of the list. SQL_FETCH_NEXT fetches the next data source in |
9641 the list. |

9642 ServerName [Output] |
9643 Pointer to a buffer in which to return the data source name. |

9644 BufferLength1 [Input] |
9645 Length of the *ServerName buffer, in octets; this does not need to be longer than |
9646 SQL_MAX_DSN_LENGTH plus the null terminator. |

9647 NameLength1Ptr [Output] |
9648 Pointer to a buffer in which to return the total number of octets (excluding the null |
9649 terminator) available to return in *ServerName. If the number of octets available to return is |
9650 greater than or equal to BufferLength1, the data source name in *ServerName is truncated to |
9651 BufferLength1 minus the length of a null terminator. |

9652 Description [Output] |
9653 Pointer to a buffer in which to return the description of the implementation associated with |
9654 the data source. |

9655 BufferLength2 [Input] |
9656 Length of the *Description buffer. |

9657 NameLength2Ptr [Output] |
9658 Pointer to a buffer in which to return the total number of octets (excluding the null |
9659 terminator) available to return in *Description. If the number of octets available to return is |
9660 greater than or equal to BufferLength2, the description in *Description is truncated to |
9661 BufferLength2 minus the length of a null terminator. |

9662 RETURN VALUE |
9663 SQL_SUCCESS, SQL_SUCCESS_WITH_INFO, SQL_NO_DATA, SQL_ERROR, or |
9664 SQL_INVALID_HANDLE. |

9665 DIAGNOSTICS |
9666 When SQLDataSources() returns SQL_ERROR or SQL_SUCCESS_WITH_INFO, an associated |
9667 SQLSTATE value can be obtained by calling SQLGetDiagRec() with a HandleType of |
9668 SQL_HANDLE_ENV and a Handle of EnvironmentHandle. The following SQLSTATE values are |
9669 commonly returned by SQLDataSources(). The return code associated with each SQLSTATE |

Data Management: X/Open Database Connectivity (XDBC), Version 2 277

SQLDataSources() ISO 92 Reference Manual Pages

9670 value is SQL_ERROR, except that for SQLSTATE values in class 01, the return code is |
9671 SQL_SUCCESS_WITH_INFO. |

9672 01000 — General warning |
9673 Implementation-defined informational message. |

9674 01004 — String data, right truncation |
9675 The buffer *ServerName was not large enough to return the entire data source name, so the |
9676 name was truncated. The length of the entire data source name is returned in |
9677 *NameLength1Ptr. |

9678 The buffer *Description was not large enough to return the entire data source description, so |
9679 the description was truncated. The length of the untruncated data source description is |
9680 returned in *NameLength2Ptr. |

9681 HY000 — General error |
9682 An error occurred for which there was no specific SQLSTATE and for which no |
9683 implementation-specific SQLSTATE was defined. The error message returned by |
9684 SQLGetDiagRec() in the *MessageTextbuffer describes the error and its cause. |

9685 HY001 — Memory allocation error |
9686 The implementation failed to allocate memory required to support execution or completion |
9687 of the function. |

9688 HY090 — Invalid string or buffer length |
9689 BufferLength1 was less than 0. |

9690 BufferLength2 was less than 0. |

9691 HY103 — Invalid retrieval code |
9692 Direction was not equal to SQL_FETCH_FIRST or SQL_FETCH_NEXT. |

9693 COMMENTS |
9694 An application can call SQLDataSources() multiple times to retrieve all data source names. When |
9695 there are no more data source names, the function returns SQL_NO_DATA. |

9696 If SQLDataSources() is called with SQL_FETCH_NEXT initially, or when the immediate previous |
9697 call returned SQL_NO_DATA,it returns the first data source name. |

9698 It is implementation-defined how data source names are mapped to actual data sources. |

9699 SEE ALSO |

9700 For information about ||See |||
|

9701 Discovering and listing values required to connect to a ||
9702 data source ||

SQLBrowseConnect() |||

9703 Connecting to a data source ||SQLConnect() |||

9704 Connecting to a data source using a connection string or ||
9705 dialog box ||

SQLDriverConnect() |||

9706 CHANGE HISTORY |

9707 Version 2 |
9708 Revised generally. See Alignment with Popular Implementations on page 2. ||

278 Direct Review (Build ID 96KAV) (Draft XDBC.33, August 1996)

Reference Manual Pages ISO 92 SQLDescribeCol()

9709 NAME |
9710 SQLDescribeCol — Return the result descriptor for one column in the result set. |

9711 SYNOPSIS |
9712 SQLRETURN SQLDescribeCol(|
9713 SQLHSTMTStatementHandle , |
9714 SQLSMALLINT ColumnNumber , |
9715 SQLCHAR * ColumnName, |
9716 SQLSMALLINT BufferLength , |
9717 SQLSMALLINT * NameLengthPtr , |
9718 SQLSMALLINT * DataTypePtr , |
9719 SQLINTEGER * ColumnSizePtr , |
9720 SQLSMALLINT * DecimalDigitsPtr , |
9721 SQLSMALLINT * NullablePtr); |

9722 ARGUMENTS |

9723 StatementHandle [Input] |
9724 Statement handle. |

9725 ColumnNumber [Input] |
9726 Column number of result data, ordered sequentially left to right, starting at 1. |
9727 ColumnNumber can also be set to 0 to describe the bookmark column. |

9728 ColumnName [Output] |
9729 Pointer to a buffer in which to return the column name. This value is read from the |
9730 SQL_DESC_NAME field of the IRD. If the column is unnamed or the column name cannot |
9731 be determined, an empty string is returned. |

9732 BufferLength [Input] |
9733 Length of the *ColumnName buffer, in octets. |

9734 NameLengthPtr [Output] |
9735 Pointer to a buffer in which to return the total number of octets (excluding the null |
9736 terminator) available to return in *ColumnName. If the number of octets available to return |
9737 is greater than or equal to BufferLength, the column name in *ColumnName is truncated to |
9738 BufferLength minus the length of a null terminator. |

9739 DataTypePtr [Output] |
9740 Pointer to a buffer in which to return the SQL data type of the column. This value is read |
9741 from the SQL_DESC_TYPE field of the IRD, or for date/time and interval types, the concise |
9742 type in the SQL_DESC_DATETIME_INTERVAL_CODE field. This is one of the values in |
9743 Section D.1 on page 556 or an implementation-specific SQL data type. If the data type |
9744 cannot be determined, SQL_UNKNOWN_TYPE is returned. |

9745 If SQL_INTERVAL or SQL_DATETIME is returned in *DataTypePtr, the |
9746 SQL_DESC_DATETIME_INTERVAL_CODErecord field in the IRD is set to the appropriate |
9747 code: SQL_TYPE_DATE for dates, SQL_TYPE_TIME for times, and |
9748 SQL_TYPE_TIMESTAMP for timestamps. See the |
9749 SQL_DESC_DATETIME_INTERVAL_CODEfield in SQLSetDescField(). |

9750 When ColumnNumber is 0 (for a bookmark column), SQL_BINARY is returned in |
9751 *DataTypePtr. |

9752 For more information, see Section D.1 on page 556. |

9753 ColumnSizePtr [Output] |
9754 Pointer to a buffer in which to return the size of the column on the data source. If the |
9755 column size cannot be determined, 0 is returned. Column size is defined in Section D.3.1 on |

Data Management: X/Open Database Connectivity (XDBC), Version 2 279

SQLDescribeCol() ISO 92 Reference Manual Pages

9756 page 562. |

9757 DecimalDigitsPtr [Output] |
9758 Pointer to a buffer in which to return the number of decimal digits of the column on the data |
9759 source. If the number of decimal digits cannot be determined or is not applicable, the |
9760 implementation returns 0. Decimal digits is defined in Section D.3.2 on page 564. |

9761 NullablePtr [Output] |
9762 Pointer to a buffer in which to return a value that indicates whether the column allows |
9763 NULL values. This value is read from the SQL_DESC_NULLABLE field of the IRD. One of |
9764 the following values: |

9765 SQL_NO_NULLS The column does not allow NULL values. |

9766 SQL_NULLABLE The column allows NULL values. |

9767 SQL_NULLABLE_UNKNOWN The implementation cannot determine if the column allows |
9768 NULL values. |

9769 RETURN VALUE |
9770 SQL_SUCCESS, SQL_SUCCESS_WITH_INFO, SQL_STILL_EXECUTING, SQL_ERROR, or |
9771 SQL_INVALID_HANDLE. |

9772 DIAGNOSTICS |
9773 When SQLDescribeCol() returns SQL_ERROR or SQL_SUCCESS_WITH_INFO, an associated |
9774 SQLSTATE value can be obtained by calling SQLGetDiagRec() with a HandleType of |
9775 SQL_HANDLE_STMT and a Handle of StatementHandle. The following SQLSTATE values are |
9776 commonly returned by SQLDescribeCol(). The return code associated with each SQLSTATE |
9777 value is SQL_ERROR, except that for SQLSTATE values in class 01, the return code is |
9778 SQL_SUCCESS_WITH_INFO. |

9779 01000 — General warning |
9780 Implementation-defined informational message. |

9781 01004 — String data, right truncation |
9782 The buffer *ColumnName was not large enough to return the entire column name, so the |
9783 column name was truncated. The length of the untruncated column name is returned in |
9784 *NameLengthPtr. |

9785 07005 — Prepared statement not a cursor-specification |
9786 The statement associated with StatementHandle did not return a result set. There were no |
9787 columns to describe. |

9788 07009 — Invalid descriptor index |
9789 ColumnNumber was 0, and the SQL_ATTR_USE_BOOKMARKS statement option was |
9790 SQL_UB_OFF. |

9791 ColumnNumber was less than 0. |

9792 ColumnNumber was greater than the number of columns in the result set. |

9793 08S01 — Communication link failure |
9794 The communication link to the data source failed before the function completed processing. |

9795 HY000 — General error |
9796 An error occurred for which there was no specific SQLSTATE and for which no |
9797 implementation-specific SQLSTATE was defined. The error message returned by |
9798 SQLGetDiagRec() in the *MessageTextbuffer describes the error and its cause. |

9799 HY001 — Memory allocation error |
9800 The implementation failed to allocate memory required to support execution or completion |

280 Direct Review (Build ID 96KAV) (Draft XDBC.33, August 1996)

Reference Manual Pages ISO 92 SQLDescribeCol()

9801 of the function. |

9802 HY007 — Associated statement is not prepared |
9803 The function was called prior to calling SQLPrepare(), SQLExecDirect(), or a catalog function |
9804 for StatementHandle. |

9805 HY008 — Operation canceled |
9806 Asynchronous processing was enabled for StatementHandle. The function was called and |
9807 before it completed execution, SQLCancel() was called on StatementHandle. The function |
9808 was then called again on StatementHandle. |

9809 The function was called and, before it completed execution, SQLCancel() was called on |
9810 StatementHandle from a different thread in a multithread application. |

9811 HY010 — Function sequence error |
9812 An asynchronously executing function (not this one) was called for StatementHandle and |
9813 was still executing when this function was called. |

9814 SQLBulkOperations(), SQLExecDirect(), SQLExecute(), or SQLSetPos() was called for |
9815 StatementHandle and returned SQL_NEED_DATA.This function was called before data was |
9816 sent for all data-at-execution parameters or columns. |

9817 HY090 — Invalid string or buffer length |
9818 BufferLength was less than 0. |

9819 HYT01 — Connection timeout expired |
9820 The connection timeout period expired before the data source responded to the request. The |
9821 connection timeout period is set through SQLSetConnectAttr(), |
9822 SQL_ATTR_CONNECTION_TIMEOUT. |

9823 IM001 — Function not supported |
9824 The function is not supported on the current connection to the data source. |

9825 When the application calls SQLDescribeCol() after SQLPrepare() and before SQLExecute(), it can |
9826 return any SQLSTATE that can be returned by SQLPrepare() or SQLExecute(), depending on |
9827 when the data source evaluates the SQL statement associated with StatementHandle (see |
9828 Performance Note). |

9829 COMMENTS |
9830 An application typically calls SQLDescribeCol() after a call to SQLPrepare() and before or after the |
9831 associated call to SQLExecute(). An application can also call SQLDescribeCol() after a call to |
9832 SQLExecDirect(). |

9833 SQLDescribeCol() retrieves the column name, type, and length generated by a SELECT statement. |
9834 If the column is an expression, the retrieved column name is implementation-defined. |

9835 Performance Note |

9836 The information reported by SQLDescribeCol() and SQLNumResultCols() is available on all |
9837 implementations after an SQL statement is executed. |

9838 It is also valid to call the function between the preparation and the execution of a statement. |
9839 However, on implementations where SQLPrepare() involves little or no work, a call to this |
9840 function may involve an analysis of the SQL statement that has not yet occurred.31 This may |
9841 result in more processing than anticipated and harm performance. |

9842 __________________ |
9843 31. For example, with some data sources, the only way to return this description may be to execute a SELECT statement, inhibiting |||

the generation of result-set data by replacing its WHERE clause with a clause such as WHERE 1 = 2. |||

Data Management: X/Open Database Connectivity (XDBC), Version 2 281

SQLDescribeCol() ISO 92 Reference Manual Pages

9844 SEE ALSO |

9845 For information about ||See |||
|

9846 Binding a buffer to a column in a result set ||SQLBindCol() |||

9847 Canceling statement processing ||SQLCancel() |||

9848 Returning information about a column in a result set ||SQLColAttribute() |||

9849 Fetching multiple rows of data ||SQLFetch() |||

9850 Returning the number of result set columns ||SQLNumResultCols() |||

9851 Preparing a statement for execution ||SQLPrepare() |||

9852 CHANGE HISTORY |

9853 Version 2 |
9854 Revised generally. See Alignment with Popular Implementations on page 2. ||

282 Direct Review (Build ID 96KAV) (Draft XDBC.33, August 1996)

Reference Manual Pages XDBC SQLDescribeParam()

9855 NAME |
9856 SQLDescribeParam — Return the description of a parameter marker associated with a prepared |
9857 SQL statement. |

9858 SYNOPSIS |
9859 SQLRETURN SQLDescribeParam(|
9860 SQLHSTMTStatementHandle , |
9861 SQLUSMALLINT ParameterNumber , |
9862 SQLSMALLINT * DataTypePtr , |
9863 SQLUINTEGER * ParameterSizePtr , |
9864 SQLSMALLINT * DecimalDigitsPtr , |
9865 SQLSMALLINT * NullablePtr); |

9866 ARGUMENTS |

9867 StatementHandle [Input] |
9868 Statement handle. |

9869 ParameterNumber [Input] |
9870 Parameter marker number ordered sequentially left to right, starting at 1. |

9871 DataTypePtr [Output] |
9872 Pointer to a buffer in which to return the SQL data type of the parameter. This value is read |
9873 from the SQL_DESC_TYPE record field of the IPD. This is one of the values in Section D.1 |
9874 on page 556 or an implementation-specific SQL data type. |

9875 If SQL_INTERVAL or SQL_DATETIME is returned in *DataTypePtr, the |
9876 SQL_DESC_DATETIME_INTERVAL_CODErecord field in the IRD is set to the appropriate |
9877 code: SQL_TYPE_DATE for dates, SQL_TYPE_TIME for times, and |
9878 SQL_TYPE_TIMESTAMP for timestamps. See the |
9879 SQL_DESC_DATETIME_INTERVAL_CODE field in SQLSetDescField(), or Section D.1 on |
9880 page 556. |

9881 ColumnSizePtr [Output] |
9882 Pointer to a buffer in which to return the size of the column or expression of the |
9883 corresponding parameter marker as defined by the data source. If the column size cannot |
9884 be determined, 0 is returned. Column size is defined in Section D.3.1 on page 562. |

9885 DecimalDigitsPtr [Output] |
9886 Pointer to a buffer in which to return the number of decimal digits of the column or |
9887 expression of the corresponding parameter as defined by the data source. If the number of |
9888 decimal digits cannot be determined or is not applicable, the implementation returns 0. |
9889 Decimal digits is defined in Section D.3.2 on page 564. |

9890 NullablePtr [Output] |
9891 Pointer to a buffer in which to return a value that indicates whether the parameter allows |
9892 NULL values. This value is read from the SQL_DESC_NULLABLE field of the IPD. One of |
9893 the following: |

9894 SQL_NO_NULLS The parameter does not allow NULL values (this is the |
9895 default value). |

9896 SQL_NULLABLE The parameter allows NULL values. |

9897 SQL_NULLABLE_UNKNOWN The implementation cannot determine if the parameter |
9898 allows NULL values. |

9899 RETURN VALUE |
9900 SQL_SUCCESS, SQL_SUCCESS_WITH_INFO, SQL_STILL_EXECUTING, SQL_ERROR, or |
9901 SQL_INVALID_HANDLE. |

Data Management: X/Open Database Connectivity (XDBC), Version 2 283

SQLDescribeParam() XDBC Reference Manual Pages

9902 DIAGNOSTICS |
9903 When SQLDescribeParam() returns SQL_ERROR or SQL_SUCCESS_WITH_INFO, an associated |
9904 SQLSTATE value can be obtained by calling SQLGetDiagRec() with a HandleType of |
9905 SQL_HANDLE_STMT and a Handle of StatementHandle. The following SQLSTATE values are |
9906 commonly returned by SQLDescribeParam(). The return code associated with each SQLSTATE |
9907 value is SQL_ERROR, except that for SQLSTATE values in class 01, the return code is |
9908 SQL_SUCCESS_WITH_INFO. |

9909 01000 — General warning |
9910 Implementation-defined informational message. |

9911 07009 — Invalid descriptor index |
9912 ParameterNumber was less than 0. |

9913 ParameterNumber was greater than the number of parameters in the associated SQL |
9914 statement. |

9915 The parameter marker was part of a non-DML statement. |

9916 The parameter marker was part of a SELECT list. |

9917 08S01 — Communication link failure |
9918 The communication link to the data source failed before the function completed processing. |

9919 21S01 — Insert value list does not match column list |
9920 The number of parameters in the INSERT statement did not match the number of columns |
9921 in the table named in the statement. |

9922 HY000 — General error |
9923 An error occurred for which there was no specific SQLSTATE and for which no |
9924 implementation-specific SQLSTATE was defined. The error message returned by |
9925 SQLGetDiagRec() in the *MessageTextbuffer describes the error and its cause. |

9926 HY001 — Memory allocation error |
9927 The implementation failed to allocate memory required to support execution or completion |
9928 of the function. |

9929 HY008 — Operation canceled |
9930 Asynchronous processing was enabled for StatementHandle. The function was called and |
9931 before it completed execution, SQLCancel() was called on StatementHandle. The function |
9932 was then called again on StatementHandle. |

9933 The function was called and, before it completed execution, SQLCancel() was called on |
9934 StatementHandle from a different thread in a multithread application. |

9935 HY010 — Function sequence error |
9936 The function was called prior to calling SQLPrepare(), SQLExecDirect(), SQLExecute(), or a |
9937 catalog function for StatementHandle. |

9938 An asynchronously executing function (not this one) was called for StatementHandle and |
9939 was still executing when this function was called. |

9940 SQLBulkOperations(), SQLExecDirect(), SQLExecute(), or SQLSetPos() was called for |
9941 StatementHandle and returned SQL_NEED_DATA.This function was called before data was |
9942 sent for all data-at-execution parameters or columns. |

9943 HYT01 — Connection timeout expired |
9944 The connection timeout period expired before the data source responded to the request. The |
9945 connection timeout period is set through SQLSetConnectAttr(), |
9946 SQL_ATTR_CONNECTION_TIMEOUT. |

284 Direct Review (Build ID 96KAV) (Draft XDBC.33, August 1996)

Reference Manual Pages XDBC SQLDescribeParam()

9947 IM001 — Function not supported |
9948 The function is not supported on the current connection to the data source. |

9949 COMMENTS |
9950 Parameter markers are numbered from left to right, starting with 1, in the order they appear in |
9951 the SQL statement. |

9952 SQLDescribeParam() does not return the type (input, input/output, or output) of a parameter in |
9953 an SQL statement. Except in calls to procedures, all parameters in SQL statements are input |
9954 parameters. To determine the type of each parameter in a call to a procedure, an application calls |
9955 SQLProcedureColumns(). |

9956 SEE ALSO |

9957 For information about ||See |||
|

9958 Canceling statement processing ||SQLCancel() |||

9959 Executing a prepared SQL statement ||SQLExecute() |||

9960 Preparing a statement for execution ||SQLPrepare() |||

9961 Binding a buffer to a parameter ||SQLBindParameter() |||

9962 CHANGE HISTORY |

9963 Version 2 |
9964 Function added in this version. ||

Data Management: X/Open Database Connectivity (XDBC), Version 2 285

SQLDisconnect() ISO 92 Reference Manual Pages

9965 NAME |
9966 SQLDisconnect — Close the connection associated with a specific connection handle. |

9967 SYNOPSIS |
9968 SQLRETURN SQLDisconnect(|
9969 SQLHDBCConnectionHandle); |

9970 ARGUMENTS |

9971 ConnectionHandle [Input] |
9972 Connection handle. |

9973 RETURN VALUE |
9974 SQL_SUCCESS, SQL_SUCCESS_WITH_INFO, SQL_ERROR, or SQL_INVALID_HANDLE. |

9975 DIAGNOSTICS |
9976 When SQLDisconnect() returns SQL_ERROR or SQL_SUCCESS_WITH_INFO, an associated |
9977 SQLSTATE value can be obtained by calling SQLGetDiagRec() with a HandleType of |
9978 SQL_HANDLE_DBC and a Handle of ConnectionHandle . The following SQLSTATE values are |
9979 commonly returned by SQLDisconnect(). The return code associated with each SQLSTATEvalue |
9980 is SQL_ERROR, except that for SQLSTATE values in class 01, the return code is |
9981 SQL_SUCCESS_WITH_INFO. |

9982 01000 — General warning |
9983 Implementation-defined informational message. |

9984 01002 — Disconnect error |
9985 An error occurred during the disconnect. However, the disconnect succeeded. |

9986 08003 — Connection does not exist |
9987 The connection specified in ConnectionHandle was not open. |

9988 25000 — Invalid transaction state |
9989 There was a transaction in process on the connection specified by ConnectionHandle . The |
9990 transaction remains active. |

9991 HY000 — General error |
9992 An error occurred for which there was no specific SQLSTATE and for which no |
9993 implementation-specific SQLSTATE was defined. The error message returned by |
9994 SQLGetDiagRec() in the *MessageTextbuffer describes the error and its cause. |

9995 HY001 — Memory allocation error |
9996 The implementation failed to allocate memory required to support execution or completion |
9997 of the function. |

9998 HY010 — Function sequence error |
9999 An asynchronously executing function was called for a statement handle associated with |
10000 ConnectionHandle and was still executing when SQLDisconnect() was called. |

10001 SQLBulkOperations(), SQLExecDirect(), SQLExecute(), or SQLSetPos() was called for a |
10002 statement handle associated with ConnectionHandle and returned SQL_NEED_DATA. This |
10003 function was called before data was sent for all data-at-execution parameters or columns. |

10004 HYT01 — Connection timeout expired |
10005 The connection timeout period expired before the data source responded to the request. The |
10006 connection timeout period is set through SQLSetConnectAttr(), |
10007 SQL_ATTR_CONNECTION_TIMEOUT. The connection remains active. |

10008 IM001 — Function not supported |
10009 The function is not supported on the current connection to the data source. |

286 Direct Review (Build ID 96KAV) (Draft XDBC.33, August 1996)

Reference Manual Pages ISO 92 SQLDisconnect()

10010 COMMENTS |
10011 If an application calls SQLDisconnect() after SQLBrowseConnect() returns SQL_NEED_DATAand |
10012 before it returns a different return code, then SQLDisconnect() cancels the connection browsing |
10013 process and returns the connection to an unconnected state. |

10014 If an application calls SQLDisconnect() while there is an incomplete transaction associated with |
10015 the connection handle, the function returns SQLSTATE 25000 (Invalid transaction state), |
10016 indicating that the transaction is unchanged and the connection is open. An incomplete |
10017 transaction is one that has not been completed with SQLEndTran(). |

10018 If an application calls SQLDisconnect() before it has freed all statements associated with the |
10019 connection, it frees those statements, and all descriptors that have been explicitly allocated on |
10020 the connection, after it successfully disconnects from the data source. However, if one or more of |
10021 the statements associated with the connection are still executing asynchronously, |
10022 SQLDisconnect() returns SQL_ERROR with a SQLSTATE value of HY010 (Function sequence |
10023 error). |

10024 SEE ALSO |

10025 For information about ||See |||
|

10026 Allocating a handle ||SQLAllocHandle() |||

10027 Connecting to a data source ||SQLConnect() |||

10028 Connecting to a data source using a connection string or ||
10029 dialog box ||

SQLDriverConnect() |||

10030 Freeing a connection handle ||SQLFreeHandle() |||

10031 Executing a commit or rollback operation ||SQLEndTran() |||

10032 CHANGE HISTORY |

10033 Version 2 |
10034 Revised generally. See Alignment with Popular Implementations on page 2. ||

Data Management: X/Open Database Connectivity (XDBC), Version 2 287

SQLDriverConnect() XDBC Reference Manual Pages

10035 NAME |
10036 SQLDriverConnect — Connect to a data source using implementation-defined interaction with |
10037 the user. |

10038 SYNOPSIS |
10039 SQLRETURN SQLDriverConnect(|
10040 SQLHDBCConnectionHandle , |
10041 SQLHWNDWindowHandle , |
10042 SQLCHAR * InConnectionString , |
10043 SQLSMALLINT StringLength1 , |
10044 SQLCHAR * OutConnectionString , |
10045 SQLSMALLINT BufferLength , |
10046 SQLSMALLINT * StringLength2Ptr , |
10047 SQLUSMALLINT DriverCompletion); |

10048 ARGUMENTS |

10049 ConnectionHandle [Input] |
10050 Connection handle. |

10051 WindowHandle [Input] |
10052 Window handle. This is an implementation-defined data structure that indicates the context |
10053 for any user interaction. In graphical user-interface environments, the application passes |
10054 the handle of the parent window. If the window handle is not applicable (for example, if |
10055 the value of DriverCompletion directs SQLDriverConnect() to not interact with the user), the |
10056 application provides a null pointer. |

10057 InConnectionString [Input] |
10058 A full connection string (see the syntax in ‘‘Comments’’), a partial connection string, or an |
10059 empty string. |

10060 StringLength1 [Input] |
10061 Length of *InConnectionString, in octets. |

10062 OutConnectionString [Output] |
10063 Pointer to a buffer for the completed connection string. Upon successful connection to the |
10064 target data source, this buffer contains the completed connection string. Applications |
10065 should allocate at least 1024 octets for this buffer. |

10066 BufferLength [Input] |
10067 Length of the *OutConnectionString buffer. |

10068 StringLength2Ptr [Output] |
10069 Pointer to a buffer in which to return the total number of octets (excluding the null |
10070 terminator) available to return in *OutConnectionString. If the number of octets available to |
10071 return is greater than or equal to BufferLength, the completed connection string in |
10072 *OutConnectionString is truncated to BufferLength minus the length of a null terminator. |

10073 DriverCompletion [Input] |
10074 A flag that indicates whether the implementation should interact with the user: |
10075 SQL_DRIVER_PROMPT, SQL_DRIVER_COMPLETE, |
10076 SQL_DRIVER_COMPLETE_REQUIRED, or SQL_DRIVER_NOPROMPT. (See |
10077 ‘‘Comments’’ for additional information.) |

10078 RETURN VALUE |
10079 SQL_SUCCESS, SQL_SUCCESS_WITH_INFO, SQL_NO_DATA, SQL_ERROR, or |
10080 SQL_INVALID_HANDLE. |

288 Direct Review (Build ID 96KAV) (Draft XDBC.33, August 1996)

Reference Manual Pages XDBC SQLDriverConnect()

10081 DIAGNOSTICS |
10082 When SQLDriverConnect() returns SQL_ERROR or SQL_SUCCESS_WITH_INFO, an associated |
10083 SQLSTATE value can be obtained by calling SQLGetDiagRec() with a HandleTypeof |
10084 SQL_HANDLE_DBC and an Handle of ConnectionHandle . The following SQLSTATE values are |
10085 commonly returned by SQLDriverConnect(). The return code associated with each SQLSTATE |
10086 value is SQL_ERROR, except that for SQLSTATE values in class 01, the return code is |
10087 SQL_SUCCESS_WITH_INFO. |

10088 01000 — General warning |
10089 Implementation-defined informational message. |

10090 01004 — String data, right truncation |
10091 The buffer *OutConnectionString was not large enough to return the entire connection string, |
10092 so the connection string was truncated. The length of the untruncated connection string is |
10093 returned in *StringLength2Ptr. |

10094 01S00 — Invalid connection string attribute |
10095 An invalid attribute keyword was specified by InConnectionString but the implementation |
10096 was able to connect to the data source anyway. |

10097 01S02 — Attribute value changed |
10098 The data source did not support the specified value pointed to by ValuePtr in |
10099 SQLSetConnectAttr() and substituted a similar value. |

10100 08001 — Client unable to establish connection |
10101 The implementation could not establish a connection to the data source. |

10102 08002 — Connection name in use |
10103 ConnectionHandle had already been used to establish a connection with a data source and |
10104 the connection was still open. |

10105 08004 — Data source rejected the connection |
10106 The data source rejected the establishment of the connection for implementation-defined |
10107 reasons. |

10108 08S01 — Communication link failure |
10109 The communication link to the data source failed before the function completed processing. |

10110 28000 — Invalid authorization specification |
10111 Either the user identifier or the authorization string or both as specified by |
10112 InConnectionString violated restrictions defined by the data source. |

10113 HY000 — General error |
10114 An error occurred for which there was no specific SQLSTATE and for which no |
10115 implementation-specific SQLSTATE was defined. The error message returned by |
10116 SQLGetDiagRec() in the *MessageTextbuffer describes the error and its cause. |

10117 HY001 — Memory allocation error |
10118 The implementation failed to allocate memory required to support execution or completion |
10119 of the function. |

10120 HY090 — Invalid string or buffer length |
10121 StringLength1 was less than 0 and was not equal to SQL_NTS. |

10122 BufferLength was less than 0. |

10123 HY092 — Invalid attribute identifier |
10124 DriverCompletion was SQL_DRIVER_PROMPT, and WindowHandle was a null pointer. |

10125 HY110 — Invalid value of DriverCompletion |
10126 DriverCompletion was not equal to SQL_DRIVER_PROMPT, SQL_DRIVER_COMPLETE, |

Data Management: X/Open Database Connectivity (XDBC), Version 2 289

SQLDriverConnect() XDBC Reference Manual Pages

10127 SQL_DRIVER_COMPLETE_REQUIRED or SQL_DRIVER_NOPROMPT. |

10128 HYC00 — Optional feature not implemented |
10129 The data source does not support the operation that the application requested. |

10130 HYT00 — Timeout expired |
10131 The login timeout period expired before the connection to the data source completed. The |
10132 timeout period is set through SQLSetConnectAttr(), SQL_ATTR_LOGIN_TIMEOUT. |

10133 HYT01 — Connection timeout expired |
10134 The connection timeout period expired before the data source responded to the request. The |
10135 connection timeout period is set through SQLSetConnectAttr(), |
10136 SQL_ATTR_CONNECTION_TIMEOUT. |

10137 IM001 — Function not supported |
10138 The function is not supported on the current connection to the data source. |

10139 IM002 — Data source not found and no default driver specified |
10140 The data source name specified in the connection string (InConnectionString) was not found |
10141 in the system information; and either no default data source was specified or information on |
10142 the default data source could not be found in the system information. |

10143 COMMENTS |
10144 SQLDriverConnect() is an alternative to SQLConnect() that connects to a data source based on |
10145 information obtained interactively from the user. SQLDriverConnect() is suitable in the |
10146 following cases: |

10147 • To establish a connection using a connection string that contains information more extensive |
10148 than that allowed by the arguments of SQLConnect(), (for example, the data source name, |
10149 one or more user IDs, one or more passwords, and other information required by the data |
10150 source). |

10151 • To establish a connection using partial or no connection information, relying on the |
10152 implementation to obtain required information from the user interactively. |

10153 • To establish a connection to a data source that is not defined in the system information. |

10154 • To establish a connection to a data source using a prearranged connection string. |

10155 Once a connection is established, SQLDriverConnect() returns the completed connection string. |
10156 The application can use this string for subsequent connection requests. |

10157 Connection Strings |

10158 A connection string has the following syntax: |

10159 connection-string ::= empty-string [;] | attribute [;] | attribute ; connection-string|
10160 empty-string ::= |
10161 attribute ::= attribute-keyword =attribute-value |

10162 attribute-keyword ::= DSN | UID | PWD |
10163 | implementation-defined-attribute-keyword |
10164 attribute-value ::= character-string |
10165 implementation-defined-attribute-keyword ::= identifier |

10166 where character-string has zero or more characters; identifier has one or more characters; |
10167 attribute-keyword is not case-sensitive; attribute-value may be case-sensitive; and the value of the |
10168 DSN keyword does not consist solely of blanks. Keywords and attribute values should not |
10169 contain the characters [] { } () , ; ? * = ! @ \ |

290 Direct Review (Build ID 96KAV) (Draft XDBC.33, August 1996)

Reference Manual Pages XDBC SQLDriverConnect()

10170 The connection string may include any number of implementation-defined keywords. If in |
10171 InConnectionString any keywords are repeated, or if the same or different keywords are used in |
10172 ways that would be contradictory, the implementation uses the one that appears first. |

10173 The following table describes the attribute values of the DSN, UID, and PWD keywords: |

10174 Keyword Attribute value description ||
10175 Name of a data source as returned by SQLDataSources() or the data sources ||
10176 dialog box of SQLDriverConnect(). ||

DSN |

10177 UID A user ID. |

10178 The password corresponding to the user ID, or an empty string if there is no ||
10179 password for the user ID (PWD=;). ||

PWD |

10180 Interpretation of InConnectionString |

10181 The implementation retrieves information about a specific data source from the system |
10182 information. If InConnectionString contains the DSN keyword, the implementation retrieves |
10183 information about the data source it specifies. If not, if the specified data source is not found in |
10184 the system information, or if the application specifies DSN=DEFAULT, the implementation |
10185 retrieves the information for the default data source. |

10186 The information retrieved from the system information augments other information the |
10187 application placed in InConnectionString . If the application provides connection information in |
10188 InConnectionString that contradicts the corresponding information for that data source in the |
10189 system information, then the information in InConnectionString prevails. |

10190 Based on the value of DriverCompletion , the implementation interacts with the user to obtain |
10191 connection information, such as the user ID and password, and connects to the data source: |

10192 SQL_DRIVER_NOPROMPT |
10193 If the connection string contains sufficient information to establish a connection, |
10194 SQLDriverConnect() does so. Otherwise, it returns SQL_ERROR. |

10195 SQL_DRIVER_PROMPT |
10196 The implementation interacts with the user to obtain any connection information not |
10197 provided in InConnectionString . In graphical user-interface environments, WindowHandle |
10198 indicates the context in which this interaction occurs; for instance, it may denote the parent |
10199 window in which a dialog box appears. If the application provided information in |
10200 InConnectionString or if the implementation obtained information from the system |
10201 information, the prevailing information is used as initial values for the interaction with the |
10202 user. |

10203 When the user completes the interaction, having specified sufficient information to establish |
10204 a connection, the implementation connects to the data source. It also constructs a |
10205 connection string from the value of the DSN keyword in *InConnectionString and the other |
10206 information resulting from the interaction with the user. It places this connection string in |
10207 the *OutConnectionString buffer. |

10208 If the user does not specify sufficient information to establish a connection, the |
10209 implementation identifies the missing information and again requests it from the user. |

10210 If the user aborts the interaction without specifying sufficient information, |
10211 SQLDriverConnect() returns SQL_NO_DATA. |

10212 SQL_DRIVER_COMPLETE or SQL_DRIVER_COMPLETE_REQUIRED |
10213 If InConnectionString contains sufficient information to establish a connection, the |

Data Management: X/Open Database Connectivity (XDBC), Version 2 291

SQLDriverConnect() XDBC Reference Manual Pages

10214 implementation does so. If any information is missing or incorrect, the implementation |
10215 interacts with the user, as described above for SQL_DRIVER_PROMPT. However, if |
10216 DriverCompletion is SQL_DRIVER_COMPLETE_REQUIRED, the implementation restricts |
10217 the interaction so that the user only specifies the minimum information required to connect |
10218 to the data source. |

10219 On successful connection to the data source, the implementation sets *OutConnectionString to a |
10220 connection string that achieved the connection. (This is the value of InConnectionString, as |
10221 modified by the system information and any interaction with the user.) The implementation |
10222 also sets *StringLength2Ptr to the length of *OutConnectionString. |

10223 Connection Attributes |

10224 The SQL_ATTR_LOGIN_TIMEOUT connection attribute, set using SQLSetConnectAttr(), defines |
10225 the number of seconds to wait for a login request to complete successfully before returning to |
10226 the application. If the user is prompted to complete the connection string, a waiting period for |
10227 each login request begins when the connection process starts. |

10228 By default, the implementation opens the connection in SQL_MODE_READ_WRITE access |
10229 mode. To set the access mode to SQL_MODE_READ_ONLY, the application must call |
10230 SQLSetConnectAttr() with the SQL_ATTR_ACCESS_MODE attribute prior to calling |
10231 SQLDriverConnect(). |

10232 SEE ALSO |

10233 For information about ||See |||
|

10234 Allocating a handle ||SQLAllocHandle() |||

10235 Discovering and enumerating values required to connect ||
10236 to a data source ||

SQLBrowseConnect() |||

10237 Connecting to a data source ||SQLConnect() |||

10238 Disconnecting from a data source ||SQLDisconnect() |||

10239 Freeing a handle ||SQLFreeHandle() |||

10240 Setting a connection attribute ||SQLSetConnectAttr() |||

10241 CHANGE HISTORY |

10242 Version 2 |
10243 Function added in this version. ||

292 Direct Review (Build ID 96KAV) (Draft XDBC.33, August 1996)

Reference Manual Pages XDBC (Optional Driver Manager) SQLDrivers()

10244 NAME |
10245 SQLDrivers — List driver descriptions and driver attribute keywords. |

10246 SYNOPSIS |
10247 OP SQLRETURN SQLDrivers(|
10248 SQLHENVEnvironmentHandle , |
10249 SQLUSMALLINT Direction , |
10250 SQLCHAR * DriverDescription , |
10251 SQLSMALLINT BufferLength1 , |
10252 SQLSMALLINT * DescriptionLengthPtr , |
10253 SQLCHAR * DriverAttributes , |
10254 SQLSMALLINT BufferLength2 , |
10255 SQLSMALLINT * AttributesLengthPtr); |SQLSMALLINT * AttributesLengthPtr); ||

10256 ARGUMENTS |

10257 EnvironmentHandle [Input] |
10258 Environment handle. |

10259 Direction [Input] |
10260 Determines whether the Driver Manager fetches the next driver description in the list |
10261 (SQL_FETCH_NEXT) or whether the search starts from the beginning of the list |
10262 (SQL_FETCH_FIRST). |

10263 DriverDescription [Output] |
10264 Pointer to a buffer in which to return the driver description. |

10265 BufferLength1 [Input] |
10266 Length of the *DriverDescription buffer, in octets. |

10267 DescriptionLengthPtr [Output] |
10268 Pointer to a buffer in which to return the total number of octets (excluding the null |
10269 terminator) available to return in *DriverDescription. If the number of octets available to |
10270 return is greater than or equal to BufferLength1, the driver description in *DriverDescription is |
10271 truncated to BufferLength1 minus the length of a null terminator. |

10272 DriverAttributes [Output] |
10273 Pointer to a buffer in which to return the list of driver attribute value pairs (see |
10274 ‘‘Comments’’). |

10275 BufferLength2 [Input] |
10276 Length of the *DriverAttributes buffer, in octets. |

10277 AttributesLengthPtr [Output] |
10278 Pointer to a buffer in which to return the total number of octets (excluding the null |
10279 terminator) available to return in *DriverAttributes. If the number of octets available to |
10280 return is greater than or equal to BufferLength2, the list of attribute value pairs in |
10281 *DriverAttributes is truncated to BufferLength2 minus the length of a null terminator. |

10282 RETURN VALUE |
10283 SQL_SUCCESS, SQL_SUCCESS_WITH_INFO, SQL_NO_DATA, SQL_ERROR, or |
10284 SQL_INVALID_HANDLE. |

10285 DIAGNOSTICS |
10286 When SQLDrivers() returns SQL_ERROR or SQL_SUCCESS_WITH_INFO, an associated |
10287 SQLSTATE value can be obtained by calling SQLGetDiagRec() with a HandleType of |
10288 SQL_HANDLE_ENV and a Handle of EnvironmentHandle. The following SQLSTATE values are |
10289 commonly returned by SQLDrivers(). The return code associated with each SQLSTATEvalue is |
10290 SQL_ERROR, except that for SQLSTATE values in class 01, the return code is |

Data Management: X/Open Database Connectivity (XDBC), Version 2 293

SQLDrivers() XDBC (Optional Driver Manager) Reference Manual Pages

10291 SQL_SUCCESS_WITH_INFO. |

10292 01000 — General warning |
10293 Implementation-defined informational message. |

10294 01004 — String data, right truncation |
10295 The buffer *DriverDescription was not large enough to return the entire driver description, so |
10296 the description was truncated. The length of the entire driver description is returned in |
10297 *DescriptionLengthPtr. |

10298 The buffer *DriverAttributes was not large enough to return the entire list of attribute value |
10299 pairs, so the list was truncated. The length of the untruncated list of attribute value pairs is |
10300 returned in *AttributesLengthPtr. |

10301 HY000 — General error |
10302 An error occurred for which there was no specific SQLSTATE and for which no |
10303 implementation-specific SQLSTATE was defined. The error message returned by |
10304 SQLGetDiagRec() in the *MessageTextbuffer describes the error and its cause. |

10305 HY001 — Memory allocation error |
10306 The implementation failed to allocate memory required to support execution or completion |
10307 of the function. |

10308 HY090 — Invalid string or buffer length |
10309 BufferLength1 was less than 0. |

10310 BufferLength2 was less than 0 or equal to 1. |

10311 HY103 — Invalid retrieval code |
10312 Direction was not equal to SQL_FETCH_FIRST or SQL_FETCH_NEXT. |

10313 COMMENTS |
10314 SQLDrivers() is an optional function in the XSQL implementation. However, if it is provided, it |
10315 returns information about all accessible data sources, regardless of their XDBC compliance level. |

10316 SQLDrivers() returns the driver description in the *DriverDescription buffer. It returns additional |
10317 information about the driver in the *DriverAttributes buffer as a list of keyword-value pairs. |
10318 Each pair is terminated with a null octet, and the entire list is terminated with a null octet (that |
10319 is, two null octets mark the end of the list). For example, a file-based driver using C syntax might |
10320 return the following list of attributes (’\0’ represents a null character): |

10321 FileUsage=1\0FileExtns=*.dbf\0\0 |

10322 If *DriverAttributes is not large enough to hold the entire list, the list is truncated, SQLDrivers() |
10323 returns SQLSTATE 01004 (Data truncated), and the length of the list (excluding the final null |
10324 terminator) is returned in *AttributesLengthPtr. |

10325 Driver attribute keywords are added from the system information when the driver is installed. |

10326 An application can call SQLDrivers() multiple times to retrieve all driver descriptions. The |
10327 Driver Manager retrieves this information from the system information. When there are no more |
10328 driver descriptions, SQLDrivers() returns SQL_NO_DATA. If SQLDrivers() is called with |
10329 SQL_FETCH_NEXT immediately after it returns SQL_NO_DATA, it returns the first driver |
10330 description. |

10331 If SQL_FETCH_NEXT is passed to SQLDrivers() the very first time it is called, SQLDrivers() |
10332 returns the first data source name. |

10333 SEE ALSO |

294 Direct Review (Build ID 96KAV) (Draft XDBC.33, August 1996)

Reference Manual Pages XDBC (Optional Driver Manager) SQLDrivers()

10334 For information about ||See |||
|

10335 Discovering and listing values required to connect to a ||
10336 data source ||

SQLBrowseConnect() |||

10337 Connecting to a data source ||SQLConnect() |||

10338 Returning data source names ||SQLDataSources() |||

10339 Connecting to a data source using a connection string or ||
10340 dialog box ||

SQLDriverConnect() |||

10341 CHANGE HISTORY |

10342 Version 2 |
10343 Function added in this version. ||

Data Management: X/Open Database Connectivity (XDBC), Version 2 295

SQLEndTran() ISO 92 Reference Manual Pages

10344 NAME |
10345 SQLEndTran — Request commit or rollback of all active operations on all statements associated |
10346 with a connection, or for all connections associated with an environment. |

10347 SYNOPSIS |
10348 SQLRETURN SQLEndTran(|
10349 SQLSMALLINT HandleType , |
10350 SQLHANDLEHandle , |
10351 SQLSMALLINT CompletionType); |

10352 ARGUMENTS |

10353 HandleType [Input] |
10354 Handle type identifier. Contains either SQL_HANDLE_ENV if Handle is an environment |
10355 handle, or SQL_HANDLE_DBC if Handle is a connection handle. |

10356 Handle [Input] |
10357 The handle, of the type indicated by HandleType, indicating the scope of the transaction. See |
10358 the ‘‘Comments’’ section below for more information. |

10359 CompletionType [Input] |
10360 Either SQL_COMMIT or SQL_ROLLBACK. |

10361 RETURN VALUE |
10362 SQL_SUCCESS, SQL_SUCCESS_WITH_INFO, SQL_ERROR, or SQL_INVALID_HANDLE. |

10363 DIAGNOSTICS |
10364 When SQLEndTran() returns SQL_ERROR or SQL_SUCCESS_WITH_INFO, an associated |
10365 SQLSTATE value can be obtained by calling SQLGetDiagRec() with the appropriate HandleType |
10366 and Handle . The following SQLSTATE values are commonly returned by SQLEndTran(). The |
10367 return code associated with each SQLSTATE value is SQL_ERROR, except that for SQLSTATE |
10368 values in class 01, the return code is SQL_SUCCESS_WITH_INFO. |

10369 01000 — General warning |
10370 Implementation-defined informational message. |

10371 08003 — Connection not open |
10372 ConnectionHandle was not in a connected state. |

10373 08007 — Connection failure during transaction |
10374 The connection associated with ConnectionHandle failed during the execution of the function |
10375 and it cannot be determined whether the requested COMMIT or ROLLBACK occurred |
10376 before the failure. |

10377 25S01 — Transaction state unknown |
10378 One or more of the connections in Handle failed to complete the transaction with the |
10379 outcome specified, and the outcome is unknown. |

10380 25S02 — Transaction is still active |
10381 The implementation was unable to guarantee that all work in the global transaction could |
10382 be completed atomically, and the transaction is still active. |

10383 25S03 — Transaction is rolled back |
10384 The implementation was unable to guarantee that all work in the global transaction could |
10385 be completed atomically, and all work in the transaction active in Handle was rolled back. |

10386 HY000 — General error |
10387 An error occurred for which there was no specific SQLSTATE and for which no |
10388 implementation-specific SQLSTATE was defined. The error message returned by |
10389 SQLGetDiagRec() in the *MessageTextbuffer describes the error and its cause. |

296 Direct Review (Build ID 96KAV) (Draft XDBC.33, August 1996)

Reference Manual Pages ISO 92 SQLEndTran()

10390 HY001 — Memory allocation error |
10391 The implementation failed to allocate memory required to support execution or completion |
10392 of the function. |

10393 HY010 — Function sequence error |
10394 An asynchronously executing function was called for a statement handle associated with |
10395 ConnectionHandle and was still executing when SQLEndTran() was called. |

10396 SQLBulkOperations(), SQLExecDirect(), SQLExecute(), or SQLSetPos() was called for a |
10397 statement handle associated with ConnectionHandle and returned SQL_NEED_DATA. This |
10398 function was called before data was sent for all data-at-execution parameters or columns. |

10399 HY012 — Invalid transaction operation code |
10400 CompletionType was neither SQL_COMMIT nor SQL_ROLLBACK. |

10401 HY092 — Invalid attribute identifier |
10402 HandleTypewas neither SQL_HANDLE_ENV nor SQL_HANDLE_DBC. |

10403 HYC00 — Optional feature not implemented |
10404 The data source does not support the ROLLBACK operation. |

10405 HYT01 — Connection timeout expired |
10406 The connection timeout period expired before the data source responded to the request. The |
10407 connection timeout period is set through SQLSetConnectAttr(), |
10408 SQL_ATTR_CONNECTION_TIMEOUT. |

10409 IM001 — Function not supported |
10410 The function is not supported on the current connection to the data source. |

10411 COMMENTS |
10412 Calling SQLEndTran() attempts to complete (commit or roll back, according to CompletionType), |
10413 all specified transactions: |

10414 • If HandleType is SQL_HANDLE_DBC, then Handle must be a connection handle and |
10415 SQLEndTran() completes the transaction on that connection. |

10416 • If HandleType is SQL_HANDLE_ENV, then Handle must be an environment handle. |
10417 SQLEndTran() completes transactions on all connections that are in a connected state on that |
10418 environment. SQLEndTran() generates at least one diagnostic record for each of these |
10419 connections and associates it with the connection handle. |

10420 Connections on which no transaction has begun are not affected by SQLEndTran(), do not |
10421 affect the success or failure of SQLEndTran(), and diagnostic information is not associated |
10422 with the connection handle. |

10423 SQLEndTran() returns SQL_SUCCESS only if completion of the transaction succeeds on each |
10424 affected connection. If completion of the transaction fails on any connection, SQLEndTran() |
10425 returns SQL_ERROR and the application can determine the location and cause of the failure |
10426 by calling SQLGetDiagRec() for each affected connection. |

10427 This function does not simulate a global transaction across all connections and therefore does |
10428 not use two-phase commit protocols. |

10429 If CompletionType is SQL_COMMIT, SQLEndTran() issues a commit request for all active |
10430 operations on any statement associated with an affected connection. If CompletionType is |
10431 SQL_ROLLBACK, SQLEndTran() issues a rollback request for all active operations on any |
10432 statement associated with an affected connection. If no transactions are active, SQLEndTran() |
10433 returns SQL_SUCCESS with no effect on any data sources. |

10434 If the data source is in manual-commit mode (by calling SQLSetConnectAttr() with the |
10435 SQL_ATTR_AUTOCOMMIT attribute set to SQL_AUTOCOMMIT_OFF), a new transaction is |

Data Management: X/Open Database Connectivity (XDBC), Version 2 297

SQLEndTran() ISO 92 Reference Manual Pages

10436 implicitly started when an SQL statement that can be contained within a transaction is executed |
10437 against the current data source. |

10438 Effects on Cursors |

10439 To determine how transaction operations affect cursors, an application calls SQLGetInfo() with |
10440 the SQL_CURSOR_ROLLBACK_BEHAVIOR and SQL_CURSOR_COMMIT_BEHAVIOR |
10441 options. |

10442 If the SQL_CURSOR_ROLLBACK_BEHAVIOR or SQL_CURSOR_COMMIT_BEHAVIOR value |
10443 equals SQL_CB_DELETE, SQLEndTran() closes and deletes all open cursors on all statements |
10444 associated with the connection and discards all pending results. SQLEndTran() leaves any |
10445 statement present in an allocated (unprepared) state; the application can reuse them for |
10446 subsequent SQL requests or can call SQLFreeStmt() or SQLFreeHandle() with a HandleType of |
10447 SQL_HANDLE_STMT to deallocate them. |

10448 If the SQL_CURSOR_ROLLBACK_BEHAVIOR or SQL_CURSOR_COMMIT_BEHAVIOR value |
10449 equals SQL_CB_CLOSE, SQLEndTran() closes all open cursors on all statements associated with |
10450 the connection. SQLEndTran() leaves any statement present in a prepared state; the application |
10451 can call SQLExecute() for a statement associated with the connection without first calling |
10452 SQLPrepare(). |

10453 If the SQL_CURSOR_ROLLBACK_BEHAVIOR or SQL_CURSOR_COMMIT_BEHAVIOR value |
10454 equals SQL_CB_PRESERVE, SQLEndTran() does not affect open cursors associated with the |
10455 connection. Cursors remain at the row they pointed to prior to the call to SQLEndTran(). |

10456 Effects When No Transaction Active |

10457 Calling SQLEndTran() when no transaction is active returns SQL_SUCCESS (indicating that |
10458 there is no work to be committed or rolled back) and has no effect on the data source. |

10459 Implementations that do not support transactions (the SQL_TXN_CAPABLE option of |
10460 SQLGetInfo() is SQL_TC_NONE) are effectively always in auto-commit mode. Calling |
10461 SQLEndTran() always returns SQL_SUCCESS. These implementations do not roll back |
10462 transactions; if CompletionType is SQL_ROLLBACK, the function fails and sets SQLSTATE to |
10463 HYC00 (Optional feature not implemented). |

10464 SEE ALSO |

10465 For information about ||See |||
|

10466 Returning information about an implementation ||SQLGetInfo() |||

10467 Freeing a handle ||SQLFreeHandle() |||

10468 Freeing a statement handle ||SQLFreeStmt() |||

10469 CHANGE HISTORY |

10470 Version 2 |
10471 Revised generally. See Alignment with Popular Implementations on page 2. ||

298 Direct Review (Build ID 96KAV) (Draft XDBC.33, August 1996)

Reference Manual Pages ISO 92 SQLExecDirect()

10472 NAME |
10473 SQLExecDirect — Execute a preparable statement, using the current values of the parameter |
10474 marker variables if any parameters exist in the statement. |

10475 SYNOPSIS |
10476 SQLRETURN SQLExecDirect(|
10477 SQLHSTMTStatementHandle , |
10478 SQLCHAR * StatementText , |
10479 SQLINTEGER TextLength); |

10480 ARGUMENTS |

10481 StatementHandle [Input] |
10482 Statement handle. |

10483 StatementText [Input] |
10484 SQL statement to be executed. |

10485 TextLength [Input] |
10486 Length of *StatementText. |

10487 RETURN VALUE |
10488 SQL_SUCCESS, SQL_SUCCESS_WITH_INFO, SQL_NEED_DATA, SQL_STILL_EXECUTING, |
10489 SQL_ERROR, SQL_NO_DATA,or SQL_INVALID_HANDLE. |

10490 DIAGNOSTICS |
10491 When SQLExecDirect() returns SQL_ERROR or SQL_SUCCESS_WITH_INFO, an associated |
10492 SQLSTATE value can be obtained by calling SQLGetDiagRec() with a HandleType of |
10493 SQL_HANDLE_STMT and a Handle of StatementHandle. The following SQLSTATE values are |
10494 commonly returned by SQLExecDirect(). The return code associated with each SQLSTATEvalue |
10495 is SQL_ERROR, except that for SQLSTATE values in class 01, the return code is |
10496 SQL_SUCCESS_WITH_INFO. |

10497 01000 — General warning |
10498 Implementation-defined informational message. |

10499 01001 — Cursor operation conflict |
10500 *StatementText contained a positioned UPDATE or DELETE statement and no rows or more |
10501 than one row were updated or deleted. (For more information about updates to more than |
10502 one row, see the description of the SQL_ATTR_SIMULATE_CURSORstatement attribute in |
10503 SQLSetStmtAttr().) |

10504 01S02 — Attribute value changed |
10505 A specified statement attribute was invalid and a similar value was temporarily substituted. |
10506 See Section 9.2.1 on page 93. |

10507 01S07 — Fractional truncation |
10508 The data returned for an input/output or output parameter was truncated so as to truncate |
10509 the fractional part of a numeric data type; or the fractional portion of the seconds |
10510 component of a time, timestamp, or interval data type. |

10511 07001 — Wrong number of parameters |
10512 The number of parameters specified in SQLBindParameter() was less than the number of |
10513 parameters in the SQL statement contained in *StatementText. |

10514 07002 — COUNT field incorrect |
10515 SQLBindParameter() was called with ParameterValuePtrset to a null pointer, StrLen_or_IndPtr |
10516 not set to SQL_NULL_DATA or SQL_DATA_AT_EXEC, and InputOutputType not set to |
10517 SQL_PARAM_OUTPUT. |

Data Management: X/Open Database Connectivity (XDBC), Version 2 299

SQLExecDirect() ISO 92 Reference Manual Pages

10518 07006 — Restricted data type attribute violation |
10519 The data value identified by ValueType in SQLBindParameter() for the bound parameter |
10520 could not be converted to the data type identified by ParameterTypein SQLBindParameter(). |

10521 The data value returned for a parameter bound as SQL_PARAM_INPUT_OUTPUT or |
10522 SQL_PARAM_OUTPUT could not be converted to the data type identified by ValueType in |
10523 SQLBindParameter(). |

10524 (If the data values for one or more rows could not be converted, but one or more rows were |
10525 successfully returned, this function returns SQL_SUCCESS_WITH_INFO.) |

10526 07S01 — Invalid use of default parameter |
10527 A parameter value, set with SQLBindParameter(), was SQL_DEFAULT_PARAM, and the |
10528 corresponding parameter was not a parameter for a procedure called using the XDBC |
10529 escape sequence (see Section 8.3 on page 84). |

10530 08S01 — Communication link failure |
10531 The communication link to the data source failed before the function completed processing. |

10532 22001 — String data, right truncation |
10533 The assignment of a character or binary value to a column resulted in the truncation of |
10534 non-blank character data or non-null binary data. |

10535 22002 — Indicator variable required but not supplied |
10536 NULL data was bound to an output parameter whose StrLen_or_IndPtr set by |
10537 SQLBindParameter() was a null pointer. |

10538 22025 — Invalid escape sequence |
10539 *StatementText contained ‘‘LIKE pattern value ESCAPE escape character’’ in the WHERE |
10540 clause, and the character following the escape character in the pattern value was not one of |
10541 ‘‘%’’ or ‘‘_’’. |

10542 34000 — Invalid cursor name |
10543 *StatementText contained a positioned UPDATE or DELETE statement and the cursor |
10544 referenced by the statement being executed was not open. |

10545 HY000 — General error |
10546 An error occurred for which there was no specific SQLSTATE and for which no |
10547 implementation-specific SQLSTATE was defined. The error message returned by |
10548 SQLGetDiagRec() in the *MessageTextbuffer describes the error and its cause. |

10549 HY001 — Memory allocation error |
10550 The implementation failed to allocate memory required to support execution or completion |
10551 of the function. |

10552 HY008 — Operation canceled |
10553 Asynchronous processing was enabled for StatementHandle. The function was called and |
10554 before it completed execution, SQLCancel() was called on StatementHandle. The function |
10555 was then called again on StatementHandle. |

10556 The function was called and, before it completed execution, SQLCancel() was called on |
10557 StatementHandle from a different thread in a multithread application. |

10558 HY009 — Invalid use of null pointer |
10559 StatementText was a null pointer. |

10560 HY010 — Function sequence error |
10561 An asynchronously executing function (not this one) was called for StatementHandle and |
10562 was still executing when this function was called. |

300 Direct Review (Build ID 96KAV) (Draft XDBC.33, August 1996)

Reference Manual Pages ISO 92 SQLExecDirect()

10563 SQLBulkOperations(), SQLExecDirect(), SQLExecute(), or SQLSetPos() was called for |
10564 StatementHandle and returned SQL_NEED_DATA.This function was called before data was |
10565 sent for all data-at-execution parameters or columns. |

10566 HY090 — Invalid string or buffer length |
10567 TextLength was less than or equal to 0, but not equal to SQL_NTS. |

10568 A parameter value, set with SQLBindParameter(), was a null pointer and the parameter |
10569 length value was not 0, SQL_NULL_DATA, SQL_DATA_AT_EXEC, |
10570 SQL_DEFAULT_PARAM,or less than or equal to SQL_LEN_DATA_AT_EXEC_OFFSET. |

10571 A parameter value, set with SQLBindParameter(), was not a null pointer and the parameter |
10572 length value was less than 0, but was not SQL_NTS, SQL_NULL_DATA, |
10573 SQL_DATA_AT_EXEC, SQL_DEFAULT_PARAM, or less than or equal to |
10574 SQL_LEN_DATA_AT_EXEC_OFFSET. (This error is reported only if the application data |
10575 type is SQL_C_BINARY or SQL_C_CHAR.) |

10576 A parameter length value bound by SQLBindParameter() was set to SQL_DATA_AT_EXEC; |
10577 the SQL type was either SQL_LONGVARCHAR, SQL_LONGVARBINARY, or a long, data- |
10578 source-specific data type; and the SQL_NEED_LONG_DATA_LEN option in SQLGetInfo() |
10579 was ‘‘Y’’. |

10580 HY105 — Invalid parameter type |
10581 A value specified for InputOutputType in SQLBindParameter() did not accurately describe the |
10582 corresponding parameter as it was used in the SQL statement. For example, |
10583 SQL_PARAM_OUTPUT was specified for a parameter used other than in conjunction with |
10584 a procedure, or SQL_PARAM_INPUT was specified for a parameter that was a return value |
10585 from a procedure. |

10586 HY109 — Invalid cursor position |
10587 *StatementText contained a positioned UPDATE or DELETE statement and the cursor was |
10588 positioned (by SQLSetPos() or SQLFetchScroll()) on a row that had been deleted or could not |
10589 be fetched. |

10590 HYC00 — Optional feature not implemented |
10591 The data source does not support the combination of the current settings of the |
10592 SQL_ATTR_CONCURRENCY and SQL_ATTR_CURSOR_TYPE statement attributes. |

10593 The SQL_ATTR_USE_BOOKMARKS statement attribute was set to SQL_UB_VARIABLE, |
10594 and the SQL_ATTR_CURSOR_TYPE statement attribute was set to a cursor type for which |
10595 the data source does not support bookmarks. |

10596 HYT00 — Timeout expired |
10597 The query timeout period expired before the data source returned the result set. The |
10598 timeout period is set through SQLSetStmtAttr(), SQL_ATTR_QUERY_TIMEOUT. |

10599 HYT01 — Connection timeout expired |
10600 The connection timeout period expired before the data source responded to the request. The |
10601 connection timeout period is set through SQLSetConnectAttr(), |
10602 SQL_ATTR_CONNECTION_TIMEOUT. |

10603 IM001 — Function not supported |
10604 The function is not supported on the current connection to the data source. |

10605 In addition, the following diagnostics, defined in the X/Open SQL specification, can occur based |
10606 on the SQL statement text: |

Data Management: X/Open Database Connectivity (XDBC), Version 2 301

SQLExecDirect() ISO 92 Reference Manual Pages

10607 Success with warning [SQL_SUCCESS_WITH_INFO] |
10608 01003 — NULL value eliminated in set function. |
10609 01004 — String data, right truncation. |
10610 01006 — Privilege not revoked. |
10611 01007 — Privilege not granted. |
10612 Cardinality violation |
10613 21S01 — Insert value does not match column list. |
10614 21S02 — Degree of derived table does not match column list. |
10615 Data exception |
10616 22003 — Numeric value out of range. |
10617 22007 — Invalid date/time format. |
10618 22008 — Date/time field overflow. |
10619 22012 — Division by zero. |
10620 22015 — Interval field overflow. |
10621 22018 — Invalid character value for cast specification. |
10622 22019 — Invalid escape character. |
10623 23000 Integrity constraint violation |
10624 24000 Invalid cursor state |
10625 42000 Syntax error or access violation |
10626 42S01 — Base table or view already exists. |
10627 42S02 — Base table or view not found. |
10628 42S11 — Index already exists. |
10629 42S12 — Index not found. |
10630 42S21 — Column already exists. |
10631 42S22 — Column not found. |
10632 44000 WITH CHECK OPTION violation |

10633 COMMENTS |
10634 SQLExecDirect() is the fastest way to submit an SQL statement for one-time execution. |

10635 The application calls SQLExecDirect() to send an SQL statement to the data source. The |
10636 implementation first makes any necessary modifications to the statement so that the result uses |
10637 the form of SQL that the data source supports; in particular, the implementation translates all |
10638 occurrences of the XDBC escape sequences defined in Section 8.3 on page 84 into the data- |
10639 source-specific SQL language. |

10640 The application can include one or more parameter markers in the SQL statement. To include a |
10641 parameter marker, the application embeds a question mark into the SQL statement at the |
10642 appropriate position. |

10643 If the SQL statement is a SELECT statement, and if the application called SQLSetCursorName() to |
10644 associate a cursor with a statement, then the implementation uses the specified cursor. |
10645 Otherwise, it generates a cursor name. |

10646 If the data source is in manual-commit mode (requiring explicit transaction initiation), and a |
10647 transaction has not already been initiated, it initiates a transaction before executing the SQL |
10648 statement. |

10649 If an application uses SQLExecDirect() to submit a COMMIT or ROLLBACK statement, it will |
10650 not be interoperable between data sources. To commit or roll back a transaction, an application |
10651 calls SQLEndTran(). |

10652 If SQLExecDirect() encounters a data-at-execution parameter, it returns SQL_NEED_DATA.The |
10653 application sends the data using SQLParamData() and SQLPutData(). See SQLBindParameter(), |
10654 SQLParamData(), and SQLPutData() for more information. |

302 Direct Review (Build ID 96KAV) (Draft XDBC.33, August 1996)

Reference Manual Pages ISO 92 SQLExecDirect()

10655 A call to SQLExecDirect() that executes a searched UPDATE or DELETE statement that does not |
10656 affect any rows at the data source returns SQL_NO_DATA. |

10657 If the value of the SQL_ATTR_PARAMSET_SIZE statement attribute is greater than 1, and the |
10658 SQL statement contains at least one parameter marker, SQLExecDirect() executes the SQL |
10659 statement once for each set of parameter values from the arrays pointed to by the |
10660 ParameterValuePointerargument in the call to SQLBindParameter(). |

10661 SEE ALSO |

10662 For information about ||See |||
|

10663 Binding a buffer to a column in a result set ||SQLBindCol() |||

10664 Canceling statement processing ||SQLCancel() |||

10665 Executing a prepared SQL statement ||SQLExecute() |||

10666 Fetching a block of data or scrolling through a result set ||SQLFetchScroll() |||

10667 Fetching multiple rows of data ||SQLFetch() |||

10668 Returning a cursor name ||SQLGetCursorName() |||

10669 Fetching part or all of a column of data ||SQLGetData() |||

10670 Returning the next parameter to send data for ||SQLParamData() |||

10671 Preparing a statement for execution ||SQLPrepare() |||

10672 Sending parameter data at execution time ||SQLPutData() |||

10673 Setting a cursor name ||SQLSetCursorName() |||

10674 Setting a statement attribute ||SQLSetStmtAttr() |||

10675 Executing a commit or rollback operation ||SQLEndTran() |||

10676 CHANGE HISTORY |

10677 Version 2 |
10678 Revised generally. See Alignment with Popular Implementations on page 2. ||

Data Management: X/Open Database Connectivity (XDBC), Version 2 303

SQLExecute() ISO 92 Reference Manual Pages

10679 NAME |
10680 SQLExecute — Execute a prepared statement, using the current values of the parameter marker |
10681 variables if any parameter markers exist in the statement. |

10682 SYNOPSIS |
10683 SQLRETURN SQLExecute(|
10684 SQLHSTMTStatementHandle); |

10685 ARGUMENTS |

10686 StatementHandle [Input] |
10687 Statement handle. |

10688 RETURN VALUE |
10689 SQL_SUCCESS, SQL_SUCCESS_WITH_INFO, SQL_NEED_DATA, SQL_STILL_EXECUTING, |
10690 SQL_ERROR, SQL_NO_DATA,or SQL_INVALID_HANDLE. |

10691 DIAGNOSTICS |
10692 When SQLExecute() returns SQL_ERROR or SQL_SUCCESS_WITH_INFO, an associated |
10693 SQLSTATE value can be obtained by calling SQLGetDiagRec() with a HandleType of |
10694 SQL_HANDLE_STMT and a Handle of StatementHandle. The following SQLSTATE values are |
10695 commonly returned by SQLExecute(). The return code associated with each SQLSTATEvalue is |
10696 SQL_ERROR, except that for SQLSTATE values in class 01, the return code is |
10697 SQL_SUCCESS_WITH_INFO. |

10698 ‘‘The statement’’ in the following list means the prepared statement associated with |
10699 StatementHandle based on a previous call to SQLPrepare(). |

10700 01000 — General warning |
10701 Implementation-defined informational message. |

10702 01001 — Cursor operation conflict |
10703 *StatementText contained a positioned UPDATE or DELETE statement and no rows or more |
10704 than one row were updated or deleted. (For more information about updates to more than |
10705 one row, see the description of the SQL_ATTR_SIMULATE_CURSORstatement attribute in |
10706 SQLSetStmtAttr().) |

10707 01S02 — Attribute value changed |
10708 A specified statement attribute was invalid and a similar value was temporarily substituted. |
10709 See Section 9.2.1 on page 93. |

10710 01S07 — Fractional truncation |
10711 The data returned for an input/output or output parameter was truncated so as to truncate |
10712 the fractional part of a numeric data type; or the fractional portion of the seconds |
10713 component of a time, timestamp, or interval data type. |

10714 07001 — Wrong number of parameters |
10715 The number of parameters specified in SQLBindParameter() was less than the number of |
10716 parameters in the statement. |

10717 07002 — COUNT field incorrect |
10718 SQLBindParameter() was called with ParameterValuePtrset to a null pointer, StrLen_or_IndPtr |
10719 not set to SQL_NULL_DATA or SQL_DATA_AT_EXEC, and InputOutputType not set to |
10720 SQL_PARAM_OUTPUT. |

10721 07006 — Restricted data type attribute violation |
10722 The data value identified by ValueType in SQLBindParameter() for the bound parameter |
10723 could not be converted to the data type identified by ParameterTypein SQLBindParameter(). |

304 Direct Review (Build ID 96KAV) (Draft XDBC.33, August 1996)

Reference Manual Pages ISO 92 SQLExecute()

10724 The data value returned for a parameter bound as SQL_PARAM_INPUT_OUTPUT or |
10725 SQL_PARAM_OUTPUT could not be converted to the data type identified by ValueType in |
10726 SQLBindParameter(). |

10727 (If the data values for one or more rows could not be converted, but one or more rows were |
10728 successfully returned, this function returns SQL_SUCCESS_WITH_INFO.) |

10729 07S01 — Invalid use of default parameter |
10730 A parameter value, set with SQLBindParameter(), was SQL_DEFAULT_PARAM, and the |
10731 corresponding parameter was not a parameter for a procedure called using the XDBC |
10732 escape sequence (see Section 8.3 on page 84). |

10733 08S01 — Communication link failure |
10734 The communication link to the data source failed before the function completed processing. |

10735 22001 — String data, right truncation |
10736 The assignment of a character or binary value to a column resulted in the truncation of |
10737 non-blank (character) or non-null (binary) characters or octets. |

10738 22002 — Indicator variable required but not supplied |
10739 NULL data was bound to an output parameter whose StrLen_or_IndPtr set by |
10740 SQLBindParameter() was a null pointer. |

10741 22025 — Invalid escape sequence |
10742 The statement contained ‘‘LIKE pattern value ESCAPE escape character’’ in the WHERE |
10743 clause, and the character following the escape character in the pattern value was not one of |
10744 ‘‘%’’ or ‘‘_’’. |

10745 42000 — Syntax error or access violation |
10746 The user did not have permission to execute the statement. |

10747 HY000 — General error |
10748 An error occurred for which there was no specific SQLSTATE and for which no |
10749 implementation-specific SQLSTATE was defined. The error message returned by |
10750 SQLGetDiagRec() in the *MessageTextbuffer describes the error and its cause. |

10751 HY001 — Memory allocation error |
10752 The implementation failed to allocate memory required to support execution or completion |
10753 of the function. |

10754 HY008 — Operation canceled |
10755 Asynchronous processing was enabled for StatementHandle. The function was called and |
10756 before it completed execution, SQLCancel() was called on StatementHandle. The function |
10757 was then called again on StatementHandle. |

10758 The function was called and, before it completed execution, SQLCancel() was called on |
10759 StatementHandle from a different thread in a multithread application. |

10760 HY010 — Function sequence error |
10761 An asynchronously executing function (not this one) was called for StatementHandle and |
10762 was still executing when this function was called. |

10763 SQLBulkOperations(), SQLExecDirect(), SQLExecute(), or SQLSetPos() was called for |
10764 StatementHandle and returned SQL_NEED_DATA.This function was called before data was |
10765 sent for all data-at-execution parameters or columns. |

10766 StatementHandle was not prepared. Either StatementHandle was not in an executed state, or a |
10767 cursor was open on StatementHandle and SQLFetch() or SQLFetchScroll() had been called. |

10768 StatementHandle was not prepared. It was in an executed state and either no result set was |
10769 associated with StatementHandle or SQLFetch() or SQLFetchScroll() had not been called. |

Data Management: X/Open Database Connectivity (XDBC), Version 2 305

SQLExecute() ISO 92 Reference Manual Pages

10770 HY090 — Invalid string or buffer length |
10771 A parameter value, set with SQLBindParameter(), was a null pointer and the parameter |
10772 length value was not 0, SQL_NULL_DATA, SQL_DATA_AT_EXEC, |
10773 SQL_DEFAULT_PARAM,or less than or equal to SQL_LEN_DATA_AT_EXEC_OFFSET. |

10774 A parameter value, set with SQLBindParameter(), was not a null pointer and the parameter |
10775 length value was less than 0, but was not SQL_NTS, SQL_NULL_DATA, |
10776 SQL_DEFAULT_PARAM, or SQL_DATA_AT_EXEC, or less than or equal to |
10777 SQL_LEN_DATA_AT_EXEC_OFFSET. (This error is reported only if the application data |
10778 type is SQL_C_BINARY or SQL_C_CHAR.) |

10779 A parameter length value bound by SQLBindParameter() was set to SQL_DATA_AT_EXEC; |
10780 the SQL type was either SQL_LONGVARCHAR, SQL_LONGVARBINARY, or a long, data- |
10781 source-specific data type; and the SQL_NEED_LONG_DATA_LEN option in SQLGetInfo() |
10782 was ‘‘Y’’. |

10783 HY105 — Invalid parameter type |
10784 A value specified for InputOutputType in SQLBindParameter() did not accurately describe the |
10785 corresponding parameter as it was used in the SQL statement. For example, |
10786 SQL_PARAM_OUTPUT was specified for a parameter used other than in conjunction with |
10787 a procedure, or SQL_PARAM_INPUT was specified for a parameter that was a return value |
10788 from a procedure. |

10789 HY109 — Invalid cursor position |
10790 The statement was a positioned UPDATE or DELETE statement and the cursor was |
10791 positioned (by SQLSetPos() or SQLFetchScroll()) on a row that had been deleted or could not |
10792 be fetched. |

10793 HYC00 — Optional feature not implemented |
10794 The data source does not support the combination of the current settings of the |
10795 SQL_ATTR_CONCURRENCY and SQL_ATTR_CURSOR_TYPE statement attributes. |

10796 The SQL_ATTR_USE_BOOKMARKS statement attribute was set to SQL_UB_VARIABLE, |
10797 and the SQL_ATTR_CURSOR_TYPE statement attribute was set to a cursor type for which |
10798 the data source does not support bookmarks. |

10799 HYT00 — Timeout expired |
10800 The query timeout period expired before the data source returned the result set. The |
10801 timeout period is set through SQLSetStmtAttr(), SQL_ATTR_QUERY_TIMEOUT. |

10802 HYT01 — Connection timeout expired |
10803 The connection timeout period expired before the data source responded to the request. The |
10804 connection timeout period is set through SQLSetConnectAttr(), |
10805 SQL_ATTR_CONNECTION_TIMEOUT. |

10806 IM001 — Function not supported |
10807 The function is not supported on the current connection to the data source. |

10808 In addition, the following diagnostics, defined in the X/Open SQL specification, can occur based |
10809 on the SQL statement text: |

10810 Success with warning [SQL_SUCCESS_WITH_INFO] |
10811 01003 — NULL value eliminated in set function. |
10812 01004 — String data, right truncation. |

306 Direct Review (Build ID 96KAV) (Draft XDBC.33, August 1996)

Reference Manual Pages ISO 92 SQLExecute()

10813 01006 — Privilege not revoked. |
10814 01007 — Privilege not granted. |
10815 Cardinality violation |
10816 21S02 — Degree of derived table does not match column list. |
10817 Data exception |
10818 22003 — Numeric value out of range. |
10819 22007 — Invalid date/time format. |
10820 22008 — Date/time field overflow. |
10821 22012 — Division by zero. |
10822 22015 — Interval field overflow. |
10823 22018 — Invalid character value for cast specification. |
10824 22019 — Invalid escape character. |
10825 23000 Integrity constraint violation |
10826 24000 Invalid cursor state |
10827 44000 WITH CHECK OPTION violation |

10828 SQLExecute() can return any SQLSTATEthat can be returned by SQLPrepare() based on when the |
10829 data source evaluates the SQL statement associated with the statement. |

10830 COMMENTS |
10831 SQLExecute() executes a statement prepared by SQLPrepare(). After the application processes or |
10832 discards the results from a call to SQLExecute(), the application can call SQLExecute() again with |
10833 new parameter values. |

10834 To execute a SELECT statement more than once, the application must call SQLCloseCursor() |
10835 before reexecuting the SELECT statement. |

10836 If the data source is in manual-commit mode (requiring explicit transaction initiation), and a |
10837 transaction has not already been initiated, it initiates a transaction before executing the SQL |
10838 statement. |

10839 If an application uses SQLPrepare() to prepare and SQLExecute() to submit a COMMIT or |
10840 ROLLBACK statement, it will not be interoperable between data sources. To commit or roll back |
10841 a transaction, call SQLEndTran(). |

10842 If SQLExecute() encounters a data-at-execution parameter, it returns SQL_NEED_DATA. The |
10843 application sends the data using SQLParamData() and SQLPutData(). See SQLBindParameter(), |
10844 SQLParamData(), and SQLPutData() for more information. |

10845 A call to SQLExecute() that executes a searched UPDATE or DELETE statement that does not |
10846 affect any rows at the data source returns SQL_NO_DATA. |

10847 If the value of the SQL_ATTR_PARAMSET_SIZE statement attribute is greater than 1, and the |
10848 SQL statement contains at least one parameter marker, SQLExecute() executes the SQL statement |
10849 once for each set of parameter values in the arrays pointed to by *ParameterValuePtr in the call to |
10850 SQLBindParameter(). |

10851 SEE ALSO |

10852 For information about ||See |||
|

10853 Binding a buffer to a column in a result set ||SQLBindCol() |||

10854 Canceling statement processing ||SQLCancel() |||

10855 Closing the cursor ||SQLCloseCursor() |||

Data Management: X/Open Database Connectivity (XDBC), Version 2 307

SQLExecute() ISO 92 Reference Manual Pages

10856 Executing an SQL statement ||SQLExecDirect() |||

10857 Fetching a block of data or scrolling through a result set ||SQLFetchScroll() |||

10858 Fetching multiple rows of data ||SQLFetch() |||

10859 Freeing a statement handle ||SQLFreeStmt() |||

10860 Returning a cursor name ||SQLGetCursorName() |||

10861 Fetching part or all of a column of data ||SQLGetData() |||

10862 Returning the next parameter to send data for ||SQLParamData() |||

10863 Preparing a statement for execution ||SQLPrepare() |||

10864 Sending parameter data at execution time ||SQLPutData() |||

10865 Setting a cursor name ||SQLSetCursorName() |||

10866 Setting a statement attribute ||SQLSetStmtAttr() |||

10867 Executing a commit or rollback operation ||SQLEndTran() |||

10868 CHANGE HISTORY |

10869 Version 2 |
10870 Revised generally. See Alignment with Popular Implementations on page 2. ||

308 Direct Review (Build ID 96KAV) (Draft XDBC.33, August 1996)

Reference Manual Pages ISO 92 SQLFetch()

10871 NAME |
10872 SQLFetch — Fetch the next row-set of data from the result set and return data for all bound |
10873 columns. |

10874 SYNOPSIS |
10875 SQLRETURN SQLFetch(|
10876 SQLHSTMTStatementHandle); |

10877 ARGUMENTS |

10878 StatementHandle [Input] |
10879 Statement handle. |

10880 RETURN VALUE |
10881 SQL_SUCCESS, SQL_SUCCESS_WITH_INFO, SQL_NO_DATA, SQL_STILL_EXECUTING, |
10882 SQL_ERROR, or SQL_INVALID_HANDLE. |

10883 DIAGNOSTICS |
10884 When SQLFetch() returns SQL_ERROR or SQL_SUCCESS_WITH_INFO, an associated |
10885 SQLSTATE value can be obtained by calling SQLGetDiagRec() with a HandleType of |
10886 SQL_HANDLE_STMT and a Handle of StatementHandle. The following SQLSTATE values are |
10887 commonly returned by SQLFetch(). |

10888 The return code associated with each SQLSTATE value is SQL_ERROR, except that for |
10889 SQLSTATEvalues in class 01, the return code is SQL_SUCCESS_WITH_INFO, and except that, if |
10890 the row-set size is greater than 1 and the operation was applied to at least one row successfully, |
10891 the return code is SQL_SUCCESS_WITH_INFO. |

10892 If an error occurs on a single column, SQLGetDiagField() can be called with a DiagIdentifier of |
10893 SQL_DIAG_COLUMN_NUMBER to determine the column the error occurred on; and |
10894 SQLGetDiagField() can be called with a DiagIdentifier of SQL_DIAG_ROW_NUMBER to |
10895 determine the row containing that column. |

10896 01000 — General warning |
10897 Implementation-defined informational message. |

10898 01004 — String data, right truncation |
10899 String or binary data returned for a column resulted in the truncation of non-blank character |
10900 or non-NULL binary data. If it was a string value, it was right truncated. |

10901 01S01 — Error in row |
10902 An error occurred while fetching one or more rows. |

10903 01S07 — Fractional truncation |
10904 The data returned for a column was truncated. For numeric data types, the fractional part of |
10905 the number was truncated. For time, timestamp, and interval data types containing a time |
10906 component, the fractional portion of the time was truncated. |

10907 07006 — Restricted data type attribute violation |
10908 The data value of a column in the result set could not be converted to the data type |
10909 specified by TargetTypein SQLBindCol(). |

10910 Column 0 was bound with a data type of SQL_C_VARBOOKMARK and the |
10911 SQL_ATTR_USE_BOOKMARKS statement option was not set to SQL_UB_VARIABLE. |

10912 08S01 — Communication link failure |
10913 The communication link to the data source failed before the function completed processing. |

10914 22001 — String data, right truncation |
10915 A bookmark returned for a column was truncated. |

Data Management: X/Open Database Connectivity (XDBC), Version 2 309

SQLFetch() ISO 92 Reference Manual Pages

10916 22002 — Indicator variable required but not supplied |
10917 A null value was fetched into a column whose pointer (the StrLen_or_IndValue argument to |
10918 SQLBindCol() or SQL_DESC_INDICATOR_PTR set by SQLSetDescField() or |
10919 SQLSetDescRec()) was a null pointer. |

10920 22003 — Numeric value out of range |
10921 Returning the numeric value (as numeric or string) for one or more bound columns would |
10922 have caused the whole (as opposed to fractional) part of the number to be truncated. |

10923 For more information, see Section D.6 on page 576. |

10924 22007 — Invalid date/time format |
10925 A character column in the result set was bound to a date, time, or timestamp C structure, |
10926 and a value in the column was, respectively, an invalid date, time, or timestamp. |

10927 22012 — Division by zero |
10928 A value from an arithmetic expression was returned which resulted in division by zero. |

10929 22015 — Interval field overflow |
10930 An exact numeric column in the result set was bound to an interval C structure and |
10931 returning the data caused a loss of significant digits. |

10932 An interval column in the result set was bound to an interval C structure and returning the |
10933 data caused a loss of significant digits. |

10934 Data in the result set was bound to an interval C structure and there was no representation |
10935 of the data in the interval C structure. |

10936 22018 — Invalid character value for cast specification |
10937 A character column in the result set was bound to a character C buffer and the column |
10938 contained a character for which there was no representation in the character set of the |
10939 buffer. |

10940 A character column in the result set was bound to an approximate numeric C buffer and a |
10941 value in the column could not be cast to a valid approximate numeric value. |

10942 A character column in the result set was bound to an exact numeric C buffer and a value in |
10943 the column could not be cast to a valid exact numeric value. |

10944 A character column in the result set was bound to a date/time or interval C buffer and a |
10945 value in the column could not be cast to a valid date/time or interval value. |

10946 24000 — Invalid cursor state |
10947 StatementHandle was in an executed state but no result set was associated with |
10948 StatementHandle. |

10949 40001 — Serialization failure |
10950 The transaction in which the fetch was executed was terminated to prevent deadlock. |

10951 HY000 — General error |
10952 An error occurred for which there was no specific SQLSTATE and for which no |
10953 implementation-specific SQLSTATE was defined. The error message returned by |
10954 SQLGetDiagRec() in the *MessageTextbuffer describes the error and its cause. |

10955 HY001 — Memory allocation error |
10956 The implementation failed to allocate memory required to support execution or completion |
10957 of the function. |

10958 HY008 — Operation canceled |
10959 Asynchronous processing was enabled for StatementHandle. The function was called and |
10960 before it completed execution, SQLCancel() was called on StatementHandle. The function |

310 Direct Review (Build ID 96KAV) (Draft XDBC.33, August 1996)

Reference Manual Pages ISO 92 SQLFetch()

10961 was then called again on StatementHandle. |

10962 The function was called and, before it completed execution, SQLCancel() was called on |
10963 StatementHandle from a different thread in a multithread application. |

10964 HY010 — Function sequence error |
10965 StatementHandle was not in an executed state. The function was called without first calling |
10966 SQLExecDirect(), SQLExecute(), or a catalog function. |

10967 An asynchronously executing function (not this one) was called for StatementHandle and |
10968 was still executing when this function was called. |

10969 SQLBulkOperations(), SQLExecDirect(), SQLExecute(), or SQLSetPos() was called for |
10970 StatementHandle and returned SQL_NEED_DATA.This function was called before data was |
10971 sent for all data-at-execution parameters or columns. |

10972 HY107 — Row value out of range |
10973 The value specified with the SQL_ATTR_CURSOR_TYPE statement attribute was |
10974 SQL_CURSOR_KEYSET_DRIVEN, but the value specified with the |
10975 SQL_ATTR_KEYSET_SIZE statement attribute was greater than 0 and less than the value |
10976 specified with the SQL_ATTR_ROW_ARRAY_SIZEstatement attribute. |

10977 HYC00 — Optional feature not implemented |
10978 The data source does not support the conversion specified by the combination of TargetType |
10979 in SQLBindCol() and the SQL data type of the corresponding column. |

10980 HYT01 — Connection timeout expired |
10981 The connection timeout period expired before the data source responded to the request. The |
10982 connection timeout period is set through SQLSetConnectAttr(), |
10983 SQL_ATTR_CONNECTION_TIMEOUT. |

10984 IM001 — Function not supported |
10985 The function is not supported on the current connection to the data source. |

10986 COMMENTS |
10987 Overview |

10988 SQLFetch() returns the next row-set in the result set. It can be called only while a result set exists |
10989 — that is, after a call that creates a result set and before the cursor over that result set is closed. If |
10990 any columns are bound, it returns the data in those columns. If the application has specified a |
10991 pointer to a row status array or a buffer in which to return the number of rows fetched, |
10992 SQLFetch() returns this information as well. |

10993 SQLFetch() is equivalent to calling SQLFetchScroll() with FetchOrientation set to |
10994 SQL_FETCH_NEXT. Calls to SQLFetch() can be mixed with calls to SQLFetchScroll(). |

10995 Positioning the Cursor |

10996 When the result set is created, the cursor is positioned before the start of the result set. The first |
10997 call to SQLFetch() positions the cursor to row 1 and fetches a row-set starting there. |

10998 Subsequent calls to SQLFetch() move the cursor to the start of the next row-set by advancing the |
10999 number of rows in the row-set, as specified by the SQL_ATTR_ROW_ARRAY_SIZE statement |
11000 attribute.32 If this advance of the cursor is beyond the last row of the result set, the cursor moves |

11001 __________________ |
11002 32. Applications are free to change the row-set size between fetches. The cursor movement is based on the row-set size as of the |||

previous fetch; the number of rows fetched is based on the current row-set size. |||

Data Management: X/Open Database Connectivity (XDBC), Version 2 311

SQLFetch() ISO 92 Reference Manual Pages

11003 there, and SQLFetch() returns SQL_NO_DATA. |

11004 If there are not sufficient rows left in the result set to fetch a complete row-set of the row-set size |
11005 specified by SQL_ATTR_ROW_ARRAY_SIZE, then SQLFetch() returns a partial row-set. The |
11006 remaining rows are empty and have a status of SQL_ROW_NOROW. |

11007 After SQLFetch() returns, the cursor is positioned on the first row of the row-set. |

11008 For example, suppose a result set has 100 rows and the row-set size is 5. The following table |
11009 shows the row-set and return code returned by SQLFetch() for different starting positions. |

11010 Current Rows |
11011 Row-set Return code New row-set Fetched ||
11012 Before start SQL_SUCCESS 1 to 5 5 |

11013 1 to 5 SQL_SUCCESS 6 to 10 5 |

11014 91 to 95 SQL_SUCCESS 96 to 100 5 |

11015 98 to 100. Rows 4 and 5 of the row status array ||
11016 are set to SQL_ROW_NOROW. ||

93 to 97 SQL_SUCCESS 3 |

11017 None. Rows 1 to 5 of the row status array are set ||
11018 to SQL_ROW_NOROW. ||

96 to 100 SQL_NO_DATA 0 |

11019 None. Rows 1 to 5 of the row status array are set ||
11020 to SQL_ROW_NOROW. ||

99 to 100 SQL_NO_DATA 0 |

11021 None. Rows 1 to 5 of the row status array are set ||
11022 to SQL_ROW_NOROW. ||

After end SQL_NO_DATA 0 |

11023 Returning Data in Bound Columns |

11024 As SQLFetch() returns each row, it places the data for each bound column in the buffer bound to |
11025 that column. If no columns are bound, SQLFetch() does not return any data but does move the |
11026 cursor forward. The data can still be retrieved with SQLGetData() if the |
11027 SQL_GETDATA_EXTENSIONSoption of SQLGetInfo() is SQL_GD_BLOCK. |

11028 For each bound column in a row, SQLFetch() does the following: |

11029 1. Sets the length/indicator buffer to SQL_NULL_DATAand proceeds to the next column if |
11030 the data is NULL. If the data is NULL and no length/indicator buffer was bound, |
11031 SQLFetch() returns SQLSTATE22002 (Indicator variable required but not supplied) for the |
11032 row and proceeds to the next row. For information about how to determine the address of |
11033 the length/indicator buffer, see Buffer Addresses on page 217. |

11034 If the data for the column is not NULL, SQLFetch() proceeds to step 2. |

11035 2. If the SQL_ATTR_MAX_LENGTH statement attribute is implemented and has a nonzero |
11036 value and the column contains character or binary data, the data is truncated to |
11037 SQL_ATTR_MAX_LENGTH octets. (SQL_ATTR_MAX_LENGTH is intended to reduce |
11038 network traffic. It is generally implemented by the data source, which truncates the data |
11039 before returning it across the network. To guarantee that data is truncated to a particular |
11040 size, an application should allocate a buffer of that size and specify the size in the |
11041 ValueMax argument in SQLBindCol().) |

11042 3. Converts the data to the type specified by TargetTypein SQLBindCol(). |

11043 4. If the data was converted to a variable-length data type, such as character or binary, and if |
11044 the length of the character data (including the null terminator), SQLFetch() truncates the |

312 Direct Review (Build ID 96KAV) (Draft XDBC.33, August 1996)

Reference Manual Pages ISO 92 SQLFetch()

11045 data to the length of the data buffer less the length of a null terminator. It then null- |
11046 terminates the data. If the length of binary data exceeds the length of the data buffer, |
11047 SQLFetch() truncates it to the length of the data buffer. The length of the data buffer is |
11048 specified with BufferLength in SQLBindCol(). |

11049 SQLFetch() never truncates data converted to fixed-length data types; it always assumes |
11050 that the length of the data buffer is the size of the data type. |

11051 5. Places the converted (and possibly truncated) data in the data buffer. For information |
11052 about how to determine the address of the data buffer, see Buffer Addresses on page 217. |

11053 6. Places the length of the data in the length/indicator buffer. If the indicator pointer and the |
11054 length pointer were both set to the same buffer (as a call to SQLBindCol() does), the length |
11055 is written in the buffer for valid data and SQL_NULL_DATA is written in the buffer for |
11056 NULL data. If no length/indicator buffer was bound, SQLFetch() does not return the |
11057 length. |

11058 — For character or binary data, this is the length of the data after conversion and before |
11059 truncation due to the data buffer being too small. If the implementation cannot |
11060 determine the length of the data after conversion, as is sometimes the case with long |
11061 data, it sets the length to SQL_NO_TOTAL. If data was truncated due to the |
11062 SQL_ATTR_MAX_LENGTH statement attribute, the value of this attribute (as opposed |
11063 to the actual length) is placed in the length/indicator buffer. This is because this |
11064 attribute is designed to truncate data on the server before conversion, so the |
11065 implementation has no way of figuring out what the actual length is. |

11066 — For all other data types, this is the length of the data after conversion; that is, it is the |
11067 size of the type to which the data was converted. |

11068 For information about how to determine the address of the length/indicator buffer, see |
11069 Buffer Addresses on page 217. |

11070 7. If the data is truncated during conversion without a loss of significant digits (for example, |
11071 the real number 1.234 is truncated when converted to the integer 1) or because the length |
11072 of the data buffer is too small (for example, the string ‘‘abcdef’’ is placed in a 4-octet |
11073 buffer), SQLFetch() returns SQLSTATE 01004 (Data truncated) and |
11074 SQL_SUCCESS_WITH_INFO. If data is truncated due to the SQL_ATTR_MAX_LENGTH |
11075 statement attribute, SQLFetch() returns SQL_SUCCESS and does not return SQLSTATE |
11076 01004 (Data truncated). If data is truncated during conversion with a loss of significant |
11077 digits (for example, if a SQL_INTEGER value greater than 100,000 were converted to a |
11078 SQL_C_TINYINT), SQLFetch() returns SQLSTATE22003 (Numeric value out of range) and |
11079 SQL_ERROR. (For a multi-row fetch, diagnostics are reported as specified in Error |
11080 Handling on page 313.) |

11081 The contents of the bound data buffer and the length/indicator buffer are undefined if |
11082 SQLFetch() does not return SQL_SUCCESS or SQL_SUCCESS_WITH_INFO. |

11083 Row Status Array |

11084 The row status array is used to return the status of each row in the row-set. The address of this |
11085 array is specified with the SQL_ATTR_ROW_STATUS_PTR statement attribute. The array is |
11086 allocated by the application and must have as many elements as are specified by the |
11087 SQL_ATTR_ROW_ARRAY_SIZE statement attribute. Its values are set by SQLBulkOperations(), |
11088 SQLFetch(), SQLFetchScroll(), and SQLSetPos(). If the value of the |
11089 SQL_ATTR_ROW_STATUS_PTR statement attribute is a null pointer, these functions do not |
11090 return the row status. |

Data Management: X/Open Database Connectivity (XDBC), Version 2 313

SQLFetch() ISO 92 Reference Manual Pages

11091 The contents of the row status array buffer are undefined if SQLFetch() does not return |
11092 SQL_SUCCESS or SQL_SUCCESS_WITH_INFO. |

11093 The following values are returned in the row status array. |

11094 Row status array value Description ||
11095 The row was successfully fetched and has not changed ||
11096 since it was last fetched from this result set. ||

SQL_ROW_SUCCESS |

11097 The row was successfully fetched and has not changed ||
11098 since it was last fetched from this result set. However, a ||
11099 warning was returned about the row. ||

SQL_ROW_SUCCESS_WITH_INFO |

11100 SQL_ROW_ERROR An error occurred while fetching the row. |

11101 The row was successfully fetched and has changed since ||
11102 it was last fetched from this result set. If the row is ||
11103 fetched again from this result set, or is refreshed by ||
11104 SQLSetPos(), the status changed to the row’s new status. ||

SQL_ROW_UPDATED 1, 2, 3 |

11105 The row has been deleted since it was last fetched from ||
11106 this result set. ||

SQL_ROW_DELETED 3 |

11107 The row was inserted by SQLBulkOperations(). If the ||
11108 row is fetched again from this result set, or is refreshed ||
11109 by SQLSetPos(), its status is SQL_ROW_SUCCESS. ||

SQL_ROW_ADDED 4 |

11110 The row-set overlapped the end of the result set and no ||
11111 row was returned that corresponded to this element of ||
11112 the row status array. ||

SQL_ROW_NOROW |

11113 1 For keyset, mixed, and dynamic cursors, if a key value is updated, the row of data is |
11114 considered to have been deleted and a new row added. |

11115 2 Some implementations cannot detect updates to data and therefore cannot return this value. |
11116 To determine whether an implementation can detect updates to refetched rows, an |
11117 application calls SQLGetInfo() with the SQL_ROW_UPDATES option. |

11118 3 SQLFetch() can return this value only when it is intermixed with calls to SQLFetchScroll(). |
11119 The reason for this is that SQLFetch() moves forward through the result set and, when used |
11120 exclusively, does not refetch any rows. Because no rows are refetched, SQLFetch() does not |
11121 detect changes made to previously fetched rows. However, if SQLFetchScroll() positions the |
11122 cursor before any previously fetched rows and SQLFetch() is used to fetch those rows, |
11123 SQLFetch() can detect any changes to those rows. |

11124 4 Returned by SQLBulkOperations() only. Not set by SQLFetch() or SQLFetchScroll(). |

11125 Rows Fetched Buffer |

11126 The rows fetched buffer is used to return the number of rows fetched, including those rows for |
11127 which no data was returned because an error occurred while they were being fetched. In other |
11128 words, it is the number of rows for which the value in the row status array is not |
11129 SQL_ROW_NOROW. The address of this buffer is specified with the |
11130 SQL_ATTR_ROWS_FETCHED_PTR statement attribute. The buffer is allocated by the |
11131 application. It is set by SQLFetch() and SQLFetchScroll(). If the value of the |
11132 SQL_ATTR_ROWS_FETCHED_PTR statement attribute is a null pointer, these functions do not |
11133 return the number of rows fetched. To determine the number of the current row in the result set, |
11134 an application can call SQLGetStmtAttr() with the SQL_ATTR_ROW_NUMBER attribute. |

314 Direct Review (Build ID 96KAV) (Draft XDBC.33, August 1996)

Reference Manual Pages ISO 92 SQLFetch()

11135 The contents of the rows fetched buffer are undefined if SQLFetch() does not return |
11136 SQL_SUCCESS or SQL_SUCCESS_WITH_INFO. |

11137 Error Handling |

11138 Diagnostics can apply to individual rows or to the entire function. For more information about |
11139 diagnostic records, see Chapter 15, and SQLGetDiagField(). |

11140 Diagnostics on the Entire Function |

11141 If an error applies to the entire function, such as SQLSTATE HYT00 (Timeout expired) or |
11142 SQLSTATE 24000 (Invalid cursor state), SQLFetch() returns SQL_ERROR and the applicable |
11143 SQLSTATE. The contents of the row-set buffers are undefined and the cursor position is |
11144 unchanged. |

11145 If a warning applies to the entire function, SQLFetch() returns SQL_SUCCESS_WITH_INFO and |
11146 the applicable SQLSTATE. The status records for warnings that apply to the entire function are |
11147 returned before the status records that apply to individual rows. |

11148 Diagnostics in Individual Rows |

11149 If an error (such as SQLSTATE22012 (Division by zero)) or a warning (such as SQLSTATE01004 |
11150 (Data truncated)) applies to a single row, SQLFetch(): |

11151 • Sets the corresponding element of the row status array to SQL_ROW_ERROR for errors or |
11152 SQL_ROW_SUCCESS_WITH_INFO for warnings. |

11153 • Adds zero or more status records containing SQLSTATEsfor the diagnostic. |

11154 • Sets the row and column number fields in the status records. If SQLFetch() cannot determine |
11155 a row or column number, it sets that number to SQL_ROW_NUMBER_UNKNOWN or |
11156 SQL_COLUMN_NUMBER_UNKNOWN respectively. If the status record does not apply to |
11157 a particular column, SQLFetch() sets the column number to SQL_NO_COLUMN_NUMBER. |

11158 SQLFetch() continues fetching rows until it has fetched all of the rows in the row-set. It returns |
11159 SQL_SUCCESS_WITH_INFO unless an error occurs in every row of the row-set (not counting |
11160 rows with status SQL_ROW_NOROW), in which case it returns SQL_ERROR. In particular, if |
11161 the row-set size is 1 and an error occurs in that row, SQLFetch() returns SQL_ERROR. |

11162 SQLFetch() returns the status records in row number order. That is, it returns all status records |
11163 for unknown rows (if any), then all status records for the first row (if any), then all status records |
11164 for the second row (if any), and so on. The status records for each individual row are ordered |
11165 according to the normal rules for ordering status records in Sequence of Status Records on page |
11166 196. |

11167 Descriptors and SQLFetch() |

11168 The following sections describe how SQLFetch() interacts with descriptors. |

11169 Argument Mappings |

11170 The implementation does not set any descriptor fields based on the arguments of SQLFetch(). |

11171 Other Descriptor Fields |

11172 The following descriptor fields are used by SQLFetch(): |

11173 SQL_DESC_ARRAY_SIZE (header field in ARD) |
11174 SQL_ATTR_ROW_ARRAY_SIZEstatement attribute |

11175 SQL_DESC_ARRAY_STATUS_PTR(header field in IRD) |
11176 SQL_ATTR_ROW_STATUS_PTRstatement attribute |

Data Management: X/Open Database Connectivity (XDBC), Version 2 315

SQLFetch() ISO 92 Reference Manual Pages

11177 SQL_DESC_BIND_OFFSET_PTR (header field in ARD) |
11178 SQL_ATTR_ROW_BIND_OFFSET_PTR statement attribute |

11179 SQL_DESC_BIND_TYPE (header field of ARD) |
11180 SQL_ATTR_ROW_BIND_TYPE statement attribute |

11181 SQL_DESC_COUNT (header field of ARD) |
11182 ColumnNumber argument of SQLBindCol() |

11183 SQL_DESC_DATA_PTR(in records of ARD) |
11184 TargetValuePtrargument of SQLBindCol() |

11185 SQL_DESC_INDICATOR_PTR (in records of ARD) |
11186 StrLen_or_IndPtr argument of SQLBindCol() |

11187 SQL_DESC_OCTET_LENGTH (in records of ARD) |
11188 BufferLength argument of SQLBindCol() |

11189 SQL_DESC_OCTET_LENGTH_PTR (in records of ARD) |
11190 StrLen_or_IndPtr argument of SQLBindCol() |

11191 SQL_DESC_ROWS_PROCESSED_PTR (header of IRD) |
11192 SQL_ATTR_ROWS_FETCHED_PTR statement attribute |

11193 SQL_DESC_TYPE (in records of ARD) |
11194 TargetTypeargument of SQLBindCol() |

11195 All descriptor fields can also be set through SQLSetDescField(). |

11196 Additional Comments |

11197 Applications can bind a single buffer or two separate buffers to be used for length and indicator |
11198 values. When an application calls SQLBindCol(), the implementation sets the |
11199 SQL_DESC_OCTET_LENGTH_PTR and SQL_DESC_INDICATOR_PTR fields of the ARD to the |
11200 same address, which is passed in StrLen_or_IndPtr. When an application calls SQLSetDescField() |
11201 or SQLSetDescRecord(), it can set these two fields to different addresses. Therefore, SQLFetch() |
11202 must check these descriptor fields individually to determine where to return length and |
11203 indicator values. |

11204 If separate buffers are used for the length and indicator values, SQLFetch() sets the indicator |
11205 buffer to 0 when it returns a length in the length buffer. When the data is NULL, the application |
11206 sets the indicator buffer to SQL_NULL_DATA, and the length buffer is undefined. It does not |
11207 touch the length buffer when it sets the indicator buffer to a non-zero value. |

11208 SEE ALSO |

11209 For information about ||See |||
|

11210 Binding a buffer to a column in a result set ||SQLBindCol() |||

11211 Canceling statement processing ||SQLCancel() |||

11212 Returning information about a column in a result set ||SQLDescribeCol() |||

11213 Executing an SQL statement ||SQLExecDirect() |||

11214 Executing a prepared SQL statement ||SQLExecute() |||

11215 Fetching a block of data or scrolling through a result set ||SQLFetchScroll() |||

11216 Freeing a statement handle ||SQLFreeStmt() |||

316 Direct Review (Build ID 96KAV) (Draft XDBC.33, August 1996)

Reference Manual Pages ISO 92 SQLFetch()

11217 Fetching part or all of a column of data ||SQLGetData() |||

11218 Returning the number of result set columns ||SQLNumResultCols() |||

11219 Preparing a statement for execution ||SQLPrepare() |||

11220 CHANGE HISTORY |

11221 Version 2 |
11222 Revised generally. See Alignment with Popular Implementations on page 2. ||

Data Management: X/Open Database Connectivity (XDBC), Version 2 317

SQLFetchScroll() ISO 92 Reference Manual Pages

11223 NAME |
11224 SQLFetchScroll — Fetch the specified row-set of data from the result set and return data for all |
11225 bound columns. |

11226 SYNOPSIS |
11227 SQLRETURN SQLFetchScroll(|
11228 SQLHSTMTStatementHandle , |
11229 SQLSMALLINT FetchOrientation , |
11230 SQLINTEGER FetchOffset); |

11231 ARGUMENTS |

11232 StatementHandle [Input] |
11233 Statement handle. |

11234 FetchOrientation [Input] |
11235 Type of fetch: |

11236 SQL_FETCH_NEXT ||
11237 SQL_FETCH_PRIOR ||
11238 SQL_FETCH_FIRST ||
11239 SQL_FETCH_LAST ||
11240 SQL_FETCH_ABSOLUTE ||
11241 SQL_FETCH_RELATIVE ||
11242 SQL_FETCH_BOOKMARK ||

11243 For more information, see Positioning the Cursor on page 319. |

11244 FetchOffset [Input] |
11245 Number of the row to fetch. The interpretation of this argument depends on the value of |
11246 FetchOrientation argument. For more information, see Positioning the Cursor on page 319. |

11247 RETURN VALUE |
11248 SQL_SUCCESS, SQL_SUCCESS_WITH_INFO, SQL_NO_DATA, SQL_STILL_EXECUTING, |
11249 SQL_ERROR, or SQL_INVALID_HANDLE. |

11250 DIAGNOSTICS |
11251 When SQLFetchScroll() returns SQL_ERROR or SQL_SUCCESS_WITH_INFO, an associated |
11252 SQLSTATE value can be obtained by calling SQLGetDiagRec() with a HandleType of |
11253 SQL_HANDLE_STMT and a Handle of StatementHandle. The following SQLSTATE values are |
11254 commonly returned by SQLFetchScroll(). |

11255 The return code associated with each SQLSTATE value is SQL_ERROR, except that for |
11256 SQLSTATEvalues in class 01, the return code is SQL_SUCCESS_WITH_INFO, and except that, if |
11257 the row-set size is greater than 1 and the operation was applied to at least one row successfully, |
11258 the return code is SQL_SUCCESS_WITH_INFO. |

11259 If an error occurs on a single column, SQLGetDiagField() can be called with a DiagIdentifier of |
11260 SQL_DIAG_COLUMN_NUMBER to determine the column the error occurred on; and |
11261 SQLGetDiagField() can be called with a DiagIdentifier of SQL_DIAG_ROW_NUMBER to |
11262 determine the row containing that column. |

11263 01000 — General warning |
11264 Implementation-defined informational message. |

11265 01004 — String data, right truncation |
11266 String or binary data returned for a column resulted in the truncation of non-blank character |
11267 or non-NULL binary data. String values are right truncated. |

318 Direct Review (Build ID 96KAV) (Draft XDBC.33, August 1996)

Reference Manual Pages ISO 92 SQLFetchScroll()

11268 01S06 — Attempt to fetch before the result set returned the first row-set |
11269 The call tried to move the cursor backward before the start of the result set, but less than the |
11270 size of one row-set. SQLFetchScroll() returns the first row-set in the result set. (Attempts to |
11271 move the cursor a full row-set before the start of the result set, or further backward, cause |
11272 SQLFetchScroll() to return SQL_NO_DATA.) |

11273 01S07 — Fractional truncation |
11274 The data returned for a column was truncated. For numeric data types, the fractional part of |
11275 the number was truncated. For time, timestamp, and interval data types containing a time |
11276 component, the fractional portion of the time was truncated. |

11277 07006 — Restricted data type attribute violation |
11278 A data value of a column in the result set could not be converted to the C data type |
11279 specified by TargetTypein SQLBindCol(). |

11280 Column 0 was bound with a data type of SQL_C_VARBOOKMARK and the |
11281 SQL_ATTR_USE_BOOKMARKS statement option was not set to SQL_UB_VARIABLE. |

11282 08S01 — Communication link failure |
11283 The communication link to the data source failed before the function completed processing. |

11284 22001 — String data, right truncation |
11285 A bookmark returned for a column was truncated. |

11286 22002 — Indicator variable required but not supplied |
11287 A null value was fetched into a column whose pointer (the StrLen_or_IndValue argument to |
11288 SQLBindCol() or SQL_DESC_INDICATOR_PTR set by SQLSetDescField() or |
11289 SQLSetDescRec()) was a null pointer. |

11290 22003 — Numeric value out of range |
11291 Returning the numeric value (as numeric or string) for one or more bound columns would |
11292 have caused the whole (as opposed to fractional) part of the number to be truncated. |

11293 For more information, see Appendix D. |

11294 22007 — Invalid date/time format |
11295 A character column in the result set was bound to a date, time, or timestamp C structure, |
11296 and a value in the column was, respectively, an invalid date, time, or timestamp. |

11297 22012 — Division by zero |
11298 A value from an arithmetic expression was returned which resulted in division by zero. |

11299 22015 — Interval field overflow |
11300 An exact numeric column in the result set was bound to an interval C structure and |
11301 returning the data caused a loss of significant digits. |

11302 An interval column in the result set was bound to an interval C structure and returning the |
11303 data caused a loss of significant digits. |

11304 Data in the result set was bound to an interval C structure and there was no representation |
11305 of the data in the interval C structure. |

11306 22018 — Invalid character value for cast specification |
11307 A character column in the result set was bound to a character C buffer and the column |
11308 contained a character for which there was no representation in the character set of the |
11309 buffer. |

11310 A character column in the result set was bound to an approximate numeric C buffer and a |
11311 value in the column could not be cast to a valid approximate numeric value. |

Data Management: X/Open Database Connectivity (XDBC), Version 2 319

SQLFetchScroll() ISO 92 Reference Manual Pages

11312 A character column in the result set was bound to an exact numeric C buffer and a value in |
11313 the column could not be cast to a valid exact numeric value. |

11314 A character column in the result set was bound to a date/time or interval C buffer and a |
11315 value in the column could not be cast to a valid date/time or interval value. |

11316 24000 — Invalid cursor state |
11317 StatementHandle was in an executed state but no result set was associated with |
11318 StatementHandle. |

11319 40001 — Serialization failure |
11320 The transaction in which the fetch was executed was terminated to prevent deadlock. |

11321 HY000 — General error |
11322 An error occurred for which there was no specific SQLSTATE and for which no |
11323 implementation-specific SQLSTATE was defined. The error message returned by |
11324 SQLGetDiagRec() in the *MessageTextbuffer describes the error and its cause. |

11325 HY001 — Memory allocation error |
11326 The implementation failed to allocate memory required to support execution or completion |
11327 of the function. |

11328 HY008 — Operation canceled |
11329 Asynchronous processing was enabled for StatementHandle. The function was called and |
11330 before it completed execution, SQLCancel() was called on StatementHandle. The function |
11331 was then called again on StatementHandle. |

11332 The function was called and, before it completed execution, SQLCancel() was called on |
11333 StatementHandle from a different thread in a multithread application. |

11334 HY010 — Function sequence error |
11335 StatementHandle was not in an executed state. The function was called without first calling |
11336 SQLExecDirect(), SQLExecute(), or a catalog function. |

11337 An asynchronously executing function (not this one) was called for StatementHandle and |
11338 was still executing when this function was called. |

11339 SQLBulkOperations(), SQLExecDirect(), SQLExecute(), or SQLSetPos() was called for |
11340 StatementHandle and returned SQL_NEED_DATA.This function was called before data was |
11341 sent for all data-at-execution parameters or columns. |

11342 HY106 — Fetch type out of range |
11343 FetchOrientation was invalid. |

11344 FetchOrientation was SQL_FETCH_BOOKMARK, and the SQL_ATTR_USE_BOOKMARKS |
11345 statement attribute was set to SQL_UB_OFF. |

11346 The value of the SQL_CURSOR_TYPE statement attribute was |
11347 SQL_CURSOR_FORWARD_ONLY and FetchOrientation was not SQL_FETCH_NEXT. |

11348 HY107 — Row value out of range |
11349 The value specified with the SQL_ATTR_CURSOR_TYPE statement attribute was |
11350 SQL_CURSOR_KEYSET_DRIVEN, but the value specified with the |
11351 SQL_ATTR_KEYSET_SIZE statement attribute was greater than 0 and less than the value |
11352 specified with the SQL_ATTR_ROW_ARRAY_SIZEstatement attribute. |

11353 HY111 — Invalid bookmark value |
11354 FetchOrientation was SQL_FETCH_BOOKMARK and the bookmark pointed to by the value |
11355 in the SQL_ATTR_FETCH_BOOKMARK_PTR statement attribute was not valid or was a |
11356 null pointer. |

320 Direct Review (Build ID 96KAV) (Draft XDBC.33, August 1996)

Reference Manual Pages ISO 92 SQLFetchScroll()

11357 HYC00 — Optional feature not implemented |
11358 The data source does not support the specified fetch type. |

11359 The data source does not support the conversion specified by the combination of TargetType |
11360 in SQLBindCol() and the SQL data type of the corresponding column. |

11361 HYT01 — Connection timeout expired |
11362 The connection timeout period expired before the data source responded to the request. The |
11363 connection timeout period is set through SQLSetConnectAttr(), |
11364 SQL_ATTR_CONNECTION_TIMEOUT. |

11365 IM001 — Function not supported |
11366 The function is not supported on the current connection to the data source. |

11367 COMMENTS |
11368 SQLFetchScroll() returns a specified row-set from the result set. Row-sets can be specified by |
11369 absolute or relative position or by bookmark. SQLFetchScroll() can be called only while a result |
11370 set exists — that is, after a call that creates a result set and before the cursor over that result set is |
11371 closed. If any columns are bound, it returns the data in those columns. If the application has |
11372 specified a pointer to a row status array or a buffer in which to return the number of rows |
11373 fetched, SQLFetchScroll() returns this information as well. Calls to SQLFetchScroll() can be mixed |
11374 with calls to SQLFetch(). |

11375 Positioning the Cursor |

11376 When the result set is created, the cursor is positioned before the start of the result set. |
11377 SQLFetchScroll() positions the cursor based on the values of the FetchOrientation and FetchOffset |
11378 arguments as shown in the following table. The exact rules for determining the start of the new |
11379 row-set are shown in the next section. |

11380 FetchOrientation Meaning ||
11381 Return the next row-set. This is equivalent to calling SQLFetch.() ||
11382 SQLFetchScroll() ignores the value of FetchOffset. ||

SQL_FETCH_NEXT |

11383 Return the prior row-set. SQLFetchScroll() ignores the value of ||
11384 FetchOffset. ||

SQL_FETCH_PRIOR |

11385 Return the row-set FetchOffset from the start of the current row- ||
11386 set. ||

SQL_FETCH_RELATIVE |

11387 Return the row-set starting at row FetchOffset. ||SQL_FETCH_ABSOLUTE |

11388 Return the first row-set in the result set. SQLFetchScroll() ignores ||
11389 the value of FetchOffset. ||

SQL_FETCH_FIRST |

11390 Return the last complete row-set in the result set. ||
11391 SQLFetchScroll() ignores the value of FetchOffset. ||

SQL_FETCH_LAST |

11392 Return the row-set FetchOffset rows from the bookmark specified ||
11393 by the SQL_ATTR_FETCH_BOOKMARK_PTR statement ||
11394 attribute. ||

SQL_FETCH_BOOKMARK |

11395 It is implementation-defined which fetch orientations are supported. An application can |
11396 determine which fetch orientations are supported in conjunction with various types of cursor by |
11397 calling SQLGetInfo() as described in Detecting Cursor Capabilities with SQLGetInfo() on page |
11398 402. Furthermore, if the cursor is forward-only and FetchOrientation is not SQL_FETCH_NEXT, |
11399 SQLFetchScroll() returns SQLSTATEHY106 (Fetch type out of range). |

Data Management: X/Open Database Connectivity (XDBC), Version 2 321

SQLFetchScroll() ISO 92 Reference Manual Pages

11400 The SQL_ATTR_ROW_ARRAY_SIZE statement attribute specifies the number of rows in the |
11401 row-set. If the row-set being fetched by SQLFetchScroll() overlaps the end of the result set, |
11402 SQLFetchScroll() returns a partial row-set. That is, if S+R−1 is greater than L, where S is the |
11403 starting row of the row-set being fetched, R is the row-set size, and L is the last row in the result |
11404 set, then only the first L−S+1 rows of the row-set are valid. The remaining rows are empty and |
11405 have a status of SQL_ROW_NOROW. |

11406 After SQLFetchScroll() returns, the cursor is positioned on the first row of the result set. |

11407 Cursor Positioning Rules |

11408 The following sections describe the exact rules for each value of FetchOrientation. These rules |
11409 use the following notation: |

11410 Notation Meaning ||
11411 The cursor is positioned before the start of the result set. If the first row ||
11412 of the new row-set is before the start of the result set, SQLFetchScroll() ||
11413 returns SQL_NO_DATA. ||

Before start |

11414 The cursor is positioned after the end of the result set. If the first row of ||
11415 the new row-set is after the end of the result set, SQLFetchScroll() returns ||
11416 SQL_NO_DATA. ||

After end |

11417 CurrRowsetStart The number of the first row in the current row-set. |

11418 LastResultRow The number of the last row in the result set. |

11419 RowsetSize The row-set size. |

11420 FetchOffset The value of the FetchOffset argument. |

11421 The row corresponding to the bookmark specified by the ||
11422 SQL_ATTR_FETCH_BOOKMARK_PTR statement attribute. ||

BookmarkRow |

11423 SQL_FETCH_NEXT |

11424 The following rules apply: |

11425 Condition First row of new row-set ||
11426 Before start 1 |

11427 CurrRowsetStart − RowsetSize ≤ LastResultRow 1 CurrRowsetStart + RowsetSize 1 |

11428 CurrRowsetStart − RowsetSize > LastResultRow 1 After end |

11429 After end After end |

11430 1 If the row-set size is changed since the previous call to fetch rows, this is the row-set size |
11431 that was used with the previous call. |

322 Direct Review (Build ID 96KAV) (Draft XDBC.33, August 1996)

Reference Manual Pages ISO 92 SQLFetchScroll()

11432 SQL_FETCH_PRIOR |

11433 The following rules apply: |

11434 Condition First row of new row-set ||
11435 Before start Before start |

11436 CurrRowsetStart = 1 Before start |

11437 1 < CurrRowsetStart ≤ RowsetSize 2 1 1 |

11438 CurrRowsetStart > RowsetSize 2 CurrRowsetStart − RowsetSize 2 |

11439 After end AND LastResultRow < RowsetSize 2 1 1 |

11440 After end AND LastResultRow ≥ RowsetSize 2 LastResultRow − RowsetSize 2 + 1 |

11441 1 SQLFetchScroll() returns SQLSTATE 01S06 (Attempt to fetch before the result set returned |
11442 the first row-set) and SQL_SUCCESS_WITH_INFO. |

11443 2 If the row-set size has been changed since the previous call to fetch rows, this is the new |
11444 row-set size. |

11445 SQL_FETCH_RELATIVE |

11446 The following rules apply: |

11447 Condition First row of new row-set ||
11448 (Before start AND FetchOffset > 0) OR — 1 |

11449 (After end AND FetchOffset < 0) |

11450 BeforeStart AND FetchOffset ≤ 0 Before start |

11451 CurrRowsetStart = 1 AND FetchOffset < 0 Before start |

11452 CurrRowsetStart + FetchOffset < 1 AND Before start |
11453 | FetchOffset | > RowsetSize 3 |

11454 CurrRowsetStart + FetchOffset < 1 AND 1 2 |

11455 | FetchOffset | ≤ RowsetSize 3 |

11456 1 ≤ CurrRowsetStart + FetchOffset ≤ LastResultRow CurrRowsetStart + FetchOffset |

11457 CurrRowsetStart + FetchOffset > LastResultRow After end |

11458 After end AND FetchOffset ≥ 0 After end |

11459 1 SQLFetchScroll() returns the same row-set as if it was called with FetchOrientation set to |
11460 SQL_FETCH_ABSOLUTE. For more information, see the SQL_FETCH_ABSOLUTE table |
11461 below. |

11462 2 SQLFetchScroll() returns SQLSTATE 01S06 (Attempt to fetch before the result set returned |
11463 the first row-set) and SQL_SUCCESS_WITH_INFO. |

11464 3 If the row-set size has been changed since the previous call to fetch rows, this is the new |
11465 row-set size. |

Data Management: X/Open Database Connectivity (XDBC), Version 2 323

SQLFetchScroll() ISO 92 Reference Manual Pages

11466 SQL_FETCH_ABSOLUTE |

11467 The following rules apply: |

11468 Condition First row of new row-set ||
11469 FetchOffset < 0 AND | FetchOffset | ≤ LastResultRow LastResultRow + FetchOffset + 1 |

11470 FetchOffset < 0 AND | FetchOffset | > LastResultRow Before start |
11471 AND | FetchOffset | > RowsetSize 2 |

11472 FetchOffset < 0 AND | FetchOffset | > LastResultRow 1 1 |

11473 AND | FetchOffset ≤ RowsetSize 2 |

11474 FetchOffset = 0 Before start |

11475 1 ≤ FetchOffset ≤ LastResultRow FetchOffset |

11476 FetchOffset > LastResultRow After end |

11477 1 SQLFetchScroll() returns SQLSTATE01S06 (Attempt to fetch before the result set returned the first |
11478 row-set) and SQL_SUCCESS_WITH_INFO. |

11479 2 If the row-set size has been changed since the previous call to fetch rows, this is the new row-set size. |

11480 An absolute fetch performed against a dynamic cursor may not provide the anticipated result because row |
11481 positions in a dynamic cursor are undetermined. Such an operation is equivalent to a fetch first followed |
11482 by a fetch relative; it is not an atomic operation, as an absolute fetch on a static cursor is. |

11483 SQL_FETCH_FIRST |

11484 The following rules apply: |

11485 Condition First row of new row-set ||
11486 Any 1 |

11487 SQL_FETCH_LAST |

11488 The following rules apply: |

11489 Condition First row of new row-set ||
11490 RowsetSize 1 ≤ LastResultRow LastResultRow − RowsetSize 1 + 1 |

11491 RowsetSize 1 > LastResultRow 1 |

11492 1 If the row-set size has been changed since the previous call to fetch rows, this is the new row-set size. |

11493 SQL_FETCH_BOOKMARK |

11494 The following rules apply: |

11495 Condition First row of new row-set ||
11496 BookmarkRow + FetchOffset < 1 Before start |

11497 1 ≤ BookmarkRow + Fetchoffset ≤ LastResultRow BookmarkRow + FetchOffset |

11498 BookmarkRow + FetchOffset > LastResultRow After end |

11499 For information about bookmarks, see Section 11.2.4 on page 154. |

11500 Effect of Deleted, Added, and Error Rows on Cursor Movement |

324 Direct Review (Build ID 96KAV) (Draft XDBC.33, August 1996)

Reference Manual Pages ISO 92 SQLFetchScroll()

11501 Static and keyset-driven cursors sometimes detect rows added to the result set and remove rows deleted |
11502 from the result set. An application determines the effect for various types of cursor by calling |
11503 SQLGetInfo() as described in Detecting Cursor Capabilities with SQLGetInfo() on page 402. For |
11504 data sources that can detect deleted rows and remove them, the following paragraphs describe the effects of |
11505 this behavior. For data sources that can detect deleted rows but cannot remove them, deletions have no |
11506 effect on cursor movements, and the following paragraphs do not apply. |

11507 If the cursor detects rows added to the result set or removes rows deleted from the result set, it appears as if |
11508 it detects these changes only when it fetches data. This includes the case when SQLFetchScroll() is called |
11509 with FetchOrientation set to SQL_FETCH_RELATIVE and FetchOffset set to 0 to refetch the same row- |
11510 set but does not include the case when SQLSetPos() is called with fOption set to SQL_REFRESH. In the |
11511 latter case, the data in the row-set buffers is refreshed, but not refetched, and deleted rows are not removed |
11512 from the result set. Thus, when a row is deleted from or inserted into the current row-set, the cursor does |
11513 not modify the row-set buffers. Instead, it detects the change when it fetches any row-set that previously |
11514 included the deleted row or now includes the inserted row. |

11515 For example: |

11516 // Fetch the next row-set |
11517 SQLFetchScroll(hstmt, SQL_FETCH_NEXT, 0); |

11518 // Delete third row of the row-set. Does not modify the row-set buffers. |
11519 SQLSetPos(hstmt, 3, SQL_DELETE, SQL_LOCK_NO_CHANGE); |

11520 // The third row has a status of SQL_ROW_DELETED after this call. |
11521 SQLSetPos(hstmt, 3, SQL_REFRESH, SQL_LOCK_NO_CHANGE); |

11522 // Refetch the same row-set. The third row is removed, replaced by what |
11523 // was previously the fourth row. |
11524 SQLFetchScroll(hstmt, SQL_FETCH_RELATIVE, 0); |

11525 When SQLFetchScroll() returns a new row-set that has a position relative to the current row-set |
11526 — that is, FetchOrientation is SQL_FETCH_NEXT, SQL_FETCH_PRIOR, or |
11527 SQL_FETCH_RELATIVE — it does not include changes to the current row-set when calculating |
11528 the starting position of the new row-set. However, it does include changes outside the current |
11529 row-set if it is capable of detecting them. Furthermore, when SQLFetchScroll() returns a new |
11530 row-set that has a position independent of the current row-set — that is, FetchOrientation is |
11531 SQL_FETCH_FIRST, SQL_FETCH_LAST, SQL_FETCH_ABSOLUTE, or |
11532 SQL_FETCH_BOOKMARK — it includes all changes it is capable of detecting, even if they are |
11533 in the current row-set. |

11534 When determining whether newly added rows are inside or outside the current row-set, a partial |
11535 row-set is considered to end at the last valid row; that is, the last row for which the row status is |
11536 not SQL_ROW_NOROW. For example, suppose the cursor is capable of detecting newly added |
11537 rows, the current row-set is a partial row-set, the application adds new rows, and the cursors |
11538 adds these rows to the end of the result set. If the application calls SQLFetchScroll() with |
11539 FetchOrientation set to SQL_FETCH_NEXT, SQLFetchScroll() returns the row-set starting with |
11540 the first newly added row. |

11541 For example, suppose the row-set size is 10, the current row-set comprises rows 21 to 30, the |
11542 cursor removes rows deleted from the result set, and the cursor detects rows added to the result |
11543 set. The following table shows the rows that SQLFetchScroll() returns in various situations: |

11544 Change Fetch Type FetchOffset New Row-set 1 |

Data Management: X/Open Database Connectivity (XDBC), Version 2 325

SQLFetchScroll() ISO 92 Reference Manual Pages

|
11545 Delete row 21 NEXT 0 31 to 40 |

11546 Delete row 31 NEXT 0 32 to 41 |

11547 Insert row between rows 21 and 22 NEXT 0 31 to 40 |

11548 Insert row between rows 30 and 31 NEXT 0 Inserted row, 31 to 39 |

11549 Delete row 21 PRIOR 0 11 to 20 |

11550 Delete row 20 PRIOR 0 10 to 19 |

11551 Insert row between rows 21 and 22 PRIOR 0 11 to 20 |

11552 Insert row between rows 20 and 21 PRIOR 0 12 to 20, inserted row |

11553 Delete row 21 RELATIVE 0 22 to 31 2 |

11554 Delete row 21 RELATIVE 1 22 to 31 |

11555 Insert row between rows 21 and 22 RELATIVE 0 21, inserted row, 22 to 29 |

11556 Insert row between rows 21 and 22 RELATIVE 1 22 to 31 |

11557 Delete row 21 ABSOLUTE 21 22 to 31 2 |

11558 Delete row 22 ABSOLUTE 21 21, 23 to 31 |

11559 Insert row between rows 21 and 22 ABSOLUTE 22 Inserted row, 22 to 29 |

11560 1 This column uses the row numbers before any rows were inserted or deleted. |

11561 2 In this case, the cursor attempts to return rows starting with row 21. Because row 21 has |
11562 been deleted, the first row it returns is row 22. |

11563 Error rows (that is, rows with a status of SQL_ROW_ERROR) do not affect cursor movement. |
11564 For example, if the current row-set starts with row 11 and the status of row 11 is |
11565 SQL_ROW_ERROR, calling SQLFetchScroll() with FetchOrientation set to |
11566 SQL_FETCH_RELATIVE and FetchOffset set to 5 returns the row-set starting with row 16, just as |
11567 it would if the status for row 11 was SQL_SUCCESS. |

11568 Returning Data in Bound Columns |

11569 SQLFetchScroll() returns data in bound columns in the same way as SQLFetch(). For more |
11570 information, see Returning Data in Bound Columns on page 310. |

11571 If no columns are bound, SQLFetchScroll() does not return data but does move the cursor to the |
11572 specified position. It is implementation-defined whether data can be retrieved from unbound |
11573 columns with SQLGetData(). An application determines whether it can return data from |
11574 unbound columns with SQLGetData() only if SQLGetInfo() returns the SQL_GD_BLOCK bit for |
11575 the SQL_GETDATA_EXTENSIONSoption. |

11576 Buffer Addresses |

11577 SQLFetchScroll() uses the same formula to determine the address of data and length/indicator |
11578 buffers as SQLFetch(). For more information, see Buffer Addresses on page 217. |

11579 Row Status Array |

11580 SQLFetchScroll() sets values in the row status array in the same manner as SQLFetch(). For more |
11581 information, see Section 10.4.3 on page 134. |

11582 Rows Fetched Buffer |

11583 SQLFetchScroll() returns the number of rows fetched in the rows fetched buffer in the same |
11584 manner as SQLFetch(). For more information, see Rows Fetched Buffer on page 312. |

326 Direct Review (Build ID 96KAV) (Draft XDBC.33, August 1996)

Reference Manual Pages ISO 92 SQLFetchScroll()

11585 SQLFetchScroll() and Optimistic Concurrency |

11586 If a cursor uses optimistic concurrency — that is, the SQL_ATTR_CONCURRENCY statement |
11587 attribute has a value of SQL_CONCUR_VALUES or SQL_CONCUR_ROWVER — |
11588 SQLFetchScroll() updates the optimistic concurrency values used by the data source to detect |
11589 whether a row has changed. This happens whenever SQLFetchScroll() fetches a new row-set, |
11590 including when it it refetches the current row-set (it is called with FetchOrientation set to |
11591 SQL_FETCH_RELATIVE and FetchOffset set to 0). Descriptors and SQLFetchScroll() |

11592 SQLFetchScroll() interacts with descriptors in the same manner as SQLFetch(). For more |
11593 information, see Descriptors and SQLFetch() on page 313. |

11594 SEE ALSO |

11595 For information about ||See |||
|

11596 Binding a buffer to a column in a result set ||SQLBindCol() |||

11597 Performing bulk insert or update operations ||SQLBulkOperations() |||

11598 Canceling statement processing ||SQLCancel() |||

11599 Returning information about a column in a result set ||SQLDescribeCol() |||

11600 Executing an SQL statement ||SQLExecDirect() |||

11601 Executing a prepared SQL statement ||SQLExecute() |||

11602 Fetching a single row or a block of data in a forward-only ||
11603 direction ||

SQLFetch() |||

11604 Returning the number of result set columns ||SQLNumResultCols() |||

11605 Positioning the cursor, refreshing data in the row-set, or ||
11606 updating or deleting data in the result set ||

SQLSetPos() |||

11607 Setting a statement attribute ||SQLSetStmtAttr() |||

11608 CHANGE HISTORY |

11609 Version 2 |
11610 Revised generally. See Alignment with Popular Implementations on page 2. ||

Data Management: X/Open Database Connectivity (XDBC), Version 2 327

SQLForeignKeys() XDBC Reference Manual Pages

11611 NAME |
11612 SQLForeignKeys — Return a list of foreign keys for a specified table. |

11613 SYNOPSIS |
11614 SQLRETURN SQLForeignKeys(|
11615 SQLHSTMTStatementHandle , |
11616 SQLCHAR * PKCatalogName , |
11617 SQLSMALLINT NameLength1 , |
11618 SQLCHAR * PKSchemaName, |
11619 SQLSMALLINT NameLength2 , |
11620 SQLCHAR * PKTableName, |
11621 SQLSMALLINT NameLength3 , |
11622 SQLCHAR * FKCatalogName , |
11623 SQLSMALLINT NameLength4 , |
11624 SQLCHAR * FKSchemaName, |
11625 SQLSMALLINT NameLength5 , |
11626 SQLCHAR * FKTableName , |
11627 SQLSMALLINT NameLength6); |

11628 ARGUMENTS |

11629 StatementHandle [Input] |
11630 Statement handle. |

11631 PKCatalogName [Input] |
11632 Primary key table catalog name. If a data source supports catalogs, an empty string denotes |
11633 those tables that do not have catalogs. |

11634 If the SQL_ATTR_METADATA_ID statement attribute is SQL_TRUE, this argument is |
11635 interpreted as specified in Identifier (ID) Arguments on page 72. If it is SQL_FALSE, this |
11636 argument is interpreted as specified in Ordinary Arguments (OA) on page 71. |

11637 NameLength1 [Input] |
11638 Length of *PKCatalogName, in octets. |

11639 PKSchemaName [Input] |
11640 Primary key table schema name. If a data source supports schemas, an empty string denotes |
11641 those tables that do not have schemas. |

11642 If the SQL_ATTR_METADATA_ID statement attribute is SQL_TRUE, this argument is |
11643 interpreted as specified in Identifier (ID) Arguments on page 72. If it is SQL_FALSE, this |
11644 argument is interpreted as specified in Ordinary Arguments (OA) on page 71. |

11645 NameLength2 [Input] |
11646 Length of *PKSchemaName, in octets. |

11647 PKTableName [Input] |
11648 Primary key table name. |

11649 If the SQL_ATTR_METADATA_ID statement attribute is SQL_TRUE, this argument is |
11650 interpreted as specified in Identifier (ID) Arguments on page 72. If it is SQL_FALSE, this |
11651 argument is interpreted as specified in Ordinary Arguments (OA) on page 71. |

11652 NameLength3 [Input] |
11653 Length of *PKTableName. |

11654 FKCatalogName [Input] |
11655 Foreign key table catalog name. If a data source supports catalogs, an empty string denotes |
11656 those tables that do not have catalog. |

328 Direct Review (Build ID 96KAV) (Draft XDBC.33, August 1996)

Reference Manual Pages XDBC SQLForeignKeys()

11657 If the SQL_ATTR_METADATA_ID statement attribute is SQL_TRUE, this argument is |
11658 interpreted as specified in Identifier (ID) Arguments on page 72. If it is SQL_FALSE, this |
11659 argument is interpreted as specified in Ordinary Arguments (OA) on page 71. |

11660 NameLength4 [Input] |
11661 Length of *FKCatalogName. |

11662 FKSchemaName [Input] |
11663 Foreign key table schema name. If a data source supports schemas, an empty string denotes |
11664 those tables that do not have schemas. |

11665 If the SQL_ATTR_METADATA_ID statement attribute is SQL_TRUE, this argument is |
11666 interpreted as specified in Identifier (ID) Arguments on page 72. If it is SQL_FALSE, this |
11667 argument is interpreted as specified in Ordinary Arguments (OA) on page 71. |

11668 NameLength5 [Input] |
11669 Length of *FKSchemaName. |

11670 FKTableName [Input] |
11671 Foreign key table name. |

11672 If the SQL_ATTR_METADATA_ID statement attribute is SQL_TRUE, this argument is |
11673 interpreted as specified in Identifier (ID) Arguments on page 72. If it is SQL_FALSE, this |
11674 argument is interpreted as specified in Ordinary Arguments (OA) on page 71. |

11675 NameLength6 [Input] |
11676 Length of *FKTableName. |

11677 RETURN VALUE |
11678 SQL_SUCCESS, SQL_SUCCESS_WITH_INFO, SQL_STILL_EXECUTING, SQL_ERROR, or |
11679 SQL_INVALID_HANDLE. |

11680 DIAGNOSTICS |
11681 When SQLForeignKeys() returns SQL_ERROR or SQL_SUCCESS_WITH_INFO, an associated |
11682 SQLSTATE value can be obtained by calling SQLGetDiagRec() with a HandleType of |
11683 SQL_HANDLE_STMT and a Handle of StatementHandle. The following SQLSTATE values are |
11684 commonly returned by SQLForeignKeys(). The return code associated with each SQLSTATE |
11685 value is SQL_ERROR, except that for SQLSTATE values in class 01, the return code is |
11686 SQL_SUCCESS_WITH_INFO. |

11687 01000 — General warning |
11688 Implementation-defined informational message. |

11689 08S01 — Communication link failure |
11690 The communication link to the data source failed before the function completed processing. |

11691 24000 — Invalid cursor state |
11692 A cursor was open on StatementHandle. |

11693 HY000 — General error |
11694 An error occurred for which there was no specific SQLSTATE and for which no |
11695 implementation-specific SQLSTATE was defined. The error message returned by |
11696 SQLGetDiagRec() in the *MessageTextbuffer describes the error and its cause. |

11697 HY001 — Memory allocation error |
11698 The implementation failed to allocate memory required to support execution or completion |
11699 of the function. |

11700 HY008 — Operation canceled |
11701 Asynchronous processing was enabled for StatementHandle. The function was called and |
11702 before it completed execution, SQLCancel() was called on StatementHandle. The function |

Data Management: X/Open Database Connectivity (XDBC), Version 2 329

SQLForeignKeys() XDBC Reference Manual Pages

11703 was then called again on StatementHandle. |

11704 The function was called and, before it completed execution, SQLCancel() was called on |
11705 StatementHandle from a different thread in a multithread application. |

11706 HY009 — Invalid use of null pointer |
11707 PKTableName and FKTableName were both null pointers. |

11708 The SQL_ATTR_METADATA_IDstatement attribute was set to SQL_TRUE, FKCatalogName |
11709 or PKCatalogName was a null pointer, and the SQL_CATALOG_NAME option of |
11710 SQLGetInfo() returns that catalog names are supported. |

11711 The SQL_ATTR_METADATA_ID statement attribute was set to SQL_TRUE, and |
11712 FKSchemaName, PKSchemaName, FKTableName, or PKTableName was a null pointer. |

11713 HY010 — Function sequence error |
11714 An asynchronously executing function (not this one) was called for StatementHandle and |
11715 was still executing when this function was called. |

11716 SQLBulkOperations(), SQLExecDirect(), SQLExecute(), or SQLSetPos() was called for |
11717 StatementHandle and returned SQL_NEED_DATA.This function was called before data was |
11718 sent for all data-at-execution parameters or columns. |

11719 HY090 — Invalid string or buffer length |
11720 The value of one of the name length arguments was less than 0, but not equal to SQL_NTS. |

11721 The value of one of the name length arguments exceeded the maximum length value for the |
11722 corresponding name (see ‘‘Comments’’). |

11723 HYC00 — Optional feature not implemented |
11724 A catalog name was specified and the implementation does not support catalogs. |

11725 A schema name was specified and the implementation does not support schemas. |

11726 The data source does not support the combination of the current settings of the |
11727 SQL_ATTR_CONCURRENCY and SQL_ATTR_CURSOR_TYPE statement attributes. |

11728 The SQL_ATTR_USE_BOOKMARKS statement attribute was set to SQL_UB_VARIABLE, |
11729 and the SQL_ATTR_CURSOR_TYPE statement attribute was set to a cursor type for which |
11730 the data source does not support bookmarks. |

11731 HYT00 — Timeout expired |
11732 The query timeout period expired before the data source returned the result set. The |
11733 timeout period is set through SQLSetStmtAttr(), SQL_ATTR_QUERY_TIMEOUT. |

11734 HYT01 — Connection timeout expired |
11735 The connection timeout period expired before the data source responded to the request. The |
11736 connection timeout period is set through SQLSetConnectAttr(), |
11737 SQL_ATTR_CONNECTION_TIMEOUT. |

11738 IM001 — Function not supported |
11739 The function is not supported on the current connection to the data source. |

11740 COMMENTS |
11741 SQLForeignKeys() can return: |

11742 • A list of foreign keys in the specified table (columns in the specified table that refer to |
11743 primary keys in other tables). |

11744 • A list of foreign keys in other tables that refer to the primary key in the specified table. |

11745 The implementation returns each list as a result set on StatementHandle. |

330 Direct Review (Build ID 96KAV) (Draft XDBC.33, August 1996)

Reference Manual Pages XDBC SQLForeignKeys()

11746 For XSQL implementations that do not implement referential integrity constraints, |
11747 SQLForeignKeys() should not be implemented, and SQLFunctions() should indicate that |
11748 SQLForeignKeys() is not present. On implementations that span data sources some of which do |
11749 not implement referential integrity constraints, this behavior should depend on the data source. |
11750 Implementing SQLForeignKeys() and returning a result set with no rows is unadvisable because |
11751 it misleads the application. |

11752 If *PKTableName contains a table name, SQLForeignKeys() returns a result set containing the |
11753 primary key of the specified table and all of the foreign keys that refer to it. |

11754 If *FKTableName contains a table name, SQLForeignKeys() returns a result set containing all of the |
11755 foreign keys in the specified table and the primary keys (in other tables) to which they refer. |

11756 If both *PKTableName and *FKTableName contain table names, SQLForeignKeys() returns the |
11757 foreign keys in the table specified in *FKTableName that refer to the primary key of the table |
11758 specified in *PKTableName. This should be one key at most. |

11759 If the foreign keys associated with a primary key are requested, the result set is ordered by |
11760 FKTABLE_CAT, FKTABLE_SCHEM , FKTABLE_NAME, and KEY_SEQ. If the primary keys |
11761 associated with a foreign key are requested, the result set is ordered by PKTABLE_CAT, |
11762 PKTABLE_SCHEM, PKTABLE_NAME, and KEY_SEQ. The following table lists the columns in |
11763 the result set. |

11764 The lengths of VARCHAR columns shown in the table are maximums; the actual lengths depend |
11765 on the data source. To determine the actual lengths of the PKTABLE_CAT or FKTABLE_CAT, |
11766 PKTABLE_SCHEM or FKTABLE_SCHEM, PKTABLE_NAME or FKTABLE_NAME, and |
11767 PKCOLUMN_NAME or FKCOLUMN_NAME columns, an application can call SQLGetInfo() |
11768 with the SQL_MAX_CATALOG_NAME_LEN, SQL_MAX_SCHEMA_NAME_LEN, |
11769 SQL_MAX_TABLE_NAME_LEN,and SQL_MAX_COLUMN_NAME_LEN options. |

11770 The following table lists the columns in the result set. Additional columns beyond column 17 |
11771 (REMARKS) can be defined by the implementation. An application should gain access to |
11772 implementation-defined columns by counting down from the end of the result set rather than by |
11773 specifying an explicit ordinal position; see Section 7.3 on page 68. |

11774 Col.
11775 Column name No. Data type Comments
11776 Primary key table catalog name; NULL if not |
11777 applicable to the data source. If a data source |
11778 supports catalogs, it returns an empty string for |
11779 those tables that do not have catalogs. |

PKTABLE_CAT 1 Varchar

11780 Primary key table schema name; NULL if not |
11781 applicable to the data source. If a data source |
11782 supports schemas, it returns an empty string for |
11783 those tables that do not have schemas. |

PKTABLE_SCHEM 2 Varchar

Data Management: X/Open Database Connectivity (XDBC), Version 2 331

SQLForeignKeys() XDBC Reference Manual Pages

11784 Varchar |
11785 not NULL |

PKTABLE_NAME 3 Primary key table identifier.

11786 Varchar |
11787 not NULL |

Primary key column identifier; an empty string |
for an unnamed column. |

PKCOLUMN_NAME 4

11788 Foreign key table catalog name; NULL if not |
11789 applicable to the data source. If a data source |
11790 supports catalogs, it returns an empty string for |
11791 those tables that do not have catalogs. |

FKTABLE_CAT 5 Varchar

11792 Foreign key table schema name; NULL if not |
11793 applicable to the data source. If a data source |
11794 supports schemas, it returns an empty string for |
11795 those tables that do not have schemas. |

FKTABLE_SCHEM 6 Varchar

11796 Varchar |
11797 not NULL |

FKTABLE_NAME 7 Foreign key table identifier.

11798 Varchar |
11799 not NULL |

Foreign key column identifier; an empty string |
for an unnamed column.

FKCOLUMN_NAME 8

11800 Smallint |
11801 not NULL |

Column sequence number in key (starting with
1).

KEY_SEQ 9

11802 The action to be applied to the foreign key when
11803 the SQL operation is UPDATE. The valid values
11804 are set out below this table.

UPDATE_RULE 10 Smallint

11805 The action to be applied to the foreign key when
11806 the SQL operation is DELETE. The valid values
11807 are set out below this table.

DELETE_RULE 11 Smallint

11808 Foreign key identifier. NULL if not applicable to
11809 the data source.

FK_NAME 12 Varchar

11810 Primary key identifier. NULL if not applicable to
11811 the data source.

PK_NAME 13 Varchar

11812 SQL_INITIALLY_DEFERRED
11813 SQL_INITIALLY_IMMEDIATE
11814 SQL_NOT_DEFERRABLE

DEFERRABILITY 14 Smallint

11815 Valid Values for UPDATE_RULEColumn

11816 The UPDATE_RULE column of the result set can have any of the following values (The
11817 referenced table is the table that has the primary key; the referencing table is the table that has
11818 the foreign key).

11819 SQL_CASCADE
11820 When the primary key of the referenced table is updated, the foreign key of the referencing
11821 table is also updated.

11822 SQL_NO_ACTION
11823 If an update of the primary key of the referenced table would cause a ‘‘dangling reference’’
11824 in the referencing table (that is, rows in the referencing table would have no counterparts in
11825 the referenced table), then the update is rejected. If an update of the foreign key of the

332 Direct Review (Build ID 96KAV) (Draft XDBC.33, August 1996)

Reference Manual Pages XDBC SQLForeignKeys()

11826 referencing table would introduce a value that does not exist as a value of the primary key
11827 of the referenced table, then the update is rejected.

11828 SQL_SET_NULL
11829 When one or more rows in the referenced table are updated such that one or more
11830 components of the primary key are changed, the components of the foreign key in the
11831 referencing table that correspond to the changed components of the primary key are set to
11832 NULL in all matching rows of the referencing table.

11833 SQL_SET_DEFAULT
11834 When one or more rows in the referenced table are updated such that one or more
11835 components of the primary key are changed, the components of the foreign key in the
11836 referencing table that correspond to the changed components of the primary key are set to
11837 the applicable default values in all matching rows of the referencing table.

11838 NULL
11839 If not applicable to the data source.

11840 Valid Values for DELETE_RULE Column

11841 The DELETE_RULE column of the result set can have any of the following values (The
11842 referenced table is the table that has the primary key; the referencing table is the table that has
11843 the foreign key):

11844 SQL_CASCADE
11845 When a row in the referenced table is deleted, all the matching rows in the referencing
11846 tables are also deleted.

11847 SQL_NO_ACTION
11848 If a delete of a row in the referenced table would cause a ‘‘dangling reference’’ in the
11849 referencing table (that is, rows in the referencing table would have no counterparts in the
11850 referenced table), then the update is rejected.

11851 SQL_SET_NULL
11852 When one or more rows in the referenced table are deleted, each component of the foreign
11853 key of the referencing table is set to NULL in all matching rows of the referencing table.

11854 SQL_SET_DEFAULT
11855 When one or more rows in the referenced table are deleted, each component of the foreign
11856 key of the referencing table is set to the applicable default in all matching rows of the
11857 referencing table.

11858 NULL
11859 If not applicable to the data source.

11860 SEE ALSO

11861 For information about See

11862 Overview of catalog functions Chapter 7
11863 Binding a buffer to a column in a result set SQLBindCol()
11864 Canceling statement processing SQLCancel()
11865 Fetching a block of data or scrolling through a result set SQLFetchScroll()
11866 Fetching a single row or a block of data in a forward-only
11867 direction

SQLFetch()

Data Management: X/Open Database Connectivity (XDBC), Version 2 333

SQLForeignKeys() XDBC Reference Manual Pages

11868 Returning the columns of a primary key SQLPrimaryKeys()
11869 Returning table statistics and indexes SQLStatistics()

11870 CHANGE HISTORY

11871 Version 2
11872 Function added in this version.

•

334 Direct Review (Build ID 96KAV) (Draft XDBC.33, August 1996)

Reference Manual Pages ISO 92 SQLFreeHandle()

11873 NAME
11874 SQLFreeHandle — Free resources associated with a specific handle.

11875 SYNOPSIS
11876 SQLRETURN SQLFreeHandle(|
11877 SQLSMALLINT HandleType , |
11878 SQLHANDLEHandle);

11879 ARGUMENTS

11880 HandleType [Input] |
11881 The type of handle to be freed by SQLFreeHandle(). Must be one of the following values:

11882 SQL_HANDLE_ENV |
11883 SQL_HANDLE_DBC |
11884 SQL_HANDLE_STMT |
11885 SQL_HANDLE_DESC |

11886 If HandleType is not one of the above values, SQLFreeHandle() returns
11887 SQL_INVALID_HANDLE. |

11888 Handle [Input]
11889 The handle to be freed. |

11890 RETURN VALUE
11891 SQL_SUCCESS, SQL_ERROR, or SQL_INVALID_HANDLE.

11892 If SQLFreeHandle() returns SQL_ERROR, the handle is still valid.

11893 DIAGNOSTICS
11894 When SQLFreeHandle() returns SQL_ERROR, an associated SQLSTATE value may be obtained
11895 from the diagnostic data structure for the handle that SQLFreeHandle() attempted to free, but
11896 could not. The following table lists the SQLSTATE values commonly returned by
11897 SQLFreeHandle(). The return code associated with each SQLSTATEvalue is SQL_ERROR, unless
11898 noted otherwise.

11899 HY000 — General error |
11900 An error occurred for which there was no specific SQLSTATE and for which no |
11901 implementation-specific SQLSTATE was defined. The error message returned by |
11902 SQLGetDiagRec() in the *MessageTextbuffer describes the error and its cause. |

11903 HY001 — Memory allocation error |
11904 The implementation failed to allocate memory required to support execution or completion |
11905 of the function. |

11906 HY010 — Function sequence error |
11907 HandleType was SQL_HANDLE_ENV, and at least one connection was in an allocated or
11908 connected state. SQLDisconnect() and SQLFreeHandle() with a HandleType of
11909 SQL_HANDLE_DBC must be called for each connection before calling SQLFreeHandle()
11910 with a HandleTypeof SQL_HANDLE_ENV.

11911 HandleType was SQL_HANDLE_DBC, and the function was called before calling •
11912 SQLDisconnect() for the connection.

11913 HandleTypewas SQL_HANDLE_STMT; an asynchronously executing function was called on •
11914 the statement handle; and the function was still executing when this function was called.

11915 HandleType was SQL_HANDLE_STMT; SQLBulkOperations(), SQLExecDirect(), |
11916 SQLExecute(), or SQLSetPos() was called with the statement handle, and returned
11917 SQL_NEED_DATA. This function was called before data was sent for all data-at-execution
11918 parameters or columns.

Data Management: X/Open Database Connectivity (XDBC), Version 2 335

SQLFreeHandle() ISO 92 Reference Manual Pages

11919 All subsidiary handles and other resources were not released before SQLFreeHandle() was |
11920 called.

11921 HY013 — Memory management error
11922 HandleType was SQL_HANDLE_STMT or SQL_HANDLE_DESC, and the function call
11923 could not be processed because the underlying memory objects could not be accessed,
11924 possibly because of low memory conditions.

11925 HY017 — Invalid use of an automatically allocated descriptor handle.
11926 Handle was set to the handle for an automatically-allocated descriptor or an implementation •
11927 descriptor.

11928 HYT01 — Connection timeout expired
11929 The connection timeout period expired before the data source responded to the request. The
11930 connection timeout period is set through SQLSetConnectAttr(),
11931 SQL_ATTR_CONNECTION_TIMEOUT.

11932 IM001 — Function not supported
11933 The function is not supported on the current connection to the data source.

11934 COMMENTS
11935 SQLFreeHandle() is used to free handles for environments, connections, statements, and
11936 descriptors.

11937 Freeing an Environment Handle

11938 Before calling SQLFreeHandle() with a HandleType of SQL_HANDLE_ENV, an application must
11939 call SQLFreeHandle() with a HandleType of SQL_HANDLE_DBC for all connections allocated
11940 under the environment. Otherwise, the call to SQLFreeHandle() returns SQL_ERROR and the
11941 environment and any active connection remains valid.

11942 Freeing a Connection Handle

11943 Prior to calling SQLFreeHandle() with HandleType of SQL_HANDLE_DBC, an application must |
11944 call SQLDisconnect() for the connection. Otherwise, the call to SQLFreeHandle() returns
11945 SQL_ERROR and the connection remains valid.

11946 Freeing a Statement Handle

11947 A call to SQLFreeHandle() with HandleType of SQL_HANDLE_STMT frees all resources that were |
11948 allocated by a call to SQLAllocHandle() with HandleType of SQL_HANDLE_STMT. Any pending |
11949 results of the statement are deleted and any result sets are discarded. Freeing a statement handle |
11950 also frees all the automatically-generated descriptors associated with that handle.

11951 (A call to SQLDisconnect() also drops any statements and descriptors open on the connection.)

11952 Freeing a Descriptor Handle

11953 A call to SQLFreeHandle() with HandleType of SQL_HANDLE_DESC frees the descriptor handle |
11954 in Handle . The call does not release any memory allocated by the application referenced by a |
11955 pointer field (including SQL_DESC_DATA_PTR, SQL_DESC_INDICATOR_PTR, and |
11956 SQL_DESC_OCTET_LENGTH_PTR) of any descriptor record of Handle . The memory allocated |
11957 for fields that are not pointer fields is freed when the handle is freed. When an explicitly-
11958 allocated descriptor handle is freed, all statements that the freed handle had been associated
11959 with revert to their automatically-allocated descriptor handle.

11960 (A call to SQLDisconnect() also drops any statements and descriptors open on the connection.)

11961 SEE ALSO

336 Direct Review (Build ID 96KAV) (Draft XDBC.33, August 1996)

Reference Manual Pages ISO 92 SQLFreeHandle()

11962 For information about See

11963 Allocating a handle SQLAllocHandle()
11964 Canceling statement processing SQLCancel()
11965 Setting a cursor name SQLSetCursorName()

11966 CHANGE HISTORY

11967 Version 2
11968 Revised generally. See Alignment with Popular Implementations on page 2.

Data Management: X/Open Database Connectivity (XDBC), Version 2 337

SQLFreeStmt() ISO 92 Reference Manual Pages

11969 NAME
11970 SQLFreeStmt — Stop processing associated with a specific statement, close any open cursors
11971 associated with the statement, or discard pending results.

11972 SYNOPSIS
11973 SQLRETURN SQLFreeStmt(
11974 SQLHSTMTStatementHandle ,
11975 SQLUSMALLINT Option);

11976 ARGUMENTS

11977 StatementHandle [Input] |
11978 Statement handle |

11979 Option [Input]
11980 One of the following options:

11981 SQL_CLOSE
11982 Close any cursor associated with StatementHandle and discard all pending results. The
11983 application can reopen this cursor later by executing a SELECT statement again with
11984 the same or different parameter values. If no cursor is open, this option has no effect.
11985 (Calling SQLCloseCursor() also closes a cursor.)

11986 SQL_UNBIND
11987 Sets the SQL_DESC_COUNT field of the ARD to 0, releasing all column buffers bound
11988 by SQLBindCol() for StatementHandle. The SQL_DESC_DATA_PTRfield of the ARD for
11989 the bookmark column is set to NULL to release any bound bookmark column. If this
11990 operation is performed on an explicitly-allocated descriptor that is shared by more than
11991 one statement, it affects the bindings of all statements that share the descriptor.

11992 SQL_RESET_PARAMS
11993 Sets the SQL_DESC_COUNT field of the APD to 0, releasing all parameter buffers set
11994 by SQLBindParameter() for StatementHandle. If this operation is performed on an
11995 explicitly-allocated descriptor that is shared by more than one statement, it affects the
11996 bindings of all the statements that share the descriptor.

11997 RETURN VALUE |
11998 SQL_SUCCESS, SQL_SUCCESS_WITH_INFO, SQL_ERROR, or SQL_INVALID_HANDLE. |

11999 DIAGNOSTICS |
12000 When SQLFreeStmt() returns SQL_ERROR or SQL_SUCCESS_WITH_INFO, an associated |
12001 SQLSTATE value can be obtained by calling SQLGetDiagRec() with a HandleType of
12002 SQL_HANDLE_STMT and a Handle of StatementHandle. The following SQLSTATE values are
12003 commonly returned by SQLFreeStmt(). The return code associated with each SQLSTATEvalue is |
12004 SQL_ERROR, except that for SQLSTATE values in class 01, the return code is |
12005 SQL_SUCCESS_WITH_INFO.

12006 01000 — General warning |
12007 Implementation-defined informational message. |

12008 HY000 — General error |
12009 An error occurred for which there was no specific SQLSTATE and for which no |
12010 implementation-specific SQLSTATE was defined. The error message returned by |
12011 SQLGetDiagRec() in the *MessageTextbuffer describes the error and its cause. |

12012 HY001 — Memory allocation error |
12013 The implementation failed to allocate memory required to support execution or completion |
12014 of the function. |

338 Direct Review (Build ID 96KAV) (Draft XDBC.33, August 1996)

Reference Manual Pages ISO 92 SQLFreeStmt()

12015 HY010 — Function sequence error |
12016 An asynchronously executing function was called for StatementHandle and was still |
12017 executing when this function was called. |

12018 SQLBulkOperations(), SQLExecDirect(), SQLExecute(), or SQLSetPos() was called for |
12019 StatementHandle and returned SQL_NEED_DATA.This function was called before data was |
12020 sent for all data-at-execution parameters or columns. |

12021 HY092 — Invalid attribute identifier |
12022 Option was not one of the following:

12023 SQL_CLOSE |
12024 SQL_UNBIND |
12025 SQL_RESET_PARAMS |

12026 HYT01 — Connection timeout expired
12027 The connection timeout period expired before the data source responded to the request. The
12028 connection timeout period is set through SQLSetConnectAttr(),
12029 SQL_ATTR_CONNECTION_TIMEOUT.

12030 IM001 — Function not supported
12031 The function is not supported on the current connection to the data source.

12032 COMMENTS
12033 Calling SQLFreeStmt() with the SQL_CLOSE option is equivalent to calling SQLCloseCursor(),
12034 except in the case that no cursor is open on the statement. In this case, SQLFreeStmt() has no
12035 effect, but SQLCloseCursor() returns SQLSTATE24000 (Invalid cursor state).

12036 SEE ALSO

12037 For information about See

12038 Allocating a handle SQLAllocHandle()
12039 Canceling statement processing SQLCancel()
12040 Closing a cursor SQLCloseCursor()
12041 Freeing a handle SQLFreeHandle()
12042 Setting a cursor name SQLSetCursorName()

12043 CHANGE HISTORY

12044 Version 2
12045 Revised generally. See Alignment with Popular Implementations on page 2. The function was
12046 deprecated in Version 1. The former SQL_DROP value of Option has been deleted. The other
12047 three values remain and the function is no longer deprecated.

Data Management: X/Open Database Connectivity (XDBC), Version 2 339

SQLGetConnectAttr() ISO 92 Reference Manual Pages

12048 NAME
12049 SQLGetConnectAttr — Return the current setting of a connection attribute.

12050 SYNOPSIS
12051 SQLRETURN SQLGetConnectAttr(
12052 SQLHDBCConnectionHandle ,
12053 SQLINTEGER Attribute ,
12054 SQLPOINTER ValuePtr ,
12055 SQLINTEGER BufferLength ,
12056 SQLINTEGER * StringLengthPtr);

12057 ARGUMENTS

12058 ConnectionHandle [Input] |
12059 Connection handle. |

12060 Attribute [Input] |
12061 Attribute to retrieve. |

12062 ValuePtr [Output] |
12063 A pointer to memory in which to return the current value of the attribute specified by |
12064 Attribute. |

12065 BufferLength |
12066 If ValuePtr points to data of variable length, this argument should be the length of *ValuePtr. |
12067 If what is contained in ValuePtr is itself a pointer, but not to data of variable length, then |
12068 BufferLength should have the value SQL_IS_POINTER. If what is contained in ValuePtr is |
12069 actual data of fixed length, then BufferLength should have the value |
12070 SQL_IS_NOT_POINTER. |

12071 StringLengthPtr [Output] |
12072 A pointer to a buffer in which to return the total number of octets (excluding the null |
12073 terminator) available to return in *ValuePtr. If ValuePtr is a pointer, no length is returned. If |
12074 the attribute value is a character string, and the number of octets available to return is |
12075 greater than or equal to BufferLength, the data in *ValuePtr is truncated to BufferLength minus |
12076 the length of a null terminator and is null terminated. |

12077 RETURN VALUE
12078 SQL_SUCCESS, SQL_SUCCESS_WITH_INFO, SQL_NO_DATA, SQL_ERROR, or
12079 SQL_INVALID_HANDLE.

12080 DIAGNOSTICS
12081 When SQLGetConnectAttr() returns SQL_ERROR or SQL_SUCCESS_WITH_INFO, an associated
12082 SQLSTATE value may be obtained from the diagnostic data structure by calling
12083 SQLGetDiagRec() with a HandleType of SQL_HANDLE_DBC and a Handle of ConnectionHandle .
12084 The following SQLSTATE values are commonly returned by SQLGetConnectAttr(). The return |
12085 code associated with each SQLSTATEvalue is SQL_ERROR, except that for SQLSTATEvalues in |
12086 class 01, the return code is SQL_SUCCESS_WITH_INFO.

12087 01000 — General warning |
12088 Implementation-defined informational message. |

12089 01004 — String data, right truncation |
12090 The data returned in *ValuePtr was truncated to be BufferLength minus the length of a null |
12091 terminator. The length of the untruncated string value is returned in *StringLengthPtr. |

12092 08003 — Connection does not exist |
12093 An Attribute was specified that required an open connection. |

340 Direct Review (Build ID 96KAV) (Draft XDBC.33, August 1996)

Reference Manual Pages ISO 92 SQLGetConnectAttr()

12094 08S01 — Communication link failure |
12095 The communication link to the data source failed before the function completed processing.

12096 HY000 — General error
12097 An error occurred for which there was no specific SQLSTATE and for which no
12098 implementation-specific SQLSTATE was defined. The error message returned from the |
12099 diagnostic data structure by MessageText in SQLGetDiagField() describes the error and its
12100 cause. |

12101 HY001 — Memory allocation error
12102 The implementation failed to allocate memory required to support execution or completion
12103 of the function. |

12104 HY010 — Function sequence error |
12105 SQLBrowseConnect() was called for ConnectionHandle and returned SQL_NEED_DATA.This
12106 function was called before SQLBrowseConnect() returned SQL_SUCCESS_WITH_INFO or
12107 SQL_SUCCESS.

12108 HY092 — Invalid attribute identifier
12109 Attribute was not valid for this connection to this data source.

12110 HYC00 — Optional feature not implemented
12111 Attribute was valid but is not supported by the data source.

12112 HYT01 — Connection timeout expired
12113 The connection timeout period expired before the data source responded to the request. The
12114 connection timeout period is set through SQLSetConnectAttr(),
12115 SQL_ATTR_CONNECTION_TIMEOUT.

12116 IM001 — Function not supported
12117 The function is not supported on the current connection to the data source.

12118 COMMENTS
12119 For a list of attributes that can be set, see SQLSetConnectAttr(). If Attribute specifies an attribute
12120 that returns a string, ValuePtr must be a pointer to a buffer for the string. The maximum length
12121 of the string, including the null terminator, is BufferLength octets. |

12122 Depending on the attribute, an application does not need to establish a connection prior to
12123 calling SQLGetConnectAttr(). However, if SQLGetConnectAttr() is called and the specified
12124 attribute does not have a default value and has not been set by a prior call to
12125 SQLSetConnectAttr(), SQLGetConnectAttr() returns SQL_NO_DATA.

12126 While an application can set statement attributes using SQLSetConnectAttr(), an application
12127 cannot use SQLGetConnectAttr() to retrieve statement attribute values; it must call
12128 SQLGetStmtAttr() to retrieve the setting of statement attributes.

12129 The SQL_ATTR_AUTO_IPD connection attribute can be returned by a call to
12130 SQLGetConnectAttr(), but cannot be set by a call to SQLSetConnectAttr().

12131 SEE ALSO

12132 For information about See

12133 Returning the setting of a statement attribute SQLGetStmtAttr()
12134 Setting a connection attribute SQLSetConnectAttr()
12135 Setting a statement attribute SQLSetStmtAttr()

12136 CHANGE HISTORY

Data Management: X/Open Database Connectivity (XDBC), Version 2 341

SQLGetConnectAttr() ISO 92 Reference Manual Pages

12137 Version 2
12138 Revised generally. See Alignment with Popular Implementations on page 2. See also the list in
12139 New Connection Attributes in Version 2 on page 461.

342 Direct Review (Build ID 96KAV) (Draft XDBC.33, August 1996)

Reference Manual Pages ISO 92 SQLGetCursorName()

12140 NAME
12141 SQLGetCursorName — Return the cursor name associated with a specified statement.

12142 SYNOPSIS
12143 SQLRETURN SQLGetCursorName(
12144 SQLHSTMTStatementHandle ,
12145 SQLCHAR * CursorName ,
12146 SQLSMALLINT BufferLength ,
12147 SQLSMALLINT * NameLengthPtr);

12148 ARGUMENTS

12149 StatementHandle [Input] |
12150 Statement handle. |

12151 CursorName [Output]
12152 Pointer to a buffer in which to return the cursor name. |

12153 BufferLength [Input] |
12154 Length of *CursorName, in octets. |

12155 NameLengthPtr [Output] |
12156 Pointer to memory in which to return the total number of octets (excluding the null |
12157 terminator) available to return in *CursorName. If the number of octets available to return is
12158 greater than or equal to BufferLength, the cursor name in *CursorName is truncated to
12159 BufferLength minus the length of a null terminator. |

12160 RETURN VALUE |
12161 SQL_SUCCESS, SQL_SUCCESS_WITH_INFO, SQL_ERROR, or SQL_INVALID_HANDLE. |

12162 DIAGNOSTICS |
12163 When SQLGetCursorName() returns SQL_ERROR or SQL_SUCCESS_WITH_INFO, an associated |
12164 SQLSTATE value can be obtained by calling SQLGetDiagRec() with a HandleType of
12165 SQL_HANDLE_STMT and a Handle of StatementHandle. The following SQLSTATE values are |
12166 commonly returned by SQLGetCursorName(). The return code associated with each SQLSTATE |
12167 value is SQL_ERROR, except that for SQLSTATE values in class 01, the return code is |
12168 SQL_SUCCESS_WITH_INFO.

12169 01000 — General warning |
12170 Implementation-defined informational message. |

12171 01004 — String data, right truncation
12172 The buffer *CursorName was not large enough to return the entire cursor name, so the cursor
12173 name was truncated. The length of the untruncated cursor name is returned in |
12174 *NameLengthPtr. |

12175 HY000 — General error |
12176 An error occurred for which there was no specific SQLSTATE and for which no |
12177 implementation-specific SQLSTATE was defined. The error message returned by |
12178 SQLGetDiagRec() in the *MessageTextbuffer describes the error and its cause. |

12179 HY001 — Memory allocation error |
12180 The implementation failed to allocate memory required to support execution or completion |
12181 of the function. |

12182 HY010 — Function sequence error |
12183 An asynchronously executing function was called for StatementHandle and was still |
12184 executing when this function was called. |

Data Management: X/Open Database Connectivity (XDBC), Version 2 343

SQLGetCursorName() ISO 92 Reference Manual Pages

12185 SQLBulkOperations(), SQLExecDirect(), SQLExecute(), or SQLSetPos() was called for |
12186 StatementHandle and returned SQL_NEED_DATA.This function was called before data was |
12187 sent for all data-at-execution parameters or columns. |

12188 HY090 — Invalid string or buffer length |
12189 BufferLength was less than 0. |

12190 HYT01 — Connection timeout expired |
12191 The connection timeout period expired before the data source responded to the request. The |
12192 connection timeout period is set through SQLSetConnectAttr(), |
12193 SQL_ATTR_CONNECTION_TIMEOUT. |

12194 IM001 — Function not supported |
12195 The function is not supported on the current connection to the data source. |

12196 COMMENTS |
12197 Cursor names are used only in positioned UPDATE and DELETE statements (for example, |
12198 UPDATE table-name ... WHERE CURRENT OFcursor-name). If the application does not |
12199 call SQLSetCursorName() to define a cursor name, the implementation generates a name when |
12200 preparing or executing any statement that produces a result set. This name begins with |
12201 SQL_CUR and does not exceed [SQL_MAX_ID_LENGTH] characters in length.

12202 SQLGetCursorName() returns the cursor name regardless of whether the name was created
12203 explicitly or implicitly. A cursor name is implicitly generated if SQLSetCursorName() is not
12204 called.

12205 A cursor name that is set either explicitly or implicitly remains set until the StatementHandle with
12206 which it is associated is dropped, using SQLFreeHandle() with a HandleType of
12207 SQL_HANDLE_STMT.

12208 SEE ALSO

12209 For information about See

12210 Executing an SQL statement SQLExecDirect()
12211 Executing a prepared SQL statement SQLExecute()
12212 Preparing a statement for execution SQLPrepare()
12213 Setting a cursor name SQLSetCursorName()

12214 CHANGE HISTORY

12215 Version 2
12216 Revised generally. See Alignment with Popular Implementations on page 2.

344 Direct Review (Build ID 96KAV) (Draft XDBC.33, August 1996)

Reference Manual Pages ISO 92 SQLGetData()

12217 NAME
12218 SQLGetData — Retrieve data for a single column in the result set.

12219 SYNOPSIS
12220 SQLRETURN SQLGetData(
12221 SQLHSTMTStatementHandle ,
12222 SQLUSMALLINT ColumnNumber ,
12223 SQLSMALLINT TargetType ,
12224 SQLPOINTER TargetValuePtr ,
12225 SQLINTEGER BufferLength ,
12226 SQLINTEGER * StrLen_or_IndPtr);

12227 ARGUMENTS

12228 StatementHandle [Input] |
12229 Statement handle. |

12230 ColumnNumber [Input]
12231 Number of the column for which to return data. Result set columns are numbered from left
12232 to right starting at 1. The bookmark column is column number 0; this can be specified only
12233 if bookmarks are used. |

12234 TargetType[Input]
12235 The type identifier of the C data type of the *TargetValuePtr buffer. For a list of valid C data
12236 types and type identifiers, see Section D.2 on page 560. If TargetTypeis SQL_ARD_TYPE, the |
12237 implementation uses the type identifier specified in the SQL_DESC_TYPE field of the ARD. |
12238 If it is SQL_C_DEFAULT,the implementation selects a buffer type based upon the SQL data |
12239 type of the source. |

12240 If TargetType is a SQL_C_NUMERIC data type, the precision and default scale fields of the |
12241 SQL_C_NUMERIC structure are used by default. The SQL_DESC_PRECISION and |
12242 SQL_DESC_SCALE fields of the ARD are set to the same value. If the default precision or |
12243 scale is not appropriate, the application should explicitly set the descriptor field by a call to |
12244 SQLSetDescField() or SQLSetDescRec(). It should set the SQL_DESC_CONCISE_TYPE field |
12245 to SQL_C_NUMERIC, and call SQLGetData() with a TargetType of SQL_ARD_TYPE, which |
12246 causes the precision and scale values in the descriptor fields to be used. |

12247 TargetValuePtr[Output]
12248 Pointer to the buffer in which to return the data. |

12249 BufferLength [Input]
12250 Length of the *TargetValuePtrbuffer in octets.

12251 The implementation uses BufferLength to avoid writing past the end of the *TargetValuePtr
12252 buffer when returning variable-length data, such as character or binary data. The |
12253 implementation counts the null terminator when returning character data to
12254 *TargetValuePtr. *TargetValuePtr must therefore contain space for the null terminator or the |
12255 implementation truncates the data.

12256 When the data source returns fixed-length data, such as an integer or a date structure, the |
12257 implementation ignores BufferLength and assumes the buffer is large enough to hold the |
12258 data. It is therefore important for the application to allocate a large enough buffer for fixed- |
12259 length data or the implementation writes past the end of the buffer.

12260 SQLGetData() returns SQLSTATEHY090 (Invalid string or buffer length) when BufferLength
12261 is less than 0 but not when BufferLength is 0. However, if TargetType specifies a character
12262 type, an application should not set BufferLength to 0, because the buffer must have space |
12263 for the null terminator.

Data Management: X/Open Database Connectivity (XDBC), Version 2 345

SQLGetData() ISO 92 Reference Manual Pages

12264 If TargetValuePtr is set to a null pointer, BufferLength is ignored. |

12265 StrLen_or_IndPtr [Output]
12266 Pointer to the buffer in which to return the length or indicator value. If this is a null pointer,
12267 no length or indicator value is returned. This returns an error when the data being fetched is
12268 NULL.

12269 SQLGetData() can return the following values in the length/indicator buffer: |

12270 • The length of the data available to return
12271 • SQL_NO_TOTAL
12272 • SQL_NULL_DATA

12273 For more information, see Section 4.3.5 on page 42 and the ‘‘Comments’’ section. |

12274 RETURN VALUE |
12275 SQL_SUCCESS, SQL_SUCCESS_WITH_INFO, SQL_NO_DATA, SQL_STILL_EXECUTING, |
12276 SQL_ERROR, or SQL_INVALID_HANDLE. |

12277 DIAGNOSTICS |
12278 When SQLGetData() returns SQL_ERROR or SQL_SUCCESS_WITH_INFO, an associated |
12279 SQLSTATE value can be obtained by calling SQLGetDiagRec() with a HandleType of |
12280 SQL_HANDLE_STMT and a Handle of StatementHandle. The following table lists the SQLSTATE |
12281 values commonly returned by SQLGetData(). The return code associated with each SQLSTATE |
12282 value is SQL_ERROR, except that for SQLSTATE values in class 01, the return code is |
12283 SQL_SUCCESS_WITH_INFO. |

12284 01000 — General warning |
12285 Implementation-defined informational message. |

12286 01004 — String data, right truncation |
12287 All of the data for the column specified by ColumnNumber could not be retrieved in a single |
12288 call to the function. The length of the data remaining in the specified column prior to the |
12289 current call to SQLGetData() is returned in *StrLen_or_IndPtr. |

12290 TargetValuePtr was a null pointer and more data was available to return. Following this |
12291 diagnostic, the application can retrieve truncated text as described in Retrieving Variable- |
12292 Length Data in Parts on page 347.

12293 01S07 — Fractional truncation
12294 The data returned for one or more columns was truncated. For numeric data types, the
12295 fractional part of the number was truncated. For time, timestamp, and interval data types
12296 containing a time component, the fractional portion of the time was truncated.

12297 07006 — Restricted data type attribute violation
12298 The data value of a column in the result set cannot be converted to the C data type specified |
12299 by TargetType. |

12300 07009 — Invalid descriptor index |
12301 ColumnNumber was 0 and the SQL_ATTR_USE_BOOKMARKS statement attribute was set |
12302 to SQL_UB_OFF. |

12303 ColumnNumber was greater than the number of columns in the result set. |

12304 ColumnNumber was less than 0. |

12305 The specified column was bound. This description does not apply to implementations that
12306 return the SQL_GD_BOUND bitmask for the SQL_GETDATA_EXTENSIONS option in
12307 SQLGetInfo().

346 Direct Review (Build ID 96KAV) (Draft XDBC.33, August 1996)

Reference Manual Pages ISO 92 SQLGetData()

12308 The number of the specified column was less than or equal to the number of the highest |
12309 bound column. This description does not apply to implementations that return the |
12310 SQL_GD_ANY_COLUMN bitmask for the SQL_GETDATA_EXTENSIONS option in |
12311 SQLGetInfo(). |

12312 The application has already called SQLGetData() for the current row; the number of the |
12313 column specified in the current call was less than the number of the column specified in the |
12314 preceding call; and the implementation does not return the SQL_GD_ANY_ORDER |
12315 bitmask for the SQL_GETDATA_EXTENSIONSoption in SQLGetInfo(). |

12316 TargetType was SQL_ARD_TYPE and the ColumnNumber descriptor record failed the
12317 consistency check. |

12318 TargetTypewas SQL_ARD_TYPE and no records existed in the ARD.

12319 08S01 — Communication link failure
12320 The communication link to the data source failed before the function completed processing.

12321 22002 — Indicator variable required but not supplied
12322 StrLen_or_IndPtr was a null pointer and NULL data was retrieved.

12323 22003 — Numeric value out of range
12324 Returning the numeric value (as numeric or string) for the column would have caused the |
12325 whole (as opposed to fractional) part of the number to be truncated.

12326 For more information, see Appendix D. |

12327 22007 — Invalid date/time format
12328 The character column in the results set was bound to a C date, time, or timestamp structure,
12329 and the value in the column was an invalid date, time, or timestamp, respectively. For more
12330 information, see Appendix D.

12331 22012 — Division by zero
12332 A value from an arithmetic expression that resulted in division by zero was returned.

12333 22015 — Interval field overflow
12334 An exact numeric column in the result set was bound to an interval C structure and
12335 returning the data caused a loss of significant digits.

12336 An interval column in the result set was bound to an interval C structure and returning the
12337 data caused a loss of significant digits.

12338 Data in the result set was bound to an interval C structure and there was no representation
12339 of the data in the interval C structure.

12340 22018 — Invalid character value
12341 The character column in the result set was bound to a character C buffer and the column
12342 contained a character for which there was no representation in the character set of the C
12343 buffer.

12344 A character column in the result set was bound to an approximate numeric C buffer and a
12345 value in the column could not be cast to a valid approximate numeric value.

12346 A character column in the result set was bound to an exact numeric C buffer and a value in
12347 the column could not be cast to a valid exact numeric value.

12348 A character column in the result set was bound to a date/time or interval C buffer and a |
12349 value in the column could not be cast to a valid date/time or interval value. |

12350 24000 — Invalid cursor state |
12351 StatementHandle was in an executed state but no result set was associated with it.

Data Management: X/Open Database Connectivity (XDBC), Version 2 347

SQLGetData() ISO 92 Reference Manual Pages

12352 A cursor was open on StatementHandle and SQLFetch() or SQLFetchScroll() had been called,
12353 but the cursor was positioned before the start of the result set or after the end of the result
12354 set.

12355 HY000 — General error
12356 An error occurred for which there was no specific SQLSTATE and for which no
12357 implementation-specific SQLSTATE was defined. The error message returned by
12358 SQLGetDiagRec() in the MessageText buffer describes the error and its cause. |

12359 HY001 — Memory allocation error |
12360 The implementation failed to allocate memory required to support execution or completion
12361 of the function.

12362 HY003 — Invalid application buffer type |
12363 TargetTypewas neither a valid data type nor SQL_C_DEFAULT. |

12364 ColumnNumber was 0 and TargetTypewas not SQL_C_VARBOOKMARK. |

12365 HY008 — Operation canceled |
12366 Asynchronous processing was enabled for StatementHandle. The function was called and |
12367 before it completed execution, SQLCancel() was called on StatementHandle. The function |
12368 was then called again on StatementHandle. |

12369 The function was called and, before it completed execution, SQLCancel() was called on |
12370 StatementHandle from a different thread in a multithread application. |

12371 HY010 — Function sequence error |
12372 StatementHandle was not in an executed state. The function was called without first calling |
12373 SQLExecDirect(), SQLExecute(), or a catalog function. |

12374 An asynchronously executing function (not this one) was called for StatementHandle and |
12375 was still executing when this function was called. |

12376 SQLBulkOperations(), SQLExecDirect(), SQLExecute(), or SQLSetPos() was called for |
12377 StatementHandle and returned SQL_NEED_DATA.This function was called before data was |
12378 sent for all data-at-execution parameters or columns. |

12379 The function was called without first calling SQLFetch() or SQLFetchScroll(). |

12380 StatementHandle was in an executed state but no result set was associated with |
12381 StatementHandle. |

12382 HY090 — Invalid string or buffer length |
12383 BufferLength was less than 0.

12384 HY109 — Invalid cursor position
12385 The cursor was positioned (by SQLSetPos() or SQLFetchScroll()) on a row that had been
12386 deleted or could not be fetched.

12387 The cursor was a forward-only cursor and the row-set size was greater than one. |

12388 HYC00 — Optional feature not implemented |
12389 The data source does not support use of SQLGetData() with multiple rows in
12390 SQLFetchScroll(). This description does not apply to data sources that return the |
12391 SQL_GD_BLOCK bitmask for the SQL_GETDATA_EXTENSIONSoption in SQLGetInfo().

12392 The implementation does not support the conversion specified by the combination of
12393 TargetType and the SQL data type of the corresponding column. This error only applies |
12394 when the SQL data type of the column was mapped to an implementation-defined SQL |
12395 data type. |

348 Direct Review (Build ID 96KAV) (Draft XDBC.33, August 1996)

Reference Manual Pages ISO 92 SQLGetData()

12396 HYT01 — Connection timeout expired |
12397 The connection timeout period expired before the data source responded to the request. The |
12398 connection timeout period is set through SQLSetConnectAttr(), |
12399 SQL_ATTR_CONNECTION_TIMEOUT. |

12400 IM001 — Function not supported |
12401 The function is not supported on the current connection to the data source. |

12402 COMMENTS |
12403 SQLGetData() returns the data in a specified column. SQLGetData() can only be called after one |
12404 or more rows have been fetched from the result set by SQLFetch(), SQLFetchScroll(), or
12405 SQLSetPos(). If variable-length data is too large to be returned in a single call to SQLGetData()
12406 (due to a limitation in the application), SQLGetData() can retrieve it in parts. It is possible to bind
12407 some columns in a row and call SQLGetData() for others, although this is subject to some
12408 restrictions. |

12409 Restrictions on Use of SQLGetData() |

12410 Portable applications should only use SQLGetData(), to retrieve data for unbound columns with
12411 a number greater than that of the last bound column. (However, any implementation that
12412 supports bookmarks allows calls to SQLGetData() for column 0, which retrieves the bookmark.)
12413 Furthermore, within a row of data, the value of ColumnNumber in each call to SQLGetData()
12414 should be greater than or equal to the value of ColumnNumber in the previous call; that is, data
12415 should be retrieved in increasing column number order. Finally, SQLGetData() should not be |
12416 called if the row-set size is greater than 1.

12417 Implementations can relax the above restrictions. To determine what additional operations an
12418 implementation supports, an application calls SQLGetInfo() with an InfoItem of
12419 SQL_GETDATA_EXTENSIONS.

12420 Regardless of what extensions an implementation allows, applications should not call
12421 SQLGetData() for a forward-only cursor when the row-set size is greater than 1 because the row |
12422 position is undefined.

12423 SQLGetData() cannot be used to retrieve the bookmark for a row just inserted by calling |
12424 SQLBulkOperations() with the SQL_ADD option, because the cursor is not positioned on the row.
12425 An application can retrieve the bookmark for such a row by binding column 0 before calling |
12426 SQLBulkOperations() with SQL_ADD, in which case SQLBulkOperations() returns the bookmark |
12427 in the bound buffer. SQLSetPos() can then be called with SQL_POSITION to reposition the
12428 cursor on that row, at which point SQLGetData() can be called to retrieve the bookmark. |

12429 Retrieving Variable-LengthData in Parts |

12430 SQLGetData() can be used to retrieve data from a column that contains variable-length data in
12431 parts — that is, when the identifier of the SQL data type of the column is SQL_CHAR,
12432 SQL_VARCHAR, SQL_LONGVARCHAR, SQL_BINARY, SQL_VARBINARY,
12433 SQL_LONGVARBINARY,or an implementation-defined identifier for a variable-length type.

12434 To retrieve data from a column in parts, the application calls SQLGetData() multiple times in
12435 succession for the same column. On each call, SQLGetData() returns the next part of the data. |
12436 The application has to reassemble the parts, removing any null terminators from intermediate |
12437 parts of character data. If there is more data to return, SQLGetData() returns SQLSTATE 01004
12438 (Data truncated) and SQL_SUCCESS_WITH_INFO. When it returns the last part of the data,
12439 SQLGetData() returns SQL_SUCCESS. SQL_NO_TOTAL or 0 are not returned on the last valid
12440 call to retrieve data from a column, because the application would then have no way of knowing
12441 how much of the data in the application buffer is valid. If SQLGetData() is called after this, it
12442 returns SQL_NO_DATA(see below). |

Data Management: X/Open Database Connectivity (XDBC), Version 2 349

SQLGetData() ISO 92 Reference Manual Pages

12443 SQLGetData() can return bookmarks in parts. As with other data, a call to SQLGetData() returns |
12444 SQLSTATE01004 (String data, right truncation) and SQL_SUCCESS_WITH_INFO when there is |
12445 more data to be returned. This is different from the case when a bookmark is truncated by a call |
12446 to SQLFetch() or SQLFetchScroll(), which returns SQL_ERROR and SQLSTATE 22001 (String |
12447 data, right truncation).

12448 SQLGetData() cannot be used to return fixed-length data in parts. If SQLGetData() is called more |
12449 than once for a column containing fixed-length data, it returns SQL_NO_DATAfor all calls after
12450 the first. |

12451 Retrieving Data with SQLGetData |

12452 To return data for the specified column, SQLGetData() performs the following sequence of steps: |

12453 1. Returns SQL_NO_DATAif it has already returned all of the data for the column.

12454 2. Sets *StrLen_or_IndPtr to SQL_NULL_DATAif the data is NULL. If the data is NULL and
12455 StrLen_or_IndPtr was a null pointer, SQLGetData() returns SQLSTATE 22002 (Indicator
12456 variable required but not supplied).

12457 If the data for the column is not NULL, SQLGetData() proceeds to step 3.

12458 3. If the SQL_ATTR_MAX_LENGTH statement attribute is set to a nonzero value, the
12459 column contains character or binary data, and SQLGetData() has not previously been
12460 called for the column, the data is truncated to SQL_ATTR_MAX_LENGTH octets. (The |
12461 SQL_ATTR_MAX_LENGTH statement attribute is intended to reduce network traffic. It is
12462 generally implemented by the data source, which truncates the data before returning it
12463 across the network. Implementations are not required to support it. Therefore, to
12464 guarantee that data is truncated to a particular size, an application should allocate a buffer
12465 of that size and specify the size in the BufferLength argument.)

12466 4. Converts the data to the type specified in TargetType. The data is given the default |
12467 precision and scale for that data type. If TargetType is SQL_ARD_TYPE, the data type in |
12468 the SQL_DESC_CONCISE_TYPE field of the ARD is used. If TargetType is either |
12469 SQL_ARD_TYPE or SQL_C_DEFAULT, the data is given the precision and scale in the |
12470 SQL_DESC_DATETIME_INTERVAL_PRECISION, SQL_DESC_PRECISION, and |
12471 SQL_DESC_SCALE fields of the ARD, depending on the data type in the |
12472 SQL_DESC_CONCISE_TYPE field.

12473 5. If the data was converted to a variable-length data type, such as character or binary,
12474 SQLGetData() checks whether the length of the data exceeds BufferLength. If the length of |
12475 character data (including the null terminator) exceeds BufferLength, SQLGetData()
12476 truncates the data to BufferLength less the length of a null terminator. It then null- |
12477 terminates the data. If the length of binary data exceeds the length of the data buffer,
12478 SQLGetData() truncates it to BufferLength octets. |

12479 SQLGetData() never truncates data converted to fixed-length data types; it always assumes
12480 that the length of *TargetValuePtr is the size of the data type.

12481 6. Places the converted (and possibly truncated) data in *TargetValuePtr.

12482 7. Places the length of the data in *StrLen_or_IndPtr. If StrLen_or_IndPtr was a null pointer,
12483 SQLGetData() does not return the length.

12484 — For character or binary data, this is the length of the data after conversion and before
12485 truncation due to BufferLength. If the implementation cannot determine the length of |
12486 the data after conversion, as is sometimes the case with long data, it returns
12487 SQL_SUCCESS_WITH_INFO and sets the length to SQL_NO_TOTAL. (The last call to |
12488 SQLGetData() must always return the length of the data, not SQL_NO_TOTAL.) If data

350 Direct Review (Build ID 96KAV) (Draft XDBC.33, August 1996)

Reference Manual Pages ISO 92 SQLGetData()

12489 was truncated due to the SQL_ATTR_MAX_LENGTH statement attribute, the value of
12490 this attribute-as opposed to the actual length-is placed in *StrLen_or_IndPtr. This is
12491 because this attribute is designed to truncate data on the server before conversion, so
12492 the implementation cannot determine the actual length. When SQLGetData() is called
12493 multiple times in succession for the same column, this is the length of the data available
12494 at the start of the current call; that is, the length decreases with each subsequent call.

12495 — For all other data types, this is the length of the data after conversion; that is, it is the
12496 size of the type to which the data was converted.

12497 8. If the data is truncated without loss of significance during conversion (for example, the
12498 real number 1.234 is truncated when converted to the integer 1) or because BufferLength is |
12499 too small (for example, the string ’abcdef’ is placed in a 4-octet buffer), SQLGetData()
12500 returns SQLSTATE 01004 (Data truncated) and SQL_SUCCESS_WITH_INFO. If data is
12501 truncated without loss of significance due to the SQL_ATTR_MAX_LENGTH statement
12502 attribute, SQLGetData() returns SQL_SUCCESS and does not return SQLSTATE 01004
12503 (Data truncated).

12504 The contents of the bound data buffer (if SQLGetData() is called on a bound buffer) and the |
12505 length/indicator buffer are undefined if SQLGetData() does not return SQL_SUCCESS or |
12506 SQL_SUCCESS_WITH_INFO. |

12507 Descriptors and SQLGetData |

12508 SQLGetData() does not interact directly with any descriptor fields unless SQL_ARD_TYPE is
12509 specified, in which case it examines the descriptor record specified by ColumnNumber to
12510 determine attributes of the C buffer.

12511 SEE ALSO

12512 For information about See

12513 Assigning storage for a column in a result set SQLBindCol()
12514 Canceling statement processing SQLCancel()
12515 Executing an SQL statement SQLExecDirect()
12516 Executing a prepared SQL statement SQLExecute()
12517 Fetching a block of data or scrolling through a result set SQLFetchScroll()
12518 Fetching a single row of data or a block of data in a
12519 forward-only direction

SQLFetch()

12520 Sending parameter data at execution time SQLPutData()

12521 CHANGE HISTORY

12522 Version 2
12523 Revised generally. See Alignment with Popular Implementations on page 2.

Data Management: X/Open Database Connectivity (XDBC), Version 2 351

SQLGetDescField() ISO 92 Reference Manual Pages

12524 NAME
12525 SQLGetDescField — Return the current settings of a single field of a descriptor record.

12526 SYNOPSIS
12527 SQLRETURN SQLGetDescField(
12528 SQLHDESCDescriptorHandle ,
12529 SQLSMALLINT RecNumber,
12530 SQLSMALLINT FieldIdentifier ,
12531 SQLPOINTER ValuePtr ,
12532 SQLINTEGER BufferLength ,
12533 SQLINTEGER * StringLengthPtr);

12534 ARGUMENTS

12535 DescriptorHandle [Input] |
12536 Descriptor handle. |

12537 RecNumber [Input]
12538 Indicates the descriptor record from which the application seeks information. Descriptor
12539 records are numbered from 0, with record number 0 being the bookmark record. If
12540 FieldIdentifier indicates a field of the descriptor header record, RecNumber must be 0. If
12541 RecNumber is less than SQL_DESC_COUNT, but the row does not contain data for a column
12542 or parameter, a call to SQLGetDescField() returns the default values of the fields (for more
12543 information, see Initialization of Descriptor Fields on page 467). |

12544 FieldIdentifier [Input]
12545 Indicates the field of the descriptor whose value is to be returned. For a list of valid values,
12546 see SQLSetDescField(). |

12547 ValuePtr [Output]
12548 Pointer to a buffer in which to return the descriptor information. The data type depends on
12549 the value of FieldIdentifier . |

12550 BufferLength [Input] |
12551 If ValuePtr points to data of variable length, this argument should be the length of *ValuePtr. |
12552 If what is contained in ValuePtr is itself a pointer, but not to data of variable length, then |
12553 BufferLength should have the value SQL_IS_POINTER. If what is contained in ValuePtr is |
12554 actual data of fixed length, then BufferLength should have the value |
12555 SQL_IS_NOT_POINTER. |

12556 StringLengthPtr [Output] |
12557 Pointer to the total number of octets (excluding the number of octets required for the null |
12558 terminator) available to return in *ValuePtr. |

12559 RETURN VALUE |
12560 SQL_SUCCESS, SQL_SUCCESS_WITH_INFO, SQL_ERROR, SQL_NO_DATA, or |
12561 SQL_INVALID_HANDLE. |

12562 SQL_NO_DATAis returned if RecNumber is greater than the number of descriptor records. |

12563 DIAGNOSTICS |
12564 When SQLGetDescField() returns SQL_ERROR or SQL_SUCCESS_WITH_INFO, an associated |
12565 SQLSTATE value can be obtained by calling SQLGetDiagRec() with a HandleType of |
12566 SQL_HANDLE_STMT and a Handle of StatementHandle. The following table lists the SQLSTATE |
12567 values commonly returned by SQLGetDescField(). The return code associated with each |
12568 SQLSTATEvalue is SQL_ERROR, except that for SQLSTATEvalues in class 01, the return code is |
12569 SQL_SUCCESS_WITH_INFO. |

352 Direct Review (Build ID 96KAV) (Draft XDBC.33, August 1996)

Reference Manual Pages ISO 92 SQLGetDescField()

12570 01000 — General warning |
12571 Implementation-defined informational message. |

12572 01004 — String data, right truncation |
12573 The buffer *ValuePtr was not large enough to return the entire descriptor field, so the field |
12574 was truncated. The length of the untruncated descriptor field is returned in *StringLengthPtr. |

12575 07009 — Invalid descriptor index |
12576 RecNumber was equal to 0, the SQL_ATTR_USE_BOOKMARK statement attribute was |
12577 SQL_UB_OFF, and DescriptorHandle was an IRD handle. (This error can be returned for an |
12578 automatically-allocated descriptor only if the descriptor is associated with a statement |
12579 handle.) |

12580 FieldIdentifier was a record field, RecNumber was 0, and DescriptorHandle was an IPD handle. |

12581 RecNumber was less than 0. |

12582 08S01 — Communication link failure |
12583 The communication link to the data source failed before the function completed processing. |

12584 24000 — Invalid cursor state |
12585 There was no open cursor, and DescriptorHandle was an IRD handle. |

12586 HY000 — General error |
12587 An error occurred for which there was no specific SQLSTATE and for which no |
12588 implementation-specific SQLSTATE was defined. The error message returned by |
12589 SQLGetDiagRec() in the *MessageTextbuffer describes the error and its cause. |

12590 HY001 — Memory allocation error |
12591 The implementation failed to allocate memory required to support execution or completion |
12592 of the function. |

12593 HY007 — Associated statement is not prepared |
12594 DescriptorHandle was associated with an IRD, and the associated statement handle was not |
12595 in the prepared or executed state. |

12596 HY010 — Function sequence error |
12597 DescriptorHandle was associated with a statement handle for which an asynchronously |
12598 executing function (not this one) was called and was still executing when this function was |
12599 called. |

12600 DescriptorHandle was associated with a statement handle for which SQLBulkOperations(), |
12601 SQLExecDirect(), SQLExecute(), or SQLSetPos() was called and returned SQL_NEED_DATA.
12602 This function was called before data was sent for all data-at-execution parameters or
12603 columns.

12604 A previous call to the same function returned SQL_STILL_EXECUTING and the present call
12605 specified a different value of DescriptorHandle , but one that pertains to the same statement
12606 handle.

12607 HY091 — Invalid descriptor field identifier
12608 FieldIdentifier was not an XDBC-defined field nor an implementation-defined value.

12609 FieldIdentifier was undefined for DescriptorHandle .

12610 RecNumber was greater than the value in the SQL_DESC_COUNT field.

12611 HYT01 — Connection timeout expired
12612 The connection timeout period expired before the data source responded to the request. The
12613 connection timeout period is set through SQLSetConnectAttr(),
12614 SQL_ATTR_CONNECTION_TIMEOUT.

Data Management: X/Open Database Connectivity (XDBC), Version 2 353

SQLGetDescField() ISO 92 Reference Manual Pages

12615 IM001 — Function not supported
12616 The function is not supported on the current connection to the data source.

12617 When the application calls SQLGetDescField() for an IRD, after SQLPrepare() and before
12618 SQLExecute(), it can return any SQLSTATEthat can be returned by SQLPrepare() or SQLExecute(),
12619 depending on when the data source evaluates the SQL statement associated with
12620 StatementHandle (see Performance Note).

12621 COMMENTS
12622 An application can call SQLGetDescField() to return the value of a single field of a descriptor
12623 record. A call to SQLGetDescField() can return the setting of any field in any descriptor type,
12624 including header fields, record fields, and bookmark fields. An application can obtain the
12625 settings of multiple fields in the same or different descriptors, in arbitrary order, by making
12626 repeated calls to SQLGetDescField(). SQLGetDescField() can also be called to return
12627 implementation-defined descriptor fields.

12628 The settings of multiple fields that describe the name, data type, and storage of column or
12629 parameter data can also be retrieved in a single call to SQLGetDescRec().

12630 SQLGetStmtAttr() can be called to return the setting of a single field in the descriptor header that
12631 is also a statement attribute.

12632 When an application calls SQLGetDescField() to retrieve the value of a field that is undefined for
12633 a particular descriptor type, the function returns SQLSTATE HY091 (Invalid descriptor field
12634 identifier). When an application calls SQLGetDescField() to retrieve the value of a field that is
12635 defined for a particular descriptor type, but has no default value and has not been set yet, the
12636 function returns SQL_SUCCESS but the value returned for the field is undefined. For more
12637 information, see Initialization of Descriptor Fields on page 467. |

12638 The SQL_DESC_ALLOC_TYPE header field is available as read-only. This field is defined for all
12639 types of descriptors.

12640 The following record fields are available as read-only. Each of these fields is defined either for
12641 the IRD only, or for both the IRD and the IPD.

12642 SQL_DESC_AUTO_UNIQUE_VALUE SQL_DESC_LITERAL_SUFFIX
12643 SQL_DESC_BASE_COLUMN_NAME SQL_DESC_LOCAL_TYPE_NAME
12644 SQL_DESC_CASE_SENSITIVE SQL_DESC_SCHEMA_NAME
12645 SQL_DESC_CATALOG_NAME SQL_DESC_SEARCHABLE
12646 SQL_DESC_DISPLAY_SIZE SQL_DESC_TABLE_NAME
12647 SQL_DESC_FIXED_PREC_SCALE SQL_DESC_TYPE_NAME
12648 SQL_DESC_LABEL SQL_DESC_UNSIGNED
12649 SQL_DESC_LITERAL_PREFIX SQL_DESC_UPDATABLE

12650 For a description of these fields, and fields that can be set in a descriptor header or record, see |
12651 the SQLSetDescField() section. For more information on descriptors, see Chapter 13.

12652 Calling SQLGetDescField() for an IRD between the preparation and the execution of an SQL
12653 statement has performance implications; see Performance Note on page 279.

12654 SEE ALSO

12655 For information about See

12656 Getting multiple descriptor fields SQLGetDescRec()

354 Direct Review (Build ID 96KAV) (Draft XDBC.33, August 1996)

Reference Manual Pages ISO 92 SQLGetDescField()

12657 Setting a single descriptor field SQLSetDescField()
12658 Setting multiple descriptor fields SQLSetDescRec()

12659 CHANGE HISTORY

12660 Version 2
12661 Revised generally. See Alignment with Popular Implementations on page 2. Also see the list in
12662 Descriptor Fields Added in Version 2 on page 483.

Data Management: X/Open Database Connectivity (XDBC), Version 2 355

SQLGetDescRec() ISO 92 Reference Manual Pages

12663 NAME
12664 SQLGetDescRec — Return the current settings of multiple fields of a descriptor record.

12665 SYNOPSIS
12666 SQLRETURN SQLGetDescRec(
12667 SQLHDESCDescriptorHandle ,
12668 SQLSMALLINT RecNumber,
12669 SQLCHAR * Name,
12670 SQLSMALLINT BufferLength ,
12671 SQLSMALLINT * StringLengthPtr ,
12672 SQLSMALLINT * TypePtr ,
12673 SQLSMALLINT * SubTypePtr ,
12674 SQLINTEGER * LengthPtr ,
12675 SQLSMALLINT * PrecisionPtr ,
12676 SQLSMALLINT * ScalePtr ,
12677 SQLSMALLINT * NullablePtr);

12678 ARGUMENTS

12679 DescriptorHandle [Input] |
12680 Descriptor handle. |

12681 RecNumber [Input]
12682 Indicates the descriptor record from which the application seeks information. Descriptor
12683 records are numbered from 0, with record number 0 being the bookmark record. RecNumber
12684 must be less than or equal to the value of SQL_DESC_COUNT. If RecNumber is less than
12685 SQL_DESC_COUNT, but the row does not contain data for a column or parameter,
12686 SQLGetDescRec() returns the default values of the fields (for more information, see |
12687 Initialization of Descriptor Fields on page 467). |

12688 Name [Output]
12689 A pointer to a buffer in which to return the SQL_DESC_NAME field for the descriptor
12690 record. |

12691 BufferLength [Input] |
12692 Length of the *Name buffer, in octets. |

12693 StringLengthPtr [Output] |
12694 A pointer to a buffer in which to return the number of octets of data available to return in |
12695 the *Name buffer, excluding the null terminator. If the number of octets was greater than or |
12696 equal to BufferLength, the data in *Name is truncated to BufferLength minus the length of a |
12697 null terminator, and is null-terminated. |

12698 TypePtr [Output]
12699 A pointer to a buffer in which to return the value of the SQL_DESC_TYPE field for the
12700 descriptor record. |

12701 SubTypePtr[Output]
12702 For records whose type is SQL_DATETIME or SQL_INTERVAL, this is a pointer to a buffer
12703 in which to return the value of the SQL_DESC_DATETIME_INTERVAL_CODEfield. |

12704 LengthPtr [Output]
12705 A pointer to a buffer in which to return the value of the SQL_DESC_OCTET_LENGTH field
12706 for the descriptor record. |

12707 PrecisionPtr [Output]
12708 A pointer to a buffer in which to return the value of the SQL_DESC_PRECISION field for
12709 the descriptor record. |

356 Direct Review (Build ID 96KAV) (Draft XDBC.33, August 1996)

Reference Manual Pages ISO 92 SQLGetDescRec()

12710 ScalePtr [Output]
12711 A pointer to a buffer in which to return the value of the SQL_DESC_SCALE field for the
12712 descriptor record. |

12713 NullablePtr [Output]
12714 A pointer to a buffer in which to return the value of the SQL_DESC_NULLABLE field for
12715 the descriptor record. |

12716 RETURN VALUE |
12717 SQL_SUCCESS, SQL_SUCCESS_WITH_INFO, SQL_ERROR, SQL_NO_DATA, or |
12718 SQL_INVALID_HANDLE. |

12719 SQL_NO_DATAis returned if RecNumber is greater than the number of descriptor records.

12720 DIAGNOSTICS
12721 When SQLGetDescRec() returns SQL_ERROR or SQL_SUCCESS_WITH_INFO, an associated |
12722 SQLSTATE value can be obtained by calling SQLGetDiagRec() with a HandleType of
12723 SQL_HANDLE_DESC and a Handle of DescriptorHandle . The following SQLSTATE values are |
12724 commonly returned by SQLGetDescRec(). The return code associated with each SQLSTATE |
12725 value is SQL_ERROR, except that for SQLSTATE values in class 01, the return code is |
12726 SQL_SUCCESS_WITH_INFO.

12727 01000 — General warning |
12728 Implementation-defined informational message. |

12729 01004 — String data, right truncation
12730 The buffer *Name was not large enough to return the entire descriptor field, so the field was |
12731 truncated. The length of the untruncated descriptor field is returned in *StringLengthPtr. |

12732 07009 — Invalid descriptor index |
12733 FieldIdentifier was a record field, RecNumber was 0 and DescriptorHandle argument was an
12734 IPD handle.

12735 RecNumber was 0, the SQL_ATTR_USE_BOOKMARKS statement attribute was |
12736 SQL_UB_OFF, and DescriptorHandle was an IRD handle. (This error can be returned for an |
12737 automatically-allocated descriptor only if the descriptor is associated with a statement |
12738 handle.) |

12739 RecNumber was less than 0.

12740 08S01 — Communication link failure |
12741 The communication link to the data source failed before the function completed processing. |

12742 24000 — Invalid cursor state |
12743 There was no open cursor, and DescriptorHandle was an IRD handle. |

12744 HY000 — General error |
12745 An error occurred for which there was no specific SQLSTATE and for which no
12746 implementation-specific SQLSTATE was defined. The error message returned by
12747 SQLGetDiagRec() in the *MessageTextbuffer describes the error and its cause. |

12748 HY001 — Memory allocation error
12749 The implementation failed to allocate the memory required to support execution or
12750 completion of the function.

12751 HY007 — Associated statement is not prepared
12752 DescriptorHandle was associated with an IRD, and the associated statement handle was not
12753 in the prepared or executed state.

12754 HY010 — Function sequence error
12755 DescriptorHandle was associated with a statement handle for which an asynchronously |

Data Management: X/Open Database Connectivity (XDBC), Version 2 357

SQLGetDescRec() ISO 92 Reference Manual Pages

12756 executing function (not this one) was called and was still executing when this function was |
12757 called. |

12758 DescriptorHandle was associated with a statement handle for which SQLBulkOperations(), |
12759 SQLExecDirect(), SQLExecute(), or SQLSetPos() was called and returned SQL_NEED_DATA.
12760 This function was called before data was sent for all data-at-execution parameters or
12761 columns.

12762 A previous call to the same function returned SQL_STILL_EXECUTING and the present call
12763 specified a different value of DescriptorHandle , but one that pertains to the same statement
12764 handle.

12765 HY091 — Invalid descriptor field identifier
12766 A field to be retrieved was not defined for DescriptorHandle .

12767 RecNumber was greater than the value in the SQL_DESC_COUNT field.

12768 HYT01 — Connection timeout expired
12769 The connection timeout period expired before the data source responded to the request. The
12770 connection timeout period is set through SQLSetConnectAttr(),
12771 SQL_ATTR_CONNECTION_TIMEOUT.

12772 IM001 — Function not supported
12773 The function is not supported on the current connection to the data source.

12774 COMMENTS
12775 An application can call SQLGetDescRec() to retrieve the values of the following fields for a single
12776 column or parameter:

12777 • SQL_DESC_NAME
12778 • SQL_DESC_TYPE
12779 • SQL_DESC_DATETIME_INTERVAL_CODE(for date/time or interval records) |
12780 • SQL_DESC_OCTET_LENGTH
12781 • SQL_DESC_PRECISION
12782 • SQL_DESC_SCALE
12783 • SQL_DESC_NULLABLE

12784 SQLGetDescRec() does not retrieve header fields. |

12785 An application can inhibit the return of a field’s setting by setting the argument corresponding
12786 to the field to a null pointer.

12787 When an application calls SQLGetDescRec() to retrieve the value of a field that is undefined for a
12788 particular descriptor type, the function returns SQLSTATE HY091 (Invalid descriptor field
12789 identifier). When an application calls SQLGetDescRec() to retrieve the value of a field that is
12790 defined for a particular descriptor type, but has no default value and has not been set yet, the
12791 function returns SQL_SUCCESS but the value returned for the field is undefined. For more
12792 information, see Initialization of Descriptor Fields on page 467. |

12793 The values of all fields can be retrieved individually by a call to SQLGetDescField(). For a
12794 description of the fields in a descriptor header or record, see the SQLSetDescField() section. For
12795 more information on descriptors, see Chapter 13.

12796 SEE ALSO

12797 For information about See

358 Direct Review (Build ID 96KAV) (Draft XDBC.33, August 1996)

Reference Manual Pages ISO 92 SQLGetDescRec()

12798 Setting multiple descriptor fields SQLSetDescRec()
12799 Getting a descriptor field SQLGetDescField() •
12800 Binding a column SQLBindCol()
12801 Binding a parameter SQLBindParam()

12802 CHANGE HISTORY

12803 Version 2
12804 Revised generally. See Alignment with Popular Implementations on page 2. Also see the list in
12805 Descriptor Fields Added in Version 2 on page 483.

Data Management: X/Open Database Connectivity (XDBC), Version 2 359

SQLGetDiagField() ISO 92 Reference Manual Pages

12806 NAME
12807 SQLGetDiagField — Return the current value of a field of a diagnostic data structure that
12808 contains error, warning, and status information.

12809 SYNOPSIS
12810 SQLRETURN SQLGetDiagField(
12811 SQLSMALLINT HandleType ,
12812 SQLHANDLEHandle ,
12813 SQLSMALLINT RecNumber,
12814 SQLSMALLINT DiagIdentifier ,
12815 SQLPOINTER DiagInfoPtr ,
12816 SQLSMALLINT BufferLength ,
12817 SQLSMALLINT * StringLengthPtr);

12818 ARGUMENTS

12819 HandleType [Input] |
12820 A handle type identifier that describes the type of handle for which diagnostics are required. |
12821 Must be one of the following: |

12822 SQL_HANDLE_ENV ||
12823 SQL_HANDLE_DBC ||
12824 SQL_HANDLE_STMT ||
12825 SQL_HANDLE_DESC ||

12826 Handle [Input] |
12827 A handle for the diagnostic data structure, of the type indicated by HandleType. |

12828 RecNumber [Input]
12829 Indicates the status record from which the application seeks information. Status records are
12830 numbered from 1. If DiagIdentifier indicates any field of the diagnostics header record,
12831 RecNumber must be 0. If not, it should be greater than 0. |

12832 DiagIdentifier [Input]
12833 Indicates the field of the diagnostic data structure whose value is to be returned. For more
12834 information, see DiagIdentifier Argument on page 360. |

12835 DiagInfoPtr [Output]
12836 Pointer to a buffer in which to return the diagnostic information. The data type depends on
12837 the value of DiagIdentifier . |

12838 BufferLength [Input] |
12839 If ValuePtr points to data of variable length, this argument should be the length of *ValuePtr. |
12840 If what is contained in ValuePtr is itself a pointer, but not to data of variable length, then |
12841 BufferLength should have the value SQL_IS_POINTER. If what is contained in ValuePtr is |
12842 actual data of fixed length, then BufferLength should have the value |
12843 SQL_IS_NOT_POINTER. |

12844 StringLengthPtr [Output] |
12845 Pointer to a buffer in which to return the total number of octets (excluding the number of |
12846 octets required for the null terminator) available to return in *DiagInfoPtr, for character data. |
12847 If the number of octets available to return is greater than BufferLength, then the text in
12848 *DiagInfoPtr is truncated to BufferLength minus the length of a null terminator. |

12849 RETURN VALUE
12850 SQL_SUCCESS, SQL_SUCCESS_WITH_INFO, SQL_ERROR, SQL_INVALID_HANDLE, or
12851 SQL_NO_DATA.

360 Direct Review (Build ID 96KAV) (Draft XDBC.33, August 1996)

Reference Manual Pages ISO 92 SQLGetDiagField()

12852 DIAGNOSTICS
12853 SQLGetDiagField() does not post status records for itself. It uses the following return values to |
12854 report the outcome of its own execution:

12855 SQL_SUCCESS
12856 The function successfully returned diagnostic information.

12857 SQL_SUCCESS_WITH_INFO
12858 *DiagInfoPtr was too small to hold the requested diagnostic field. To determine that a |
12859 truncation occurred, the application compares BufferLength to the actual number of octets |
12860 available, which is written to *StringLengthPtr.

12861 SQL_INVALID_HANDLE
12862 The handle indicated by HandleTypeand Handle was not a valid handle.

12863 SQL_ERROR
12864 One of the following occurred:

12865 • DiagIdentifier was not one of the valid values.

12866 • DiagIdentifier was SQL_DIAG_CURSOR_ROW_COUNT or SQL_DIAG_ROW_COUNT, |
12867 but Handle was not a statement handle. |

12868 • RecNumber was negative or 0 when DiagIdentifier indicated a field from a diagnostic
12869 record; or RecNumber was nonzero when DiagIdentifier indicated header information.

12870 • The value requested was a character string and BufferLength was less than zero.

12871 SQL_NO_DATA
12872 RecNumber was greater than the number of diagnostic records that existed for Handle . The
12873 function also returns SQL_NO_DATA for any positive RecNumber if there are no diagnostic
12874 records for Handle .

12875 COMMENTS
12876 An application typically calls SQLGetDiagField() to accomplish one of three goals:

12877 • To obtain specific error or warning information when a function call has returned
12878 SQL_ERROR or SQL_SUCCESS_WITH_INFO.

12879 • To find out the number of rows in the data source that were affected when insert, delete, or
12880 update operations were performed with a call to SQLBulkOperations(), SQLExecDirect(), |
12881 SQLExecute(), or SQLSetPos() (from the SQL_DIAG_ROW_COUNT header field), or to find
12882 out the number of rows that exist in the current open cursor, if the implementation is able to
12883 provide this information (from the SQL_DIAG_CURSOR_ROW_COUNT header field).

12884 • To determine which function was executed by a call to SQLExecDirect() or SQLExecute()
12885 (from the SQL_DIAG_DYNAMIC_FUNCTION and
12886 SQL_DIAG_DYNAMIC_FUNCTION_CODE header fields).

12887 Any XDBC function can post zero or more errors each time it is called, so an application can call
12888 SQLGetDiagField() after any XDBC function call. SQLGetDiagField() retrieves only the diagnostic
12889 information most recently associated with the diagnostic data structure specified in the Handle
12890 argument. If the application calls another XDBC function, any diagnostic information from a
12891 previous call with the same handle is lost.

12892 An application can scan all diagnostic records by incrementing RecNumber, as long as
12893 SQLGetDiagField() returns SQL_SUCCESS. The number of status records is indicated in the
12894 SQL_DIAG_NUMBER header field. No call to SQLGetDiagField() modifies the diagnostics area.
12895 The application can call SQLGetDiagField() again at a later time to retrieve a field from a record, |
12896 as long as a function other than SQLGetDiagField() or SQLGetDiagRec(), has not been called in
12897 the interim, which would post records on the same handle.

Data Management: X/Open Database Connectivity (XDBC), Version 2 361

SQLGetDiagField() ISO 92 Reference Manual Pages

12898 An application can call SQLGetDiagField() to return any diagnostic field at any time, except that |
12899 a call to retrieve the SQL_DIAG_CURSOR_ROW_COUNT or SQL_DIAG_ROW_COUNT fields |
12900 of a handle other than a statement handle returns SQL_ERROR. If any other diagnostic field is |
12901 undefined, the call to SQLGetDiagField() returns SQL_SUCCESS (provided no other error is
12902 encountered), and an undefined value is returned for the field. |

12903 HandleTypeArgument |

12904 Each handle type can have diagnostic information associated with it. The HandleType argument
12905 denotes the handle type of Handle .

12906 Some header and record fields cannot be returned for all types of handles: environment,
12907 connection, statement, and descriptor. Those handles for which a field is not applicable are |
12908 indicated in the lists in Header Fields and Record Fields below.

12909 DiagIdentifier Argument

12910 This argument indicates the identifier of the field required from the diagnostic data structure. If |
12911 RecNumber is greater than or equal to 1, the data in the field describes the diagnostic information
12912 returned by a function. If RecNumber is 0, the field is in the header of the diagnostic data |
12913 structure, and therefore contains data pertaining to the function call that returned the diagnostic |
12914 information, not the specific information. |

12915 Additional implementation-defined fields may exist in the diagnostic data structure.

12916 Header Fields

12917 The following header fields can be specified as DiagIdentifier . The only diagnostic header fields |
12918 that are defined for a descriptor handle are SQL_DIAG_NUMBER and |
12919 SQL_DIAG_RETURNCODE. |

12920 No implementation-specific header diagnostic field should be associated with an environment |
12921 handle.

12922 SQL_DIAG_CURSOR_ROW_COUNT (Return type: SQLINTEGER) |
12923 This field contains the count of rows in the cursor. It is implementation-defined whether |
12924 row counts are available for various cursor types; the application can determine the level of |
12925 support as described in Detecting Cursor Capabilities with SQLGetInfo() on page 402. |
12926 The contents of this field are defined only for statement handles and only after |
12927 SQLExecDirect(), SQLExecute(), or SQLMoreResults() has been called. A call to |
12928 SQLGetDiagField() to obtain this information for a handle other than a statement handle |
12929 returns SQL_ERROR.

12930 SQL_DIAG_DYNAMIC_FUNCTION (Return type: CHAR *)
12931 For statement handles, this is a string that describes the SQL statement that the underlying |
12932 function executed (see Values of the Dynamic Function Fields on page 362). The contents |
12933 of this field are defined only after a call to SQLExecDirect(), SQLExecute(), or |
12934 SQLMoreResults(). For handles other than statement handles, this is an empty string. |

12935 SQL_DIAG_DYNAMIC_FUNCTION_CODE (Return type: SQLINTEGER) |
12936 For statement handles, this is a numeric code that describes the SQL statement that was |
12937 executed by the underlying function (see Values of the Dynamic Function Fields on page |
12938 362). The contents of this field are defined only after a call to SQLExecDirect(), |
12939 SQLExecute(), or SQLMoreResults(). For handles other than statement handles, the value is |
12940 SQL_DIAG_UNKNOWN_STATEMENT. |

12941 SQL_DIAG_NUMBER (Return type: SQLINTEGER)
12942 The number of status records that are available for the specified handle. |

362 Direct Review (Build ID 96KAV) (Draft XDBC.33, August 1996)

Reference Manual Pages ISO 92 SQLGetDiagField()

12943 SQL_DIAG_RETURNCODE (Return type: SQLRETURN)
12944 Return code returned by the function. See Chapter 15 for a list of return codes. If no
12945 function has yet been called on Handle , SQL_SUCCESS is returned for
12946 SQL_DIAG_RETURNCODE. |

12947 SQL_DIAG_ROW_COUNT (Return type: SQLINTEGER)
12948 For statement handles, the number of rows affected by an insert, delete, or update |
12949 performed by SQLBulkOperations(), SQLExecDirect(), SQLExecute(), or SQLSetPos(). Its |
12950 value is undefined after a cursor specification has been executed. The contents of this field |
12951 are defined only for statement handles. The data in this field is returned in RowCountPtr of
12952 SQLRowCount(). A call to SQLGetDiagField() to obtain this information for a handle other |
12953 than a statement handle returns SQL_ERROR. |

12954 The data in this field is reset after every function call, whereas the row count returned by
12955 SQLRowCount() remains the same until the statement is set back to the prepared or
12956 allocated state.

12957 Record Fields

12958 The following record fields can be specified as DiagIdentifier :

12959 SQL_DIAG_CLASS_ORIGIN (Return type: CHAR *)
12960 A string that indicates the document that defines the class and subclass portion of the
12961 SQLSTATEvalue in this record. Its value is ’ISO 9075’ for all SQLSTATEsdefined by the ISO
12962 CLI International Standard. For other SQLSTATEs defined in this specification, its value is
12963 ’XDBC’. |

12964 SQL_DIAG_COLUMN_NUMBER (Return type: SQLINTEGER)
12965 If the SQL_DIAG_ROW_NUMBER field is a valid row or parameter number, then this field |
12966 contains the value that represents the column number in the result set. Result set column |
12967 numbers always start at 1; if this status record pertains to a bookmark column, then the field |
12968 can be zero. It has the value SQL_NO_COLUMN_NUMBER if the status record is not |
12969 associated with a column number. If the implementation cannot determine the column |
12970 number that this record is associated with, this field has the value |
12971 SQL_COLUMN_NUMBER_UNKNOWN. The contents of this field are defined only for |
12972 statement handles.

12973 SQL_DIAG_CONNECTION_NAME (Return type: CHAR *)
12974 A string that indicates the name of the connection that the diagnostic record relates to. For |
12975 diagnostic data structures associated with the environment handle and for diagnostics that |
12976 do not relate to any server, this field is a zero-length string.

12977 SQL_DIAG_MESSAGE_TEXT (Return type: CHAR *)
12978 An informational message on the error or warning. This field is formatted as described in
12979 Chapter 15. |

12980 SQL_DIAG_NATIVE (Return type: SQLINTEGER)
12981 An implementation-defined native error code. If there is no native error code, this is 0. |

12982 SQL_DIAG_ROW_NUMBER (Return type: SQLINTEGER)
12983 This field contains the row or parameter number in the row-set or set of parameters with |
12984 which the status record is associated. This field has the value SQL_NO_ROW_NUMBER if
12985 this status record is not associated with a row number. If the associated row cannot be |
12986 determined, this field has the value SQL_ROW_NUMBER_UNKNOWN. |

12987 The contents of this field are defined only for statement handles.

12988 SQL_DIAG_SERVER_NAME (Return type: CHAR *)
12989 A string that indicates the server name that the diagnostic record relates to. It is the same as

Data Management: X/Open Database Connectivity (XDBC), Version 2 363

SQLGetDiagField() ISO 92 Reference Manual Pages

12990 the value returned for a call to SQLGetInfo() with the SQL_DATA_SOURCE_NAMEoption. |
12991 For diagnostic data structures associated with the environment handle and for diagnostics
12992 that do not relate to any server, this field is a zero-length string.

12993 SQL_DIAG_SQLSTATE(Return type: CHAR *)
12994 A five-character SQLSTATEdiagnostic code.

12995 SQL_DIAG_SUBCLASS_ORIGIN (Return type: CHAR *)
12996 A string with the same format and valid values as SQL_DIAG_CLASS_ORIGIN, that
12997 identifies the defining portion of the subclass portion of the SQLSTATEcode.

12998 Values of the Dynamic Function Fields

12999 The following table describes the values of SQL_DIAG_DYNAMIC_FUNCTION and |
13000 SQL_DIAG_DYNAMIC_FUNCTION_CODE that apply to each type of SQL statement executed
13001 by a call to SQLExecute() or SQLExecDirect(). Implementation-defined values may also exist.

13002 SQL statement Value of SQL_DIAG_ Value of SQL_DIAG_DYNAMIC_ |
13003 Executed DYNAMIC_FUNCTION FUNCTION_CODE
13004 alter-domain-statement "ALTER DOMAIN" SQL_DIAG_ALTER_DOMAIN |
13005 alter-table-statement "ALTER TABLE" SQL_DIAG_ALTER_TABLE
13006 assertion-definition "CREATE ASSERTION" SQL_DIAG_CREATE_ASSERTION |
13007 character-set-definition "CREATE CHARACTER SET" SQL_DIAG_CREATE_CHARACTER_SET |
13008 collation-definition "CREATE COLLATION" SQL_DIAG_CREATE_COLLATION |
13009 create-index-statement "CREATE INDEX" SQL_DIAG_CREATE_INDEX
13010 create-table-statement "CREATE TABLE" SQL_DIAG_CREATE_TABLE
13011 create-view-statement "CREATE VIEW" SQL_DIAG_CREATE_VIEW
13012 cursor-specification "SELECT CURSOR" SQL_DIAG_SELECT_CURSOR
13013 delete-statement-positioned "DYNAMIC DELETE CURSOR" SQL_DIAG_DYNAMIC_DELETE_CURSOR
13014 delete-statement-searched "DELETE WHERE" SQL_DIAG_DELETE_WHERE
13015 domain-definition "CREATE DOMAIN" SQL_DIAG_CREATE_DOMAIN |
13016 drop-assertion-statement "DROP ASSERTION" SQL_DIAG_DROP_ASSERTION |
13017 drop-character-set-stmt "DROP CHARACTER SET" SQL_DIAG_DROP_CHARACTER_SET |
13018 drop-collation-statement "DROP COLLATION" SQL_DIAG_DROP_COLLATION |
13019 drop-domain-statement "DROP DOMAIN" SQL_DIAG_DROP_DOMAIN |
13020 drop-index-statement "DROP INDEX" SQL_DIAG_DROP_INDEX
13021 drop-schema-statement "DROP SCHEMA" SQL_DIAG_DROP_SCHEMA |
13022 drop-table-statement "DROP TABLE" SQL_DIAG_DROP_TABLE
13023 drop-translation-statement "DROP TRANSLATION" SQL_DIAG_DROP_TRANSLATION |
13024 drop-view-statement "DROP VIEW" SQL_DIAG_DROP_VIEW
13025 grant-statement "GRANT" SQL_DIAG_GRANT
13026 insert-statement "INSERT" SQL_DIAG_INSERT
13027 XDBC-procedure-extension "CALL" SQL_DIAG_PROCEDURE_CALL |
13028 revoke-statement "REVOKE" SQL_DIAG_REVOKE
13029 schema-definition "CREATE SCHEMA" SQL_DIAG_CREATE_SCHEMA |
13030 translation-definition "CREATE TRANSLATION" SQL_DIAG_CREATE_TRANSLATION |
13031 update-statement-positioned "DYNAMIC UPDATE CURSOR"SQL_DIAG_DYNAMIC_UPDATE_CURSOR
13032 update-statement-searched "UPDATE WHERE" SQL_DIAG_UPDATE_WHERE
13033 Unknown empty string SQL_DIAG_UNKNOWN_STATEMENT

364 Direct Review (Build ID 96KAV) (Draft XDBC.33, August 1996)

Reference Manual Pages ISO 92 SQLGetDiagField()

13034 Sequence of Status Records |

13035 Within a row, records are ranked according to rules stated in Sequence of Status Records on |
13036 page 196. These rules provide that records are sorted according to the row number to which |
13037 they pertain. Within a row, errors outrank warnings and that standard diagnostics outrank |
13038 implementation-defined diagnostics.

13039 SEE ALSO

13040 For information about See

13041 Obtaining multiple fields of a diagnostic data structure SQLGetDiagRec()

13042 CHANGE HISTORY

13043 Version 2
13044 Revised generally. See Alignment with Popular Implementations on page 2.

Data Management: X/Open Database Connectivity (XDBC), Version 2 365

SQLGetDiagRec() ISO 92 Reference Manual Pages

13045 NAME
13046 SQLGetDiagRec — Return the current values of multiple fields of a diagnostic record.

13047 SYNOPSIS
13048 SQLRETURN SQLGetDiagRec(
13049 SQLSMALLINT HandleType ,
13050 SQLHANDLEHandle ,
13051 SQLSMALLINT RecNumber,
13052 SQLCHAR * Sqlstate ,
13053 SQLINTEGER * NativeErrorPtr ,
13054 SQLCHAR * MessageText ,
13055 SQLSMALLINT BufferLength ,
13056 SQLSMALLINT * TextLengthPtr);

13057 ARGUMENTS

13058 HandleType [Input] |
13059 A handle type identifier that describes the type of handle for which diagnostics are required. |
13060 Must be one of the following: |

13061 SQL_HANDLE_ENV ||
13062 SQL_HANDLE_DBC ||
13063 SQL_HANDLE_STMT ||
13064 SQL_HANDLE_DESC ||

13065 Handle [Input] |
13066 A handle for the diagnostic data structure, of the type indicated by HandleType. |

13067 RecNumber [Input]
13068 Indicates the status record from which the application seeks information. Status records are
13069 numbered from 1. |

13070 SQLState [Output]
13071 Pointer to a buffer in which to return a five-character SQLSTATE code pertaining to the
13072 diagnostic record RecNumber. The first two characters indicate the class; the next three
13073 indicate the subclass. |

13074 NativeErrorPtr [Output]
13075 Pointer to a buffer in which to return the native error code, specific to the data source. |

13076 MessageText[Output]
13077 Pointer to a buffer in which to return the error message text. The fields returned by
13078 SQLGetDiagRec() are contained in a text string. For the format of the string, see Section
13079 15.3.0 on page 198. |

13080 BufferLength [Input] |
13081 Length (in octets) of the *MessageTextbuffer. |

13082 TextLengthPtr [Output] |
13083 Pointer to a buffer in which to return the total number of octets (excluding the number of |
13084 octets required for the null terminator) available to return in *MessageText. If the number of |
13085 octets available to return is greater than BufferLength, then the error message text in |
13086 *MessageText is truncated to BufferLength minus the length of a null terminator. |

13087 RETURN VALUE |
13088 SQL_SUCCESS, SQL_SUCCESS_WITH_INFO, SQL_ERROR, or SQL_INVALID_HANDLE. |

13089 DIAGNOSTICS |
13090 SQLGetDiagRec() does not post status records for itself. It uses the following return values to |
13091 report the outcome of its own execution: |

366 Direct Review (Build ID 96KAV) (Draft XDBC.33, August 1996)

Reference Manual Pages ISO 92 SQLGetDiagRec()

13092 SQL_SUCCESS
13093 The function successfully returned diagnostic information.

13094 SQL_SUCCESS_WITH_INFO
13095 The *MessageText buffer was too small to hold the requested error message. No diagnostic |
13096 records were generated. To determine that a truncation occurred, the application compares
13097 BufferLength to the actual number of octets available, which is written to *StringLengthPtr. |

13098 SQL_INVALID_HANDLE
13099 The handle indicated by HandleTypeand Handle was not a valid handle.

13100 SQL_ERROR
13101 One of the following occurred:

13102 • RecNumber was negative or 0.

13103 • The value requested was a character string and BufferLength was less than zero.

13104 SQL_NO_DATA
13105 RecNumber was greater than the number of diagnostic records that existed for Handle . The
13106 function also returns SQL_NO_DATA for any positive RecNumber if there are no diagnostic
13107 records for Handle .

13108 COMMENTS
13109 Unlike SQLGetDiagField(), which returns one diagnostic field per call, SQLGetDiagRec() returns
13110 several commonly-used fields of a diagnostic record, including the SQLSTATE, the native error
13111 code, and the error message text.

13112 An application typically calls SQLGetDiagRec() when a previous call to an XDBC function has
13113 returned SQL_SUCCESS or SQL_SUCCESS_WITH_INFO. However, because any XDBC |
13114 function can post zero or more errors each time it is called, an application can call
13115 SQLGetDiagRec() after any XDBC function call. An application can call SQLGetDiagRec()
13116 multiple times to return some or all of the records in the diagnostic data structure.

13117 SQLGetDiagRec() returns a character string containing multiple fields of the diagnostic data
13118 structure record. The form of the error message string is described in Chapter 15.

13119 SQLGetDiagRec() cannot be used to return fields from the header of the diagnostic data structure
13120 (RecNumber must be greater than 0). The application should call SQLGetDiagField() for this
13121 purpose.

13122 SQLGetDiagRec() retrieves only the diagnostic information most recently associated with Handle .
13123 If the application calls another XDBC function, except SQLGetDiagRec() or SQLGetDiagField(),
13124 any diagnostic information from the previous calls on the same handle is lost.

13125 An application can scan all diagnostic records by looping, incrementing RecNumber, as long as
13126 SQLGetDiagRec() returns SQL_SUCCESS. Calls to SQLGetDiagRec() are non-destructive to the
13127 header and record fields. The application can call SQLGetDiagRec() again at a later time to
13128 retrieve a field from a record, as long as no other function, except SQLGetDiagRec() or
13129 SQLGetDiagField() has been called in the interim. The application can also retrieve a count of the
13130 total number of diagnostic records available by calling SQLGetDiagField() to retrieve the value of
13131 the SQL_DIAG_NUMBER field, then call SQLGetDiagRec() that many times.

13132 For a description of the fields of the diagnostic data structure, see SQLGetDiagField().

13133 HandleTypeArgument

13134 Each handle type can have diagnostic information associated with it. HandleType denotes the
13135 handle type of Handle .

Data Management: X/Open Database Connectivity (XDBC), Version 2 367

SQLGetDiagRec() ISO 92 Reference Manual Pages

13136 Some header and record fields cannot be returned for all types of handles: environment,
13137 connection, statement, and descriptor. Those handles for which a field is not applicable are
13138 indicated in the list of fields in SQLGetDiagField().

13139 Descriptor handles can also have diagnostic information associated with them. These diagnostic
13140 data structure contain information on errors or warnings that occur when a function is called
13141 with a descriptor handle.

13142 SEE ALSO

13143 For information about See

13144 Obtaining field of a diagnostic record or a field of the
13145 diagnostic header

SQLGetDiagField()

13146 CHANGE HISTORY

13147 Version 2
13148 Revised generally. See Alignment with Popular Implementations on page 2.

368 Direct Review (Build ID 96KAV) (Draft XDBC.33, August 1996)

Reference Manual Pages ISO 92 SQLGetEnvAttr()

13149 NAME
13150 SQLGetEnvAttr — Return the current setting of an environment attribute.

13151 SYNOPSIS
13152 SQLRETURN SQLGetEnvAttr(
13153 SQLHENVEnvironmentHandle ,
13154 SQLINTEGER Attribute ,
13155 SQLPOINTER ValuePtr ,
13156 SQLINTEGER BufferLength ,
13157 SQLINTEGER * StringLengthPtr);

13158 ARGUMENTS

13159 EnvironmentHandle [Input] |
13160 Environment handle. |

13161 Attribute [Input] |
13162 Attribute to retrieve. |

13163 ValuePtr [Output]
13164 Pointer to a buffer in which to return the current value of the attribute specified by Attribute. |

13165 BufferLength [Input] |
13166 If ValuePtr points to data of variable length, this argument should be the length of *ValuePtr. |

13167 StringLengthPtr [Output] |
13168 A pointer to a buffer in which to return the total number of octets (excluding the null |
13169 terminator) available to return in *ValuePtr. If ValuePtr is a null pointer, no length is |
13170 returned. If the attribute value is a character string, and the number of octets available to |
13171 return is greater than or equal to BufferLength, the data in *ValuePtr is truncated to |
13172 BufferLength minus the length of a null terminator and is null-terminated. |

13173 RETURN VALUE |
13174 SQL_SUCCESS, SQL_SUCCESS_WITH_INFO, SQL_NO_DATA, SQL_ERROR, or
13175 SQL_INVALID_HANDLE.

13176 DIAGNOSTICS
13177 When SQLGetEnvAttr() returns SQL_ERROR or SQL_SUCCESS_WITH_INFO, an associated |
13178 SQLSTATE value can be obtained by calling SQLGetDiagRec() with a HandleType of
13179 SQL_HANDLE_ENV and a Handle of EnvironmentHandle. The following SQLSTATE values are |
13180 commonly returned by SQLGetEnvAttr(). The return code associated with each SQLSTATE |
13181 value is SQL_ERROR, except that for SQLSTATE values in class 01, the return code is |
13182 SQL_SUCCESS_WITH_INFO.

13183 01000 — General warning
13184 Implementation-defined informational message. |

13185 01004 — String data, right truncation
13186 The data returned in *ValuePtr was truncated to be BufferLength minus the null terminator. |
13187 The length of the untruncated string value is returned in *StringLengthPtr.

13188 HY000 — General error
13189 An error occurred for which there was no specific SQLSTATE and for which no
13190 implementation-specific SQLSTATE was defined. The error message returned by
13191 SQLGetDiagRec() in the *MessageTextbuffer describes the error and its cause. |

13192 HY001 — Memory allocation error
13193 The implementation failed to allocate memory required to support execution or completion
13194 of the function.

Data Management: X/Open Database Connectivity (XDBC), Version 2 369

SQLGetEnvAttr() ISO 92 Reference Manual Pages

13195 HY092 — Invalid attribute identifier
13196 Attribute was not valid for this connection to this data source. |

13197 HYC00 — Optional feature not implemented
13198 Attribute was a valid environment attribute but the data source does not support it. |

13199 HYT01 — Connection timeout expired
13200 The connection timeout period expired before the data source responded to the request. The
13201 connection timeout period is set through SQLSetConnectAttr(),
13202 SQL_ATTR_CONNECTION_TIMEOUT.

13203 IM001 — Function not supported
13204 The function is not supported on the current connection to the data source.

13205 COMMENTS
13206 For a list of options, see SQLSetEnvAttr(). If Attribute specifies an attribute that returns a string,
13207 ValuePtr points to a buffer in which to return the string. The maximum length of the string, |
13208 including the null terminator, is BufferLength octets.

13209 SQLGetEnvAttr() can be called at any time between the allocation and the freeing of an
13210 environment handle. All environment attributes successfully set by the application for the
13211 environment persist until SQLFreeHandle() is called on the EnvironmentHandle with a HandleType
13212 of SQL_HANDLE_ENV. More than one environment handle can be allocated simultaneously.
13213 An environment attribute on one environment is not affected when another environment is
13214 allocated.

13215 SEE ALSO

13216 For information about See

13217 Returning the setting of a connection attribute SQLGetConnectAttr()
13218 Returning the setting of a statement attribute SQLGetStmtAttr()
13219 Setting a connection attribute SQLSetConnectAttr()
13220 Setting an environment attribute SQLSetEnvAttr()
13221 Setting a statement attribute SQLSetStmtAttr()

13222 CHANGE HISTORY

13223 Version 2
13224 Revised generally. See Alignment with Popular Implementations on page 2. |

•

370 Direct Review (Build ID 96KAV) (Draft XDBC.33, August 1996)

Reference Manual Pages ISO 92 SQLGetFunctions()

13225 NAME
13226 SQLGetFunctions — Indicate the level of support for a specified XDBC function.

13227 SYNOPSIS
13228 SQLRETURN SQLGetFunctions(
13229 SQLHDBCConnectionHandle ,
13230 SQLUSMALLINT FunctionId ,
13231 SQLUSMALLINT * SupportedPtr);

13232 ARGUMENTS

13233 ConnectionHandle [Input] |
13234 Connection handle. |

13235 FunctionId [Input]
13236 A #define value that identifies the XDBC function of interest, or
13237 SQL_API_XDBC_ALL_FUNCTIONS. For a list of #define values that identify XDBC
13238 functions, see the tables in ‘‘Comments.’’ |

13239 SupportedPtr [Output]
13240 If FunctionId identifies a single XDBC function, SupportedPtr points to a single
13241 SQLUSMALLINT value that is SQL_TRUE if the specified function is supported by the data
13242 source, and SQL_FALSE if it is not supported.

13243 If FunctionId is SQL_API_XDBC_ALL_FUNCTIONS, the application must point
13244 SupportedPtr to a SQLSMALLINT array with a number of elements equal to
13245 SQL_API_XDBC_ALL_FUNCTIONS_SIZE. This array is a bitmap that indicates whether an
13246 XDBC function is supported. The application can call the SQL_FUNC_EXISTS() macro to
13247 determine if a specific function is supported (see ‘‘Comments’’).

13248 The arrays returned in *SupportedPtr use zero-based indexing. |

13249 RETURN VALUE |
13250 SQL_SUCCESS, SQL_SUCCESS_WITH_INFO, SQL_ERROR, or SQL_INVALID_HANDLE. |

13251 DIAGNOSTICS |
13252 When SQLGetFunctions() returns SQL_ERROR or SQL_SUCCESS_WITH_INFO, an associated |
13253 SQLSTATE value can be obtained by calling SQLGetDiagRec() with a HandleType of
13254 SQL_HANDLE_DBC and a Handle of ConnectionHandle . The following SQLSTATE values are |
13255 commonly returned by SQLGetFunctions(). The return code associated with each SQLSTATE |
13256 value is SQL_ERROR, except that for SQLSTATE values in class 01, the return code is |
13257 SQL_SUCCESS_WITH_INFO. |

13258 01000 — General warning |
13259 Implementation-defined informational message. |

13260 08S01 — Communication link failure |
13261 The communication link to the data source failed before the function completed processing.

13262 HY000 — General error
13263 An error occurred for which there was no specific SQLSTATE and for which no
13264 implementation-specific SQLSTATE was defined. The error message returned by
13265 SQLGetDiagRec() in the *MessageTextbuffer describes the error and its cause. |

13266 HY001 — Memory allocation error
13267 The implementation failed to allocate memory required to support execution or completion
13268 of the function. |

13269 HY010 — Function sequence error |
13270 The function was called before SQLConnect(), SQLBrowseConnect(), or SQLDriverConnect.()

Data Management: X/Open Database Connectivity (XDBC), Version 2 371

SQLGetFunctions() ISO 92 Reference Manual Pages

13271 SQLBrowseConnect() was called for ConnectionHandle and returned SQL_NEED_DATA.This |
13272 function was called before SQLBrowseConnect() returned SQL_SUCCESS_WITH_INFO or
13273 SQL_SUCCESS.

13274 HY095 — Function type out of range
13275 FunctionId was invalid. |

13276 HYT01 — Connection timeout expired
13277 The connection timeout period expired before the data source responded to the request. The
13278 connection timeout period is set through SQLSetConnectAttr(),
13279 SQL_ATTR_CONNECTION_TIMEOUT.

13280 COMMENTS
13281 SQLGetFunctions() determines whether an XDBC function specified by FunctionId is supported
13282 for use on ConnectionHandle . If so, it sets SupportedPtr to SQL_TRUE; if not, it sets SupportedPtr
13283 to SQL_FALSE.

13284 The manifest constant for use as FunctionId is the name of the function (including its SQL prefix),
13285 with the additional prefix ‘‘SQL_API_’’.

13286 SQLGetFunctions() always reports that the following functions are supported:

13287 SQL_API_SQLDATASOURCES SQL_API_SQLGETFUNCTIONS
13288 SQL_API_SQLDRIVERS OP |

13289 In implementations that comply with the ISO CLI International Standard, SQLGetFunctions()
13290 reports that at least the following additional functions are supported: |

13291 SQL_API_SQLALLOCHANDLE SQL_API_SQLGETDESCREC |
13292 SQL_API_SQLBINDCOL SQL_API_SQLGETDIAGFIELD |
13293 SQL_API_SQLCANCEL SQL_API_SQLGETDIAGREC |
13294 SQL_API_SQLCLOSECURSOR SQL_API_SQLGETENVATTR |
13295 SQL_API_SQLCOLATTRIBUTE SQL_API_SQLGETINFO
13296 SQL_API_SQLCONNECT SQL_API_SQLGETSTMTATTR
13297 SQL_API_SQLCOPYDESC SQL_API_SQLGETTYPEINFO
13298 SQL_API_SQLDESCRIBECOL SQL_API_SQLNUMRESULTCOLS
13299 SQL_API_SQLDISCONNECT SQL_API_SQLPARAMDATA
13300 SQL_API_SQLENDTRAN SQL_API_SQLPREPARE
13301 SQL_API_SQLEXECDIRECT SQL_API_SQLPUTDATA
13302 SQL_API_SQLEXECUTE SQL_API_SQLROWCOUNT
13303 SQL_API_SQLFETCH SQL_API_SQLSETCONNECTATTR
13304 SQL_API_SQLFETCHSCROLL SQL_API_SQLSETCURSORNAME
13305 SQL_API_SQLFREEHANDLE SQL_API_SQLSETDESCFIELD |
13306 SQL_API_SQLGETCONNECTATTR SQL_API_SQLSETDESCREC |
13307 SQL_API_SQLGETCURSORNAME SQL_API_SQLSETENVATTR |
13308 SQL_API_SQLGETDATA SQL_API_SQLSETSTMTATTR |
13309 SQL_API_SQLGETDESCFIELD |

13310 In implementations that comply with the X/Open CLI specification (1995), SQLGetFunctions()
13311 reports that at least the following additional functions are supported:

13312 SQL_API_SQLCOLUMNS SQL_API_SQLSTATISTICS

372 Direct Review (Build ID 96KAV) (Draft XDBC.33, August 1996)

Reference Manual Pages ISO 92 SQLGetFunctions()

13313 SQL_API_SQLSPECIALCOLUMNS SQL_API_SQLTABLES |

13314 In implementations that fully comply with the present X/Open specification, SQLGetFunctions()
13315 reports that at least the following additional functions are supported:

13316 SQL_API_SQLBINDPARAMETER SQL_API_SQLNATIVESQL
13317 SQL_API_SQLBROWSECONNECT SQL_API_SQLNUMPARAMS
13318 SQL_API_SQLBULKOPERATIONS SQL_API_SQLPRIMARYKEYS |
13319 SQL_API_SQLCOLUMNPRIVILEGES SQL_API_SQLPROCEDURECOLUMNS |
13320 SQL_API_SQLDESCRIBEPARAM SQL_API_SQLPROCEDURES |
13321 SQL_API_SQLDRIVERCONNECT SQL_API_SQLSETPOS |
13322 SQL_API_SQLFOREIGNKEYS SQL_API_SQLTABLEPRIVILEGES |
13323 SQL_API_SQLMORERESULTS |

13324 SQL_FUNC_EXISTS() Macro

13325 The SQL_FUNC_EXISTS(lpbFuncExists, nwIndex) macro is used to determine support for
13326 functions after SQLGetFunctions() has been called with an FunctionId argument of
13327 SQL_API_XDBC_ALL_FUNCTIONS. The application calls SQL_FUNC_EXISTS() with the
13328 lpbFuncExists argument set to the bitmap pointed to by the value returned in *SupportedPtr, and
13329 with the nwIndex argument set to the #define for the function. SQL_FUNC_EXISTS() returns
13330 SQL_TRUE if the function is supported, and SQL_FALSE otherwise.

13331 SEE ALSO

13332 For information about See

13333 Returning the setting of a connection attribute SQLGetConnectAttr()
13334 Returning information about an implementation SQLGetInfo()
13335 Returning the setting of a statement attribute SQLGetStmtAttr()

13336 CHANGE HISTORY

13337 Version 2
13338 Revised generally. See Alignment with Popular Implementations on page 2.

Data Management: X/Open Database Connectivity (XDBC), Version 2 373

SQLGetInfo() ISO 92 Reference Manual Pages

13339 NAME
13340 SQLGetInfo — Return general information about the data source and the connection to it.

13341 SYNOPSIS
13342 SQLRETURN SQLGetInfo(
13343 SQLHDBCConnectionHandle ,
13344 SQLSMALLINT InfoType ,
13345 SQLPOINTER InfoValuePtr ,
13346 SQLSMALLINT BufferLength ,
13347 SQLSMALLINT * StringLengthPtr);

13348 ARGUMENTS

13349 ConnectionHandle [Input] |
13350 Connection handle. |

13351 InfoType [Input]
13352 Type of information. |

13353 InfoValuePtr [Output]
13354 Pointer to a buffer in which to return the information. Depending on InfoType, the
13355 information returned is either a null-terminated character string, a SQLSMALLINT value, a
13356 SQLINTEGER bitmask, a SQLINTEGER flag, or a 32-bit binary value. |

13357 BufferLength [Input]
13358 Length of the *InfoValuePtr buffer. If the value in *InfoType is not a character string, or if
13359 InfoType is a null pointer, BufferLength is ignored. *InfoValuePtr is assumed to be 16 bits or 32 |
13360 bits, based on InfoType. |

13361 StringLengthPtr [Output] |
13362 Pointer to a buffer in which to return the total number of octets (excluding the null |
13363 terminator for character data) available to return in *InfoValuePtr.

13364 For character data, if the number of octets available to return is greater than or equal to |
13365 BufferLength, the information in *InfoValuePtr is truncated to BufferLength octets minus the |
13366 length of a null terminator and is null-terminated.

13367 For all other types of data, the value of BufferLength is ignored and *InfoValuePtr is assumed
13368 to be 16 bits or 32 bits, depending on InfoType. |

13369 RETURN VALUE |
13370 SQL_SUCCESS, SQL_SUCCESS_WITH_INFO, SQL_ERROR, or SQL_INVALID_HANDLE. |

13371 DIAGNOSTICS |
13372 When SQLGetInfo() returns SQL_ERROR or SQL_SUCCESS_WITH_INFO, an associated |
13373 SQLSTATE value can be obtained by calling SQLGetDiagRec() with a HandleType of |
13374 SQL_HANDLE_DBC and a Handle of ConnectionHandle . The following SQLSTATE values are |
13375 commonly returned by SQLGetInfo(). The return code associated with each SQLSTATEvalue is |
13376 SQL_ERROR, except that for SQLSTATE values in class 01, the return code is |
13377 SQL_SUCCESS_WITH_INFO. |

13378 01000 — General warning |
13379 Implementation-defined informational message. |

13380 01004 — String data, right truncation
13381 The buffer *InfoValuePtr was not large enough to return all of the requested information, so
13382 the information was truncated. The length of the requested information in its untruncated
13383 form is returned in *StringLengthPtr. |

374 Direct Review (Build ID 96KAV) (Draft XDBC.33, August 1996)

Reference Manual Pages ISO 92 SQLGetInfo()

13384 08003 — Connection does not exist |
13385 InfoType specifies an option that requires an open connection. Of the XDBC-defined options, |
13386 only SQL_XDBC_VER can be returned without an open connection. |

13387 08S01 — Communication link failure |
13388 The communication link to the data source failed before the function completed processing.

13389 HY000 — General error
13390 An error occurred for which there was no specific SQLSTATE and for which no
13391 implementation-specific SQLSTATE was defined. The error message returned by
13392 SQLGetDiagRec() in the MessageTextbuffer describes the error and its cause. |

13393 HY001 — Memory allocation error
13394 The implementation failed to allocate memory required to support execution or completion
13395 of the function.

13396 HY090 — Invalid string or buffer length
13397 BufferLength was less than 0. •

13398 HY096 — Information type out of range
13399 InfoType is in the range of numbers defined by XDBC and the implementation does not
13400 support it. |

13401 HYC00 — Optional feature not implemented
13402 InfoType is a valid value but is not supported by the data source. (This can occur when an
13403 XDBC application makes certain requests of a data source that complies with the ISO CLI
13404 International Standard or the March 1995 issue of this specification.)

13405 HYT01 — Connection timeout expired
13406 The connection timeout period expired before the data source responded to the request. The
13407 connection timeout period is set through SQLSetConnectAttr(),
13408 SQL_ATTR_CONNECTION_TIMEOUT.

13409 IM001 — Function not supported
13410 The function is not supported on the current connection to the data source.

13411 COMMENTS
13412 The currently-defined options are listed in Information Type Descriptions on page 377. |
13413 Additional types may be defined in the future for both standard and implementation-defined
13414 information requests. Vendors must reserve values for proprietary requests from X/Open (see
13415 Section 1.8 on page 21).

13416 The format of the information returned in *InfoValuePtr depends on the InfoType requested.
13417 SQLGetInfo() returns information in one of five different formats:

13418 • A null-terminated character string
13419 • An SQLUSMALLINT value
13420 • An SQLUINTEGER bitmask
13421 • An SQLUINTEGER value
13422 • A 32-bit binary value.

13423 The format of each of the following options is noted in the type’s description. The application |
13424 must cast the value returned in *InfoValuePtr accordingly.

13425 The implementation must return a value for each of the options defined in the following tables. |
13426 If InfoType is not applicable, then the implementation returns the following:

Data Management: X/Open Database Connectivity (XDBC), Version 2 375

SQLGetInfo() ISO 92 Reference Manual Pages

13427 Format of *InfoValuePtr Returned Value
13428 Character string (‘‘Y’’ or ‘‘N’’) ‘‘N’’

13429 Character string (not ‘‘Y’’ or ‘‘N’’) Empty string

13430 SQLUSMALLINT 0

13431 SQLUINTEGER bitmask or 32-bit binary value 0L

13432 For example, if a data source does not support procedures, SQLGetInfo() returns the following
13433 values for the values of InfoType that relate to procedures:

13434 InfoType Returned value
13435 SQL_PROCEDURES ‘‘N’’

13436 SQL_ACCESSIBLE_PROCEDURES ‘‘N’’

13437 SQL_MAX_PROCEDURE_NAME_LEN 0

13438 SQL_PROCEDURE_TERM Empty string

13439 The SQLSTATE values HY096 (Invalid argument value) and HYC00 (Optional feature not |
13440 implemented) both report that the implementation does not support the specified InfoType.
13441 HY096 is used for XDBC-defined values and HYC00 is used for values in the implementation-
13442 defined range. |

13443 GetInfo() Options |

13444 This section lists the options XDBC defines for use with SQLGetInfo(). Information types are
13445 grouped by category. Following these tables, every XDBC-defined type is listed alphabetically.

13446 Implementation Information

13447 The following values of InfoType return information about the implementation, such as the
13448 number of active statements, the data source name, and compliance with X/Open specifications |
13449 and standards:

13450 SQL_ACTIVE_ENVIRONMENTS SQL_MAX_ASYNC_CONCURRENT_STATEMENTS
13451 SQL_ASYNC_MODE SQL_MAX_CONCURRENT_ACTIVITIES
13452 SQL_BATCH_ROW_COUNT SQL_MAX_DRIVER_CONNECTIONS
13453 SQL_BATCH_SUPPORT SQL_PARAM_ARRAY_ROW_COUNTS
13454 SQL_DATA_SOURCE_NAME SQL_PARAM_ARRAY_SELECTS
13455 SQL_DYNAMIC_CURSOR_ATTRIBUTES1 SQL_ROW_UPDATES |
13456 SQL_DYNAMIC_CURSOR_ATTRIBUTES2 SQL_SEARCH_PATTERN_ESCAPE |
13457 SQL_FILE_USAGE SQL_SERVER_NAME |
13458 SQL_FORWARD_ONLY_CURSOR_ATTRIBUTES1 SQL_STATIC_CURSOR_CAPABILITIES1 |
13459 SQL_FORWARD_ONLY_CURSOR_ATTRIBUTES2 SQL_STATIC_CURSOR_CAPABILITIES2 |
13460 SQL_GETDATA_EXTENSIONS SQL_XDBC_INTERFACE_CONFORMANCE |
13461 SQL_INFO_SCHEMA_VIEWS SQL_XDBC_STANDARD_CLI_CONFORMANCE |
13462 SQL_KEYSET_CURSOR_ATTRIBUTES1 SQL_XDBC_VER |
13463 SQL_KEYSET_CURSOR_ATTRIBUTES2 |

376 Direct Review (Build ID 96KAV) (Draft XDBC.33, August 1996)

Reference Manual Pages ISO 92 SQLGetInfo()

13464 Data Source Product Information

13465 The following values of InfoType return product information about the data source, such as the
13466 vendor’s product name and version:

13467 SQL_DATABASE_NAME SQL_DBMS_NAME SQL_DBMS_VER

13468 Data Source Information

13469 The following values of InfoType return information about the data source, such as cursor
13470 characteristics and transaction capabilities: |

13471 SQL_ACCESSIBLE_PROCEDURES SQL_KEYSET_CURSOR_ATTRIBUTES2
13472 SQL_ACCESSIBLE_TABLES SQL_MULTIPLE_ACTIVE_TXN
13473 SQL_BOOKMARK_PERSISTENCE SQL_MULT_RESULT_SETS
13474 SQL_CATALOG_TERM SQL_NEED_LONG_DATA_LEN
13475 SQL_COLLATION_SEQ SQL_NULL_COLLATION
13476 SQL_CONCAT_NULL_BEHAVIOR SQL_PROCEDURE_TERM
13477 SQL_CURSOR_COMMIT_BEHAVIOR SQL_SCHEMA_TERM
13478 SQL_CURSOR_ROLLBACK_BEHAVIOR SQL_SCROLL_OPTIONS
13479 SQL_CURSOR_SENSITIVITY SQL_STATIC_CURSOR_CAPABILITIES2
13480 SQL_DATA_SOURCE_READ_ONLY SQL_TABLE_TERM
13481 SQL_DEFAULT_TXN_ISOLATION SQL_TXN_CAPABLE
13482 SQL_DESCRIBE_PARAMETER SQL_TXN_ISOLATION_OPTION
13483 SQL_DYNAMIC_CURSOR_ATTRIBUTES2 SQL_USER_NAME
13484 SQL_FORWARD_ONLY_CURSOR_ATTRIBUTES2

13485 Supported SQL |

13486 The following values of InfoType return information about the dialect of SQL that can be used on
13487 the connection. This information does not specify the entire SQL grammar; it simply describes
13488 aspects of SQL for which implementations support differently.

13489 SQL_ALTER_DOMAIN SQL_DROP_VIEW |
13490 SQL_ALTER_SCHEMA SQL_DYNAMIC_CURSOR_ATTRIBUTES1 |
13491 SQL_ALTER_TABLE SQL_EXPRESSIONS_IN_ORDERBY |
13492 SQL_ANSI_SQL_CONFORMANCE SQL_FORWARD_ONLY_CURSOR_ATTRIBUTES1 |
13493 SQL_ANSI_SQL_DATETIME_LITERALS SQL_GROUP_BY
13494 SQL_CATALOG_LOCATION SQL_IDENTIFIER_CASE
13495 SQL_CATALOG_NAME SQL_IDENTIFIER_QUOTE_CHAR
13496 SQL_CATALOG_NAME_SEPARATOR SQL_INDEX_KEYWORDS
13497 SQL_CATALOG_USAGE SQL_KEYSET_CURSOR_ATTRIBUTES1
13498 SQL_COLUMN_ALIAS SQL_KEYWORDS
13499 SQL_CORRELATION_NAME SQL_LIKE_ESCAPE_CLAUSE
13500 SQL_CREATE_ASSERTION SQL_NON_NULLABLE_COLUMNS
13501 SQL_CREATE_CHARACTER_SET SQL_OJ_CAPABILITIES
13502 SQL_CREATE_COLLATION SQL_ORDER_BY_COLUMNS_IN_SELECT
13503 SQL_CREATE_DOMAIN SQL_OUTER_JOINS
13504 SQL_CREATE_SCHEMA SQL_PROCEDURES
13505 SQL_CREATE_TABLE SQL_QUOTED_IDENTIFIER_CASE
13506 SQL_CREATE_TRANSLATION SQL_REVOKE
13507 SQL_DROP_ASSERTION SQL_SCHEMA_USAGE
13508 SQL_DROP_CHARACTER_SET SQL_SPECIAL_CHARACTERS
13509 SQL_DROP_COLLATION SQL_STATIC_CURSOR_CAPABILITIES1
13510 SQL_DROP_DOMAIN SQL_SUBQUERIES
13511 SQL_DROP_SCHEMA SQL_UNION
13512 SQL_DROP_TABLE SQL_XDBC_SQL_OPT_IEF |
13513 SQL_DROP_TRANSLATION |

Data Management: X/Open Database Connectivity (XDBC), Version 2 377

SQLGetInfo() ISO 92 Reference Manual Pages

13514 SQL Limits

13515 The following values of InfoType return information about the limits applied to identifiers and
13516 clauses in SQL statements, such as the maximum lengths of identifiers and the maximum
13517 number of columns in a select list. Limitations may be imposed by either the data source or
13518 software that implements the connection to it. |

13519 SQL_MAX_BINARY_LITERAL_LEN SQL_MAX_IDENTIFIER_LEN
13520 SQL_MAX_CATALOG_NAME_LEN SQL_MAX_INDEX_SIZE
13521 SQL_MAX_CHAR_LITERAL_LEN SQL_MAX_PROCEDURE_NAME_LEN
13522 SQL_MAX_COLUMN_NAME_LEN SQL_MAX_ROW_SIZE
13523 SQL_MAX_COLUMNS_IN_GROUP_BY SQL_MAX_ROW_SIZE_INCLUDES_LONG
13524 SQL_MAX_COLUMNS_IN_INDEX SQL_MAX_SCHEMA_NAME_LEN
13525 SQL_MAX_COLUMNS_IN_ORDER_BY SQL_MAX_STATEMENT_LEN
13526 SQL_MAX_COLUMNS_IN_SELECT SQL_MAX_TABLE_NAME_LEN
13527 SQL_MAX_COLUMNS_IN_TABLE SQL_MAX_TABLES_IN_SELECT
13528 SQL_MAX_CURSOR_NAME_LEN SQL_MAX_USER_NAME_LEN

13529 Scalar Function Information |

13530 The following values of InfoType return information about the scalar functions the
13531 implementation supports (see Appendix F). |

13532 SQL_CONVERT_FUNCTIONS SQL_TIMEDATE_ADD_INTERVALS
13533 SQL_NUMERIC_FUNCTIONS SQL_TIMEDATE_DIFF_INTERVALS
13534 SQL_STRING_FUNCTIONS SQL_TIMEDATE_FUNCTIONS
13535 SQL_SYSTEM_FUNCTIONS

13536 Conversion Information |

13537 The following values of InfoType return a list of the SQL data types to which the data source can
13538 convert the specified SQL data type with the CONVERT scalar function: |

13539 SQL_CONVERT_BIGINT SQL_CONVERT_LONGVARBINARY
13540 SQL_CONVERT_BINARY SQL_CONVERT_LONGVARCHAR
13541 SQL_CONVERT_BIT SQL_CONVERT_NUMERIC
13542 SQL_CONVERT_CHAR SQL_CONVERT_REAL
13543 SQL_CONVERT_DATE SQL_CONVERT_SMALLINT
13544 SQL_CONVERT_DECIMAL SQL_CONVERT_TIME
13545 SQL_CONVERT_DOUBLE SQL_CONVERT_TIMESTAMP
13546 SQL_CONVERT_FLOAT SQL_CONVERT_TINYINT
13547 SQL_CONVERT_INTEGER SQL_CONVERT_VARBINARY
13548 SQL_CONVERT_INTERVAL_DAY_TIME SQL_CONVERT_VARCHAR
13549 SQL_CONVERT_INTERVAL_YEAR_MONTH

378 Direct Review (Build ID 96KAV) (Draft XDBC.33, August 1996)

Reference Manual Pages ISO 92 SQLGetInfo()

13550 Information Type Descriptions |

13551 Here is an alphabetical list of each valid value of InfoType and a description of the information
13552 obtained.

13553 SQL_ACCESSIBLE_PROCEDURES
13554 A character string: ‘‘Y’’ if the user can execute all procedures returned by SQLProcedures(),
13555 ‘‘N’’ if there may be procedures returned that the user cannot execute.

13556 SQL_ACCESSIBLE_TABLES
13557 A character string: ‘‘Y’’ if the user is guaranteed SELECT privileges to all tables returned by
13558 SQLTables(), ‘‘N’’ if there may be tables returned that the user cannot access.

13559 SQL_ACTIVE_ENVIRONMENTS
13560 An SQLSMALLINT value specifying the maximum number of active environments that the
13561 implementation supports. If there is no specified limit or the limit is unknown, this value is
13562 set to zero.

13563 SQL_ALTER_DOMAIN
13564 An SQLINTEGER bitmask enumerating the clauses in the ALTER DOMAIN statement, as |
13565 defined in the ISO SQL standard, that the implementation supports.

13566 The following bitmasks are used to determine which clauses are supported:

13567 SQL_AD_ALTER_DOMAIN |
13568 SQL_AD_ADD_DOMAIN_CONSTRAINT |
13569 SQL_AD_DROP_DOMAIN_CONSTRAINT |
13570 SQL_AD_ADD_DOMAIN_DEFAULT |
13571 SQL_AD_DROP_DOMAIN_DEFAULT |

13572 SQL_ALTER_TABLE
13573 An SQLINTEGER bitmask enumerating the clauses in the ALTER TABLE statement that the
13574 implementation supports. The following bitmasks are available. If the bit is set, it indicates |
13575 support for the corresponding feature of the ALTER TABLE statement. The standards |
13576 compliance level corresponding to each clause is shown in parentheses. |

13577 SQL_AT_ADD_COLUMN_SINGLE |
13578 <add column> clause (FIPS Transitional) |

13579 SQL_AT_ADD_COLUMN_CONSTRAINT |
13580 <add column> clause with column constraints (FIPS Transitional) |

13581 SQL_AT_ADD_COLUMN_DEFAULT |
13582 <add column> clause with column defaults (FIPS Transitional) |

13583 SQL_AT_ADD_COLUMN_COLLATION |
13584 <add column> clause with column collation (Full) |

13585 SQL_AT_ALTER_COLUMN_SET_DEFAULT |
13586 <alter column> <set column default clause> (Intermediate) |

13587 SQL_AT_ALTER_COLUMN_DROP_DEFAULT |
13588 <alter column> <drop column default clause> (Intermediate) |

13589 SQL_AT_DROP_COLUMN_CASCADE |
13590 <drop column> CASCADE (FIPS Transitional) |

13591 SQL_AT_DROP_COLUMN_RESTRICT |
13592 <drop column> RESTRICT (FIPS Transitional) |

13593 SQL_AT_ADD_TABLE_CONSTRAINT |
13594 <add table constraint> clause (FIPS Transitional) |

Data Management: X/Open Database Connectivity (XDBC), Version 2 379

SQLGetInfo() ISO 92 Reference Manual Pages

13595 SQL_AT_DROP_TABLE_CONSTRAINT_CASCADE |
13596 <drop table constraint> CASCADE clause (FIPS Transitional) |

13597 SQL_AT_DROP_TABLE_CONSTRAINT_RESTRICT |
13598 <drop table constraint> RESTRICT clause (FIPS Transitional) |

13599 SQL_AT_CONSTRAINT_NAME_DEFINITION |
13600 <constraint name definition> for naming column and table constraints. (Intermediate) |

13601 The following 4 bits specify the supported <constraint attributes> if specifying column or |
13602 table constraints is supported (Full): |

13603 SQL_AT_CONSTRAINT_INITIALLY_DEFERRED ||
13604 SQL_AT_CONSTRAINT_INITIALLY_IMMEDIATE ||
13605 SQL_AT_CONSTRAINT_DEFERRABLE ||
13606 SQL_AT_CONSTRAINT_NON_DEFERRABLE ||

13607 SQL_ANSI_SQL_DATETIME_LITERALS
13608 An SQLINTEGER bitmask enumerating the date/time literals that the implementation |
13609 supports. These are the date/time literals listed in the ISO SQL standard, not the date/time |
13610 literal escape clauses defined by XDBC in Section 8.3.1 on page 84.

13611 The following bitmasks are used to determine which literals are supported:

13612 SQL_ASDL_DATE
13613 SQL_ASDL_TIME
13614 SQL_ASDL_TIMESTAMP
13615 SQL_ASDL_INTERVAL_YEAR
13616 SQL_ASDL_INTERVAL_MONTH
13617 SQL_ASDL_INTERVAL_DAY
13618 SQL_ASDL_INTERVAL_HOUR
13619 SQL_ASDL_INTERVAL_MINUTE
13620 SQL_ASDL_INTERVAL_SECOND
13621 SQL_ASDL_INTERVAL_YEAR_TO_MONTH
13622 SQL_ASDL_INTERVAL_DAY_TO_HOUR
13623 SQL_ASDL_INTERVAL_DAY_TO_MINUTE
13624 SQL_ASDL_INTERVAL_DAY_TO_SECOND
13625 SQL_ASDL_INTERVAL_HOUR_TO_MINUTE
13626 SQL_ASDL_INTERVAL_HOUR_TO_SECOND
13627 SQL_ASDL_INTERVAL_MINUTE_TO_SECOND

13628 SQL_ANSI_SQL_CONFORMANCE
13629 An SQLINTEGER value indicating the level of SQL grammar the implementation supports: |

13630 SQL_ASC_ANSI92_ENTRY_LEVEL
13631 Entry-level grammar of the ISO SQL standard |

13632 SQL_ASC_FIPS_TRANSITIONAL
13633 The transitional level of FIPS 127-2 |

13634 SQL_ASC_ANSI_92_FULL
13635 Full grammar of the ISO SQL standard |

13636 SQL_ASC_ANSI_92_INTERMEDIATE
13637 Intermediate-level grammar of the ISO SQL standard |

13638 SQL_ASYNC_MODE
13639 An SQLINTEGER value indicating the extent to which the implementation supports
13640 asynchrony:

380 Direct Review (Build ID 96KAV) (Draft XDBC.33, August 1996)

Reference Manual Pages ISO 92 SQLGetInfo()

13641 SQL_AM_CONNECTION
13642 Connection level asynchronous execution is supported. Either all statement handles
13643 associated with a given connection handle are in asynchronous mode, or all are in
13644 synchronous mode. A statement handle on a connection cannot be in asynchronous
13645 mode while another statement handle on the same connection is in synchronous mode,
13646 and vice versa.

13647 SQL_AM_STATEMENT
13648 Statement level asynchronous execution is supported. Some statement handles
13649 associated with a connection handle can be in asynchronous mode, while other
13650 statement handles on the same connection are in synchronous mode.

13651 SQL_AM_NONE
13652 Asynchronous mode is not supported.

13653 SQL_BATCH_ROW_COUNT
13654 An SQLINTEGER bitmask enumerating the behavior of the data source with respect to the
13655 availability of row counts. The following bit masks are used in conjunction with the option: |

13656 SQL_BRC_ROLLED_UP
13657 Row counts for consecutive INSERT, DELETE, or UPDATE statements are rolled up
13658 into one. If this bit is not set, then row counts are available for each individual
13659 statement.

13660 SQL_BRC_PROCEDURES
13661 Row counts, if any, are available when a batch is executed in a stored procedure. If row
13662 counts are available, they may be rolled up or individually available, depending on the
13663 SQL_BRC_ROLLED_UP bit.

13664 SQL_BRC_EXPLICIT
13665 Row counts, if any, are available when a batch is executed directly by calling
13666 SQLExecute() or SQLExecDirect(). If row counts are available, they may be rolled up or
13667 individually available, depending on the SQL_BRC_ROLLED_UP bit.

13668 SQL_BATCH_SUPPORT
13669 An SQLINTEGER bitmask specifying whether the implementation supports batches. The
13670 following bitmasks are used to determine which level is supported:

13671 SQL_BS_SELECT_EXPLICIT
13672 The implementation supports explicit batches that can have result-set generating
13673 statements.

13674 SQL_BS_ROW_COUNT_EXPLICIT
13675 The implementation supports explicit batches that can have row-count generating
13676 statements.

13677 SQL_BS_SELECT_PROC
13678 The implementation supports explicit procedures that can have result-set generating
13679 statements.

13680 SQL_BS_ROW_COUNT_PROC
13681 The implementation supports explicit procedures that can have row-count generating
13682 statements.

13683 SQL_BOOKMARK_PERSISTENCE
13684 An SQLINTEGER bitmask enumerating the operations through which bookmarks persist.

13685 The following bitmasks are used in conjunction with the flag to determine through which
13686 options bookmarks persist:

Data Management: X/Open Database Connectivity (XDBC), Version 2 381

SQLGetInfo() ISO 92 Reference Manual Pages

13687 SQL_BP_CLOSE
13688 Bookmarks are valid after an application calls SQLFreeStmt() with the SQL_CLOSE
13689 option, or SQLCloseCursor() to close the cursor associated with a statement.

13690 SQL_BP_DELETE
13691 The bookmark for a row is valid after that row has been deleted.

13692 SQL_BP_DROP
13693 Bookmarks are valid after an application calls SQLFreeHandle() with HandleType of |
13694 SQL_HANDLE_STMT to drop a statement.

13695 SQL_BP_TRANSACTION
13696 Bookmarks are valid after an application commits or rolls back a transaction.

13697 SQL_BP_UPDATE
13698 The bookmark for a row is valid after any column in that row has been updated,
13699 including key columns.

13700 SQL_BP_OTHER_HSTMT
13701 A bookmark associated with one statement can be used with another statement. Unless
13702 SQL_BP_CLOSE or SQL_BP_DROP is specified, the cursor on the first statement must
13703 be open.

13704 SQL_BP_DISCONNECT
13705 Bookmarks are valid after an application disconnects from the data source.

13706 SQL_CATALOG_LOCATION
13707 An SQLSMALLINT value indicating the position of the catalog in a qualified table name.
13708 This is one of the following: |

13709 SQL_CL_START The catalog appears at the start of the table name. |
13710 SQL_CL_END The catalog appears at the end of the table name. |

13711 SQL_CATALOG_NAME
13712 A character string: ‘‘Y’’ if the CatalogName argument of the catalog functions can be used to |
13713 specify a catalog, or ‘‘N’’ if it cannot. (The SQL_CATALOG_USAGEoption provides more |
13714 information on the valid contexts in which catalogs can be specified.)

13715 SQL_CATALOG_NAME_SEPARATOR
13716 A character string: the character or characters that the data source defines as the separator
13717 between a catalog name and the qualified name element that follows or precedes it.

13718 SQL_CATALOG_TERM
13719 A character string with the data source vendor’s name for a catalog; for example,
13720 ‘‘database’’ or ‘‘directory.’’

13721 SQL_CATALOG_USAGE
13722 An SQLINTEGER bitmask enumerating the statements in which catalogs can be used.

13723 The following bitmasks are used to determine where catalogs can be used:

13724 SQL_CU_DML_STATEMENTS
13725 Catalogs are supported in all Data Manipulation Language statements: SELECT,
13726 INSERT, UPDATE, DELETE, and, if supported, SELECT FOR UPDATE and positioned
13727 UPDATEand DELETE statements.

13728 SQL_CU_PROCEDURE_INVOCATION
13729 Catalogs are supported in the XDBC escape clause to call a procedure. |

13730 SQL_CU_TABLE_DEFINITION
13731 Catalogs are supported in all table definition statements: CREATE TABLE, CREATE

382 Direct Review (Build ID 96KAV) (Draft XDBC.33, August 1996)

Reference Manual Pages ISO 92 SQLGetInfo()

13732 VIEW, ALTER TABLE, DROP TABLE, and DROP VIEW.

13733 SQL_CU_INDEX_DEFINITION
13734 Catalogs are supported in all index definition statements: CREATE INDEX and DROP
13735 INDEX.

13736 SQL_CU_PRIVILEGE_DEFINITION Catalogs are supported in all privilege definition
13737 statements: GRANT and REVOKE.

13738 SQL_COLLATION_SEQ
13739 The name of the collation sequence. This is a character string that indicates the default |
13740 ordering of the character set for this data source.

13741 SQL_COLUMN_ALIAS
13742 A character string: ‘‘Y’’ if the data source supports column aliases; ‘‘N’’ otherwise.

13743 SQL_CONCAT_NULL_BEHAVIOR
13744 An SQLSMALLINT value indicating how the data source handles the concatenation of
13745 NULL valued character data type columns with non-NULL valued character data type
13746 columns:

13747 SQL_CB_NULL Result is NULL valued.

13748 SQL_CB_NON_NULL Result is concatenation of non-NULL valued column or
13749 columns.

13750 SQL_CONVERT_*
13751 A series of SQLINTEGER bitmasks. Any of the following may be specified as InfoType: |

13752 SQL_CONVERT_BIGINT SQL_CONVERT_LONGVARBINARY
13753 SQL_CONVERT_BINARY SQL_CONVERT_LONGVARCHAR
13754 SQL_CONVERT_BIT SQL_CONVERT_NUMERIC
13755 SQL_CONVERT_CHAR SQL_CONVERT_REAL
13756 SQL_CONVERT_DATE SQL_CONVERT_SMALLINT
13757 SQL_CONVERT_DECIMAL SQL_CONVERT_TIME
13758 SQL_CONVERT_DOUBLE SQL_CONVERT_TIMESTAMP
13759 SQL_CONVERT_FLOAT SQL_CONVERT_TINYINT
13760 SQL_CONVERT_INTEGER SQL_CONVERT_VARBINARY
13761 SQL_CONVERT_INTERVAL_DAY_TIME SQL_CONVERT_VARCHAR
13762 SQL_CONVERT_INTERVAL_YEAR_MONTH

13763 The bitmask indicates the conversions supported by the data source with the CONVERT |
13764 scalar function for data of the type named in InfoType. If the bitmask equals zero, the data
13765 source does not support any conversions for data of the named type, including conversion
13766 to the same data type.

13767 For example, to find out if a data source supports the conversion of SQL_INTEGER data to
13768 the SQL_BIGINT data type, an application calls SQLGetInfo() with an InfoType of |
13769 SQL_CONVERT_INTEGER. The application combines the returned bitmask with
13770 SQL_CVT_BIGINT with the AND operation. If the resulting value is nonzero, the
13771 conversion is supported.

13772 The following bitmasks are used to determine which conversions are supported:

13773 SQL_CVT_BIGINT SQL_CVT_LONGVARBINARY
13774 SQL_CVT_BINARY SQL_CVT_LONGVARCHAR
13775 SQL_CVT_BIT SQL_CVT_NUMERIC
13776 SQL_CVT_CHAR SQL_CVT_REAL
13777 SQL_CVT_DATE SQL_CVT_SMALLINT

Data Management: X/Open Database Connectivity (XDBC), Version 2 383

SQLGetInfo() ISO 92 Reference Manual Pages

13778 SQL_CVT_DECIMAL SQL_CVT_TIME
13779 SQL_CVT_DOUBLE SQL_CVT_TIMESTAMP
13780 SQL_CVT_FLOAT SQL_CVT_TINYINT
13781 SQL_CVT_INTEGER SQL_CVT_VARBINARY
13782 SQL_CVT_INTERVAL_DAY_TIME SQL_CVT_VARCHAR
13783 SQL_CVT_INTERVAL_YEAR_MONTH

13784 SQL_CONVERT_FUNCTIONS
13785 An SQLINTEGER bitmask enumerating the scalar conversion functions the implementation |
13786 supports. These functions are defined in Section F.5 on page 609.

13787 The following bitmasks are used to determine which conversion functions are supported:

13788 SQL_FN_CVT_CAST The CAST function is supported.

13789 SQL_FN_CVT_CONVERT The CONVERT function is supported.

13790 SQL_CORRELATION_NAME
13791 An SQLSMALLINT value indicating if table correlation names are supported:

13792 SQL_CN_NONE Correlation names are not supported.

13793 SQL_CN_DIFFERENT Correlation names are supported, but must differ from the
13794 names of the tables they represent.

13795 SQL_CN_ANY Correlation names are supported and can be any valid
13796 user-defined name.

13797 SQL_CREATE_ASSERTION
13798 An SQLINTEGER bitmask enumerating the clauses in the CREATE ASSERTION statement, |
13799 as defined in the ISO SQL standard, supported by the data source. The following bitmasks
13800 are used to determine which clauses are supported:

13801 SQL_CAS_CREATE_ASSERTION
13802 SQL_CAS_INITIALLY_DEFERRED
13803 SQL_CAS_INITIALLY_IMMEDIATE
13804 SQL_CAS_DEFERRABLE
13805 SQL_CAS_NOT_DEFERRABLE

13806 SQL_CREATE_CHARACTER_SET
13807 An SQLINTEGER bitmask enumerating the clauses in the CREATE CHARACTER SET |
13808 statement, as defined in the ISO SQL standard, supported by the data source. The following
13809 bitmasks are used to determine which clauses are supported:

13810 SQL_CCS_CREATE_CHARACTER_SET
13811 SQL_CCS_COLLATE_CLAUSE
13812 SQL_CCS_LIMITED_COLLATION

13813 SQL_CREATE_COLLATION
13814 An SQLINTEGER bitmask enumerating the clauses in the CREATE COLLATION statement, |
13815 as defined in the ISO SQL standard, supported by the data source.

13816 The following bitmask is used to determine which clauses are supported:

13817 SQL_CCOL_CREATE_COLLATION

13818 SQL_CREATE_DOMAIN
13819 An SQLINTEGER bitmask enumerating the clauses in the CREATE DOMAIN statement, as |
13820 defined in the ISO SQL standard, supported by the data source.

13821 The following bitmasks are used to determine which clauses are supported:

384 Direct Review (Build ID 96KAV) (Draft XDBC.33, August 1996)

Reference Manual Pages ISO 92 SQLGetInfo()

13822 SQL_CDO_CREATE_DOMAIN
13823 SQL_CDO_DEFAULT
13824 SQL_CDO_CONSTRAINT
13825 SQL_CDO_COLLATION

13826 SQL_CREATE_SCHEMA
13827 An SQLINTEGER bitmask enumerating the clauses in the CREATE SCHEMA statement, as |
13828 defined in the ISO SQL standard, supported by the data source.

13829 The following bitmasks are used to determine which clauses are supported:

13830 SQL_CS_CREATE_SCHEMA
13831 SQL_CS_AUTHORIZATION
13832 SQL_CS_DEFAULT_CHARACTER_SET

13833 SQL_CREATE_TABLE
13834 An SQLINTEGER bitmask enumerating the clauses in the CREATE TABLE statement, as |
13835 defined in the ISO SQL standard, supported by the data source.

13836 The following bitmasks are used to determine which clauses are supported:

13837 SQL_CT_COMMIT_PRESERVE
13838 SQL_CT_COMMIT_DELETE
13839 SQL_CT_GLOBAL_TEMPORARY
13840 SQL_CT_LOCAL_TEMPORARY
13841 SQL_CT_CONSTRAINT_INITIALLY_DEFERRED
13842 SQL_CT_CONSTRAINT_INITIALLY_IMMEDIATE
13843 SQL_CT_CONSTRAINT_DEFERRABLE
13844 SQL_CT_CONSTRAINT_NON_DEFERRABLE

13845 SQL_CREATE_TRANSLATION
13846 An SQLINTEGER bitmask enumerating the clauses in the CREATE TRANSLATION |
13847 statement, as defined in the ISO SQL standard, supported by the data source.

13848 The following bitmask is used to determine which clauses are supported:

13849 SQL_CTR_CREATE_TRANSLATION

13850 SQL_CREATE_VIEW
13851 An SQLINTEGER bitmask enumerating the clauses in the CREATE VIEW statement, as |
13852 defined in the ISO SQL standard, supported by the data source.

13853 The following bitmasks are used to determine which clauses are supported:

13854 SQL_CV_CREATE_VIEW
13855 SQL_CV_CHECK_OPTION
13856 SQL_CV_CASCADED
13857 SQL_CV_LOCAL

13858 SQL_CURSOR_COMMIT_BEHAVIOR
13859 An SQLSMALLINT value indicating how a COMMIT operation affects cursors and
13860 prepared statements in the data source:

13861 SQL_CB_DELETE
13862 Close cursors and delete prepared statements. To use the cursor again, the application
13863 must reprepare and reexecute the statement.

13864 SQL_CB_CLOSE
13865 Close cursors. For prepared statements, the application can call SQLExecute() on the
13866 statement without calling SQLPrepare() again.

Data Management: X/Open Database Connectivity (XDBC), Version 2 385

SQLGetInfo() ISO 92 Reference Manual Pages

13867 SQL_CB_PRESERVE
13868 Preserve cursors in the same position as before the COMMIT operation. The
13869 application can continue to fetch data or it can close the cursor and reexecute the
13870 statement without repreparing it.

13871 SQL_CURSOR_ROLLBACK_BEHAVIOR
13872 An SQLSMALLINT value indicating how a ROLLBACK operation affects cursors and
13873 prepared statements in the data source. The values are the same as for
13874 SQL_CURSOR_COMMIT_BEHAVIOR.

13875 SQL_CURSOR_SENSITIVITY
13876 An SQLINTEGER value indicating the support for cursor sensitivity:

13877 SQL_INSENSITIVE
13878 All cursors on the statement handle show the result set without reflecting any changes |
13879 made to it by any other cursor within the same transaction.

13880 SQL_UNSPECIFIED
13881 Support for cursor sensitivity is unspecified. It is unspecified whether cursors on the
13882 statement handle make visible the changes made to a result set by another cursor |
13883 within the same transaction. Cursors on the statement handle may make visible none, |
13884 some, or all such changes.

13885 SQL_SENSITIVE
13886 Cursors are sensitive to changes made by other cursors in the same transaction. |

13887 SQL_DATA_SOURCE_NAME
13888 A character string with the data source name used during connection. If the application
13889 called SQLConnect(), this is the value of the DSN argument. If the application called |
13890 SQLDriverConnect() or SQLBrowseConnect(), this is the value of the DSN keyword in the
13891 connection string. If the connection string did not contain the DSN keyword (for example,
13892 when implementation-defined keywords specified the connection), this is an empty string.

13893 SQL_DATA_SOURCE_READ_ONLY
13894 A character string. ‘‘Y’’ if the data source is set to READ ONLY mode, ‘‘N’’ if it is otherwise.

13895 SQL_DATABASE_NAME
13896 A character string with the name of the current database in use, if the data source defines a
13897 named object called ‘‘database.’’ (This information is also available by calling
13898 SQLGetConnectAttr() with an Attribute of SQL_ATTR_CURRENT_CATALOG.)

13899 SQL_DBMS_NAME
13900 A character string with the product name of the data source.

13901 SQL_DBMS_VER
13902 A character string indicating the product version of the data source. The string must begin |
13903 with the product version, in the format ##.##.####, where the first two digits are the major |
13904 version, the next two digits are the minor version, and the last four digits are the release |
13905 version. This may be followed by a product-specific version identification.

13906 SQL_DEFAULT_TXN_ISOLATION
13907 An SQLINTEGER value that indicates the implementation’s default transaction isolation |
13908 level. This is the initial value of the SQL_ATTR_TXN_ISOLATION connection attribute. Its |
13909 value is one of the following:

13910 0 Transactions are not supported.

13911 SQL_TXN_READ_UNCOMMITTED
13912 Isolation is at the Read Uncommitted level: Dirty reads, nonrepeatable reads, and
13913 phantoms are possible.

386 Direct Review (Build ID 96KAV) (Draft XDBC.33, August 1996)

Reference Manual Pages ISO 92 SQLGetInfo()

13914 SQL_TXN_READ_COMMITTED
13915 Isolation is at the Read Committed level: Dirty reads are not possible. Nonrepeatable
13916 reads and phantoms are possible.

13917 SQL_TXN_REPEATABLE_READ
13918 Isolation is at the Repeatable Read level: Dirty reads and nonrepeatable reads are not
13919 possible. Phantoms are possible.

13920 SQL_TXN_SERIALIZABLE
13921 Transactions are serializable. Serializable transactions do not allow dirty reads,
13922 nonrepeatable reads, or phantoms.

13923 The terms used above for both the isolation levels and the isolation failure phenomena are
13924 defined in Section 14.2.2 on page 186.

13925 SQL_DESCRIBE_PARAMETER
13926 A character string: ‘‘Y’’ if parameters can be described; ‘‘N’’ if not.

13927 SQL_DROP_ASSERTION
13928 An SQLINTEGER bitmask enumerating the clauses in the DROP ASSERTION statement, as |
13929 defined in the ISO SQL standard, supported by the data source.

13930 The following bitmask is used to determine which clauses are supported:

13931 SQL_DA_DROP_ASSERTION

13932 SQL_DROP_CHARACTER_SET
13933 An SQLINTEGER bitmask enumerating the clauses in the DROP CHARACTER SET |
13934 statement, as defined in the ISO SQL standard, supported by the data source.

13935 The following bitmask is used to determine which clauses are supported:

13936 SQL_DCS_DROP_CHARACTER_SET

13937 SQL_DROP_COLLATION
13938 An SQLINTEGER bitmask enumerating the clauses in the DROP COLLATION statement, |
13939 as defined in the ISO SQL standard, supported by the data source.

13940 The following bitmask is used to determine which clauses are supported:

13941 SQL_DC_DROP_COLLATION

13942 SQL_DROP_DOMAIN
13943 An SQLINTEGER bitmask enumerating the clauses in the DROP DOMAIN statement, as |
13944 defined in the ISO SQL standard, supported by the data source.

13945 The following bitmasks are used to determine which clauses are supported:

13946 SQL_DD_DROP_DOMAIN
13947 SQL_DD_CASCADE
13948 SQL_DD_RESTRICT

13949 SQL_DROP_SCHEMA
13950 An SQLINTEGER bitmask enumerating the clauses in the DROP SCHEMA statement, as |
13951 defined in the ISO SQL standard, supported by the data source.

13952 The following bitmasks are used to determine which clauses are supported:

13953 SQL_DS_DROP_SCHEMA
13954 SQL_DS_CASCADE
13955 SQL_DS_RESTRICT

Data Management: X/Open Database Connectivity (XDBC), Version 2 387

SQLGetInfo() ISO 92 Reference Manual Pages

13956 SQL_DROP_TABLE
13957 An SQLINTEGER bitmask enumerating the clauses in the DROP TABLE statement, as |
13958 defined in the ISO SQL standard, supported by the data source.

13959 The following bitmasks are used to determine which clauses are supported:

13960 SQL_DT_DROP_TABLE
13961 SQL_DT_CASCADE
13962 SQL_DT_RESTRICT

13963 SQL_DROP_TRANSLATION
13964 An SQLINTEGER bitmask enumerating the clauses in the DROP TRANSLATION |
13965 statement, as defined in the ISO SQL standard, supported by the data source.

13966 The following bitmask is used to determine which clauses are supported:

13967 SQL_DTR_DROP_TRANSLATION

13968 SQL_DROP_VIEW
13969 An SQLINTEGER bitmask enumerating the clauses in the DROP VIEW statement, as |
13970 defined in the ISO SQL standard, supported by the data source.

13971 The following bitmasks are used to determine which clauses are supported:

13972 SQL_DV_DROP_VIEW
13973 SQL_DV_CASCADE
13974 SQL_DV_RESTRICT

13975 SQL_DYNAMIC_CURSOR_ATTRIBUTES1

13976 SQL_DYNAMIC_CURSOR_ATTRIBUTES2
13977 A pair of 32-bit bitmasks that indicate supported operations for dynamic cursors and
13978 describe other attributes of dynamic cursors. See Detecting Cursor Capabilities with
13979 SQLGetInfo() on page 402.

13980 SQL_EXPRESSIONS_IN_ORDERBY
13981 A character string: ‘‘Y’’ if the data source supports expressions in the ORDER BY list; ‘‘N’’ if
13982 it does not.

13983 DE SQL_FETCH_DIRECTION (type: INTEGER)
13984 This indicates the type of cursor movement the implementation supports. The value is a
13985 32-bit bitmask with the low-order bits identified as follows:

13986 SQL_FD_ABSOLUTE
13987 SQL_FD_FIRST
13988 SQL_FD_LAST
13989 SQL_FD_NEXT
13990 SQL_FD_PRIOR
13991 SQL_FD_RELATIVE |

13992 SQL_FILE_USAGE
13993 An SQLSMALLINT value indicating how a single-tier implementation directly treats files in
13994 a data source:

13995 SQL_FILE_NOT_SUPPORTED
13996 The driver is not a single-tier driver.

13997 SQL_FILE_TABLE
13998 A single-tier driver treats files in a data source as tables.

13999 SQL_FILE_CATALOG
14000 A single-tier driver treats files in a data source as a catalog.

388 Direct Review (Build ID 96KAV) (Draft XDBC.33, August 1996)

Reference Manual Pages ISO 92 SQLGetInfo()

14001 An application might use this to determine how users will select data. For example, the
14002 procedure by which the user selects data may vary depending on whether the user is
14003 opening a file or a table.

14004 SQL_FORWARD_ONLY_CURSOR_ATTRIBUTES1

14005 SQL_FORWARD_ONLY_CURSOR_ATTRIBUTES2
14006 A pair of 32-bit bitmasks that indicate supported operations for forward-only cursors and
14007 describe other attributes of forward-only cursors. See Detecting Cursor Capabilities with
14008 SQLGetInfo() on page 402.

14009 SQL_GETDATA_EXTENSIONS
14010 An SQLINTEGER bitmask enumerating extensions to SQLGetData().

14011 The following bitmasks are used in conjunction with the flag to determine what common
14012 extensions the implementation supports for SQLGetData():

14013 SQL_GD_ANY_COLUMN
14014 SQLGetData() can be called for any unbound column, including those before the last
14015 bound column. Note that the columns must be called in order of ascending column
14016 number unless SQL_GD_ANY_ORDER is also returned.

14017 SQL_GD_ANY_ORDER
14018 SQLGetData() can be called for unbound columns in any order. Note that SQLGetData()
14019 can only be called for columns after the last bound column unless
14020 SQL_GD_ANY_COLUMN is also returned.

14021 SQL_GD_BLOCK
14022 SQLGetData() can be called for an unbound column in any row in a block (where the |
14023 row-set size is greater than 1) of data after positioning to that row with SQLSetPos().

14024 SQL_GD_BOUND
14025 SQLGetData() can be called for bound columns as well as unbound columns. An
14026 implementation cannot return this value unless it also returns
14027 SQL_GD_ANY_COLUMN.

14028 SQLGetData() is only required to return data from unbound columns that occur after
14029 the last bound column, are called in order of increasing column number, and are not in
14030 a row in a block of rows.

14031 If the implementation supports bookmarks, it must support calling SQLGetData() on
14032 column 0, regardless of which of the above values it returns.

14033 SQL_GROUP_BY
14034 An SQLSMALLINT value specifying the relationship between the columns in the GROUP
14035 BY clause and the non-aggregated columns in the select list:

14036 SQL_GB_NOT_SUPPORTED
14037 GROUP BY clauses are not supported.

14038 SQL_GB_GROUP_BY_EQUALS_SELECT
14039 The GROUP BY clause must contain all non-aggregated columns in the select list. It
14040 cannot contain any other columns. For example, SELECT DEPT, MAX(SALARY)
14041 FROM EMPLOYEE GROUP BY DEPT.

14042 SQL_GB_GROUP_BY_CONTAINS_SELECT
14043 The GROUP BY clause must contain all non-aggregated columns in the select list. It can
14044 contain columns that are not in the select list. For example, SELECT DEPT,
14045 MAX(SALARY) FROM EMPLOYEE GROUP BY DEPT, AGE.

Data Management: X/Open Database Connectivity (XDBC), Version 2 389

SQLGetInfo() ISO 92 Reference Manual Pages

14046 SQL_GB_NO_RELATION The columns in the GROUP BY clause and the select list are not
14047 related. The meaning of non-grouped, non-aggregated columns in the select list is data
14048 source-dependent. For example, SELECT DEPT, SALARY FROM EMPLOYEE GROUP
14049 BY DEPT, AGE.

14050 SQL_IDENTIFIER_CASE
14051 An SQLSMALLINT value as follows:

14052 SQL_IC_UPPER
14053 Identifiers in SQL are not case-sensitive and are stored in upper case in the system
14054 catalog.

14055 SQL_IC_LOWER
14056 Identifiers in SQL are not case-sensitive and are stored in lower case in the system
14057 catalog.

14058 SQL_IC_SENSITIVE
14059 Identifiers in SQL are case-sensitive and are stored in mixed case in the system catalog.

14060 SQL_IC_MIXED
14061 Identifiers in SQL are not case-sensitive and are stored in mixed case in the system
14062 catalog.

14063 SQL_IDENTIFIER_QUOTE_CHAR
14064 The character string used as the starting and ending delimiter of a quoted (delimited)
14065 identifiers in SQL statements. (Identifiers passed as arguments to XDBC functions do not
14066 need to be quoted.) If the data source does not support quoted identifiers, a blank is
14067 returned.

14068 SQL_INDEX_KEYWORDS
14069 A 32-bit bitmask that enumerates keywords in the CREATE INDEX statement that the
14070 implementation supports. |

14071 SQL_IK_NONE None of the keywords are supported.
14072 SQL_IK_ASC ASC keyword is supported.
14073 SQL_IK_DESC DESC keyword is supported.
14074 SQL_IK_ALL Both keywords are supported.

14075 SQL_INFO_SCHEMA_VIEWS
14076 An SQLINTEGER bitmask enumerating the views in the INFORMATION_SCHEMA that
14077 the implementation supports. The views in, and the contents of, INFORMATION_SCHEMA |
14078 are as defined in the ISO SQL standard.

14079 The following bitmasks are used to determine which views are supported:

14080 SQL_ISV_ASSERTIONS
14081 Identifies the catalog’s assertions that are owned by a given user.

14082 SQL_ISV_CHARACTER_SETS
14083 Identifies the catalog’s character sets that are accessible to a given user.

14084 SQL_ISV_CHECK_CONSTRAINTS
14085 Identifies the CHECK constraints that are owned by a given user.

14086 SQL_ISV_COLLATIONS
14087 Identifies the character collations for the catalog that are accessible to a given user.

14088 SQL_ISV_COLUMN_DOMAIN_USAGE
14089 Identifies columns for the catalog that are dependent on domains defined in the catalog
14090 and are owned by a given user.

390 Direct Review (Build ID 96KAV) (Draft XDBC.33, August 1996)

Reference Manual Pages ISO 92 SQLGetInfo()

14091 SQL_ISV_COLUMN_PRIVILEGES
14092 Identifies the privileges on columns of persistent tables that are available to or granted
14093 by a given user.

14094 SQL_ISV_COLUMNS
14095 Identifies the columns of persistent tables that are accessible to a given user.

14096 SQL_ISV_CONSTRAINT_COLUMN_USAGE
14097 Similar to CONSTRAINT_TABLE_USAGE view, columns are identified for the various
14098 constraints that are owned by a given user.

14099 SQL_ISV_CONSTRAINT_TABLE_USAGE
14100 Identifies the tables that are used by constraints (referential, unique, and assertions),
14101 and are owned by a given user.

14102 SQL_ISV_DOMAIN_CONSTRAINTS
14103 Identifies the domain constraints (of the domains in the catalog) that are accessible to a
14104 given user.

14105 SQL_ISV_DOMAINS
14106 Identifies the domains defined in a catalog that are accessible to the user.

14107 SQL_ISV_KEY_COLUMN_USAGE
14108 Identifies columns defined in the catalog that are constrained as keys by a given user.

14109 SQL_ISV_REFERENTIAL_CONSTRAINTS
14110 Identifies the referential constraints that are owned by a given user.

14111 SQL_ISV_SCHEMATA
14112 Identifies the schemas that are owned by a given user.

14113 SQL_ISV_SQL_LANGUAGES
14114 Identifies the SQL conformance levels, options and dialects supported by the SQL
14115 implementation.

14116 SQL_ISV_TABLE_CONSTRAINTS
14117 Identifies the the table constraints that are owned by a given user.

14118 SQL_ISV_TABLE_PRIVILEGES
14119 Identifies the privileges on persistent tables that are available to or granted by a given
14120 user.

14121 SQL_ISV_TABLES
14122 Identifies the persistent tables defined in a catalog that are accessible to a given user.

14123 SQL_ISV_TRANSLATIONS
14124 Identifies character translations for the catalog that are accessible to a given user.

14125 SQL_ISV_USAGE_PRIVILEGES
14126 Identifies the USAGE privileges on catalog objects that are available to or owned by a
14127 given user.

14128 SQL_ISV_VIEW_COLUMN_USAGE
14129 Identifies the columns on which the catalog’s views that are owned by a given user are
14130 dependent.

14131 SQL_ISV_VIEW_TABLE_USAGE
14132 Identifies the tables on which the catalog’s views that are owned by a given user are
14133 dependent.

14134 SQL_INTEGRITY
14135 A character string: ‘‘Y’’ if the data source supports the Integrity Enhancement Facility; ‘‘N’’ |

Data Management: X/Open Database Connectivity (XDBC), Version 2 391

SQLGetInfo() ISO 92 Reference Manual Pages

14136 if it does not.

14137 SQL_KEYSET_CURSOR_ATTRIBUTES1

14138 SQL_KEYSET_CURSOR_ATTRIBUTES2
14139 A pair of 32-bit bitmasks that indicate supported operations for keyset-driven cursors and
14140 describe other attributes of keyset-driven cursors. See Detecting Cursor Capabilities with
14141 SQLGetInfo() on page 402.

14142 SQL_KEYWORDS
14143 A character string containing a comma-separated list of all data source-specific keywords.
14144 This list does not contain keywords specific to XDBC or keywords used by both the data
14145 source and XDBC.

14146 The #define value SQL_XDBC_KEYWORDS contains a comma-separated list of XDBC
14147 keywords.

14148 SQL_LIKE_ESCAPE_CLAUSE
14149 A character string: ‘‘Y’’ if the data source supports an escape character for the percent
14150 character (%) and underscore character (_) in a LIKE predicate and the implementation
14151 supports the XDBC syntax for defining a LIKE predicate escape character; ‘‘N’’ otherwise.

14152 SQL_MAX_ASYNC_CONCURRENT_STATEMENTS
14153 An SQLINTEGER value specifying the maximum number of active concurrent statements
14154 in asynchronous mode that the implementation can support on a given connection. If there
14155 is no specific limit or the limit is unknown, this value is zero.

14156 SQL_MAX_BINARY_LITERAL_LEN
14157 An SQLINTEGER value specifying the maximum length (number of hexadecimal
14158 characters, excluding the literal prefix and suffix returned by SQLGetTypeInfo()) of a binary
14159 literal in an SQL statement. For example, the binary literal 0xFFAA has a length of 4. If there
14160 is no maximum length or the length is unknown, this value is set to zero.

14161 SQL_MAX_CATALOG_NAME_LEN
14162 An SQLSMALLINT value specifying the maximum length of a catalog name in the data
14163 source. If there is no maximum length or the length is unknown, this value is set to zero.

14164 SQL_MAX_CHAR_LITERAL_LEN
14165 An SQLINTEGER value specifying the maximum length (number of characters, excluding
14166 the literal prefix and suffix returned by SQLGetTypeInfo()) of a character literal in an SQL
14167 statement. If there is no maximum length or the length is unknown, this value is set to zero.

14168 SQL_MAX_COLUMN_NAME_LEN
14169 An SQLSMALLINT value specifying the maximum length of a column name in the data
14170 source. If there is no maximum length or the length is unknown, this value is set to zero.

14171 SQL_MAX_COLUMNS_IN_GROUP_BY
14172 An SQLSMALLINT value specifying the maximum number of columns allowed in a
14173 GROUP BY clause. If there is no specified limit or the limit is unknown, this value is set to
14174 zero.

14175 SQL_MAX_COLUMNS_IN_INDEX
14176 An SQLSMALLINT value specifying the maximum number of columns allowed in an
14177 index. If there is no specified limit or the limit is unknown, this value is set to zero.

14178 SQL_MAX_COLUMNS_IN_ORDER_BY
14179 An SQLSMALLINT value specifying the maximum number of columns allowed in an
14180 ORDER BY clause. If there is no specified limit or the limit is unknown, this value is set to
14181 zero.

392 Direct Review (Build ID 96KAV) (Draft XDBC.33, August 1996)

Reference Manual Pages ISO 92 SQLGetInfo()

14182 SQL_MAX_COLUMNS_IN_SELECT
14183 An SQLSMALLINT value specifying the maximum number of columns allowed in a select
14184 list. If there is no specified limit or the limit is unknown, this value is set to zero.

14185 SQL_MAX_COLUMNS_IN_TABLE
14186 An SQLSMALLINT value specifying the maximum number of columns allowed in a table.
14187 If there is no specified limit or the limit is unknown, this value is set to zero.

14188 SQL_MAX_CONCURRENT_ACTIVITIES
14189 An SQLSMALLINT value specifying the maximum number of active statements that the
14190 implementation can support for a connection. A statement is defined as active if it has
14191 results pending, with the term ‘‘results’’ meaning rows from a SELECT operation or rows
14192 affected by an INSERT, UPDATE, or DELETE operation (such as a row count), or if it is in a
14193 NEED_DATAstate. This value can reflect a limitation imposed by either the data source or
14194 the software that implements the connection to it. If there is no specified limit or the limit is
14195 unknown, this value is set to zero.

14196 SQL_MAX_CURSOR_NAME_LEN
14197 An SQLSMALLINT value specifying the maximum length of a cursor name in the data
14198 source. If there is no maximum length or the length is unknown, this value is set to zero.

14199 SQL_MAX_DRIVER_CONNECTIONS
14200 An SQLSMALLINT value specifying the maximum number of active connections that the
14201 implementation can support for an environment. This value can reflect a limitation imposed
14202 by either the data source or the software that implements the connection to it. If there is no
14203 specified limit or the limit is unknown, this value is set to zero.

14204 SQL_MAX_IDENTIFIER_LEN
14205 An SQLSMALLINT that indicates the maximum size in characters that the data source
14206 supports for user-defined names.

14207 SQL_MAX_INDEX_SIZE
14208 An SQLINTEGER value specifying the maximum number of octets allowed in the |
14209 combined fields of an index. If there is no specified limit or the limit is unknown, this value
14210 is set to zero.

14211 SQL_MAX_PROCEDURE_NAME_LEN
14212 An SQLSMALLINT value specifying the maximum length of a procedure name in the data
14213 source. If there is no maximum length or the length is unknown, this value is set to zero.

14214 SQL_MAX_ROW_SIZE
14215 An SQLINTEGER value specifying the maximum length of a single row in a table. If there
14216 is no specified limit or the limit is unknown, this value is set to zero.

14217 SQL_MAX_ROW_SIZE_INCLUDES_LONG
14218 A character string: ‘‘Y’’ if the maximum row size returned for the SQL_MAX_ROW_SIZE |
14219 option includes the length of all SQL_LONGVARCHAR and SQL_LONGVARBINARY
14220 columns in the row; ‘‘N’’ otherwise.

14221 SQL_MAX_SCHEMA_NAME_LEN
14222 An SQLSMALLINT value specifying the maximum length of a schema name in the data
14223 source. If there is no maximum length or the length is unknown, this value is set to zero.

14224 SQL_MAX_STATEMENT_LEN
14225 An SQLINTEGER value specifying the maximum length (number of characters, including
14226 white space) of an SQL statement. If there is no maximum length or the length is unknown,
14227 this value is set to zero.

Data Management: X/Open Database Connectivity (XDBC), Version 2 393

SQLGetInfo() ISO 92 Reference Manual Pages

14228 SQL_MAX_TABLE_NAME_LEN
14229 An SQLSMALLINT value specifying the maximum length of a table name in the data
14230 source. If there is no maximum length or the length is unknown, this value is set to zero.

14231 SQL_MAX_TABLES_IN_SELECT
14232 An SQLSMALLINT value specifying the maximum number of tables allowed in the FROM
14233 clause of a SELECT statement. If there is no specified limit or the limit is unknown, this
14234 value is set to zero.

14235 SQL_MAX_USER_NAME_LEN
14236 An SQLSMALLINT value specifying the maximum length of a user name in the data
14237 source. If there is no maximum length or the length is unknown, this value is set to zero.

14238 SQL_MULT_RESULT_SETS
14239 A character string indicating in general the implementation’s support for multiple result |
14240 sets. It is "Y" if the data source supports multiple result sets, "N" if it does not. |

14241 It is related to other SQLGetInfo() options in that it is "Y" if the SQL_BS_SELECT_EXPLICIT |
14242 or SQL_BS_SELECT_PROC bits are returned for SQL_BATCH_SUPPORT or if |
14243 SQL_PAS_BATCHis returned for SQL_PARAM_ARRAY_SELECTS.

14244 SQL_MULTIPLE_ACTIVE_TXN
14245 A character string: ‘‘Y’’ if multiple active transactions on a single connection are allowed,
14246 ‘‘N’’ if only one active transaction at a time is supported on a connection.

14247 SQL_NEED_LONG_DATA_LEN
14248 A character string: ‘‘Y’’ if the data source needs the length of a long data value (the data
14249 type is SQL_LONGVARCHAR, SQL_LONGVARBINARY, or a long, data source-specific
14250 data type) before that value is sent to the data source, ‘‘N’’ if it does not. |

14251 SQL_NON_NULLABLE_COLUMNS
14252 An SQLSMALLINT specifying whether the data source supports NOT NULL in columns:

14253 SQL_NNC_NULL
14254 All columns must be nullable.

14255 SQL_NNC_NON_NULL
14256 Columns might not be nullable (the data source supports the NOT NULL column
14257 constraint in CREATE TABLE statements).

14258 SQL_NULL_COLLATION
14259 An SQLSMALLINT value specifying where NULLs are sorted in a result set:

14260 SQL_NC_END
14261 NULLs are sorted at the end of the result set, regardless of the ASC or DESC keywords.

14262 SQL_NC_HIGH
14263 NULLs are sorted at the high end of the result set, depending on the ASC or DESC
14264 keywords.

14265 SQL_NC_LOW
14266 NULLs are sorted at the low end of the result set, depending on the ASC or DESC
14267 keywords.

14268 SQL_NC_START
14269 NULLs are sorted at the start of the result set, regardless of the ASC or DESC
14270 keywords.

14271 SQL_NUMERIC_FUNCTIONS
14272 An SQLINTEGER bitmask enumerating the scalar numeric functions the implementation |
14273 supports. Numeric functions are defined in Section F.2 on page 603. |

394 Direct Review (Build ID 96KAV) (Draft XDBC.33, August 1996)

Reference Manual Pages ISO 92 SQLGetInfo()

14274 The following bitmasks are used to determine which numeric functions are supported:

14275 SQL_FN_NUM_ABS SQL_FN_NUM_LOG10
14276 SQL_FN_NUM_ACOS SQL_FN_NUM_MOD
14277 SQL_FN_NUM_ASIN SQL_FN_NUM_PI
14278 SQL_FN_NUM_ATAN SQL_FN_NUM_POWER
14279 SQL_FN_NUM_ATAN2 SQL_FN_NUM_RADIANS
14280 SQL_FN_NUM_CEILING SQL_FN_NUM_RAND
14281 SQL_FN_NUM_COS SQL_FN_NUM_ROUND
14282 SQL_FN_NUM_COT SQL_FN_NUM_SIGN
14283 SQL_FN_NUM_DEGREES SQL_FN_NUM_SIN
14284 SQL_FN_NUM_EXP SQL_FN_NUM_SQRT
14285 SQL_FN_NUM_FLOOR SQL_FN_NUM_TAN
14286 SQL_FN_NUM_LOG SQL_FN_NUM_TRUNCATE

14287 SQL_OJ_CAPABILITIES
14288 An SQLINTEGER bitmask enumerating the types of outer joins the implementation
14289 supports. The following bitmasks are used to determine which types are supported:

14290 SQL_OJ_LEFT
14291 Left outer joins are supported.

14292 SQL_OJ_RIGHT
14293 Right outer joins are supported.

14294 SQL_OJ_FULL
14295 Full outer joins are supported.

14296 SQL_OJ_NESTED
14297 Nested outer joins are supported.

14298 SQL_OJ_NOT_ORDERED
14299 The column names in the ON clause of the outer join do not have to be in the same
14300 order as their respective table names in the OUTER JOIN clause.

14301 SQL_OJ_INNER
14302 The inner table (the right table in a left outer join or the left table in a right outer join)
14303 can also be used in an inner join. This does not apply to full outer joins, which do not
14304 have an inner table.

14305 SQL_OJ_ALL_COMPARISON_OPS
14306 The comparison operator in the ON clause can be any of the XDBC comparison
14307 operators. If this bit is not set, only the equals (=) comparison operator can be used in
14308 outer joins.

14309 SQL_ORDER_BY_COLUMNS_IN_SELECT
14310 A character string: ‘‘Y’’ if the columns in the ORDER BY clause must be in the select list;
14311 ‘‘N’’ otherwise.

14312 SQL_OUTER_JOINS
14313 A character string; ‘‘Y’’ if the data source supports outer joins and the implementation
14314 supports the XDBC outer join escape clause. ‘‘N’’ otherwise.

14315 SQL_PARAM_ARRAY_ROW_COUNTS
14316 An SQLINTEGER enumerating the implementation’s properties regarding the availability |
14317 of row counts in a parameterized execution. (See Section 11.3 on page 156.) Has the |
14318 following values:

14319 SQL_PARC_BATCH
14320 Individual row counts are available for each set of parameters. This is conceptually
14321 equivalent to the implementation generating a batch of SQL statements, one for each
14322 parameter set in the array. Extended error information can be retrieved by using the

Data Management: X/Open Database Connectivity (XDBC), Version 2 395

SQLGetInfo() ISO 92 Reference Manual Pages

14323 SQL_PARAM_STATUS_PTRdescriptor field.

14324 SQL_PARC_NO_BATCH
14325 There is only one row count available, which is the cumulative row count resulting
14326 from the execution of the statement for the entire array of parameters. This is
14327 conceptually equivalent treating the statement along with the entire parameter array as
14328 one atomic unit. Errors are handled the same as if one statement were executed.

14329 SQL_PARAM_ARRAY_SELECTS
14330 An SQLINTEGER enumerating the implementation’s properties regarding the availability |
14331 of result sets in a parameterized execution. (See Section 11.3 on page 156.) Has the |
14332 following values:

14333 SQL_PAS_BATCH
14334 There is one result set available per set of parameters. This is conceptually equivalent
14335 to the implementation generating a batch of SQL statements, one for each parameter set
14336 in the array.

14337 SQL_PAS_NO_BATCH
14338 There is only one result set available, which represents the cumulative result set
14339 resulting from the execution of the statement for the entire array of parameters. This is
14340 conceptually equivalent to treating the statement along with the entire parameter array
14341 as one atomic unit.

14342 SQL_PAS_NO_SELECT
14343 The implementation cannot execute a result-set generating statement with an array of
14344 parameters.

14345 SQL_PROCEDURE_TERM
14346 A character string with the data source vendor’s name for a procedure; for example,
14347 ‘‘database procedure’’, ‘‘stored procedure’’, ‘‘procedure’’, ‘‘package’’, or ‘‘stored query’’.

14348 SQL_PROCEDURES
14349 A character string: ‘‘Y’’ if the data source supports procedures and the XDBC procedure
14350 invocation syntax; ‘‘N’’ otherwise.

14351 SQL_QUOTED_IDENTIFIER_CASE
14352 An SQLINTEGER value as follows:

14353 SQL_IC_UPPER
14354 Quoted identifiers in SQL are not case-sensitive and are stored in upper case in the
14355 system catalog.

14356 SQL_IC_LOWER
14357 Quoted identifiers in SQL are not case-sensitive and are stored in lower case in the
14358 system catalog.

14359 SQL_IC_SENSITIVE
14360 Quoted identifiers in SQL are case-sensitive and are stored in mixed case in the system |
14361 catalog. (Note that in a data source that complies with the ISO SQL standard, quoted |
14362 identifiers are always case-sensitive.)

14363 SQL_IC_MIXED
14364 Quoted identifiers in SQL are not case-sensitive and are stored in mixed case in the
14365 system catalog.

14366 SQL_REVOKE
14367 The following bitmasks are used to determine which clauses are supported:

396 Direct Review (Build ID 96KAV) (Draft XDBC.33, August 1996)

Reference Manual Pages ISO 92 SQLGetInfo()

14368 SQL_R_CASCADE
14369 SQL_R_RESTRICT

14370 SQL_ROW_UPDATES
14371 A character string: ‘‘Y’’ if a keyset-driven or mixed cursor maintains row versions or values
14372 for all fetched rows and therefore can detect any updates made to a row by any user since
14373 the row was last fetched. (This only applies to updates, not to deletions or insertions.) The
14374 implementation can return the SQL_ROW_UPDATED flag to the row status array when
14375 SQLFetchScroll() is called. Otherwise, ‘‘N’’.

14376 SQL_SCHEMA_TERM
14377 A character string with the data source vendor’s name for an schema; for example, ‘‘owner’’,
14378 ‘‘Authorization ID’’, or ‘‘Schema’’.

14379 SQL_SCHEMA_USAGE
14380 An SQLINTEGER bitmask enumerating the statements in which schemas can be used:

14381 SQL_SU_DML_STATEMENTS
14382 Schemas are supported in all Data Manipulation Language statements: SELECT,
14383 INSERT, UPDATE, DELETE, and, if supported, SELECT FOR UPDATE and positioned
14384 UPDATEand DELETE statements.

14385 SQL_SU_PROCEDURE_INVOCATION
14386 Schemas are supported in the XDBC procedure invocation statement.

14387 SQL_SU_TABLE_DEFINITION
14388 Schemas are supported in all table definition statements: CREATE TABLE, CREATE
14389 VIEW, ALTER TABLE, DROP TABLE, and DROP VIEW.

14390 SQL_SU_INDEX_DEFINITION
14391 Schemas are supported in all index definition statements: CREATE INDEX and DROP
14392 INDEX.

14393 SQL_SU_PRIVILEGE_DEFINITION
14394 Schemas are supported in all privilege definition statements: GRANT and REVOKE.

14395 DE SQL_SCROLL_CONCURRENCY (type: INTEGER)
14396 This indicates the concurrency control capabilities that the implementation supports for
14397 scrollable cursors. The value is a 32-bit bitmask with the low-order bits identified as
14398 follows:

14399 SQL_SCCO_READ_ONLY
14400 The cursor can be read, but no updates are allowed.

14401 SQL_SCCO_LOCK
14402 The cursor can use the lowest level of locking that ensures that the row can be updated.

14403 SQL_SCCO_OPT_ROWVER
14404 The cursor can use optimistic concurrency with row identifiers or timestamps.

14405 SQL_SCCO_OPT_VALUES
14406 The cursor can use optimistic concurrency comparing values.

14407 SQL_SCROLL_OPTIONS
14408 An SQLINTEGER bitmask enumerating the scroll options supported for scrollable cursors.

14409 The following bitmasks are used to determine which options are supported:

14410 SQL_SO_FORWARD_ONLY
14411 The cursor only scrolls forward.

Data Management: X/Open Database Connectivity (XDBC), Version 2 397

SQLGetInfo() ISO 92 Reference Manual Pages

14412 SQL_SO_STATIC
14413 The data in the result set is static.

14414 SQL_SO_KEYSET_DRIVEN
14415 The implementation saves and uses the keys for every row in the result set.

14416 SQL_SO_DYNAMIC
14417 The implementation keeps the keys for every row in the row-set (the keyset size is the |
14418 same as the row-set size).

14419 SQL_SO_MIXED
14420 The implementation keeps the keys for every row in the keyset, and the keyset size is |
14421 greater than the row-set size. The cursor is keyset-driven inside the keyset and dynamic
14422 outside the keyset.

14423 For information about scrollable cursors, see Section 11.2 on page 147.

14424 SQL_SEARCH_PATTERN_ESCAPE
14425 A character string specifying what the implementation supports as an escape character that
14426 permits the use of the pattern match metacharacters underscore (_) and percent (%) as valid
14427 characters in search patterns. This escape character applies only for those catalog function
14428 arguments that support search strings. If this string is empty, the implementation does not
14429 support a search-pattern escape character.

14430 This option is limited to catalog functions. Search patterns are defined in Pattern Value (PV) |
14431 Arguments on page 71.

14432 SQL_SERVER_NAME
14433 A character string with the actual data source-specific server name; useful when a data
14434 source name is used during SQLConnect(), SQLDriverConnect(), and SQLBrowseConnect().

14435 SQL_SPECIAL_CHARACTERS
14436 A character string containing all special characters (that is, all characters except a through z,
14437 A through Z, 0 through 9, and underscore) that can be used in an identifier name, such as a |
14438 table, column, or index name, on the data source. For example, ‘‘#$^’’. This string contains |
14439 characters taken from a single, implementation-defined character set. |

14440 Portable applications should use the delimited identifier syntax to code identifiers that |
14441 contain one or more of these special characters, and should not create an identifier whose |
14442 name begins or ends with a special character.

14443 SQL_SQL92_DATETIME_FUNCTIONS
14444 An SQLINTEGER bitmask enumerating the date/time scalar functions that the |
14445 implementation supports, as defined in the ISO SQL standard. |

14446 The following bitmasks are used to determine which date/time functions are supported:

14447 SQL_SDF_CURRENT_DATE
14448 SQL_SDF_CURRENT_TIME
14449 SQL_SDF_CURRENT_TIMESTAMP

14450 SQL_SQL92_FOREIGN_KEY_DELETE_RULE
14451 An SQLINTEGER bitmask enumerating the rules supported for a foreign key in a DELETE |
14452 statement, as defined in the ISO SQL standard.

14453 The following bitmasks are used to determine which clauses are supported by the data
14454 source:

398 Direct Review (Build ID 96KAV) (Draft XDBC.33, August 1996)

Reference Manual Pages ISO 92 SQLGetInfo()

14455 SQL_SFKDR_DELETE_CASCADE
14456 SQL_SFKDR_DELETE_NO_ACTION
14457 SQL_SFKDR_DELETE_SET_DEFAULT
14458 SQL_SFKDR_DELETE_SET_NULL

14459 SQL_SQL92_FOREIGN_KEY_UPDATE_RULE
14460 An SQLINTEGER bitmask enumerating the rules supported for a foreign key in an UPDATE |
14461 statement, as defined in the ISO SQL standard.

14462 The following bitmasks are used to determine which clauses are supported by the data
14463 source:

14464 SQL_SFKUR_UPDATE_CASCADE
14465 SQL_SFKUR_UPDATE_NO_ACTION
14466 SQL_SFKUR_UPDATE_SET_DEFAULT
14467 SQL_SFKUR_UPDATE_SET_NULL

14468 SQL_SQL92_GRANT
14469 An SQLINTEGER bitmask enumerating the clauses supported in the GRANT statement, as |
14470 defined in the ISO SQL standard.

14471 The following bitmasks are used to determine which clauses are supported by the data
14472 source:

14473 SQL_SG_USAGE_ON_DOMAIN
14474 SQL_SG_USAGE_ON_CHARACTER_SET
14475 SQL_SG_USAGE_ON_COLLATION
14476 SQL_SG_USAGE_ON_TRANSLATION
14477 SQL_SG_WITH_GRANT_OPTION

14478 SQL_SQL92_NUMERIC_VALUE_FUNCTIONS
14479 An SQLINTEGER bitmask enumerating the numeric value scalar functions that the |
14480 implementation supports, as defined in the ISO SQL standard. |

14481 The following bitmasks are used to determine which numeric value scalar functions are |
14482 supported:

14483 SQL_NVF_BIT_LENGTH
14484 SQL_NVF_CHAR_LENGTH
14485 SQL_NVF_CHARACTER_LENGTH
14486 SQL_NVF_EXTRACT
14487 SQL_NVF_OCTET_LENGTH
14488 SQL_NVF_POSITION

14489 SQL_SQL92_PREDICATES
14490 An SQLINTEGER bitmask enumerating the predicates supported in a SELECT statement, as |
14491 defined in the ISO SQL standard.

14492 The following bitmasks are used to determine which options are supported by the data
14493 source:

Data Management: X/Open Database Connectivity (XDBC), Version 2 399

SQLGetInfo() ISO 92 Reference Manual Pages

14494 SQL_SP_EXISTS
14495 SQL_SP_ISNOTNULL
14496 SQL_SP_ISNULL
14497 SQL_SP_MATCH_FULL
14498 SQL_SP_MATCH_PARTIAL
14499 SQL_SP_MATCH_UNIQUE_FULL
14500 SQL_SP_MATCH_UNIQUE_PARTIAL
14501 SQL_SP_OVERLAPS
14502 SQL_SP_UNIQUE

14503 SQL_SQL92_RELATIONAL_JOIN_OPERATORS
14504 An SQLINTEGER bitmask enumerating the relational join operators supported in a SELECT |
14505 statement, as defined in the ISO SQL standard.

14506 The following bitmasks are used to determine which options are supported by the data
14507 source:

14508 SQL_SRJO_CORRESPONDING_CLAUSE
14509 SQL_SRJO_CROSS_JOIN
14510 SQL_SRJO_EXCEPT_JOIN
14511 SQL_SRJO_FULL_OUTER_JOIN
14512 SQL_SRJO_INNER_JOIN
14513 SQL_SRJO_INTERSECT_JOIN
14514 SQL_SRJO_LEFT_OUTER_JOIN
14515 SQL_SRJO_NATURAL_JOIN
14516 SQL_SRJO_RIGHT_OUTER_JOIN
14517 SQL_SRJO_UNION_JOIN

14518 SQL_SQL92_REVOKE
14519 An SQLINTEGER bitmask enumerating the clauses supported in the REVOKE statement, as |
14520 defined in the ISO SQL standard, supported by the data source.

14521 The following bitmasks are used to determine which clauses are supported by the data
14522 source:

14523 SQL_SR_USAGE_ON_DOMAIN
14524 SQL_SR_USAGE_ON_CHARACTER_SET
14525 SQL_SR_USAGE_ON_COLLATION
14526 SQL_SR_USAGE_ON_TRANSLATION
14527 SQL_SR_GRANT_OPTION_FOR

14528 SQL_SQL92_ROW_VALUE_CONSTRUCTOR
14529 An SQLINTEGER bitmask enumerating the row value constructor expressions supported in |
14530 a SELECT statement, as defined in the ISO SQL standard.

14531 The following bitmasks are used to determine which options are supported by the data
14532 source:

14533 SQL_RVC_VALUE_EXPRESSION
14534 SQL_RVC_NULL
14535 SQL_RVC_DEFAULT
14536 SQL_RVC_ROW_SUBQUERY

14537 SQL_SQL92_STRING_FUNCTIONS
14538 An SQLINTEGER bitmask enumerating the string scalar functions that the implementation |
14539 supports, as defined in the ISO SQL standard. |

14540 The following bitmasks are used to determine which string scalar functions are supported:

400 Direct Review (Build ID 96KAV) (Draft XDBC.33, August 1996)

Reference Manual Pages ISO 92 SQLGetInfo()

14541 SQL_SSF_CONVERT
14542 SQL_SSF_LOWER
14543 SQL_SSF_UPPER
14544 SQL_SSF_SUBSTRING
14545 SQL_SSF_TRANSLATE
14546 SQL_SSF_TRIM_BOTH
14547 SQL_SSF_TRIM_LEADING
14548 SQL_SSF_TRIM_TRAILING

14549 SQL_SQL92_VALUE_EXPRESSIONS
14550 An SQLINTEGER bitmask enumerating the value expressions supported in a SELECT |
14551 statement, as defined in the ISO SQL standard.

14552 The following bitmasks are used to determine which options are supported by the data
14553 source:

14554 SQL_SVE_CASE
14555 SQL_SVE_CAST
14556 SQL_SVE_COALESCE
14557 SQL_SVE_NULLIF

14558 SQL_STANDARD_CLI_CONFORMANCE
14559 An SQLINTEGER bitmask enumerating the CLI standard(s) with which the implementation |
14560 complies. The following bitmasks are used to determine which levels the implementation |
14561 complies with:

14562 SQL_SCC_XOPEN_CLI_VERSION1
14563 The implementation complies with the X/Open CLI version 1. |

14564 SQL_SCC_ISO92_CLI
14565 The implementation complies with the ISO CLI International Standard. |

14566 SQL_STATIC_CURSOR_ATTRIBUTES1

14567 SQL_STATIC_CURSOR_ATTRIBUTES2
14568 A pair of 32-bit bitmasks that indicate supported operations for static cursors and describe
14569 other attributes of static cursors. See Detecting Cursor Capabilities with SQLGetInfo() on
14570 page 402.

14571 SQL_STRING_FUNCTIONS
14572 An SQLINTEGER bitmask enumerating the scalar string functions the implementation |
14573 supports. String functions are defined in Section F.1 on page 601.

14574 The following bitmasks are used to determine which string functions are supported:

14575 SQL_FN_STR_ASCII SQL_FN_STR_LTRIM
14576 SQL_FN_STR_BIT_LENGTH SQL_FN_STR_OCTET_LENGTH
14577 SQL_FN_STR_CHAR SQL_FN_STR_POSITION
14578 SQL_FN_STR_CHAR_LENGTH SQL_FN_STR_REPEAT
14579 SQL_FN_STR_CHARACTER_LENGTH SQL_FN_STR_REPLACE
14580 SQL_FN_STR_CONCAT SQL_FN_STR_RIGHT
14581 SQL_FN_STR_DIFFERENCE SQL_FN_STR_RTRIM
14582 SQL_FN_STR_INSERT SQL_FN_STR_SOUNDEX
14583 SQL_FN_STR_LCASE SQL_FN_STR_SPACE
14584 SQL_FN_STR_LEFT SQL_FN_STR_SUBSTRING
14585 SQL_FN_STR_LENGTH SQL_FN_STR_UCASE
14586 SQL_FN_STR_LOCATE

14587 If an application can call the LOCATE scalar function with the string_exp1, string_exp2, and
14588 start arguments, the implementation returns the SQL_FN_STR_LOCATE bitmask. If an
14589 application can call the LOCATE scalar function with only the string_exp1 and string_exp2

Data Management: X/Open Database Connectivity (XDBC), Version 2 401

SQLGetInfo() ISO 92 Reference Manual Pages

14590 arguments, the implementation returns the SQL_FN_STR_LOCATE_2 bitmask.
14591 Implementations that fully support the LOCATE scalar function return both bitmasks.

14592 SQL_SUBQUERIES
14593 An SQLINTEGER bitmask enumerating the predicates that support subqueries:

14594 SQL_SQ_CORRELATED_SUBQUERIES
14595 SQL_SQ_COMPARISON
14596 SQL_SQ_EXISTS
14597 SQL_SQ_IN
14598 SQL_SQ_QUANTIFIED

14599 The SQL_SQ_CORRELATED_SUBQUERIES bitmask indicates that all predicates that
14600 support subqueries support correlated subqueries.

14601 SQL_SYSTEM_FUNCTIONS
14602 An SQLINTEGER bitmask enumerating the scalar system functions the implementation |
14603 supports. These functions are defined in Section F.4 on page 608.

14604 The following bitmasks are used to determine which system functions are supported:

14605 SQL_FN_SYS_DBNAME
14606 SQL_FN_SYS_IFNULL
14607 SQL_FN_SYS_USERNAME

14608 SQL_TABLE_TERM
14609 A character string with the data source vendor’s name for a table; for example, ‘‘table’’ or
14610 ‘‘file’’.

14611 SQL_TIMEDATE_ADD_INTERVALS
14612 An SQLINTEGER bitmask enumerating the timestamp intervals the implementation
14613 supports for the TIMESTAMPADDscalar function.

14614 The following bitmasks are used to determine which intervals are supported:

14615 SQL_FN_TSI_FRAC_SECOND
14616 SQL_FN_TSI_SECOND
14617 SQL_FN_TSI_MINUTE
14618 SQL_FN_TSI_HOUR
14619 SQL_FN_TSI_DAY
14620 SQL_FN_TSI_WEEK
14621 SQL_FN_TSI_MONTH
14622 SQL_FN_TSI_QUARTER
14623 SQL_FN_TSI_YEAR

14624 SQL_TIMEDATE_DIFF_INTERVALS
14625 An SQLINTEGER bitmask enumerating the timestamp intervals the implementation
14626 supports for the TIMESTAMPDIFF scalar function.

14627 The following bitmasks are used to determine which intervals are supported:

402 Direct Review (Build ID 96KAV) (Draft XDBC.33, August 1996)

Reference Manual Pages ISO 92 SQLGetInfo()

14628 SQL_FN_TSI_FRAC_SECOND
14629 SQL_FN_TSI_SECOND
14630 SQL_FN_TSI_MINUTE
14631 SQL_FN_TSI_HOUR
14632 SQL_FN_TSI_DAY
14633 SQL_FN_TSI_WEEK
14634 SQL_FN_TSI_MONTH
14635 SQL_FN_TSI_QUARTER
14636 SQL_FN_TSI_YEAR

14637 SQL_TIMEDATE_FUNCTIONS
14638 An SQLINTEGER bitmask enumerating the scalar date and time functions the |
14639 implementation supports. These functions are defined in Section F.3 on page 605.

14640 The following bitmasks are used to determine which date and time functions are supported:

14641 SQL_FN_TD_CURDATE SQL_FN_TD_MINUTE
14642 SQL_FN_TD_CURRENT_DATE SQL_FN_TD_MONTH
14643 SQL_FN_TD_CURRENT_TIME SQL_FN_TD_MONTHNAME
14644 SQL_FN_TD_CURRENT_TIMESTAMP SQL_FN_TD_NOW
14645 SQL_FN_TD_CURTIME SQL_FN_TD_QUARTER
14646 SQL_FN_TD_DAYNAME SQL_FN_TD_SECOND
14647 SQL_FN_TD_DAYOFMONTH SQL_FN_TD_TIMESTAMPADD
14648 SQL_FN_TD_DAYOFWEEK SQL_FN_TD_TIMESTAMPDIFF
14649 SQL_FN_TD_DAYOFYEAR SQL_FN_TD_WEEK
14650 SQL_FN_TD_EXTRACT SQL_FN_TD_YEAR
14651 SQL_FN_TD_HOUR

14652 SQL_TXN_CAPABLE
14653 An SQLSMALLINT value describing the extent to which the data source supports
14654 transactions:

14655 SQL_TC_NONE
14656 Transactions not supported.

14657 SQL_TC_DML
14658 Transactions can only contain Data Manipulation Language (DML) statements
14659 (SELECT, INSERT, UPDATE, DELETE). Data Definition Language (DDL) statements
14660 encountered in a transaction cause an error.

14661 SQL_TC_DDL_COMMIT
14662 Transactions can only contain DML statements. DDL statements (CREATE TABLE,
14663 DROP INDEX, an so on) encountered in a transaction cause the transaction to be
14664 committed.

14665 SQL_TC_DDL_IGNORE
14666 Transactions can only contain DML statements. DDL statements encountered in a
14667 transaction are ignored.

14668 SQL_TC_ALL
14669 Transactions can contain DDL statements and DML statements in any order.

14670 SQL_TXN_ISOLATION_OPTION
14671 An SQLINTEGER bitmask enumerating the transaction isolation levels the implementation |
14672 supports. This indicates the valid values to which the application can set the |
14673 SQL_ATTR_TXN_ISOLATIONconnection attribute.

14674 The following bitmasks are used in conjunction with the flag to determine which options
14675 are supported:

Data Management: X/Open Database Connectivity (XDBC), Version 2 403

SQLGetInfo() ISO 92 Reference Manual Pages

14676 SQL_TXN_READ_UNCOMMITTED
14677 SQL_TXN_READ_COMMITTED
14678 SQL_TXN_REPEATABLE_READ
14679 SQL_TXN_SERIALIZABLE

14680 The above values correspond to the values for the SQL_DEFAULT_TXN_ISOLATION |
14681 option described above. The terms used above for both the isolation levels and the isolation
14682 failure phenomena are defined in Section 14.2.2 on page 186.

14683 SQL_UNION
14684 An SQLINTEGER bitmask enumerating the support for the UNION clause:

14685 SQL_U_UNION The data source supports the UNION clause.

14686 SQL_U_UNION_ALL The data source supports the ALL keyword in the UNION
14687 clause. (SQLGetInfo() returns both SQL_U_UNION and
14688 SQL_U_UNION_ALL in this case.)

14689 SQL_USER_NAME
14690 A character string with the name used in a particular database, which can be different from
14691 login name.

14692 SQL_XDBC_INTERFACE_CONFORMANCE
14693 An SQLINTEGER value indicating the level of the XDBC interface to which the |
14694 implementation complies: |

14695 SQL_OIC_CORE claims XDBC Core-level compliance |

14696 SQL_OIC_LEVEL1 claims XDBC Level 1 compliance |

14697 SQL_OIC_LEVEL2 claims XDBC Level 2 compliance |

14698 These terms are defined in Section 1.7 on page 13.

14699 SQL_XDBC_VER
14700 A character string with the version of XDBC to which the implementation complies. The |
14701 version is of the form ##.##.0000, where the first two digits are the major version and the
14702 next two digits are the minor version.

14703 SQL_XOPEN_CLI_YEAR
14704 A character string that indicates the year of publication of the X/Open specification with
14705 which the XDBC implementation fully complies.

14706 Detecting Cursor Capabilities with SQLGetInfo()

14707 Several values of InfoType select bitmasks that report the capabilities the implementation
14708 supports for various types of cursor.

14709 These bitmasks come in pairs. The first of each pair is selected by a manifest constant that ends
14710 in 1 and bits within it can be identified using constants containing _CA1_. The second of each
14711 pair is selected by a manifest constant that ends in 2 and bits within it can be identified using
14712 constants containing _CA2_.

14713 There are the following bitmasks:

14714 SQL_DYNAMIC_CURSOR_ATTRIBUTES1 Indicates supported operations for dynamic cursors.

14715 SQL_DYNAMIC_CURSOR_ATTRIBUTES2 Indicates other attributes of dynamic cursors.

14716 SQL_FORWARD_ONLY_CURSOR_ATTRIBUTES1 Indicates supported operations for forward-only
14717 cursors.

14718 SQL_FORWARD_ONLY_CURSOR_ATTRIBUTES2 Indicates other attributes of forward-only cursors.

404 Direct Review (Build ID 96KAV) (Draft XDBC.33, August 1996)

Reference Manual Pages ISO 92 SQLGetInfo()

14719 SQL_KEYSET_CURSOR_ATTRIBUTES1 Indicates supported operations for keyset-driven
14720 cursors.

14721 SQL_KEYSET_CURSOR_ATTRIBUTES2 Indicates other attributes of keyset-driven cursors.

14722 SQL_STATIC_CURSOR_ATTRIBUTES1 Indicates supported operations for static cursors.

14723 SQL_STATIC_CURSOR_ATTRIBUTES2 Indicates other attributes of static cursors.

14724 If the following bits are nonzero in an information item ending in 1, it means the implementation
14725 supports the operation listed below for the cursor type specified by the information item:

14726 SQL_CA1_NEXT
14727 SQLFetchScroll() with FetchOrientation = SQL_FETCH_NEXT

14728 SQL_CA1_ABSOLUTE
14729 SQLFetchScroll() with FetchOrientation = SQL_FETCH_FIRST, SQL_FETCH_LAST, or
14730 SQL_FETCH_ABSOLUTE. (These are fetches independent of the current cursor position.)

14731 SQL_CA1_RELATIVE
14732 SQLFetchScroll() with FetchOrientation = SQL_FETCH_PRIOR or SQL_FETCH_RELATIVE.
14733 (These are fetches that depend on the current cursor position. SQL_FETCH_NEXT is also a
14734 relative fetch but is not included in this category because forward-only cursors support
14735 SQL_FETCH_NEXT but do not support SQL_FETCH_PRIOR nor
14736 SQL_FETCH_RELATIVE.)

14737 SQL_CA1_BOOKMARK
14738 SQLFetchScroll() with FetchOrientation = SQL_FETCH_BOOKMARK

14739 SQL_CA1_LOCK_NO_CHANGE
14740 SQLSetPos() with LockType = SQL_LOCK_NO_CHANGE

14741 SQL_CA1_LOCK_UNLOCK
14742 SQLSetPos() with LockType = SQL_LOCK_UNLOCK

14743 SQL_CA1_POS_POSITION
14744 SQLSetPos() with Operation = SQL_POSITION

14745 SQL_CA1_POS_UPDATE
14746 SQLSetPos() with Operation = SQL_UPDATE

14747 SQL_CA1_POS_DELETE
14748 SQLSetPos() with Operation = SQL_DELETE

14749 SQL_CA1_POS_REFRESH
14750 SQLSetPos() with Operation = SQL_REFRESH

14751 SQL_CA1_POSITIONED_UPDATE
14752 The SQL statement UPDATEWHERE CURRENT OF

14753 SQL_CA1_POSITIONED_DELETE
14754 The SQL statement DELETE WHERE CURRENT OF

14755 SQL_CA1_SELECT_FOR_UPDATE
14756 The SQL statement SELECT FOR UPDATE

14757 SQL_CA1_BULK_ADD
14758 SQLBulkOperations() with Operation = SQL_ADD

14759 SQL_CA1_BULK_UPDATE_BY_BOOKMARK
14760 SQLBulkOperations() with Operation = SQL_UPDATE_BY_BOOKMARK

14761 SQL_CA1_BULK_DELETE_BY_BOOKMARK
14762 SQLBulkOperations() with Operation = SQL_DELETE_BY_BOOKMARK

Data Management: X/Open Database Connectivity (XDBC), Version 2 405

SQLGetInfo() ISO 92 Reference Manual Pages

14763 SQL_CA1_BULK_FETCH_BY_BOOKMARK
14764 SQLBulkOperations() with Operation = SQL_REFRESH_BY_BOOKMARK

14765 If the following bits are nonzero in an information item ending in 2, it makes the assertion listed
14766 below for the cursor type specified by the information item:

14767 SQL_CA2_READ_ONLY_CONCUR
14768 The implementation supports read-only cursors, in which no updates are allowed. (The
14769 SQL_ATTR_CONCURRENCY statement attribute can be SQL_CONCUR_READ_ONLY.)

14770 SQL_CA2_LOCK_CONCURRENCY
14771 The implementation supports a cursor that uses the lowest level of locking sufficient to
14772 ensure that the row can be updated is supported. (The SQL_ATTR_CONCURRENCY
14773 statement attribute can be SQL_CONCUR_LOCK.)

14774 SQL_CA2_OPT_ROWVER_CONCURRENCY
14775 The implementation supports a cursor that uses the optimistic concurrency control
14776 comparing row versions. (The SQL_ATTR_CONCURRENCY statement attribute can be
14777 SQL_CONCUR_ROWVER.)

14778 SQL_CA2_OPT_VALUES_CONCURRENCY
14779 The implementation supports cursors that use the optimistic concurrency control
14780 comparing values. (The SQL_ATTR_CONCURRENCY statement attribute can be
14781 SQL_CONCUR_VALUES.)

14782 SQL_CA2_SENSITIVITY_ADDITIONS
14783 Added rows are visible to the cursor; the cursor can scroll to those rows. (Where these rows
14784 are added to the cursor is implementation-defined.)

14785 SQL_CA2_SENSITIVITY_DELETIONS
14786 Deleted rows are no longer available through the cursor, and do not leave a ‘‘hole’’ in the
14787 result set; after the cursor scrolls from a deleted row, it cannot return there.

14788 SQL_CA2_SENSITIVITY_UPDATES
14789 Updates to rows are visible through the cursor; if the cursor scrolls from and returns to an
14790 updated row, the data returned by the cursor is the updated data, not the original data.

14791 SQL_CA2_MAX_ROWS_SELECT
14792 The SQL_ATTR_MAX_ROWS statement attribute affects SELECT statements.

14793 SQL_CA2_MAX_ROWS_INSERT
14794 The SQL_ATTR_MAX_ROWS statement attribute affects INSERT statements.

14795 SQL_CA2_MAX_ROWS_DELETE
14796 The SQL_ATTR_MAX_ROWS statement attribute affects DELETE statements.

14797 SQL_CA2_MAX_ROWS_UPDATE
14798 The SQL_ATTR_MAX_ROWS statement attribute affects UPDATEstatements.

14799 SQL_CA2_MAX_ROWS_CATALOG
14800 The SQL_ATTR_MAX_ROWS statement attribute affects CATALOGresult sets.

14801 SQL_CA2_MAX_ROWS_AFFECTS_ALL
14802 The SQL_ATTR_MAX_ROWS statement attribute affects SELECT, INSERT, DELETE, and
14803 UPDATEstatements, and CATALOGresult sets.

14804 SQL_CA2_CRC_EXACT
14805 The exact row count is available in the SQL_DIAG_CURSOR_ROW_COUNT diagnostic
14806 field.

406 Direct Review (Build ID 96KAV) (Draft XDBC.33, August 1996)

Reference Manual Pages ISO 92 SQLGetInfo()

14807 SQL_CA2_CRC_APPROXIMATE
14808 An approximate row count is available in the SQL_DIAG_CURSOR_ROW_COUNT
14809 diagnostic field. |

14810 The following three bitmasks indicate the implementation’s ability to simulate positioned |
14811 UPDATE and DELETE statements, and therefore indicate the valid values to which the |
14812 application can set the SQL_ATTR_SIMULATE_CURSORstatement attribute: |

14813 SQL_CA2_SIMULATE_NON_UNIQUE
14814 The implementation does not guarantee that simulated positioned UPDATE or DELETE
14815 statements affect only one row; the application must provide for this. (If a statement affects
14816 more than one row, SQLExecute() and SQLExecDirect() return SQLSTATE 01001 (Cursor |
14817 operation conflict).)

14818 SQL_CA2_SIMULATE_TRY_UNIQUE
14819 The implementation tries to guarantee that simulated positioned UPDATE or DELETE
14820 statements affect only one row. The implementation always executes such statements, even
14821 if they might affect more than one row, such as when there is no unique key. (If a statement
14822 affects more than one row, SQLExecute() and SQLExecDirect() return SQLSTATE 01001 |
14823 (Cursor operation conflict).

14824 SQL_CA2_SIMULATE_UNIQUE
14825 The implementation either has true support for positioned UPDATE and DELETE |
14826 statements, or guarantees that its simulation of those statements affects only one row. If the |
14827 implementation cannot guarantee this for a given statement, SQLExecDirect() and |
14828 SQLPrepare() return SQLSTATE01001 (Cursor operation conflict). |

14829 SEE ALSO

14830 For information about See

14831 Returning the setting of a connection attribute SQLGetConnectAttr()
14832 Determining if a function is implemented SQLGetFunctions()
14833 Returning the setting of a statement attribute SQLGetStmtAttr()
14834 Returning information about a data source’s data types SQLGetTypeInfo()

14835 CHANGE HISTORY

14836 Version 2
14837 Revised generally. See Alignment with Popular Implementations on page 2.

14838 Changes to Information Items in SQLGetInfo()

14839 The following options are new in this issue: |

14840 SQL_ACCESSIBLE_PROCEDURES SQL_KEYWORDS
14841 SQL_ACTIVE_ENVIRONMENTS SQL_LIKE_ESCAPE_CLAUSE
14842 SQL_ALTER_DOMAIN SQL_MAX_ASYNC_CONCURRENT_STATEMENTS
14843 SQL_ANSI_SQL_CONFORMANCE SQL_MAX_BINARY_LITERAL_LEN
14844 SQL_ANSI_SQL_DATETIME_LITERALS SQL_MAX_CHAR_LITERAL_LEN
14845 SQL_ASYNC_MODE SQL_MAX_PROCEDURE_NAME_LEN
14846 SQL_BATCH_ROW_COUNT SQL_MAX_ROW_SIZE_INCLUDES_LONG
14847 SQL_BATCH_SUPPORT SQL_MULTIPLE_ACTIVE_TXN
14848 SQL_BOOKMARK_PERSISTENCE SQL_MULT_RESULT_SETS

Data Management: X/Open Database Connectivity (XDBC), Version 2 407

SQLGetInfo() ISO 92 Reference Manual Pages

14849 SQL_CATALOG_LOCATION SQL_NEED_LONG_DATA_LEN
14850 SQL_CATALOG_NAME_SEPARATOR SQL_NON_NULLABLE_COLUMNS
14851 SQL_CATALOG_TERM SQL_NUMERIC_FUNCTIONS
14852 SQL_CATALOG_USAGE SQL_OUTER_JOINS
14853 SQL_COLUMN_ALIAS SQL_PARAM_ARRAY_ROW_COUNTS
14854 SQL_CONCAT_NULL_BEHAVIOR SQL_PARAM_ARRAY_SELECTS
14855 SQL_CONVERT_* SQL_PROCEDURES
14856 SQL_CONVERT_FUNCTIONS SQL_PROCEDURE_TERM
14857 SQL_CORRELATION_NAME SQL_QUOTED_IDENTIFIER_CASE
14858 SQL_CREATE_ASSERTION SQL_REVOKE
14859 SQL_CREATE_CHARACTER_SET SQL_ROW_UPDATES
14860 SQL_CREATE_COLLATION SQL_SCHEMA_TERM
14861 SQL_CREATE_DOMAIN SQL_SCHEMA_USAGE
14862 SQL_CREATE_SCHEMA SQL_SCROLL_OPTIONS
14863 SQL_CREATE_TABLE SQL_SQL92_DATETIME_FUNCTIONS
14864 SQL_CREATE_TRANSLATION SQL_SQL92_FOREIGN_KEY_DELETE_RULE
14865 SQL_CREATE_VIEW SQL_SQL92_FOREIGN_KEY_UPDATE_RULE
14866 SQL_CURSOR_ROLLBACK_BEHAVIOR SQL_SQL92_GRANT
14867 SQL_DATABASE_NAME SQL_SQL92_NUMERIC_VALUE_FUNCTIONS
14868 SQL_DROP_ASSERTION SQL_SQL92_PREDICATES
14869 SQL_DROP_CHARACTER_SET SQL_SQL92_RELATIONAL_JOIN_OPERATORS
14870 SQL_DROP_COLLATION SQL_SQL92_REVOKE
14871 SQL_DROP_DOMAIN SQL_SQL92_ROW_VALUE_CONSTRUCTOR
14872 SQL_DROP_SCHEMA SQL_SQL92_STRING_FUNCTIONS
14873 SQL_DROP_TABLE SQL_SQL92_VALUE_EXPRESSIONS
14874 SQL_DROP_TRANSLATION SQL_STANDARD_CLI_CONFORMANCE
14875 SQL_DROP_VIEW SQL_STATIC_CURSOR_ATTRIBUTES1
14876 SQL_DYNAMIC_CURSOR_ATTRIBUTES1 SQL_STATIC_CURSOR_ATTRIBUTES2
14877 SQL_DYNAMIC_CURSOR_ATTRIBUTES2 SQL_STRING_FUNCTIONS
14878 SQL_EXPRESSIONS_IN_ORDERBY SQL_SUBQUERIES
14879 SQL_FILE_USAGE SQL_SYSTEM_FUNCTIONS
14880 SQL_FORWARD_ONLY_CURSOR_ATTRIBUTES1 SQL_TABLE_TERM
14881 SQL_FORWARD_ONLY_CURSOR_ATTRIBUTES2 SQL_TIMEDATE_ADD_INTERVALS
14882 SQL_GROUP_BY SQL_TIMEDATE_DIFF_INTERVALS
14883 SQL_INDEX_KEYWORDS SQL_TIMEDATE_FUNCTIONS
14884 SQL_INFO_SCHEMA_VIEWS SQL_UNION
14885 SQL_KEYSET_CURSOR_ATTRIBUTES1 SQL_XDBC_INTERFACE_CONFORMANCE
14886 SQL_KEYSET_CURSOR_ATTRIBUTES2 SQL_XDBC_VER

14887 DE The following options are deprecated: SQL_FETCH_DIRECTION and |
14888 SQL_SCROLL_CONCURRENCY. See Detecting Cursor Capabilities with SQLGetInfo() on
14889 page 402 for the preferred technique.

•

408 Direct Review (Build ID 96KAV) (Draft XDBC.33, August 1996)

Reference Manual Pages ISO 92 SQLGetStmtAttr()

14890 NAME
14891 SQLGetStmtAttr — Return the current setting of a statement attribute.

14892 SYNOPSIS
14893 SQLRETURN SQLGetStmtAttr(
14894 SQLHSTMTStatementHandle ,
14895 SQLINTEGER Attribute ,
14896 SQLPOINTER ValuePtr ,
14897 SQLINTEGER BufferLength ,
14898 SQLINTEGER * StringLengthPtr);

14899 ARGUMENTS

14900 StatementHandle [Input] |
14901 Statement handle. |

14902 Attribute [Input] |
14903 Attribute to retrieve. |

14904 ValuePtr [Output]
14905 Pointer to a buffer in which to return the value of the attribute specified in Attribute. |

14906 BufferLength [Input] |
14907 If ValuePtr points to data of variable length, this argument should be the length of *ValuePtr. |
14908 If what is contained in ValuePtr is itself a pointer, but not to data of variable length, then |
14909 BufferLength should have the value SQL_IS_POINTER. If what is contained in ValuePtr is |
14910 actual data of fixed length, then BufferLength should have the value |
14911 SQL_IS_NOT_POINTER. |

14912 StringLengthPtr [Output] |
14913 A pointer to a buffer in which to return the total number of octets (excluding the null |
14914 terminator) available to return in *ValuePtr. If ValuePtr is a null pointer, no length is |
14915 returned. If the attribute value is a character string, and the number of octets available to |
14916 return is greater than or equal to BufferLength, the data in *ValuePtr is truncated to |
14917 BufferLength minus the length of a null terminator and is null-terminated, |

14918 RETURN VALUE |
14919 SQL_SUCCESS, SQL_SUCCESS_WITH_INFO, SQL_ERROR, or SQL_INVALID_HANDLE. |

14920 DIAGNOSTICS |
14921 When SQLGetStmtAttr() returns SQL_ERROR or SQL_SUCCESS_WITH_INFO, an associated |
14922 SQLSTATE value can be obtained by calling SQLGetDiagRec() with a HandleType of |
14923 SQL_HANDLE_STMT and a Handle of StatementHandle. The following SQLSTATE values are |
14924 commonly returned by SQLGetStmtAttr(). The return code associated with each SQLSTATE |
14925 value is SQL_ERROR, except that for SQLSTATE values in class 01, the return code is |
14926 SQL_SUCCESS_WITH_INFO. |

14927 01000 — General warning |
14928 Implementation-defined informational message. |

14929 01004 — String data, right truncation |
14930 The data returned in *ValuePtr was truncated to be BufferLength minus the length of a null |
14931 terminator. The length of the untruncated string value is returned in *StringLengthPtr.

14932 24000 — Invalid cursor state
14933 Attribute was SQL_ATTR_ROW_NUMBER and the cursor was not open, or the cursor was
14934 positioned before the start of the result set or after the end of the result set.

14935 HY000 — General error
14936 An error occurred for which there was no specific SQLSTATE and for which no

Data Management: X/Open Database Connectivity (XDBC), Version 2 409

SQLGetStmtAttr() ISO 92 Reference Manual Pages

14937 implementation-specific SQLSTATE was defined. The error message returned by
14938 SQLGetDiagRec() in MessageTextdescribes the error and its cause. |

14939 HY001 — Memory allocation error
14940 The implementation failed to allocate memory required to support execution or completion
14941 of the function. |

14942 HY010 — Function sequence error |
14943 An asynchronously executing function was called for StatementHandle and was still |
14944 executing when this function was called. |

14945 SQLBulkOperations(), SQLExecDirect(), SQLExecute(), or SQLSetPos() was called for |
14946 StatementHandle and returned SQL_NEED_DATA.This function was called before data was |
14947 sent for all data-at-execution parameters or columns.

14948 HY092 — Invalid attribute identifier
14949 Attribute was not valid for this connection to this data source.

14950 HY109 — Invalid cursor position
14951 Attribute was SQL_ATTR_ROW_NUMBER and the the row had been deleted or could not
14952 be fetched.

14953 HYC00 — Optional feature not implemented
14954 Attribute was a valid statement attribute but is not supported by the data source.

14955 HYT01 — Connection timeout expired
14956 The connection timeout period expired before the data source responded to the request. The
14957 connection timeout period is set through SQLSetConnectAttr(),
14958 SQL_ATTR_CONNECTION_TIMEOUT.

14959 IM001 — Function not supported
14960 The function is not supported on the current connection to the data source.

14961 COMMENTS
14962 A call to SQLGetStmtAttr() returns in *ValuePtr the value of the statement attribute specified in
14963 Attribute. That value can either be a 32-bit value or a null-terminated character string. If the
14964 value is a null-terminated string, the application specifies the maximum length of that string in
14965 BufferLength, and the implementation returns the length of that string in the *StringLengthPtr |
14966 buffer. If the value is a 32-bit value, BufferLength and StringLengthPtr are not used.

14967 The following statement attributes retrieve descriptor header fields: |

14968 SQL_ATTR_BIND_OFFSET SQL_ATTR_PREDICATE_OCTET_LENGTH_PTR
14969 SQL_ATTR_BIND_TYPE SQL_ATTR_PREDICATE_PTR
14970 SQL_ATTR_FETCH_BOOKMARK_PTR SQL_ATTR_ROWS_FETCHED_PTR |
14971 SQL_ATTR_PARAMETER_BIND_TYPE SQL_ATTR_ROWS_PROCESSED_PTR
14972 SQL_ATTR_PARAMSET_SIZE SQL_ATTR_ROW_ARRAY_SIZE |
14973 SQL_ATTR_PARAM_STATUS_PTR SQL_ATTR_ROW_STATUS_PTR |

14974 The following statement attributes are read-only: They can be retrieved by SQLGetStmtAttr(),
14975 but not set by SQLSetStmtAttr(). For a list of attributes that can be set and retrieved, see
14976 SQLSetStmtAttr().

14977 SQL_ATTR_IMP_PARAM_DESC SQL_ATTR_ROW_NUMBER •

410 Direct Review (Build ID 96KAV) (Draft XDBC.33, August 1996)

Reference Manual Pages ISO 92 SQLGetStmtAttr()

14978 SQL_ATTR_IMP_ROW_DESC |

14979 SEE ALSO

14980 For information about See

14981 Returning the setting of a connection attribute SQLGetConnectAttr()
14982 Setting a connection attribute SQLSetConnectAttr()
14983 Setting a statement attribute SQLSetStmtAttr()

14984 CHANGE HISTORY

14985 Version 2
14986 Revised generally. See Alignment with Popular Implementations on page 2. See also the list in
14987 New Statement Attributes in Version 2 on page 515.

Data Management: X/Open Database Connectivity (XDBC), Version 2 411

SQLGetTypeInfo() ISO 92 Reference Manual Pages

14988 NAME
14989 SQLGetTypeInfo — Return information about data types supported by the data source.

14990 SYNOPSIS
14991 SQLRETURN SQLGetTypeInfo(
14992 SQLHSTMTStatementHandle ,
14993 SQLSMALLINT DataType);

14994 ARGUMENTS

14995 StatementHandle [Input] |
14996 Statement handle for the result set. |

14997 DataType [Input]
14998 The SQL data type. Applications must use the type names returned in the TYPE_NAME |
14999 column of the result set returned by this function in any ALTER TABLE and CREATE |
15000 TABLE statements. Valid values are listed in Section D.1 on page 556. A value of
15001 SQL_ALL_TYPES requests information about all data types. |

15002 RETURN VALUE |
15003 SQL_SUCCESS, SQL_SUCCESS_WITH_INFO, SQL_STILL_EXECUTING, SQL_ERROR, or |
15004 SQL_INVALID_HANDLE. |

15005 DIAGNOSTICS |
15006 When SQLGetTypeInfo() returns SQL_ERROR or SQL_SUCCESS_WITH_INFO, an associated |
15007 SQLSTATE value may be obtained by calling SQLGetDiagRec() with a HandleType of |
15008 SQL_HANDLE_STMT and a Handle of StatementHandle. The following table lists the SQLSTATE |
15009 values commonly returned by SQLGetTypeInfo(). The return code associated with each |
15010 SQLSTATEvalue is SQL_ERROR, except that for SQLSTATEvalues in class 01, the return code is |
15011 SQL_SUCCESS_WITH_INFO. |

15012 01000 — General warning |
15013 Implementation-defined informational message. |

15014 01S02 — Attribute value changed |
15015 A specified statement attribute was invalid and a similar value was temporarily substituted. |
15016 See Section 9.2.1 on page 93. |

15017 08S01 — Communication link failure |
15018 The communication link to the data source failed before the function completed processing. |

15019 24000 — Invalid cursor state |
15020 A cursor was open on StatementHandle. |

15021 40001 — Serialization failure |
15022 The transaction in which the fetch was executed was terminated to prevent deadlock. |

15023 HY000 — General error |
15024 An error occurred for which there was no specific SQLSTATE and for which no |
15025 implementation-specific SQLSTATE was defined. The error message returned by |
15026 SQLGetDiagRec() in the *MessageTextbuffer describes the error and its cause. |

15027 HY001 — Memory allocation error |
15028 The implementation failed to allocate memory required to support execution or completion |
15029 of the function. |

15030 HY004 — Invalid SQL data type |
15031 DataType was neither a valid XDBC data type identifier nor an implementation-defined SQL |
15032 data type identifier that the data source supports. |

412 Direct Review (Build ID 96KAV) (Draft XDBC.33, August 1996)

Reference Manual Pages ISO 92 SQLGetTypeInfo()

15033 HY008 — Operation canceled |
15034 Asynchronous processing was enabled for StatementHandle. The function was called and |
15035 before it completed execution, SQLCancel() was called on StatementHandle. The function |
15036 was then called again on StatementHandle. |

15037 The function was called and, before it completed execution, SQLCancel() was called on |
15038 StatementHandle from a different thread in a multithread application. |

15039 HY010 — Function sequence error |
15040 An asynchronously executing function (not this one) was called for StatementHandle and |
15041 was still executing when this function was called. |

15042 SQLBulkOperations(), SQLExecDirect(), SQLExecute(), or SQLSetPos() was called for |
15043 StatementHandle and returned SQL_NEED_DATA.This function was called before data was |
15044 sent for all data-at-execution parameters or columns. |

15045 HYC00 — Optional feature not implemented |
15046 The value specified for DataType is a valid XDBC SQL data type identifier but is not |
15047 supported by the implementation. |

15048 The data source does not support the combination of the current settings of the |
15049 SQL_ATTR_CONCURRENCY and SQL_ATTR_CURSOR_TYPE statement attributes. |

15050 The SQL_ATTR_USE_BOOKMARKS statement attribute was set to SQL_UB_VARIABLE, |
15051 and the SQL_ATTR_CURSOR_TYPE statement attribute was set to a cursor type for which |
15052 the data source does not support bookmarks.

15053 HYT00 — Timeout expired
15054 The query timeout period expired before the data source returned the result set. The
15055 timeout period is set through SQLSetStmtAttr(), SQL_ATTR_QUERY_TIMEOUT.

15056 HYT01 — Connection timeout expired
15057 The connection timeout period expired before the data source responded to the request. The
15058 connection timeout period is set through SQLSetConnectAttr(),
15059 SQL_ATTR_CONNECTION_TIMEOUT.

15060 IM001 — Function not supported
15061 The function is not supported on the current connection to the data source.

15062 COMMENTS
15063 SQLGetTypeInfo() returns information on a specified data type in the form of an SQL result set.
15064 The data types are intended for use in Data Definition Language (DDL) statements.

15065 SQLGetTypeInfo() may return more than one row with the same value in the DATA_TYPE
15066 column.

15067 SQLGetTypeInfo() returns the results as a standard result set, ordered by DATA_TYPE and then
15068 by how closely the data type maps to the corresponding XDBC SQL data type. Data types
15069 defined by the data source take precedence over user-defined data types. For example, suppose
15070 that a data source defined INTEGER and COUNTER data types, where COUNTER is auto-
15071 incrementing, and that a user-defined data type WHOLENUM has also been defined. These
15072 would be returned in the order INTEGER, WHOLENUM, and COUNTER, because
15073 WHOLENUM maps closely to the XDBC SQL data type SQL_INTEGER, while the auto-
15074 incrementing data type, even though supported by the data source, does not map closely to an
15075 XDBC SQL data type.

15076 The following table lists the columns in the result set. Additional columns beyond column 18
15077 (NUM_PREC_RADIX) can be defined by the implementation. An application should gain access |
15078 to implementation-defined columns by counting down from the end of the result set rather than |
15079 by specifying an explicit ordinal position; see Section 7.3 on page 68.

Data Management: X/Open Database Connectivity (XDBC), Version 2 413

SQLGetTypeInfo() ISO 92 Reference Manual Pages

15080 The data types returned by SQLGetTypeInfo() are those supported by the data source. They are
15081 intended for use in Data Definition Language (DDL) statements. Implementations can return
15082 result set data using data types other than the types returned by SQLGetTypeInfo(). In creating
15083 the result set for a catalog function, the implementation can use a data type that is not supported
15084 by the data source.

15085 Col.
15086 Column Name No. Data Type Comments
15087 Varchar
15088 not NULL

Data source-dependent data type name; for
example, ‘‘CHAR()’’, ‘‘VARCHAR()’’,

15089 ‘‘MONEY’’, ‘‘LONG VARBINARY’’, or
15090 ‘‘CHAR () FOR BIT DATA’’. Applications
15091 must use this name in CREATE TABLE and
15092 ALTER TABLE statements.

TYPE_NAME 1

15093 Smallint
15094 not NULL

SQL data type. This can be an XDBC SQL |
data type or an implementation-defined |

15095 SQL data type. For date/time or interval |
15096 data types, this column returns the concise |
15097 data type (for example, SQL_TYPE_TIME or |
15098 SQL_INTERVAL_YEAR_TO_MONTH). For |
15099 a list of valid XDBC SQL data types, see
15100 Section D.1 on page 556.

DATA_TYPE 2

15101 The maximum column size that the server
15102 supports for this data type. For numeric
15103 data, this is the maximum precision. For
15104 string data, this is the length in characters. |
15105 For date/time data types, this is the length |
15106 in characters of the string representation
15107 (assuming the maximum allowed precision
15108 of the fractional seconds component.) NULL
15109 is returned for data types where column size
15110 is not applicable. For interval data types, this
15111 is the number of characters in the character
15112 representation of the interval literal (as
15113 defined by the interval leading precision, see
15114 Interval Data Type Length on page 571).

15115 For more information on column size, see
15116 Section D.3 on page 562.

COLUMN_SIZE 3 Integer

15117 Character or characters used to prefix a |
15118 literal; for example, a single quotation mark |
15119 for character data types or 0x for binary data |
15120 types; NULL is returned for data types |
15121 where a literal prefix is not applicable.

LITERAL_PREFIX 4 Varchar

414 Direct Review (Build ID 96KAV) (Draft XDBC.33, August 1996)

Reference Manual Pages ISO 92 SQLGetTypeInfo()

15122 Character or characters used to terminate a
15123 literal; for example, a single quotation mark |
15124 for character data types; NULL is returned |
15125 for data types where a literal suffix is not |
15126 applicable.

LITERAL_SUFFIX 5 Varchar

15127 A list of keywords, separated by commas,
15128 corresponding to each parameter that the
15129 application may specify in parentheses
15130 when using the name that is returned in the
15131 TYPE_NAME field. The keywords in the list
15132 can be any of the following: length,
15133 precision, scale. They appear in the order
15134 that the syntax requires that they be used.
15135 For example, CREATE_PARAMS for
15136 DECIMAL would be ‘‘precision,scale’’;
15137 CREATE_PARAMS for VARCHAR would
15138 equal ‘‘length’’. NULL is returned if there
15139 are no parameters for the data type
15140 definition, for example INTEGER.

CREATE_PARAMS 6 Varchar

15141 The language used for the |
15142 CREATE_PARAMStext is locale-dependent.

15143 Smallint
15144 not NULL

Whether the data type accepts a NULL
value:

15145 SQL_NO_NULLS if the data type does not
15146 accept NULL values.

NULLABLE 7

15147 SQL_NULLABLE if the data type accepts
15148 NULL values.

15149 SQL_NULLABLE_UNKNOWN if it is not
15150 known if the column accepts NULL values.

15151 Smallint
15152 not NULL

Whether a character data type is case- |
sensitive in collations and comparisons: |

15153 SQL_TRUE if the data type is a character |
15154 data type and is case-sensitive. |

15155 SQL_FALSE if the data type is not a |
15156 character data type or is not case-sensitive.

CASE_SENSITIVE 8

Data Management: X/Open Database Connectivity (XDBC), Version 2 415

SQLGetTypeInfo() ISO 92 Reference Manual Pages

15157 Smallint
15158 not NULL

How the data type is used in a WHERE
clause:

15159 SQL_PRED_NONE if the column cannot be
15160 used in a WHERE clause.

SEARCHABLE 9

15161 SQL_PRED_CHAR if the column can be
15162 used in a WHERE clause, but only with the
15163 LIKE predicate.

15164 SQL_PRED_BASIC if the column can be
15165 used in a WHERE clause with all the
15166 comparison operators except LIKE
15167 (comparison, quantified comparison,
15168 BETWEEN, DISTINCT, IN, MATCH, and
15169 UNIQUE).

15170 SQL_SEARCHABLE if the column can be
15171 used in a WHERE clause with any
15172 comparison operator.

15173 SQL_TRUE if the data type is unsigned;
15174 SQL_FALSE if the data type is signed.
15175 NULL is returned if the attribute is not
15176 applicable to the data type or the data type
15177 is not numeric.

UNSIGNED_ATTRIBUTE 10 Smallint

15178 Smallint
15179 not NULL

SQL_TRUE if the data type has predefined
fixed precision and scale (which are data-

15180 source specific), like a money data type.
15181 SQL_FALSE if it does not have predefined
15182 fixed precision and scale.

FIXED_PREC_SCALE 11

15183 SQL_TRUE if the data type is
15184 autoincrementing. SQL_FALSE if the data
15185 type is not autoincrementing. NULL is
15186 returned if the attribute is not applicable to
15187 the data type or the data type is not numeric.

15188 An application can insert values into a
15189 column having this attribute, but typically
15190 cannot update the values in the column.

AUTO_UNIQUE_VALUE 12 Smallint

15191 When an insert is made into an auto-
15192 increment column, a unique value is
15193 inserted into the column at insert time. The
15194 increment is data-source-specific. An
15195 application should not assume that an auto-
15196 increment column starts at any particular
15197 point or increments by any particular value.

416 Direct Review (Build ID 96KAV) (Draft XDBC.33, August 1996)

Reference Manual Pages ISO 92 SQLGetTypeInfo()

15198 Localized version of the data source-
15199 dependent name of the data type. NULL is
15200 returned if a localized name is not
15201 supported by the data source. This name is
15202 intended for display only, such as in dialog
15203 boxes.

LOCAL_TYPE_NAME 13 Varchar

15204 The minimum scale of the data type on the
15205 data source. If a data type has a fixed scale,
15206 the MINIMUM_SCALE and
15207 MAXIMUM_SCALE columns both contain
15208 this value. For example, an
15209 SQL_TYPE_TIMESTAMP column might
15210 have a fixed scale for fractional seconds.
15211 NULL is returned where scale is not
15212 applicable. For more information, see
15213 Section D.3 on page 562.

MINIMUM_SCALE 14 Smallint

15214 The maximum scale of the data type on the
15215 data source. NULL is returned where scale is
15216 not applicable. If the maximum scale is not
15217 defined separately on the data source, but is
15218 instead defined to be the same as the
15219 maximum precision, this column contains |
15220 the same value as the COLUMN_SIZE |
15221 column. For more information, see Section
15222 D.3 on page 562.

MAXIMUM_SCALE 15 Smallint

15223 Smallint
15224 not NULL

The value of the SQL data type as it appears
in the SQL_DESC_TYPE field of the

15225 descriptor. This column is the same as the
15226 DATA_TYPE column, except for interval |
15227 and date/time data types. |

SQL_DATA_TYPE 16

15228 For interval and date/time data types, the |
15229 SQL_DATA_TYPE field in the result set
15230 returns SQL_INTERVAL or
15231 SQL_DATETIME, and the
15232 SQL_DATETIME_SUB field returns the |
15233 subcode for the specific interval or |
15234 date/time data type (see Data Type
15235 Identification in Descriptors on page 574).

Data Management: X/Open Database Connectivity (XDBC), Version 2 417

SQLGetTypeInfo() ISO 92 Reference Manual Pages

15236 When the value of SQL_DATA_TYPE is
15237 SQL_DATETIME or SQL_INTERVAL, this
15238 column contains the subcode. For data |
15239 types other than date/time and interval, this |
15240 field is NULL. |

SQL_DATETIME_SUB 17 Smallint

15241 For interval or date/time data types, the |
15242 SQL_DATA_TYPE field in the result set
15243 returns SQL_INTERVAL or
15244 SQL_DATETIME, and the
15245 SQL_DATETIME_SUB field returns the |
15246 subcode for the specific interval or |
15247 date/time data type (see Appendix D).

15248 If the data type is an approximate numeric
15249 type, this column contains the value 2 to
15250 indicate that COLUMN_SIZE specifies a
15251 number of bits. For exact numeric types,
15252 this column contains the value 10 to indicate
15253 that COLUMN_SIZE specifies a number of
15254 decimal digits. Otherwise, this column is
15255 NULL.

NUM_PREC_RADIX 18 Smallint

15256 If the data type is an interval data type, then
15257 this column contains the value of the
15258 interval leading precision (see Interval
15259 Precision on page 571). Otherwise, this
15260 column is NULL.

INTERVAL_PRECISION 19 Smallint

15261 Attribute information can apply to data types or to specific columns in a result set.
15262 SQLGetTypeInfo() returns information about attributes associated with data types;
15263 SQLColAttribute() returns information about attributes associated with columns in a result set.

15264 SEE ALSO

15265 For information about See

15266 Overview of catalog functions Chapter 7
15267 Binding a buffer to a column in a result set SQLBindCol()
15268 Canceling statement processing SQLCancel()
15269 Returning information about a column in a result set SQLColAttribute()
15270 Fetching a block of data or scrolling through a result set SQLFetchScroll()
15271 Fetching a single row or a block of data in a forward-only
15272 direction

SQLFetch()

15273 Returning information about an implementation SQLGetInfo()

15274 CHANGE HISTORY

15275 Version 2
15276 Revised generally. See Alignment with Popular Implementations on page 2.

418 Direct Review (Build ID 96KAV) (Draft XDBC.33, August 1996)

Reference Manual Pages XDBC SQLMoreResults()

15277 NAME
15278 SQLMoreResults — Determine whether there are more results available on a statement
15279 containing SELECT, UPDATE, INSERT, or DELETE statements and, if so, initialize processing for
15280 those results.

15281 SYNOPSIS
15282 SQLRETURN SQLMoreResults(
15283 SQLHSTMTStatementHandle);

15284 ARGUMENTS

15285 StatementHandle [Input] |
15286 Statement handle. |

15287 RETURN VALUE
15288 SQL_SUCCESS, SQL_SUCCESS_WITH_INFO, SQL_STILL_EXECUTING, SQL_NO_DATA,
15289 SQL_ERROR, or SQL_INVALID_HANDLE.

15290 DIAGNOSTICS
15291 When SQLMoreResults() returns SQL_ERROR or SQL_SUCCESS_WITH_INFO, an associated |
15292 SQLSTATE value can be obtained by calling SQLGetDiagRec() with a HandleType of
15293 SQL_HANDLE_STMT and a Handle of StatementHandle. The following table lists the SQLSTATE
15294 values commonly returned by SQLMoreResults(). The return code associated with each |
15295 SQLSTATEvalue is SQL_ERROR, except that for SQLSTATEvalues in class 01, the return code is |
15296 SQL_SUCCESS_WITH_INFO.

15297 01000 — General warning
15298 Implementation-defined informational message. |

15299 01S02 — Attribute value changed
15300 A specified statement attribute was invalid and a similar value was temporarily substituted. |
15301 See Section 9.2.1 on page 93. |

15302 08S01 — Communication link failure |
15303 The communication link to the data source failed before the function completed processing. |

15304 HY000 — General error |
15305 An error occurred for which there was no specific SQLSTATE and for which no |
15306 implementation-specific SQLSTATE was defined. The error message returned by |
15307 SQLGetDiagRec() in the *MessageTextbuffer describes the error and its cause. |

15308 HY001 — Memory allocation error |
15309 The implementation failed to allocate memory required to support execution or completion |
15310 of the function. |

15311 HY008 — Operation canceled |
15312 Asynchronous processing was enabled for StatementHandle. The function was called and |
15313 before it completed execution, SQLCancel() was called on StatementHandle. The function |
15314 was then called again on StatementHandle. |

15315 The function was called and, before it completed execution, SQLCancel() was called on |
15316 StatementHandle from a different thread in a multithread application. |

15317 HY010 — Function sequence error |
15318 An asynchronously executing function (not this one) was called for StatementHandle and |
15319 was still executing when this function was called. |

15320 SQLBulkOperations(), SQLExecDirect(), SQLExecute(), or SQLSetPos() was called for |
15321 StatementHandle and returned SQL_NEED_DATA.This function was called before data was |
15322 sent for all data-at-execution parameters or columns.

Data Management: X/Open Database Connectivity (XDBC), Version 2 419

SQLMoreResults() XDBC Reference Manual Pages

15323 HYT01 — Connection timeout expired
15324 The connection timeout period expired before the data source responded to the request. The
15325 connection timeout period is set through SQLSetConnectAttr(),
15326 SQL_ATTR_CONNECTION_TIMEOUT.

15327 IM001 — Function not supported
15328 The function is not supported on the current connection to the data source.

15329 COMMENTS
15330 SELECT statements return result sets. UPDATE,INSERT, and DELETE statements return a count
15331 of affected rows. If any of these statements are batched, submitted with arrays of parameters
15332 (numbered from left to right, in the order that they appear in the batch), or in procedures, they
15333 can return multiple result sets or counts.

15334 After executing the batch, the application is positioned on the first result set. The application can
15335 call SQLBindCol(), SQLBulkOperations(), SQLFetch(), SQLFetchScroll(), SQLGetData(), |
15336 SQLSetPos(), and all the catalog functions, on the first or any subsequent result sets, just as it
15337 would if there were just a single result set. Once it is done with the first result set, the application
15338 calls SQLMoreResults() to move to the next result set. If another result set or count is available,
15339 SQLMoreResults() returns SQL_SUCCESS and initializes the result set or count for additional |
15340 processing. If there are any row-count-generating statements in between result-set-generating |
15341 statements, they can be stepped over by calling SQLMoreResults(). After calling
15342 SQLMoreResults() for UPDATE, INSERT, or DELETE statements, an application can call
15343 SQLRowCount().

15344 If all results have been processed, SQLMoreResults() returns SQL_NO_DATA. If there was a
15345 current result set with unfetched rows, SQLMoreResults() discards that result set and makes the
15346 next result set or count available.

15347 Any bindings that were established for the previous result set still remain valid. If the column
15348 structures are different for this result set, then calling SQLFetch() or SQLFetchScroll() may result
15349 in an error or truncation. To prevent this, the application has to call SQLBindCol() to explicitly
15350 rebind as appropriate (or do so by setting descriptor fields). Alternatively, the application can
15351 call SQLFreeStmt() with an Option of SQL_UNBIND to unbind all the column buffers.

15352 The values of statement attributes such as cursor type, cursor concurrency, keyset size, or
15353 maximum length, may change as the application navigates through the batch by calls to
15354 SQLMoreResults(). If this happens, SQLMoreResults() returns SQL_SUCCESS_WITH_INFO and
15355 SQLSTATE01S02 (Attribute value changed).

15356 Calling SQLCloseCursor(), or SQLFreeStmt() with an Option of SQL_CLOSE, discards all the
15357 result sets and row counts that were available as a result of the execution of the batch. The
15358 statement handle returns to either the allocated or prepared state. Calling SQLCancel() to cancel
15359 an asynchronously executing function when a batch has been executed and the statement handle
15360 is in the executed, cursor-positioned, or asynchronous state results in all the results sets and row
15361 counts generated by the batch being discarded if the cancel call was successful. The statement
15362 then returns to the prepared or allocated state.

15363 If a batch of statements or a procedure mixes other SQL statements with SELECT, UPDATE,
15364 INSERT, and DELETE statements, these other statements do not affect SQLMoreResults(). |

15365 If a searched UPDATEor DELETE statement in a batch of statements does not affect any rows at |
15366 the data source, SQLMoreResults() returns SQL_SUCCESS and any call to SQLRowCount() |
15367 returns SQL_NO_DATA. This is different from the case of a searched UPDATE or DELETE |
15368 statement that is executed through SQLExecDirect(), SQLExec(), or SQLParamData(), which |
15369 returns SQL_NO_DATAif it does not affect any rows at the data source.

420 Direct Review (Build ID 96KAV) (Draft XDBC.33, August 1996)

Reference Manual Pages XDBC SQLMoreResults()

15370 For additional information about the valid sequencing of result-processing functions, see
15371 Appendix B.

15372 Availability of Row Counts

15373 When a batch contains multiple consecutive row-count generating statements, it is possible that
15374 these row counts are rolled up into just one row count. For example, if a batch has five insert
15375 statements, then certain data sources are capable of returning five individual row counts.
15376 Certain other data sources return only one row count that represents the sum of the five
15377 individual row counts.

15378 When a batch contains a combination of result-set-generating and row-count-generating |
15379 statements, row counts might not be available. The application can determine their availability |
15380 by calling SQLGetInfo() with the SQL_BATCH_ROW_COUNT option. For example, suppose
15381 that the batch contains a SELECT, followed by two INSERTs and another SELECT. Then the
15382 following cases are possible:

15383 • The row counts corresponding to the two INSERT statements are not available at all. The
15384 first call to SQLMoreResults() positions the cursor on the result set of the second SELECT
15385 statement.

15386 • The row counts corresponding to the two insert statements are available individually. (A call
15387 to SQLGetInfo() does not return the SQL_BRC_ROLLED_UP bit for the
15388 SQL_BATCH_ROW_COUNT option). The first call to SQLMoreResults() positions the cursor |
15389 on the row count of the first INSERT. The second call positions the cursor on the row count
15390 of the second insert. The third call to SQLMoreResults() positions the cursor on the result set
15391 of the second SELECT statement.

15392 • The row counts corresponding to the two INSERTs are rolled up into one single row count
15393 that is available. (A call to SQLGetInfo() returns the SQL_BRC_ROLLED_UP bit for the |
15394 SQL_BATCH_ROW_COUNT option). The first call to SQLMoreResults() positions the cursor
15395 on the rolled-up row count, and the second call to SQLMoreResults() positions the cursor on
15396 the result set of the second SELECT.

15397 Certain implementations make row counts available only for explicit batches and not for stored
15398 procedures.

15399 SEE ALSO

15400 For information about See

15401 Canceling statement processing SQLCancel()
15402 Fetching a block of data or scrolling through a result set SQLFetchScroll()
15403 Fetching a single row or a block of data in a forward-only
15404 direction

SQLFetch()

15405 Fetching part or all of a column of data SQLGetData()

15406 CHANGE HISTORY

15407 Version 2
15408 Function added in this version.

Data Management: X/Open Database Connectivity (XDBC), Version 2 421

SQLNativeSql() XDBC Reference Manual Pages

15409 NAME
15410 SQLNativeSql — Return the text of a specified SQL statement as modified by the |
15411 implementation, without executing the statement.

15412 SYNOPSIS
15413 SQLRETURN SQLNativeSql(
15414 SQLHDBCConnectionHandle ,
15415 SQLCHAR * InStatementText ,
15416 SQLINTEGER TextLength1 ,
15417 SQLCHAR * OutStatementText ,
15418 SQLINTEGER BufferLength ,
15419 SQLINTEGER * TextLength2Ptr);

15420 ARGUMENTS

15421 ConnectionHandle [Input] |
15422 Connection handle. |

15423 InStatementText [Input]
15424 SQL text string to be translated. |

15425 TextLength1 [Input]
15426 Length of the text string in *InStatementText. |

15427 OutStatementText [Output]
15428 Pointer to a buffer in which to return the translated SQL string. |

15429 BufferLength [Input]
15430 Length of the *OutStatementText buffer. |

15431 TextLength2Ptr [Output] |
15432 Pointer to a buffer in which to return the total number of octets (excluding the null |
15433 terminator) available to return in *OutStatementText. If the number of octets available to |
15434 return is greater than or equal to BufferLength, the translated SQL string in *OutStatementText
15435 is truncated to BufferLength minus the length of a null terminator. |

15436 RETURN VALUE |
15437 SQL_SUCCESS, SQL_SUCCESS_WITH_INFO, SQL_ERROR, or SQL_INVALID_HANDLE.

15438 DIAGNOSTICS
15439 When SQLNativeSql() returns SQL_ERROR or SQL_SUCCESS_WITH_INFO, an associated |
15440 SQLSTATE value can be obtained by calling SQLGetDiagRec() with a HandleType of |
15441 SQL_HANDLE_DBC and a Handle of ConnectionHandle . The following table lists the SQLSTATE |
15442 values commonly returned by SQLNativeSql(). The return code associated with each SQLSTATE |
15443 value is SQL_ERROR, except that for SQLSTATE values in class 01, the return code is |
15444 SQL_SUCCESS_WITH_INFO. |

15445 01000 — General warning |
15446 Implementation-defined informational message. |

15447 01004 — String data, right truncation |
15448 The buffer *OutStatementText was not large enough to return the entire SQL string, so the |
15449 SQL string was truncated. The length of the untruncated SQL string is returned in |
15450 *TextLength2Ptr. |

15451 08003 — Connection does not exist |
15452 ConnectionHandle was not in a connected state. |

15453 08S01 — Communication link failure |
15454 The communication link to the data source failed before the function completed processing. |

422 Direct Review (Build ID 96KAV) (Draft XDBC.33, August 1996)

Reference Manual Pages XDBC SQLNativeSql()

15455 22007 — Invalid date/time format
15456 *InStatementText contained an escape clause with an invalid date, time, or timestamp value.

15457 24000 — Invalid cursor state
15458 The cursor referred to in the statement was positioned before the start of the result set or
15459 after the end of the result set. Some implementations of SQLNativeSQL() do not determine
15460 the cursor position and might not report this error. |

15461 40001 — Serialization failure |
15462 The transaction in which the fetch was executed was terminated to prevent deadlock. |

15463 HY000 — General error |
15464 An error occurred for which there was no specific SQLSTATE and for which no |
15465 implementation-specific SQLSTATE was defined. The error message returned by |
15466 SQLGetDiagRec() in the *MessageTextbuffer describes the error and its cause. |

15467 HY001 — Memory allocation error |
15468 The implementation failed to allocate memory required to support execution or completion |
15469 of the function. |

15470 HY009 — Invalid use of null pointer |
15471 InStatementText was a null pointer. |

15472 HY090 — Invalid string or buffer length |
15473 TextLength1 was less than 0, but not equal to SQL_NTS. |

15474 BufferLength was less than 0 and OutStatementText was not a null pointer.

15475 HY109 — Invalid cursor position
15476 The current row of the cursor had been deleted or had not been fetched. Some
15477 implementations of SQLNativeSQL() do not determine the cursor position and might not
15478 report this error.

15479 HYT01 — Connection timeout expired
15480 The connection timeout period expired before the data source responded to the request. The
15481 connection timeout period is set through SQLSetConnectAttr(),
15482 SQL_ATTR_CONNECTION_TIMEOUT.

15483 IM001 — Function not supported
15484 The function is not supported on the current connection to the data source.

15485 COMMENTS
15486 Section 8.3 on page 84 defines XDBC escape sequences that portable applications can use in |
15487 coding XSQL statements. The XDBC implementation converts these escape sequences into the |
15488 SQL dialect that the target data source accepts. |

15489 The application can call SQLNativeSql() to see the results of this conversion without executing |
15490 the SQL statement. The string at *OutStatementText is the SQL statement that the XDBC |
15491 implementation would send to the data source if the string at *InStatementText were submitted |
15492 for execution, such as by calling SQLExecDirect(). |

15493 If *InStatementText contains a distributed request, such as an SQL statement that joins tables |
15494 from diverse data sources, the effect of calling SQLNativeSql() implementation-defined. |

15495 The following examples show how SQLNativeSql() might translate uses of the CONVERT() |
15496 scalar function (see Appendix F). Assume that the column empid is of type INTEGER in the |
15497 data source, and that InStatementText contains:

15498 SELECT { fn CONVERT (empid, SQL_SMALLINT) } FROM employee

Data Management: X/Open Database Connectivity (XDBC), Version 2 423

SQLNativeSql() XDBC Reference Manual Pages

15499 For a Microsoft SQL Server data source, the implementation might translate the string to: |

15500 SELECT convert (smallint, empid) FROM employee

15501 For an ORACLE data source, the translation might be: |

15502 SELECT to_number (empid) FROM employee

15503 For an Ingres data source, the translation might be: |

15504 SELECT int2 (empid) FROM employee

15505 CHANGE HISTORY

15506 Version 2
15507 Function added in this version.

424 Direct Review (Build ID 96KAV) (Draft XDBC.33, August 1996)

Reference Manual Pages XDBC SQLNumParams()

15508 NAME
15509 SQLNumParams — Return the number of parameters in an SQL statement.

15510 SYNOPSIS
15511 SQLRETURN SQLNumParams(
15512 SQLHSTMTStatementHandle ,
15513 SQLSMALLINT * ParameterCountPtr);

15514 ARGUMENTS

15515 StatementHandle [Input] |
15516 Statement handle. |

15517 ParameterCountPtr [Output]
15518 Pointer to a buffer in which to return the number of parameters in the statement. |

15519 RETURN VALUE |
15520 SQL_SUCCESS, SQL_SUCCESS_WITH_INFO, SQL_STILL_EXECUTING, SQL_ERROR, or |
15521 SQL_INVALID_HANDLE. |

15522 DIAGNOSTICS |
15523 When SQLNumParams() returns SQL_ERROR or SQL_SUCCESS_WITH_INFO, an associated |
15524 SQLSTATE value can be obtained by calling SQLGetDiagRec() with a HandleType of
15525 SQL_HANDLE_STMT and a Handle of StatementHandle. The following SQLSTATE values are |
15526 commonly returned by SQLNumParams(). The return code associated with each SQLSTATE |
15527 value is SQL_ERROR, except that for SQLSTATE values in class 01, the return code is |
15528 SQL_SUCCESS_WITH_INFO. |

15529 01000 — General warning |
15530 Implementation-defined informational message. |

15531 08S01 — Communication link failure |
15532 The communication link to the data source failed before the function completed processing. |

15533 40001 — Serialization failure |
15534 The transaction in which the fetch was executed was terminated to prevent deadlock. |

15535 HY000 — General error |
15536 An error occurred for which there was no specific SQLSTATE and for which no |
15537 implementation-specific SQLSTATE was defined. The error message returned by |
15538 SQLGetDiagRec() in the *MessageTextbuffer describes the error and its cause. |

15539 HY001 — Memory allocation error |
15540 The implementation failed to allocate memory required to support execution or completion |
15541 of the function. |

15542 HY008 — Operation canceled |
15543 Asynchronous processing was enabled for StatementHandle. The function was called and |
15544 before it completed execution, SQLCancel() was called on StatementHandle. The function |
15545 was then called again on StatementHandle. |

15546 The function was called and, before it completed execution, SQLCancel() was called on |
15547 StatementHandle from a different thread in a multithread application. |

15548 HY010 — Function sequence error |
15549 The function was called prior to calling SQLPrepare() or SQLExecDirect() for |
15550 StatementHandle. |

15551 An asynchronously executing function (not this one) was called for StatementHandle and |
15552 was still executing when this function was called. |

Data Management: X/Open Database Connectivity (XDBC), Version 2 425

SQLNumParams() XDBC Reference Manual Pages

15553 SQLBulkOperations(), SQLExecDirect(), SQLExecute(), or SQLSetPos() was called for |
15554 StatementHandle and returned SQL_NEED_DATA.This function was called before data was |
15555 sent for all data-at-execution parameters or columns.

15556 HYT01 — Connection timeout expired
15557 The connection timeout period expired before the data source responded to the request. The
15558 connection timeout period is set through SQLSetConnectAttr(),
15559 SQL_ATTR_CONNECTION_TIMEOUT.

15560 IM001 — Function not supported
15561 The function is not supported on the current connection to the data source.

15562 COMMENTS
15563 The number of parameters reported by SQLNumParams() is the same value as the
15564 SQL_DESC_COUNT field of the IPD, when population of IPDs is enabled.

15565 SQLNumParams() can be called only after SQLPrepare() has been called. |

15566 If the statement associated with StatementHandle does not contain parameters, SQLNumParams()
15567 sets *ParameterCountPtr to 0.

15568 SEE ALSO

15569 For information about See

15570 Returning information about a parameter in a statement SQLDescribeParam()
15571 Binding a buffer to a parameter SQLBindParameter()

15572 CHANGE HISTORY

15573 Version 2
15574 Function added in this version. |

426 Direct Review (Build ID 96KAV) (Draft XDBC.33, August 1996)

Reference Manual Pages ISO 92 SQLNumResultCols()

15575 NAME
15576 SQLNumResultCols — Return the number of columns in a result set.

15577 SYNOPSIS
15578 SQLRETURN SQLNumResultCols(
15579 SQLHSTMTStatementHandle ,
15580 SQLSMALLINT * ColumnCountPtr);

15581 ARGUMENTS

15582 StatementHandle [Input] |
15583 Statement handle. |

15584 ColumnCountPtr [Output]
15585 Pointer to a buffer in which to return the number of columns in the result set. This count
15586 does not include a bound bookmark column. |

15587 RETURN VALUE |
15588 SQL_SUCCESS, SQL_SUCCESS_WITH_INFO, SQL_STILL_EXECUTING, SQL_ERROR, or |
15589 SQL_INVALID_HANDLE. |

15590 DIAGNOSTICS |
15591 When SQLNumResultCols() returns SQL_ERROR or SQL_SUCCESS_WITH_INFO, an associated |
15592 SQLSTATE value can be obtained by calling SQLGetDiagRec() with a HandleType of |
15593 SQL_HANDLE_STMT and a Handle of StatementHandle. The following table lists the SQLSTATE |
15594 values commonly returned by SQLNumResultCols(). The return code associated with each |
15595 SQLSTATEvalue is SQL_ERROR, except that for SQLSTATEvalues in class 01, the return code is |
15596 SQL_SUCCESS_WITH_INFO. |

15597 01000 — General warning |
15598 Implementation-defined informational message. |

15599 08S01 — Communication link failure |
15600 The communication link to the data source failed before the function completed processing. |

15601 40001 — Serialization failure |
15602 The transaction in which the fetch was executed was terminated to prevent deadlock. |

15603 HY000 — General error |
15604 An error occurred for which there was no specific SQLSTATE and for which no |
15605 implementation-specific SQLSTATE was defined. The error message returned by |
15606 SQLGetDiagRec() in the *MessageTextbuffer describes the error and its cause. |

15607 HY001 — Memory allocation error |
15608 The implementation failed to allocate memory required to support execution or completion |
15609 of the function. |

15610 HY008 — Operation canceled |
15611 Asynchronous processing was enabled for StatementHandle. The function was called and |
15612 before it completed execution, SQLCancel() was called on StatementHandle. The function |
15613 was then called again on StatementHandle. |

15614 The function was called and, before it completed execution, SQLCancel() was called on |
15615 StatementHandle from a different thread in a multithread application. |

15616 HY010 — Function sequence error |
15617 The function was called prior to calling SQLPrepare() or SQLExecDirect() for |
15618 StatementHandle. |

15619 An asynchronously executing function (not this one) was called for StatementHandle and |
15620 was still executing when this function was called. |

Data Management: X/Open Database Connectivity (XDBC), Version 2 427

SQLNumResultCols() ISO 92 Reference Manual Pages

15621 SQLBulkOperations(), SQLExecDirect(), SQLExecute(), or SQLSetPos() was called for |
15622 StatementHandle and returned SQL_NEED_DATA.This function was called before data was |
15623 sent for all data-at-execution parameters or columns.

15624 HYT01 — Connection timeout expired
15625 The connection timeout period expired before the data source responded to the request. The
15626 connection timeout period is set through SQLSetConnectAttr(),
15627 SQL_ATTR_CONNECTION_TIMEOUT.

15628 IM001 — Function not supported
15629 The function is not supported on the current connection to the data source.

15630 SQLNumResultCols() can return any SQLSTATE that can be returned by SQLPrepare() or
15631 SQLExecute() when called after SQLPrepare() and before SQLExecute() depending on when the
15632 data source evaluates the SQL statement associated with the statement.

15633 COMMENTS
15634 The number of result columns reported by SQLNumResultCols() is the same value as the
15635 SQL_DESC_COUNT field of the IRD.

15636 SQLNumResultCols() can be called successfully only when the statement is in the prepared,
15637 executed, or positioned state.

15638 If the statement associated with StatementHandle does not return a result set, |
15639 SQLNumResultCols() sets *ColumnCountPtr to 0. |

15640 Calling SQLNumResultCols() between the preparation and execution of a statement can be |
15641 costly; see Performance Note on page 279.

15642 SEE ALSO

15643 For information about See

15644 Binding a buffer to a column in a result set SQLBindCol()
15645 Canceling statement processing SQLCancel()
15646 Returning information about a column in a result set SQLColAttribute()
15647 Returning information about a column in a result set SQLDescribeCol()
15648 Executing an SQL statement SQLExecDirect()
15649 Executing a prepared SQL statement SQLExecute()
15650 Fetching a block of data or scrolling through a result set SQLFetchScroll()
15651 Fetching a single row or a block of data in a forward-only
15652 direction

SQLFetch()

15653 Fetching part or all of a column of data SQLGetData()
15654 Preparing an SQL statement for execution SQLPrepare()

15655 CHANGE HISTORY

15656 Version 2
15657 Revised generally. See Alignment with Popular Implementations on page 2.

428 Direct Review (Build ID 96KAV) (Draft XDBC.33, August 1996)

Reference Manual Pages ISO 92 SQLParamData()

15658 NAME
15659 SQLParamData — Supply parameter data at statement execution time.

15660 SYNOPSIS
15661 SQLRETURN SQLParamData(
15662 SQLHSTMTStatementHandle ,
15663 SQLPOINTER * ValuePtr);

15664 ARGUMENTS

15665 StatementHandle [Input] |
15666 Statement handle. |

15667 ValuePtr [Output] |
15668 Pointer to a buffer in which to return the address of the ParameterValuePtrbuffer specified in
15669 SQLBindParameter() (for parameter data) or the address of the TargetValuePtr buffer
15670 specified in SQLBindCol() (for column data), as contained in the SQL_DESC_DATA_PTR
15671 descriptor record field. |

15672 RETURN VALUE |
15673 SQL_SUCCESS, SQL_SUCCESS_WITH_INFO, SQL_NEED_DATA, SQL_NO_DATA, |
15674 SQL_STILL_EXECUTING, SQL_ERROR, or SQL_INVALID_HANDLE. |

15675 DIAGNOSTICS |
15676 When SQLParamData() returns SQL_ERROR or SQL_SUCCESS_WITH_INFO, an associated |
15677 SQLSTATE value can be obtained by calling SQLGetDiagRec() with a HandleType of |
15678 SQL_HANDLE_STMT and a Handle of StatementHandle. The following table lists the SQLSTATE |
15679 values commonly returned by SQLParamData(). The return code associated with each |
15680 SQLSTATEvalue is SQL_ERROR, except that for SQLSTATEvalues in class 01, the return code is |
15681 SQL_SUCCESS_WITH_INFO. |

15682 01000 — General warning |
15683 Implementation-defined informational message. |

15684 07006 — Restricted data type attribute violation |
15685 The data value identified by ValueType in SQLBindParameter() for the bound parameter |
15686 could not be converted to the data type identified by ParameterTypein SQLBindParameter(). |

15687 The data value returned for a parameter bound as SQL_PARAM_INPUT_OUTPUT or |
15688 SQL_PARAM_OUTPUT could not be converted to the data type identified by ValueType in |
15689 SQLBindParameter(). |

15690 (If the data values for one or more rows could not be converted, but one or more rows were |
15691 successfully returned, this function returns SQL_SUCCESS_WITH_INFO.) |

15692 08S01 — Communication link failure |
15693 The communication link to the data source failed before the function completed processing. |

15694 22026 — String data, length mismatch |
15695 The SQL_NEED_LONG_DATA_LEN option in SQLGetInfo() was ‘‘Y’’ and less data was |
15696 sent for a long parameter (the data type was SQL_LONGVARCHAR, |
15697 SQL_LONGVARBINARY,or a long, data source-specific data type) than was specified with |
15698 StrLen_or_IndPtr in SQLBindParameter(). |

15699 The SQL_NEED_LONG_DATA_LEN option in SQLGetInfo() was ‘‘Y’’ and less data was |
15700 sent for a long column (the data type was SQL_LONGVARCHAR, |
15701 SQL_LONGVARBINARY, or a long, data source-specific data type) than was specified in |
15702 the length buffer corresponding to a column in a row of data that was added or updated |
15703 with SQLSetPos() or SQLBulkOperations(). |

Data Management: X/Open Database Connectivity (XDBC), Version 2 429

SQLParamData() ISO 92 Reference Manual Pages

15704 40001 — Serialization failure |
15705 The transaction in which the fetch was executed was terminated to prevent deadlock. |

15706 HY000 — General error |
15707 An error occurred for which there was no specific SQLSTATE and for which no |
15708 implementation-specific SQLSTATE was defined. The error message returned by |
15709 SQLGetDiagRec() in the *MessageTextbuffer describes the error and its cause. |

15710 HY001 — Memory allocation error |
15711 The implementation failed to allocate memory required to support execution or completion |
15712 of the function. |

15713 HY008 — Operation canceled |
15714 Asynchronous processing was enabled for StatementHandle. The function was called and |
15715 before it completed execution, SQLCancel() was called on StatementHandle. The function |
15716 was then called again on StatementHandle. |

15717 The function was called and, before it completed execution, SQLCancel() was called on |
15718 StatementHandle from a different thread in a multithread application. |

15719 HY010 — Function sequence error |
15720 The previous function call was not a call to SQLBulkOperations(), SQLExecDirect(),
15721 SQLExecute(), or SQLSetPos() where the return code was SQL_NEED_DATA, or the
15722 previous function call was a call to SQLPutData().

15723 The previous function call was a call to SQLParamData().

15724 An asynchronously executing function (not this one) was called for StatementHandle and |
15725 was still executing when this function was called. |

15726 SQLExecute(), SQLExecDirect(), or SQLSetPos() was called for StatementHandle and returned |
15727 SQL_NEED_DATA. SQLCancel() was called before data was sent for all data-at-execution |
15728 parameters or columns.

15729 HYT01 — Connection timeout expired
15730 The connection timeout period expired before the data source responded to the request. The
15731 connection timeout period is set through SQLSetConnectAttr(),
15732 SQL_ATTR_CONNECTION_TIMEOUT.

15733 IM001 — Function not supported
15734 The function is not supported on the current connection to the data source.

15735 If SQLParamData() is called while sending data for a parameter in an SQL statement, it can
15736 return any SQLSTATE that can be returned by the function called to execute the statement
15737 (SQLExecute() or SQLExecDirect()). If it is called while sending data for a column being updated
15738 or added with SQLSetPos() or SQLBulkOperations(), it can return any SQLSTATE that can be
15739 returned by that function.

15740 COMMENTS
15741 SQLParamData() can be called to supply data-at-execution data for two uses: parameter data to
15742 be used in a call to SQLExecute() or SQLExecDirect(), or column data to be used when a row is
15743 updated or added by a call to SQLSetPos() or SQLBulkOperations(). At execution time,
15744 SQLParamData() returns to the application an indicator of which data the implementation |
15745 requires.

15746 SQLBulkOperations(), SQLExecDirect(), SQLExecute(), and SQLSetPos(), return
15747 SQL_NEED_DATA if they need data-at-execution data. An application then calls
15748 SQLParamData() to determine which data it should send. If the implementation requires |
15749 parameter data, it returns in the *ValuePtr output buffer the value the application placed in the |
15750 row-set buffer. The application can use this value to determine which parameter data the |

430 Direct Review (Build ID 96KAV) (Draft XDBC.33, August 1996)

Reference Manual Pages ISO 92 SQLParamData()

15751 implementation is requesting on this occasion. If the implementation requires column data, it |
15752 returns in the *ValuePtr buffer the address of the row where the data can be found. It also returns
15753 SQL_NEED_DATA, which is an indicator to the application that it should call SQLPutData() to
15754 send the data.

15755 When SQLPutData() returns SQL_SUCCESS, the application calls SQLParamData() again. If |
15756 SQLPutData() returns SQL_NEED_DATA,then it requires data for another parameter or column, |
15757 and the application again calls SQLPutData(). If SQLParamData() returns SQL_SUCCESS, then |
15758 all data-at-execution data has been sent, and the SQL statement can be executed or the
15759 SQLBulkOperations() or SQLSetPos() call can be processed. |

15760 If SQLParamData() supplies parameter data for a searched UPDATE or DELETE statement that |
15761 does not affect any rows at the data source, the call to SQLParamData() returns SQL_NO_DATA.

15762 For more information on how data-at-execution parameter data is passed at statement execution
15763 time, see Passing Parameter Values on page 227. For more information on how data-at-
15764 execution column data is updated or added, see Section 12.3 on page 163 and |
15765 SQLBulkOperations().

15766 SEE ALSO

15767 For information about See

15768 Canceling statement processing SQLCancel()
15769 Returning information about a parameter in a statement SQLDescribeParam()
15770 Executing an SQL statement SQLExecDirect()
15771 Executing a prepared SQL statement SQLExecute()
15772 Sending parameter data at execution time SQLPutData()
15773 Binding a buffer to a parameter SQLBindParameter()

15774 CHANGE HISTORY

15775 Version 2
15776 Revised generally. See Alignment with Popular Implementations on page 2.

Data Management: X/Open Database Connectivity (XDBC), Version 2 431

SQLPrepare() ISO 92 Reference Manual Pages

15777 NAME
15778 SQLPrepare — Prepare an SQL statement for execution.

15779 SYNOPSIS
15780 SQLRETURN SQLPrepare(
15781 SQLHSTMTStatementHandle ,
15782 SQLCHAR * StatementText ,
15783 SQLINTEGER TextLength);

15784 ARGUMENTS

15785 StatementHandle [Input] |
15786 Statement handle. |

15787 StatementText [Input]
15788 SQL text string. |

15789 TextLength [Input] |
15790 Length of *StatementText. |

15791 RETURN VALUE |
15792 SQL_SUCCESS, SQL_SUCCESS_WITH_INFO, SQL_STILL_EXECUTING, SQL_ERROR, or |
15793 SQL_INVALID_HANDLE. |

15794 DIAGNOSTICS |
15795 When SQLPrepare() returns SQL_ERROR or SQL_SUCCESS_WITH_INFO, an associated |
15796 SQLSTATE value can be obtained by calling SQLGetDiagRec() with a HandleType of |
15797 SQL_HANDLE_STMT and a Handle of StatementHandle. The following table lists the SQLSTATE |
15798 values commonly returned by SQLPrepare(). The return code associated with each SQLSTATE |
15799 value is SQL_ERROR, except that for SQLSTATE values in class 01, the return code is |
15800 SQL_SUCCESS_WITH_INFO.

15801 01000 — General warning
15802 Implementation-defined informational message. |

15803 01S02 — Attribute value changed
15804 A specified statement attribute was invalid and a similar value was temporarily substituted. |
15805 See Section 9.2.1 on page 93.

15806 08S01 — Communication link failure
15807 The communication link to the data source failed before the function completed processing.

15808 22018 — Invalid character value
15809 *StatementText contained an SQL statement that contained a literal or parameter and the
15810 value was incompatible with the data type of the associated table column.

15811 22019 — Invalid escape character
15812 *StatementText contained a LIKE predicate with an ESCAPE in the WHERE clause, and the
15813 length of the escape character following ESCAPE was not equal to 1.

15814 22025 — Invalid escape sequence
15815 *StatementText contained ‘‘LIKE pattern value ESCAPE escape character’’ in the WHERE |
15816 clause, and the character following the escape character in the pattern value was not one of |
15817 ‘‘%’’ or ‘‘_’’.

15818 24000 — Invalid cursor state
15819 A cursor was open on StatementHandle

15820 34000 — Invalid cursor name
15821 *StatementText contained a positioned DELETE or a positioned UPDATE and the cursor
15822 referenced by the statement being prepared was not open.

432 Direct Review (Build ID 96KAV) (Draft XDBC.33, August 1996)

Reference Manual Pages ISO 92 SQLPrepare()

15823 HY000 — General error
15824 An error occurred for which there was no specific SQLSTATE and for which no
15825 implementation-specific SQLSTATE was defined. The error message returned by
15826 SQLGetDiagRec() in the *MessageTextbuffer describes the error and its cause. |

15827 HY001 — Memory allocation error
15828 The implementation failed to allocate memory required to support execution or completion
15829 of the function. |

15830 HY008 — Operation canceled |
15831 Asynchronous processing was enabled for StatementHandle. The function was called and |
15832 before it completed execution, SQLCancel() was called on StatementHandle. The function |
15833 was then called again on StatementHandle. |

15834 The function was called and, before it completed execution, SQLCancel() was called on |
15835 StatementHandle from a different thread in a multithread application. |

15836 HY009 — Invalid use of null pointer |
15837 StatementText was a null pointer. |

15838 HY010 — Function sequence error |
15839 An asynchronously executing function (not this one) was called for StatementHandle and |
15840 was still executing when this function was called. |

15841 SQLBulkOperations(), SQLExecDirect(), SQLExecute(), or SQLSetPos() was called for |
15842 StatementHandle and returned SQL_NEED_DATA.This function was called before data was |
15843 sent for all data-at-execution parameters or columns. |

15844 HY090 — Invalid string or buffer length |
15845 TextLength was less than or equal to 0, but not equal to SQL_NTS. |

15846 HYC00 — Optional feature not implemented
15847 The concurrency setting was invalid for the type of cursor defined.

15848 The SQL_ATTR_USE_BOOKMARKS statement attribute was set to SQL_UB_VARIABLE,
15849 and the SQL_ATTR_CURSOR_TYPE statement attribute was set to a cursor type for which |
15850 the data source does not support bookmarks. |

15851 HYT00 — Timeout expired |
15852 The timeout period expired before the data source returned the result set. The timeout |
15853 period is set through SQLSetStmtAttr(), SQL_ATTR_QUERY_TIMEOUT. |

15854 HYT01 — Connection timeout expired |
15855 The connection timeout period expired before the data source responded to the request. The |
15856 connection timeout period is set through SQLSetConnectAttr(), |
15857 SQL_ATTR_CONNECTION_TIMEOUT. |

15858 IM001 — Function not supported |
15859 The function is not supported on the current connection to the data source. |

15860 In addition, the following diagnostics, defined in the X/Open SQL specification, can occur based |
15861 on the SQL statement text:* |

15862 Cardinality violation |
15863 21S01 — Insert value does not match column list. |
15864 21S02 — Degree of derived table does not match column list. |

Data Management: X/Open Database Connectivity (XDBC), Version 2 433

SQLPrepare() ISO 92 Reference Manual Pages

15865 42000 Syntax error or access violation |
15866 42S01 — Base table or view already exists.
15867 42S02 — Base table or view not found.
15868 42S11 — Index already exists.
15869 42S12 — Index not found.
15870 42S21 — Column already exists.
15871 42S22 — Column not found.

15872 COMMENTS
15873 The application calls SQLPrepare() to send an SQL statement to the data source for preparation.
15874 The application can include one or more parameter markers in the SQL statement. To include a
15875 parameter marker, the application embeds a question mark into the SQL string at the
15876 appropriate position.

15877 Note: If an application uses SQLPrepare() to prepare and SQLExecute() to submit a COMMIT or
15878 ROLLBACK statement, it will not be interoperable between data sources. To commit or roll back
15879 a transaction, call SQLEndTran().

15880 Once a statement is prepared, the application uses the statement handle to refer to the statement
15881 in later function calls. The prepared statement associated with the statement handle may be re-
15882 executed by calling SQLExecute() until the application frees the statement handle with a call to
15883 SQLFreeHandle() or until the statement handle is used in a call to SQLPrepare(), SQLExecDirect(),
15884 or a catalog function. Once the application prepares a statement, it can request information
15885 about the format of the result set. For some implementations, calling SQLDescribeCol() or
15886 SQLDescribeParam() after SQLPrepare() may not be as efficient as calling the function after
15887 SQLExecute() or SQLExecDirect().

15888 Some implementations return syntax errors not when the statement is prepared but when it is
15889 executed. Some implementations do the same for access violations. Applications must be able
15890 to handle these conditions when calling subsequent related functions such as SQLColAttribute(),
15891 SQLDescribeCol(), SQLExecute(), and SQLNumResultCols().

15892 Some implementations check parameter information (such as data types) when the statement is
15893 prepared (if all parameters have been bound), or when it is executed (if all parameters have not
15894 been bound). For maximum interoperability, an application should unbind all parameters that
15895 applied to an old SQL statement before preparing a new SQL statement on the same statement.
15896 This prevents errors that are due to old parameter information being applied to the new
15897 statement.

15898 Transaction completion may have side-effects on cursors and on access plans of prepared |
15899 statements. See Section 14.1.3 on page 184.

15900 SEE ALSO

15901 For information about See

15902 Allocating a statement handle SQLAllocHandle()
15903 Binding a buffer to a column in a result set SQLBindCol()
15904 Canceling statement processing SQLCancel()
15905 Executing a commit or rollback operation SQLEndTran()
15906 Executing an SQL statement SQLExecDirect()
15907 Executing a prepared SQL statement SQLExecute()

434 Direct Review (Build ID 96KAV) (Draft XDBC.33, August 1996)

Reference Manual Pages ISO 92 SQLPrepare()

15908 Returning the number of rows affected by a statement SQLRowCount()
15909 Setting a cursor name SQLSetCursorName()
15910 Binding a buffer to a parameter SQLBindParameter()

15911 CHANGE HISTORY

15912 Version 2
15913 Revised generally. See Alignment with Popular Implementations on page 2.

Data Management: X/Open Database Connectivity (XDBC), Version 2 435

SQLPrimaryKeys() XDBC Reference Manual Pages

15914 NAME
15915 SQLPrimaryKeys — Return as a result set the column names of the primary key of a table.

15916 SYNOPSIS
15917 SQLRETURN SQLPrimaryKeys(
15918 SQLHSTMTStatementHandle ,
15919 SQLCHAR * CatalogName ,
15920 SQLSMALLINT NameLength1 ,
15921 SQLCHAR * SchemaName,
15922 SQLSMALLINT NameLength2 ,
15923 SQLCHAR * TableName ,
15924 SQLSMALLINT NameLength3);

15925 ARGUMENTS

15926 StatementHandle [Input] |
15927 Statement handle. |

15928 CatalogName [Input]
15929 Catalog name. If a data source supports catalogs, an empty string denotes those tables that
15930 do not have catalogs.

15931 If the SQL_ATTR_METADATA_ID statement attribute is SQL_TRUE, this argument is |
15932 interpreted as specified in Identifier (ID) Arguments on page 72. If it is SQL_FALSE, this |
15933 argument is interpreted as specified in Ordinary Arguments (OA) on page 71. |

15934 NameLength1 [Input] |
15935 Length in octets of *CatalogName. |

15936 SchemaName [Input] |
15937 Schema name. If a data source supports schemas, an empty string denotes those tables that |
15938 do not have schemas. |

15939 If the SQL_ATTR_METADATA_ID statement attribute is SQL_TRUE, this argument is |
15940 interpreted as specified in Identifier (ID) Arguments on page 72. If it is SQL_FALSE, this |
15941 argument is interpreted as specified in Ordinary Arguments (OA) on page 71. |

15942 NameLength2 [Input] |
15943 Length in octets of *SchemaName. |

15944 TableName [Input] |
15945 Table name. This argument cannot be a null pointer. |

15946 If the SQL_ATTR_METADATA_ID statement attribute is SQL_TRUE, this argument is |
15947 interpreted as specified in Identifier (ID) Arguments on page 72. If it is SQL_FALSE, this |
15948 argument is interpreted as specified in Ordinary Arguments (OA) on page 71. |

15949 NameLength3 [Input] |
15950 Length in octets of *TableName. |

15951 RETURN VALUE |
15952 SQL_SUCCESS, SQL_SUCCESS_WITH_INFO, SQL_STILL_EXECUTING, SQL_ERROR, or |
15953 SQL_INVALID_HANDLE. |

15954 DIAGNOSTICS |
15955 When SQLPrimaryKeys() returns SQL_ERROR or SQL_SUCCESS_WITH_INFO, an associated |
15956 SQLSTATE value may be obtained by calling SQLGetDiagRec() with a HandleType of |
15957 SQL_HANDLE_STMT and a Handle of StatementHandle. The following table lists the SQLSTATE |
15958 values commonly returned by SQLPrimaryKeys(). The return code associated with each |
15959 SQLSTATEvalue is SQL_ERROR, except that for SQLSTATEvalues in class 01, the return code is |

436 Direct Review (Build ID 96KAV) (Draft XDBC.33, August 1996)

Reference Manual Pages XDBC SQLPrimaryKeys()

15960 SQL_SUCCESS_WITH_INFO. |

15961 01000 — General warning |
15962 Implementation-defined informational message.

15963 08S01 — Communication link failure
15964 The communication link to the data source failed before the function completed processing.

15965 24000 — Invalid cursor state
15966 A cursor was open on StatementHandle. |

15967 HY000 — General error |
15968 An error occurred for which there was no specific SQLSTATE and for which no |
15969 implementation-specific SQLSTATE was defined. The error message returned by |
15970 SQLGetDiagRec() in the *MessageTextbuffer describes the error and its cause. |

15971 HY001 — Memory allocation error |
15972 The implementation failed to allocate memory required to support execution or completion |
15973 of the function. |

15974 HY008 — Operation canceled |
15975 Asynchronous processing was enabled for StatementHandle. The function was called and |
15976 before it completed execution, SQLCancel() was called on StatementHandle. The function |
15977 was then called again on StatementHandle. |

15978 The function was called and, before it completed execution, SQLCancel() was called on |
15979 StatementHandle from a different thread in a multithread application. |

15980 HY009 — Invalid use of null pointer |
15981 TableName was a null pointer. |

15982 The SQL_ATTR_METADATA_IDstatement attribute was set to SQL_TRUE, CatalogName |
15983 was a null pointer, and the SQL_CATALOG_NAME option of SQLGetInfo() returns that |
15984 catalog names are supported. |

15985 The SQL_ATTR_METADATA_ID statement attribute was set to SQL_TRUE, and |
15986 SchemaName or TableName was a null pointer. |

15987 HY010 — Function sequence error |
15988 An asynchronously executing function (not this one) was called for StatementHandle and |
15989 was still executing when this function was called. |

15990 SQLBulkOperations(), SQLExecDirect(), SQLExecute(), or SQLSetPos() was called for |
15991 StatementHandle and returned SQL_NEED_DATA.This function was called before data was |
15992 sent for all data-at-execution parameters or columns. |

15993 HY090 — Invalid string or buffer length |
15994 The value of one of the name length arguments was less than 0, but not equal to SQL_NTS.

15995 The value of one of the name length arguments exceeded the maximum length value for the
15996 corresponding name.

15997 HYC00 — Optional feature not implemented
15998 A catalog was specified and the implementation does not support catalog.

15999 A schema was specified and the implementation does not support schemas.

16000 The data source does not support the combination of the current settings of the |
16001 SQL_ATTR_CONCURRENCY and SQL_ATTR_CURSOR_TYPE statement attributes. |

16002 The SQL_ATTR_USE_BOOKMARKS statement attribute was set to SQL_UB_VARIABLE,
16003 and the SQL_ATTR_CURSOR_TYPE statement attribute was set to a cursor type for which |

Data Management: X/Open Database Connectivity (XDBC), Version 2 437

SQLPrimaryKeys() XDBC Reference Manual Pages

16004 the data source does not support bookmarks.

16005 HYT00 — Timeout expired
16006 The timeout period expired before the data source returned the requested result set. The
16007 timeout period is set through SQLSetStmtAttr(), SQL_ATTR_QUERY_TIMEOUT.

16008 HYT01 — Connection timeout expired
16009 The connection timeout period expired before the data source responded to the request. The
16010 connection timeout period is set through SQLSetConnectAttr(),
16011 SQL_ATTR_CONNECTION_TIMEOUT.

16012 IM001 — Function not supported
16013 The function is not supported on the current connection to the data source.

16014 COMMENTS
16015 SQLPrimaryKeys() returns the columns that are the primary keys of TableName as a result set.
16016 The result set is ordered by TABLE_CAT,TABLE_SCHEM, TABLE_NAME,and KEY_SEQ. •

16017 To determine the actual lengths of the TABLE_CAT, TABLE_SCHEM, TABLE_NAME, and
16018 COLUMN_NAME columns, call SQLGetInfo() with the SQL_MAX_CATALOG_NAME_LEN,
16019 SQL_MAX_SCHEMA_NAME_LEN, SQL_MAX_TABLE_NAME_LEN, and
16020 SQL_MAX_COLUMN_NAME_LEN options.

16021 This function does not support returning primary keys from multiple tables in a single call.

16022 The following table lists the columns in the result set. Additional columns beyond column 6
16023 (PK_NAME) can be defined by the implementation. An application should gain access to |
16024 implementation-defined columns by counting down from the end of the result set rather than by |
16025 specifying an explicit ordinal position; see Section 7.3 on page 68.

16026 Col.
16027 Column name No. Data type Comments |

16028 Primary key table catalog identifier; NULL if
16029 not applicable to the data source. If a data
16030 source supports catalogs, it returns an empty
16031 string for those tables that do not have
16032 catalogs.

TABLE_CAT 1 Varchar

16033 Primary key table schema identifier; NULL if
16034 not applicable to the data source. If a data
16035 source supports schemas, it returns an empty
16036 string for those tables that do not have
16037 schemas.

TABLE_SCHEM 2 Varchar

16038 Varchar
16039 not NULL

TABLE_NAME 3 Primary key table identifier.

438 Direct Review (Build ID 96KAV) (Draft XDBC.33, August 1996)

Reference Manual Pages XDBC SQLPrimaryKeys()

16040 Varchar
16041 not NULL

Primary key column identifier; an empty string
if the column is unnamed.

COLUMN_NAME 4

16042 Smallint
16043 not NULL

Column sequence number in key (starting with
1).

KEY_SEQ 5

16044 Primary key identifier. NULL if not applicable
16045 to the data source.

PK_NAME 6 Varchar

16046 SEE ALSO

16047 For information about See

16048 Overview of catalog functions Chapter 7
16049 Binding a buffer to a column in a result set SQLBindCol()
16050 Canceling statement processing SQLCancel()
16051 Fetching a block of data or scrolling through a result set SQLFetchScroll()
16052 Fetching a single row or a block of data in a forward-only
16053 direction

SQLFetch()

16054 Returning the columns of foreign keys SQLForeignKeys()
16055 Returning table statistics and indexes SQLStatistics()

16056 CHANGE HISTORY

16057 Version 2
16058 Function added in this version.

Data Management: X/Open Database Connectivity (XDBC), Version 2 439

SQLProcedureColumns() XDBC Reference Manual Pages

16059 NAME
16060 SQLProcedureColumns — Return as a result set the list of input and output parameters, and the
16061 columns of the result set, for the specified procedures.

16062 SYNOPSIS
16063 SQLRETURN SQLProcedureColumns(
16064 SQLHSTMTStatementHandle ,
16065 SQLCHAR * CatalogName ,
16066 SQLSMALLINT NameLength1 ,
16067 SQLCHAR * SchemaName,
16068 SQLSMALLINT NameLength2 ,
16069 SQLCHAR * ProcName,
16070 SQLSMALLINT NameLength3 ,
16071 SQLCHAR * ColumnName,
16072 SQLSMALLINT NameLength4);

16073 ARGUMENTS

16074 StatementHandle [Input] |
16075 Statement handle. |

16076 CatalogName [Input]
16077 Procedure catalog name. If a data source supports catalogs, an empty string denotes those
16078 procedures that do not have catalogs.

16079 If the SQL_ATTR_METADATA_ID statement attribute is SQL_TRUE, this argument is |
16080 interpreted as specified in Identifier (ID) Arguments on page 72. If it is SQL_FALSE, this |
16081 argument is interpreted as specified in Ordinary Arguments (OA) on page 71. |

16082 NameLength1 [Input] |
16083 Length of *CatalogName. |

16084 SchemaName [Input] |
16085 String search pattern for procedure schema names. If a data source supports schemas, an |
16086 empty string denotes those procedures that do not have schemas. |

16087 If the SQL_ATTR_METADATA_ID statement attribute is SQL_TRUE, this argument is |
16088 interpreted as specified in Identifier (ID) Arguments on page 72. If it is SQL_FALSE, this |
16089 argument is interpreted as specified in Pattern Value (PV) Arguments on page 71 and the |
16090 application may use a search pattern. |

16091 NameLength2 [Input] |
16092 Length of *SchemaName. |

16093 ProcName [Input] |
16094 String search pattern for procedure names. |

16095 If the SQL_ATTR_METADATA_ID statement attribute is SQL_TRUE, this argument is |
16096 interpreted as specified in Identifier (ID) Arguments on page 72. If it is SQL_FALSE, this |
16097 argument is interpreted as specified in Pattern Value (PV) Arguments on page 71 and the |
16098 application may use a search pattern. |

16099 NameLength3 [Input] |
16100 Length of *ProcName. |

16101 ColumnName [Input] |
16102 String search pattern for column names. |

16103 If the SQL_ATTR_METADATA_ID statement attribute is SQL_TRUE, this argument is |
16104 interpreted as specified in Identifier (ID) Arguments on page 72. If it is SQL_FALSE, this |

440 Direct Review (Build ID 96KAV) (Draft XDBC.33, August 1996)

Reference Manual Pages XDBC SQLProcedureColumns()

16105 argument is interpreted as specified in Pattern Value (PV) Arguments on page 71 and the |
16106 application may use a search pattern. |

16107 NameLength4 [Input] |
16108 Length of *ColumnName. |

16109 RETURN VALUE |
16110 SQL_SUCCESS, SQL_SUCCESS_WITH_INFO, SQL_STILL_EXECUTING, SQL_ERROR, or |
16111 SQL_INVALID_HANDLE. |

16112 When SQLProcedureColumns() returns SQL_ERROR or SQL_SUCCESS_WITH_INFO, an |
16113 associated SQLSTATE value can be obtained by calling SQLGetDiagRec() with a HandleType of
16114 SQL_HANDLE_STMT and a Handle of StatementHandle. The following SQLSTATE values are |
16115 commonly returned by SQLProcedureColumns(). The return code associated with each |
16116 SQLSTATEvalue is SQL_ERROR, except that for SQLSTATEvalues in class 01, the return code is |
16117 SQL_SUCCESS_WITH_INFO.

16118 01000 — General warning
16119 Implementation-defined informational message. |

16120 08S01 — Communication link failure
16121 The communication link to the data source failed before the function completed processing.

16122 24000 — Invalid cursor state
16123 A cursor was open on StatementHandle. |

16124 HY000 — General error |
16125 An error occurred for which there was no specific SQLSTATE and for which no |
16126 implementation-specific SQLSTATE was defined. The error message returned by |
16127 SQLGetDiagRec() in the *MessageTextbuffer describes the error and its cause. |

16128 HY001 — Memory allocation error |
16129 The implementation failed to allocate memory required to support execution or completion |
16130 of the function. |

16131 HY008 — Operation canceled |
16132 Asynchronous processing was enabled for StatementHandle. The function was called and |
16133 before it completed execution, SQLCancel() was called on StatementHandle. The function |
16134 was then called again on StatementHandle. |

16135 The function was called and, before it completed execution, SQLCancel() was called on |
16136 StatementHandle from a different thread in a multithread application. |

16137 HY009 — Invalid use of null pointer |
16138 The SQL_ATTR_METADATA_IDstatement attribute was set to SQL_TRUE, CatalogName |
16139 was a null pointer, and the SQL_CATALOG_NAME option of SQLGetInfo() returns that |
16140 catalog names are supported. |

16141 The SQL_ATTR_METADATA_ID statement attribute was set to SQL_TRUE, and |
16142 SchemaName, ProcName, or ColumnName was a null pointer.

16143 HY010 — Function sequence error
16144 An asynchronously executing function (not this one) was called for StatementHandle and |
16145 was still executing when this function was called. |

16146 SQLBulkOperations(), SQLExecDirect(), SQLExecute(), or SQLSetPos() was called for |
16147 StatementHandle and returned SQL_NEED_DATA.This function was called before data was |
16148 sent for all data-at-execution parameters or columns.

16149 HY090 — Invalid string or buffer length
16150 The value of one of the name length arguments was less than 0, but not equal to SQL_NTS. |

Data Management: X/Open Database Connectivity (XDBC), Version 2 441

SQLProcedureColumns() XDBC Reference Manual Pages

16151 The value of one of the name length arguments exceeded the maximum length value for the
16152 corresponding catalog, schema, procedure, or column name. |

16153 HYC00 — Optional feature not implemented
16154 A catalog was specified and the implementation does not support catalogs.

16155 A schema was specified and the implementation does not support schemas.

16156 A string search pattern was specified for the procedure schema, procedure name, or column
16157 name and the data source does not support search patterns for one or more of those
16158 arguments.

16159 The data source does not support the combination of the current settings of the |
16160 SQL_ATTR_CONCURRENCY and SQL_ATTR_CURSOR_TYPE statement attributes. |

16161 The SQL_ATTR_USE_BOOKMARKS statement attribute was set to SQL_UB_VARIABLE,
16162 and the SQL_ATTR_CURSOR_TYPE statement attribute was set to a cursor type for which |
16163 the data source does not support bookmarks. |

16164 HYT00 — Timeout expired |
16165 The timeout period expired before the data source returned the result set. The timeout |
16166 period is set through SQLSetStmtAttr(), SQL_ATTR_QUERY_TIMEOUT. |

16167 HYT01 — Connection timeout expired |
16168 The connection timeout period expired before the data source responded to the request. The |
16169 connection timeout period is set through SQLSetConnectAttr(), |
16170 SQL_ATTR_CONNECTION_TIMEOUT. |

16171 IM001 — Function not supported |
16172 The function is not supported on the current connection to the data source. |

16173 COMMENTS |
16174 This function is typically used before executing a statement that invokes a procedure, to retrieve |
16175 information about any parameters of the procedure and about any columns in a result set the |
16176 procedure may return. |

16177 Note: SQLProcedureColumns() might not return all columns used by a procedure. For example, a |
16178 data source might only return information about the parameters used by a procedure and not |
16179 the columns in a result set it generates. |

16180 SQLProcedureColumns() returns the results as a standard result set, ordered by |
16181 PROCEDURE_CAT,PROCEDURE_SCHEM, PROCEDURE_NAME, and ORDINAL_POSITION. |
16182 Column names are returned for each procedure in the following order: the name of the return |
16183 value, the names of each parameter in the procedure invocation (in call order), and then the |
16184 names of each column in the result set returned by the procedure (in column order). |

16185 Applications should bind implementation-defined columns relative to the end of the result set. |
16186 For more information, see Section 7.3 on page 68.

16187 To determine the actual lengths of the PROCEDURE_CAT, PROCEDURE_SCHEM,
16188 PROCEDURE_NAME, and COLUMN_NAME columns, an application can call SQLGetInfo()
16189 with the SQL_MAX_CATALOG_NAME_LEN, SQL_MAX_SCHEMA_NAME_LEN,
16190 SQL_MAX_PROCEDURE_NAME_LEN, and SQL_MAX_COLUMN_NAME_LEN options.

442 Direct Review (Build ID 96KAV) (Draft XDBC.33, August 1996)

Reference Manual Pages XDBC SQLProcedureColumns()

16191 The following table lists the columns in the result set. Additional columns beyond column 19
16192 (IS_NULLABLE) can be defined by the implementation. An application should gain access to |
16193 implementation-defined columns by counting down from the end of the result set rather than by |
16194 specifying an explicit ordinal position; see Section 7.3 on page 68.

16195 Col.
16196 Column Name No. Data Type Comments
16197 Procedure catalog identifier; NULL if not
16198 applicable to the data source. If a data
16199 source supports catalogs, it returns an
16200 empty string for those procedures that do
16201 not have catalogs.

PROCEDURE_CAT 1 Varchar

16202 Procedure schema identifier; NULL if not
16203 applicable to the data source. If a data
16204 source supports schemas, it returns an
16205 empty string for those procedures that do
16206 not have schemas.

PROCEDURE_SCHEM 2 Varchar

16207 Varchar
16208 not NULL

Procedure identifier. An empty string is
returned for a procedure that does not have

16209 an identifier.

PROCEDURE_NAME 3

16210 Varchar
16211 not NULL

Procedure column identifier. An empty
string is returned for a procedure column

16212 that does not have an identifier.

COLUMN_NAME 4

16213 Smallint
16214 not NULL

Defines the procedure column as parameter
or a result set column:

16215 SQL_PARAM_TYPE_UNKNOWN: The
16216 procedure column is a parameter whose
16217 type is unknown.

16218 SQL_PARAM_INPUT: The procedure
16219 column is an input parameter.

16220 SQL_PARAM_INPUT_OUTPUT: the
16221 procedure column is an input/output
16222 parameter.

16223 SQL_PARAM_OUTPUT: The procedure
16224 column is an output parameter.

16225 SQL_RETURN_VALUE: The procedure
16226 column is the return value of the procedure.

16227 SQL_RESULT_COL: The procedure column
16228 is a result set column.

COLUMN_TYPE 5

Data Management: X/Open Database Connectivity (XDBC), Version 2 443

SQLProcedureColumns() XDBC Reference Manual Pages

16229 Smallint
16230 not NULL

SQL data type. This can be an XDBC SQL |
data type or an implementation-defined |

16231 SQL data type. For date/time and interval |
16232 data types, this column returns the concise |
16233 data types (for example, SQL_TYPE_TIME |
16234 or SQL_INTERVAL_YEAR_TO_MONTH). |
16235 For a list of valid XDBC SQL data types, see
16236 Section D.1 on page 556.

DATA_TYPE 6

16237 Varchar
16238 not NULL

Data source-dependent data type name; for
example, ‘‘CHAR’’, ‘‘VARCHAR’’,

16239 ‘‘MONEY’’, ‘‘LONG VARBINARY’’, or
16240 ‘‘CHAR () FOR BIT DATA’’.

TYPE_NAME 7

16241 The column size of the procedure column on
16242 the data source. NULL is returned for data
16243 types where column size is not applicable.
16244 For more information concerning precision,
16245 see Section D.3 on page 562.

COLUMN_SIZE 8 Integer

16246 The length in octets of data transferred on an |
16247 SQLGetData() or SQLFetch() operation if
16248 SQL_C_DEFAULT is specified. For numeric
16249 data, this size may be different from the size
16250 of the data stored on the data source. For
16251 more information, see Section D.3 on page
16252 562.

BUFFER_LENGTH 9 Integer

16253 The decimal digits of the procedure column
16254 on the data source. NULL is returned for
16255 data types where decimal digits is not
16256 applicable. For more information concerning
16257 decimal digits, see Section D.3 on page 562.

DECIMAL_DIGITS 10 Smallint

16258 For numeric data types, either 10 or 2. If it is
16259 10, the values in COLUMN_SIZE and
16260 DECIMAL_DIGITS give the number of
16261 decimal digits allowed for the column. For
16262 example, a DECIMAL(12,5) column would
16263 return a NUM_PREC_RADIX of 10, a
16264 COLUMN_SIZE of 12, and a
16265 DECIMAL_DIGITS of 5; a FLOAT column
16266 could return a NUM_PREC_RADIX of 10, a
16267 COLUMN_SIZE of 15 and a
16268 DECIMAL_DIGITS of NULL.

16269 If it is 2, the values in COLUMN_SIZE and
16270 DECIMAL_DIGITS give the number of bits
16271 allowed in the column. For example, a
16272 FLOAT column could return a
16273 NUM_PREC_RADIX of 2, a COLUMN_SIZE
16274 of 53, and a DECIMAL_DIGITS of NULL.

16275 NULL is returned for data types where

NUM_PREC_RADIX 11 Smallint

444 Direct Review (Build ID 96KAV) (Draft XDBC.33, August 1996)

Reference Manual Pages XDBC SQLProcedureColumns()

16276 NUM_PREC_RADIX is not applicable.

16277 Smallint
16278 not NULL

SQL_NO_NULLS if the procedure column
does not accept NULL values.

16279 SQL_NULLABLE if the procedure column
16280 accepts NULL values.
16281 SQL_NULLABLE_UNKNOWN if it is not
16282 known if the procedure column accepts
16283 NULL values.

NULLABLE 12

16284 REMARKS 13 Varchar A description of the procedure column.

16285 The default value of the column. See Section |
16286 7.3.1 on page 68. |

COLUMN_DEF 14 Varchar |

16287 Smallint
16288 not NULL

The value of the SQL data type as it appears
in the SQL_DESC_TYPE field of the

16289 descriptor. This column is the same as the
16290 DATA_TYPE column, except for date/time |
16291 and interval data types. |

16292 For date/time and interval data types, the |
16293 SQL_DATA_TYPE field in the result set
16294 returns SQL_INTERVAL or
16295 SQL_DATETIME, and the
16296 SQL_DATETIME_SUB field returns the |
16297 subcode for the specific interval or |
16298 date/time data type (see Appendix D.)

SQL_DATA_TYPE 15

16299 The subtype code for date/time and interval |
16300 data types. For other data types, this column
16301 returns a NULL.

SQL_DATETIME_SUB 16 Smallint

16302 The maximum length in octets of a character |
16303 data type column. For all other data types,
16304 this column returns a NULL.

CHAR_OCTET_LENGTH 17 Integer

16305 Integer
16306 not NULL

For input parameters, the ordinal position of |
the parameter in the procedure definition |

16307 (from left to right). The first parameter is |
16308 number 1. For output parameters, this |
16309 column is 0. |

ORDINAL_POSITION 18

16310 For result-set columns, the ordinal position |
16311 of the column in the table. The first column |
16312 in the table is number 1. If there are |
16313 multiple result sets, column ordinal |
16314 positions are implementation-defined.

Data Management: X/Open Database Connectivity (XDBC), Version 2 445

SQLProcedureColumns() XDBC Reference Manual Pages

16315 ‘‘NO’’ if the column does not include
16316 NULLs. ‘‘YES’’ if the column can include
16317 NULLs. A zero-length string if nullability is
16318 unknown. ISO rules are followed to
16319 determine nullability. An ISO SQL
16320 compliant data source cannot return an
16321 empty string.

16322 The value returned for this column is
16323 different from the value returned for the
16324 NULLABLE column. (See the description of
16325 the NULLABLE column.)

IS_NULLABLE 19 Varchar

16326 SEE ALSO

16327 For information about See

16328 Overview of catalog functions Chapter 7 |

16329 Overview of procedures Section 9.3.3 on page 97 |

16330 Standard syntax (XDBC escape clause) for calling a
16331 procedure

Section 8.3.6 on page 88

16332 Binding a buffer to a column in a result set SQLBindCol()
16333 Canceling statement processing SQLCancel()
16334 Fetching a block of data or scrolling through a result set SQLFetchScroll()
16335 Fetching a single row or a block of data in a forward-only
16336 direction

SQLFetch()

16337 Returning a list of procedures in a data source SQLProcedures()

16338 CHANGE HISTORY

16339 Version 2
16340 Function added in this version.

446 Direct Review (Build ID 96KAV) (Draft XDBC.33, August 1996)

Reference Manual Pages XDBC SQLProcedures()

16341 NAME
16342 SQLProcedures — Return the list of procedure names stored in a specified data source.

16343 SYNOPSIS
16344 SQLRETURN SQLProcedures(
16345 SQLHSTMTStatementHandle ,
16346 SQLCHAR * CatalogName ,
16347 SQLSMALLINT NameLength1 ,
16348 SQLCHAR * SchemaName,
16349 SQLSMALLINT NameLength2 ,
16350 SQLCHAR * ProcName,
16351 SQLSMALLINT NameLength3);

16352 ARGUMENTS

16353 StatementHandle [Input] |
16354 Statement handle. |

16355 CatalogName [Input]
16356 Procedure catalog. If a data source supports catalogs, an empty string denotes those tables
16357 that do not have catalogs.

16358 If the SQL_ATTR_METADATA_ID statement attribute is SQL_TRUE, this argument is |
16359 interpreted as specified in Identifier (ID) Arguments on page 72. If it is SQL_FALSE, this |
16360 argument is interpreted as specified in Ordinary Arguments (OA) on page 71. |

16361 NameLength1 [Input] |
16362 Length in octets of *CatalogName. |

16363 SchemaName [Input] |
16364 String search pattern for procedure schema names. If a data source supports schemas, an |
16365 empty string denotes those procedures that do not have schemas. |

16366 If the SQL_ATTR_METADATA_ID statement attribute is SQL_TRUE, this argument is |
16367 interpreted as specified in Identifier (ID) Arguments on page 72. If it is SQL_FALSE, this |
16368 argument is interpreted as specified in Pattern Value (PV) Arguments on page 71 and the |
16369 application may use a search pattern. |

16370 NameLength2 [Input]
16371 Length in octets of *SchemaName. |

16372 ProcName [Input]
16373 String search pattern for procedure names. |

16374 If the SQL_ATTR_METADATA_ID statement attribute is SQL_TRUE, this argument is |
16375 interpreted as specified in Identifier (ID) Arguments on page 72. If it is SQL_FALSE, this |
16376 argument is interpreted as specified in Pattern Value (PV) Arguments on page 71 and the |
16377 application may use a search pattern. |

16378 NameLength3 [Input] |
16379 Length in octets of *ProcName. |

16380 RETURN VALUE |
16381 SQL_SUCCESS, SQL_SUCCESS_WITH_INFO, SQL_STILL_EXECUTING, SQL_ERROR, or |
16382 SQL_INVALID_HANDLE. |

16383 DIAGNOSTICS |
16384 When SQLProcedures() returns SQL_ERROR or SQL_SUCCESS_WITH_INFO, an associated |
16385 SQLSTATE value can be obtained by calling SQLGetDiagRec() with a HandleType of
16386 SQL_HANDLE_STMT and a Handle of StatementHandle. The following table lists the SQLSTATE

Data Management: X/Open Database Connectivity (XDBC), Version 2 447

SQLProcedures() XDBC Reference Manual Pages

16387 values commonly returned by SQLProcedures(). The return code associated with each |
16388 SQLSTATEvalue is SQL_ERROR, except that for SQLSTATEvalues in class 01, the return code is |
16389 SQL_SUCCESS_WITH_INFO.

16390 01000 — General warning |
16391 Implementation-defined informational message.

16392 08S01 — Communication link failure |
16393 The communication link to the data source failed before the function completed processing. |

16394 24000 — Invalid cursor state |
16395 A cursor was open on StatementHandle. |

16396 HY000 — General error |
16397 An error occurred for which there was no specific SQLSTATE and for which no |
16398 implementation-specific SQLSTATE was defined. The error message returned by |
16399 SQLGetDiagRec() in the *MessageTextbuffer describes the error and its cause. |

16400 HY001 — Memory allocation error |
16401 The implementation failed to allocate memory required to support execution or completion |
16402 of the function. |

16403 HY008 — Operation canceled |
16404 Asynchronous processing was enabled for StatementHandle. The function was called and |
16405 before it completed execution, SQLCancel() was called on StatementHandle. The function |
16406 was then called again on StatementHandle. |

16407 The function was called and, before it completed execution, SQLCancel() was called on |
16408 StatementHandle from a different thread in a multithread application. |

16409 HY009 — Invalid use of null pointer |
16410 The SQL_ATTR_METADATA_IDstatement attribute was set to SQL_TRUE, CatalogName |
16411 was a null pointer, and the SQL_CATALOG_NAME option of SQLGetInfo() returns that |
16412 catalog names are supported. |

16413 The SQL_ATTR_METADATA_ID statement attribute was set to SQL_TRUE, and |
16414 SchemaName or ProcName was a null pointer. |

16415 HY010 — Function sequence error |
16416 An asynchronously executing function (not this one) was called for StatementHandle and |
16417 was still executing when this function was called. |

16418 SQLBulkOperations(), SQLExecDirect(), SQLExecute(), or SQLSetPos() was called for |
16419 StatementHandle and returned SQL_NEED_DATA.This function was called before data was |
16420 sent for all data-at-execution parameters or columns. |

16421 HY090 — Invalid string or buffer length |
16422 The value of one of the name length arguments was less than 0, but not equal to SQL_NTS. |

16423 The value of one of the name length arguments exceeded the maximum length value for the |
16424 corresponding name. |

16425 HYC00 — Optional feature not implemented
16426 A catalog was specified and the implementation does not support catalogs.

16427 A schema was specified and the implementation does not support schemas.

16428 A string search pattern was specified for the procedure schema or procedure name and the
16429 data source does not support search patterns for one or more of those arguments.

16430 The data source does not support the combination of the current settings of the |
16431 SQL_ATTR_CONCURRENCY and SQL_ATTR_CURSOR_TYPE statement attributes. |

448 Direct Review (Build ID 96KAV) (Draft XDBC.33, August 1996)

Reference Manual Pages XDBC SQLProcedures()

16432 The SQL_ATTR_USE_BOOKMARKS statement attribute was set to SQL_UB_VARIABLE, |
16433 and the SQL_ATTR_CURSOR_TYPE statement attribute was set to a cursor type for which |
16434 the data source does not support bookmarks. |

16435 HYT00 — Timeout expired |
16436 The query timeout period expired before the data source returned the requested result set.
16437 The timeout period is set through SQLSetStmtAttr(), SQL_ATTR_QUERY_TIMEOUT. |

16438 HYT01 — Connection timeout expired |
16439 The connection timeout period expired before the data source responded to the request. The |
16440 connection timeout period is set through SQLSetConnectAttr(), |
16441 SQL_ATTR_CONNECTION_TIMEOUT. |

16442 IM001 — Function not supported |
16443 The function is not supported on the current connection to the data source. |

16444 COMMENTS |
16445 SQLProcedures() lists all procedures in the requested range. A user may or may not have
16446 permission to execute any of these procedures. To check accessibility, an application can call
16447 SQLGetInfo() and check the SQL_ACCESSIBLE_PROCEDURES information value. Otherwise,
16448 the application must be able to handle a situation where the user selects a procedure which it
16449 cannot execute.

16450 SQLProcedures() returns the results as a standard result set, ordered by PROCEDURE_CAT,
16451 PROCEDURE_SCHEMA, and PROCEDURE_NAME. •

16452 To determine the actual lengths of the PROCEDURE_CAT, PROCEDURE_SCHEM, and
16453 PROCEDURE_NAME columns, an application can call SQLGetInfo() with the
16454 SQL_MAX_CATALOG_NAME_LEN, SQL_MAX_SCHEMA_NAME_LEN, and
16455 SQL_MAX_PROCEDURE_NAME_LEN options.

16456 The following table lists the columns in the result set. Additional columns beyond column 8
16457 (PROCEDURE_TYPE) can be defined by the implementation. An application should gain access |
16458 to implementation-defined columns by counting down from the end of the result set rather than |
16459 by specifying an explicit ordinal position; see Section 7.3 on page 68.

16460 Col.
16461 Column Name No. Data Type Comments
16462 Procedure catalog identifier; NULL if not
16463 applicable to the data source. If a data
16464 source supports catalogs, it returns an
16465 empty string for those procedures that do
16466 not have catalogs.

PROCEDURE_CAT 1 Varchar

16467 Procedure schema identifier; NULL if not
16468 applicable to the data source. If a data
16469 source supports schemas, it returns an
16470 empty string for those procedures that do
16471 not have schemas.

PROCEDURE_SCHEM 2 Varchar

Data Management: X/Open Database Connectivity (XDBC), Version 2 449

SQLProcedures() XDBC Reference Manual Pages

16472 Varchar
16473 not NULL

PROCEDURE_NAME 3 Procedure identifier.

16474 NUM_INPUT_PARAMS 4 N/A Reserved for future use.

16475 NUM_OUTPUT_PARAMS 5 N/A Reserved for future use.

16476 NUM_RESULT_SETS 6 N/A Reserved for future use.

16477 REMARKS 7 Varchar A description of the procedure.

16478 SQL_PT_FUNCTION if the returned object
16479 is a function; that is, it has a return value.
16480 SQL_PT_PROCEDURE if the returned object
16481 is a procedure; that is, it does not have a
16482 return value. SQL_PT_UNKNOWN if it
16483 cannot be determined whether the
16484 procedure returns a value.

PROCEDURE_TYPE 8 Smallint

16485 Applications should not rely on data returned in columns described as ‘‘Reserved for future
16486 use.’’ |

16487 SEE ALSO |

16488 For information about See
|

16489 Overview of catalog functions |Chapter 7 |||

16490 Overview of procedures |Section 9.3.3 on page 97 |||

16491 Standard syntax (XDBC escape clause) for calling a |
16492 procedure |

Section 8.3.6 on page 88 ||

16493 Binding a buffer to a column in a result set |SQLBindCol() ||

16494 Canceling statement processing |SQLCancel() ||

16495 Fetching a block of data or scrolling through a result set |SQLFetchScroll() ||

16496 Fetching a single row or a block of data in a forward-only |
16497 direction |

SQLFetch() ||

16498 Returning information about an implementation |SQLGetInfo() ||

16499 Returning the parameters and result set columns of a |
16500 procedure |

SQLProcedureColumns() ||

16501 CHANGE HISTORY |

16502 Version 2 |
16503 Function added in this version. ||

450 Direct Review (Build ID 96KAV) (Draft XDBC.33, August 1996)

Reference Manual Pages ISO 92 SQLPutData()

16504 NAME |
16505 SQLPutData — Supply data for a parameter or column at statement execution time. |

16506 SYNOPSIS
16507 SQLRETURN SQLPutData(
16508 SQLHSTMTStatementHandle ,
16509 SQLPOINTER DataPtr ,
16510 SQLINTEGER StrLen_or_Ind);

16511 ARGUMENTS

16512 StatementHandle [Input] |
16513 Statement handle. |

16514 DataPtr [Input]
16515 Pointer to a buffer containing the actual data for the parameter or column. The data must |
16516 be in the C data type specified in ValueType of SQLBindParameter() (for parameter data) or
16517 TargetTypeof SQLBindCol() (for column data). |

16518 StrLen_or_Ind [Input]
16519 Length of *DataPtr. Specifies the amount of data sent in a call to SQLPutData(). The amount
16520 of data can vary with each call for a given parameter or column. StrLen_or_Ind is ignored
16521 unless it is one of the following:

16522 • SQL_NTS, SQL_NULL_DATA,or SQL_DEFAULT_PARAM

16523 • The C data type specified in SQLBindParameter() or SQLBindCol() is SQL_C_CHAR or |
16524 SQL_C_BINARY

16525 • The C data type is SQL_C_DEFAULT and the default C data type for the specified SQL |
16526 data type is SQL_C_CHAR or SQL_C_BINARY.

16527 For all other types of C data, if StrLen_or_Ind is not SQL_NULL_DATA or |
16528 SQL_DEFAULT_PARAM,the implementation assumes that the size of the *DataPtr buffer is |
16529 the size of the C data type specified with ValueTypeor TargetType and sends the entire data
16530 value. For more information, see Section D.7 on page 587. |

16531 RETURN VALUE
16532 SQL_SUCCESS, SQL_SUCCESS_WITH_INFO, SQL_STILL_EXECUTING, SQL_ERROR, or |
16533 SQL_INVALID_HANDLE. |

16534 DIAGNOSTICS |
16535 When SQLPutData() returns SQL_ERROR or SQL_SUCCESS_WITH_INFO, an associated |
16536 SQLSTATE value can be obtained by calling SQLGetDiagRec() with a HandleType of |
16537 SQL_HANDLE_STMT and a Handle of StatementHandle. The following table lists the SQLSTATE |
16538 values commonly returned by SQLPutData(). The return code associated with each SQLSTATE |
16539 value is SQL_ERROR, except that for SQLSTATE values in class 01, the return code is |
16540 SQL_SUCCESS_WITH_INFO. |

16541 01000 — General warning |
16542 Implementation-defined informational message. |

16543 01004 — String data, right truncation |
16544 String or binary data returned for an output parameter resulted in the truncation of non- |
16545 blank character or non-null binary data. If it was a string value, it was right-truncated.

16546 07006 — Restricted data type attribute violation
16547 The data value identified by ValueType in SQLBindParameter() for the bound parameter
16548 could not be converted to the data type identified by ParameterTypein SQLBindParameter().

Data Management: X/Open Database Connectivity (XDBC), Version 2 451

SQLPutData() ISO 92 Reference Manual Pages

16549 07S01 — Invalid use of default parameter
16550 StrLen_or_Ind was SQL_DEFAULT_PARAM, and the corresponding parameter was not a
16551 parameter for a procedure called using the XDBC escape sequence (see Section 8.3 on page |
16552 84).

16553 08S01 — Communication link failure
16554 The communication link to the data source failed before the function completed processing. |

16555 22001 — String data, right truncation |
16556 The assignment of a character or binary value to a column resulted in the truncation of |
16557 non-blank (character) or non-null (binary) characters or octets. |

16558 The SQL_NEED_LONG_DATA_LEN option in SQLGetInfo() was ‘‘Y’’ and more data was |
16559 sent for a long parameter (the data type was SQL_LONGVARCHAR,
16560 SQL_LONGVARBINARY,or a long, data source-specific data type) than was specified with
16561 StrLen_or_IndPtr in SQLBindParameter(). |

16562 The SQL_NEED_LONG_DATA_LEN option in SQLGetInfo() was ‘‘Y’’ and more data was
16563 sent for a long column (the data type was SQL_LONGVARCHAR,
16564 SQL_LONGVARBINARY, or a long, data-source-specific data type) than was specified in
16565 the length buffer corresponding to a column in a row of data that was added or updated
16566 with SQLBulkOperations(), or updated with SQLSetPos(). |

16567 22003 — Numeric value out of range
16568 The data sent for a bound numeric parameter or column caused the whole (as opposed to
16569 fractional) part of the number to be truncated when assigned to the associated table column. |

16570 Returning a numeric value (as numeric or string) for one or more input/output or output |
16571 parameters would have caused the whole (as opposed to fractional) part of the number to |
16572 be truncated. |

16573 22007 — Invalid date/time format
16574 The data sent for a parameter or column that was bound to a date, time, or timestamp |
16575 structure was, respectively, an invalid date, time, or timestamp. |

16576 An input/output or output parameter was bound to a date, time, or timestamp C structure, |
16577 and a value in the returned parameter was invalid for the data type. |

16578 22008 — Date/time field overflow |
16579 A date/time expression computed for an input/output or output parameter resulted in a |
16580 date, time, or timestamp C structure that was invalid. |

16581 22012 — Division by zero |
16582 An arithmetic expression calculated for an input/output or output parameter resulted in |
16583 division by zero.

16584 22015 — Interval field overflow
16585 The data sent for an exact numeric column or parameter to an interval structure was
16586 truncated with a loss of significant digits.

16587 The data sent for an interval column or parameter to an interval structure was truncated
16588 with a loss of significant digits.

16589 Column or parameter data was bound to an interval structure and there was no
16590 representation of the data in the interval structure. |

16591 An input/output or output parameter that was an exact numeric value at the data source |
16592 was bound to an interval C structure and returning the data caused a loss of significant |
16593 digits. |

452 Direct Review (Build ID 96KAV) (Draft XDBC.33, August 1996)

Reference Manual Pages ISO 92 SQLPutData()

16594 An input/output or output parameter that was an interval value at the data source was |
16595 bound to an interval C structure and returning the data caused a loss of significant digits in |
16596 the leading field. |

16597 An input/output or output parameter was bound to an interval C structure, but there was |
16598 no representation of the data in the interval data structure.

16599 22018 — Invalid character value for cast specification
16600 A character parameter or column was bound to an approximate numeric buffer and could
16601 not be cast to a valid approximate numeric value.

16602 A character parameter or column was bound to an exact numeric buffer and could not be
16603 cast to a valid exact numeric value.

16604 A character parameter or column was bound to date/time or interval buffer and could not |
16605 be cast to a valid date/time or interval value. |

16606 An input/output or output parameter that was a character value at the data source was |
16607 bound to an approximate numeric C buffer and a value in the parameter could not be cast |
16608 to a valid approximate numeric value. |

16609 An input/output or output parameter was bound to an exact numeric C buffer and a value |
16610 in the parameter could not be cast to a valid exact numeric value. |

16611 An input/output or output parameter was bound to a date/time or interval C buffer and a |
16612 value in the parameter could not be cast to a valid date/time or interval value. |

16613 An input/output or output parameter was bound to a character C buffer and the parameter |
16614 contained a character for which there was no representation in the character set of the |
16615 target. |

16616 HY000 — General error |
16617 An error occurred for which there was no specific SQLSTATE and for which no |
16618 implementation-specific SQLSTATE was defined. The error message returned by |
16619 SQLGetDiagRec() in the *MessageTextbuffer describes the error and its cause. |

16620 HY001 — Memory allocation error |
16621 The implementation failed to allocate memory required to support execution or completion |
16622 of the function. |

16623 HY008 — Operation canceled |
16624 Asynchronous processing was enabled for StatementHandle. The function was called and |
16625 before it completed execution, SQLCancel() was called on StatementHandle. The function |
16626 was then called again on StatementHandle. |

16627 The function was called and, before it completed execution, SQLCancel() was called on |
16628 StatementHandle from a different thread in a multithread application. |

16629 HY009 — Invalid use of null pointer |
16630 DataPtr was a null pointer and StrLen_or_Ind was not 0, SQL_DEFAULT_PARAM, or
16631 SQL_NULL_DATA.

16632 HY010 — Function sequence error
16633 The previous function call was not a call to SQLPutData() or SQLParamData(). |

16634 An asynchronously executing function (not this one) was called for StatementHandle and |
16635 was still executing when this function was called. |

16636 HY011 — Attribute cannot be set now
16637 One or more calls to SQLPutData() for a single parameter have returned SQL_SUCCESS,
16638 and SQLPutData() was again called for that parameter with StrLen_or_IndPtrcbValueset to

Data Management: X/Open Database Connectivity (XDBC), Version 2 453

SQLPutData() ISO 92 Reference Manual Pages

16639 SQL_NULL_DATA.

16640 HY019 — Non-character and non-binary data sent in pieces
16641 SQLPutData() was called more than once for a parameter or column and it was not being
16642 used to send character C data to a column with a character, binary, or data source-specific
16643 data type or to send binary C data to a column with a character, binary, or data source-
16644 specific data type.

16645 HY020 — Attempt to concatenate a null value
16646 SQLPutData() was called more than once since the call that returned SQL_NEED_DATA,
16647 and in one of those calls, StrLen_or_Ind contained SQL_NULL_DATA or
16648 SQL_DEFAULT_PARAM.

16649 HY090 — Invalid string or buffer length
16650 DataPtr was not a null pointer and StrLen_or_Ind was less than 0, but not equal to SQL_NTS
16651 or SQL_NULL_DATA.

16652 HYT01 — Connection timeout expired
16653 The connection timeout period expired before the data source responded to the request. The
16654 connection timeout period is set through SQLSetConnectAttr(),
16655 SQL_ATTR_CONNECTION_TIMEOUT.

16656 IM001 — Function not supported
16657 The function is not supported on the current connection to the data source.

16658 COMMENTS
16659 SQLPutData() can be called to supply data-at-execution data for two uses: parameter data to be
16660 used in a call to SQLExecute() or SQLExecDirect(), or column data to be used when a row is
16661 updated or added by a call to SQLBulkOperations(), or updated by a call to SQLSetPos(). |

16662 When an application calls SQLParamData() to determine which data it should send, the |
16663 implementation returns the value that the application placed in the row-set buffer. The |
16664 application uses this value to determine which parameter data the implementation is requesting |
16665 on this occasion, or the address of the row where column data can be found. It also returns
16666 SQL_NEED_DATA,which is an indicator to the application that it should call SQLPutData() to
16667 send the data. The application points DataPtr to the buffer containing the actual data for the
16668 parameter or column.

16669 SQLPutData() returns SQL_NEED_DATA if more data needs to be sent, in which case the
16670 application calls SQLPutData() again. It returns SQL_SUCCESS if all data-at-execution data has
16671 been sent. The application then calls SQLParamData() again. If SQLParamData() returns |
16672 SQL_NEED_DATA,then it requires data for another parameter or column, and SQLPutData() is |
16673 called again. If SQLParamData() returns SQL_SUCCESS, then all data-at-execution data has been |
16674 sent, and the SQL statement can be executed or the SQLBulkOperations() or SQLSetPos() call can
16675 be processed.

16676 For more information on how data-at-execution parameter data is passed at statement execution
16677 time, see Passing Parameter Values on page 227. For more information on how data-at-
16678 execution column data is updated or added, see Section 12.3 on page 163 and |
16679 SQLBulkOperations().

16680 Note: An application can use SQLPutData() to send data in parts only when sending character C
16681 data to a column with a character, binary, or data source-specific data type or when sending
16682 binary C data to a column with a character, binary, or data source-specific data type. If
16683 SQLPutData() is called more than once under any other conditions, it returns SQL_ERROR and
16684 SQLSTATEHY019 (Non-character and non-binary data sent in pieces).

16685 This function can be used to send character or binary data values in parts to a column with a
16686 character, binary, or data source-specific data type (for example, parameters of the

454 Direct Review (Build ID 96KAV) (Draft XDBC.33, August 1996)

Reference Manual Pages ISO 92 SQLPutData()

16687 SQL_LONGVARBINARY or SQL_LONGVARCHAR types).

16688 SEE ALSO

16689 For information about See

16690 Canceling statement processing SQLCancel()
16691 Executing an SQL statement SQLExecDirect()
16692 Executing a prepared SQL statement SQLExecute()
16693 Returning the next parameter to send data for SQLParamData()
16694 Binding a buffer to a parameter SQLBindParameter()

16695 CHANGE HISTORY

16696 Version 2
16697 Revised generally. See Alignment with Popular Implementations on page 2.

Data Management: X/Open Database Connectivity (XDBC), Version 2 455

SQLRowCount() ISO 92 Reference Manual Pages

16698 NAME
16699 SQLRowCount — Return the number of rows affected by certain database operations. |

16700 SYNOPSIS
16701 SQLRETURN SQLRowCount(
16702 SQLHSTMTStatementHandle ,
16703 SQLINTEGER * RowCountPtr);

16704 ARGUMENTS

16705 StatementHandle [Input] |
16706 Statement handle. |

16707 RowCountPtr [Output]
16708 Points to a buffer in which to return a row count. |

16709 RETURN VALUE
16710 SQL_SUCCESS, SQL_SUCCESS_WITH_INFO, SQL_ERROR, or SQL_INVALID_HANDLE. |

16711 DIAGNOSTICS |
16712 When SQLRowCount() returns SQL_ERROR or SQL_SUCCESS_WITH_INFO, an associated |
16713 SQLSTATE value can be obtained by calling SQLGetDiagRec() with a HandleType of |
16714 SQL_HANDLE_STMT and a Handle of StatementHandle. The following table lists the SQLSTATE |
16715 values commonly returned by SQLRowCount(). The return code associated with each |
16716 SQLSTATEvalue is SQL_ERROR, except that for SQLSTATEvalues in class 01, the return code is |
16717 SQL_SUCCESS_WITH_INFO. |

16718 01000 — General warning |
16719 Implementation-defined informational message. |

16720 HY000 — General error |
16721 An error occurred for which there was no specific SQLSTATE and for which no |
16722 implementation-specific SQLSTATE was defined. The error message returned by |
16723 SQLGetDiagRec() in the *MessageTextbuffer describes the error and its cause. |

16724 HY001 — Memory allocation error |
16725 The implementation failed to allocate memory required to support execution or completion |
16726 of the function. |

16727 HY010 — Function sequence error |
16728 The function was called prior to calling SQLBulkOperations(), SQLExecDirect(), |
16729 SQLExecute(), or SQLSetPos() for StatementHandle. |

16730 An asynchronously executing function was called for StatementHandle and was still |
16731 executing when this function was called. |

16732 SQLBulkOperations(), SQLExecDirect(), SQLExecute(), or SQLSetPos() was called for |
16733 StatementHandle and returned SQL_NEED_DATA.This function was called before data was |
16734 sent for all data-at-execution parameters or columns. |

16735 HYT01 — Connection timeout expired |
16736 The connection timeout period expired before the data source responded to the request. The |
16737 connection timeout period is set through SQLSetConnectAttr(), |
16738 SQL_ATTR_CONNECTION_TIMEOUT. |

16739 IM001 — Function not supported |
16740 The function is not supported on the current connection to the data source. |

16741 COMMENTS |
16742 SQLRowCount() returns the number of rows affected by an UPDATE, INSERT, or DELETE |
16743 statement; the SQL_ADD, SQL_UPDATE_BY_BOOKMARK,or SQL_DELETE_BY_BOOKMARK |

456 Direct Review (Build ID 96KAV) (Draft XDBC.33, August 1996)

Reference Manual Pages ISO 92 SQLRowCount()

16744 operation in SQLBulkOperations(); or the SQL_UPDATE or SQL_DELETE operation in |
16745 SQLSetPos(). The value returned is SQL_NO_TOTAL if the number of affected rows is not |
16746 available.

16747 For all other operations on StatementHandle, the value returned in *RowCountPtr is undefined.
16748 (Some data sources may provide useful information in other cases — for example, a data source
16749 may be able to return the number of rows returned by a SELECT statement or a catalog function
16750 before fetching the rows — but portable applications should not rely on this behavior.)

16751 When SQLBulkOperations(), SQLExecute(), SQLExecDirect(), SQLMoreResults(), or SQLSetPos() is
16752 called, the implementation sets the SQL_DIAG_ROW_COUNT field of the diagnostic data
16753 structure to the row count. The implementation also associates this value with StatementHandle
16754 independently of the diagnostic data structure, in order to be able to return it when the
16755 application calls SQLRowCount(). This independent value remains valid until StatementHandle is
16756 set back to the prepared or allocated state, the statement is re-executed, or SQLCloseCursor() is
16757 called.

16758 If a function has been called since the SQL_DIAG_ROW_COUNT field was set, the value
16759 returned by SQLRowCount() might be different from the value in the SQL_DIAG_ROW_COUNT
16760 field, because the SQL_DIAG_ROW_COUNT field is reset to 0 by any function call.

16761 SEE ALSO

16762 For information about See

16763 Executing an SQL statement SQLExecDirect()
16764 Executing a prepared SQL statement SQLExecute()

16765 CHANGE HISTORY

16766 Version 2
16767 Revised generally. See Alignment with Popular Implementations on page 2.

•

Data Management: X/Open Database Connectivity (XDBC), Version 2 457

SQLSetConnectAttr() ISO 92 Reference Manual Pages

16768 NAME
16769 SQLSetConnectAttr — Set attributes that govern aspects of connections.

16770 SYNOPSIS
16771 SQLRETURN SQLSetConnectAttr(
16772 SQLHDBCConnectionHandle ,
16773 SQLINTEGER Attribute ,
16774 SQLPOINTER ValuePtr ,
16775 SQLINTEGER StringLength);

16776 ARGUMENTS

16777 ConnectionHandle [Input] |
16778 Connection handle. |

16779 Attribute [Input]
16780 Attribute to set, listed in Connection Attributes on page 459. |

16781 ValuePtr [Input]
16782 Pointer to the value to be associated with Attribute. Depending on the value of Attribute, |
16783 *ValuePtr is a 32-bit unsigned integer value or points to a null-terminated character string. |
16784 For implementation-defined values of Attribute, the value in *ValuePtr may be a signed |
16785 integer. |

16786 StringLength [Input]
16787 If ValuePtr points to a character string or a binary buffer, then StringLength should be the
16788 length of *ValuePtr. If ValuePtr is a pointer, but not to a string or binary buffer, then
16789 StringLength should have the value SQL_IS_POINTER. If ValuePtr is not a pointer, then
16790 StringLength should have the value SQL_IS_NOT_POINTER. |

16791 RETURN VALUE
16792 SQL_SUCCESS, SQL_SUCCESS_WITH_INFO, SQL_ERROR, or SQL_INVALID_HANDLE. |

16793 DIAGNOSTICS |
16794 When SQLSetConnectAttr() returns SQL_ERROR or SQL_SUCCESS_WITH_INFO, an associated |
16795 SQLSTATE value can be obtained by calling SQLGetDiagRec() with a HandleType of |
16796 SQL_HANDLE_DBC and a Handle of ConnectionHandle . The following table lists the SQLSTATE |
16797 values commonly returned by SQLSetConnectAttr(). The return code associated with each |
16798 SQLSTATEvalue is SQL_ERROR, except that for SQLSTATEvalues in class 01, the return code is |
16799 SQL_SUCCESS_WITH_INFO. |

16800 The implementation can return SQL_SUCCESS_WITH_INFO to provide information about the
16801 result of setting an option.

16802 01000 — General warning
16803 Implementation-defined informational message. |

16804 01S02 — Attribute value changed |
16805 The data source did not support the value specified in *ValuePtr and substituted a similar |
16806 value. |

16807 08003 — Connection does not exist |
16808 Attribute required an open connection, but ConnectionHandle was not in a connected state. |

16809 08007 — Connection failure during transaction |
16810 The connection associated with ConnectionHandle failed during the execution of the function |
16811 and it cannot be determined whether the requested COMMIT or ROLLBACK occurred |
16812 before the failure. This would occur if the connection was in auto-commit mode and the |
16813 connection failed while completing previous work.

458 Direct Review (Build ID 96KAV) (Draft XDBC.33, August 1996)

Reference Manual Pages ISO 92 SQLSetConnectAttr()

16814 08S01 — Communication link failure |
16815 The communication link to the data source failed before the function completed processing. |

16816 24000 — Invalid cursor state |
16817 Attribute was SQL_ATTR_CURRENT_CATALOGand a result set was pending. |

16818 HY000 — General error |
16819 An error occurred for which there was no specific SQLSTATE and for which no |
16820 implementation-specific SQLSTATE was defined. The error message returned by |
16821 SQLGetDiagRec() in the *MessageTextbuffer describes the error and its cause. |

16822 HY001 — Memory allocation error |
16823 The implementation failed to allocate memory required to support execution or completion |
16824 of the function. |

16825 HY009 — Invalid use of null pointer |
16826 Attribute identified an attribute that required a string value, and ValuePtr is a null pointer. |

16827 HY010 — Function sequence error |
16828 An asynchronously executing function was called for a statement handle associated with |
16829 ConnectionHandle and was still executing when SQLSetConnectAttr() was called. |

16830 SQLBulkOperations(), SQLExecDirect(), SQLExecute(), or SQLSetPos() was called for a |
16831 statement handle associated with ConnectionHandle and returned SQL_NEED_DATA. This |
16832 function was called before data was sent for all data-at-execution parameters or columns. |

16833 SQLBrowseConnect() was called for ConnectionHandle and returned SQL_NEED_DATA.This
16834 function was called before SQLBrowseConnect() returned SQL_SUCCESS_WITH_INFO or
16835 SQL_SUCCESS.

16836 HY011 — Attribute cannot be set now
16837 Attribute was SQL_ATTR_TXN_ISOLATIONand a transaction was open.

16838 Attribute was SQL_ATTR_PACKET_SIZE and the connection has already been established.

16839 HY024 — Invalid attribute value
16840 A value was specified in *ValuePtr that is inapplicable to Attribute, or *ValuePtr was an
16841 empty string and Attribute requires a non-empty string.

16842 HY090 — Invalid string or buffer length
16843 StringLength was less than 0, but was not SQL_NTS.

16844 HY092 — Invalid attribute identifier
16845 Attribute was not valid for this connection to this data source. |

16846 Attribute identifies a read-only attribute.

16847 HYC00 — Optional feature not implemented
16848 Attribute was a valid connection or statement attribute but is not supported by the data
16849 source.

16850 HYT01 — Connection timeout expired
16851 The connection timeout period expired before the data source responded to the request. The
16852 connection timeout period is set through SQLSetConnectAttr(),
16853 SQL_ATTR_CONNECTION_TIMEOUT.

16854 IM001 — Function not supported
16855 The function is not supported on the current connection to the data source.

16856 When Attribute is a statement attribute, SQLSetConnectAttr() can return any SQLSTATEs
16857 returned by SQLSetStmtAttr().

Data Management: X/Open Database Connectivity (XDBC), Version 2 459

SQLSetConnectAttr() ISO 92 Reference Manual Pages

16858 COMMENTS
16859 The currently-defined attributes are shown below; additional attributes are likely to be defined
16860 to take advantage of different data sources. A range of attributes is reserved by XDBC; |
16861 implementors must reserve values for vendor-specific uses from X/Open (see Section 1.8 on
16862 page 21). |

16863 The information in the *ValuePtr buffer must follow a format determined by the specified |
16864 attribute: |

16865 • Some attributes are character strings. For variable-length strings, StringLength specifies the |
16866 length of the string in octets. For strings whose length is dictated by a specification, the |
16867 implementation ignores StringLength. (There are no fixed-length string attributes in XDBC.) |

16868 • Some attributes are 32-bit integers; for these, the implementation ignores StringLength. |

16869 The type of data required for each attribute is indicated in the list of valid values for Attribute. |

16870 SQLSetConnectAttr() and Statement Attributes |

16871 An application can call SQLSetConnectAttr() and specify as Attribute a manifest constant that this
16872 specification lists as a statement attribute (see Statement Attributes on page 506). This call sets
16873 the value of that statement attribute for any statements already associated with
16874 ConnectionHandle , and establishes the value as a default value for any statements later allocated
16875 for ConnectionHandle . If SQLSetConnectAttr() returns an error when a statement attribute is set
16876 on one of multiple active statements, the statement attribute is established as the default for
16877 statements later allocated on ConnectionHandle , but it is unspecified which attributes of existing
16878 statements are changed by the call. |

16879 Note: Applications should set a statement attribute on the connection level only to establish the |
16880 default value for future statements allocated on the connection. Setting a statement attribute for |
16881 multiple active statements on a connection is problematic and may result in undefined effects.

16882 For statement attributes that serve to set the header field of a descriptor, use of
16883 SQLSetConnectAttr() to set the statement attribute serves to modify all application descriptors
16884 currently associated with all statements on ConnectionHandle . It also becomes the default value |
16885 for use in the four implicit descriptors that are allocated when a new statement handle is |
16886 allocated on ConnectionHandle . However, the value does not become a default value for
16887 descriptors that may be associated with the statements on ConnectionHandle in the future. |

16888 SQL_ATTR_ASYNC_ENABLE is a special example of a statement attribute that can be set by |
16889 calling SQLSetConnectAttr(). For implementations that provide asynchrony on the connection |
16890 level, calling SQLSetConnectAttr() may be the only meaningful way to set this statement |
16891 attribute.

16892 Persistence of Connection Attributes

16893 An application can call SQLSetConnectAttr() at any time between the time the connection is
16894 allocated and the time it is freed. All connection and statement attributes successfully set by the
16895 application for the connection persist until SQLFreeHandle() is called on the connection. For
16896 example, if an application calls SQLSetConnectAttr() before connecting to a data source, the
16897 attribute persists even if SQLSetConnectAttr() the data source rejects the attribute. If an
16898 application specifies a data-source-specific attribute, the implementation retains the attribute
16899 value even if the application connects to a different data source.

460 Direct Review (Build ID 96KAV) (Draft XDBC.33, August 1996)

Reference Manual Pages ISO 92 SQLSetConnectAttr()

16900 Changed Connection Attributes

16901 Some connection and statement attributes support substitution of a similar value if the data
16902 source does not support the value specified in *ValuePtr. In such cases, the function returns
16903 SQL_SUCCESS_WITH_INFO and SQLSTATE 01S02 (Attribute value changed). For example, if
16904 Attribute is SQL_ATTR_PACKET_SIZE and *ValuePtr exceeds the maximum packet size the data |
16905 source supports, the data source can substitute a lower value. If Attribute is |
16906 SQL_ATTR_PACKET_SIZE and the packet size cannot be set on ConnectionHandle , this is |
16907 signified by a substituted value of 0. To determine the substituted value, an application calls
16908 SQLGetConnectAttr() (for connection attributes) or SQLGetStmtAttr() (for statement attributes).

16909 Connection Attributes

16910 The caller sets Attribute to one of the values listed below to obtain the following connection
16911 attribute in *ValuePtr:

16912 SQL_ATTR_ACCESS_MODE
16913 A 32-bit integer value that indicates the access mode: |

16914 SQL_MODE_READ_WRITE |
16915 The default value. Reads and writes may occur on the connection. |

16916 SQL_MODE_READ_ONLY |
16917 An indication that the implementation need not support SQL statements that cause
16918 updates to occur. This mode can be used to optimize locking strategies, transaction
16919 management, or other areas as appropriate to the implementation. The effect if the |
16920 application submits such an SQL statement is implementation-defined. |

16921 SQL_ATTR_ASYNC_ENABLE |
16922 This is technically a statement attribute and is described fully in the list of statement |
16923 attributes in SQLSetStmtAttr(). For implementations that provide asynchrony on the |
16924 connection level, calling SQLSetConnectAttr() may be the only meaningful way to set this |
16925 statement attribute.

16926 SQL_ATTR_AUTO_IPD
16927 A read-only 32-bit integer value that indicates automatic population of the IPD:

16928 SQL_TRUE The implementation automatically populates the IPD after a call to
16929 SQLPrepare().

16930 SQL_FALSE The implementation does not automatically populate the IPD after
16931 a call to SQLPrepare(). Any data source that does not support |
16932 prepared statements returns SQL_FALSE.

16933 If SQL_TRUE is returned for the SQL_ATTR_AUTO_IPD connection attribute, the
16934 statement attribute SQL_ATTR_ENABLE_AUTO_IPD can be set to turn automatic
16935 population of the IPD on or off. If SQL_ATTR_AUTO_IPD is SQL_FALSE,
16936 SQL_ATTR_ENABLE_AUTO_IPD cannot be set to SQL_TRUE. The default value of
16937 SQL_ATTR_ENABLE_AUTO_IPDis equal to the value of SQL_ATTR_AUTO_IPD.

16938 This connection attribute can be returned by SQLGetConnectAttr(), but cannot be set by
16939 SQLSetConnectAttr().

16940 SQL_ATTR_AUTOCOMMIT
16941 A 32-bit integer value that specifies whether to use auto-commit or manual-commit mode |
16942 (see Section 14.1.2 on page 182):

16943 SQL_AUTOCOMMIT_OFF
16944 The implementation uses manual-commit mode, and the application must explicitly
16945 commit or roll back transactions with SQLEndTran().

Data Management: X/Open Database Connectivity (XDBC), Version 2 461

SQLSetConnectAttr() ISO 92 Reference Manual Pages

16946 SQL_AUTOCOMMIT_ON
16947 The data source uses auto-commit mode. Each statement is committed immediately |
16948 after it is executed. This is the default.

16949 It is implementation-defined whether changing from manual-commit mode to auto-commit |
16950 mode commits any open transactions on the connection. |

16951 Transaction completion may have side-effects on cursors and on access plans of prepared |
16952 statements. See Section 14.1.3 on page 184.

16953 SQL_ATTR_CONNECTION_TIMEOUT
16954 A 32-bit integer value corresponding to the number of seconds to wait for any request on
16955 the connection to complete before returning to the application. The implementation should
16956 return SQLSTATE HYT00 (Timeout expired) whenever it is possible to timeout in a
16957 situation not associated with query execution or login.

16958 SQL_ATTR_CURRENT_CATALOG
16959 A character string containing the name of the catalog to be used by the data source. For |
16960 example, if the catalog is a database, an implementation might send a USE statement to the |
16961 data source. If the catalog is a directory, an implementation might make the specified |
16962 directory the current directory.

16963 SQL_ATTR_LOGIN_TIMEOUT
16964 A 32-bit integer value corresponding to the number of seconds to wait for a login request to
16965 complete before returning to the application. The default is implementation-defined. If |
16966 *ValuePtr is 0, the timeout is disabled and connection attempts wait indefinitely.

16967 If the specified timeout exceeds the maximum login timeout in the data source, the |
16968 implementation substitutes that value and returns SQLSTATE 01S02 (Attribute value |
16969 changed).

16970 SQL_ATTR_PACKET_SIZE
16971 A 32-bit integer value specifying the network packet size in octets. |

16972 Note: Many data sources either do not support this option or can only return the network
16973 packet size.

16974 If the specified size exceeds the maximum packet size or is smaller than the minimum |
16975 packet size, the implementation substitutes that value and returns SQLSTATE 01S02 |
16976 (Attribute value changed). |

16977 If the packet size is set after a connection has already been made, the implementation |
16978 returns SQLSTATEHY011 (Attribute cannot be set now).

16979 SQL_ATTR_QUIET_MODE
16980 A 32-bit pointer to a context for user interaction. For instance, this attribute might be a
16981 window handle inside which dialog boxes appear.

16982 Setting this attribute to a null pointer inhibits all interaction between the implementation
16983 and the user.

16984 This attribute does not apply to user interaction pursuant to a call to SQLDriverConnect();
16985 instead, any user interaction takes place in a context specified by the WindowHandle
16986 argument of that function.

16987 SQL_ATTR_TXN_ISOLATION
16988 A 32-bit bitmask that sets the transaction isolation level for the current connection. An
16989 application must call SQLEndTran() to complete all open transactions on ConnectionHandle |
16990 before calling SQLSetConnectAttr() with this option. The valid values for *ValuePtr can be
16991 determined by calling SQLGetInfo() with the SQL_TXN_ISOLATION_OPTION option. |

462 Direct Review (Build ID 96KAV) (Draft XDBC.33, August 1996)

Reference Manual Pages ISO 92 SQLSetConnectAttr()

16992 Transaction isolation is discussed in detail in Section 14.2.2 on page 186.

16993 SEE ALSO

16994 For information about See

16995 Returning the setting of a connection attribute SQLGetConnectAttr()
16996 Returning the setting of a statement attribute SQLGetStmtAttr()
16997 Setting a statement attribute SQLSetStmtAttr()
16998 Allocating a handle SQLAllocHandle()

16999 CHANGE HISTORY

17000 Version 2
17001 Revised generally. See Alignment with Popular Implementations on page 2.

17002 New Connection Attributes in Version 2

17003 The following connection attributes are new in this issue:

17004 SQL_ATTR_ACCESS_MODE SQL_ATTR_LOGIN_TIMEOUT
17005 SQL_ATTR_ASYNC_ENABLE SQL_ATTR_PACKET_SIZE |
17006 SQL_ATTR_AUTOCOMMIT SQL_ATTR_QUIET_MODE |
17007 SQL_ATTR_CONNECTION_TIMEOUT SQL_ATTR_TXN_ISOLATION |
17008 SQL_ATTR_CURRENT_CATALOG |

Data Management: X/Open Database Connectivity (XDBC), Version 2 463

SQLSetCursorName() ISO 92 Reference Manual Pages

17009 NAME
17010 SQLSetCursorName — Set the name of a cursor. |

17011 SYNOPSIS
17012 SQLRETURN SQLSetCursorName(
17013 SQLHSTMTStatementHandle ,
17014 SQLCHAR * CursorName ,
17015 SQLSMALLINT NameLength);

17016 ARGUMENTS

17017 StatementHandle [Input] |
17018 Statement handle. |

17019 CursorName [Input]
17020 Cursor name. For efficient processing, the cursor name should not include any leading or
17021 trailing spaces in the cursor name, and if the cursor name includes a delimited identifier, the
17022 delimiter should be the first character in the cursor name. |

17023 NameLength [Input]
17024 Length of *CursorName. |

17025 RETURN VALUE
17026 SQL_SUCCESS, SQL_SUCCESS_WITH_INFO, SQL_ERROR, or SQL_INVALID_HANDLE. |

17027 DIAGNOSTICS |
17028 When SQLSetCursorName() returns SQL_ERROR or SQL_SUCCESS_WITH_INFO, an associated |
17029 SQLSTATE value can be obtained by calling SQLGetDiagRec() with a HandleType of |
17030 SQL_HANDLE_STMT and a Handle of StatementHandle. The following table lists the SQLSTATE |
17031 values commonly returned by SQLSetCursorName(). The return code associated with each |
17032 SQLSTATEvalue is SQL_ERROR, except that for SQLSTATEvalues in class 01, the return code is |
17033 SQL_SUCCESS_WITH_INFO. |

17034 01000 — General warning |
17035 Implementation-defined informational message. |

17036 01004 — String data, right truncation |
17037 The cursor name exceeded the maximum length and only that number of characters has |
17038 been used. Portable applications should not generate cursor names longer than |
17039 SQL_MAX_ID_LENGTH characters.

17040 24000 — Invalid cursor state
17041 StatementHandle was already in an executed or cursor-positioned state.

17042 34000 — Invalid cursor name
17043 The cursor name specified in *CursorName was invalid, because it exceeded the |
17044 implementation-defined maximum length, or started with ‘‘SQLCUR’’ or ‘‘SQL_CUR’’, or |
17045 already exists. |

17046 HY000 — General error |
17047 An error occurred for which there was no specific SQLSTATE and for which no |
17048 implementation-specific SQLSTATE was defined. The error message returned by |
17049 SQLGetDiagRec() in the *MessageTextbuffer describes the error and its cause. |

17050 HY001 — Memory allocation error |
17051 The implementation failed to allocate memory required to support execution or completion |
17052 of the function. |

17053 HY009 — Invalid use of null pointer |
17054 CursorName was a null pointer.

464 Direct Review (Build ID 96KAV) (Draft XDBC.33, August 1996)

Reference Manual Pages ISO 92 SQLSetCursorName()

17055 HY010 — Function sequence error
17056 An asynchronously executing function was called for StatementHandle and was still |
17057 executing when this function was called. |

17058 SQLBulkOperations(), SQLExecDirect(), SQLExecute(), or SQLSetPos() was called for |
17059 StatementHandle and returned SQL_NEED_DATA.This function was called before data was |
17060 sent for all data-at-execution parameters or columns. |

17061 HY090 — Invalid string or buffer length |
17062 NameLength was less than 0, but not equal to SQL_NTS.

17063 HYT01 — Connection timeout expired
17064 The connection timeout period expired before the data source responded to the request. The
17065 connection timeout period is set through SQLSetConnectAttr(),
17066 SQL_ATTR_CONNECTION_TIMEOUT.

17067 IM001 — Function not supported
17068 The function is not supported on the current connection to the data source.

17069 COMMENTS
17070 Cursor names are used only in positioned UPDATE and DELETE statements. If the application |
17071 does not call SQLSetCursorName() to define a cursor name, then when it executes a query, the |
17072 implementation generates a name that begins with SQL_CUR and does not exceed |
17073 SQL_MAX_ID_LENGTH characters in length.

17074 All cursor names within the connection must be unique. The maximum length of a cursor name |
17075 is implementation-defined. Portable applications should limit cursor names to |
17076 SQL_MAX_ID_LENGTH characters. If a cursor name is a quoted identifier, it is treated in a
17077 case-sensitive manner, and it can contain characters otherwise not permitted in identifiers, such |
17078 as blanks or reserved keywords. If an application requires a cursor name to be treated in a case- |
17079 sensitive manner, it must pass it as a quoted identifier.

17080 A cursor name that is set either explicitly or implicitly remains set until the statement with
17081 which it is associated is dropped, using SQLFreeHandle(). SQLSetCursorName() can be called to
17082 rename a cursor on a statement as long as the cursor is in an allocated or prepared state.

17083 SEE ALSO

17084 For information about See

17085 Executing an SQL statement SQLExecDirect()
17086 Executing a prepared SQL statement SQLExecute()
17087 Returning a cursor name SQLGetCursorName()

17088 CHANGE HISTORY

17089 Version 2
17090 Revised generally. See Alignment with Popular Implementations on page 2.

Data Management: X/Open Database Connectivity (XDBC), Version 2 465

SQLSetDescField() ISO 92 Reference Manual Pages

17091 SQLSetDescField — Set the value of a single field of a descriptor record.

17092 SYNOPSIS
17093 SQLRETURN SQLSetDescField(
17094 SQLHDESCDescriptorHandle ,
17095 SQLSMALLINT RecNumber,
17096 SQLSMALLINT FieldIdentifier ,
17097 SQLPOINTER ValuePtr ,
17098 SQLINTEGER BufferLength);

17099 ARGUMENTS

17100 DescriptorHandle [Input] |
17101 Descriptor handle. |

17102 RecNumber [Input]
17103 Indicates the descriptor record containing the field that the application seeks to set.
17104 Descriptor records are numbered from 0, with record number 0 being the bookmark record. |
17105 The implementation ignores RecNumber if FieldIdentifier specifies a header field. |

17106 FieldIdentifier [Input]
17107 Indicates the field of the descriptor whose value is to be set. For more information, see
17108 FieldIdentifier Argument on page 472. |

17109 ValuePtr [Input]
17110 Pointer to a buffer containing the descriptor information, or a 4-octet value. The data type |
17111 depends on the value of FieldIdentifier . If ValuePtr is a 4-octet value, either all four octets are |
17112 used, or just two of the four are used, depending on the value of FieldIdentifier . |

17113 BufferLength [Input]
17114 If ValuePtr points to a character string or a binary buffer, this argument should be the length
17115 of *ValuePtr. If ValuePtr is a pointer, but not to a string or binary buffer, then BufferLength
17116 should have the value SQL_IS_POINTER. If ValuePtr is not a pointer, then BufferLength
17117 should have the value SQL_IS_NOT_POINTER. |

17118 RETURN VALUE |
17119 SQL_SUCCESS, SQL_SUCCESS_WITH_INFO, SQL_ERROR, or SQL_INVALID_HANDLE. |

17120 DIAGNOSTICS |
17121 When SQLSetDescField() returns SQL_ERROR or SQL_SUCCESS_WITH_INFO, an associated |
17122 SQLSTATE value can be obtained by calling SQLGetDiagRec() with a HandleType of |
17123 SQL_HANDLE_DESC and a Handle of DescriptorHandle . The following table lists the SQLSTATE |
17124 values commonly returned by SQLSetDescField(). The return code associated with each |
17125 SQLSTATEvalue is SQL_ERROR, except that for SQLSTATEvalues in class 01, the return code is |
17126 SQL_SUCCESS_WITH_INFO. |

17127 01000 — General warning |
17128 Implementation-defined informational message.

17129 01S02 — Attribute value changed
17130 The data source did not support the value specified in *ValuePtr (if ValuePtr was a pointer)
17131 or the value in ValuePtr (if ValuePtr was a 4-octet value), or *ValuePtr was invalid because of |
17132 SQL constraints or requirements, so the implementation substituted a similar value. |

17133 07006 — Restricted data type attribute violation |
17134 DescriptorHandle referred to an application descriptor, RecNumber was 0, FieldIdentifier was |
17135 SQL_DESC_TYPE or SQL_DESC_CONCISE_TYPE, and ValuePtr was not |
17136 SQL_C_VARBOOKMARK. |

466 Direct Review (Build ID 96KAV) (Draft XDBC.33, August 1996)

Reference Manual Pages ISO 92 SQLSetDescField()

17137 07009 — Invalid descriptor index |
17138 FieldIdentifier was a record field, RecNumber was 0, and DescriptorHandle referred to an IPD. |

17139 RecNumber was less than 0 and DescriptorHandle referred to an APD or an ARD. |

17140 RecNumber was greater than the maximum number of columns or parameters that the data |
17141 source supports, and DescriptorHandle referred to an APD or an ARD. |

17142 FieldIdentifier was SQL_DESC_COUNT, and ValuePtr was less than 0. |

17143 08S01 — Communication link failure |
17144 The communication link to the data source failed before the function completed processing. |

17145 HY000 — General error |
17146 An error occurred for which there was no specific SQLSTATE and for which no |
17147 implementation-specific SQLSTATE was defined. The error message returned by |
17148 SQLGetDiagRec() in the *MessageTextbuffer describes the error and its cause. |

17149 HY001 — Memory allocation error |
17150 The implementation failed to allocate memory required to support execution or completion |
17151 of the function. |

17152 HY009 — Invalid use of null pointer |
17153 FieldIdentifier was SQL_DESC_NAME and ValuePtr was a null pointer. |

17154 HY010 — Function sequence error |
17155 DescriptorHandle was associated with a statement handle for which an asynchronously |
17156 executing function (not this one) was called and was still executing when this function was |
17157 called. |

17158 SQLBulkOperations(), SQLExecDirect(), SQLExecute(), or SQLSetPos() was called for the
17159 statement handle with which DescriptorHandle was associated and returned
17160 SQL_NEED_DATA.This function was called before data was sent for all data-at-execution
17161 parameters or columns.

17162 HY016 — Cannot modify an implementation row descriptor
17163 DescriptorHandle referred to an IRD, and FieldIdentifier was not |
17164 SQL_DESC_ARRAY_STATUS_PTR.

17165 HY021 — Inconsistent descriptor information
17166 The SQL_DESC_TYPE field, or any other field associated with it in the descriptor, was not |
17167 valid or consistent.

17168 DescriptorHandle referred to an application descriptor, and the SQL_DESC_TYPE field was |
17169 not one of the valid XDBC C types or an implementation-defined C type. |

17170 The descriptor consistency check failed (see Consistency Checks on page 486). |

17171 HY091 — Invalid descriptor field identifier
17172 FieldIdentifier was not an XDBC-defined value nor an implementation-defined value.

17173 FieldIdentifier was an invalid value for DescriptorHandle . |

17174 RecNumber was greater than the value in the SQL_DESC_COUNT field. |

17175 FieldIdentifier was a field defined by this specification as a read-only field. |

17176 FieldIdentifier was SQL_DESC_UNNAMED and *ValuePtr was SQL_NAMED. |

17177 HY105 — Invalid parameter type |
17178 The SQL_DESC_PARAMETER_TYPE field was invalid. (For more information, see |
17179 InputOutputTypeArgument on page 223.) |

Data Management: X/Open Database Connectivity (XDBC), Version 2 467

SQLSetDescField() ISO 92 Reference Manual Pages

17180 HYT01 — Connection timeout expired |
17181 The connection timeout period expired before the data source responded to the request. The |
17182 connection timeout period is set through SQLSetConnectAttr(), |
17183 SQL_ATTR_CONNECTION_TIMEOUT. |

17184 IM001 — Function not supported |
17185 The function is not supported on the current connection to the data source. |

17186 COMMENTS |
17187 An application can call SQLSetDescField() to set any single descriptor field, except read-only |
17188 fields. |

17189 The information in the *ValuePtr buffer must follow a format determined by the specified |
17190 attribute: |

17191 • Some fields are character strings. For variable-length strings, BufferLength specifies the length |
17192 of the string in octets. For strings whose length is dictated by a specification, the |
17193 implementation ignores BufferLength. (There are no fixed-length string fields in XDBC.) |

17194 • Some fields are 32-bit integers; for these, the implementation ignores BufferLength. |

17195 The type of data required for each field is indicated in the list of valid values for FieldIdentifier . |

17196 If a call to SQLSetDescField() fails, the content of the descriptor field it would have set is |
17197 undefined.

17198 Other functions can be called to set multiple descriptor fields at once. SQLSetDescRec() sets a
17199 variety of fields that affect the data type and buffer bound to a column or parameter.
17200 SQLBindCol() or SQLBindParameter() makes a complete specification for the binding of a column
17201 or parameter. These functions set a specific group of descriptor fields with one function call.

17202 SQLSetDescField() can be called to specify a binding offset when row-wise binding is used. This |
17203 changes the effective addresses of the binding pointers (SQL_DESC_DATA_PTR,
17204 SQL_DESC_INDICATOR_PTR, or SQL_DESC_OCTET_LENGTH_PTR) without requiring calls
17205 to SQLBindCol() or SQLBindParameter(). This lets an application change SQL_DESC_DATA_PTR
17206 without changing other fields, for instance SQL_DESC_DATA_TYPE.

17207 Descriptor header fields are set by calling SQLSetDescField() with a RecNumber of 0, and the
17208 appropriate FieldIdentifier . Header fields that contain statement attributes can also be set by a
17209 call to SQLSetStmtAttr(). This lets applications set a statement attribute without first obtaining a
17210 descriptor handle.

17211 The application sets RecNumber to 0 to set bookmark fields. (The application should always set |
17212 the SQL_ATTR_USE_BOOKMARKS statement attribute before calling SQLSetDescField() to set
17213 bookmark fields.)

468 Direct Review (Build ID 96KAV) (Draft XDBC.33, August 1996)

Reference Manual Pages ISO 92 SQLSetDescField()

17214 Initialization of Descriptor Fields

17215 The following tables describe the usage and defaulting of descriptor fields. This information |
17216 depends on whether the descriptor is an ARD, APD, IRD, or IPD. |

17217 The R/W column shows whether the field is read/write (R/W), read-only (R/O), or unused by |
17218 any of the functions that use descriptors. Only read-write fields can be set by calling |
17219 SQLSetDescField(). |

17220 The Default column shows the initial value of the field when a descriptor is allocated. The |
17221 legend D indicates that there is a default. (For IRDs, the default depends on the prepared or |
17222 executed statement.) ND indicates that there is no default. For unused fields, the default is |
17223 undefined and the word Unused is repeated in this column. Any other text in this column |
17224 indicates a specific default value for the field.

17225 The initialization of header fields is as follows:

17226 Field Name and (Type) R/W Default
17227 SQL_DESC_ALLOC_TYPE ARD: R/O ARD:
17228 (SQLSMALLINT) APD: R/O APD:
17229 IRD: R/O IRD: <AUTO> |
17230 IPD: R/O IPD: <AUTO> |

17231 SQL_DESC_ARRAY_SIZE ARD: R/W ARD: 1
17232 (SQLUINTEGER) APD R/W APD: 1
17233 IRD: Unused IRD: Unused
17234 IPD: Unused IPD: Unused

17235 SQL_DESC_ARRAY_STATUS_PTR ARD: R/W ARD: Null ptr
17236 (SQLUSMALLINT*) APD: R/W APD: Null ptr
17237 IRD: R/W IRD: Null ptr
17238 IPD: R/W IPD: Null ptr

17239 SQL_DESC_BIND_OFFSET_PTR ARD: R/W ARD: Null ptr
17240 (SQLINTEGER*) APD: R/W APD: Null ptr
17241 IRD: Unused IRD: Unused
17242 IPD: Unused IPD: Unused

17243 SQL_DESC_BIND_TYPE ARD: R/W ARD: 0
17244 (SQLINTEGER) APD: R/W APD: 0
17245 IRD: Unused IRD: Unused
17246 IPD: Unused IPD: Unused

17247 SQL_DESC_COUNT ARD: R/W ARD: 0
17248 (SQLSMALLINT) APD: R/W APD: 0
17249 IRD: R/O IRD: D |
17250 IPD: R/W IPD: 0

17251 SQL_DESC_ROWS_PROCESSED_PTR ARD: Unused ARD: Unused
17252 (SQLUINTEGER*) APD: Unused APD: Unused
17253 IRD: R/W IRD: Null ptr
17254 IPD: R/W IPD: Null ptr

17255 This field, which specifies the allocation type of the field, is set to |
17256 SQL_DESC_ALLOC_AUTO for automatically-allocated descriptors (including all IRDs and |
17257 IPDs) and SQL_DESC_ALLOC_USER for descriptors the user explicitly allocates.

Data Management: X/Open Database Connectivity (XDBC), Version 2 469

SQLSetDescField() ISO 92 Reference Manual Pages

17258 The initialization of record fields is as follows:

17259 Field Name and (Type) R/W Default
17260 SQL_DESC_AUTO_UNIQUE_VALUE ARD: Unused ARD: Unused
17261 (SQLINTEGER) APD: Unused APD: Unused
17262 IRD: R/O IRD: D
17263 IPD: Unused IPD: Unused

17264 SQL_DESC_BASE_COLUMN_NAME ARD: Unused ARD: Unused
17265 (SQLCHAR) APD: Unused APD: Unused
17266 IRD: R/O IRD: D
17267 IPD: Unused IPD: Unused

17268 SQL_DESC_BASE_TABLE_NAME ARD: Unused ARD: Unused
17269 (SQLCHAR) APD: Unused APD: Unused
17270 IRD: R/O IRD: D
17271 IPD: Unused IPD: Unused

17272 SQL_DESC_CASE_SENSITIVE ARD: Unused ARD: Unused
17273 (SQLINTEGER) APD: Unused APD: Unused
17274 IRD: R/O IRD: D
17275 IPD: R/O IPD: D 1

17276 SQL_DESC_CATALOG_NAME ARD: Unused ARD: Unused
17277 (SQLCHAR) APD: Unused APD: Unused
17278 IRD: R/O IRD: D
17279 IPD: Unused IPD: Unused

17280 SQL_DESC_CONCISE_TYPE ARD: R/W ARD: SQL_C_DEFAULT
17281 (SQLSMALLINT) APD: R/W APD: SQL_C_DEFAULT
17282 IRD: R/O IRD: D |
17283 IPD: R/W IPD: ND

17284 SQL_DESC_DATA_PTR ARD: R/W ARD: Null ptr
17285 (SQLPOINTER) APD: R/W APD: Null ptr
17286 IRD: Unused IRD: Unused
17287 IPD: Unused IPD: Unused 2

17288 SQL_DESC_DATETIME- ARD: R/W ARD: ND
17289 _INTERVAL_CODE APD: R/W APD: ND
17290 (SQLSMALLINT) IRD: R/O IRD: D
17291 IPD: R/W IPD: ND

17292 SQL_DESC_DATETIME- ARD: R/W ARD: ND
17293 _INTERVAL_PRECISION APD: R/W APD: ND
17294 (SQLINTEGER) IRD: R/O IRD: D
17295 IPD: R/W IPD: ND

17296 SQL_DESC_DISPLAY ARD: Unused ARD: Unused
17297 (SQLINTEGER) APD: Unused APD: Unused
17298 IRD: R/O IRD: D
17299 IPD: Unused IPD: Unused

470 Direct Review (Build ID 96KAV) (Draft XDBC.33, August 1996)

Reference Manual Pages ISO 92 SQLSetDescField()

17300 SQL_DESC_FIXED- ARD: Unused ARD: Unused
17301 _PREC_SCALE APD: Unused APD: Unused
17302 (SQLSMALLINT) IRD: R/O IRD: D
17303 IPD: R/O IPD: D 1

17304 SQL_DESC_INDICATOR_PTR ARD: R/W ARD: Null ptr
17305 (SQLINTEGER *) APD: R/W APD: Null ptr |
17306 IRD: Unused IRD: Unused
17307 IPD: Unused IPD: Unused

17308 SQL_DESC_LABEL ARD: Unused ARD: Unused
17309 (SQLCHAR) APD: Unused APD: Unused
17310 IRD: R/O IRD: D
17311 IPD: Unused IPD: Unused

17312 SQL_DESC_LENGTH ARD: R/W ARD: ND
17313 (SQLUINTEGER) APD: R/W APD: ND
17314 IRD: R/O IRD: D |
17315 IPD: R/W IPD: ND

17316 SQL_DESC_LITERAL-PREFIX ARD: Unused ARD: Unused
17317 (SQLCHAR) APD: Unused APD: Unused
17318 IRD: R/O IRD: D
17319 IPD: Unused IPD: Unused

17320 SQL_DESC_LITERAL-SUFFIX ARD: Unused ARD: Unused
17321 (SQLCHAR) APD: Unused APD: Unused
17322 IRD: R/O IRD: D
17323 IPD: Unused IPD: Unused

17324 SQL_DESC_LOCAL- ARD: Unused ARD: Unused
17325 _TYPE_NAME APD: Unused APD: Unused
17326 (SQLCHAR) IRD: R/O IRD: D
17327 IPD: R/O IPD: D

17328 SQL_DESC_NAME ARD: Unused ARD: ND
17329 (SQLCHAR *) APD: Unused APD: ND |
17330 IRD: R/O IRD: D |
17331 IPD: R/W IPD: ND

17332 SQL_DESC_NULLABLE ARD: Unused ARD: ND
17333 (SQLSMALLINT) APD: Unused APD: ND
17334 IRD: R/O IRD: D
17335 IPD: R/O IPD: ND

17336 SQL_DESC_OCTET_LENGTH ARD: R/W ARD: ND
17337 (SQLINTEGER *) APD: R/W APD: ND |
17338 IRD: R/O IRD: D |
17339 IPD: R/W IPD: ND

17340 SQL_DESC_OCTET_LENGTH_PTR ARD: R/W ARD: Null ptr
17341 (SQLINTEGER) APD: R/W APD: Null ptr
17342 IRD: Unused IRD: Unused
17343 IPD: Unused IPD: Unused

Data Management: X/Open Database Connectivity (XDBC), Version 2 471

SQLSetDescField() ISO 92 Reference Manual Pages

17344 SQL_DESC_PARAMETER_TYPE ARD: Unused ARD: Unused
17345 (SQLSMALLINT) APD: Unused APD: Unused
17346 IRD: Unused IRD: Unused
17347 IPD: R/W IPD: D=SQL_PARAM_INPUT

17348 SQL_DESC_PRECISION ARD: R/W ARD: ND
17349 (SQLSMALLINT) APD: R/W APD: ND
17350 IRD: R/O IRD: D |
17351 IPD: R/W IPD: ND

17352 SQL_DESC_SCALE ARD: R/W ARD: ND
17353 (SQLSMALLINT) APD: R/W APD: ND
17354 IRD: R/O IRD: D |
17355 IPD: R/W IPD: ND

17356 SQL_DESC_SCHEMA_NAME ARD: Unused ARD: Unused
17357 (SQLCHAR) APD: Unused APD: Unused
17358 IRD: R/O IRD: D
17359 IPD: Unused IPD: Unused

17360 SQL_DESC_SEARCHABLE ARD: Unused ARD: Unused
17361 (SQLSMALLINT) APD: Unused APD: Unused
17362 IRD: R/O IRD: D
17363 IPD: Unused IPD: Unused

17364 SQL_DESC_TABLE_NAME ARD: Unused ARD: Unused
17365 (SQLCHAR) APD: Unused APD: Unused
17366 IRD: R/O IRD: D
17367 IPD: Unused IPD: Unused

17368 SQL_DESC_TYPE ARD: R/W ARD: SQL_C_DEFAULT
17369 (SQLSMALLINT) APD: R/W APD: SQL_C_DEFAULT
17370 IRD: R/O IRD: D
17371 IPD: R/W IPD: ND

17372 SQL_DESC_TYPE_NAME ARD: Unused ARD: Unused
17373 (SQLCHAR) APD: Unused APD: Unused
17374 IRD: R/O IRD: D
17375 IPD: R/O IPD: D 1

17376 SQL_DESC_UNNAMED ARD: Unused ARD: ND
17377 (SQLSMALLINT) APD: Unused APD: ND
17378 IRD: R/O IRD: D |
17379 IPD: R/W IPD: ND

17380 SQL_DESC_UNSIGNED ARD: Unused ARD: Unused
17381 (SQLSMALLINT) APD: Unused APD: Unused
17382 IRD: R/O IRD: D
17383 IPD: R/O IPD: D 1

17384 SQL_DESC_UPDATABLE ARD: Unused ARD: Unused
17385 (SQLSMALLINT) APD: Unused APD: Unused
17386 IRD: R/O IRD: D |
17387 IPD: Unused IPD: Unused

17388 1 These fields are defined only when the implementation automatically populates the IPD. If |
17389 it does not, they are undefined. If an application tries to set these fields, the implementation |
17390 returns SQLSTATEHY091 (Invalid descriptor field identifier).

472 Direct Review (Build ID 96KAV) (Draft XDBC.33, August 1996)

Reference Manual Pages ISO 92 SQLSetDescField()

17391 2 The SQL_DESC_DATA_PTR field in the IPD can be set to force a consistency check. |
17392 Subsequent calls to SQLGetDescField() or SQLGetDescRec(), need not return the value |
17393 provided for SQL_DESC_DATA_PTR.

Data Management: X/Open Database Connectivity (XDBC), Version 2 473

SQLSetDescField() ISO 92 Reference Manual Pages

17394 FieldIdentifier Argument

17395 FieldIdentifier indicates the descriptor field to be set. A descriptor contains the descriptor header, •
17396 consisting of the header fields described in the next section, and zero or more descriptor records,
17397 consisting of the record fields described in the following section.

17398 Fields of the Descriptor Header

17399 Each descriptor has a header consisting of the following fields.

17400 SQL_DESC_ALLOC_TYPE [All]
17401 This read-only SQLSMALLINT header field specifies whether the descriptor was allocated |
17402 automatically by the implementation or explicitly by the application. The application can |
17403 obtain, but not modify, this field. The implementation sets this field to |
17404 SQL_DESC_ALLOC_AUTO in descriptors it automatically allocates, and to |
17405 SQL_DESC_ALLOC_USER in descriptors explicitly allocated by the application.

17406 SQL_DESC_ARRAY_SIZE
17407 In ARDs, this SQLUINTEGER header field specifies the number of rows in the row-set. This |
17408 is the number of rows to be returned by a call to SQLFetch() or SQLFetchScroll(), or operated |
17409 on by a call to SQLBulkOperations() or SQLSetPos(). The default value is 1. The field is also
17410 set through the SQL_ATTR_ROW_ARRAY_SIZEstatement attribute.

17411 In APDs, this SQLUINTEGER header field specifies the number of values for each
17412 parameter. This field is set to 1 by default. The field is also set through the
17413 SQL_ATTR_PARAMSET_SIZEstatement attribute.

17414 If SQL_DESC_ARRAY_SIZE is greater than 1, SQL_DESC_DATA_PTR, |
17415 SQL_DESC_INDICATOR_PTR, and SQL_DESC_OCTET_LENGTH_PTR of the APD or |
17416 ARD point to arrays. The cardinality of each array is equal to the value of this field. |

17417 This field in the ARD can also be set by calling SQLSetStmtAttr() with the |
17418 SQL_ATTR_ROW_ARRAY_SIZEattribute.

17419 SQL_DESC_ARRAY_STATUS_PTR[All]
17420 In the IRD, this SQLUSMALLINT * header field points to an array of SQLUSMALLINT
17421 values containing row status values after a call to SQLBulkOperations(), SQLFetch(), |
17422 SQLFetchScroll(), or SQLSetPos(). The array has as many elements as there are rows in the |
17423 row-set. The application must allocate an array of SQLUSMALLINTs and set this field to
17424 point to the array. The field is set to a null pointer by default. The implementation populates |
17425 the array, unless the SQL_DESC_ARRAY_STATUS_PTR field is set to a null pointer, in
17426 which case no status values are generated and the array is not populated. |

17427 Caution: The effect is undefined if the application sets the elements of the row status array |
17428 pointed to by the SQL_DESC_ARRAY_STATUS_PTRof the IRD. |

17429 The array is initially populated by a call to SQLBulkOperations(), SQLFetch(), or |
17430 SQLFetchScroll(). If such a call did not return SQL_SUCCESS or |
17431 SQL_SUCCESS_WITH_INFO, the contents of the array pointed to by this field are |
17432 undefined. The elements in the array can contain the following values:

17433 SQL_ROW_SUCCESS
17434 The row was successfully fetched and has not changed since it was last fetched.

17435 SQL_ROW_SUCCESS_WITH_INFO
17436 The row was successfully fetched and has not changed since it was last fetched.
17437 However, a warning was returned about the row.

17438 SQL_ROW_ERROR
17439 An error occurred while fetching the row.

474 Direct Review (Build ID 96KAV) (Draft XDBC.33, August 1996)

Reference Manual Pages ISO 92 SQLSetDescField()

17440 SQL_ROW_UPDATED
17441 The row was successfully fetched and has been updated since it was last fetched. If the
17442 row is fetched again, its status is SQL_ROW_SUCCESS.

17443 SQL_ROW_DELETED
17444 The row has been deleted since it was last fetched.

17445 SQL_ROW_ADDED
17446 The row was inserted by SQLBulkOperations(). If the row is fetched again, its status is |
17447 SQL_ROW_SUCCESS.

17448 SQL_ROW_NOROW |
17449 The row-set overlapped the end of the result set and no row was returned that
17450 corresponded to this element of the row status array.

17451 This field in the ARD can also be set by calling SQLSetStmtAttr() with the
17452 SQL_ATTR_ROW_STATUS_PTRattribute.

17453 In the ARD, this SQLUSMALLINT * header field points to an array of SQLUSMALLINT
17454 values that can be set by the application to indicate whether this row is to be ignored for |
17455 SQLBulkOperations() and SQLSetPos() operations. The elements in the array can contain the
17456 following values:

17457 SQL_ROW_PROCEED
17458 The row is included in the bulk operation using SQLBulkOperations() or SQLSetPos(). |
17459 (This setting does not guarantee that the operation will occur on the row. If the row has |
17460 the status SQL_ROW_ERROR in the IRD row status array, the implementation might |
17461 not be able to perform the operation in the row.)

17462 SQL_ROW_IGNORE
17463 The row is excluded from the bulk operation using SQLBulkOperations() or |
17464 SQLSetPos().

17465 If no elements of the array are set, all rows are included in the bulk operation. If the value in
17466 the SQL_DESC_ARRAY_STATUS_PTR field of the ARD is a null pointer, all rows are
17467 included in the bulk operation, as though it pointed to a valid array all of whose elements
17468 were SQL_ROW_PROCEED. If an element in the array is set to SQL_ROW_IGNORE, the |
17469 value in the row status array for the ignored row is not changed.

17470 In the IPD, this SQLUSMALLINT * header field points to an array of SQLUSMALLINT
17471 values containing status information for each row of parameter values after a call to
17472 SQLExecute() or SQLExecDirect(). If the call to SQLExecute() or SQLExecDirect() did not
17473 return SQL_SUCCESS or SQL_SUCCESS_WITH_INFO, the contents of the array pointed to
17474 by this field are undefined. The application must allocate an array of SQLUSMALLINTs and
17475 set this field to point to the array. The implementation will populate the array, unless the |
17476 SQL_DESC_ARRAY_STATUS_PTR field is set to a null pointer, in which case no status
17477 values are generated and the array is not populated. The elements in the array can contain
17478 the following values:

17479 SQL_PARAM_SUCCESS
17480 The SQL statement was successfully executed for this set of parameters.

17481 SQL_PARAM_SUCCESS_WITH_INFO
17482 The SQL statement was successfully executed for this set of parameters; however,
17483 warning information is available in the diagnostics data structure.

17484 SQL_PARAM_ERROR
17485 An error occurred in processing this set of parameters. Additional error information is
17486 available in the diagnostics data structure.

Data Management: X/Open Database Connectivity (XDBC), Version 2 475

SQLSetDescField() ISO 92 Reference Manual Pages

17487 SQL_PARAM_UNUSED
17488 This parameter set was unused, possibly because a previous parameter set caused an |
17489 error that aborted further processing, or because SQL_PARAM_IGNORE was set for |
17490 that set of parameters in the array specified by the SQL_DESC_ARRAY_STATUS_PTR |
17491 field of the APD.

17492 SQL_PARAM_DIAG_UNAVAILABLE
17493 Diagnostic information is not available. An example of this is when a data source treats
17494 arrays of parameters as a monolithic unit and so does not generate this level of error
17495 information.

17496 This field in the APD can also be set by calling SQLSetStmtAttr() with the
17497 SQL_ATTR_PARAM_STATUS_PTRattribute.

17498 In the APD, this SQLUSMALLINT * header field points to an array of SQLUSMALLINT
17499 values that can be set by the application to indicate whether this set of parameters is to be
17500 ignored when SQLExecute() or SQLExecDirect() is called. The elements in the array can
17501 contain the following values:

17502 SQL_PARAM_PROCEED
17503 The set of parameters is included in the SQLExecute() or SQLExecDirect() call.

17504 SQL_PARAM_IGNORE
17505 The set of parameters is excluded from the SQLExecute() or SQLExecDirect() call.

17506 If no elements of the array are set, all sets of parameters in the array are used in the
17507 SQLExecute() or SQLExecDirect() calls. If the value in the SQL_DESC_ARRAY_STATUS_PTR
17508 field of the APD is a null pointer, all sets of parameters are used, as though it pointed to a
17509 valid array all of whose elements were SQL_PARAM_PROCEED.

17510 SQL_DESC_BIND_OFFSET_PTR [Application descriptors]
17511 This SQLINTEGER * header field points to the bind offset. It is set to a null pointer by
17512 default. If this field is not a null pointer, the bind offset is added to each deferred field in the |
17513 descriptor record (SQL_DESC_DATA_PTR, SQL_DESC_INDICATOR_PTR, and |
17514 SQL_DESC_OCTET_LENGTH_PTR) to produce the effective address for the fetch. The |
17515 bind offset is not cumulative; if the value is changed, any old bind offset ceases to have |
17516 effect. A bind offset can be used only with row-wise binding. See Section 9.4 on page 102 |
17517 and Bind Offsets on page 217.

17518 This field is a deferred field: it is not used at the time it is set, but the implementation uses it |
17519 later to retrieve data.

17520 This field in the ARD can also be set by calling SQLSetStmtAttr() with the
17521 SQL_ATTR_ROW_BIND_OFFSET_PTR attribute. This field in the ARD can also be set by
17522 calling SQLSetStmtAttr() with the SQL_ATTR_PARAM_BIND_OFFSET_PTR attribute. •

17523 SQL_DESC_BIND_TYPE [Application descriptors]
17524 This SQLINTEGER header field sets the binding orientation to be used for either binding
17525 columns or parameters.

17526 In ARDs, this field specifies the binding orientation when SQLFetchScroll() is called on the
17527 associated statement handle.

17528 To select column-wise binding for columns, this field is set to SQL_BIND_BY_COLUMN
17529 (the default).

17530 This field in the ARD can also be set by calling SQLSetStmtAttr() with the |
17531 SQL_ATTR_ROW_BIND_TYPE attribute.

476 Direct Review (Build ID 96KAV) (Draft XDBC.33, August 1996)

Reference Manual Pages ISO 92 SQLSetDescField()

17532 In APDs, this field specifies the binding orientation to be used for dynamic parameters.

17533 To select column-wise binding for parameters, this field is set to SQL_BIND_BY_COLUMN
17534 (the default).

17535 This field in the APD can also be set by calling SQLSetStmtAttr() with the |
17536 SQL_ATTR_PARAM_BIND_TYPEattribute.

17537 SQL_DESC_COUNT [All]
17538 This SQLSMALLINT header field specifies the one-based index of the highest-numbered |
17539 record that contains data. When the implementation sets the data structure for the
17540 descriptor, it must also set the SQL_DESC_COUNT field to show how many records are |
17541 significant. When an application allocates an instance of this data structure, it does not have
17542 to specify how many records to reserve room for. As the application specifies the contents |
17543 of the records, the implementation takes any required action to ensure that the descriptor
17544 handle refers to a data structure of the adequate size.

17545 SQL_DESC_COUNT is not a count of all records that are used, but the number of the |
17546 highest-numbered bound record. If the application unbinds the record with this number, the |
17547 implementation implicitly resets SQL_DESC_COUNT to the highest-numbered bound |
17548 record remaining. If the result is that there are no more bound records (or if the application |
17549 calls SQLFreeStmt() with the SQL_UNBIND option to achieve this explicitly), then the |
17550 implementation sets SQL_DESC_COUNT to 0. If the application binds additional records |
17551 with numbers greater than the highest-numbered bound record, the implementation |
17552 increases the SQL_DESC_COUNT field to this record number.

17553 The value in SQL_DESC_COUNT can be set explicitly by an application by calling
17554 SQLSetDescField(). If the value in SQL_DESC_COUNT is explicitly decreased, all records
17555 with numbers greater than the new value in SQL_DESC_COUNT are removed, unbinding
17556 the columns. If the value in SQL_DESC_COUNT is explicitly set to 0, and the field is in an
17557 APD, all parameter columns are unbound. If the value in SQL_DESC_COUNT is explicitly
17558 set to 0, and the field is in an ARD, all data buffers except a bound bookmark column are
17559 released.

17560 The record count in this field of an ARD does not include a bound bookmark column. To |
17561 unbind a bookmark column, the application sets the DATA_PTRfield of record number 0 to |
17562 a null pointer.

17563 SQL_DESC_ROWS_PROCESSED_PTR [Implementation descriptors]
17564 In an IRD, this SQLUINTEGER * header field points to a buffer containing the number of
17565 rows fetched after a call to SQLFetch() or SQLFetchScroll(), or the number of rows affected in
17566 a bulk operation performed by a call to SQLBulkOperations() or SQLSetPos().

17567 In an IPD, this SQLUINTEGER * header field points to a buffer containing the number of |
17568 sets of parameters that have been processed, including error rows. No row number is |
17569 returned if this is a null pointer.

17570 SQL_DESC_ROWS_PROCESSED_PTR is valid only after SQL_SUCCESS or
17571 SQL_SUCCESS_WITH_INFO has been returned after a call to SQLFetch() or
17572 SQLFetchScroll() (for an IRD field) or SQLExecute() or SQLExecDirect() (for an IPD field). If |
17573 the return code is not one of these, the location pointed to by
17574 SQL_DESC_ROWS_PROCESSED_PTR is undefined.

17575 If the call to SQLExecDirect(), SQLExecute(), SQLFetch(), SQLFetchScroll(), or |
17576 SQLParamData() that fills in the buffer pointed to by this field did not return SQL_SUCCESS
17577 or SQL_SUCCESS_WITH_INFO, the contents of the buffer are undefined.

17578 This field in the ARD can also be set by calling SQLSetStmtAttr() with the
17579 SQL_ATTR_ROWS_FETCHED_PTR attribute. This field in the ARD can also be set by

Data Management: X/Open Database Connectivity (XDBC), Version 2 477

SQLSetDescField() ISO 92 Reference Manual Pages

17580 calling SQLSetStmtAttr() with the SQL_ATTR_PARAMS_PROCESSED_PTR attribute.

17581 The buffer pointed to by this field is allocated by the application. It is a deferred output |
17582 buffer that the implementation sets. It is set to a null pointer by default.

17583 Fields of Each Descriptor Record

17584 Each descriptor contains one or more records consisting of fields that define either column data |
17585 or dynamic parameters, depending on the type of descriptor. Each record is a complete |
17586 definition of a single column or parameter.

17587 SQL_DESC_AUTO_UNIQUE_VALUE[IRDs]
17588 This read-only SQLINTEGER record field contains SQL_TRUE if the column is an auto-
17589 incrementing column, or SQL_FALSE if the column is not an auto-incrementing column.
17590 This field is read-only, but the underlying auto-incrementing column is not necessarily
17591 read-only.

17592 An application can insert values into a row containing an autoincrement column, but
17593 typically cannot update values in the column. When an insert is made into an auto-
17594 increment column, a unique value is inserted into the column at insert time. The increment
17595 is not defined, but is data-source-specific. An application should not assume that an auto-
17596 increment column starts at any particular point or increments by any particular value.

17597 SQL_DESC_BASE_COLUMN_NAME [IRDs]
17598 This read-only SQLCHAR record field contains the base column name for the result set
17599 column. If a base column name does not exist (as in the case of columns that are
17600 expressions), then this variable contains an empty string.

17601 SQL_DESC_BASE_TABLE_NAME[IRDs]
17602 This read-only SQLCHAR record field contains the base table name for the result set
17603 column. If a base table name cannot be defined or is not applicable, then this variable
17604 contains an empty string.

17605 SQL_DESC_CASE_SENSITIVE [Implementation descriptors]
17606 This read-only SQLINTEGER record field contains SQL_TRUE if the column or parameter is
17607 treated as case-sensitive for collations and comparisons, or SQL_FALSE if the column is not
17608 treated as case-sensitive for collations and comparisons, or if it is a non-character column.

17609 SQL_DESC_CATALOG_NAME[IRDs]
17610 This read-only SQLCHAR record field contains the catalog name for the base table that |
17611 contains the column. The return value is implementation-defined if the column is an
17612 expression or if the column is part of a view. If the data source does not support catalogs or |
17613 the catalog name cannot be determined, this variable contains an empty string. •

17614 SQL_DESC_CONCISE_TYPE [All]
17615 This SQLSMALLINT header field specifies the concise data type for all data types, including |
17616 the date/time and interval data types.

17617 The values in the SQL_DESC_CONCISE_TYPE and SQL_DESC_TYPE fields are
17618 interdependent. Each time one of the fields is set, the other must also be set.
17619 SQL_DESC_CONCISE_TYPE can be set by a call to SQLBindCol() or SQLBindParameter(), or
17620 SQLSetDescField(). SQL_DESC_TYPE can be set by a call to SQLSetDescField() or
17621 SQLSetDescRec().

17622 If SQL_DESC_CONCISE_TYPE is set to a concise data type other than an interval or |
17623 date/time data type, the SQL_DESC_TYPE field is set to the same value, and the
17624 SQL_DESC_DATETIME_INTERVAL_CODEfield is set to 0.

478 Direct Review (Build ID 96KAV) (Draft XDBC.33, August 1996)

Reference Manual Pages ISO 92 SQLSetDescField()

17625 If SQL_DESC_CONCISE_TYPE is set to the concise date/time or interval data type, the |
17626 SQL_DESC_TYPE field is set to the corresponding verbose type (SQL_DATETIME or |
17627 SQL_INTERVAL), and the SQL_DESC_DATETIME_INTERVAL_CODE field is set to the |
17628 appropriate subcode. |

17629 SQL_DESC_DATA_PTR[Application descriptors and IPDs]
17630 This SQLPOINTER record field points to a variable that will contain the parameter value |
17631 (for APDs) or the column value (for ARDs). This field is a deferred field: it is not used at the |
17632 time it is set, but the implementation uses it later to retrieve data. |

17633 The column specified by the SQL_DESC_DATA_PTR field of the ARD is unbound if |
17634 TargetValuePtr in a call to SQLBindCol() is a null pointer, or the SQL_DESC_DATA_PTRfield |
17635 in the ARD is set by a call to SQLSetDescField() or SQLSetDescRec() to a null pointer. Other |
17636 fields are not affected if the SQL_DESC_DATA_PTRfield is set to a null pointer. |

17637 If the call to SQLFetch() or SQLFetchScroll() that fills in the buffer pointed to by this field did
17638 not return SQL_SUCCESS or SQL_SUCCESS_WITH_INFO, the contents of the buffer are
17639 undefined. |

17640 Whenever the SQL_DESC_DATA_PTR field of an APD, ARD, or IPD is set, a consistency |
17641 check occurs; see Consistency Checks on page 486. Causing this check is the only use of |
17642 this field in an IPD.

17643 SQL_DESC_DATETIME_INTERVAL_CODE[All]
17644 This SQLSMALLINT record field contains the subcode for the specific date/time or interval |
17645 data type when the SQL_DESC_TYPE field is SQL_DATETIME or SQL_INTERVAL. This is
17646 true for both SQL and C data types.

17647 For date/time data types, this field can be set to the following: |

17648 Datetime types DATETIME_INTERVAL_CODE
17649 SQL_TYPE_DATE/SQL_C_TYPE_DATE SQL_CODE_DATE
17650 SQL_TYPE_TIME/SQL_C_TYPE_TIME SQL_CODE_TIME
17651 SQL_TYPE_TIMESTAMP/SQL_C_TYPE_TIMESTAMP SQL_CODE_TIMESTAMP

17652 For interval data types, for all the SQL data types whose name is of the form |
17653 SQL_INTERVAL_suffix, and for the corresponding C data types whose name is of the form |
17654 SQL_C_INTERVAL_suffix, there is a subcode of the form SQL_CODE_suffix, which can be |
17655 used to set this field. (See also Section D.4 on page 569.)

17656 SQL_DESC_DATETIME_INTERVAL_PRECISION[All]
17657 This SQLINTEGER record field contains the interval leading precision if the |
17658 SQL_DESC_TYPE field is SQL_INTERVAL. When the |
17659 SQL_DESC_DATETIME_INTERVAL_CODEfield is set to an interval data type, this field is |
17660 set to the default interval leading precision.

17661 SQL_DESC_DISPLAY_SIZE[IRDs]
17662 This read-only SQLINTEGER record field contains the maximum number of characters
17663 required to display the data from the column. The value in this field is not the same as the
17664 descriptor field SQL_DESC_LENGTH because the SQL_DESC_LENGTH field is undefined |
17665 for all numeric types.

17666 SQL_DESC_FIXED_PREC_SCALE [Implementation descriptors]
17667 This read-only SQLSMALLINT record field is set to SQL_TRUE if the column is an exact |
17668 numeric column and has a fixed precision and non-zero scale, or SQL_FALSE if the column |
17669 is not an exact numeric column with a fixed precision and scale.

Data Management: X/Open Database Connectivity (XDBC), Version 2 479

SQLSetDescField() ISO 92 Reference Manual Pages

17670 SQL_DESC_INDICATOR_PTR [Application descriptors]
17671 In ARDs, this SQLINTEGER * record field points to the indicator variable. This variable
17672 contains SQL_NULL_DATAif the column value is a NULL. For APDs, the indicator variable
17673 is set to SQL_NULL_DATAto specify NULL dynamic arguments. Otherwise, the variable is
17674 zero (unless the values in SQL_DESC_INDICATOR_PTR and
17675 SQL_DESC_OCTET_LENGTH_PTR are the same pointer).

17676 If the SQL_DESC_INDICATOR_PTR field in an ARD is a null pointer, the implementation is |
17677 prevented from returning information about whether the column is NULL or not. If the |
17678 column is NULL and SQL_DESC_INDICATOR_PTR is a null pointer, SQLSTATE 22002 |
17679 (Indicator variable required but not supplied) is returned when the implementation tries to |
17680 populate the buffer after a call to SQLFetch() or SQLFetchScroll(). If the call to SQLFetch() or
17681 SQLFetchScroll() did not return SQL_SUCCESS or SQL_SUCCESS_WITH_INFO, the
17682 contents of the buffer are undefined.

17683 The SQL_DESC_INDICATOR_PTR field determines whether the field pointed to by
17684 SQL_DESC_OCTET_LENGTH_PTR is set. If the data value for a column is NULL, the |
17685 implementation sets the indicator variable to SQL_NULL_DATA. The field pointed to by
17686 SQL_DESC_OCTET_LENGTH_PTR is then not set. If a NULL value is not encountered
17687 during the fetch, the buffer pointed to by SQL_DESC_INDICATOR_PTR is set to zero, and
17688 the buffer pointed to by SQL_DESC_OCTET_LENGTH_PTR is set to the length of the data.

17689 If the SQL_DESC_INDICATOR_PTR field in an APD is a null pointer, the application |
17690 cannot use this descriptor record to specify NULL arguments. |

17691 This field is a deferred field: it is not used at the time it is set, but the implementation uses it |
17692 later to store data.

17693 SQL_DESC_LABEL [IRDs]
17694 This read-only SQLCHAR record field contains the column label or title. If the column does
17695 not have a label, this variable contains the column name. If the column is unnamed and
17696 unlabeled, this variable contains an empty string.

17697 SQL_DESC_LENGTH [All]
17698 This SQLUINTEGER record field is either the maximum or actual character length of a
17699 character string or a binary data type. It is the maximum character length for a fixed-length
17700 data type, or the actual character length for a variable-length data type. Its value always |
17701 excludes the null terminator that ends the character string. For date/time and interval data |
17702 types, this field has the length in characters of the character-string representation of the |
17703 value. This field is a count of characters, not octets.

17704 SQL_DESC_LITERAL_PREFIX [IRDs]
17705 This read-only SQLCHAR record field contains the character or characters that the data |
17706 source recognizes as a prefix for a literal of this data type. This variable contains an empty
17707 string for a data type for which a literal prefix is not applicable.

17708 SQL_DESC_LITERAL_SUFFIX [IRDs]
17709 This read-only SQLCHAR record field contains the character or characters that the data |
17710 source recognizes as a suffix for a literal of this data type. This variable contains an empty
17711 string for a data type for which a literal suffix is not applicable.

17712 SQL_DESC_LOCAL_TYPE_NAME [Implementation descriptors]
17713 This read-only SQLCHAR record field contains any localized (native language) name for
17714 the data type that may be different from the regular name of the data type. If there is no
17715 localized name, then an empty string is returned. This field is for display purposes only. The
17716 character set of the string is locale-dependent and is typically the default character set of the
17717 data source.

480 Direct Review (Build ID 96KAV) (Draft XDBC.33, August 1996)

Reference Manual Pages ISO 92 SQLSetDescField()

17718 SQL_DESC_NAME [Implementation descriptors]
17719 In a row descriptor, this field contains the column name, or any applicable column alias. If |
17720 there is no column name or column alias, this field contains an empty string (and the |
17721 SQL_DESC_UNNAMED field contains SQL_UNNAMED). |

17722 An application can set the SQL_DESC_NAME field of an IPD to a parameter name or alias. |
17723 The SQL_DESC_NAME field of an IRD is a read-only field; SQLSTATE HY091 (Invalid |
17724 descriptor field identifier) is returned if an application tries to set it. If an application sets |
17725 the SQL_DESC_UNNAMED field of an IPD to SQL_UNNAMED, the SQL_DESC_NAME |
17726 field of the IPD is set to NULL. |

17727 In IPDs, this field contains the parameter name if the data source supports named |
17728 parameters and is capable of describing parameters. Otherwise, this field is undefined.

17729 SQL_DESC_NULLABLE [Implementation descriptors]
17730 In IRDs, this read-only SQLSMALLINT record field is SQL_NULLABLE if the column can
17731 have NULL values; SQL_NO_NULLS if the column does not have NULL values; or
17732 SQL_NULLABLE_UNKNOWN if it is not known whether the column accepts NULL
17733 values. This field pertains to the result set column, not the base column.

17734 In IPDs, this field is always set to SQL_NULLABLE, since dynamic parameters are always
17735 nullable, and cannot be set by an application.

17736 SQL_DESC_OCTET_LENGTH [All]
17737 This SQLINTEGER record field contains the length, in octets, of a character string or binary |
17738 data type. For fixed-length character types, this is the actual length in octets. For variable- |
17739 length character or binary types, this is the maximum length in octets. This value always |
17740 excludes space for the null terminator for implementation descriptors and always includes
17741 space for the null terminator for application descriptors. For application data, this field |
17742 contains the size of the buffer. For APDs, this field is defined only for output or
17743 input/output parameters.

17744 SQL_DESC_OCTET_LENGTH_PTR [Application descriptors]
17745 This SQLINTEGER * record field points to a variable that will contain the total length in |
17746 octets of a dynamic argument (for parameter descriptors) or of a bound column value (for
17747 row descriptors).

17748 For an APD, this value is ignored for all arguments except character string and binary; if this
17749 field points to SQL_NTS, the dynamic argument must be null-terminated. To indicate that a
17750 bound parameter is a data-at-execute parameter, an application sets this field in the
17751 appropriate record of the APD to a variable that, at execute time, will contain the value
17752 SQL_DATA_AT_EXEC. If there is more than one such field, SQL_DESC_DATA_PTRcan be
17753 set to a value uniquely identifying the parameter to help the application determine which
17754 parameter is being requested.

17755 If the OCTET_LENGTH_PTR field of an ARD is a null pointer, the implementation does not |
17756 return length information for the column. If the SQL_DESC_OCTET_LENGTH_PTR field
17757 of an APD is a null pointer, the implementation assumes that character strings and binary |
17758 values are null-terminated. (Binary values should not be null-terminated, but should be
17759 given a length, in order to avoid truncation.)

17760 If the call to SQLFetch() or SQLFetchScroll() that fills in the buffer pointed to by this field did
17761 not return SQL_SUCCESS or SQL_SUCCESS_WITH_INFO, the contents of the buffer are
17762 undefined.

17763 This field is a deferred field: it is not used at the time it is set, but the implementation uses it |
17764 later to buffer data.

Data Management: X/Open Database Connectivity (XDBC), Version 2 481

SQLSetDescField() ISO 92 Reference Manual Pages

17765 SQL_DESC_PARAMETER_TYPE [IPDs]
17766 This SQLSMALLINT record field is set to SQL_PARAM_INPUT for an input parameter,
17767 SQL_PARAM_INPUT_OUTPUT for an input/output parameter, or
17768 SQL_PARAM_OUTPUT for an output parameter. Set to SQL_PARAM_INPUT by default.

17769 For an IPD, the field is set to SQL_PARAM_INPUT by default if the implementation does |
17770 not automatically populate the IPD (if the SQL_ATTR_ENABLE_AUTO_IPD statement |
17771 attribute is SQL_FALSE). An application should set this field in the IPD for parameters that |
17772 are not input parameters.

17773 SQL_DESC_PRECISION [All]
17774 This SQLSMALLINT record field contains the precision for a numeric data type. For data
17775 types time, timestamp, and all the interval data types that represent a time interval, this
17776 field contains the precision of the fractional seconds component.

17777 SQL_DESC_SCALE [All]
17778 This SQLSMALLINT record field contains the defined scale for DECIMAL and NUMERIC
17779 data types. The field is undefined for all other data types.

17780 SQL_DESC_SCHEMA_NAME [IRDs]
17781 This read-only SQLCHAR record field contains the schema name of the base table that |
17782 contains the column. This is implementation-defined if the column is an expression or if the
17783 column is part of a view. If the data source does not support schemas or the schema name |
17784 cannot be determined, this variable contains an empty string.

17785 SQL_DESC_SEARCHABLE [IRDs]
17786 This read-only SQLSMALLINT record field is set to one of the following values:

17787 SQL_PRED_NONE The column cannot be used in a WHERE clause.

17788 SQL_PRED_CHAR The column can be used in a WHERE clause, but
17789 only with the LIKE predicate.

17790 SQL_PRED_BASIC The column can be used in a WHERE clause with
17791 all the comparison operators except LIKE.

17792 SQL_PRED_SEARCHABLE The column can be used in a WHERE clause with
17793 any comparison operator.

17794 For data of type SQL_LONGVARCHAR and SQL_LONGVARBINARY, the value |
17795 SQL_PRED_CHAR is typical.

17796 SQL_DESC_TABLE_NAME[IRDs]
17797 This read-only SQLCHAR record field contains the name of the base table that contains this
17798 column. The value is undefined if the column is an expression or part of a view.

17799 SQL_DESC_TYPE [All]
17800 This SQLSMALLINT record field specifies the concise SQL or C data type for all data types |
17801 except date/time and interval data types. For the date/time and interval data types, this
17802 field specifies the verbose data type, SQL_DATETIME or SQL_INTERVAL. (For an |
17803 overview of verbose versus concise identifiers, see Data Type Identification in Descriptors |
17804 on page 574.)

17805 Whenever this field contains SQL_DATETIME or SQL_INTERVAL, the
17806 SQL_DESC_DATETIME_INTERVAL_CODEfield must contain the appropriate subcode for |
17807 the concise type. For date/time data types, SQL_DESC_TYPE contains SQL_DATETIME,
17808 and the SQL_DESC_DATETIME_INTERVAL_CODE field contains a subcode for the |
17809 specific date/time data type. For interval data types, SQL_DESC_TYPE contains
17810 SQL_INTERVAL, and the SQL_DESC_DATETIME_INTERVAL_CODE field contains a
17811 subcode for the specific interval data type.

482 Direct Review (Build ID 96KAV) (Draft XDBC.33, August 1996)

Reference Manual Pages ISO 92 SQLSetDescField()

17812 The values in the SQL_DESC_TYPE and SQL_DESC_CONCISE_TYPE fields are
17813 interdependent. Each time one of the fields is set, the other must also be set.
17814 SQL_DESC_TYPE can be set by a call to SQLSetDescField() or SQLSetDescRec().
17815 SQL_DESC_CONCISE_TYPE can be set by a call to SQLBindCol() or SQLBindParameter(), or
17816 SQLSetDescField().

17817 If SQL_DESC_TYPE is set to a concise data type other than an interval or date/time data |
17818 type, the SQL_DESC_CONCISE_TYPE field is set to the same value, and the
17819 SQL_DESC_DATETIME_INTERVAL_CODEfield is set to 0.

17820 If SQL_DESC_TYPE is set to the verbose date/time or interval data type, (namely, |
17821 SQL_DATETIME or SQL_INTERVAL), and the SQL_DESC_DATETIME_INTERVAL_CODE |
17822 field is set to the appropriate subcode, then the SQL_DESC_CONCISE TYPE field is set to |
17823 the corresponding concise type. Setting SQL_DESC_TYPE to one of the concise date/time |
17824 or interval types returns SQLSTATEHY021 (Inconsistent descriptor information).

17825 Default Values for Certain Data Types

17826 When the SQL_DESC_TYPE field is set by a call to SQLSetDescField(), the following fields
17827 are set to the following default values. The values of the remaining fields of the same
17828 record are undefined:

17829 Value of SQL_DESC_TYPE Other fields implicitly set
17830 SQL_CHAR, SQL_VARCHAR, SQL_DESC_LENGTH is set to 1. |
17831 SQL_C_CHAR, SQL_C_VARCHAR SQL_DESC_PRECISION is set to 0. |

17832 When SQL_DESC_DATETIME_INTERVAL_CODE is
17833 set to SQL_CODE_DATE or SQL_CODE_TIME, |
17834 SQL_DESC_PRECISION is set to 0. When it is set to |
17835 SQL_DESC_TIMESTAMP, SQL_DESC_PRECISION |
17836 is set to 6.

SQL_DATETIME

17837 SQL_DECIMAL, SQL_NUMERIC |
17838 SQL_C_NUMERIC |

SQL_DESC_SCALE is set to 0. |
SQL_DESC_PRECISION is set to the |

17839 implementation-defined precision for the respective |
17840 data type. ||

17841 SQL_DESC_PRECISION is set to the |
17842 implementation-defined default precision for |
17843 SQL_FLOAT. ||

SQL_FLOAT,SQL_C_FLOAT |

17844 When SQL_DESC_DATETIME_INTERVAL_CODE is ||
17845 set to an interval data type, ||
17846 SQL_DESC_DATETIME_INTERVAL_PRECISION is ||
17847 set to 2 (the default interval leading precision). When ||
17848 the interval has a seconds component, ||
17849 SQL_DESC_PRECISION is set to 6 (the default ||
17850 interval seconds precision). |

SQL_INTERVAL |

17851 When an application calls SQLSetDescField() to set fields of a descriptor, rather than calling |
17852 SQLSetDescRec(), the application must first declare the data type. When it does, the other |
17853 fields indicated in the table above are implicitly set. If any of the values implicitly set are
17854 unacceptable, the application can then call SQLSetDescField() or SQLSetDescRec() to set the |
17855 unacceptable value explicitly.

Data Management: X/Open Database Connectivity (XDBC), Version 2 483

SQLSetDescField() ISO 92 Reference Manual Pages

17856 SQL_DESC_TYPE_NAME [Implementation descriptors]
17857 This read-only SQLCHAR record field contains the data-source-dependent type name (for
17858 example, CHAR, VARCHAR, and so on). If the data type name is unknown, this variable
17859 contains an empty string.

17860 SQL_DESC_UNNAMED [Implementation descriptors]
17861 This SQLSMALLINT record field in a row descriptor is set to either SQL_NAMED or |
17862 SQL_UNNAMED when the SQL_DESC_NAME field is set. If the SQL_DESC_NAME field |
17863 contains a column alias, or if the column alias does not apply, the UNNAMED field is set to |
17864 SQL_NAMED. If an application sets the SQL_DESC_NAME field of an IPD to a parameter |
17865 name or alias, the driver sets the SQL_DESC_UNNAMED field of the IPD to SQL_NAMED. |
17866 If there is no column name or a column alias, the UNNAMED field is set to
17867 SQL_UNNAMED. |

17868 An application can set the SQL_DESC_UNNAMED field of an IPD to SQL_UNNAMED, in |
17869 which case the implementation sets the SQL_DESC_NAME field of the IPD to NULL. The |
17870 implementation returns SQLSTATE HY091 (Invalid descriptor field identifier) if an |
17871 application tries to set the SQL_DESC_UNNAMED field of an IPD to SQL_NAMED. The |
17872 SQL_DESC_UNNAMED field of an IRD is read-only; SQLSTATEHY091 (Invalid descriptor |
17873 field identifier) is returned if an application tries to set it.

17874 SQL_DESC_UNSIGNED [Implementation descriptors]
17875 This read-only SQLSMALLINT record field is set to SQL_TRUE if the column type is
17876 unsigned or non-numeric, or SQL_FALSE if the column type is signed.

17877 SQL_DESC_UPDATABLE[IRDs]
17878 This read-only SQLSMALLINT record field is set to one of the following values:

17879 SQL_ATTR_READONLY The result set column is read-only. |

17880 SQL_ATTR_WRITE The result set column is read-write. |

17881 SQL_ATTR_READWRITE_UNKNOWN
17882 It is not known whether the result set column is
17883 updatable.

17884 This describes the updatability of the column in the result set, not the column in the base |
17885 table, which may be different. Whether a column is updatable can be based on the data |
17886 type, user privileges, and the definition of the result set itself.

17887 SEE ALSO •

17888 For information about See

17889 Setting multiple descriptor fields SQLSetDescRec()
17890 Getting a descriptor field SQLGetDescField()
17891 Getting multiple descriptor fields SQLGetDescRec()
17892 Binding a column SQLBindCol()
17893 Binding a parameter SQLBindParam()

17894 CHANGE HISTORY

17895 Version 2
17896 Revised generally. See Alignment with Popular Implementations on page 2.

484 Direct Review (Build ID 96KAV) (Draft XDBC.33, August 1996)

Reference Manual Pages ISO 92 SQLSetDescField()

17897 Descriptor Fields Added in Version 2

17898 The following descriptor fields are new in this issue:

17899 SQL_DESC_ALLOC_TYPE SQL_DESC_LABEL
17900 SQL_DESC_ARRAY_SIZE SQL_DESC_LITERAL_PREFIX
17901 SQL_DESC_ARRAY_STATUS_PTR SQL_DESC_LITERAL_SUFFIX
17902 SQL_DESC_BIND_OFFSET_PTR SQL_DESC_LOCAL_TYPE_NAME
17903 SQL_DESC_BIND_TYPE SQL_DESC_NAME
17904 SQL_DESC_ROWS_PROCESSED_PTR SQL_DESC_NULLABLE
17905 SQL_DESC_AUTO_UNIQUE_VALUE SQL_DESC_PARAMETER_TYPE
17906 SQL_DESC_BASE_COLUMN_NAME SQL_DESC_SCHEMA_NAME
17907 SQL_DESC_BASE_TABLE_NAME SQL_DESC_SEARCHABLE
17908 SQL_DESC_CASE_SENSITIVE SQL_DESC_TABLE_NAME
17909 SQL_DESC_CATALOG_NAME SQL_DESC_TYPE_NAME
17910 SQL_DESC_CONCISE_TYPE SQL_DESC_UNNAMED
17911 SQL_DESC_DATETIME_INTERVAL_PRECISION SQL_DESC_UNSIGNED
17912 SQL_DESC_DISPLAY_SIZE SQL_DESC_UPDATABLE
17913 SQL_DESC_FIXED_PREC_SCALE

Data Management: X/Open Database Connectivity (XDBC), Version 2 485

SQLSetDescRec() ISO 92 Reference Manual Pages

17914 NAME
17915 SQLSetDescRec — Set multiple descriptor fields.

17916 SYNOPSIS
17917 SQLRETURN SQLSetDescRec(
17918 SQLHDESCDescriptorHandle ,
17919 SQLSMALLINT RecNumber,
17920 SQLSMALLINT Type ,
17921 SQLSMALLINT SubType ,
17922 SQLINTEGER Length ,
17923 SQLSMALLINT Precision ,
17924 SQLSMALLINT Scale ,
17925 SQLPOINTER DataPtr ,
17926 SQLINTEGER * StringLengthPtr ,
17927 SQLINTEGER * IndicatorPtr);

17928 ARGUMENTS

17929 DescriptorHandle [Input] |
17930 Descriptor handle. This must not be an IRD handle. |

17931 RecNumber [Input]
17932 Indicates the descriptor record that contains the fields to be set. Descriptor records are
17933 numbered from 0, with record number 0 being the bookmark record. This argument must be
17934 equal to or greater than 0. If RecNumber is greater than the value of SQL_DESC_COUNT,
17935 RecNumber is changed to the value of SQL_DESC_COUNT. |

17936 Type [Input]
17937 The value to which to set the SQL_DESC_TYPE field for the descriptor record. |

17938 SubType[Input]
17939 For records whose type is SQL_DATETIMEor SQL_INTERVAL, this is the value to which to
17940 set the SQL_DESC_DATETIME_INTERVAL_CODEfield. |

17941 Length [Input]
17942 The value to which to set the SQL_DESC_OCTET_LENGTH field for the descriptor record. |

17943 Precision [Input] |
17944 The value to which to set the SQL_DESC_PRECISION field for the descriptor record. |

17945 Scale [Input] |
17946 The value to which to set the SQL_DESC_SCALE field for the descriptor record. |

17947 DataPtr [Deferred Input or Output]
17948 The value to which to set the SQL_DESC_DATA_PTR field for the descriptor record.
17949 DataPtr can be set to a null pointer to set the SQL_DESC_DATA_PTRfield to a null pointer. |
17950 If DescriptorHandle refers to an ARD, this unbinds the column. |

17951 StringLengthPtr [Deferred Input or Output]
17952 The value to which to set the SQL_DESC_OCTET_LENGTH_PTR field for the descriptor
17953 record. StringLengthPtr can be set to a null pointer to set the
17954 SQL_DESC_OCTET_LENGTH_PTR field to a null pointer. |

17955 IndicatorPtr [Deferred Input or Output]
17956 The value to which to set the SQL_DESC_INDICATOR_PTR field for the descriptor record.
17957 IndicatorPtr can be set to a null pointer to set the SQL_DESC_INDICATOR_PTR field to a
17958 null pointer. |

486 Direct Review (Build ID 96KAV) (Draft XDBC.33, August 1996)

Reference Manual Pages ISO 92 SQLSetDescRec()

17959 RETURN VALUE |
17960 SQL_SUCCESS, SQL_SUCCESS_WITH_INFO, SQL_ERROR, or SQL_INVALID_HANDLE. |

17961 DIAGNOSTICS |
17962 When SQLSetDescRec() returns SQL_ERROR or SQL_SUCCESS_WITH_INFO, an associated |
17963 SQLSTATE value can be obtained by calling SQLGetDiagRec() with a HandleType of |
17964 SQL_HANDLE_DESC and a Handle of DescriptorHandle . The following SQLSTATE values are |
17965 commonly returned by SQLSetDescRec(). The return code associated with each SQLSTATEvalue |
17966 is SQL_ERROR, except that for SQLSTATE values in class 01, the return code is |
17967 SQL_SUCCESS_WITH_INFO. |

17968 01000 — General warning |
17969 Implementation-defined informational message. |

17970 07006 — Restricted data type attribute violation |
17971 DescriptorHandle referred to an application descriptor, RecNumber was 0, and Type was |
17972 SQL_C_VARBOOKMARK.

17973 07009 — Invalid descriptor index
17974 RecNumber was set to 0, and DescriptorHandle referred to an IPD handle. |

17975 RecNumber was less than 0. |

17976 RecNumber was greater than the maximum number of columns or parameters that the data |
17977 source supports, and DescriptorHandle referred to an APD or an ARD. |

17978 08S01 — Communication link failure |
17979 The communication link to the data source failed before the function completed processing. |

17980 HY000 — General error |
17981 An error occurred for which there was no specific SQLSTATE and for which no |
17982 implementation-specific SQLSTATE was defined. The error message returned by |
17983 SQLGetDiagRec() in the *MessageTextbuffer describes the error and its cause. |

17984 HY001 — Memory allocation error |
17985 The implementation failed to allocate memory required to support execution or completion |
17986 of the function. |

17987 HY010 — Function sequence error |
17988 DescriptorHandle was associated with a statement handle for which an asynchronously
17989 executing function (not this one) was called and was still executing when this function was |
17990 called. |

17991 SQLBulkOperations(), SQLExecDirect(), SQLExecute(), or SQLSetPos() was called for a |
17992 statement handle which DescriptorHandle was associated and returned SQL_NEED_DATA. |
17993 This function was called before data was sent for all data-at-execution parameters or |
17994 columns.

17995 HY016 — Cannot modify an implementation row descriptor
17996 DescriptorHandle referred to an IRD. |

17997 HY021 — Inconsistent descriptor information
17998 Type, or any other field associated with the TYPE field in the descriptor, was not valid or
17999 consistent.

18000 The descriptor consistency check failed (see Consistency Checks on page 486). |

18001 HY091 — Invalid descriptor field identifier
18002 A field to be set was not defined for DescriptorHandle. |

Data Management: X/Open Database Connectivity (XDBC), Version 2 487

SQLSetDescRec() ISO 92 Reference Manual Pages

18003 HY104 — Invalid precision value |
18004 Length, Precision, or Scale was outside the range of values supported by the data source for a |
18005 column of the SQL data type specified by Type and/or SubType.

18006 HYT01 — Connection timeout expired
18007 The connection timeout period expired before the data source responded to the request. The
18008 connection timeout period is set through SQLSetConnectAttr(),
18009 SQL_ATTR_CONNECTION_TIMEOUT.

18010 IM001 — Function not supported
18011 The function is not supported on the current connection to the data source.

18012 COMMENTS
18013 An application can call SQLSetDescRec() to set the following fields for a single column or
18014 parameter:

18015 • SQL_DESC_TYPE
18016 • SQL_DESC_DATETIME_INTERVAL_CODE(for date/times and intervals only) |
18017 • SQL_DESC_OCTET_LENGTH
18018 • SQL_DESC_PRECISION
18019 • SQL_DESC_SCALE
18020 • SQL_DESC_DATA_PTR
18021 • SQL_DESC_OCTET_LENGTH_PTR
18022 • SQL_DESC_INDICATOR_PTR

18023 When binding a column or parameter, SQLSetDescRec() sets multiple fields affecting the binding
18024 without calling SQLBindCol() or SQLBindParameter(), or making multiple calls to
18025 SQLSetDescField(). SQLSetDescRec() can set fields on a descriptor not currently associated with a
18026 statement. (SQLBindParameter() sets more fields than SQLSetDescRec(), can set fields on both an
18027 APD and an IPD in one call, and does not require a descriptor handle.)

18028 The application should set the statement attribute SQL_ATTR_USE_BOOKMARKS before
18029 calling SQLSetDescRec() with a RecNumber of 0 to set bookmark fields.

18030 If a call to SQLSetDescRec() fails, the contents of the above descriptor fields are undefined. |

18031 Consistency Checks

18032 The implementation automatically performs a consistency check whenever the application sets |
18033 the SQL_DESC_DATA_PTR field of an APD, ARD, or IPD. If any of the fields is inconsistent |
18034 with other fields, SQLSetDescRec() returns SQLSTATE HY021 (Inconsistent descriptor
18035 information). (There is no check between the value of an ARD and an IPD.)

18036 Whenever an application sets the SQL_DESC_DATA_PTR field of an APD, ARD, or IPD, the |
18037 implementation checks that the value of the SQL_DESC_TYPE field and the values applicable to
18038 that SQL_DESC_TYPE field are valid and consistent. This check is always performed when
18039 SQLBindParameter() or SQLBindCol() is called, or when SQLSetDescRec() is called for an APD, |
18040 ARD, or IPD. This consistency check includes the following checks on descriptor fields:

18041 • The SQL_DESC_TYPE record field is verified to be one of the valid XDBC C or SQL types, or |
18042 an implementation-defined C or SQL type.

18043 • The SQL_DESC_CONCISE_TYPE field is verified to be one of the valid XDBC C or SQL |
18044 types or an implementation-defined C or SQL type, including the concise date/time and |
18045 interval types. |

18046 • If the SQL_DESC_TYPE record field is SQL_DATETIME or SQL_INTERVAL, then the |
18047 SQL_DESC_DATETIME_INTERVAL_CODEfield is verified to be one of the valid date/time |
18048 or interval codes (see the description of the SQL_DESC_DATETIME_INTERVAL_CODE |

488 Direct Review (Build ID 96KAV) (Draft XDBC.33, August 1996)

Reference Manual Pages ISO 92 SQLSetDescRec()

18049 descriptor field in SQLSetDescField()). |

18050 • If the SQL_DESC_TYPE of an ARD or APD is SQL_C_NUMERIC, the |
18051 SQL_DESC_PRECISION and SQL_DESC_SCALE fields are verified to be valid. |

18052 • If the SQL_DESC_CONCISE_TYPE field is a time or timestamp data type, or one of the |
18053 interval data types with a seconds component, the SQL_DESC_PRECISION field is verified |
18054 to be a valid seconds precision. |

18055 • If the SQL_DESC_CONCISE_TYPE field is an interval data type, the |
18056 SQL_DESC_DATETIME_INTERVAL_PRECISION field is verified to be a valid interval |
18057 leading precision value. |

18058 An application can prompt a consistency check by setting the SQL_DESC_DATA_PTRfield of an
18059 IPD. An application would set this field only to force the consistency check; it is undefined |
18060 whether the value the application provides is stored in the IPD and can be retrieved from the |
18061 IPD.

18062 Consistency checks are not performed for IRDs. |

18063 A failure of any part of the consistency check causes the XDBC function to return SQLSTATE |
18064 HY021 (Inconsistent descriptor information). If the XDBC function was called to set the field to |
18065 an inconsistent value, the resulting contents of that descriptor record are undefined. If the field |
18066 is set in a record whose number is greater than the value of the SQL_DESC_COUNT field, the |
18067 value in SQL_DESC_COUNT is not incremented. |

18068 The descriptor record may undergo other validity checks at execute time as a result of a call to |
18069 SQLExecDirect(), SQLExecute(), or SQLPrepare(); or at fetch time as a result of a call to |
18070 SQLFetch(), SQLFetchScroll(), or SQLSetPos().

18071 SEE ALSO

18072 For information about See

18073 Setting single descriptor fields SQLSetDescField()
18074 Getting a single descriptor field SQLGetDescField()
18075 Getting multiple descriptor fields SQLGetDescRec()
18076 Binding a column SQLBindCol()
18077 Binding a parameter SQLBindParam()

18078 CHANGE HISTORY

18079 Version 2
18080 Revised generally. See Alignment with Popular Implementations on page 2. Also see the list in
18081 Descriptor Fields Added in Version 2 on page 483.

•

Data Management: X/Open Database Connectivity (XDBC), Version 2 489

SQLSetEnvAttr() ISO 92 Reference Manual Pages

18082 NAME
18083 SQLSetEnvAttr — Set attributes that govern aspects of environments.

18084 SYNOPSIS
18085 SQLRETURN SQLSetEnvAttr(
18086 SQLHENVEnvironmentHandle ,
18087 SQLINTEGER Attribute ,
18088 SQLPOINTER ValuePtr ,
18089 SQLINTEGER StringLength);

18090 ARGUMENTS

18091 EnvironmentHandle [Input] |
18092 Environment handle. |

18093 Attribute [Input]
18094 Attribute to set, listed in Environment Attribute on page 489. |

18095 ValuePtr [Input]
18096 Pointer to the value to be associated with Attribute. Depending on the value of Attribute,
18097 *ValuePtr is a 32-bit integer value or points to a null-terminated character string. |

18098 StringLength [Input]
18099 If ValuePtr points to a character string or a binary buffer, this argument should be the length
18100 of *ValuePtr. If ValuePtr is a pointer, but not to a string or binary buffer, then StringLength
18101 should have the value SQL_IS_POINTER. If ValuePtr is not a pointer, then StringLength
18102 should have the value SQL_IS_NOT_POINTER. |

18103 RETURN VALUE |
18104 SQL_SUCCESS, SQL_SUCCESS_WITH_INFO, SQL_ERROR, or SQL_INVALID_HANDLE. |

18105 DIAGNOSTICS |
18106 When SQLSetEnvAttr() returns SQL_ERROR or SQL_SUCCESS_WITH_INFO, an associated |
18107 SQLSTATE value can be obtained by calling SQLGetDiagRec() with a HandleType of
18108 SQL_HANDLE_ENV and a Handle of EnvironmentHandle. The following table lists the |
18109 SQLSTATE values commonly returned by SQLSetEnvAttr(). The return code associated with |
18110 each SQLSTATE value is SQL_ERROR, except that for SQLSTATE values in class 01, the return |
18111 code is SQL_SUCCESS_WITH_INFO. If a data source does not support an environment |
18112 attribute, the error can be returned only during connect time.

18113 01000 — General warning
18114 Implementation-defined informational message. |

18115 01S02 — Attribute value changed |
18116 The data source did not support the value specified in *ValuePtr and substituted a similar |
18117 value. |

18118 HY000 — General error |
18119 An error occurred for which there was no specific SQLSTATE and for which no |
18120 implementation-specific SQLSTATE was defined. The error message returned by |
18121 SQLGetDiagRec() in the *MessageTextbuffer describes the error and its cause. |

18122 HY001 — Memory allocation error |
18123 The implementation failed to allocate memory required to support execution or completion |
18124 of the function. |

18125 HY009 — Invalid use of null pointer |
18126 Attribute identified an attribute that required a string value, and ValuePtr was a null pointer.

490 Direct Review (Build ID 96KAV) (Draft XDBC.33, August 1996)

Reference Manual Pages ISO 92 SQLSetEnvAttr()

18127 HY011 — Attribute cannot be set now
18128 A connection handle has been allocated on EnvironmentHandle.

18129 HY024 — Invalid attribute value
18130 A value was specified in *ValuePtr that is inapplicable to Attribute, or *ValuePtr was an
18131 empty string and Attribute requires a non-empty string.

18132 HY090 — Invalid string or buffer length
18133 StringLength was less than 0, but was not SQL_NTS.

18134 HY092 — Invalid attribute identifier
18135 Attribute was not valid for this connection to this data source. •

18136 HYC00 — Optional feature not implemented |
18137 Attribute was a valid environment attribute but is not supported by the data source. |

18138 Attribute was SQL_ATTR_OUTPUT_NTS, *ValuePtr was SQL_FALSE, and the |
18139 implementation does not allow null termination to be disabled. |

18140 HYT01 — Connection timeout expired |
18141 The connection timeout period expired before the data source responded to the request. The |
18142 connection timeout period is set through SQLSetConnectAttr(), |
18143 SQL_ATTR_CONNECTION_TIMEOUT. |

18144 COMMENTS |
18145 An application can call SQLSetEnvAttr() only if no connection handle is allocated on the |
18146 environment. All environment attributes successfully set by the application for the environment
18147 persist until SQLFreeHandle() is called on the the environment. More than one environment
18148 handle can be allocated simultaneously.

18149 The format of information set through *ValuePtr depends on the specified attribute.
18150 SQLSetEnvAttr() accepts attribute information in one of two formats: a null-terminated character
18151 string or a 32-bit integer value. The format of each is noted in the attribute’s description.

18152 Environment Attribute

18153 The caller sets Attribute to the value listed below to obtain the following environment attribute
18154 in *ValuePtr:

18155 SQL_ATTR_OUTPUT_NTS
18156 This attribute controls the implementation’s use of null termination in output arguments. |
18157 (See Null Termination on page 44.) This attribute affects all XDBC functions called for the •
18158 environment (and for any connection allocated under the environment) that have
18159 character-string parameters. |

18160 If this attribute has the value SQL_TRUE, then the implementation uses null termination to |
18161 indicate the length of output character strings. If this attribute has the value SQL_FALSE, |
18162 then the implementation does not use null termination. |

18163 The initial value is SQL_TRUE on all X/Open-compliant implementations. Moreover, it is |
18164 implementation-defined whether the application is permitted to change the value to |
18165 SQL_FALSE.

18166 SEE ALSO •

18167 For information about See

Data Management: X/Open Database Connectivity (XDBC), Version 2 491

SQLSetEnvAttr() ISO 92 Reference Manual Pages

18168 Returning the setting of an environment attribute SQLGetEnvAttr()
18169 Allocating a handle SQLAllocHandle()

18170 CHANGE HISTORY

18171 Version 2
18172 Revised generally. See Alignment with Popular Implementations on page 2. |

492 Direct Review (Build ID 96KAV) (Draft XDBC.33, August 1996)

Reference Manual Pages XDBC SQLSetPos()

18173 NAME
18174 SQLSetPos — Set the cursor position in a row-set and refresh, update, or delete data in the result |
18175 set.

18176 SYNOPSIS
18177 SQLRETURN SQLSetPos(
18178 SQLHSTMTStatementHandle ,
18179 SQLUSMALLINT RowNumber,
18180 SQLUSMALLINT Operation ,
18181 SQLUSMALLINT LockType);

18182 ARGUMENTS

18183 StatementHandle [Input] |
18184 Statement handle. |

18185 RowNumber [Input] |
18186 Position of the row in the row-set on which to perform the operation specified with
18187 Operation . If RowNumber is 0, the operation applies to every row in the row-set. See |
18188 RowNumber Argument on page 495. |

18189 Operation [Input]
18190 Operation to perform. Must be one of the following:

18191 • SQL_POSITION
18192 • SQL_REFRESH
18193 • SQL_UPDATE
18194 • SQL_DELETE

18195 See Operation Argument on page 495. |

18196 LockType [Input]
18197 Specifies how to lock the row after performing the operation specified by Operation . Must
18198 be one of the following:

18199 • SQL_LOCK_NO_CHANGE
18200 • SQL_LOCK_EXCLUSIVE
18201 • SQL_LOCK_UNLOCK

18202 See LockTypeArgument on page 497. |

18203 RETURN VALUE |
18204 SQL_SUCCESS, SQL_SUCCESS_WITH_INFO, SQL_NEED_DATA, SQL_STILL_EXECUTING, |
18205 SQL_ERROR, or SQL_INVALID_HANDLE. |

18206 DIAGNOSTICS |
18207 When SQLSetPos() returns SQL_ERROR or SQL_SUCCESS_WITH_INFO, an associated |
18208 SQLSTATE value can be obtained by calling SQLGetDiagRec() with a HandleType of |
18209 SQL_HANDLE_STMT and a Handle of StatementHandle. The following SQLSTATE values are |
18210 commonly returned by SQLSetPos(). |

18211 The return code associated with each SQLSTATE value is SQL_ERROR, except that for |
18212 SQLSTATEvalues in class 01, the return code is SQL_SUCCESS_WITH_INFO, and except that, if |
18213 the row-set size is greater than 1 and the operation was applied to at least one row successfully, |
18214 the return code is SQL_SUCCESS_WITH_INFO. |

18215 01000 — General warning |
18216 Implementation-defined informational message.

18217 01001 — Cursor operation conflict
18218 Operation was SQL_DELETE or SQL_UPDATE, and no rows or more than one row were

Data Management: X/Open Database Connectivity (XDBC), Version 2 493

SQLSetPos() XDBC Reference Manual Pages

18219 deleted or updated. (For more information about updates to more than one row, see the
18220 description of the SQL_ATTR_SIMULATE_CURSORattribute in SQLSetStmtAttr().) •

18221 Operation was SQL_DELETE or SQL_UPDATE, and the operation failed because of
18222 optimistic concurrency, discussed in Section 14.3.2 on page 192. |

18223 01004 — String data, right truncation
18224 String or binary data returned for a column or columns with a data type of SQL_C_CHAR
18225 or SQL_C_BINARY resulted in the truncation of non-blank character or non-NULL binary
18226 data.

18227 01S01 — Error in row
18228 RowNumber was 0 and an error occurred in one or more rows while performing the
18229 operation specified with Operation . •

18230 01S07 — Fractional truncation
18231 Operation was SQL_REFRESH, the data type of the application buffer was not
18232 SQL_C_CHAR or SQL_C_BINARY, and the data returned to application buffers for one or
18233 more columns was truncated. For numeric data types, the fractional part of the number was
18234 truncated. For time, timestamp, and interval data types containing a time component, the
18235 fractional portion of the time was truncated.

18236 07006 — Restricted data type attribute violation
18237 The data value of a column in the result set could not be converted to the data type
18238 specified by TargetTypein the call to SQLBindCol(). •

18239 21S02 — Degree of derived table does not match column list
18240 Operation was SQL_UPDATE, and no columns were updatable because all columns were
18241 either unbound, read-only, or the value in the bound length/indicator buffer was
18242 SQL_COLUMN_IGNORE. |

18243 22001 — String data, right truncation
18244 The assignment of a character or binary value to a column resulted in the truncation of
18245 non-blank (for characters) or non-null (for binary) characters or octets. |

18246 22003 — Numeric value out of range
18247 Operation was SQL_UPDATE, and the assignment of a numeric value to a column in the
18248 result set caused the whole (as opposed to fractional) part of the number to be truncated.

18249 Operation was SQL_REFRESH, and returning the numeric value for one or more bound
18250 columns would have caused a loss of significant digits. |

18251 22007 — Invalid date/time format |
18252 Operation was SQL_UPDATE, and an invalid date or timestamp value was assigned to a |
18253 column in the result set. |

18254 Operation was SQL_REFRESH, and an invalid date or timestamp value would have been |
18255 returned for one or more bound columns. |

18256 22008 — Date/time field overflow |
18257 Operation was SQL_UPDATE, and the performance of date/time arithmetic on data being |
18258 sent to the result set resulted in a date/time field (i.e., the year, month, day, hour, minute, or
18259 second field) of the result being outside the permissible range of values for the field, or
18260 being invalid based on the natural rules for date/times based on the Gregorian calendar. |

18261 Operation was SQL_REFRESH, and the performance of date/time arithmetic on data being |
18262 retrieved from the result set resulted in a date/time field (i.e., the year, month, day, hour,
18263 minute, or second field) of the result being outside the permissible range of values for the
18264 field, or being invalid based on the natural rules for date/times based on the Gregorian |
18265 calendar.

494 Direct Review (Build ID 96KAV) (Draft XDBC.33, August 1996)

Reference Manual Pages XDBC SQLSetPos()

18266 22015 — Interval field overflow
18267 Operation was SQL_UPDATE, and the assignment of an exact numeric value to a column in
18268 the result set with an interval data type caused a loss of significant digits.

18269 Operation was SQL_UPDATE, and the assignment of an interval value to a column in the
18270 result set with an interval data type caused a loss of significant digits in the leading field of
18271 the interval.

18272 Operation was SQL_UPDATE, and there was no representation of the data in the interval
18273 data type of the result set.

18274 Operation was SQL_REFRESH, and returning an exact numeric value to an application
18275 buffer with an interval data type caused a loss of significant digits.

18276 Operation was SQL_REFRESH, and returning an interval value to an application buffer with
18277 an interval data type caused a loss of significant digits in the leading field of the interval.

18278 Operation argument was SQL_REFRESH, and there was no representation of the data in the
18279 interval C structure in the application buffer.

18280 22018 — Invalid character value for cast specification
18281 Operation was SQL_UPDATE, a character column in the result set was bound to an exact
18282 numeric or an approximate numeric C buffer, and a character value in the result set could
18283 not be cast to a valid exact numeric or approximate numeric value, respectively.

18284 Operation was SQL_UPDATE,a character column in the result set was bound to a date, time,
18285 timestamp, or interval C buffer, and a character value in the result set could not be cast to a
18286 valid date, time, timestamp, or interval value, respectively.

18287 Operation was SQL_REFRESH, a character column in an application buffer was bound to an
18288 exact numeric or approximate numeric data type in the result set, and a character value in
18289 the application buffer could not be cast to a valid exact numeric or approximate numeric
18290 value, respectively.

18291 Operation was SQL_REFRESH, a character column in an application buffer was bound to a
18292 date, time, timestamp, or interval data type in the result set, and a value in the application
18293 buffer could not be cast to a valid date, time, timestamp, or interval value, respectively. •

18294 23000 — Integrity constraint violation
18295 Operation was SQL_DELETE or SQL_UPDATE,and an integrity constraint was violated.

18296 24000 — Invalid cursor state
18297 StatementHandle was in an executed state but no result set was associated with the
18298 StatementHandle.

18299 A cursor was open on StatementHandle. |

18300 Operation was SQL_DELETE, SQL_REFRESH, or SQL_UPDATE, and the cursor was
18301 positioned before the start of the result set or after the end of the result set.

18302 42000 — Syntax error or access violation
18303 The data source was unable to lock the row as needed to perform the operation requested in |
18304 Operation. |

18305 The data source was unable to lock the row as requested in LockType. |

18306 HY000 — General error |
18307 An error occurred for which there was no specific SQLSTATE and for which no |
18308 implementation-specific SQLSTATE was defined. The error message returned by |
18309 SQLGetDiagRec() in the *MessageTextbuffer describes the error and its cause. |

Data Management: X/Open Database Connectivity (XDBC), Version 2 495

SQLSetPos() XDBC Reference Manual Pages

18310 HY001 — Memory allocation error |
18311 The implementation was unable to allocate memory required to support execution or |
18312 completion of the function. |

18313 HY008 — Operation canceled |
18314 Asynchronous processing was enabled for StatementHandle. The function was called and |
18315 before it completed execution, SQLCancel() was called on StatementHandle. The function |
18316 was then called again on StatementHandle. |

18317 The function was called and, before it completed execution, SQLCancel() was called on the |
18318 StatementHandle from a different thread in a multithread application. |

18319 HY010 — Function sequence error |
18320 StatementHandle was not in an executed state. The function was called without first calling |
18321 SQLExecDirect(), SQLExecute(), or a catalog function. |

18322 An asynchronously executing function (not this one) was called for StatementHandle and |
18323 was still executing when this function was called. |

18324 SQLBulkOperations(), SQLExecDirect(), SQLExecute(), or SQLSetPos() was called for the
18325 StatementHandle and returned SQL_NEED_DATA.This function was called before data was
18326 sent for all data-at-execution parameters or columns. SQLSetPos() was called for
18327 StatementHandle before SQLFetchScroll() or SQLFetch() was called.

18328 HY090 — Invalid string or buffer length
18329 Operation was SQL_UPDATE, a data value was a null pointer, and the column length value
18330 was not 0, SQL_DATA_AT_EXEC, SQL_COLUMN_IGNORE, SQL_NULL_DATA, or less
18331 than or equal to SQL_LEN_DATA_AT_EXEC_OFFSET.

18332 Operation was SQL_UPDATE, a data value was not a null pointer, and the column length
18333 value was less than 0, but not equal to SQL_DATA_AT_EXEC,SQL_COLUMN_IGNORE,
18334 SQL_NTS, or SQL_NULL_DATA, or less than or equal to
18335 SQL_LEN_DATA_AT_EXEC_OFFSET. (This error is reported only if the application data |
18336 type is SQL_C_BINARY or SQL_C_CHAR.) |

18337 The value in a length/indicator buffer was SQL_DATA_AT_EXEC;the SQL type was either |
18338 SQL_LONGVARCHAR, SQL_WLONGVARCHAR, SQL_LONGVARBINARY, or a long, |
18339 data source-specific data type; and the SQL_NEED_LONG_DATA_LEN option in |
18340 SQLGetInfo() was ‘‘Y’’. |

18341 HY092 — Invalid attribute identifier |
18342 Operation was invalid. |

18343 LockType was invalid.

18344 Operation was SQL_UPDATE or SQL_DELETE, and the SQL_CONCURRENCY statement
18345 attribtue was SQL_ATTR_CONCUR_READ_ONLY.

18346 HY107 — Row value out of range
18347 RowNumber was greater than the number of rows in the row-set. |

18348 HY109 — Invalid cursor position
18349 The cursor associated with StatementHandle was defined as forward-only, so the cursor
18350 could not be positioned within the row-set. See the description for the |
18351 SQL_ATTR_CURSOR_TYPE attribute in SQLSetStmtAttr().

18352 Operation was SQL_UPDATE, SQL_DELETE, or SQL_REFRESH, and the row identified by
18353 RowNumber had been deleted or had not been fetched.

18354 RowNumber was 0, Operation was SQL_POSITION, and SQLSetPos() was called after |
18355 SQLBulkOperations() was called, and before SQLFetchScroll() or SQLFetch() was called.

496 Direct Review (Build ID 96KAV) (Draft XDBC.33, August 1996)

Reference Manual Pages XDBC SQLSetPos()

18356 HYC00 — Optional feature not implemented
18357 The implementation does not support the operation requested in Operation or LockType.

18358 HYT00 — Timeout expired
18359 The query timeout period expired before the data source returned the result set. The
18360 timeout period is set through SQLSetStmtAttr() with an Attribute of
18361 SQL_ATTR_QUERY_TIMEOUT.

18362 HYT01 — Connection timeout expired
18363 The connection timeout period expired before the data source responded to the request. The
18364 connection timeout period is set through SQLSetConnectAttr(),
18365 SQL_ATTR_CONNECTION_TIMEOUT.

18366 IM001 — Function not supported
18367 The function is not supported on the current connection to the data source.

18368 Comments

18369 RowNumber Argument

18370 RowNumber specifies the number of the row in the row-set on which to perform the operation |
18371 specified by Operation . If RowNumber is 0, the operation applies to every row in the row-set. |
18372 RowNumber must be a value from 0 to the number of rows in the row-set. |

18373 Note: In the C language, arrays are 0-based, while RowNumber is 1-based. For example, to |
18374 update the fifth row of the row-set, an application modifies the row-set buffers at array index 4, |
18375 but specifies a RowNumber of 5.

18376 All operations position the cursor on the row specified by RowNumber. The following operations
18377 require a cursor position:

18378 • Positioned UPDATEand DELETE statements.
18379 • Calls to SQLGetData().
18380 • Calls to SQLSetPos() with the SQL_DELETE, SQL_REFRESH, and SQL_UPDATEoptions.

18381 For example, if RowNumber is 2 for a call to SQLSetPos() with an Operation of SQL_DELETE, the
18382 cursor is positioned on the second row of the row-set, and that row is deleted. The entry in the |
18383 implementation row status array (pointed to by the SQL_ATTR_ROW_STATUS_PTRstatement
18384 attribute) for the second row is changed to SQL_ROW_DELETED.

18385 An application can specify a cursor position when it calls SQLSetPos(). Generally, it calls
18386 SQLSetPos() with the SQL_POSITION or SQL_REFRESH operation to position the cursor before
18387 executing a positioned UPDATEor DELETE statement or calling SQLGetData().

18388 Operation Argument

18389 Operation supports the following operations. (To determine which options are supported by a |
18390 data source, an application calls SQLGetInfo() as described in Detecting Cursor Capabilities |
18391 with SQLGetInfo() on page 402):

18392 SQL_POSITION
18393 The implementation positions the cursor on the row specified by RowNumber. |

18394 The contents of the row status array pointed to by the
18395 SQL_ATTR_ROW_OPERATION_PTR statement attribute are ignored for the
18396 SQL_POSITION Operation .

18397 SQL_REFRESH
18398 The implementation positions the cursor on the row specified by RowNumber and refreshes |
18399 data in the row-set buffers for that row. For more information about how the |

Data Management: X/Open Database Connectivity (XDBC), Version 2 497

SQLSetPos() XDBC Reference Manual Pages

18400 implementation returns data in the row-set buffers, see the descriptions of row-wise and |
18401 column-wise binding in SQLBindCol().

18402 SQLSetPos() with an Operation of SQL_REFRESH updates the status and content of the rows
18403 within the current fetched row-set. This includes refreshing the bookmarks. Because the |
18404 data in the buffers is refreshed, but not refetched, the membership in the row-set is fixed.
18405 This is different from the refresh performed by a call to SQLFetchScroll() with a
18406 FetchOrientation of SQL_FETCH_RELATIVE and a RowNumber equal to 0, which refetches |
18407 the row-set from the result set, so it can show added data and remove deleted data. |

18408 Added rows do not appear when a refresh with SQLSetPos() is performed. This rule differs |
18409 from SQLFetchScroll() with a FetchType of SQL_FETCH_RELATIVE and a RowNumber equal |
18410 to 0, which also refreshes the current row-set, but shows added records and packs deleted |
18411 records if these operations are supported by the cursor. |

18412 If the row status array exists, a successful refresh with SQLSetPos() changes a row status of |
18413 SQL_ROW_ADDED to SQL_ROW_SUCCESS, and changes a row status of |
18414 SQL_ROW_UPDATED to the row’s new status. If an error occurs in a SQLSetPos() |
18415 operation on a row, the row status is set to SQL_ROW_ERROR. |

18416 A refresh with SQLSetPos() does not change the row status of a row that is marked |
18417 SQL_ROW_DELETED. Deleted rows within the row-set continue to be marked as deleted |
18418 until the next fetch. The rows disappear at the next fetch if the cursor supports packing (in |
18419 which a subsequent SQLFetch() or SQLFetchScroll() does not return deleted rows).

18420 The contents of the row status array pointed to by the
18421 SQL_ATTR_ROW_OPERATION_PTR statement attribute are ignored for the
18422 SQL_REFRESH Operation . |

18423 On some implementations, for a cursor opened with an SQL_ATTR_CONCURRENCY |
18424 statement attribute of SQL_CONCUR_ROWVER or SQL_CONCUR_VALUES, a refresh |
18425 with SQLSetPos() updates the optimistic concurrency values used by the data source to |
18426 detect that the row has changed. This occurs for each row that is refreshed.

18427 SQL_UPDATE
18428 The implementation positions the cursor on the row specified by RowNumber and updates |
18429 the underlying row of data with the values in the row-set buffers (TargetValuePtr in
18430 SQLBindCol()). It retrieves the lengths of the data from the length/indicator buffers
18431 (StrLen_or_IndPtr in SQLBindCol()). If the length of any column is
18432 SQL_COLUMN_IGNORE, the column is not updated. After updating the row, the |
18433 implementation changes the corresponding element of the row status array to |
18434 SQL_ROW_UPDATED or SQL_ROW_SUCCESS_WITH_INFO (if the row status array |
18435 exists).

18436 It is implementation-defined what the behavior is if SQLSetPos() with Operation of
18437 SQL_UPDATEis called on a cursor that contains duplicate columns.

18438 SQL_DELETE
18439 The implementation positions the cursor on the row specified by RowNumber and deletes |
18440 the underlying row of data. It changes the corresponding element of the row status array to
18441 SQL_ROW_DELETED. After the row has been deleted, the following are not valid for the
18442 row: positioned UPDATE and DELETE statements, calls to SQLGetData(), and calls to
18443 SQLSetPos() with Operation set to anything except SQL_POSITION. Implementations that |
18444 support packing delete the row from the cursor when new data is retrieved from the data |
18445 source.

18446 Whether the row remains visible depends on the cursor type. For example, deleted rows are
18447 visible to static and keyset-driven cursors but invisible to dynamic cursors.

498 Direct Review (Build ID 96KAV) (Draft XDBC.33, August 1996)

Reference Manual Pages XDBC SQLSetPos()

18448 LockTypeArgument

18449 LockType gives applications a way to control concurrency. Generally, data sources that support
18450 concurrency levels and transactions will only support the SQL_LOCK_NO_CHANGE value of
18451 LockType.

18452 LockType specifies the lock state of the row after SQLSetPos() has been executed. If the
18453 implementation cannot lock the row either to perform the requested operation or to satisfy
18454 LockType, it returns SQL_ERROR and SQLSTATE42000 (Syntax error or access violation).

18455 Although LockType is specified for a single statement, the lock accords the same privileges to all
18456 statements on the connection. In particular, a lock that is acquired by one statement on a
18457 connection can be unlocked by a different statement on the same connection.

18458 A row locked through SQLSetPos() remains locked until the application calls SQLSetPos() for the
18459 row with LockType set to SQL_LOCK_UNLOCK, or the application calls SQLFreeHandle() for the
18460 statement or SQLFreeStmt() with the SQL_CLOSE option. For a data source that supports |
18461 transactions, a row locked through SQLSetPos() is unlocked when the application calls
18462 SQLEndTran() to commit or roll back a transaction on the connection (if a cursor is closed when
18463 a transaction is committed or rolled back, as indicated by the
18464 SQL_CURSOR_COMMIT_BEHAVIOR and SQL_CURSOR_ROLLBACK_BEHAVIOR options in |
18465 SQLGetInfo()).

18466 LockType supports the following types of locks. To determine which locks are supported by a
18467 data source, an application calls SQLGetInfo() with the
18468 SQL_DYNAMIC_CURSOR_ATTRIBUTES1, SQL_FORWARD_ONLY_CURSOR_ATTRIBUTES1,
18469 SQL_KEYSET_CURSOR_ATTRIBUTES1, or SQL_STATIC_CURSOR_ATTRIBUTES1 option |
18470 (depending on the type of the cursor).

18471 SQL_LOCK_NO_CHANGE
18472 The implementation ensures that the row is in the same locked or unlocked state as it was
18473 before SQLSetPos() was called. This value of LockType lets data sources that do not support
18474 explicit row-level locking use whatever locking is required by the current concurrency and
18475 transaction isolation levels.

18476 SQL_LOCK_EXCLUSIVE
18477 The implementation locks the row exclusively. A statement on a different connection or in a
18478 different application cannot be used to acquire any locks on the row.

18479 SQL_LOCK_UNLOCK
18480 The implementation unlocks the row. |

18481 If the implementation supports SQL_LOCK_EXCLUSIVE but not SQL_LOCK_UNLOCK, a row
18482 that is locked remains locked until the application unlocks it as described above.

18483 If the implementation supports SQL_LOCK_EXCLUSIVE but not SQL_LOCK_UNLOCK, a row
18484 that is locked remains locked until the application calls SQLFreeHandle() for the statement or
18485 SQLFreeStmt() with the SQL_CLOSE option. If the implementation supports transactions and
18486 closes the cursor upon committing or rolling back the transaction, the application calls
18487 SQLEndTran().

18488 For the update and delete operations in SQLSetPos(), the application uses LockType as follows:

18489 • To guarantee that a row does not change after it is retrieved, an application calls SQLSetPos()
18490 with Operation set to SQL_REFRESH and LockType set to SQL_LOCK_EXCLUSIVE.

18491 • If the application sets LockType to SQL_LOCK_NO_CHANGE, the implementation |
18492 guarantees that an update or delete operation succeeds only if the application specified
18493 SQL_CONCUR_LOCK for the SQL_ATTR_CONCURRENCY statement attribute.

Data Management: X/Open Database Connectivity (XDBC), Version 2 499

SQLSetPos() XDBC Reference Manual Pages

18494 • If the application specifies SQL_CONCUR_ROWVER or SQL_CONCUR_VALUES for the |
18495 SQL_ATTR_CONCURRENCY statement attribute, the implementation compares row |
18496 versions or values and rejects the operation if the row has changed since the application |
18497 fetched the row.

18498 • If the application specifies SQL_CONCUR_READ_ONLY for the |
18499 SQL_ATTR_CONCURRENCY statement attribute, the implementation rejects any update or |
18500 delete operation.

18501 For more information about the SQL_ATTR_CONCURRENCY statement attribute, see
18502 SQLSetStmtAttr().

18503 Row Status Arrays

18504 Two row status arrays are used when calling SQLSetPos():

18505 • The implementation row status array contains status values for each row of data in the row- |
18506 set. The implementation sets the status values in this array after a call to SQLFetch(),
18507 SQLFetchScroll(), SQLBulkOperations(), or SQLSetPos(). This array is pointed to by the
18508 SQL_ATTR_ROW_STATUS_PTRstatement attribute.

18509 • The application row status array contains a value for each row in the row-set that indicates |
18510 whether a call to SQLSetPos() for a bulk operation is ignored or performed. Each element in
18511 the array is set to either SQL_ROW_PROCEED (the default) or SQL_ROW_IGNORE. This
18512 array is pointed to by the SQL_ATTR_ROW_OPERATION_PTRstatement attribute.

18513 The number of elements in the row status arrays must equal the number of rows in the row-set |
18514 (as defined by the SQL_ATTR_ROW_ARRAY_SIZEstatement attribute).

18515 For information about the implementation row status array, see SQLFetch(). For information
18516 about the application row status array, see Ignoring a Row in a Bulk Operation on page 501. |

18517 Using SQLSetPos()

18518 Before an application calls SQLSetPos(), it must perform the following sequence of steps:

18519 • If the application will call SQLSetPos() with Operation set to SQL_UPDATE, call SQLBindCol()
18520 (or SQLSetDescRec()) for each column to specify its data type and bind buffers for the
18521 column’s data and length.

18522 • If the application will call SQLSetPos() with Operation set to SQL_DELETE or SQL_UPDATE,
18523 call SQLColAttribute() to make sure that the columns to be deleted or updated are updatable.

18524 • Call SQLExecDirect(), SQLExecute(), or a catalog function to create a result set.

18525 • Call SQLFetch() or SQLFetchScroll() to retrieve the data.

18526 Deleting Data Using SQLSetPos()

18527 To delete data with SQLSetPos(), an application calls SQLSetPos() with RowNumber set to the
18528 number of the row to delete and Operation set to SQL_DELETE.

18529 After deleting the data, the implementation changes the value in the implementation row status
18530 array for the appropriate row to SQL_ROW_DELETED (or SQL_ROW_ERROR).

500 Direct Review (Build ID 96KAV) (Draft XDBC.33, August 1996)

Reference Manual Pages XDBC SQLSetPos()

18531 Updating Data Using SQLSetPos()

18532 An application can pass the value for a column either in the bound data buffer or with one or
18533 more calls to SQLPutData(). Columns whose data is passed with SQLPutData() are known as
18534 data-at-execution columns. These are commonly used to send data for SQL_LONGVARBINARY
18535 and SQL_LONGVARCHAR columns and can be mixed with other columns.

18536 To update data with SQLSetPos(), an application:

18537 1. Places values in the data and length/indicator buffers bound with SQLBindCol():

18538 — For normal columns, the application places the new column value in the *TargetValuePtr
18539 buffer and the length of that value in the *StrLen_or_IndPtr buffer. If the row should not
18540 be updated, the application places SQL_ROW_IGNORE in that row’s element of the
18541 operation row status array.

18542 — For data-at-execution columns, the application places an application-defined value,
18543 such as the column number, in the *TargetValuePtrbuffer. The value can be used later to
18544 identify the column.

18545 The application places the result of the SQL_LEN_DATA_AT_EXEC(length)macro in
18546 the *StrLen_or_IndPtr buffer. If the SQL data type of the column is
18547 SQL_LONGVARBINARY, SQL_LONGVARCHAR, or a long, data source-specific data |
18548 type and a call to SQLGetInfo() with the SQL_NEED_LONG_DATA_LENoption would |
18549 return ‘‘Y’’, length is the number of octets of data to be sent for the parameter; |
18550 otherwise, it must be a nonnegative value and is ignored.

18551 2. Calls SQLSetPos() with Operation set to SQL_UPDATEto update the row of data.

18552 — If there are no data-at-execution columns, the process is complete.

18553 — If there are any data-at-execution columns, the function returns SQL_NEED_DATA,
18554 and proceeds to step 3.

18555 3. Calls SQLParamData() to retrieve the address of the *TargetValuePtr buffer for the first
18556 data-at-execution column to be processed. The application retrieves the application-
18557 defined value from the *TargetValuePtrbuffer.

18558 Note: Although data-at-execution parameters are similar to data-at-execution columns,
18559 the value returned by SQLParamData() is different for each.

18560 — Data-at-execution parameters are parameters in an SQL statement for which data will
18561 be sent with SQLPutData() when the statement is executed with SQLExecDirect() or
18562 SQLExecute(). They are bound with SQLBindParameter(), or by setting descriptors with
18563 SQLSetDescRec(). The value returned by SQLParamData() is a 32-bit value passed to
18564 SQLBindParameter() in ParameterValuePtr.

18565 — Data-at-execution columns are columns in a row-set for which data will be sent with |
18566 SQLPutData() when a row is updated with SQLSetPos(). They are bound with
18567 SQLBindCol(). The value returned by SQLParamData() is the address of the row in the
18568 *TargetValuePtrbuffer that is being processed.

18569 4. Calls SQLPutData() one or more times to send data for the column. More than one call is
18570 needed if all the data value cannot be returned in the *TargetValuePtr buffer specified in
18571 SQLPutData(); multiple calls to SQLPutData() for the same column are allowed only when
18572 sending character C data to a column with a character, binary, or data-source-specific data
18573 type or when sending binary C data to a column with a character, binary, or data-source-
18574 specific data type.

18575 5. Calls SQLParamData() again to signal that all data has been sent for the column.

Data Management: X/Open Database Connectivity (XDBC), Version 2 501

SQLSetPos() XDBC Reference Manual Pages

18576 — If there are more data-at-execution columns, SQLParamData() returns
18577 SQL_NEED_DATA and the address of the TargetValuePtr buffer for the next data-at-
18578 execution column to be processed. The application repeats steps 4 and 5.

18579 — If there are no more data-at-execution columns, the process is complete. If the
18580 statement was executed successfully, SQLParamData() returns SQL_SUCCESS or
18581 SQL_SUCCESS_WITH_INFO; if the execution failed, it returns SQL_ERROR. At this
18582 point, SQLParamData() can return any SQLSTATEthat can be returned by SQLSetPos().

18583 If data has been updated, the implementation changes the value in the implementation row |
18584 status array for the appropriate row to SQL_ROW_UPDATED.

18585 After SQLSetPos() returns SQL_NEED_DATA, and before data is sent for all data-at-execution
18586 columns, the operation is canceled, or an error occurs in SQLParamData() or SQLPutData(), the
18587 application can only call SQLCancel(), SQLGetDiagField(), SQLGetDiagRec(), SQLGetFunctions(), |
18588 SQLParamData(), or SQLPutData() for the statement or the connection associated with the
18589 statement. If it calls any other function for the statement or the connection associated with the
18590 statement, the function returns SQL_ERROR and SQLSTATEHY010 (Function sequence error).

18591 If the application calls SQLCancel() while the implementation still needs data for data-at- |
18592 execution columns, the implementation cancels the operation. The application can then call
18593 SQLSetPos() again; canceling does not affect the cursor state or the current cursor position. |

18594 Performing Bulk Operations

18595 If RowNumber is 0, the implementation performs the operation specified in Operation for every |
18596 row in the row-set that has a value of SQL_ROW_PROCEED in its field in the row status array
18597 pointed to by SQL_ATTR_ROW_OPERATION_PTR statement attribute. This is a valid value of
18598 RowNumber if Operation is SQL_DELETE, SQL_REFRESH, or SQL_UPDATE, but not
18599 SQL_POSITION. SQLSetPos() with an Operation of SQL_POSITION and a RowNumber equal to 0
18600 returns SQLSTATEHY109 (Invalid cursor position).

18601 If an error occurs that pertains to the entire row-set, such as SQLSTATE HYT00 (Timeout |
18602 expired), the implementation returns SQL_ERROR and the appropriate SQLSTATE.The contents |
18603 of the row-set buffers are undefined and the cursor position is unchanged.

18604 If an error occurs that pertains to a single row, the implementation:

18605 • Sets the element for the row in the implementation row status array pointed to by the
18606 SQL_ATTR_ROW_STATUS_PTRstatement attribute to SQL_ROW_ERROR.

18607 • Posts one or more additional SQLSTATEs for the error in the error queue, and sets the
18608 SQL_DIAG_ROW_NUMBER field in the diagnostic data structure.

18609 After it has processed the error or warning, if the implementation completes the operation for |
18610 the remaining rows in the row-set, it returns SQL_SUCCESS_WITH_INFO. Thus, for each row
18611 that returned an error, the error queue contains zero or more additional SQLSTATEs. If the
18612 implementation stops the operation after it has processed the error or warning, it returns
18613 SQL_ERROR.

18614 If the implementation returns any warnings, such as SQLSTATE 01004 (Data truncated), it
18615 returns warnings that apply to the entire row-set or to unknown rows in the row-set before it |
18616 returns the error information that applies to specific rows. It returns warnings for specific rows
18617 along with any other error information about those rows.

18618 If RowNumber is equal to 0 and Operation is SQL_UPDATE, SQL_REFRESH, or SQL_DELETE,
18619 then the number of rows that SQLSetPos() operates on is pointed to by the
18620 SQL_ATTR_ROWS_FETCHED_PTR statement attribute.

502 Direct Review (Build ID 96KAV) (Draft XDBC.33, August 1996)

Reference Manual Pages XDBC SQLSetPos()

18621 If RowNumber is equal to 0 and Operation is SQL_DELETE, SQL_REFRESH, or SQL_UPDATE, the
18622 current row after the operation is the same as the current row before the operation.

18623 Ignoring a Row in a Bulk Operation

18624 The application row status array can be used to indicate that a row in the current row-set should |
18625 be ignored during a bulk operation using SQLSetPos(). To direct the implementation to ignore
18626 one or more rows during a bulk operation, an application performs the following steps:

18627 • Call SQLSetStmtAttr() to set the SQL_ATTR_ROW_OPERATION_PTR statement attribute to
18628 point to an array of SQLUSMALLINTs to contain status information. This field can also be
18629 set by calling SQLSetDescField() to set the SQL_DESC_ARRAY_STATUS_PTRheader field of
18630 the ARD, which requires that an application obtains a descriptor handle.

18631 • Set each element of the row operation array to one of two values:

18632 — SQL_ROW_IGNORE, to indicate that the row is excluded for the bulk operation.

18633 — SQL_ROW_PROCEED, to indicate that the row is included in the bulk operation. (This is
18634 the default value.)

18635 • Call SQLSetPos() to perform the bulk operation.

18636 The following rules apply to the application row status array:

18637 • SQL_ROW_IGNORE and SQL_ROW_PROCEED only affect bulk operations using
18638 SQLSetPos() with an Operation of SQL_DELETE or SQL_UPDATE. They do not affect calls to
18639 SQLSetPos() with an Operation of SQL_REFRESH or SQL_POSITION.

18640 • The pointer is set to null by default.

18641 • If the pointer is null, then all rows are updated, as if all elements were set to
18642 SQL_ROW_PROCEED.

18643 • Setting an element to SQL_ROW_PROCEED does not guarantee that the operation will occur
18644 on that particular row. For example, if a certain row in the row-set has the status |
18645 SQL_ROW_ERROR, then the implementation may not be able to update that row regardless
18646 of whether the application specified SQL_ROW_PROCEED or not. An application must
18647 always check the implementation row status array to see whether the operation was
18648 successful.

18649 • Since both SQL_ROW_SUCCESS and SQL_ROW_PROCEED are defined as 0 in the header |
18650 file, reusing the row status array obtained from a previous operation applies the current |
18651 operation to every row where the previous operation succeeded. |

18652 Another effect of defining SQL_ROW_PROCEED as 0 is that initializing the row status array |
18653 so that every element is 0 applies the operation to every row.

18654 • If SQLSetPos() is called to perform a bulk update or delete operation, then in any element of
18655 the application row array set to SQL_ROW_IGNORE, the corresponding element of the
18656 application row status array is unchanged. SQLSetPos().

18657 • An application should automatically set a read-only column to SQL_ROW_IGNORE.

Data Management: X/Open Database Connectivity (XDBC), Version 2 503

SQLSetPos() XDBC Reference Manual Pages

18658 Ignoring a Column in a Bulk Operation |

18659 To avoid unnecessary processing errors from trying to update read-only columns, the |
18660 application can set the value in the bound length/indicator buffer to SQL_COLUMN_IGNORE. |

18661 SEE ALSO |

18662 For information about ||See |||
|

18663 Binding a buffer to a column in a result set ||SQLBindCol() |||

18664 Performing bulk operations that do not relate to ||
18665 the cursor position |

SQLBulkOperations() |||

18666 Canceling statement processing |SQLCancel() |||

18667 Fetching a block of data or scrolling through a |
18668 result set |

SQLFetchScroll() |||

18669 Getting a single field of a descriptor |SQLGetDescField() |||

18670 Getting multiple fields of a descriptor |SQLGetDescRec() |||

18671 Setting a single field of a descriptor |SQLSetDescField() |||

18672 Setting multiple fields of a descriptor |SQLSetDescRec() |||

18673 Setting a statement attribute |SQLSetStmtAttr() |||
•

504 Direct Review (Build ID 96KAV) (Draft XDBC.33, August 1996)

Reference Manual Pages ISO 92 SQLSetStmtAttr()

18674 NAME
18675 SQLSetStmtAttr — Set attributes related to a statement.

18676 SYNOPSIS
18677 SQLRETURN SQLSetStmtAttr(
18678 SQLHSTMTStatementHandle ,
18679 SQLINTEGER Attribute ,
18680 SQLPOINTER ValuePtr ,
18681 SQLINTEGER StringLength);

18682 ARGUMENTS

18683 StatementHandle [Input] |
18684 Statement handle. |

18685 Attribute [Input]
18686 Option to set, listed in Statement Attributes on page 506. |

18687 ValuePtr [Input]
18688 Pointer to the value to be associated with the attribute. Depending on Attribute, *ValuePtr is
18689 a 32-bit unsigned integer value or points to a null-terminated character string, a binary |
18690 buffer, or a implementation-defined value. For implementation-defined values of Attribute, |
18691 *ValuePtr may be a signed integer. |

18692 StringLength [Input]
18693 If ValuePtr points to a character string or a binary buffer, StringLength should be the length
18694 of *ValuePtr. If ValuePtr is a pointer, but not to a string or binary buffer, then StringLength
18695 should have the value SQL_IS_POINTER. If ValuePtr is not a pointer, then StringLength
18696 should have the value SQL_IS_NOT_POINTER. |

18697 RETURN VALUE |
18698 SQL_SUCCESS, SQL_SUCCESS_WITH_INFO, SQL_ERROR, or SQL_INVALID_HANDLE. |

18699 DIAGNOSTICS |
18700 When SQLSetStmtAttr() returns SQL_ERROR or SQL_SUCCESS_WITH_INFO, an associated |
18701 SQLSTATE value can be obtained by calling SQLGetDiagRec() with a HandleType of |
18702 SQL_HANDLE_STMT and a Handle of StatementHandle. The following SQLSTATE values are |
18703 commonly returned by SQLSetStmtAttr(). The return code associated with each SQLSTATE |
18704 value is SQL_ERROR, except that for SQLSTATE values in class 01, the return code is |
18705 SQL_SUCCESS_WITH_INFO. |

18706 01000 — General warning |
18707 Implementation-defined informational message.

18708 01S02 — Attribute value changed
18709 The data source did not support the value specified in *ValuePtr, or the value specified in
18710 *ValuePtr was invalid because of SQL constraints or requirements, so the implementation |
18711 substituted a similar value.

18712 08S01 — Communication link failure
18713 The communication link to the data source failed before the function completed processing.

18714 24000 — Invalid cursor state
18715 Attribute was SQL_ATTR_CONCURRENCY, SQL_ATTR_CURSOR_TYPE,
18716 SQL_ATTR_SIMULATE_CURSOR, or SQL_ATTR_USE_BOOKMARKS and a cursor was
18717 open.

18718 HY000 — General error
18719 An error occurred for which there was no specific SQLSTATE and for which no
18720 implementation-specific SQLSTATE was defined. The error message returned by

Data Management: X/Open Database Connectivity (XDBC), Version 2 505

SQLSetStmtAttr() ISO 92 Reference Manual Pages

18721 SQLGetDiagRec() in the *MessageTextbuffer describes the error and its cause. |

18722 HY001 — Memory allocation error |
18723 The implementation failed to allocate memory required to support execution or completion |
18724 of the function. |

18725 HY009 — Invalid use of null pointer |
18726 Attribute identified an attribute that required a string value and ValuePtr was a null pointer. |

18727 HY010 — Function sequence error |
18728 An asynchronously executing function was called for StatementHandle and was still |
18729 executing when this function was called. |

18730 SQLBulkOperations(), SQLExecDirect(), SQLExecute(), or SQLSetPos() was called for
18731 StatementHandle and returned SQL_NEED_DATA.This function was called before data was
18732 sent for all data-at-execution parameters or columns.

18733 HY011 — Attribute cannot be set now
18734 Attribute was SQL_ATTR_CONCURRENCY, SQL_ ATTR_CURSOR_TYPE,
18735 SQL_ATTR_SIMULATE_CURSOR, or SQL_ATTR_USE_BOOKMARKS and the statement
18736 was prepared.

18737 HY017 — Invalid use of an automatically allocated descriptor handle.
18738 Attribute was SQL_ATTR_IMP_ROW_DESC or SQL_ATTR_IMP_PARAM_DESC. •

18739 Attribute was SQL_ATTR_APP_ROW_DESC or SQL_ATTR_APP_PARAM_DESC, and the •
18740 value in *ValuePtr was an implicitly-allocated descriptor handle other than the handle |
18741 originally allocated for the ARD or APD. |

18742 HY024 — Invalid attribute value |
18743 A value was specified in *ValuePtr that is inapplicable to Attribute |

18744 *ValuePtr was an empty string and Attribute requires a non-empty string. |

18745 Attribute was SQL_ATTR_APP_ROW_DESC or SQL_ATTR_APP_PARAM_DESC, and the |
18746 handle pointed to by *ValuePtr was not allocated on the same connection as |
18747 StatementHandle. |

18748 HY090 — Invalid string or buffer length |
18749 StringLength was less than 0, but was not SQL_NTS. |

18750 HY092 — Invalid attribute identifier |
18751 Attribute was not valid for this connection to this data source. |

18752 Attribute identified a read-only attribute.

18753 HYC00 — Optional feature not implemented
18754 Attribute was a valid value but is not supported by the data source.

18755 Attribute was SQL_ATTR_ASYNC_ENABLE and a call to SQLGetInfo() with the |
18756 SQL_ASYNC_MODE option returns SQL_AM_CONNECTION.

18757 HYT01 — Connection timeout expired
18758 The connection timeout period expired before the data source responded to the request. The
18759 connection timeout period is set through SQLSetConnectAttr(),
18760 SQL_ATTR_CONNECTION_TIMEOUT.

18761 IM001 — Function not supported
18762 The function is not supported on the current connection to the data source.

18763 COMMENTS
18764 Statement attributes for a statement remain in effect until they are changed by another call to

506 Direct Review (Build ID 96KAV) (Draft XDBC.33, August 1996)

Reference Manual Pages ISO 92 SQLSetStmtAttr()

18765 SQLSetStmtAttr() or the statement is dropped by calling SQLFreeHandle(). Calling
18766 SQLFreeStmt() with the SQL_CLOSE, SQL_UNBIND, or SQL_RESET_PARAMS options does not
18767 reset statement attributes.

18768 Some statement attributes support substitution of a similar value if the data source does not
18769 support the value specified in *ValuePtr. In such cases, the implementation returns
18770 SQL_SUCCESS_WITH_INFO and SQLSTATE 01S02 (Attribute value changed). For example, if
18771 Attribute is SQL_ATTR_CONCURRENCY, *ValuePtr is SQL_CONCUR_ROWVER, and the data
18772 source does not support this, the implementation substitutes SQL_CONCUR_VALUES and
18773 returns SQL_SUCCESS_WITH_INFO. To determine the substituted value, an application calls
18774 SQLGetStmtAttr().

18775 The format of information set with ValuePtr depends on the attribute. SQLSetStmtAttr() accepts
18776 attribute information in one of two different formats: a character string or a 32-bit integer value. |
18777 The format of each is noted in the attribute’s description. This format applies to the information
18778 returned for each attribute in SQLGetStmtAttr(). Character strings pointed to by ValuePtr of
18779 SQLSetStmtAttr() have a length of StringLength.

18780 Setting Statement Attributes by Setting Descriptors

18781 Many statement attributes correspond to a header field of one or more descriptors. These
18782 attributes may be set not only by a call to SQLSetStmtAttr(), but also by a call to
18783 SQLSetDescField(). Setting these options by a call to SQLSetStmtAttr(), rather than
18784 SQLSetDescField(), has the advantage that a descriptor handle does not have to be obtained first. |

18785 Caution: Calling SQLSetStmtAttr() for one statement affects other statements if the APD or
18786 ARD associated with the statement is explicitly allocated and is also associated with other
18787 statements. Any modifications made to a descriptor with SQLSetStmtAttr() apply to all
18788 statements with which the descriptor is associated. To prevent this effect, the application must |
18789 dissociate this descriptor from the other statements before calling SQLSetStmtAttr().

18790 When a statement attribute that is also a descriptor field is set by a call to SQLSetStmtAttr(), the
18791 corresponding field in the descriptor that is associated with the statement is also set. The field is
18792 set only for the applicable descriptors that are currently associated with the statement identified
18793 by StatementHandle, and the attribute setting does not affect any descriptors that may be
18794 associated with that statement in the future. When a descriptor field that is also a statement
18795 attribute is set by a call to SQLSetDescField(), the corresponding statement attribute is also set.

18796 When a statement is allocated (see SQLAllocHandle()), four descriptor handles are automatically |
18797 allocated and associated with the statement. Explicitly-allocated descriptor handles can be
18798 associated with the statement by calling SQLAllocHandle() with an fHandleType of
18799 SQL_HANDLE_DESC to allocate a descriptor handle, then calling SQLSetStmtAttr() to associate
18800 the descriptor handle with the statement.

18801 The following statement attributes correspond to descriptor header fields:

18802 Statement Attribute Header Field Desc.
18803 SQL_ATTR_PARAM_BIND_OFFSET_PTR SQL_DESC_BIND_OFFSET_PTR APD
18804 SQL_ATTR_PARAM_BIND_TYPE SQL_DESC_BIND_TYPE APD
18805 SQL_ATTR_PARAM_OPERATION_PTR SQL_DESC_ARRAY_STATUS_PTR APD |
18806 SQL_ATTR_PARAM_STATUS_PTR SQL_DESC_ARRAY_STATUS_PTR IPD
18807 SQL_ATTR_PARAMS_PROCESSED_PTR SQL_DESC_ROWS_PROCESSED_PTR IPD
18808 SQL_ATTR_PARAMSET_SIZE SQL_DESC_ARRAY_SIZE APD

Data Management: X/Open Database Connectivity (XDBC), Version 2 507

SQLSetStmtAttr() ISO 92 Reference Manual Pages

18809 SQL_ATTR_ROW_ARRAY_SIZE SQL_DESC_ARRAY_SIZE ARD |
18810 SQL_ATTR_ROW_BIND_OFFSET_PTR SQL_DESC_BIND_OFFSET_PTR ARD
18811 SQL_ATTR_ROW_BIND_TYPE SQL_DESC_BIND_TYPE ARD
18812 SQL_ATTR_ROW_OPERATION_PTR SQL_DESC_ARRAY_STATUS_PTR ARD |
18813 SQL_ATTR_ROW_STATUS_PTR SQL_DESC_ARRAY_STATUS_PTR IRD
18814 SQL_ATTR_ROWS_FETCHED_PTR SQL_DESC_ROWS_PROCESSED_PTR IRD

18815 Statement Attributes •

18816 The defined statement attributes are listed below; implementors are likely to define additional |
18817 attributes to take advantage of different data sources. A range of attributes is reserved by XDBC; |
18818 implementors must reserve values for vendor-specific uses from X/Open (see Section 1.8 on
18819 page 21).

18820 SQL_ATTR_APP_PARAM_DESC
18821 The handle to the APD for subsequent call to SQLExecute() and SQLExecDirect() on the
18822 statement handle. The initial value of this attribute is the descriptor implicitly allocated |
18823 when the statement was initially allocated. If the value of this attribute is set to |
18824 SQL_NULL_DESC, or to the handle originally allocated for the descriptor, then an explicitly |
18825 allocated APD handle that was previously associated with the statement handle is
18826 dissociated from it, and the statement handle reverts to the implicitly allocated APD handle.

18827 This attribute cannot be set to a descriptor handle that was implicitly allocated for another
18828 statement or to another descriptor handle that was implicitly set on the same statement;
18829 implicitly-allocated descriptor handles cannot be associated with more than one statement
18830 or descriptor handle.

18831 This attribute cannot be set at the connection level.

18832 SQL_ATTR_APP_ROW_DESC
18833 The handle to the ARD for subsequent fetches on the statement handle. The initial value of
18834 this attribute is the descriptor implicitly allocated when the statement was initially |
18835 allocated. If the value of this attribute is set to SQL_NULL_DESC, or to the handle originally |
18836 allocated for the descriptor, then an explicitly-allocated ARD handle that was previously |
18837 associated with the statement handle is dissociated from it, and the statement handle |
18838 reverts to the implicitly-allocated ARD handle.

18839 This attribute cannot be set to a descriptor handle that was implicitly allocated for another
18840 statement or to another descriptor handle that was implicitly set on the same statement;
18841 implicitly-allocated descriptor handles cannot be associated with more than one statement
18842 or descriptor handle.

18843 This attribute cannot be set at the connection level.

18844 SQL_ATTR_ASYNC_ENABLE
18845 A 32-bit integer value that specifies whether a function called with the specified statement
18846 is executed asynchronously: |

18847 SQL_ASYNC_ENABLE_OFF Asynchrony is disabled (the default) |

18848 SQL_ASYNC_ENABLE_ON Asynchrony is enabled |

18849 Asynchronous execution provides that certain XDBC functions return before the operation |
18850 is complete. See Section 9.5 on page 116. |

18851 The application can determine the implementation’s level of support for asynchrony by |
18852 calling SQLGetInfo() with the SQL_ASYNC_MODE option. |

508 Direct Review (Build ID 96KAV) (Draft XDBC.33, August 1996)

Reference Manual Pages ISO 92 SQLSetStmtAttr()

18853 • For implementations with statement-level asynchronous-execution support, |
18854 applications can set SQL_ATTR_ASYNC_ENABLE by calling SQLSetStmtAttr(), and can |
18855 specify a default value for statement handles by treating it as a connection attribute (see |
18856 SQLSetConnectAttr() and Statement Attributes on page 458). |

18857 • For implementations with connection-level asynchronous-execution support, |
18858 applications enable and disable asynchrony only by calling SQLSetConnectAttr(); as a |
18859 statement attribute, SQL_ATTR_ASYNC_ENABLE is read-only, its value indicates the |
18860 status of asynchrony on the connection, and trying to change its value by calling |
18861 SQLSetStmtAttr() returns SQLSTATEHYC00 (Optional feature not implemented). |

18862 SQL_ATTR_CONCURRENCY
18863 A 32-bit integer value that specifies the cursor concurrency:

18864 SQL_CONCUR_READ_ONLY Cursor is read-only. No updates are allowed. This |
18865 is the default value.

18866 SQL_CONCUR_LOCK Cursor uses the lowest level of locking sufficient to
18867 ensure that the row can be updated.

18868 SQL_CONCUR_ROWVER Cursor uses optimistic concurrency control,
18869 comparing row versions.

18870 SQL_CONCUR_VALUES Cursor uses optimistic concurrency control,
18871 comparing values.

18872 If the SQL_ATTR_CURSOR_TYPE attribute is changed to a type that does not support the |
18873 current value of SQL_ATTR_CONCURRENCY, the value of SQL_ATTR_CONCURRENCY
18874 is changed at execution time, and a warning is issued when SQLExecDirect() or
18875 SQLPrepare() is called.

18876 If the data source supports the SELECT FOR UPDATE statement, and such a statement is
18877 executed while the value of SQL_ATTR_CONCURRENCY is set to
18878 SQL_CONCUR_READ_ONLY, an error is returned. If the value of
18879 SQL_ATTR_CONCURRENCY is changed to a value that the data source supports for some
18880 value of SQL_ATTR_CURSOR_TYPE, but not for the current value of
18881 SQL_ATTR_CURSOR_TYPE, the value of SQL_ATTR_CURSOR_TYPE is changed at
18882 execution time, and SQLSTATE 01S02 (Attribute value changed) is issued when
18883 SQLExecDirect() or SQLPrepare() is called.

18884 If the specified concurrency is not supported by the data source, the data source substitutes
18885 a different concurrency and returns SQLSTATE 01S02 (Attribute value changed). For |
18886 SQL_CONCUR_VALUES, the implementation substitutes SQL_CONCUR_ROWVER, and |
18887 vice versa. For SQL_CONCUR_LOCK, the implementation substitutes, in order,
18888 SQL_CONCUR_ROWVER or SQL_CONCUR_VALUES. The validity of the substituted
18889 value is not checked until execution time.

18890 SQL_ATTR_CURSOR_TYPE
18891 A 32-bit integer value that specifies the cursor type:

18892 SQL_CURSOR_FORWARD_ONLY
18893 The cursor only scrolls forward.

18894 SQL_CURSOR_STATIC
18895 The data in the result set is static.

18896 SQL_CURSOR_KEYSET_DRIVEN
18897 The data source saves and uses the keys for the number of rows specified in the
18898 SQL_KEYSET_SIZE statement attribute.

Data Management: X/Open Database Connectivity (XDBC), Version 2 509

SQLSetStmtAttr() ISO 92 Reference Manual Pages

18899 SQL_CURSOR_DYNAMIC
18900 The data source only saves and uses the keys for the rows in the row-set. |

18901 The default value is SQL_CURSOR_FORWARD_ONLY. This option cannot be specified |
18902 once the statement has been prepared.

18903 If the data source does not support the specified cursor type, the implementation
18904 substitutes a different cursor type and returns SQLSTATE01S02 (Attribute value changed).
18905 For a mixed or dynamic cursor, the implementation substitutes, in order, a keyset-driven or
18906 static cursor. For a keyset-driven cursor, the implementation substitutes a static cursor.

18907 SQL_ATTR_ENABLE_AUTO_IPD
18908 A 32-bit integer value that specifies whether automatic population of the IPD is performed: |

18909 SQL_TRUE Enables automatic population of the IPD after a call to SQLPrepare().

18910 SQL_FALSE Disables automatic population of the IPD after a call to SQLPrepare(). The |
18911 application can still obtain this information, on implementations that |
18912 support IPD population, by an explicit call to SQLDescribeParam().

18913 The default value of the statement attribute SQL_ATTR_ENABLE_AUTO_IPD is equal to
18914 the value of the connection attribute SQL_ATTR_AUTO_IPD. If the connection attribute
18915 SQL_ATTR_AUTO_IPD is SQL_FALSE, the statement attribute
18916 SQL_ATTR_ENABLE_AUTO_IPDcannot be set to SQL_TRUE.

18917 SQL_ATTR_FETCH_BOOKMARK_PTR
18918 A pointer that points to a binary bookmark value. When SQLFetchScroll() is called with
18919 FetchOrientation equal to SQL_FETCH_BOOKMARK, the data source uses the bookmark
18920 value from this attribute. The default value is a null pointer.

18921 The value pointed to by this field is not used for delete by bookmark, update by bookmark, |
18922 or fetch by bookmark operations in SQLBulkOperations(), which use bookmarks cached in |
18923 row-set buffers.

18924 SQL_ATTR_IMP_PARAM_DESC
18925 The handle to the IPD. The value of this attribute is the descriptor allocated when the
18926 statement was initially allocated. The application cannot set this attribute.

18927 This attribute can be retrieved by a call to SQLGetStmtAttr(), but not set by a call to
18928 SQLSetStmtAttr().

18929 SQL_ATTR_IMP_ROW_DESC
18930 The handle to the IRD. The value of this attribute is the descriptor allocated when the
18931 statement was initially allocated. The application cannot set this attribute.

18932 This attribute can be retrieved by a call to SQLGetStmtAttr(), but not set by a call to
18933 SQLSetStmtAttr().

18934 SQL_ATTR_KEYSET_SIZE
18935 A 32-bit integer value that specifies the number of rows in the keyset for a keyset-driven
18936 cursor. If the keyset size is 0 (the default), the cursor is fully keyset-driven. If the keyset size
18937 is greater than 0, the cursor is mixed (keyset-driven within the keyset and dynamic outside
18938 of the keyset). The default keyset size is 0.

18939 If the specified size exceeds the maximum keyset size, the implementation substitutes that |
18940 size and returns SQLSTATE01S02 (Attribute value changed). |

18941 SQLFetchScroll() returns an error if the keyset size is greater than 0 and less than the row-set
18942 size.

510 Direct Review (Build ID 96KAV) (Draft XDBC.33, August 1996)

Reference Manual Pages ISO 92 SQLSetStmtAttr()

18943 SQL_ATTR_MAX_LENGTH
18944 A 32-bit integer value that specifies the maximum amount of data that the implementation |
18945 returns from a character or binary column. If *ValuePtr is less than the length of the available |
18946 data, SQLFetch() or SQLGetData() truncates the data and returns SQL_SUCCESS. If
18947 *ValuePtr is 0 (the default), the implementation tries to return all available data. |

18948 If the specified length is less than the minimum amount of data that the data source can
18949 return, or greater than the maximum amount of data that the data source can return, the |
18950 implementation substitutes that value and returns SQLSTATE 01S02 (Attribute value |
18951 changed). |

18952 This attribute is intended to reduce network traffic and should only be supported in |
18953 situations when the data source can actually reduce the size of its response based on the |
18954 attribute. Applications should not use this attribute merely to force the implementation to |
18955 truncate strings. A better way to truncate strings is to specify a low value for the maximum |
18956 buffer length in BufferLength for calls to SQLBindCol() or SQLGetData().

18957 SQL_ATTR_MAX_ROWS
18958 A 32-bit integer value corresponding to the maximum number of rows to return to the
18959 application for a SELECT statement. If *ValuePtr equals 0 (the default), then the data source
18960 returns all rows.

18961 This option is intended to reduce network traffic. Conceptually, it is applied when the result
18962 set is created and limits the result set to the first *ValuePtr rows. If the number of rows in the
18963 result set is greater than *ValuePtr, the result set is truncated.

18964 SQL_ATTR_MAX_ROWS applies to all result sets on the Statement, including those |
18965 returned by catalog functions. SQL_ATTR_MAX_ROWS establishes a maximum value for |
18966 the cursor row count.

18967 It is implementation-defined whether SQL_ATTR_MAX_ROWS applies to statements other
18968 than SELECT statements.

18969 SQL_ATTR_METADATA_ID
18970 A 32-bit integer value that determines how the string arguments of catalog functions are
18971 treated.

18972 If SQL_TRUE, the string argument of catalog functions are treated as identifiers. The case if
18973 not significant. For non-delimited strings, the implementation removes any trailing spaces, |
18974 and the string is folded to upper case. For delimited strings, the implementation removes |
18975 any leading or trailing spaces, and interprets the remainder literally. If one of these |
18976 arguments is set to a null pointer, the function returns SQL_ERROR and SQLSTATEHY009 |
18977 (Invalid use of null pointer).

18978 If SQL_FALSE, the string arguments of catalog functions are not treated as identifiers. The
18979 case is significant. They can either contain a string search pattern or not, depending on the
18980 argument.

18981 The default value is SQL_FALSE.

18982 The TableType argument of SQLTables(), which takes a list of values, is not affected by this
18983 attribute.

18984 (For more information, see Section 7.4 on page 69.)

18985 SQL_ATTR_NOSCAN
18986 A 32-bit integer value that controls scanning for the XDBC escape clauses defined in Section |
18987 8.3 on page 84: |

Data Management: X/Open Database Connectivity (XDBC), Version 2 511

SQLSetStmtAttr() ISO 92 Reference Manual Pages

18988 SQL_NOSCAN_OFF The implementation scans SQL strings for escape clauses and |
18989 converts them to the SQL dialect that the data source accepts (the
18990 default).

18991 SQL_NOSCAN_ON The implementation does not scan SQL strings for escape clauses. |
18992 Instead, it sends the SQL statement directly to the data source. |

18993 When it is certain that no SQL statement contains escape clauses, |
18994 the application can specify this value to eliminate this processing. |
18995 This may boost performance.

18996 SQL_ATTR_PARAM_BIND_OFFSET_PTR
18997 A SQLINTEGER * value that points to the bind offset. Setting this statement attribute sets |
18998 the SQL_DESC_BIND_OFFSET_PTR field in the APD header. |

18999 If this attribute is not a null pointer, the bind offset is added to each deferred field in the |
19000 descriptor record (SQL_DESC_DATA_PTR, SQL_DESC_INDICATOR_PTR, and |
19001 SQL_DESC_OCTET_LENGTH_PTR) to produce the effective address for the fetch. The |
19002 bind offset is not cumulative; if the value is changed, any old bind offset ceases to have |
19003 effect. A bind offset can be used only with row-wise binding. See Section 9.4 on page 102 |
19004 and Bind Offsets on page 217. |

19005 SQL_ATTR_PARAM_BIND_TYPE |
19006 A 32-bit integer value that indicates the binding orientation to be used for dynamic
19007 parameters.

19008 This field is set to SQL_PARAMETER_BIND_BY_COLUMN (the default) to select column-
19009 wise binding.

19010 To select row-wise binding, this field is set to the length of the structure or an instance of a
19011 buffer that will be bound to a set of dynamic parameters. This length must include space
19012 for all of the bound parameters and any padding of the structure or buffer to ensure that
19013 when the address of a bound parameter is incremented with the specified length, the result
19014 will point to the beginning of the same parameter in the next set of parameters. When using
19015 the sizeof operator in ANSI C, this behavior is guaranteed.

19016 Setting this statement attribute sets the SQL_DESC_BIND_TYPE field in the APD header.

19017 SQL_ATTR_PARAM_OPERATION_PTR
19018 A SQLUSMALLINT * value that points to an array of SQLUSMALLINT values used to
19019 ignore a parameter during execution of a SQL statement. Each value is set to either |
19020 SQL_PARAM_PROCEED (to execute a parameter) or SQL_PARAM_IGNORE (to ignore a |
19021 parameter) as described in Ignoring a Set of Parameters on page 230. |

19022 This statement attribute can be set to a null pointer, in which case the implementation acts |
19023 as though every element were set to SQL_PARAM_PROCEED. This attribute can be set at |
19024 any time, but the new value is not used until the next call to SQLExecDirect() or |
19025 SQLExecute().

19026 Setting this statement attribute sets the SQL_DESC_ARRAY_STATUS_PTRfield in the APD. |

19027 SQL_ATTR_PARAM_STATUS_PTR |
19028 A SQLUSMALLINT * value that points to an array of SQLUSMALLINT values containing |
19029 status information for each row of parameter values after a call to SQLExecute() or
19030 SQLExecDirect(). This field is required only if PARAMSET_SIZE is greater than 1.

19031 The status values can contain the following values:

19032 SQL_PARAM_SUCCESS
19033 The SQL statement was successfully executed for this set of parameters.

512 Direct Review (Build ID 96KAV) (Draft XDBC.33, August 1996)

Reference Manual Pages ISO 92 SQLSetStmtAttr()

19034 SQL_PARAM_SUCCESS_WITH_INFO
19035 The SQL statement was successfully executed for this set of parameters; however,
19036 warning information is available in the diagnostics data structure.

19037 SQL_PARAM_ERROR
19038 There was an error in processing this set of parameters. Additional error information is
19039 available in the diagnostics data structure.

19040 SQL_PARAM_UNUSED
19041 This parameter set was unused, possibly due to the fact that some previous parameter |
19042 set caused an error that aborted further processing, or because SQL_PARAM_IGNORE |
19043 was set for that set of parameters in the array specified by the |
19044 SQL_ATTR_PARAM_OPERATION_PTR.

19045 SQL_PARAM_DIAG_UNAVAILABLE |
19046 The implementation treats arrays of parameters as a monolithic unit and so does not |
19047 generate this level of error information. |

19048 This statement attribute can be set to a null pointer, in which case the implementation does |
19049 not return parameter status values. This attribute can be set at any time, but the new value |
19050 is not used until the next call to SQLFetch() or SQLFetchScroll().

19051 Setting this statement attribute sets the SQL_DESC_ARRAY_STATUS_PTRfield in the IPD
19052 header.

19053 SQL_ATTR_PARAMS_PROCESSED_PTR
19054 A SQLUINTEGER * record field that points to a buffer in which to return the number of sets |
19055 of parameters that have been processed, including error sets. No number is returned if this |
19056 is a null pointer. |

19057 Setting this statement attribute sets the SQL_DESC_ROWS_PROCESSED_PTR field in the
19058 IPD header. |

19059 If the call to SQLExecDirect() or SQLExecute() that fills in the buffer pointed to by this |
19060 attribute does not return SQL_SUCCESS or SQL_SUCCESS_WITH_INFO, the contents of |
19061 the buffer are undefined.

19062 SQL_ATTR_PARAMSET_SIZE
19063 A SQLUINTEGER value that specifies the number of values for each parameter. If
19064 SQL_ATTR_PARAMSET_SIZE is greater than 1, SQL_DESC_DATA_PTR,
19065 SQL_DESC_INDICATOR_PTR, and SQL_DESC_OCTET_LENGTH_PTR of the APD point
19066 to arrays. The cardinality of each array is equal to the value of this field.

19067 Setting this statement attribute sets the SQL_DESC_ARRAY_SIZE field in the APD header.

19068 SQL_ATTR_QUERY_TIMEOUT
19069 A 32-bit integer value corresponding to the number of seconds to wait for an SQL statement
19070 to execute before returning to the application. If *ValuePtr equals 0 (default), then there is no
19071 timeout.

19072 If the specified timeout exceeds the maximum timeout in the data source or is smaller than
19073 the minimum timeout, SQLSetStmtAttr() substitutes that value and returns SQLSTATE
19074 01S02 (Attribute value changed).

19075 The application need not call SQLCloseCursor() to reuse the statement if a SELECT
19076 statement timed out.

19077 The query timeout set in this statement attribute is valid in both synchronous and
19078 asynchronous modes.

Data Management: X/Open Database Connectivity (XDBC), Version 2 513

SQLSetStmtAttr() ISO 92 Reference Manual Pages

19079 SQL_ATTR_RETRIEVE_DATA
19080 A 32-bit integer value which is one of the following:

19081 SQL_RD_ON
19082 SQLFetch() and SQLFetchScroll() retrieve data after they position the cursor to the
19083 specified location. This is the default.

19084 SQL_RD_OFF
19085 SQLFetch() and SQLFetchScroll() do not retrieve data after they position the cursor.

19086 By setting SQL_RETRIEVE_DATA to SQL_RD_OFF, an application can verify that a row |
19087 exists or retrieve a bookmark for the row without incurring the overhead of retrieving rows.

19088 SQL_ATTR_ROW_ARRAY_SIZE
19089 A 32-bit integer value that specifies the number of rows returned by each call to SQLFetch() |
19090 or SQLFetchScroll(). This is also the number of rows in a bookmark array used in a bulk |
19091 bookmark operation in SQLBulkOperations(). The default value is 1.

19092 If the specified row-set size exceeds the maximum row-set size supported by the data |
19093 source, the implementation substitutes that value and returns SQLSTATE 01S02 (Attribute
19094 value changed). |

19095 Setting this statement attribute sets the SQL_DESC_ARRAY_SIZE field in the ARD header.

19096 SQL_ATTR_ROW_BIND_OFFSET_PTR
19097 A SQLINTEGER * value that points to an offset added to pointers to change binding of |
19098 column data. If this field is non-null, the implementation dereferences the pointer, adds the |
19099 dereferenced value to each of the deferred fields in the descriptor record |
19100 (SQL_DESC_DATA_PTR, SQL_DESC_INDICATOR_PTR, and |
19101 SQL_DESC_OCTET_LENGTH_PTR), and uses the new pointer values when binding. It is |
19102 set to null by default.

19103 Setting this statement attribute sets the SQL_DESC_BIND_OFFSET_PTR field in the ARD
19104 header.

19105 SQL_ATTR_ROW_BIND_TYPE
19106 A 32-bit integer value that sets the binding orientation to be used when SQLFetch() or
19107 SQLFetchScroll() is called on the associated statement. Column-wise binding is selected by
19108 supplying the defined constant SQL_BIND_BY_COLUMN in *ValuePtr. Row-wise binding
19109 is selected by supplying a value in *ValuePtr specifying the length of a structure or an
19110 instance of a buffer into which result columns will be bound.

19111 The length specified in *ValuePtr must include space for all of the bound columns and any
19112 padding of the structure or buffer to ensure that when the address of a bound column is
19113 incremented with the specified length, the result points to the beginning of the same column
19114 in the next row. When using the sizeof operator with structures or unions in ANSI C, this
19115 behavior is guaranteed.

19116 Column-wise binding is the default binding orientation for SQLFetch() and SQLFetchScroll().

19117 Setting this statement attribute sets the SQL_DESC_BIND_TYPE field in the ARD header.

19118 SQL_ATTR_ROW_NUMBER
19119 A SQLINTEGER value that is the number of the current row in the entire result set. If the
19120 number of the current row cannot be determined or there is no current row, the |
19121 implementation returns 0.

19122 This attribute can be retrieved by a call to SQLGetStmtAttr(), but not set by a call to
19123 SQLSetStmtAttr().

514 Direct Review (Build ID 96KAV) (Draft XDBC.33, August 1996)

Reference Manual Pages ISO 92 SQLSetStmtAttr()

19124 SQL_ATTR_ROW_OPERATION_PTR
19125 A SQLUSMALLINT * value that points to an array of SQLUINTEGER values used to ignore |
19126 a row during a bulk operation using SQLBulkOperations() or SQLSetPos(). Each value is set
19127 to either SQL_ROW_PROCEED (for the row to be included in the bulk operation) or
19128 SQL_ROW_IGNORE (for the row to be excluded from the bulk operation).

19129 This statement attribute can be set to a null pointer, in which case the implementation does |
19130 not return row status values. This attribute can be set at any time, but the new value is not |
19131 used until the next call to SQLBulkOperations() or SQLSetPos().

19132 Setting this statement attribute sets the SQL_DESC_ARRAY_STATUS_PTRfield in the ARD.

19133 SQL_ATTR_ROW_STATUS_PTR
19134 A SQLUSMALLINT * value that points to an array of SQLUINTEGER values containing |
19135 row status values after a call to SQLFetch() or SQLFetchScroll(). The array has as many |
19136 elements as there are rows in the row-set. |

19137 This statement attribute can be set to a null pointer, in which case the implementation acts |
19138 as though every element were set to SQL_ROW_PROCEED. This attribute can be set at any |
19139 time, but the new value is not used until the next call to SQLBulkOperations(), SQLFetch(), |
19140 SQLFetchScroll(), or SQLSetPos().

19141 Setting this statement attribute sets the SQL_DESC_ARRAY_STATUS_PTRfield in the IRD
19142 header.

19143 SQL_ATTR_ROWS_FETCHED_PTR
19144 A SQLUINTEGER * value that points to a buffer in which to return the number of rows
19145 fetched after a call to SQLFetch() or SQLFetchScroll(), or the number of rows affected by a
19146 bulk operation performed by a call to SQLSetPos() with an Operation of SQL_REFRESH. |
19147 This number includes error rows. |

19148 Setting this statement attribute sets the SQL_DESC_ROWS_PROCESSED_PTR field in the
19149 IRD header. |

19150 If the call to SQLFetch() or SQLFetchScroll() that fills in the buffer pointed to by this attribute |
19151 does not return SQL_SUCCESS or SQL_SUCCESS_WITH_INFO, the contents of the buffer |
19152 are undefined.

19153 SQL_ATTR_SIMULATE_CURSOR
19154 A 32-bit integer value that specifies whether the implementation, in simulating positioned
19155 UPDATE and DELETE statements, must guarantee that such statements affect only one |
19156 row. If the data source has native support for these statements, the implementation does |
19157 guarantee this, and returns SQL_SC_UNIQUE (see below).

19158 To simulate positioned UPDATE and DELETE statements for data sources that do not
19159 support these statements, the implementation typically constructs a searched UPDATE or
19160 DELETE statement containing a WHERE clause that specifies the value of each column in
19161 the current row.

19162 Unless these columns form a unique key, such a statement may affect more than one row.
19163 To guarantee that such statements affect only one row, the implementation determines
19164 which columns form a unique key and adds these columns to the result set it requests.

19165 The application can use SQL_ATTR_SIMULATE_CURSOR to indicate to the
19166 implementation that the columns in the result set the application has requested are a unique
19167 key. This means the implementation does not have to make the guarantee, which may
19168 reduce execution time.

19169 The attribute has one of the following values:

Data Management: X/Open Database Connectivity (XDBC), Version 2 515

SQLSetStmtAttr() ISO 92 Reference Manual Pages

19170 SQL_SC_NON_UNIQUE
19171 The implementation does not guarantee that simulated positioned UPDATE and
19172 DELETE statements affect only one row; the application must do so. If a statement
19173 affects more than one row, SQLExecute(), SQLExecDirect(), or SQLSetPos() returns |
19174 SQLSTATE01001 (Cursor operation conflict).

19175 SQL_SC_TRY_UNIQUE
19176 The implementation tries to guarantee that simulated positioned UPDATE and
19177 DELETE statements affect only one row. The statements are always executed, even if
19178 they might affect more than one row, such as when there is no unique key. If a
19179 statement affects more than one row, SQLExecute(), SQLExecDirect(), or SQLSetPos() |
19180 returns SQLSTATE01001 (Cursor operation conflict).

19181 SQL_SC_UNIQUE
19182 The implementation guarantees that simulated positioned UPDATE and DELETE
19183 statements affect only one row. If it cannot guarantee this for a given statement,
19184 SQLExecDirect() or SQLPrepare() returns an error.

19185 If the data source provides native SQL support for positioned UPDATE and DELETE
19186 statements, and the implementation does not simulate cursors, SQL_SUCCESS is
19187 returned when SQL_SC_UNIQUE is requested for SQL_ATTR_SIMULATE_CURSOR.
19188 SQL_SUCCESS_WITH_INFO is returned if SQL_SC_TRY_UNIQUE or
19189 SQL_SC_NON_UNIQUE is requested. If the data source provides the
19190 SQL_SC_TRY_UNIQUE level of support, and the implementation does not, it returns
19191 SQL_SUCCESS for SQL_SC_TRY_UNIQUE and SQL_SUCCESS_WITH_INFO for
19192 SQL_SC_NON_UNIQUE.

19193 To determine what the implementation supports, and therefore the valid values for this |
19194 statement attribute, the application calls SQLGetInfo() as described in Detecting Cursor |
19195 Capabilities with SQLGetInfo() on page 402 and tests the bitmasks |
19196 SQL_CA2_SIMULATE_NON_UNIQUE, SQL_CA2_SIMULATE_TRY_UNIQUE, and |
19197 SQL_CA2_SIMULATE_UNIQUE. If the data source does not support the specified cursor
19198 simulation type, the implementation substitutes a different simulation type and returns
19199 SQLSTATE 01S02 (Attribute value changed). For SQL_SC_UNIQUE, the implementation
19200 substitutes, in order, SQL_SC_TRY_UNIQUE or SQL_SC_NON_UNIQUE. For
19201 SQL_SC_TRY_UNIQUE, the implementation substitutes SQL_SC_NON_UNIQUE.

19202 SQL_ATTR_USE_BOOKMARKS
19203 A 32-bit integer value that specifies whether an application will use bookmarks with a
19204 cursor:

19205 SQL_UB_OFF
19206 Off (the default)

19207 SQL_UB_VARIABLE
19208 An application will use bookmarks with a cursor. Bookmarks in XDBC are variable-
19209 length data structures.

19210 To use bookmarks with a cursor, the application must set this attribute to
19211 SQL_UB_VARIABLEbefore opening the cursor.

19212 SEE ALSO

19213 For information about See

516 Direct Review (Build ID 96KAV) (Draft XDBC.33, August 1996)

Reference Manual Pages ISO 92 SQLSetStmtAttr()

19214 Canceling statement processing SQLCancel()
19215 Returning the setting of a connection attribute SQLGetConnectAttr()
19216 Returning the setting of a statement attribute SQLGetStmtAttr()
19217 Setting a connection attribute SQLSetConnectAttr()
19218 Setting a single field of the descriptor SQLSetDescField()

19219 CHANGE HISTORY

19220 Version 2
19221 Revised generally. See Alignment with Popular Implementations on page 2.

19222 New Statement Attributes in Version 2

19223 The following statement attributes are new in this issue:

19224 SQL_ATTR_ASYNC_ENABLE SQL_ATTR_PARAMS_PROCESSED_PTR
19225 SQL_ATTR_CONCURRENCY SQL_ATTR_PARAMSET_SIZE
19226 SQL_ATTR_CURSOR_TYPE SQL_ATTR_QUERY_TIMEOUT
19227 SQL_ATTR_ENABLE_AUTO_IPD SQL_ATTR_RETRIEVE_DATA
19228 SQL_ATTR_FETCH_BOOKMARK_PTR SQL_ATTR_ROW_ARRAY_SIZE
19229 SQL_ATTR_KEYSET_SIZE SQL_ATTR_ROW_BIND_OFFSET_PTR
19230 SQL_ATTR_MAX_LENGTH SQL_ATTR_ROW_BIND_TYPE
19231 SQL_ATTR_MAX_ROWS SQL_ATTR_ROW_NUMBER
19232 SQL_ATTR_NOSCAN SQL_ATTR_ROW_OPERATION_PTR
19233 SQL_ATTR_PARAM_BIND_OFFSET_PTR SQL_ATTR_ROW_STATUS_PTR
19234 SQL_ATTR_PARAM_BIND_TYPE SQL_ATTR_ROWS_FETCHED_PTR
19235 SQL_ATTR_PARAM_OPERATION_PTR SQL_ATTR_SIMULATE_CURSOR
19236 SQL_ATTR_PARAM_STATUS_PTR SQL_ATTR_USE_BOOKMARKS |

Data Management: X/Open Database Connectivity (XDBC), Version 2 517

SQLSpecialColumns() CLI v1 Reference Manual Pages

19237 NAME
19238 SQLSpecialColumns — Retrieve information about row-identifying columns of a table. |

19239 SYNOPSIS
19240 SQLRETURN SQLSpecialColumns(
19241 SQLHSTMTStatementHandle ,
19242 SQLSMALLINT IdentifierType ,
19243 SQLCHAR * CatalogName ,
19244 SQLSMALLINT NameLength1 ,
19245 SQLCHAR * SchemaName,
19246 SQLSMALLINT NameLength2 ,
19247 SQLCHAR * TableName ,
19248 SQLSMALLINT NameLength3 ,
19249 SQLSMALLINT Scope ,
19250 SQLSMALLINT Nullable);

19251 ARGUMENTS

19252 StatementHandle [Input] |
19253 Statement handle. |

19254 IdentifierType [Input]
19255 Type of column to return. Must be one of the following values: |

19256 SQL_BEST_ROWID Returns the optimal column or set of columns that, by retrieving
19257 values from the column or columns, serves to uniquely identify any
19258 row in the specified table. The result can be either a pseudo-
19259 column specifically designed for this purpose, or the column or
19260 columns of any unique index for the table.

19261 SQL_ROWVER Returns the column or columns in the specified table, if any, that
19262 are automatically updated by the data source when any value in
19263 the row is updated by any transaction.

19264 CatalogName [Input] |
19265 Catalog name for the table. If the data source supports catalogs, an empty string denotes
19266 those tables that do not have catalogs.

19267 If the SQL_ATTR_METADATA_ID statement attribute is SQL_TRUE, this argument is |
19268 interpreted as specified in Identifier (ID) Arguments on page 72. If it is SQL_FALSE, this |
19269 argument is interpreted as specified in Ordinary Arguments (OA) on page 71. |

19270 NameLength1 [Input] |
19271 Length of *CatalogName. |

19272 SchemaName [Input]
19273 Schema name for the table. If the data source supports schemas, an empty string denotes
19274 those tables that do not have schemas.

19275 If the SQL_ATTR_METADATA_ID statement attribute is SQL_TRUE, this argument is |
19276 interpreted as specified in Identifier (ID) Arguments on page 72. If it is SQL_FALSE, this |
19277 argument is interpreted as specified in Ordinary Arguments (OA) on page 71. |

19278 NameLength2 [Input] |
19279 Length of *SchemaName. |

19280 TableName [Input] |
19281 Table name. This argument cannot be a null pointer. |

518 Direct Review (Build ID 96KAV) (Draft XDBC.33, August 1996)

Reference Manual Pages CLI v1 SQLSpecialColumns()

19282 If the SQL_ATTR_METADATA_ID statement attribute is SQL_TRUE, this argument is |
19283 interpreted as specified in Identifier (ID) Arguments on page 72. If it is SQL_FALSE, this |
19284 argument is interpreted as specified in Ordinary Arguments (OA) on page 71. |

19285 NameLength3 [Input] |
19286 Length of *TableName. |

19287 Scope [Input]
19288 Minimum required scope of the rowid. The returned rowid may be of greater scope. Must
19289 be one of the following:

19290 SQL_SCOPE_CURROW
19291 The rowid is guaranteed to be valid only while positioned on that row. A later reselect
19292 using rowid may not return a row if the row was updated or deleted by another
19293 transaction.

19294 SQL_SCOPE_TRANSACTION
19295 The rowid is guaranteed to be valid for the duration of the current transaction.

19296 SQL_SCOPE_SESSION
19297 The rowid is guaranteed to be valid for the duration of the session (across transaction
19298 boundaries).

19299 Nullable [Input] |
19300 Determines whether to return special columns that can have a NULL value. Must be one of
19301 the following:

19302 SQL_NO_NULLS |
19303 Exclude special columns that can have NULL values. Some implementations return an |
19304 empty result set if SQL_NO_NULLS is specified.

19305 SQL_NULLABLE
19306 Return special columns even if they can have NULL values.

19307 RETURN VALUE |
19308 SQL_SUCCESS, SQL_SUCCESS_WITH_INFO, SQL_STILL_EXECUTING, SQL_ERROR, or |
19309 SQL_INVALID_HANDLE. |

19310 DIAGNOSTICS |
19311 When SQLSpecialColumns() returns SQL_ERROR or SQL_SUCCESS_WITH_INFO, an associated |
19312 SQLSTATE value can be obtained by calling SQLGetDiagRec() with a HandleType of |
19313 SQL_HANDLE_STMT and a Handle of StatementHandle. The following table lists the SQLSTATE |
19314 values commonly returned by SQLSpecialColumns(). The return code associated with each |
19315 SQLSTATEvalue is SQL_ERROR, except that for SQLSTATEvalues in class 01, the return code is |
19316 SQL_SUCCESS_WITH_INFO. |

19317 01000 — General warning |
19318 Implementation-defined informational message. |

19319 08S01 — Communication link failure |
19320 The communication link to the data source failed before the function completed processing. |

19321 24000 — Invalid cursor state |
19322 A cursor was open on StatementHandle. |

19323 HY000 — General error |
19324 An error occurred for which there was no specific SQLSTATE and for which no |
19325 implementation-specific SQLSTATE was defined. The error message returned by |
19326 SQLGetDiagRec() in the *MessageTextbuffer describes the error and its cause. |

Data Management: X/Open Database Connectivity (XDBC), Version 2 519

SQLSpecialColumns() CLI v1 Reference Manual Pages

19327 HY001 — Memory allocation error |
19328 The implementation failed to allocate memory required to support execution or completion |
19329 of the function. |

19330 HY008 — Operation canceled |
19331 Asynchronous processing was enabled for StatementHandle. The function was called and |
19332 before it completed execution, SQLCancel() was called on StatementHandle. The function |
19333 was then called again on StatementHandle. |

19334 The function was called and, before it completed execution, SQLCancel() was called on |
19335 StatementHandle from a different thread in a multithread application. |

19336 HY009 — Invalid use of null pointer |
19337 TableName was a null pointer. |

19338 The SQL_ATTR_METADATA_IDstatement attribute was set to SQL_TRUE, CatalogName |
19339 was a null pointer, and the SQL_CATALOG_NAME option of SQLGetInfo() returns that |
19340 catalog names are supported. |

19341 The SQL_ATTR_METADATA_ID statement attribute was set to SQL_TRUE, and |
19342 SchemaName or TableName was a null pointer. |

19343 HY010 — Function sequence error |
19344 An asynchronously executing function (not this one) was called for StatementHandle and |
19345 was still executing when this function was called. |

19346 SQLBulkOperations(), SQLExecDirect(), SQLExecute(), or SQLSetPos() was called for |
19347 StatementHandle and returned SQL_NEED_DATA.This function was called before data was |
19348 sent for all data-at-execution parameters or columns. |

19349 HY090 — Invalid string or buffer length |
19350 The value of one of the length arguments was less than 0, but not equal to SQL_NTS. |

19351 The value of one of the length arguments exceeded the maximum length value for the |
19352 corresponding name. The maximum length of each name can be obtained by calling |
19353 SQLGetInfo() with the following options: SQL_MAX_CATALOG_NAME_LEN, |
19354 SQL_MAX_SCHEMA_NAME_LEN, or SQL_MAX_TABLE_NAME_LEN. |

19355 HY097 — Column type out of range |
19356 IdentifierType was invalid. |

19357 HY098 — Scope type out of range |
19358 Scope was invalid. |

19359 HY099 — Nullable type out of range |
19360 Nullable was invalid. |

19361 HYC00 — Optional feature not implemented |
19362 A catalog was specified and the implementation does not support catalogs. |

19363 A schema was specified and the implementation does not support schemas. |

19364 The data source does not support the combination of the current settings of the |
19365 SQL_ATTR_CONCURRENCY and SQL_ATTR_CURSOR_TYPE statement attributes. |

19366 The SQL_ATTR_USE_BOOKMARKS statement attribute was set to SQL_UB_VARIABLE, |
19367 and the SQL_ATTR_CURSOR_TYPE statement attribute was set to a cursor type for which |
19368 the data source does not support bookmarks.

19369 HYT00 — Timeout expired
19370 The query timeout period expired before the data source returned the requested result set.
19371 The timeout period is set through SQLSetStmtAttr(), SQL_ATTR_QUERY_TIMEOUT.

520 Direct Review (Build ID 96KAV) (Draft XDBC.33, August 1996)

Reference Manual Pages CLI v1 SQLSpecialColumns()

19372 HYT01 — Connection timeout expired
19373 The connection timeout period expired before the data source responded to the request. The
19374 connection timeout period is set through SQLSetConnectAttr(),
19375 SQL_ATTR_CONNECTION_TIMEOUT.

19376 IM001 — Function not supported
19377 The function is not supported on the current connection to the data source.

19378 COMMENTS
19379 SQLSpecialColumns() retrieves the following information concerning TableName:

19380 • The optimal set of columns that uniquely identifies a row in the table.

19381 • Columns that are automatically updated when any value in the row is updated by a
19382 transaction.

19383 When IdentifierType is SQL_BEST_ROWID, SQLSpecialColumns() returns the column or columns
19384 that uniquely identify each row in the table. These columns can always be used in a select-list or
19385 WHERE clause. This effect cannot be achieved by calling SQLColumns(), which does not return |
19386 data-source-specific pseudo-columns that may be necessary to uniquely identify each row.

19387 If there are no columns that uniquely identify each row in the table, SQLSpecialColumns() returns |
19388 a row-set with no rows; a subsequent call to SQLFetch() or SQLFetchScroll() on the statement
19389 returns SQL_NO_DATA.

19390 If IdentifierType, Scope , or Nullable specify characteristics that are not supported by the data
19391 source, SQLSpecialColumns() returns an empty result set. |

19392 If the SQL_ATTR_METADATA_IDstatement attribute is set to SQL_TRUE, the CatalogName ,
19393 SchemaName, and TableName arguments are treated as identifiers, so cannot be set to a null
19394 pointer in certain situations. (For more information, see Section 7.4 on page 69.)

19395 SQLSpecialColumns() returns the results as a standard result set, ordered by SCOPE.

19396 To determine the actual length of the COLUMN_NAME column, an application can call
19397 SQLGetInfo() with the SQL_MAX_COLUMN_NAME_LEN option.

19398 The following table lists the columns in the result set. Additional columns beyond column 8
19399 (PSEUDO_COLUMN) can be defined by the implementation. An application should gain access |
19400 to implementation-defined columns by counting down from the end of the result set rather than |
19401 by specifying an explicit ordinal position; see Section 7.3 on page 68.

19402 Col.
19403 Column Name No. Data Type Comments
19404 The actual scope of this rowid. The valid
19405 values and their meanings are the same as
19406 those defined for the Scope argument. NULL
19407 is returned when IdentifierType is
19408 SQL_ROWVER.

SCOPE 1 Smallint

Data Management: X/Open Database Connectivity (XDBC), Version 2 521

SQLSpecialColumns() CLI v1 Reference Manual Pages

19409 Varchar
19410 not NULL

Column identifier. This is an empty string
for unnamed columns.

COLUMN_NAME 2

19411 Smallint
19412 not NULL

SQL data type. This can be an XDBC SQL |
data type or an implementation-defined |

19413 data type. For a list of valid XDBC SQL data |
19414 types, see Section D.1 on page 556.

DATA_TYPE 3

19415 Varchar
19416 not NULL

Data source-dependent data type name; for
example, ‘‘CHAR’’, ‘‘VARCHAR’’,

19417 ‘‘MONEY’’, ‘‘LONG VARBINARY’’, or
19418 ‘‘CHAR () FOR BIT DATA’’.

TYPE_NAME 4

19419 The size of the column on the data source, as
19420 defined in Section D.3.1 on page 562.

COLUMN_SIZE 5 Integer

19421 The length in octets of data transferred on an |
19422 SQLGetData() or SQLFetch() operation if
19423 SQL_C_DEFAULT is specified. For numeric
19424 data, this size may be different from the size
19425 of the data stored on the data source. This
19426 value is the same as the COLUMN_SIZE
19427 column for character or binary data. For
19428 more information, see Section D.3 on page
19429 562.

BUFFER_LENGTH 6 Integer

19430 The decimal digits of the column on the data
19431 source. NULL is returned for data types
19432 where decimal digits is not applicable. For
19433 more information concerning decimal digits,
19434 see Section D.3 on page 562.

DECIMAL_DIGITS 7 Smallint

19435 Indicates whether the column is a pseudo-
19436 column:

19437 SQL_PC_UNKNOWN
19438 SQL_PC_NOT_PSEUDO
19439 SQL_PC_PSEUDO

19440 Portable applications should not quote the
19441 names of pseudo-columns.

PSEUDO_COLUMN 8 Smallint

19442 Once the application retrieves values for SQL_BEST_ROWID, the application can use these
19443 values to reselect that row within the defined scope. Such a SELECT statement returns either no
19444 rows or one row.

19445 If an application reselects a row based on the rowid column or columns and the row is not
19446 found, then the application can assume that the row was deleted or the rowid columns were
19447 modified. The opposite is not true: even if the rowid has not changed, the other columns in the
19448 row may have changed.

19449 Columns returned for column type SQL_BEST_ROWID are useful for applications that need to
19450 scroll forward and backward within a result set to retrieve the most recent data from a set of
19451 rows. The column or columns of the rowid are guaranteed not to change while positioned on
19452 that row.

19453 The column or columns of the rowid may remain valid even when the cursor is not positioned
19454 on the row; the application can determine this by checking the SCOPE column in the result set.

522 Direct Review (Build ID 96KAV) (Draft XDBC.33, August 1996)

Reference Manual Pages CLI v1 SQLSpecialColumns()

19455 Columns returned for column type SQL_ROWVER are useful for applications that need the
19456 ability to check if any columns in a given row have been updated while the row was reselected
19457 using the rowid. For example, after reselecting a row using rowid, the application can compare
19458 the previous values in the SQL_ROWVER columns to the ones just fetched. If the value in a
19459 SQL_ROWVER column differs from the previous value, the application can alert the user that
19460 data on the display has changed.

19461 SEE ALSO

19462 For information about See

19463 Overview of catalog functions Chapter 7
19464 Binding a buffer to a column in a result set SQLBindCol()
19465 Canceling statement processing SQLCancel()
19466 Returning the columns in a table or tables SQLColumns()
19467 Fetching a block of data or scrolling through a result set SQLFetchScroll()
19468 Fetching a single row or a block of data in a forward-only
19469 direction

SQLFetch()

19470 Returning the columns of a primary key SQLPrimaryKeys()

19471 CHANGE HISTORY

19472 Version 2
19473 Revised generally. See Alignment with Popular Implementations on page 2.

Data Management: X/Open Database Connectivity (XDBC), Version 2 523

SQLStatistics() ISO 92 Reference Manual Pages

19474 NAME
19475 SQLStatistics — Retrieve as a result set a list of statistics about a single table and the indexes
19476 associated with it.

19477 SYNOPSIS
19478 SQLRETURN SQLStatistics(
19479 SQLHSTMTStatementHandle ,
19480 SQLCHAR * CatalogName ,
19481 SQLSMALLINT NameLength1 ,
19482 SQLCHAR * SchemaName,
19483 SQLSMALLINT NameLength2 ,
19484 SQLCHAR * TableName ,
19485 SQLSMALLINT NameLength3 ,
19486 SQLUSMALLINT Unique ,
19487 SQLUSMALLINT Accuracy); |

19488 ARGUMENTS

19489 StatementHandle [Input] |
19490 Statement handle. |

19491 CatalogName [Input]
19492 Catalog name. If the data source supports catalogs, an empty string denotes those tables
19493 that do not have catalogs.

19494 If the SQL_ATTR_METADATA_ID statement attribute is SQL_TRUE, this argument is |
19495 interpreted as specified in Identifier (ID) Arguments on page 72. If it is SQL_FALSE, this |
19496 argument is interpreted as specified in Ordinary Arguments (OA) on page 71. |

19497 NameLength1 [Input] |
19498 Length of *CatalogName. |

19499 SchemaName [Input]
19500 Schema name. If the data source supports schemas, an empty string denotes those tables
19501 that do not have schemas.

19502 If the SQL_ATTR_METADATA_ID statement attribute is SQL_TRUE, this argument is |
19503 interpreted as specified in Identifier (ID) Arguments on page 72. If it is SQL_FALSE, this |
19504 argument is interpreted as specified in Ordinary Arguments (OA) on page 71. |

19505 NameLength2 [Input] |
19506 Length of *SchemaName. |

19507 TableName [Input] |
19508 Table name. This argument cannot be a null pointer. |

19509 If the SQL_ATTR_METADATA_ID statement attribute is SQL_TRUE, this argument is |
19510 interpreted as specified in Identifier (ID) Arguments on page 72. If it is SQL_FALSE, this |
19511 argument is interpreted as specified in Ordinary Arguments (OA) on page 71. |

19512 NameLength3 [Input] |
19513 Length of *TableName. |

19514 Unique [Input]
19515 Type of index: SQL_INDEX_UNIQUE or SQL_INDEX_ALL. |

19516 Accuracy [Input]
19517 Indicates the importance of the CARDINALITY and PAGES columns in the result set. The
19518 following options affect the return of the CARDINALITY and PAGES columns only; index
19519 information is returned even if CARDINALITY and PAGES are not returned.

524 Direct Review (Build ID 96KAV) (Draft XDBC.33, August 1996)

Reference Manual Pages ISO 92 SQLStatistics()

19520 SQL_ENSURE
19521 Directs the implementation to unconditionally retrieve the statistics. It is
19522 implementation-defined whether this option is supported.

19523 SQL_QUICK
19524 Directs the implementation to retrieve the CARDINALITY and PAGE only if they are
19525 readily available from the server. In this case, it is possible that the resulting values are
19526 not current.

19527 RETURN VALUE |
19528 SQL_SUCCESS, SQL_SUCCESS_WITH_INFO, SQL_STILL_EXECUTING, SQL_ERROR, or |
19529 SQL_INVALID_HANDLE. |

19530 DIAGNOSTICS |
19531 When SQLStatistics() returns SQL_ERROR or SQL_SUCCESS_WITH_INFO, an associated |
19532 SQLSTATE value can be obtained by calling SQLGetDiagRec() with a HandleType of |
19533 SQL_HANDLE_STMT and a Handle of StatementHandle. The following SQLSTATE values are |
19534 commonly returned by SQLStatistics(). The return code associated with each SQLSTATE value |
19535 is SQL_ERROR, except that for SQLSTATE values in class 01, the return code is |
19536 SQL_SUCCESS_WITH_INFO. |

19537 01000 — General warning |
19538 Implementation-defined informational message. |

19539 08S01 — Communication link failure |
19540 The communication link to the data source failed before the function completed processing. |

19541 24000 — Invalid cursor state |
19542 A cursor was open on StatementHandle. |

19543 HY000 — General error |
19544 An error occurred for which there was no specific SQLSTATE and for which no |
19545 implementation-specific SQLSTATE was defined. The error message returned by |
19546 SQLGetDiagRec() in the *MessageTextbuffer describes the error and its cause. |

19547 HY001 — Memory allocation error |
19548 The implementation failed to allocate memory required to support execution or completion |
19549 of the function. |

19550 HY008 — Operation canceled |
19551 Asynchronous processing was enabled for StatementHandle. The function was called and |
19552 before it completed execution, SQLCancel() was called on StatementHandle. The function |
19553 was then called again on StatementHandle. |

19554 The function was called and, before it completed execution, SQLCancel() was called on |
19555 StatementHandle from a different thread in a multithread application. |

19556 HY009 — Invalid use of null pointer |
19557 TableName was a null pointer. |

19558 The SQL_ATTR_METADATA_IDstatement attribute was set to SQL_TRUE, CatalogName |
19559 was a null pointer, and the SQL_CATALOG_NAME option of SQLGetInfo() returns that |
19560 catalog names are supported. |

19561 The SQL_ATTR_METADATA_ID statement attribute was set to SQL_TRUE, and |
19562 SchemaName or TableName was a null pointer. |

19563 HY010 — Function sequence error |
19564 An asynchronously executing function (not this one) was called for StatementHandle and |
19565 was still executing when this function was called. |

Data Management: X/Open Database Connectivity (XDBC), Version 2 525

SQLStatistics() ISO 92 Reference Manual Pages

19566 SQLBulkOperations(), SQLExecDirect(), SQLExecute(), or SQLSetPos() was called for |
19567 StatementHandle and returned SQL_NEED_DATA.This function was called before data was |
19568 sent for all data-at-execution parameters or columns. |

19569 HY090 — Invalid string or buffer length |
19570 The value of one of the name length arguments was less than 0, but not equal to SQL_NTS. |

19571 The value of one of the name length arguments exceeded the maximum length value for the |
19572 corresponding name. |

19573 HY100 — Uniqueness option type out of range |
19574 Unique was invalid.

19575 HY101 — Accuracy option type out of range |
19576 Accuracy was invalid. |

19577 HYC00 — Optional feature not implemented |
19578 A catalog was specified and the implementation does not support catalogs. |

19579 A schema was specified and the implementation does not support schemas. |

19580 The data source does not support the combination of the current settings of the
19581 SQL_ATTR_CONCURRENCY and SQL_ATTR_CURSOR_TYPE statement attributes.

19582 The SQL_ATTR_USE_BOOKMARKS statement attribute was set to SQL_UB_VARIABLE,
19583 and the SQL_ATTR_CURSOR_TYPE statement attribute was set to a cursor type for which
19584 the data source does not support bookmarks.

19585 HYT00 — Timeout expired
19586 The query timeout period expired before the data source returned the requested result set.
19587 The timeout period is set through SQLSetStmtAttr(), SQL_ATTR_QUERY_TIMEOUT.

19588 HYT01 — Connection timeout expired
19589 The connection timeout period expired before the data source responded to the request. The
19590 connection timeout period is set through SQLSetConnectAttr(),
19591 SQL_ATTR_CONNECTION_TIMEOUT.

19592 IM001 — Function not supported
19593 The function is not supported on the current connection to the data source.

19594 COMMENTS
19595 SQLStatistics() returns information about a single table as a result set, ordered by |
19596 NON_UNIQUE, TYPE, INDEX_QUALIFIER, INDEX_NAME, and ORDINAL_POSITION. The
19597 result set combines statistics information (in the CARDINALITY and PAGES columns of the
19598 result set) for the table with information about each index. •

19599 To determine the actual lengths of the TABLE_CAT, TABLE_SCHEM, TABLE_NAME, and
19600 COLUMN_NAME columns, an application can call SQLGetInfo() with the
19601 SQL_MAX_CATALOG_NAME_LEN, SQL_MAX_SCHEMA_NAME_LEN,
19602 SQL_MAX_TABLE_NAME_LEN,and SQL_MAX_COLUMN_NAME_LEN options.

526 Direct Review (Build ID 96KAV) (Draft XDBC.33, August 1996)

Reference Manual Pages ISO 92 SQLStatistics()

19603 The following table lists the columns in the result set. Additional columns beyond column 13
19604 (FILTER_CONDITION) can be defined by the implementation. An application should gain |
19605 access to implementation-defined columns by counting down from the end of the result set |
19606 rather than by specifying an explicit ordinal position; see Section 7.3 on page 68.

19607 Col.
19608 Column Name No. Data Type Comments
19609 Catalog identifier of the table to which the
19610 statistic or index applies; NULL if not applicable
19611 to the data source. If a data source supports
19612 catalogs, it returns an empty string for those
19613 tables that do not have catalogs.

TABLE_CAT 1 Varchar

19614 Schema identifier of the table to which the
19615 statistic or index applies; NULL if not applicable
19616 to the data source. If a data source supports
19617 schemas, it returns an empty string for those
19618 tables that do not have schemas.

TABLE_SCHEM 2 Varchar

19619 Varchar
19620 not NULL

Table identifier of the table to which the statistic
or index applies.

TABLE_NAME 3

19621 SQL_TRUE if the index values can be
19622 nonunique. SQL_FALSE if the index values
19623 must be unique. NULL is returned if TYPE is
19624 SQL_TABLE_STAT.

NON_UNIQUE 4 Smallint

19625 The identifier that is used to qualify the index
19626 name doing a DROP INDEX; NULL is returned
19627 if an index qualifier is not supported by the data
19628 source or if TYPE is SQL_TABLE_STAT. If a
19629 non-null value is returned in this column, it
19630 must be used to qualify the index name on a
19631 DROP INDEX statement; otherwise the
19632 TABLE_SCHEM should be used to qualify the
19633 index name.

INDEX_QUALIFIER 5 Varchar

19634 Index identifier; NULL is returned if TYPE is
19635 SQL_TABLE_STAT.

INDEX_NAME 6 Varchar

19636 Smallint
19637 not NULL

The type of information being returned:

SQL_TABLE_STAT indicates a statistic for the
19638 table (in the CARDINALITY or PAGES column).

19639 SQL_INDEX_BTREE indicates a B-Tree index.

19640 SQL_INDEX_CLUSTERED indicates a clustered
19641 index.

19642 SQL_INDEX_CONTENT indicates a content
19643 index.

19644 SQL_INDEX_HASHED indicates a hashed
19645 index.

TYPE 7

Data Management: X/Open Database Connectivity (XDBC), Version 2 527

SQLStatistics() ISO 92 Reference Manual Pages

19646 SQL_INDEX_OTHER indicates another type of
19647 index.

19648 Column sequence number in index (starting
19649 with 1); NULL is returned if TYPE is
19650 SQL_TABLE_STAT.

ORDINAL_POSITION 8 Smallint

19651 Column identifier. If the column is based on an
19652 expression, such as SALARY + BENEFITS, the
19653 expression is returned; if the expression cannot
19654 be determined, an empty string is returned.
19655 NULL is returned if TYPE is SQL_TABLE_STAT.

COLUMN_NAME 9 Varchar

19656 Sort sequence for the column; ‘‘A’’ for ascending;
19657 ‘‘D’’ for descending; NULL is returned if the
19658 data source does not support a column sort
19659 sequence or if TYPE is SQL_TABLE_STAT.

ASC_OR_DESC 10 Char(1)

19660 Cardinality of table or index; number of rows in
19661 table if TYPE is SQL_TABLE_STAT; number of
19662 unique values in the index if TYPE is not
19663 SQL_TABLE_STAT; NULL is returned if the
19664 value is not available from the data source.

CARDINALITY 11 Integer

19665 Number of pages used to store the index or
19666 table; number of pages for the table if TYPE is
19667 SQL_TABLE_STAT; number of pages for the
19668 index if TYPE is not SQL_TABLE_STAT;NULL
19669 is returned if the value is not available from the
19670 data source, or if not applicable to the data
19671 source.

PAGES 12 Integer

19672 If the index is a filtered index, this is the filter
19673 condition, such as SALARY > 30000; if the filter
19674 condition cannot be determined, this is an empty
19675 string.

19676 NULL if the index is not a filtered index, it
19677 cannot be determined whether the index is a
19678 filtered index, or TYPE is SQL_TABLE_STAT.

FILTER_CONDITION 13 Varchar

19679 If the row in the result set corresponds to a table, the implementation sets TYPE to |
19680 SQL_TABLE_STAT and sets NON_UNIQUE, INDEX_QUALIFIER, INDEX_NAME,
19681 ORDINAL_POSITION, COLUMN_NAME, and ASC_OR_DESC to NULL. If CARDINALITY or
19682 PAGES are not available from the data source, the implementation sets them to NULL. |

19683 SEE ALSO

19684 For information about See

19685 Overview of catalog functions Chapter 7
19686 Binding a buffer to a column in a result set SQLBindCol()
19687 Canceling statement processing SQLCancel()

528 Direct Review (Build ID 96KAV) (Draft XDBC.33, August 1996)

Reference Manual Pages ISO 92 SQLStatistics()

19688 Fetching a block of data or scrolling through a result set SQLFetchScroll()
19689 Fetching a single row or a block of data in a forward-only
19690 direction.

SQLFetch()

19691 Returning the columns of foreign keys SQLForeignKeys()
19692 Returning the columns of a primary key SQLPrimaryKeys()

19693 CHANGE HISTORY

19694 Version 2
19695 Revised generally. See Alignment with Popular Implementations on page 2.

Data Management: X/Open Database Connectivity (XDBC), Version 2 529

SQLTablePrivileges() XDBC Reference Manual Pages

19696 NAME
19697 SQLTablePrivileges — Return as a result set a list of tables and the privileges associated with
19698 each table.

19699 SYNOPSIS
19700 SQLRETURN SQLTablePrivileges(
19701 SQLHSTMTStatementHandle ,
19702 SQLCHAR * CatalogName ,
19703 SQLSMALLINT NameLength1 ,
19704 SQLCHAR * SchemaName,
19705 SQLSMALLINT NameLength2 ,
19706 SQLCHAR * TableName ,
19707 SQLSMALLINT NameLength3);

19708 ARGUMENTS

19709 StatementHandle [Input] |
19710 Statement handle. |

19711 CatalogName [Input]
19712 Table catalog. If a data source supports catalogs, an empty string denotes those tables that
19713 do not have catalogs.

19714 If the SQL_ATTR_METADATA_ID statement attribute is SQL_TRUE, this argument is |
19715 interpreted as specified in Identifier (ID) Arguments on page 72. If it is SQL_FALSE, this |
19716 argument is interpreted as specified in Ordinary Arguments (OA) on page 71. |

19717 NameLength1 [Input] |
19718 Length of *CatalogName. |

19719 SchemaName [Input] |
19720 String search pattern for schema names. If a data source supports schemas, an empty string |
19721 denotes those tables that do not have schemas. |

19722 If the SQL_ATTR_METADATA_ID statement attribute is SQL_TRUE, this argument is |
19723 interpreted as specified in Identifier (ID) Arguments on page 72. If it is SQL_FALSE, this |
19724 argument is interpreted as specified in Pattern Value (PV) Arguments on page 71 and the |
19725 application may use a search pattern. |

19726 NameLength2 [Input] |
19727 Length of *SchemaName. |

19728 TableName [Input] |
19729 String search pattern for table names. |

19730 If the SQL_ATTR_METADATA_ID statement attribute is SQL_TRUE, this argument is |
19731 interpreted as specified in Identifier (ID) Arguments on page 72. If it is SQL_FALSE, this |
19732 argument is interpreted as specified in Pattern Value (PV) Arguments on page 71 and the |
19733 application may use a search pattern. |

19734 NameLength3 [Input] |
19735 Length of *TableName. |

19736 RETURN VALUE |
19737 SQL_SUCCESS, SQL_SUCCESS_WITH_INFO, SQL_STILL_EXECUTING, SQL_ERROR, or
19738 SQL_INVALID_HANDLE. |

19739 DIAGNOSTICS |
19740 When SQLTablePrivileges() returns SQL_ERROR or SQL_SUCCESS_WITH_INFO, an associated |
19741 SQLSTATE value may be obtained by calling SQLGetDiagRec() with a HandleType of |

530 Direct Review (Build ID 96KAV) (Draft XDBC.33, August 1996)

Reference Manual Pages XDBC SQLTablePrivileges()

19742 SQL_HANDLE_STMT and a Handle of StatementHandle. The following table lists the SQLSTATE
19743 values commonly returned by SQLTablePrivileges(). The return code associated with each |
19744 SQLSTATEvalue is SQL_ERROR, except that for SQLSTATEvalues in class 01, the return code is |
19745 SQL_SUCCESS_WITH_INFO.

19746 01000 — General warning |
19747 Implementation-defined informational message. |

19748 08S01 — Communication link failure |
19749 The communication link to the data source failed before the function completed processing. |

19750 24000 — Invalid cursor state |
19751 A cursor was open on StatementHandle. |

19752 HY000 — General error |
19753 An error occurred for which there was no specific SQLSTATE and for which no |
19754 implementation-specific SQLSTATE was defined. The error message returned by |
19755 SQLGetDiagRec() in the *MessageTextbuffer describes the error and its cause. |

19756 HY001 — Memory allocation error |
19757 The implementation failed to allocate memory required to support execution or completion |
19758 of the function. |

19759 HY008 — Operation canceled |
19760 Asynchronous processing was enabled for StatementHandle. The function was called and |
19761 before it completed execution, SQLCancel() was called on StatementHandle. The function |
19762 was then called again on StatementHandle. |

19763 The function was called and, before it completed execution, SQLCancel() was called on |
19764 StatementHandle from a different thread in a multithread application. |

19765 HY009 — Invalid use of null pointer |
19766 The SQL_ATTR_METADATA_IDstatement attribute was set to SQL_TRUE, CatalogName |
19767 was a null pointer, and the SQL_CATALOG_NAME option of SQLGetInfo() returns that |
19768 catalog names are supported. |

19769 The SQL_ATTR_METADATA_ID statement attribute was set to SQL_TRUE, and
19770 SchemaName or TableName argument was a null pointer.

19771 HY010 — Function sequence error
19772 An asynchronously executing function (not this one) was called for StatementHandle and |
19773 was still executing when this function was called. |

19774 SQLBulkOperations(), SQLExecDirect(), SQLExecute(), or SQLSetPos() was called for |
19775 StatementHandle and returned SQL_NEED_DATA.This function was called before data was |
19776 sent for all data-at-execution parameters or columns. |

19777 HY090 — Invalid string or buffer length |
19778 The value of one of the name length arguments was less than 0, but not equal to SQL_NTS.

19779 The value of one of the name length arguments exceeded the maximum length value for the
19780 corresponding qualifier or name.

19781 HYC00 — Optional feature not implemented
19782 A catalog was specified and the implementation does not support catalogs.

19783 A schema was specified and the implementation does not support schemas.

19784 A string search pattern was specified for the table schema, table name, or column name and
19785 the data source does not support search patterns for one or more of those arguments.

Data Management: X/Open Database Connectivity (XDBC), Version 2 531

SQLTablePrivileges() XDBC Reference Manual Pages

19786 The data source does not support the combination of the current settings of the |
19787 SQL_ATTR_CONCURRENCY and SQL_ATTR_CURSOR_TYPE statement attributes. |

19788 The SQL_ATTR_USE_BOOKMARKS statement attribute was set to SQL_UB_VARIABLE, |
19789 and the SQL_ATTR_CURSOR_TYPE statement attribute was set to a cursor type for which |
19790 the data source does not support bookmarks. |

19791 HYT00 — Timeout expired |
19792 The query timeout period expired before the data source returned the result set. The |
19793 timeout period is set through SQLSetStmtAttr(), SQL_ATTR_QUERY_TIMEOUT. |

19794 HYT01 — Connection timeout expired |
19795 The connection timeout period expired before the data source responded to the request. The |
19796 connection timeout period is set through SQLSetConnectAttr(), |
19797 SQL_ATTR_CONNECTION_TIMEOUT. |

19798 IM001 — Function not supported |
19799 The function is not supported on the current connection to the data source. |

19800 COMMENTS |
19801 SchemaName and TableName accept search patterns, as defined in Pattern Value (PV) Arguments |
19802 on page 71 and the application may use a search pattern.

19803 SQLTablePrivileges() returns the results as a standard result set, ordered by TABLE_CAT,
19804 TABLE_SCHEM, TABLE_NAME,and PRIVILEGE. •

19805 To determine the actual lengths of the TABLE_CAT, TABLE_SCHEM, and TABLE_NAME
19806 columns, an application can call SQLGetInfo() with the SQL_MAX_CATALOG_NAME_LEN,
19807 SQL_MAX_SCHEMA_NAME_LEN, and SQL_MAX_TABLE_NAME_LENoptions.

19808 The following table lists the columns in the result set. Additional columns beyond column 7
19809 (IS_GRANTABLE) can be defined by the implementation. An application should gain access to |
19810 implementation-defined columns by counting down from the end of the result set rather than by |
19811 specifying an explicit ordinal position; see Section 7.3 on page 68. |

19812 Col.
19813 Column Name No.Data Type Comments
19814 Catalog identifier; NULL if not applicable to the data |
19815 source. If a data source supports catalogs, it returns an |
19816 empty string for those tables that do not have catalogs. |

TABLE_CAT 1 Varchar

19817 Schema identifier; NULL if not applicable to the data |
19818 source. If a data source supports schemas, it returns an |
19819 empty string for those tables that do not have schemas. |

TABLE_SCHEM 2 Varchar

19820 Varchar |
19821 not NULL |

TABLE_NAME 3 Table identifier.

532 Direct Review (Build ID 96KAV) (Draft XDBC.33, August 1996)

Reference Manual Pages XDBC SQLTablePrivileges()

19822 Identifier of the user who granted the privilege; NULL if |
19823 not applicable to the data source. For all rows in which |
19824 the value in the GRANTEE column is the owner of the |
19825 object, the GRANTOR column is ‘‘_SYSTEM’’. |

GRANTOR 4 Varchar

19826 Varchar |
19827 not NULL |

Identifier of the user to whom the privilege was granted. |GRANTEE 5

19828 Varchar |
19829 not NULL |

Identifies the table privilege. May be one of the |
following or a data-source-specific privilege. |

PRIVILEGE 6

19830 SELECT: The grantee is permitted to retrieve data for |
19831 one or more columns of the table. |

19832 INSERT: The grantee is permitted to insert new rows |
19833 containing data for one or more columns into to the |
19834 table. |

19835 UPDATE: The grantee is permitted to update the data in |
19836 one or more columns of the table. |

19837 DELETE: The grantee is permitted to delete rows of data |
19838 from the table. |

19839 REFERENCES: The grantee is permitted to refer to one |
19840 or more columns of the table within a constraint (for |
19841 example, a unique, referential, or table check constraint). |

19842 The scope of action permitted the grantee by a given |
19843 table privilege is data source-dependent. For example, |
19844 the UPDATE privilege might permit the grantee to |
19845 update all columns in a table on one data source and |
19846 only those columns for which the grantor has the |
19847 UPDATEprivilege on another data source. |

19848 Indicates whether the grantee is permitted to grant the |
19849 privilege to other users; ‘‘YES’’, ‘‘NO’’, or NULL if |
19850 unknown or not applicable to the data source. |

IS_GRANTABLE 7 Varchar

19851 A privilege is either grantable or not grantable, but not |
19852 both. The result set returned by SQLColumnPrivileges() |
19853 does not contain multiple rows for which all columns |
19854 except the IS_GRANTABLE column contain the same |
19855 value. |

19856 SEE ALSO

19857 For information about See

19858 Overview of catalog functions Chapter 7
19859 Binding a buffer to a column in a result set SQLBindCol()
19860 Canceling statement processing SQLCancel()
19861 Returning privileges for a column or columns SQLColumnPrivileges()

Data Management: X/Open Database Connectivity (XDBC), Version 2 533

SQLTablePrivileges() XDBC Reference Manual Pages

19862 Returning the columns in a table or tables SQLColumns()
19863 Fetching a block of data or scrolling through a result set SQLFetchScroll()
19864 Fetching a single row or a block of data in a forward-only
19865 direction

SQLFetch()

19866 Returning table statistics and indexes SQLStatistics()
19867 Returning a list of tables in a data source SQLTables()

19868 CHANGE HISTORY

19869 Version 2
19870 Function added in this version.

534 Direct Review (Build ID 96KAV) (Draft XDBC.33, August 1996)

Reference Manual Pages CLI v1 SQLTables()

19871 NAME
19872 SQLTables — Return as a result set the list of table, catalog, or schema names, and table types,
19873 stored in a specified data source.

19874 SYNOPSIS
19875 SQLRETURN SQLTables(
19876 SQLHSTMTStatementHandle ,
19877 SQLCHAR * CatalogName ,
19878 SQLSMALLINT NameLength1 ,
19879 SQLCHAR * SchemaName,
19880 SQLSMALLINT NameLength2 ,
19881 SQLCHAR * TableName ,
19882 SQLSMALLINT NameLength3 ,
19883 SQLCHAR * TableType ,
19884 SQLSMALLINT NameLength4);

19885 ARGUMENTS

19886 StatementHandle [Input] |
19887 Statement handle for retrieved results. |

19888 CatalogName [Input] |
19889 Catalog name. If a data source supports catalogs, an empty string denotes those tables that
19890 do not have catalogs. |

19891 If the SQL_ATTR_METADATA_ID statement attribute is SQL_TRUE, this argument is |
19892 interpreted as specified in Identifier (ID) Arguments on page 72. If it is SQL_FALSE, this |
19893 argument is interpreted as specified in Pattern Value (PV) Arguments on page 71 and the |
19894 application may use a search pattern. |

19895 NameLength1 [Input] |
19896 Length of *CatalogName. |

19897 SchemaName [Input] |
19898 String search pattern for schema names. If a data source supports schemas, an empty string |
19899 denotes those tables that do not have schemas. |

19900 If the SQL_ATTR_METADATA_ID statement attribute is SQL_TRUE, this argument is |
19901 interpreted as specified in Identifier (ID) Arguments on page 72. If it is SQL_FALSE, this |
19902 argument is interpreted as specified in Pattern Value (PV) Arguments on page 71 and the |
19903 application may use a search pattern. |

19904 NameLength2 [Input] |
19905 Length of *SchemaName. |

19906 TableName [Input] |
19907 String search pattern for table names. |

19908 If the SQL_ATTR_METADATA_ID statement attribute is SQL_TRUE, this argument is |
19909 interpreted as specified in Identifier (ID) Arguments on page 72. If it is SQL_FALSE, this |
19910 argument is interpreted as specified in Pattern Value (PV) Arguments on page 71 and the |
19911 application may use a search pattern. |

19912 NameLength3 [Input] |
19913 Length of *TableName. |

19914 TableType[Input]
19915 List of table types to match.

Data Management: X/Open Database Connectivity (XDBC), Version 2 535

SQLTables() CLI v1 Reference Manual Pages

19916 This argument is interpreted as specified in Value List (VL) Arguments on page 72, |
19917 regardless of the SQL_ATTR_METADATA_IDstatement attribute. |

19918 NameLength4 [Input]
19919 Length of *TableType. |

19920 RETURN VALUE
19921 SQL_SUCCESS, SQL_SUCCESS_WITH_INFO, SQL_STILL_EXECUTING, SQL_ERROR or
19922 SQL_INVALID_HANDLE.

19923 DIAGNOSTICS
19924 When SQLTables() returns SQL_ERROR or SQL_SUCCESS_WITH_INFO, an associated |
19925 SQLSTATE value can be obtained by calling SQLGetDiagRec() with a HandleType of |
19926 SQL_HANDLE_STMT and a Handle of StatementHandle. The following table lists the SQLSTATE
19927 values commonly returned by SQLTables(). The return code associated with each SQLSTATE |
19928 value is SQL_ERROR, except that for SQLSTATE values in class 01, the return code is |
19929 SQL_SUCCESS_WITH_INFO. |

19930 01000 — General warning |
19931 Implementation-defined informational message. |

19932 08S01 — Communication link failure |
19933 The communication link to the data source failed before the function completed processing. |

19934 24000 — Invalid cursor state |
19935 A cursor was open on StatementHandle. |

19936 HY000 — General error |
19937 An error occurred for which there was no specific SQLSTATE and for which no |
19938 implementation-specific SQLSTATE was defined. The error message returned by |
19939 SQLGetDiagRec() in the *MessageTextbuffer describes the error and its cause. |

19940 HY001 — Memory allocation error |
19941 The implementation failed to allocate memory required to support execution or completion
19942 of the function.

19943 HY008 — Operation canceled |
19944 Asynchronous processing was enabled for StatementHandle. The function was called and |
19945 before it completed execution, SQLCancel() was called on StatementHandle. The function |
19946 was then called again on StatementHandle. |

19947 The function was called and, before it completed execution, SQLCancel() was called on |
19948 StatementHandle from a different thread in a multithread application. |

19949 HY009 — Invalid use of null pointer |
19950 The SQL_ATTR_METADATA_IDstatement attribute was set to SQL_TRUE, CatalogName |
19951 was a null pointer, and the SQL_CATALOG_NAME option of SQLGetInfo() returns that |
19952 catalog names are supported. |

19953 The SQL_ATTR_METADATA_ID statement attribute was set to SQL_TRUE, and |
19954 SchemaName or TableName was a null pointer. |

19955 HY010 — Function sequence error |
19956 An asynchronously executing function (not this one) was called for StatementHandle and |
19957 was still executing when this function was called. |

19958 SQLBulkOperations(), SQLExecDirect(), SQLExecute(), or SQLSetPos() was called for |
19959 StatementHandle and returned SQL_NEED_DATA.This function was called before data was |
19960 sent for all data-at-execution parameters or columns. |

536 Direct Review (Build ID 96KAV) (Draft XDBC.33, August 1996)

Reference Manual Pages CLI v1 SQLTables()

19961 HY090 — Invalid string or buffer length |
19962 The value of one of the length arguments was less than 0, but not equal to SQL_NTS.

19963 The value of one of the name length arguments exceeded the maximum length value for the
19964 corresponding name.

19965 HYC00 — Optional feature not implemented
19966 A catalog was specified and the implementation does not support catalogs.

19967 A schema was specified and the implementation does not support schemas.

19968 A string search pattern was specified for the table schema or table name and the data source
19969 does not support search patterns for one or more of those arguments.

19970 The data source does not support the combination of the current settings of the |
19971 SQL_ATTR_CONCURRENCY and SQL_ATTR_CURSOR_TYPE statement attributes.

19972 The SQL_ATTR_USE_BOOKMARKS statement attribute was set to SQL_UB_VARIABLE,
19973 and the SQL_ATTR_CURSOR_TYPE statement attribute was set to a cursor type for which
19974 the data source does not support bookmarks.

19975 HYT00 — Timeout expired
19976 The query timeout period expired before the data source returned the requested result set.
19977 The timeout period is set through SQLSetStmtAttr(), SQL_ATTR_QUERY_TIMEOUT.

19978 HYT01 — Connection timeout expired
19979 The connection timeout period expired before the data source responded to the request. The
19980 connection timeout period is set through SQLSetConnectAttr(),
19981 SQL_ATTR_CONNECTION_TIMEOUT.

19982 IM001 — Function not supported
19983 The function is not supported on the current connection to the data source.

19984 COMMENTS
19985 SQLTables() lists all tables in the requested range. A user may or may not have SELECT
19986 privileges to any of these tables. To check accessibility, an application can:

19987 • Call SQLGetInfo() and check the SQL_ACCESSIBLE_TABLESinfo value.

19988 • Call SQLTablePrivileges() to check the privileges for each table.

19989 Otherwise, the application must be able to handle a situation where the user selects a table for
19990 which SELECT privileges are not granted.

19991 CatalogName , SchemaName, and TableName accept search patterns.

19992 To support enumeration of catalogs, schemas, and table types, SQLTables() defines the following
19993 special semantics for the CatalogName , SchemaName, TableName, and TableTypearguments:

19994 • If CatalogName is SQL_ALL_CATALOGSand SchemaName and TableName are empty strings,
19995 then the result set contains a list of valid catalogs for the data source. (All columns except the
19996 TABLE_CATcolumn contain NULLs.)

19997 • If SchemaName is SQL_ALL_SCHEMAS and CatalogName and TableName are empty strings,
19998 then the result set contains a list of valid schemas for the data source. (All columns except the
19999 TABLE_SCHEM column contain NULLs.)

20000 • If TableType is SQL_ALL_TABLE_TYPES and CatalogName , SchemaName, and TableName are |
20001 empty strings, then the result set contains a list of valid table types for the data source. (All
20002 columns except the TABLE_TYPE column contain NULLs.)

20003 If TableTypeis not an empty string, it must contain a list of comma-separated values for the types |
20004 of interest; each value may be enclosed in single quotation marks or unquoted. For example, |

Data Management: X/Open Database Connectivity (XDBC), Version 2 537

SQLTables() CLI v1 Reference Manual Pages

20005 "TABLE", "VIEW" or "TABLE, VIEW". An application should always specify the table type in |
20006 upper case; the implementation should convert the table type to whatever case the data source |
20007 needs. If the data source does not support a specified table type, SQLTables() does not return any
20008 results for that type.

20009 SQLTables() returns the results as a standard result set, ordered by TABLE_TYPE, TABLE_CAT,
20010 TABLE_SCHEM, and TABLE_NAME. •

20011 To determine the actual lengths of the TABLE_CAT, TABLE_SCHEM, and TABLE_NAME
20012 columns, an application can call SQLGetInfo() with the SQL_MAX_CATALOG_NAME_LEN,
20013 SQL_MAX_SCHEMA_NAME_LEN, and SQL_MAX_TABLE_NAME_LENoptions.

20014 The following table lists the columns in the result set. Additional columns beyond column 5
20015 (REMARKS) can be defined by the implementation. An application should gain access to |
20016 implementation-defined columns by counting down from the end of the result set rather than by |
20017 specifying an explicit ordinal position; see Section 7.3 on page 68. |

20018 Col.
20019 Column name No. Data type Comments |

20020 Catalog identifier; NULL if not applicable to the |
20021 data source. If a data source supports catalogs, it |
20022 returns an empty string for those tables that do |
20023 not have catalogs. |

TABLE_CAT 1 Varchar

20024 Schema identifier; NULL if not applicable to the |
20025 data source. If a data source supports schemas, it |
20026 returns an empty string for those tables that do |
20027 not have schemas. |

TABLE_SCHEM 2 Varchar

20028 TABLE_NAME 3 Varchar Table identifier.

20029 Table type identifier; one of the following: |
20030 ‘‘TABLE’’, ‘‘VIEW’’, ‘‘SYSTEM TABLE’’, |
20031 ‘‘GLOBAL TEMPORARY’’, ‘‘LOCAL |
20032 TEMPORARY’’, ‘‘ALIAS’’, ‘‘SYNONYM’’ or a |
20033 data source-specific type identifier. |

TABLE_TYPE 4 Varchar

20034 REMARKS 5 Varchar A description of the table.

20035 SEE ALSO

20036 For information about See

20037 Overview of catalog functions Chapter 7
20038 Binding a buffer to a column in a result set SQLBindCol()
20039 Canceling statement processing SQLCancel()
20040 Returning privileges for a column or columns SQLColumnPrivileges()
20041 Returning the columns in a table or tables SQLColumns()
20042 Fetching a block of data or scrolling through a result set SQLFetchScroll()
20043 Fetching a single row or a block of data in a forward-only
20044 direction

SQLFetch()

20045 Returning table statistics and indexes SQLStatistics()

538 Direct Review (Build ID 96KAV) (Draft XDBC.33, August 1996)

Reference Manual Pages CLI v1 SQLTables()

20046 Returning privileges for a table or tables SQLTablePrivileges()

20047 CHANGE HISTORY

20048 Version 2
20049 Function added in this version.

Data Management: X/Open Database Connectivity (XDBC), Version 2 539

Reference Manual Pages

540 Direct Review (Build ID 96KAV) (Draft XDBC.33, August 1996)

20050 Appendix A |

20051 Diagnostic Reference Information |

20052 This appendix contains reference information on all SQLSTATE codes returned by XDBC |
20053 implementations. |

20054 A.1 Class and Subclass Origin |

20055 The SQL_DIAG_CLASS_ORIGIN and SQL_DIAG_SUBCLASS_ORIGIN fields of the diagnostic |
20056 area indicate, for any returned diagnostic, the document that defines its SQLSTATE class and |
20057 subclass, respectively. (For more details, see SQLGetDiagField(). |

20058 Class |

20059 The SQL_DIAG_CLASS_ORIGIN field is set to |

20060 ’XDBC’ if the SQLSTATEclass is ’IM’. |

20061 ’ISO 9075’ for all other SQLSTATE classes of diagnostics defined in this |
20062 specification, because they also appear in the ISO CLI International |
20063 Standard. |

20064 For implementation-defined SQLSTATEs, SQL_DIAG_CLASS_ORIGIN is an implementation- |
20065 defined string that uniquely identifies the vendor and product whose documentation defines the |
20066 class. |

20067 Subclass |

20068 The SQL_DIAG_SUBCLASS_ORIGIN field is set to |

20069 ’XDBC’ for the following SQLSTATEsdefined in this specification: |

20070 01S00 08S01 42S01 HY095 HY105 HYT01 IM006 |
20071 01S01 21S01 42S02 HY097 HY107 IM001 IM007 |
20072 01S02 21S02 42S11 HY098 HY109 IM002 IM008 |
20073 01S06 25S01 42S12 HY099 HY110 IM003 IM010 |
20074 01S07 25S02 42S21 HY100 HY111 IM004 IM011 |
20075 07S01 25S03 42S22 HY101 HYT00 IM005 IM012 |

20076 ’ISO 9075’ for all other diagnostics defined in this specification, because they also |
20077 appear in the ISO CLI International Standard. |

20078 For implementation-defined SQLSTATEs, including implementation-defined subclasses of |
20079 SQLSTATEs defined in this specification, SQL_DIAG_SUBCLASS_ORIGIN is an |
20080 implementation-defined string that uniquely identifies the vendor and product whose |
20081 documentation defines the subclass. |

Data Management: X/Open Database Connectivity (XDBC), Version 2 541

SQLSTATE Cross-reference (Non-normative) Diagnostic Reference Information

20082 A.2 SQLSTATECross-reference (Non-normative) |

20083 The following tables show each case where an SQLSTATE value is defined in the |
20084 DIAGNOSTICS section of a function description in Chapter 21. It is meant to be complete, but |
20085 any inconsistencies between these tables and the function descriptions are to be resolved in favor |
20086 of the function descriptions. |

20087 Additional diagnostics can result from a call to SQLExecDirect(), SQLExecute(), or SQLPrepare() |
20088 based on the SQL statement text. These diagnostics are listed on the respective reference manual |
20089 page and defined in the X/Open SQL specification. |

20090 01000 — General warning |
20091 SQLAllocHandle() SQLBindCol() SQLBindParameter() SQLBrowseConnect() |
20092 SQLBulkOperations() SQLCancel() SQLCloseCursor() SQLColAttribute() |
20093 SQLColumnPrivileges() SQLColumns() SQLConnect() SQLCopyDesc() SQLDataSources() |
20094 SQLDescribeCol() SQLDescribeParam() SQLDisconnect() SQLDriverConnect() SQLDrivers() |
20095 SQLEndTran() SQLExecDirect() SQLExecute() SQLFetch() SQLFetchScroll() SQLForeignKeys() |
20096 SQLFreeStmt() SQLGetConnectAttr() SQLGetCursorName() SQLGetData() SQLGetDescField() |
20097 SQLGetDescRec() SQLGetEnvAttr() SQLGetFunctions() SQLGetInfo() SQLGetStmtAttr() |
20098 SQLGetTypeInfo() SQLMoreResults() SQLNativeSql() SQLNumParams() SQLNumResultCols() |
20099 SQLParamData() SQLPrepare() SQLPrimaryKeys() SQLProcedures() SQLPutData() |
20100 SQLRowCount() SQLSetConnectAttr() SQLSetCursorName() SQLSetDescField() |
20101 SQLSetDescRec() SQLSetEnvAttr() SQLSetPos() SQLSetStmtAttr() SQLSpecialColumns() |
20102 SQLStatistics() SQLTablePrivileges() SQLTables() |

20103 01001 — Cursor operation conflict |
20104 SQLExecDirect() SQLExecute() SQLSetPos() |

20105 01002 — Disconnect error |
20106 SQLDisconnect() |

20107 01004 — String data, right truncation |
20108 SQLBrowseConnect() SQLBulkOperations() SQLColAttribute() SQLDataSources() |
20109 SQLDescribeCol() SQLDriverConnect() SQLDrivers() SQLFetch() SQLFetchScroll() |
20110 SQLGetConnectAttr() SQLGetCursorName() SQLGetData() SQLGetDescField() |
20111 SQLGetDescRec() SQLGetEnvAttr() SQLGetInfo() SQLGetStmtAttr() SQLNativeSql() |
20112 SQLPutData() SQLSetCursorName() SQLSetPos() |

20113 01S00 — Invalid connection string attribute |
20114 SQLBrowseConnect() SQLDriverConnect() |

20115 01S01 — Error in row |
20116 SQLBulkOperations() SQLFetch() SQLSetPos() |

20117 01S02 — Attribute value changed |
20118 SQLBrowseConnect() SQLConnect() SQLDriverConnect() SQLExecDirect() SQLExecute() |
20119 SQLGetTypeInfo() SQLMoreResults() SQLPrepare() SQLSetConnectAttr() SQLSetDescField() |
20120 SQLSetEnvAttr() SQLSetStmtAttr() |

20121 01S06 — Attempt to fetch before the result set returned the first row-set |
20122 SQLFetchScroll() |

20123 01S07 — Fractional truncation |
20124 SQLBulkOperations() SQLExecDirect() SQLExecute() SQLFetch() SQLFetchScroll() |
20125 SQLGetData() SQLSetPos() |

20126 07001 — Wrong number of parameters |
20127 SQLExecDirect() SQLExecute() |

542 Direct Review (Build ID 96KAV) (Draft XDBC.33, August 1996)

Diagnostic Reference Information SQLSTATE Cross-reference (Non-normative)

20128 07002 — COUNT field incorrect |
20129 SQLExecDirect() SQLExecute() |

20130 07005 — Prepared statement not a cursor-specification |
20131 SQLColAttribute() SQLDescribeCol() |

20132 07006 — Restricted data type attribute violation |
20133 SQLBindCol() SQLBindParameter() SQLBulkOperations() SQLExecDirect() SQLExecute() |
20134 SQLFetch() SQLFetchScroll() SQLGetData() SQLParamData() SQLPutData() |
20135 SQLSetDescField() SQLSetDescRec() SQLSetPos() |

20136 07009 — Invalid descriptor index |
20137 SQLBindCol() SQLBindParameter() SQLBulkOperations() SQLColAttribute() SQLDescribeCol() |
20138 SQLDescribeParam() SQLGetData() SQLGetDescField() SQLGetDescRec() SQLSetDescField() |
20139 SQLSetDescRec() |

20140 07S01 — Invalid use of default parameter |
20141 SQLExecDirect() SQLExecute() SQLPutData() |

20142 08001 — Client unable to establish connection |
20143 SQLBrowseConnect() SQLConnect() SQLDriverConnect() |

20144 08002 — Connection name in use |
20145 SQLBrowseConnect() SQLConnect() SQLDriverConnect() |

20146 08003 — Connection does not exist |
20147 SQLAllocHandle() SQLDisconnect() SQLGetConnectAttr() SQLGetInfo() SQLNativeSql() |
20148 SQLSetConnectAttr() |

20149 08003 — Connection not open |
20150 SQLEndTran() |

20151 08004 — Data source rejected the connection |
20152 SQLBrowseConnect() SQLConnect() SQLDriverConnect() |

20153 08007 — Connection failure during transaction |
20154 SQLEndTran() SQLSetConnectAttr() |

20155 08S01 — Communication link failure |
20156 SQLBrowseConnect() SQLColumnPrivileges() SQLColumns() SQLConnect() SQLCopyDesc() |
20157 SQLDescribeCol() SQLDescribeParam() SQLDriverConnect() SQLExecDirect() SQLExecute() |
20158 SQLFetch() SQLFetchScroll() SQLForeignKeys() SQLGetConnectAttr() SQLGetData() |
20159 SQLGetDescField() SQLGetDescRec() SQLGetFunctions() SQLGetInfo() SQLGetTypeInfo() |
20160 SQLMoreResults() SQLNativeSql() SQLNumParams() SQLNumResultCols() SQLParamData() |
20161 SQLPrepare() SQLPrimaryKeys() SQLProcedures() SQLPutData() SQLSetConnectAttr() |
20162 SQLSetDescField() SQLSetDescRec() SQLSetStmtAttr() SQLSpecialColumns() SQLStatistics() |
20163 SQLTablePrivileges() SQLTables() |

20164 21S01 — Insert value list does not match column list |
20165 SQLDescribeParam() |

20166 21S02 — Degree of derived table does not match column list |
20167 SQLBulkOperations() SQLSetPos() |

20168 22001 — String data, right truncation |
20169 SQLBulkOperations() SQLExecDirect() SQLExecute() SQLFetch() SQLFetchScroll() |
20170 SQLPutData() SQLSetPos() |

20171 22002 — Indicator variable required but not supplied |
20172 SQLExecDirect() SQLExecute() SQLFetch() SQLFetchScroll() SQLGetData() |

Data Management: X/Open Database Connectivity (XDBC), Version 2 543

SQLSTATE Cross-reference (Non-normative) Diagnostic Reference Information

20173 22003 — Numeric value out of range |
20174 SQLBulkOperations() SQLFetch() SQLFetchScroll() SQLGetData() SQLPutData() SQLSetPos() |

20175 22007 — Invalid date/time format |
20176 SQLBulkOperations() SQLFetch() SQLFetchScroll() SQLGetData() SQLNativeSql() |
20177 SQLPutData() SQLSetPos() |

20178 22008 — Date/time field overflow |
20179 SQLBulkOperations() SQLPutData() SQLSetPos() |

20180 22012 — Division by zero |
20181 SQLFetch() SQLFetchScroll() SQLGetData() SQLPutData() |

20182 22015 — Interval field overflow |
20183 SQLBulkOperations() SQLFetch() SQLFetchScroll() SQLGetData() SQLPutData() SQLSetPos() |

20184 22018 — Invalid character value for cast specification |
20185 SQLBulkOperations() SQLFetch() SQLFetchScroll() SQLPutData() SQLSetPos() |

20186 22018 — Invalid character value |
20187 SQLGetData() SQLPrepare() |

20188 22019 — Invalid escape character |
20189 SQLPrepare() |

20190 22025 — Invalid escape sequence |
20191 SQLExecDirect() SQLExecute() SQLPrepare() |

20192 22026 — String data, length mismatch |
20193 SQLParamData() |

20194 23000 — Integrity constraint violation |
20195 SQLBulkOperations() SQLSetPos() |

20196 24000 — Invalid cursor state |
20197 SQLBulkOperations() SQLCloseCursor() SQLColumnPrivileges() SQLColumns() SQLFetch() |
20198 SQLFetchScroll() SQLForeignKeys() SQLGetData() SQLGetDescField() SQLGetDescRec() |
20199 SQLGetStmtAttr() SQLGetTypeInfo() SQLNativeSql() SQLPrepare() SQLPrimaryKeys() |
20200 SQLProcedures() SQLSetConnectAttr() SQLSetCursorName() SQLSetPos() SQLSetStmtAttr() |
20201 SQLSpecialColumns() SQLStatistics() SQLTablePrivileges() SQLTables() |

20202 25000 — Invalid transaction state |
20203 SQLDisconnect() |

20204 25S01 — Transaction state unknown |
20205 SQLEndTran() |

20206 25S02 — Transaction is still active |
20207 SQLEndTran() |

20208 25S03 — Transaction is rolled back |
20209 SQLEndTran() |

20210 28000 — Invalid authorization specification |
20211 SQLBrowseConnect() SQLConnect() SQLDriverConnect() |

20212 34000 — Invalid cursor name |
20213 SQLExecDirect() SQLPrepare() SQLSetCursorName() |

20214 40001 — Serialization failure |
20215 SQLFetch() SQLFetchScroll() SQLGetTypeInfo() SQLNativeSql() SQLNumParams() |
20216 SQLNumResultCols() SQLParamData() |

544 Direct Review (Build ID 96KAV) (Draft XDBC.33, August 1996)

Diagnostic Reference Information SQLSTATE Cross-reference (Non-normative)

20217 42000 — Syntax error or access violation |
20218 SQLBulkOperations() SQLExecute() SQLSetPos() |

20219 HY000 — General error |
20220 SQLAllocHandle() SQLBindCol() SQLBindParameter() SQLBrowseConnect() |
20221 SQLBulkOperations() SQLCancel() SQLCloseCursor() SQLColAttribute() |
20222 SQLColumnPrivileges() SQLColumns() SQLConnect() SQLCopyDesc() SQLDataSources() |
20223 SQLDescribeCol() SQLDescribeParam() SQLDisconnect() SQLDriverConnect() SQLDrivers() |
20224 SQLEndTran() SQLExecDirect() SQLExecute() SQLFetch() SQLFetchScroll() SQLForeignKeys() |
20225 SQLFreeHandle() SQLFreeStmt() SQLGetConnectAttr() SQLGetCursorName() SQLGetData() |
20226 SQLGetDescField() SQLGetDescRec() SQLGetEnvAttr() SQLGetFunctions() SQLGetInfo() |
20227 SQLGetStmtAttr() SQLGetTypeInfo() SQLMoreResults() SQLNativeSql() SQLNumParams() |
20228 SQLNumResultCols() SQLParamData() SQLPrepare() SQLPrimaryKeys() SQLProcedures() |
20229 SQLPutData() SQLRowCount() SQLSetConnectAttr() SQLSetCursorName() SQLSetDescField() |
20230 SQLSetDescRec() SQLSetEnvAttr() SQLSetPos() SQLSetStmtAttr() SQLSpecialColumns() |
20231 SQLStatistics() SQLTablePrivileges() SQLTables() |

20232 HY001 — Memory allocation error |
20233 SQLAllocHandle() SQLBindCol() SQLBindParameter() SQLBrowseConnect() |
20234 SQLBulkOperations() SQLCancel() SQLCloseCursor() SQLColAttribute() |
20235 SQLColumnPrivileges() SQLColumns() SQLConnect() SQLCopyDesc() SQLDataSources() |
20236 SQLDescribeCol() SQLDescribeParam() SQLDisconnect() SQLDriverConnect() SQLDrivers() |
20237 SQLEndTran() SQLExecDirect() SQLExecute() SQLFetch() SQLFetchScroll() SQLForeignKeys() |
20238 SQLFreeHandle() SQLFreeStmt() SQLGetConnectAttr() SQLGetCursorName() SQLGetData() |
20239 SQLGetDescField() SQLGetDescRec() SQLGetEnvAttr() SQLGetFunctions() SQLGetInfo() |
20240 SQLGetStmtAttr() SQLGetTypeInfo() SQLMoreResults() SQLNativeSql() SQLNumParams() |
20241 SQLNumResultCols() SQLParamData() SQLPrepare() SQLPrimaryKeys() SQLProcedures() |
20242 SQLPutData() SQLRowCount() SQLSetConnectAttr() SQLSetCursorName() SQLSetDescField() |
20243 SQLSetDescRec() SQLSetEnvAttr() SQLSetPos() SQLSetStmtAttr() SQLSpecialColumns() |
20244 SQLStatistics() SQLTablePrivileges() SQLTables() |

20245 HY003 — Invalid application buffer type |
20246 SQLBindCol() SQLBindParameter() SQLGetData() |

20247 HY004 — Invalid SQL data type |
20248 SQLBindParameter() SQLGetTypeInfo() |

20249 HY007 — Associated statement is not prepared |
20250 SQLCopyDesc() SQLDescribeCol() SQLGetDescField() SQLGetDescRec() |

20251 HY008 — Operation canceled |
20252 SQLBulkOperations() SQLColAttribute() SQLColumnPrivileges() SQLColumns() |
20253 SQLDescribeCol() SQLDescribeParam() SQLExecDirect() SQLExecute() SQLFetch() |
20254 SQLFetchScroll() SQLForeignKeys() SQLGetData() SQLGetTypeInfo() SQLMoreResults() |
20255 SQLNumParams() SQLNumResultCols() SQLParamData() SQLPrepare() SQLPrimaryKeys() |
20256 SQLProcedures() SQLPutData() SQLSetPos() SQLSpecialColumns() SQLStatistics() |
20257 SQLTablePrivileges() SQLTables() |

20258 HY009 — Invalid use of null pointer |
20259 SQLAllocHandle() SQLBindParameter() SQLBulkOperations() SQLColumnPrivileges() |
20260 SQLColumns() SQLExecDirect() SQLForeignKeys() SQLNativeSql() SQLPrepare() |
20261 SQLPrimaryKeys() SQLProcedures() SQLPutData() SQLSetConnectAttr() SQLSetCursorName() |
20262 SQLSetDescField() SQLSetEnvAttr() SQLSetStmtAttr() SQLSpecialColumns() SQLStatistics() |
20263 SQLTablePrivileges() SQLTables() |

20264 HY010 — Function sequence error |
20265 SQLBindCol() SQLBindParameter() SQLBulkOperations() SQLCloseCursor() SQLColAttribute() |

Data Management: X/Open Database Connectivity (XDBC), Version 2 545

SQLSTATE Cross-reference (Non-normative) Diagnostic Reference Information

20266 SQLColumnPrivileges() SQLColumns() SQLCopyDesc() SQLDescribeCol() SQLDescribeParam() |
20267 SQLDisconnect() SQLEndTran() SQLExecDirect() SQLExecute() SQLFetch() SQLFetchScroll() |
20268 SQLForeignKeys() SQLFreeHandle() SQLFreeStmt() SQLGetConnectAttr() |
20269 SQLGetCursorName() SQLGetData() SQLGetDescField() SQLGetDescRec() SQLGetFunctions() |
20270 SQLGetStmtAttr() SQLGetTypeInfo() SQLMoreResults() SQLNumParams() |
20271 SQLNumResultCols() SQLParamData() SQLPrepare() SQLPrimaryKeys() SQLProcedures() |
20272 SQLPutData() SQLRowCount() SQLSetConnectAttr() SQLSetCursorName() SQLSetDescField() |
20273 SQLSetDescRec() SQLSetPos() SQLSetStmtAttr() SQLSpecialColumns() SQLStatistics() |
20274 SQLTablePrivileges() SQLTables() |

20275 HY011 — Attribute cannot be set now |
20276 SQLPutData() SQLSetConnectAttr() SQLSetEnvAttr() SQLSetStmtAttr() |

20277 HY012 — Invalid transaction operation code |
20278 SQLEndTran() |

20279 HY013 — Memory management error |
20280 SQLAllocHandle() SQLFreeHandle() |

20281 HY014 — Limit on the number of handles exceeded |
20282 SQLAllocHandle() |

20283 HY016 — Cannot modify an implementation row descriptor |
20284 SQLCopyDesc() SQLSetDescField() SQLSetDescRec() |

20285 HY017 — Invalid use of an automatically allocated descriptor handle. |
20286 SQLFreeHandle() SQLSetStmtAttr() |

20287 HY018 — Server declined cancel request |
20288 SQLCancel() |

20289 HY019 — Non-character and non-binary data sent in pieces |
20290 SQLPutData() |

20291 HY020 — Attempt to concatenate a null value |
20292 SQLPutData() |

20293 HY021 — Inconsistent descriptor information |
20294 SQLBindCol() SQLBindParameter() SQLCopyDesc() SQLSetDescField() SQLSetDescRec() |

20295 HY024 — Invalid attribute value |
20296 SQLSetConnectAttr() SQLSetEnvAttr() SQLSetStmtAttr() |

20297 HY090 — Invalid string or buffer length |
20298 SQLBindCol() SQLBindParameter() SQLBrowseConnect() SQLBulkOperations() |
20299 SQLColAttribute() SQLColumnPrivileges() SQLColumns() SQLConnect() SQLDataSources() |
20300 SQLDescribeCol() SQLDriverConnect() SQLDrivers() SQLExecDirect() SQLExecute() |
20301 SQLForeignKeys() SQLGetCursorName() SQLGetData() SQLGetInfo() SQLNativeSql() |
20302 SQLPrepare() SQLPrimaryKeys() SQLProcedures() SQLPutData() SQLSetConnectAttr() |
20303 SQLSetCursorName() SQLSetEnvAttr() SQLSetPos() SQLSetStmtAttr() SQLSpecialColumns() |
20304 SQLStatistics() SQLTablePrivileges() SQLTables() |

20305 HY091 — Invalid descriptor field identifier |
20306 SQLColAttribute() SQLGetDescField() SQLGetDescRec() SQLSetDescField() SQLSetDescRec() |

20307 HY092 — Invalid attribute identifier |
20308 SQLAllocHandle() SQLBulkOperations() SQLCopyDesc() SQLDriverConnect() SQLEndTran() |
20309 SQLFreeStmt() SQLGetConnectAttr() SQLGetEnvAttr() SQLGetStmtAttr() |
20310 SQLSetConnectAttr() SQLSetEnvAttr() SQLSetPos() SQLSetStmtAttr() |

546 Direct Review (Build ID 96KAV) (Draft XDBC.33, August 1996)

Diagnostic Reference Information SQLSTATE Cross-reference (Non-normative)

20311 HY095 — Function type out of range |
20312 SQLGetFunctions() |

20313 HY096 — Information type out of range |
20314 SQLGetInfo() |

20315 HY097 — Column type out of range |
20316 SQLSpecialColumns() |

20317 HY098 — Scope type out of range |
20318 SQLSpecialColumns() |

20319 HY099 — Nullable type out of range |
20320 SQLSpecialColumns() |

20321 HY100 — Uniqueness option type out of range |
20322 SQLStatistics() |

20323 HY101 — Accuracy option type out of range |
20324 SQLStatistics() |

20325 HY103 — Invalid retrieval code |
20326 SQLDataSources() SQLDrivers() |

20327 HY104 — Invalid precision value |
20328 SQLBindParameter() SQLSetDescRec() |

20329 HY105 — Invalid parameter type |
20330 SQLBindParameter() SQLExecDirect() SQLExecute() SQLSetDescField() |

20331 HY106 — Fetch type out of range |
20332 SQLFetchScroll() |

20333 HY107 — Row value out of range |
20334 SQLFetch() SQLFetchScroll() SQLSetPos() |

20335 HY109 — Invalid cursor position |
20336 SQLExecDirect() SQLExecute() SQLGetData() SQLGetStmtAttr() SQLNativeSql() SQLSetPos() |

20337 HY110 — Invalid value of DriverCompletion |
20338 SQLDriverConnect() |

20339 HY111 — Invalid bookmark value |
20340 SQLFetchScroll() |

20341 HYC00 — Optional feature not implemented |
20342 SQLBindCol() SQLBindParameter() SQLBulkOperations() SQLColAttribute() |
20343 SQLColumnPrivileges() SQLColumns() SQLDriverConnect() SQLEndTran() SQLExecDirect() |
20344 SQLExecute() SQLFetch() SQLFetchScroll() SQLForeignKeys() SQLGetConnectAttr() |
20345 SQLGetData() SQLGetEnvAttr() SQLGetInfo() SQLGetStmtAttr() SQLGetTypeInfo() |
20346 SQLPrepare() SQLPrimaryKeys() SQLProcedures() SQLSetConnectAttr() SQLSetEnvAttr() |
20347 SQLSetPos() SQLSetStmtAttr() SQLSpecialColumns() SQLStatistics() SQLTablePrivileges() |
20348 SQLTables() |

20349 HYT00 — Timeout expired |
20350 SQLBrowseConnect() SQLBulkOperations() SQLColumnPrivileges() SQLColumns() |
20351 SQLConnect() SQLDriverConnect() SQLExecDirect() SQLExecute() SQLForeignKeys() |
20352 SQLGetTypeInfo() SQLPrepare() SQLPrimaryKeys() SQLProcedures() SQLSetPos() |
20353 SQLSpecialColumns() SQLStatistics() SQLTablePrivileges() SQLTables() |

20354 HYT01 — Connection timeout expired |
20355 SQLAllocHandle() SQLBindCol() SQLBindParameter() SQLBrowseConnect() |

Data Management: X/Open Database Connectivity (XDBC), Version 2 547

SQLSTATE Cross-reference (Non-normative) Diagnostic Reference Information

20356 SQLBulkOperations() SQLCancel() SQLCloseCursor() SQLColAttribute() |
20357 SQLColumnPrivileges() SQLColumns() SQLConnect() SQLCopyDesc() SQLDescribeCol() |
20358 SQLDescribeParam() SQLDisconnect() SQLDriverConnect() SQLEndTran() SQLExecDirect() |
20359 SQLExecute() SQLFetch() SQLFetchScroll() SQLForeignKeys() SQLFreeHandle() SQLFreeStmt() |
20360 SQLGetConnectAttr() SQLGetCursorName() SQLGetData() SQLGetDescField() |
20361 SQLGetDescRec() SQLGetEnvAttr() SQLGetFunctions() SQLGetInfo() SQLGetStmtAttr() |
20362 SQLGetTypeInfo() SQLMoreResults() SQLNativeSql() SQLNumParams() SQLNumResultCols() |
20363 SQLParamData() SQLPrepare() SQLPrimaryKeys() SQLProcedures() SQLPutData() |
20364 SQLRowCount() SQLSetConnectAttr() SQLSetCursorName() SQLSetDescField() |
20365 SQLSetDescRec() SQLSetEnvAttr() SQLSetPos() SQLSetStmtAttr() SQLSpecialColumns() |
20366 SQLStatistics() SQLTablePrivileges() SQLTables() |

20367 IM001 — Function not supported |
20368 SQLAllocHandle() SQLBindCol() SQLBindParameter() SQLBrowseConnect() |
20369 SQLBulkOperations() SQLCancel() SQLCloseCursor() SQLColAttribute() |
20370 SQLColumnPrivileges() SQLColumns() SQLConnect() SQLCopyDesc() SQLDescribeCol() |
20371 SQLDescribeParam() SQLDisconnect() SQLDriverConnect() SQLEndTran() SQLExecDirect() |
20372 SQLExecute() SQLFetch() SQLFetchScroll() SQLForeignKeys() SQLFreeHandle() SQLFreeStmt() |
20373 SQLGetConnectAttr() SQLGetCursorName() SQLGetData() SQLGetDescField() |
20374 SQLGetDescRec() SQLGetEnvAttr() SQLGetInfo() SQLGetStmtAttr() SQLGetTypeInfo() |
20375 SQLMoreResults() SQLNativeSql() SQLNumParams() SQLNumResultCols() SQLParamData() |
20376 SQLPrepare() SQLPrimaryKeys() SQLProcedures() SQLPutData() SQLRowCount() |
20377 SQLSetConnectAttr() SQLSetCursorName() SQLSetDescField() SQLSetDescRec() SQLSetPos() |
20378 SQLSetStmtAttr() SQLSpecialColumns() SQLStatistics() SQLTablePrivileges() SQLTables() |

20379 IM002 — Data source not found and no default driver specified |
20380 SQLBrowseConnect() SQLConnect() SQLDriverConnect() ||

548 Direct Review (Build ID 96KAV) (Draft XDBC.33, August 1996)

20381 Appendix B |

20382 State Tables |

20383 Notes to Reviewers |
20384 This section with side shading will not appear in the final copy. - Ed. |

20385 For this draft, the CLI Draft 28 state tables are included, with cosmetic changes to adapt it to |
20386 XDBC. New XDBC functions such as SQLBrowseConnect(), SQLBulkOperations(), and |
20387 SQLSetPos() are not yet included. |

20388 This appendix shows the effect of each XDBC function on the states of the various XDBC |
20389 handles. |

20390 • Section B.1 on page 548 describes valid state transitions for environment handles. |

20391 • Table B-1 on page 549 describes valid state transitions for connection handles. |

20392 • Table B-2 on page 551 describes legal state transitions for statement handles. The data-at- |
20393 execute dialogue is an annex of this state table, contained in Section B.3.1 on page 553. |

20394 • Section B.4 on page 554 describes separate state transition rules for statement handles and |
20395 connection handles that also apply when a XDBC function executes asynchronously. |

20396 • Section B.5 on page 554 describes valid state transitions for descriptor handles. |

20397 Interpretation of the Tables |

20398 An entry under a particular state in the table asserts that it is not a sequencing error to call the |
20399 XDBC function from that state. (Calling the XDBC function may produce some other error, as |
20400 described on the appropriate reference manual page.) If the call is successful, the state table entry |
20401 shows the resulting state. |

20402 Function Sequence Errors |

20403 A blank entry asserts that it is a sequencing error to call the XDBC function in that state. The |
20404 function sets SQLSTATEto ’HY010’ (Function sequence error); unless the reference manual page |
20405 specifies that another error code applies. In states in which calling a XDBC function is always an |
20406 error other than a function sequence error, then the applicable SQLSTATE is shown as the state |
20407 table entry (for example, ’24000’, which is Invalid cursor state). |

20408 An entry that contains a state symbol (such as C0) asserts that it is not a sequencing error to call |
20409 the XDBC function, and specifies the resulting state. |

20410 A state table error could be caused by passing to a XDBC function an invalid handle — a null or |
20411 unallocated handle or a handle of the wrong type. In these cases, the function returns |
20412 [SQL_INVALID_HANDLE]. Corresponding state table columns (describing attempted |
20413 operations on an unallocated handle) have the legend INV_H. |

Data Management: X/Open Database Connectivity (XDBC), Version 2 549

State Tables

20414 Notation |

20415 The tables describe input to the XDBC function in parentheses, even though that may not be the |
20416 exact syntax used. The tables denote output from the routine, including return status, using an |
20417 arrow (→) followed by the specific output. |

20418 A general state table entry (one that does not show inputs or outputs) describes all remaining |
20419 cases of calls to that routine. These general entries assume the routine returns success. Calls that |
20420 return failure do not make state transitions, except where described by specific state table |
20421 entries. |

20422 The boldfaced headings of some state table columns, such as prepared, are referenced elsewhere |
20423 in this specification; but the wording of these column headings is not normative. |

20424 B.1 Environment State Transitions |

20425 A XDBC environment can be in one of only two states: allocated and unallocated. |

20426 In the unallocated state, the only valid function on the environment is SQLAllocHandle() (which |
20427 changes the environment’s state to allocated).33 |

20428 In the allocated state, the application can call SQLFreeHandle(), SQLGetEnvAttr() and |
20429 SQLSetEnvAttr() on the environment. None of these changes the state of the environment except |
20430 that calling SQLFreeHandle() changes its state to unallocated. |

20431 In the allocated state, the application can also allocate connections, as described in Section B.2 on |
20432 page 549. |

20433 __________________ |
20434 33. As described on the reference manual page, certain calls to SQLAllocHandle () return a restricted handle that the application can |||

use only to obtain diagnostic information. The restricted handle is not a separate state of the environment handle, since invalid |||
20435 uses of the restricted handle return [SQL_INVALID_HANDLE] rather than the function sequence error ’HY010’. |||

550 Direct Review (Build ID 96KAV) (Draft XDBC.33, August 1996)

State Tables Connection State Transitions

20436 B.2 Connection State Transitions |

20437 Each connection handle can be in one of the following states: |

20438 C0 Unallocated. |

20439 C1 Allocated. |

20440 C2 Allocated and connected to a database. |

20441 The initial state is C0. |

|
20442 Connection States ||
20443 C0 C1 C2 |

|
20444 Function connection connection allocated and |
20445 unallocated allocated connected ||
20446 SQLAllocHandle(Connection) C1 |

20447 SQLGetConnectAttr(), INV_H C1 [1] C2 |
20448 SQLGetConnectOption(), |
20449 SQLGetInfo(), |
20450 SQLSetConnectAttr(), |
20451 SQLSetConnectOption() |

20452 SQLDataSources(), INV_H C1 C2 |
20453 SQLGetEnvAttr(), |
20454 SQLGetFunctions() |

20455 SQLConnect() INV_H C2 ’08002’ |

20456 SQLAllocHandle(Descriptor), |
20457 SQLAllocHandle(Statement) INV_H ’08003’ C2 |

20458 SQLDisconnect() INV_H ’08003’ C1 |

20459 SQLFreeHandle(Connection) INV_H C0 |
|

||

||

|

20460 Table B-1. State Table for Connection Handles |

20461 Notes: |

20462 [1] If the operation (getting or setting the specified connection attribute, or getting the |
20463 specified SQLGetInfo() item) requires an existing connection, then a call from this |
20464 connection state raises ’08003’. |

20465 When a connection is in state C2, the application can allocate statement handles whose states are |
20466 governed by Table B-2 on page 551, and can allocate descriptor handles whose states are |
20467 discussed in Section B.5 on page 554. |

Data Management: X/Open Database Connectivity (XDBC), Version 2 551

Statement Transitions State Tables

20468 B.3 Statement Transitions |

20469 A statement handle (of type SQLHSTMT) can be in one of the following states: |

20470 S0 Not allocated. |

20471 S1 Allocated. |

20472 S2 Prepared (whether or not the dynamic parameters are set and columns are bound). |

20473 S3 Executed, or cursor open but not positioned on a row. |

20474 S4 Cursor positioned on a row. |

20475 S5 through S7 refer to the data-at-execute dialogue and jump to the state table in Section B.3.1 on |
20476 page 553. |

20477 All statement handles are initially in state S0. |

20478 SQLCancel() is not included in this table because it does not cause any state transition, although |
20479 a state transition may occur when the cancelled function returns. This is subject to special rules |
20480 defined in SQLCancel(). SQLCancel() is included in Table B-3 on page 553 and Table B-4 on page |
20481 554 to illustrate specific uses of SQLCancel(). |

552 Direct Review (Build ID 96KAV) (Draft XDBC.33, August 1996)

State Tables Statement Transitions

20482 The numbers in [] refer to the notes following the table. |
||

20483 Statement Handle States ||||
20484 S0 S1 S2 S3 S4 ||

||
20485 not cursor ||
20486 Function allocatedallocatedpreparedexecutedpositioned ||||
20487 SQLAllocHandle(Statement) [1] S1 ||
20488 SQLSetCursorName() INV_H S1 S2 ’24000’ ’24000’ ||

20489 SQLGetCursorName() INV_H S1 S2 S3 S4 ||
20490 SQLGetStmtAttr(CURRENT_OF_POSITION), INV_H ’24000’ ’24000’ ’24000’ S4 ||
20491 SQLSetStmtAttr(CURRENT_OF_POSITION) ||

20492 SQLBindCol(), SQLBindParam() INV_H S1 S2 S3 S4 ||
20493 SQLGetStmtAttr(), SQLGetStmtOption(), ||
20494 SQLSetStmtAttr(), SQLSetStmtOption() ||

20495 SQLPrepare() [2] INV_H S2 S2 S2[3] ’24000’ ||

20496 SQLColAttribute(), SQLDescribeCol(), INV_H S2 S3 S4 ||
20497 SQLNumResultCols() ||

20498 SQLExecute() → [SQL_NEED_DATA][5] n/a [7] S5 S5[3] ’24000’ ||

20499 SQLExecute() [5] INV_H S3 S3[3] ’24000’ ||

20500 SQLExecDirect() → [SQL_NEED_DATA][5] n/a [7] S5 S5 S5[3] ’24000’ ||

20501 SQLExecDirect() [5] INV_H S3 S3 S3[3] ’24000’ ||

20502 SQLGetData() INV_H S3 ||
20503 SQLRowCount() S3 S4 ||
20504 SQLFetch(), SQLFetchScroll() INV_H S4 S4 ||
20505 SQLGetData() INV_H S4 ||
20506 SQLCloseCursor() INV_H S2 S2 ||
20507 SQLMoreResults() → [SQL_NO_DATA] n/a [7] S1 S2 S3 ’S2 ||
20508 SQLMoreResults() INV_H n/a [8] n/a [8] n/a [8] ’S4 ||
20509 Result-set Functions [4] INV_H S3 S3 S3[3] ’24000’ ||

20510 SQLFreeHandle(Statement) INV_H S0 S0 S0 S0 ||
20511 SQLEndTran() [6] S0 S1 S1 S1 S1 ||
20512 SQLDisconnect() [6] S0 S0 ’25000’ ’25000’ ’25000’ ||

||

||||

||||||||

||

20513 Table B-2. State Table for Statement Handles ||

Data Management: X/Open Database Connectivity (XDBC), Version 2 553

Statement Transitions State Tables

20514 Notes: |

20515 [1] The connection handle that SQLAllocHandle() references must be in state C2; see |
20516 Table B-1 on page 549. |

20517 [2] For WHERE CURRENT OF cursor, the separate statement handle that was used to |
20518 open cursor must be in state S3 or S4 for SQLPrepare(). After SQLPrepare(), that |
20519 statement handle remains in the same state. |

20520 [3] In state S3, a statement may be reprepared, and a XDBC function that returns a |
20521 result set [4] can be called, only if there are no open cursors (that is, any XDBC |
20522 function that returns a result set [4] on the statement handle has been followed by |
20523 a SQLCloseCursor()). |

20524 [4] Result-set functions include the catalog functions (see Chapter 7), |
20525 SQLGetTypeInfo(), and a function that executes an SQL statement that returns a |
20526 result set. |

20527 [5] For WHERE CURRENT OF cursor, the separate statement handle that was used to |
20528 open cursor must be in state S4. After SQLExecute() or SQLExecDirect(), that |
20529 statement handle remains in state S4. |

20530 [6] These functions do not explicitly specify a statement handle. The entry for |
20531 SQLEndTran() shows state transitions for all statement handles allocated in the |
20532 scope (environment or connection) specified in the call. The entry for |
20533 SQLDisconnect() (which specifies a connection) shows state transitions for all |
20534 statement handles allocated on that connection. |

20535 [7] Not applicable; the return value assumed by this row of the state table would |
20536 never be returned in this state. |

20537 [8] Not applicable; a return value covered by a previous row of the state table would |
20538 always be returned in this state. |

554 Direct Review (Build ID 96KAV) (Draft XDBC.33, August 1996)

State Tables Statement Transitions

20539 B.3.1 Data-at-execute Dialogue |

20540 An application may set an application parameter descriptor to declare that it will pass the actual |
20541 data for one or more dynamic parameters at execute time. When an application calls |
20542 SQLExecDirect() and SQLExecute() and there is at least one dynamic parameter that needs data, |
20543 the data-at-execute dialogue begins. (See Section 9.4.3 on page 105 for an overview.) Table B-2 |
20544 on page 551 illustrates these cases by showing the return value → [SQL_NEED_DATA]and the |
20545 resulting state S5. |

20546 The following states are involved in the data-at-execute dialogue: |

20547 S5 The application is due to call SQLParamData() to determine the identity of the first dynamic |
20548 parameter for which data is needed. |

20549 S6 The application is due to call SQLPutData() to supply the first part (or all of) a dynamic |
20550 argument. |

20551 S7 The application has called SQLPutData() at least once for the current dynamic parameter. |

20552 The initial state in this table is S5. |

20553 The numbers in [] refer to the notes following the table. |
||

20554 Statement Handle States ||||
20555 S5 S6 S7 ||

||
20556 identify ||
20557 parameter provide other calls to ||
20558 Function needing datafirst piece SQLPutData() ||||
20559 SQLParamData() → [SQL_NEED_DATA] S6 n/a [7] S6 ||
20560 SQLParamData() n/a [8] S4 ||
20561 SQLPutData() S7 S7 ||
20562 SQLCancel() S1, S2[10] S1, S2[10] S1, S2[10] ||

20563 SQLDisconnect() [11] ||||

||||

||||

||

20564 Table B-3. State Table for Statement Handles (Data-at-Execute Dialogue) ||

20565 Notes: |

20566 [7] Not applicable; the return value assumed by this row of the state table would |
20567 never be returned in this state. |

20568 [8] Not applicable; a return value covered by a previous row of the state table would |
20569 always be returned in this state. |

20570 [10]This line illustrates the use of SQLCancel(), typically by the same application, to |
20571 cancel the data-at-execute dialogue. The statement handle state reverts to the state |
20572 from which it entered this table: The resulting state is S1 (allocated) if it was |
20573 SQLExecDirect() that originally returned [SQL_NEED_DATA],or S2 (prepared) if it |
20574 was SQLExecute(). |

20575 [11]This function does not explicitly specify a statement handle. This entry in the table |
20576 illustrates that it is a state error to disconnect a connection on which there is any |
20577 statement handle involved in the data-at-execute dialogue. |

Data Management: X/Open Database Connectivity (XDBC), Version 2 555

Asynchrony State Transitions State Tables

20578 B.4 Asynchrony State Transitions |

20579 The asynchrony state is defined on any handle on which a XDBC function (denoted below as |
20580 Fn()) reports that it is executing asynchronously. If this function takes a connection handle, the |
20581 asynchrony state is associated with the connection handle and is independent of the connection |
20582 handle state described in Section B.2 on page 549. If it takes a statement handle, the asynchrony |
20583 state is associated with the statement handle and is independent of the statement handle state |
20584 described in Section B.3 on page 550. |

20585 The numbers in [] refer to the notes following the table. |
||

20586 Asynchrony States ||||
20587 A0 A1 A2 ||

||
20588 initial still asynch. op. ||
20589 call executing cancelled ||||
20590 Fn() → [SQL_STILL_EXECUTING] A1 A1 A2 ||
20591 Fn() A0[20] A0 A0 ||
20592 SQLCancel() [21] A2 undefined ||

20593 Certain other XDBC functions [22] [23] ||||

||||

||||

||

20594 Table B-4. State Table for Asynchrony |

20595 Notes: |

20596 [20]This situation is permitted, but as it denotes an initial call to a function that does |
20597 not report the use of asynchrony, this state table is not relevant. |

20598 [21]Calls to SQLCancel() are permitted in situations other than asynchrony, subject to |
20599 Table B-2 on page 551. |

20600 [22]The list of XDBC functions that cannot be called while there is an asynchronous |
20601 operation outstanding appears in Restrictions on Operations during Asynchrony |
20602 on page 122. |

20603 [23]Use of these functions is unrestricted in this state, but may be restricted by another |
20604 state table. |

20605 B.5 Descriptor State Transitions |

20606 A descriptor can be in one of only two states: allocated and unallocated. |

20607 In the unallocated state, the only valid function on the descriptor is SQLAllocHandle() (which |
20608 changes the descriptor’s state to allocated). |

20609 In the allocated state, the application can call SQLCopyDesc(), SQLFreeHandle(), |
20610 SQLGetDescField(), SQLGetDescRec(), SQLSetDescField() and SQLSetDescRec() on the descriptor. |
20611 None of these changes the state of the descriptor except that calling SQLFreeHandle() changes its |
20612 state to unallocated. |

20613 Calling SQLDisconnect() frees (changes to the unallocated state) all descriptor handles allocated |
20614 on the connection. |

556 Direct Review (Build ID 96KAV) (Draft XDBC.33, August 1996)

•

20615 Appendix D

20616 Data Types

20617 XDBC defines two sets of data types:

20618 • SQL data types, in which data is stored in the data source (see Section D.1 on page 556)

20619 • C data types, in which data is stored in application buffers (see Section D.2 on page 560).

20620 XDBC defines the C data types and their corresponding XDBC type identifiers. An application
20621 specifies the C data type of the buffer that will receive result set data by passing the appropriate |
20622 C type identifier in TargetType in a call to SQLBindCol() or SQLGetData(). It specifies the C type
20623 of the buffer containing a statement parameter by passing the appropriate C type identifier in |
20624 ValueTypein a call to SQLBindParameter().

20625 Each SQL data type corresponds to an XDBC C data type. Before returning data from the data |
20626 source, the implementation converts it to the specified C data type. Before sending data to the
20627 data source, the implementation converts it from the specified C data type. |

20628 Note: The SQL and C data types listed in the sections below are concise data types for which
20629 each data type is identified by one identifier. Descriptors, however, use a verbose data type, in
20630 which one identifier can refer to a class of data types; and a type subcode. (For all data types |
20631 except the date/time and interval types, the concise and verbose data types are the same.) For
20632 more information, see Data Type Identification in Descriptors on page 574.

20633 This appendix contains the following:

20634 • Typical SQL data types are presented in Section D.1 on page 556.

20635 • C data types are presented in Section D.2 on page 560.

20636 • Attributes of data types — column size, decimal digits, transfer octet length, and display size
20637 — are defined in Section D.3 on page 562.

20638 • Detailed information for the interval data types appears not in the preceding sections but in
20639 Section D.4 on page 569.

20640 • Pseudo type identifiers and macros are defined in Section D.5 on page 572. This section also
20641 describes operations between data types, including considerations for transferring binary
20642 data, and the difference between concise and verbose data types.

20643 • Conversion of data from SQL to C data types is specified in Section D.6 on page 576.

20644 • Conversion of data from C to SQL data types is specified in Section D.7 on page 587.

20645 For more information about XDBC data types, see Section 4.4 on page 46.

Data Management: X/Open Database Connectivity (XDBC), Version 2 557

SQL Data Types Data Types

20646 D.1 SQL Data Types
20647 Each data source defines a set of SQL data types according to the ISO SQL standard. XDBC
20648 defines a manifest constant for all standard SQL data types.34 The application passes this SQL
20649 data type identifier as an argument in XDBC functions or retrieves it into a metadata result set. |
20650 Implementations are responsible for mapping data source-specific SQL data types to XDBC SQL
20651 data type identifiers and implementation-defined SQL data type identifiers. The data stored on |
20652 a data source may be stored in a type specific to that data source.

20653 Each data source defines its own SQL types. The implementation exposes only those SQL data
20654 types that the associated data source defines. The application can determine how an |
20655 implementation maps data source SQL types to the XDBC-defined SQL type identifiers, and any |
20656 implementation-defined SQL type identifiers, by calling SQLGetTypeInfo(). An implementation |
20657 also returns the SQL data types when describing the data types of columns and parameters |
20658 through calls to SQLColAttribute(), SQLColumns(), SQLDescribeCol(), SQLDescribeParam(),
20659 SQLProcedureColumns(), and SQLSpecialColumns().

20660 Implementations need not support all SQL data types defined in the X/Open SQL specification.
20661 Furthermore, they may support additional, data-source-specific SQL data types. To determine |
20662 which data types a data source supports, an application calls SQLGetTypeInfo().

20663 The following table lists typical SQL data types. The columns of the table have the following
20664 significance:

20665 • SQL Type Identifier is a manifest constant by which XDBC refers to the SQL type. This is
20666 the value returned in the DATA_TYPEcolumn by a call to SQLGetTypeInfo().

20667 • Typical SQL Data Type is the equivalent SQL data type from the X/Open SQL specification
20668 or the ISO SQL standard. In some cases this SQL type specification allows parameters; for
20669 example, for some types, precision can be specified. These parameters appear in this column
20670 in italics.

20671 The SQL data type specification is returned in the NAME and CREATE PARAMS column by
20672 a call to SQLGetTypeInfo(). The NAME column returns the designation, for example, CHAR,
20673 while the CREATE PARAMS column returns any parameters.

20674 • Typical Type Description describes typical characteristics of the SQL data type and explain
20675 the arguments allowed by the SQL type specification.

20676 This table is not normative. It shows commonly used names, ranges, and limits of SQL data
20677 types. A given data source may support only some of the listed data types and the
20678 characteristics of these may differ from those listed below. Actual characteristics of an SQL
20679 data type on any data source may differ from those specified in this table.

20680 __________________
20681 34. Exceptions are SQL_BIT_VARYING, SQL_TIME_WITH_TIMEZONE, SQL_TIMESTAMP_WITH_TIMEZONE, and

SQL_NATIONAL_CHARACTER. Although XDBC defines a manifest constant for SQL_BIT, XDBC defines it with different
20682 characteristics from those stated in the ISO SQL standard.

558 Direct Review (Build ID 96KAV) (Draft XDBC.33, August 1996)

Data Types SQL Data Types

20683 SQL type identifier Typical SQL data typeTypical type description |

20684 SQL_CHAR CHAR(n) Character string of fixed string length n.

20685 Variable-length character string with a |
20686 maximum string length n. |

SQL_VARCHAR VARCHAR(n)

20687 Variable length character data. Maximum length |
20688 is data source-dependent. |

SQL_LONGVARCHAR EX LONG VARCHAR |

20689 Signed, exact, numeric value with a precision p |
20690 and scale s (1 ≤ p ≤ 15; s ≤ p). 2,3 |

SQL_DECIMAL DECIMAL(p, s) |

20691 Signed, exact, numeric value with a precision p |
20692 and scale s (1 ≤ p ≤ 15; s ≤ p). 2,3 |

SQL_NUMERIC NUMERIC(p, s) |

20693 Exact numeric value with precision 5 and scale 0 |
20694 (signed: −32,768 ≤ n ≤ 32,767, unsigned: 0 ≤ n ≤ |
20695 65,535). 1,2 |

SQL_SMALLINT SMALLINT |

20696 Exact numeric value with precision 10 and scale |
20697 0 (signed: 231 ≤ n ≤ 231 − 1, unsigned: 0 ≤ n ≤ 232 − |
20698 1). 1,2 |

SQL_INTEGER INTEGER |

20699 Signed, approximate, numeric value with a |
20700 binary precision 24 (zero or absolute value 10−38 |

20701 to 1038). 2 |

SQL_REAL REAL |

20702 Signed, approximate, numeric value with a |
20703 binary precision 53 (zero or absolute value 10−308 |

20704 to 10308). 2 |

SQL_DOUBLE DOUBLE |

20705 On each implementation, SQL_FLOAT either |
20706 has the same characteristics as SQL_REAL or it |
20707 has the same characteristics as SQL_DOUBLE. |

SQL_FLOAT FLOAT |

20708 SQL_BIT EX BIT Single-bit binary data. |

20709 Exact numeric value with precision 3 and scale 0 |
20710 (signed: −128 ≤ n ≤ 127, unsigned: 0 ≤ n ≤ 256). 1,2 |

SQL_TINYINT EX TINYINT |

20711 Exact numeric value with precision 19 (if signed) |
20712 or 20 (if unsigned) and scale 0 (signed: −263 ≤ n ≤ |
20713 263 − 1, unsigned: 0 ≤ n ≤ 264). 1,2 |

SQL_BIGINT EX BIGINT |

20714 SQL_BINARY EX BINARY(n) Binary data of fixed length n. |

20715 Variable length binary data of maximum length |
20716 n. The maximum is set by the user. |

SQL_VARBINARY EX VARBINARY(n) |

20717 Variable length binary data. Maximum length is |
20718 data source-dependent. |

SQL_LONGVARBINARY EX LONG VARBINARY |

Data Management: X/Open Database Connectivity (XDBC), Version 2 559

SQL Data Types Data Types

20719 SQL type identifier Typical SQL data type Typical type description |

20720 Year, month, and day fields, with values |
20721 constrained as specified in Section D.3.5 on page |
20722 568. |

SQL_TYPE_DATE DATE

20723 Hour, minute, and second fields, with values |
20724 constrained as specified in Section D.3.5 on page |
20725 568. p indicates the seconds precision. |

SQL_TYPE_TIME TIME(p)

20726 Year, month, day, hour, minute, and second |
20727 fields, with values constrained as specified in |
20728 Section D.3.5 on page 568. p indicates the |
20729 seconds precision.

SQL_TYPE_TIMESTAMP TIMESTAMP(p)

20730 SQL_INTERVAL- |
20731 _MONTH 4 |

Number of months between two dates. p is the
interval leading precision.

INTERVAL MONTH(p)

20732 SQL_INTERVAL- |
20733 _YEAR 4 |

Number of years between two dates. p is the
interval leading precision.

INTERVAL YEAR(p)

20734 SQL_INTERVAL- |
20735 _YEAR_TO_MONTH 4 |

INTERVAL YEAR(p) |
TO MONTH |

Number of years between two dates. p is the
interval leading precision.

20736 Number of days between two dates. p is the |
20737 interval leading precision. |

SQL_INTERVAL_DAY 4 INTERVAL DAY(p) |

20738 SQL_INTERVAL- ||
20739 _HOUR 4 ||

Number of hours between two date/times. p is |
the interval leading precision. |

INTERVAL HOUR(p) |

20740 SQL_INTERVAL- ||
20741 _MINUTE 4 ||

Number of minutes between two date/times. p |
is the interval leading precision. |

INTERVAL MINUTE(p) |

20742 SQL_INTERVAL- ||
20743 _SECOND 4 ||

INTERVAL ||
SECOND(p,q) ||

Number of seconds between two date/times. p |
is the interval leading precision and q is the |

20744 interval seconds precision. ||

20745 SQL_INTERVAL- ||
20746 _DAY_TO_HOUR 4 ||

INTERVAL DAY(p) ||
TO HOUR ||

Number of days/hours between two |
date/times. p is the interval leading precision. ||

20747 SQL_INTERVAL- ||
20748 _DAY_TO_MINUTE 4 ||

INTERVAL DAY(p) ||
TO MINUTE ||

Number of days/hours/minutes between two |
date/times. p is the interval leading precision. ||

20749 SQL_INTERVAL- ||
20750 _DAY_TO_SECOND 4 ||

INTERVAL DAY(p) ||
TO SECOND(q) ||

Number of days/hours/minutes/seconds |
between two date/times. p is the interval |

20751 leading precision and q is the interval seconds |
20752 precision. ||

20753 SQL_INTERVAL- ||
20754 _HOUR_TO_MINUTE 4 ||

INTERVAL HOUR(p) ||
TO MINUTE ||

Number of hours/minutes between two |
date/times. p is the interval leading precision. ||

560 Direct Review (Build ID 96KAV) (Draft XDBC.33, August 1996)

Data Types SQL Data Types

20755 SQL type identifier Typical SQL data type Typical type description |

20756 SQL_INTERVAL- |
20757 _HOUR_TO_SECOND 4 |

INTERVAL HOUR(p) |
TO SECOND(q) |

Number of hours/minutes/seconds between |
two date/times. p is the interval leading |

20758 precision and q is the interval seconds precision. |

20759 SQL_INTERVAL- |
20760 _MINUTE_TO_SECOND 4 |

INTERVAL MINUTE(p) |
TO SECOND(q) |

Number of minutes/seconds between two |
date/times. p is the interval leading precision |

20761 and q is the interval seconds precision. |
EX This SQL data type is an extension to those defined in the X/Open SQL specification. |

20763 1 An application uses SQLGetTypeInfo() or SQLColAttribute () to determine if a specified data type or |
20764 result set column is unsigned.
20765 2 Precision refers to the total number of digits and scale refers to the number of digits to the right of the
20766 decimal point.
20767 3 SQL_DECIMAL and SQL_NUMERIC data types differ only in their precision. The precision of a
20768 DECIMAL(p,s) is implementation-defined but at least p. The precision of a NUMERIC(p,s) is exactly p.
20769 4 For more information on the interval SQL data types, see Section D.4 on page 569.

20770 An application calls SQLGetTypeInfo() to determine which data types are supported by a data
20771 source and the characteristics of those data types.

Data Management: X/Open Database Connectivity (XDBC), Version 2 561

C Data Types Data Types

20772 D.2 C Data Types
20773 Data is stored in the application in XDBC C data types. •

20774 The C data type is specified in the SQLBindCol() and SQLGetData() functions with TargetType |
20775 and in the SQLBindParameter() function with ValueType. It can also be specified by calling |
20776 SQLSetDescField() to set the SQL_DESC_TYPE field of an ARD or APD, or by calling
20777 SQLSetDescRec() with Type, and with DescriptorHandle set to the handle of an ARD or APD). |

20778 The following table lists valid type identifiers for the C data types. The table also lists the XDBC
20779 C data type that corresponds to each identifier and the definition of this data type.

20780 C type identifier XDBC C Typedef C type |

20781 SQL_C_CHAR SQLCHAR * unsigned char *

20782 SQL_C_SSHORT SQLSMALLINT short int

20783 SQL_C_USHORT SQLUSMALLINT unsigned short int

20784 SQL_C_SLONG SQLINTEGER long int

20785 SQL_C_ULONG SQLUINTEGER unsigned long int

20786 SQL_C_FLOAT SQLREAL float

20787 SQL_C_DOUBLE SQLDOUBLE, SQLFLOAT double

20788 SQL_C_BIT SQLCHAR unsigned char

20789 SQL_C_STINYINT SQLSCHAR signed char

20790 SQL_C_UTINYINT SQLCHAR unsigned char

20791 SQL_C_SBIGINT SQLBIGINT int64

20792 SQL_C_UBIGINT SQLUBIGINT unsigned int64

20793 SQL_C_BINARY SQLCHAR * unsigned char *

20794 SQL_C_VAR- VARBOOKMARK unsigned char *
20795 BOOKMARK

20796 SQL_C_TYPE- SQL_DATE_STRUCT struct tagSQL_DATE_STRUCT{
20797 DATE SQLSMALLINT year; |
20798 UWORD month; |
20799 UWORD day; |
20800 }

20801 SQL_C_TYPE- SQL_TIME_STRUCT struct tagSQL_TIME_STRUCT {
20802 TIME UWORD hour; |
20803 UWORD minute; |
20804 UWORD second; |
20805 }

20806 SQL_C_TYPE- SQL_TIMESTAMP_STRUCT struct tagSQL_TIMESTAMP_STRUCT {
20807 TIMESTAMP SQLSMALLINT year; |
20808 UWORD month; |
20809 UWORD day; |
20810 UWORD hour; |

562 Direct Review (Build ID 96KAV) (Draft XDBC.33, August 1996)

Data Types C Data Types

20811 UWORD minute; |
20812 UWORD second; |
20813 UDWORD fraction; |
20814 }

20815 SQL_C_NUMERIC SQL_NUMERIC_STRUCT struct tagSQL_NUMERIC_STRUCT { |
20816 BYTE precision;
20817 BYTE scale;
20818 BYTE sign;
20819 BYTE val[MAXNUMERICLEN];a |

20820 }

20821 See Section D.4 on page 569.SQL_C_INTERVAL_*SQL_INTERVAL_STRUCT

20822 a A number is stored in the val field of the SQL_NUMERIC_STRUCT structure as a scaled •
20823 integer, in little-endian mode (the first octet contains the low-order part of the number). |

20824 D.2.1 Date/time Structures |

20825 The values of the fields of the SQL_DATE_STRUCT, SQL_TIME_STRUCT, and |
20826 SQL_TIMESTAMP_STRUCT are constrained as specified in Section D.3.5 on page 568. Since the |
20827 constraint on seconds is to be within the range from 0 up to but not including 62, the second field |
20828 must be in the range from 0 to 61, inclusive. The fraction field is a number of nanoseconds. It |
20829 must be in the range from 0 up to and including 999,999,999.

20830 D.2.2 64-bit Integer Structures

20831 The SQL_C_SBIGINT and SQL_C_UBIGINT data type identifiers denote 64-bit integers. If the C
20832 compiler supports 64-bit integers natively, the implementation should define these data types to
20833 be the native 64-bit integer type. If not, the implementation should define the following
20834 structures to ensure access to data of these types:

20835 typedef struct{
20836 DWORD dwLowWord;
20837 DWORD dwHighWord;
20838 } SQLUBIGINT

20839 typedef struct{
20840 SQLINTEGER sdwLowWord; |
20841 SQLINTEGER sdwHighWord; |
20842 } SQLBIGINT

20843 All such structures should be aligned to an 8-octet boundary. |

Data Management: X/Open Database Connectivity (XDBC), Version 2 563

Attributes of Data Types Data Types

20844 D.3 Attributes of Data Types
20845 Data types are characterized by their column (or parameter) size, decimal digits, length, and •
20846 display size. The following XDBC functions return these attributes for a parameter in an SQL
20847 statement or an SQL data type on a data source. Each XDBC function returns a different set of
20848 these attributes, as described below.

20849 • SQLDescribeCol() returns the column size and decimal digits of the columns it describes.

20850 • SQLDescribeParam() returns the parameter size and decimal digits of the parameters it
20851 describes. Note that SQLBindParameter() sets the parameter size and decimal digits for a
20852 parameter in an SQL statement.

20853 • The catalog functions SQLColumns(), SQLProcedureColumns(), and SQLGetTypeInfo() return
20854 catalog attributes for a column in a table, result set, or procedure and the catalog attributes of
20855 the data types in the data source. SQLColumns() returns the column size, decimal digits, and |
20856 length of a column in specified tables. SQLProcedureColumns() returns the column size,
20857 decimal digits, and length of a column in a procedure. SQLGetTypeInfo() returns the
20858 maximum column size and the minimum and maximum scales of an SQL data type on a data
20859 source.

20860 The transfer octet length does not appear directly in any descriptor field. The transfer octet
20861 length is the length in octets. The SQL_DESC_LENGTH field is the length in characters.

20862 The display size value for all data types corresponds to the value of the
20863 SQL_DESC_DISPLAY_SIZEdescriptor field.

20864 The catalog functions SQLColumns(), SQLProcedureColumns(), and SQLGetTypeInfo() return
20865 values from the data source’s catalog, not from descriptor fields. They can be called before
20866 statement execution. Descriptor fields do not contain valid values about data before statement
20867 execution. In addition, the values for column size, decimal digits, and display type returned by
20868 SQLColumns(), SQLProcedureColumns(), and SQLGetTypeInfo() are different from the values
20869 contained in the descriptor fields.

20870 A call to SQLColAttribute() does not return column size or decimal digits as defined in the
20871 sections below. SQLColAttribute() returns the SQL_DESC_PRECISION, SQL_DESC_SCALE, and
20872 SQL_DESC_DISPLAY SIZE fields of the implementation row descriptor, in addition to other
20873 rows. For more information about these descriptor fields, see SQLSetDescField().

20874 D.3.1 Column Size

20875 The column (or parameter) size of data types is defined as follows:

20876 • For numeric data types, the maximum number of digits used by the data type of the column
20877 or parameter, or the precision of the data.

20878 • For character types, the length in characters of the data.

20879 • For binary data types, the length in octetss of the data. |

20880 • For the time, timestamp, and interval data types, the number of characters in the character
20881 representation of the data.

20882 The following table defines the column size for each concise SQL data type. For some types,
20883 column size is defined in terms of the interval leading precision, denoted as p; and/or the
20884 seconds precision, denoted as s.

564 Direct Review (Build ID 96KAV) (Draft XDBC.33, August 1996)

Data Types Column Size

20885 SQL type identifier Column size |

20886 SQL_CHAR,
20887 SQL_VARCHAR

The defined length in characters of the column
or parameter. For example, the length of a

20888 column defined as CHAR(10) is 10.

20889 SQL_LONGVARCHAR a The maximum length in characters

20890 SQL_DECIMAL,
20891 SQL_NUMERIC

The defined number of digits. For example, the
precision of a column defined as

20892 NUMERIC(10,3) is 10.

20893 SQL_BIT b 1

20894 SQL_TINYINT b 3

20895 SQL_SMALLINT b 5

20896 SQL_INTEGER b 10

20897 SQL_BIGINT b 19 (if signed) or 20 (if unsigned)

20898 SQL_REAL b 24

20899 SQL_FLOAT b 53

20900 SQL_DOUBLE b 53

20901 SQL_BINARY,
20902 SQL_VARBINARY

The defined length in octets of the column or |
parameter. For example, the length of a column

20903 defined as BINARY(10) is 10.

20904 SQL_LONGVARBINARY a The maximum length in octets. |

20905 10 (the number of characters in the yyyy-mm-dd
20906 format)

SQL_TYPE_DATE b

20907 8 (the number of characters in the hh:mm:ss
20908 format)

SQL_TYPE_TIME b

20909 The number of characters in the yyyy-mm-dd
20910 hh-mm-ss[.f...] format. For example, if a
20911 timestamp does not use seconds or fractional
20912 seconds, the precision is 16 (the number of
20913 characters in the yyyy-mm-dd hh:mm format). If
20914 a timestamp uses thousandths of a seconds, the
20915 precision is 23 (the number of characters in the
20916 yyyy-mm-dd hh:mm:ss.fff format).

SQL_TYPE_TIMESTAMP

20917 p (if s = 0) or p + s + 1 (if s > 0).SQL_INTERVAL_SECOND

20918 9 + p (if s = 0) or 10 + p + s (if s > 0).SQL_INTERVAL_DAY_TO_SECOND

20919 6 + p (if s = 0) or 7 + p + s (if s > 0).SQL_INTERVAL_HOUR_TO_SECOND

20920 6 + p (if s = 0) or 7 + p + s (if s > 0).SQL_INTERVAL_MINUTE_TO_SECOND

20921 SQL_INTERVAL_YEAR, p
20922 SQL_INTERVAL_MONTH,

Data Management: X/Open Database Connectivity (XDBC), Version 2 565

Column Size Data Types

20923 SQL_INTERVAL_DAY,
20924 SQL_INTERVAL_HOUR,
20925 SQL_INTERVAL_MINUTE

20926 SQL_INTERVAL_YEAR_TO_MONTH, 3 + p
20927 SQL_INTERVAL_DAY_TO_HOUR,
20928 SQL_INTERVAL_HOUR_TO_MINUTE

20929 SQL_INTERVAL_DAY_TO_MINUTE 6 + p

20930 a If the implementation cannot determine the column or parameter length, it returns
20931 SQL_NO_TOTAL.
20932 b ColumnSize in SQLBindParameter() is ignored for this data type. |

20933 The values returned for the column (or parameter) size do not correspond to the values in any
20934 one descriptor field. The values can come from either the SQL_DESC_PRECISION or
20935 SQL_DESC_LENGTH field, depending on the type data, as shown in the following table.

20936 Descriptor field corresponding to |
20937 SQL type identifier Column or parameter size |

20938 SQL_CHAR LENGTH
20939 SQL_VARCHAR LENGTH
20940 SQL_LONGVARCHAR LENGTH
20941 SQL_DECIMAL PRECISION
20942 SQL_NUMERIC PRECISION
20943 SQL_BIT LENGTH
20944 SQL_TINYINT PRECISION
20945 SQL_SMALLINT PRECISION
20946 SQL_INTEGER PRECISION
20947 SQL_BIGINT PRECISION
20948 SQL_REAL PRECISION
20949 SQL_FLOAT PRECISION
20950 SQL_DOUBLE PRECISION
20951 SQL_BINARY LENGTH
20952 SQL_VARBINARY LENGTH
20953 SQL_LONGVARBINARY LENGTH
20954 SQL_DATE LENGTH
20955 SQL_TIME LENGTH
20956 SQL_TIMESTAMP LENGTH
20957 All interval types None

20958 D.3.2 Decimal Digits •

20959 ‘‘Decimal digits’’ is defined as follows: •

20960 • For decimal and numeric data types, the maximum number of digits to the right of the
20961 decimal point. (For these data types, decimal digits is also called the scale of the data.)

20962 • For approximate floating point number columns or parameters, undefined, since the number
20963 of digits to the right of the decimal point is not fixed.

20964 • For date/time or interval data that contains a seconds component, the number of digits to the |
20965 right of the decimal point in the seconds component of the data.

566 Direct Review (Build ID 96KAV) (Draft XDBC.33, August 1996)

Data Types Decimal Digits

20966 For SQL_DECIMAL and SQL_NUMERIC, the maximum scale is generally the same as the
20967 maximum precision. However, some data sources impose a separate limit on the maximum
20968 scale. To determine the minimum and maximum scales allowed for a data type, an application
20969 calls SQLGetTypeInfo().

20970 In the following table, the concise SQL data types for which decimal digits are applicable are
20971 listed in the left-hand column. The center column defines the decimal digits for that data type.
20972 The right-hand column contains SCALE if the decimal digits comes from the SQL_DESC_SCALE
20973 descriptor field, or PRECISION if it comes from the SQL_DESC_PRECISION field.

20974 Source field in |
20975 SQL type identifier Decimal digits descriptor |

20976 SQL_DECIMAL,
20977 SQL_NUMERIC

The defined number of digits to
the right of the decimal point. For

20978 example, the scale of a column
20979 defined as NUMERIC(10,3) is 3.
20980 This can be a negative number to
20981 support storage of very large
20982 numbers without using
20983 exponential notation, as in storing
20984 12000 as 12 with a scale of −3.

SCALE

20985 SQL_BIT, a 0 SCALE
20986 SQL_TINYINT, a

20987 SQL_SMALLINT, a

20988 SQL_INTEGER, a

20989 SQL_BIGINT a

20990 SQL_TYPE_TIME,
20991 SQL_TYPE_TIMESTAMP,
20992 SQL_INTERVAL_SECOND,
20993 SQL_INTERVAL_DAY_TO_SECOND,
20994 SQL_INTERVAL_HOUR_TO_SECOND,
20995 SQL_INTERVAL_MINUTE_TO_SECOND

The number of digits to the right
of the decimal point in the
seconds part of the value (that is,
fractional seconds). This number
cannot be negative.

PRECISION

20996 a DecimalDigits in SQLBindParameter() is ignored for this data type. |

20997 D.3.3 Transfer Octet Length •

20998 The transfer octet length of a column is the maximum number of octets returned to the |
20999 application when data is transferred to its default C data type. For character data, the length |
21000 does not include the null terminator. Note that the length of a column may be different from the |
21001 number of octets required to store the data on the data source. (C data types are listed in Section
21002 D.2 on page 560.)

21003 The values returned for the transfer octet length do not correspond to the values in
21004 SQL_DESC_LENGTH or any other one descriptor field. The SQL_DESC_LENGTH field in the
21005 descriptor always indicates the length in characters, while the transfer octet length is defined as |
21006 the length in octets.

21007 The transfer octet length defined for each XDBC SQL data type is shown in the table below.

Data Management: X/Open Database Connectivity (XDBC), Version 2 567

Transfer Octet Length Data Types

21008 SQL type identifier Transfer octet length |

21009 The defined length of the column in octets. For example, the |
21010 length of a column defined as CHAR(10) is 10. b

SQL_CHAR

21011 SQL_VARCHAR,
21012 SQL_LONGVARCHAR a

The maximum length of the column in octets. b |

21013 SQL_DECIMAL, |
21014 SQL_NUMERIC

The number of octets required to hold the character |
representation of this data (maximum number of digits plus

21015 two). Since these data types are returned as character strings,
21016 characters are needed for the digits, a sign, and a decimal point.
21017 For example, the length of a column defined as NUMERIC(10,3)
21018 is 12 if the character set is ANSI.

21019 SQL_TINYINT 1

21020 SQL_SMALLINT 2

21021 SQL_INTEGER 4

21022 The number of octets required to hold the character |
21023 representation of this data, since this data type is returned as a
21024 character string. The character representation consists of 20
21025 characters: 19 for digits and a sign, if signed, or 20 digits, if
21026 unsigned. Thus, the length is 20 if the character set is ANSI.

SQL_BIGINT

21027 SQL_REAL 4

21028 SQL_FLOAT 8

21029 SQL_DOUBLE 8

21030 SQL_BIT 1

21031 The defined length of the column in octets. For example, the |
21032 length of a column defined as BINARY(10) is 10.

SQL_BINARY

21033 SQL_VARBINARY,
21034 SQL_LONGVARBINARY a

The maximum length of the column in octets. |

21035 SQL_TYPE_DATE,
21036 SQL_TYPE_TIME

6 (the size of the SQL_DATE_STRUCT or SQL_TIME_STRUCT
structure).

21037 16 (the size of the SQL_TIMESTAMP_STRUCT structure).SQL_TYPE_TIMESTAMP

21038 SQL_INTERVAL_* 34 (the size of the interval structure).

21039 a If the implementation cannot determine the column or parameter length, it returns |
21040 SQL_NO_TOTAL.
21041 b This is the same value as the descriptor field SQL_DESC_OCTET_LENGTH.

568 Direct Review (Build ID 96KAV) (Draft XDBC.33, August 1996)

Data Types Transfer Octet Length

21042 D.3.4 Display Size

21043 The display size of a column is the maximum number of characters needed to display data in •
21044 character form. The following table defines the display size for each XDBC SQL data type.

21045 SQL type identifier Display size |

21046 SQL_CHAR,
21047 SQL_VARCHAR

The defined length of the column in characters. For example, the
display size of a column defined as CHAR(10) is 10.

21048 The maximum length of the column in characters.SQL_LONGVARCHAR

21049 SQL_DECIMAL,
21050 SQL_NUMERIC

The precision of the column plus 1 (for the sign) if the scale is 0. |
The precision of the column plus 2 (for the sign and decimal |

21051 point) if the scale is greater than 0. For example, the display size |
21052 of a column defined as NUMERIC(10,3) is 12.

21053 SQL_BIT 1 (1 digit).

21054 4 if signed (a sign and 3 digits) or 3 if unsigned (3 digits).SQL_TINYINT

21055 6 if signed (a sign and 5 digits) or 5 if unsigned (5 digits).SQL_SMALLINT

21056 11 if signed (a sign and 10 digits) or 10 if unsigned (10 digits).SQL_INTEGER

21057 SQL_BIGINT 20 whether or not signed.

21058 13 (a sign, 7 digits, a decimal point, the letter E, a sign, and 2
21059 digits).

SQL_REAL

21060 SQL_FLOAT,
21061 SQL_DOUBLE

22 (a sign, 15 digits, a decimal point, the letter E, a sign, and 3
digits).

21062 SQL_BINARY,
21063 SQL_VARBINARY

The defined length of the column times 2 (each octet is |
represented by a 2 digit hexadecimal number). For example, the

21064 display size of a column defined as BINARY(10) is 20.

21065 SQL_LONGVARBINARY The maximum length of the column times 2.

21066 SQL_TYPE_DATE 10 (a date in the format yyyy-mm-dd).

21067 SQL_TYPE_TIME 8 (a time in the format hh:mm:ss).

21068 19 (if the scale of the timestamp is 0) or 20 plus the precision of
21069 the timestamp (if the scale is greater than 0). This is the number
21070 of characters in the ‘‘yyyy-mm-dd hh:mm:ss[.f...]’’ format. For
21071 example, the display size of a column storing thousandths of a
21072 second is 23 (the number of characters in ‘‘yyyy-mm-dd
21073 hh:mm:ss.fff’’).

SQL_TYPE_TIMESTAMP

21074 See Section D.4.SQL_INTERVAL_*

21075 a If the implementation cannot determine the column or parameter length, it returns |
21076 SQL_NO_TOTAL. |

Data Management: X/Open Database Connectivity (XDBC), Version 2 569

Constraints on Date/time Values Data Types

21077 D.3.5 Constraints on Date/time Values |

21078 Fields in a value of a date/time data type are constrained according to the usual rules imposed |
21079 by the Gregorian calendar and the 24-hour clock. (Fields in a value of an interval data type are |
21080 similarly constrained, but see also Section D.4 on page 569.) These rules are as follows: |

21081 • The year field must be between 1 and 9999, inclusive. Years are measured from the year 0 |
21082 A.D. Some data sources do not support the entire range of years. |

21083 • The month field must be between 1 and 12, inclusive. |

21084 • The day field must be between 1 and 28, 29, 30, or 31, inclusive, depending on the month |
21085 field, and on whether the year field denotes a leap year. |

21086 • The hour field must be between 0 and 23, inclusive. |

21087 • The minute field must be between 0 and 59, inclusive. |

21088 • The seconds field must be from 0 up to but not including 62. |

570 Direct Review (Build ID 96KAV) (Draft XDBC.33, August 1996)

Data Types Interval Data Types

21089 D.4 Interval Data Types |

21090 An interval is defined as the difference between two dates and times. Intervals are expressed in
21091 one of two different ways. One is a year-month interval that expresses intervals in terms of years
21092 and an integral number of months. The other is a day-time interval that expresses intervals in
21093 terms of days, minutes, and seconds. These two types of intervals are distinct and cannot be
21094 mixed, because months may have differing numbers of days.

21095 An interval consists of a set of fields. There is an implied ordering among the fields. For example,
21096 in an year-to-month interval, the year comes first, followed by the month. Similarly, in a day-to-
21097 minute interval, the fields are in the order day, hour, and minute. The first field in an interval
21098 type is called as the high-order field, or the leading field. The last field is called as the trailing field.

21099 In all intervals, the values of the fields are constrained as they are for date/time values (see |
21100 Section D.3.5 on page 568), except that the value of the high-order field is not thus constrained. |
21101 For example, in an hour-to-minute interval, the hour field need not be in the range from 0 up to |
21102 and including 23.

21103 There are 13 interval SQL data types and 13 interval C data types, as listed in the table below.
21104 Each of the interval C data types uses the same structure, SQL_INTERVAL_STRUCT, to contain
21105 the interval data (for more information, see C Interval Structure on page 569). For more
21106 information on the SQL data types, see Section D.1 on page 556; for more information on the C
21107 data types, see Section D.2 on page 560.

21108 Type identifier Class Description |

21109 MONTH Year-Month Number of months between two dates.
21110 YEAR Year-Month Number of years between two dates.
21111 YEAR_TO_MONTH Year-Month Number of years and months between two dates.
21112 DAY Day-Time Number of days between two dates.
21113 HOUR Day-Time Number of hours between two date/times.
21114 MINUTE Day-Time Number of minutes between two date/times.
21115 SECOND Day-Time Number of seconds between two date/times.
21116 DAY_TO_HOUR Day-Time Number of days/hours between two date/times.
21117 DAY_TO_MINUTE Day-Time Number of days/hours/minutes between two date/times.
21118 DAY_TO_SECOND Day-Time Number of days/hours/minutes/seconds between two date/times.
21119 HOUR_TO_MINUTE Day-Time Number of hours/minutes between two date/times.
21120 MINUTE_TO_SECOND Day-Time Number of minutes/seconds between two date/times.

21121 C Interval Structure

21122 Each of the C interval data types listed in Section D.2 on page 560 uses the same structure to
21123 contain the interval data. When SQLFetch(), SQLFetchScroll(), or SQLGetData() is called, the |
21124 implementation returns data into the SQL_INTERVAL_STRUCT structure, uses the value that |
21125 was specified by the application for the C data types (in the call to SQLBindCol(), SQLGetData(),
21126 or SQLBindParameter()) to interpret the contents of SQL_INTERVAL_STRUCT,and populates the
21127 interval_type field of the structure with the enum value corresponding to the C type. Note that for
21128 applications, the interval_type field is read-only. When the structure is used for parameter data, |
21129 the implementation uses the value specified by the application in the
21130 SQL_DESC_CONCISE_TYPE field of the ARD to interpret the contents of
21131 SQL_INTERVAL_STRUCT even if the application set the value of the interval_struct field to a
21132 different value.

21133 This structure is defined as follows:

21134 typedef struct tagSQL_INTERVAL_STRUCT
21135 {
21136 SQLINTERVAL interval_type;

Data Management: X/Open Database Connectivity (XDBC), Version 2 571

Interval Data Types Data Types

21137 SQLSMALLINT interval_sign;
21138 union {
21139 SQL_YEAR_MONTH_STRUCT year_month;
21140 SQL_DAY_SECOND_STRUCT day_second;
21141 } intval;
21142 } SQL_INTERVAL_STRUCT
21143 typedef enum
21144 {
21145 SQL_IS_YEAR = 1
21146 SQL_IS_MONTH = 2
21147 SQL_IS_DAY = 3
21148 SQL_IS_HOUR = 4
21149 SQL_IS_MINUTE = 5
21150 SQL_IS_SECOND = 6
21151 SQL_IS_YEAR_TO_MONTH = 7
21152 SQL_IS_DAY_TO_HOUR = 8
21153 SQL_IS_DAY_TO_MINUTE = 9
21154 SQL_IS_DAY_TO_SECOND = 10
21155 SQL_IS_HOUR_TO_MINUTE = 11
21156 SQL_IS_HOUR_TO_SECOND = 12
21157 SQL_IS_MINUTE_TO_SECOND = 13
21158 } SQLINTERVAL

21159 typedef struct tagSQL_YEAR_MONTH
21160 {
21161 SQLUINTEGER year;
21162 SQLUINTEGER month;
21163 SQLUINTEGER unused1; |
21164 SQLUINTEGER unused2; |
21165 SQLUINTEGER unused3; |
21166 } SQL_YEAR_MONTH_STRUCT

21167 typedef struct tagSQL_DAY_SECOND
21168 {
21169 SQLUINTEGER day;
21170 SQLUINTEGER hour;
21171 SQLUINTEGER minute;
21172 SQLUINTEGER second;
21173 SQLUINTEGER fraction;
21174 } SQL_DAY_SECOND_STRUCT

21175 The interval_type field of the SQL_INTERVAL_STRUCT can be any of the SQL interval codes
21176 defined above. This field tells the application what structure is held in the union and also what
21177 members of the structure are relevant. The interval_sign field has the value SQL_FALSE if the
21178 interval leading field in the interval is unsigned; if it is SQL_TRUE, then the leading field is
21179 negative. Note that the value in the leading field itself is always unsigned, regardless of the
21180 value of interval_sign. The interval_sign field acts as a sign bit. The fields of the SQLINTERVAL
21181 enum are also defined above. |

21182 The unused fields in the SQL_YEAR_MONTH_STRUCT structure give it the same size as the |
21183 SQL_DAY_SECOND_STRUCT. When storing a value into an SQL_YEAR_MONTH_STRUCT |
21184 structure, the implementation sets these unused fields to 0. |

572 Direct Review (Build ID 96KAV) (Draft XDBC.33, August 1996)

Data Types Interval Data Types

21185 Interval Precision |

21186 Interval data types follow different rules for precision from other data types. An interval has |
21187 three types of precision: |

21188 • Interval precision is not a numeric value but the list of fields that the interval comprises. For |
21189 example, the interval precision of the type INTERVAL DAY TO SECOND is the list DAY, |
21190 HOUR, MINUTE, SECOND. There is no descriptor field that holds this value; the interval |
21191 precision is determined by the interval data type. |

21192 • Interval leading precision is the numeric precision of the high-order field of the interval. |
21193 This field is a signed numeric; its precision is a part of the data type declaration of the |
21194 interval. For example, the declaration: INTERVAL HOUR(5) TO MINUTE specifies an |
21195 interval leading precision of 5; the high-order field, which is the HOUR field, can take values |
21196 from -99999 to 99999. The interval leading precision is contained in the |
21197 SQL_DESC_DATETIME_INTERVAL_PRECISIONfield of the descriptor area. |

21198 • Seconds precision applies to any interval data type that has a SECOND field. This is the |
21199 scale (the number of decimal digits after the decimal point) of the fractional part of the |
21200 seconds value. Interval seconds precision is contained in the SQL_DESC_PRECISION field
21201 of the descriptor. |

21202 When an application calls SQLSetDescField() to set the SQL_DESC_TYPE field to
21203 SQL_INTERVAL, SQLSetDescField() initializes certain fields as defined in Default Values for
21204 Certain Data Types on page 481. The default interval leading precision is 2, and the default
21205 interval seconds precision is 6. The application can override this by subsequent calls to
21206 SQLSetDescField() to set the SQL_DESC_PRECISION and
21207 SQL_DESC_DATETIME_INTERVAL_PRECISIONfields.

21208 Interval Data Type Length

21209 The following rules are used to determine the length of an interval data type, expressed as a |
21210 number of characters. The number of octets depends upon the character set. The length includes
21211 the following values added together:

21212 • Two characters for every field in the interval that is not the high-order field.

21213 • For the high-order field, the number of characters that is the express or implicit Interval |
21214 leading precision (see above).

21215 • One character for the separator between the fields.

21216 • 1 plus the express or implied Seconds precision (see above). |

21217 Format of Interval Literals |

21218 When an application inserts a value into a character field in the database that represents an
21219 interval, the value must follow the format defined in the X/Open SQL specification for interval
21220 literals. This indicates that the value is an interval literal, and specifies its type and precision.
21221 Only values that follow this format can be retrieved from the database and converted to a C
21222 interval data type.

21223 An example of a character string that satisfies this requirement and represents an interval of
21224 minus five hours is:

21225 INTERVAL - ’05:00:00.00’ HOUR(2) TO SECOND(2)

21226 A common syntax for specifying interval literals (and date/time literals) is the XSQL escape |
21227 clause defined in Section 8.3.1 on page 84.

Data Management: X/Open Database Connectivity (XDBC), Version 2 573

Using Data Type Identifiers Data Types

21228 D.5 Using Data Type Identifiers
21229 Applications use data types identifiers to describe their buffers to the implementation and to |
21230 retrieve metadata from the implementation. Applications call the following functions to |
21231 perform these tasks:

21232 • SQLBindParameter(), SQLBindCol(), and SQLGetData() to describe the C data type of
21233 application buffers.

21234 • SQLColAttribute() and SQLDescribeCol() to retrieve the SQL data types of result set columns.

21235 • SQLDescribeParameter() to retrieve the SQL data types of parameters.

21236 • SQLColumns(), SQLProcedureColumns(), and SQLSpecialColumns() to retrieve the SQL data
21237 types of various schema information

21238 • SQLGetTypeInfo() to retrieve a list of supported data types.

21239 Pseudo Type Identifiers

21240 For application programming convenience, XDBC defines a number of pseudo type identifiers.
21241 They do not actually correspond to actual data types, but instead resolve to existing data types
21242 depending on the situation.

21243 Default C Data Types

21244 If an application specifies SQL_C_DEFAULT in SQLBindCol(), SQLGetData(), or
21245 SQLBindParameter(), the implementation assumes that the C data type of the output or input |
21246 buffer corresponds to the SQL data type of the column or parameter to which the buffer is
21247 bound. For each XDBC SQL data type, the following table shows the corresponding, or default, C
21248 data type.

21249 Important: Portable applications should not use SQL_C_DEFAULT, but should specify the C |
21250 type of all buffers. Implementations cannot always correctly determine the default C type for |
21251 the following reasons:

21252 • If the data source promotes an SQL data type of a column or parameter, the implementation |
21253 cannot determine the original SQL data type of a column or parameter. Therefore, it cannot |
21254 determine the corresponding default C data type.

21255 • If the implementation cannot determine whether a particular column or parameter is signed, |
21256 as is often the case when this is handled by the data source, the implementation cannot |
21257 determine whether the corresponding default C data type should be signed or unsigned.

21258 Because SQL_C_DEFAULT is provided only as a programming convenience, the application |
21259 does not lose any capabilities when it specifies the actual C data type.

21260 For each XDBC SQL data type, the following table shows the default C data type. |

21261 SQL type identifier Default C type identifier |
21262 SQL_CHAR SQL_C_CHAR
21263 SQL_VARCHAR SQL_C_CHAR
21264 SQL_LONGVARCHAR SQL_C_CHAR
21265 SQL_DECIMAL SQL_C_CHAR
21266 SQL_NUMERIC SQL_C_CHAR
21267 SQL_BIT SQL_C_BIT
21268 SQL_TINYINT SQL_C_STINYINT or SQL_C_UTINYINT a

21269 SQL_SMALLINT SQL_C_SSHORT or SQL_C_USHORT a

21270 SQL_INTEGER SQL_C_SLONG or SQL_C_ULONG a

574 Direct Review (Build ID 96KAV) (Draft XDBC.33, August 1996)

Data Types Using Data Type Identifiers

21271 SQL_BIGINT SQL_C_CHAR
21272 SQL_REAL SQL_C_FLOAT
21273 SQL_FLOAT SQL_C_DOUBLE
21274 SQL_DOUBLE SQL_C_DOUBLE
21275 SQL_BINARY SQL_C_BINARY
21276 SQL_VARBINARY SQL_C_BINARY
21277 SQL_LONGVARBINARY SQL_C_BINARY
21278 SQL_TYPE_DATE SQL_C_TYPE_DATE
21279 SQL_TYPE_TIME SQL_C_TYPE_TIME
21280 SQL_TYPE_TIMESTAMP SQL_C_TYPE_TIMESTAMP
21281 SQL_INTERVAL_MONTH SQL_C_INTERVAL_MONTH
21282 SQL_INTERVAL_YEAR SQL_C_INTERVAL_YEAR
21283 SQL_INTERVAL_YEAR_TO_MONTH SQL_C_INTERVAL_YEAR_TO_MONTH
21284 SQL_INTERVAL_DAY SQL_C_INTERVAL_DAY
21285 SQL_INTERVAL_HOUR SQL_C_INTERVAL_HOUR
21286 SQL_INTERVAL_MINUTE SQL_C_INTERVAL_MINUTE
21287 SQL_INTERVAL_SECOND SQL_C_INTERVAL_SECOND
21288 SQL_INTERVAL_DAY_TO_HOUR SQL_C_INTERVAL_DAY_TO_HOUR
21289 SQL_INTERVAL_DAY_TO_MINUTE SQL_C_INTERVAL_DAY_TO_MINUTE
21290 SQL_INTERVAL_DAY_TO_SECOND SQL_C_INTERVAL_DAY_TO_SECOND
21291 SQL_INTERVAL_HOUR_TO_MINUTE SQL_C_INTERVAL_HOUR_TO_MINUTE
21292 SQL_INTERVAL_HOUR_TO_SECOND SQL_C_INTERVAL_HOUR_TO_SECOND
21293 SQL_INTERVAL_MINUTE_TO_SECOND SQL_C_INTERVAL_MINUTE_TO_SECOND

21294 a If the implementation can determine whether the column is signed or unsigned, such as when it is fetching data from |
21295 the data source or when the data source supports only a signed type or only an unsigned type, but not both, the |
21296 implementation uses the corresponding signed or unsigned C data type. If the implementation cannot determine |
21297 whether the column is signed or unsigned, it passes the data value without attempting to validate it numerically.

21298 Bookmark C Data Type

21299 The bookmark C data type is a programming convenience that lets an application retrieve a |
21300 bookmark. This is its only use and it should not be converted to other data types. An application
21301 retrieves a bookmark either from column 0 of the result set with SQLFetch(), SQLFetchScroll(), or
21302 SQLGetData(), or by calling SQLGetStmtAttr(). For more information, see Section 11.2.4 on page
21303 154.

21304 The following table lists the value of CType for the bookmark C data type, the XDBC C data type
21305 that implements the bookmark C data type, and the definition of this data type:

21306 C type identifier (CType) XDBC C Typedef C type |

21307 SQL_C_VARBOOKMARK SQLCHAR * binary

21308 SQL_ARD_TYPE

21309 The SQL_ARD_TYPE type identifier is used to indicate that the data in a buffer will be of the
21310 type specified in the SQL_DESC_CONCISE_TYPE field of the ARD. SQL_ARD_TYPE is entered
21311 in TargetType in a call to SQLGetData() instead of a specific data type, and lets an application
21312 change the data type of the buffer by changing the descriptor field. This value ties the data type
21313 of the *TargetValuePtr buffer to the descriptor field. (SQL_ARD_TYPE is not entered in a call to
21314 SQLBindCol() or SQLBindParameter() because the type of the bound buffer is already tied to the
21315 SQL_DESC_TYPE and SQL_DESC_CONCISE_TYPE fields, and can be changed at any time by
21316 changing either of those fields.)

Data Management: X/Open Database Connectivity (XDBC), Version 2 575

Using Data Type Identifiers Data Types

21317 Transferring Data in its Binary Form

21318 Among data sources that use the same data source, an application can safely transfer data in the
21319 internal form used by that data source on the same data source and hardware platform. For a
21320 given piece of data, the SQL data types must be the same in the source and target data sources.
21321 The C data type is SQL_C_BINARY.

21322 When the application calls SQLFetch(), SQLFetchScroll(), or SQLGetData() to retrieve the data |
21323 from the source data source, the implementation retrieves the data from the data source and |
21324 transfers it, without conversion, to a storage location of type SQL_C_BINARY. When the |
21325 application calls SQLExecute(), SQLExecDirect(), or SQLPutData() to send the data to the target |
21326 data source, the implementation retrieves the data from the storage location and transfers it, |
21327 without conversion, to the target data source.

21328 Applications that transfer any data (except binary data) in this manner are not interoperable
21329 among data sources.

21330 Data Type Identification in Descriptors

21331 The SQL data types listed in Section D.1 on page 556 and the C data types listed in Section D.2 •
21332 on page 560 are concise data types: each identifier refers to a single data type. Descriptors,
21333 however, do not use a single value to identify data types. Instead, they use a verbose data type, |
21334 and a type subcode. For all data types except date/time and interval data types, the verbose type
21335 identifier is the same as the concise type identifier. For date/time and interval data types, |
21336 however, data type information is stored in the fields SQL_DESC_CONCISE_TYPE,
21337 SQL_DESC_TYPE, and SQL_DESC_DATETIME_INTERVAL_CODE. Setting one of these fields
21338 affects the others, as described in SQLSetDescField().

21339 The following table shows the concise type identifier, verbose type identifier, and type subcode |
21340 for each SQL type identifier of a date/time or interval data type. (For all other data types,
21341 SQL_DESC_CONCISE_TYPE has the same value as SQL_DESC_TYPE, and
21342 SQL_DESC_DATETIME_INTERVAL_CODEis 0.)

21343 SQL_DESC_CONCISE_TYPE SQL_DESC_TYPE DATETIME_INTERVAL_CODE
21344 SQL_TYPE_DATE SQL_DATETIME SQL_CODE_DATE
21345 SQL_TYPE_TIME SQL_DATETIME SQL_CODE_TIME
21346 SQL_TYPE_TIMESTAMP SQL_DATETIME SQL_CODE_TIMESTAMP
21347 SQL_INTERVAL_MONTH SQL_INTERVAL SQL_CODE_MONTH
21348 SQL_INTERVAL_YEAR SQL_INTERVAL SQL_CODE_YEAR
21349 SQL_INTERVAL_YEAR_TO_MONTH SQL_INTERVAL SQL_CODE_YEAR_TO_MONTH
21350 SQL_INTERVAL_DAY SQL_INTERVAL SQL_CODE_DAY
21351 SQL_INTERVAL_HOUR SQL_INTERVAL SQL_CODE_HOUR
21352 SQL_INTERVAL_MINUTE SQL_INTERVAL SQL_CODE_MINUTE
21353 SQL_INTERVAL_SECOND SQL_INTERVAL SQL_CODE_SECOND
21354 SQL_INTERVAL_DAY_TO_HOUR SQL_INTERVAL SQL_CODE_DAY_TO_HOUR
21355 SQL_INTERVAL_DAY_TO_MINUTE SQL_INTERVAL SQL_CODE_DAY_TO_MINUTE
21356 SQL_INTERVAL_DAY_TO_SECOND SQL_INTERVAL SQL_CODE_DAY_TO_SECOND
21357 SQL_INTERVAL_HOUR_TO_MINUTE SQL_INTERVAL SQL_CODE_HOUR_TO_MINUTE
21358 SQL_INTERVAL_HOUR_TO_SECOND SQL_INTERVAL SQL_CODE_HOUR_TO_SECOND
21359 SQL_INTERVAL_MINUTE_TO_SECOND SQL_INTERVAL SQL_CODE_MINUTE_TO_SECOND

21360 The following table shows the concise type identifier, verbose type identifier, and type subcode |
21361 for each C type identifier of a date/time or interval data type. (For all other data types,
21362 SQL_DESC_CONCISE_TYPE has the same value as SQL_DESC_TYPE, and
21363 SQL_DESC_DATETIME_INTERVAL_CODEis 0.)

576 Direct Review (Build ID 96KAV) (Draft XDBC.33, August 1996)

Data Types Using Data Type Identifiers

21364 SQL_DESC_CONCISE_TYPE SQL_DESC_TYPE DATETIME_INTERVAL_CODE
21365 SQL_C_TYPE_DATE SQL_DATETIME SQL_CODE_DATE
21366 SQL_C_TYPE_TIME SQL_DATETIME SQL_CODE_TIME
21367 SQL_C_TYPE_TIME SQL_DATETIME SQL_CODE_TIME
21368 SQL_C_TYPE_TIMESTAMP SQL_DATETIME SQL_CODE_TIMESTAMP
21369 SQL_C_INTERVAL_MONTH SQL_INTERVAL SQL_CODE_MONTH
21370 SQL_C_INTERVAL_YEAR SQL_INTERVAL SQL_CODE_YEAR
21371 SQL_C_INTERVAL_YEAR_TO_MONTH SQL_INTERVAL SQL_CODE_YEAR_TO_MONTH
21372 SQL_C_INTERVAL_DAY SQL_INTERVAL SQL_CODE_DAY
21373 SQL_C_INTERVAL_HOUR SQL_INTERVAL SQL_CODE_HOUR
21374 SQL_C_INTERVAL_MINUTE SQL_INTERVAL SQL_CODE_MINUTE
21375 SQL_C_INTERVAL_SECOND SQL_INTERVAL SQL_CODE_SECOND
21376 SQL_C_INTERVAL_DAY_TO_HOUR SQL_INTERVAL SQL_CODE_DAY_TO_HOUR
21377 SQL_C_INTERVAL_DAY_TO_MINUTE SQL_INTERVAL SQL_CODE_DAY_TO_MINUTE
21378 SQL_C_INTERVAL_DAY_TO_SECOND SQL_INTERVAL SQL_CODE_DAY_TO_SECOND
21379 SQL_C_INTERVAL_HOUR_TO_MINUTE SQL_INTERVAL SQL_CODE_HOUR_TO_MINUTE
21380 SQL_C_INTERVAL_HOUR_TO_SECOND SQL_INTERVAL SQL_CODE_HOUR_TO_SECOND
21381 SQL_C_INTERVAL_MINUTE_TO_SECOND SQL_INTERVAL SQL_CODE_MINUTE_TO_SECOND

Data Management: X/Open Database Connectivity (XDBC), Version 2 577

Using Data Type Identifiers Data Types

21382 D.6 Converting Data from SQL to C Data Types

21383 When an application calls SQLFetch(), SQLFetchScroll(), or SQLGetData(), the implementation |
21384 retrieves the data from the data source. If necessary, it converts the data from the data type in |
21385 which the data source retrieved it to the data type specified by TargetType in SQLBindCol() or |
21386 SQLGetData(). Finally, it stores the data in the location pointed to by TargetValuePtr in
21387 SQLBindCol() or SQLGetData().

21388 The following table shows the supported conversions from SQL data types to C data types. A
21389 solid circle indicates the default conversion for an SQL data type (the C data type to which the
21390 data will be converted when TargetType is SQL_C_DEFAULT). A hollow circle indicates a
21391 supported conversion.

21392 The format of the converted data is independent of the locale.

21393 [Requires a table from the sponsors which has not yet been corrected] |

578 Direct Review (Build ID 96KAV) (Draft XDBC.33, August 1996)

Data Types Converting Data from SQL to C Data Types

21394 The tables in the following sections describe how the implementation converts data retrieved |
21395 from the data source; implementations are required to support conversions to all C data types |
21396 from the SQL data types that they support. For a given SQL data type, the first column of the |
21397 table lists the legal input values of TargetType in SQLBindCol() and SQLGetData(). The second |
21398 column lists the outcomes of a test, often using BufferLength in SQLBindCol() or SQLGetData(), |
21399 which the implementation performs to determine if it can convert the data. For each outcome, |
21400 the third and fourth columns list the values placed in the buffers specified by TargetValuePtr and |
21401 StrLen_or_IndPtr in SQLBindCol() or SQLGetData() after the implementation has attempted to |
21402 convert the data. The last column lists the SQLSTATEreturned for each outcome by SQLFetch(), |
21403 SQLFetchScroll(), or SQLGetData(). |

21404 If TargetType in SQLBindCol() or SQLGetData() contains an identifier for an XDBC C data type |
21405 not shown in the table for a given SQL data type, SQLFetch(), SQLFetchScroll(), or SQLGetData() |
21406 returns SQLSTATE 07006 (Restricted data type attribute violation). If TargetType contains an |
21407 identifier that specifies a conversion from a data-source-specific SQL data type to a C data type |
21408 and the implementation does not support this conversion, SQLFetch(), SQLFetchScroll(), or |
21409 SQLGetData() returns SQLSTATEHYC00 (Optional feature not implemented). |

21410 Though it is not shown in the tables, the implementation returns SQL_NULL_DATA in the |
21411 buffer specified by StrLen_or_IndPtr when the SQL data value is NULL. For an explanation of the |
21412 use of StrLen_or_IndPtr when multiple calls are made to retrieve data, see SQLGetData(). When
21413 SQL data is converted to character C data, the character count returned in *StrLen_or_IndPtr does |
21414 not include the null terminator. If TargetValuePtr is a null pointer, SQLGetData() returns
21415 SQLSTATEHY009 (Invalid use of null pointer); in SQLBindCol(), this unbinds the column.

21416 Terms

21417 The following terms and conventions are used in the tables:

21418 • Length of data is the number of octets of C data available to return in *TargetValuePtr, |
21419 regardless of whether the data will be truncated before it is returned to the application. For
21420 string data, this does not include the null terminator. |

21421 • Display size is the total number of octets needed to display the data in character format. |

21422 SQL to C: Character |

21423 The identifiers for the character SQL data types are:

21424 SQL_CHAR
21425 SQL_VARCHAR
21426 SQL_LONGVARCHAR

21427 The following table shows the C data types to which character SQL data may be converted. For
21428 an explanation of the columns and terms in the table, see the list above.

21429 *StrLen_or- SQL-
21430 C type identifier Test *TargetValuePtr _IndPtr STATE |
21431 Length of data in octets < |
21432 BufferLength

SQL_C_CHAR Data Length of data N/A

21433 Length of data in octets ≥ ||
21434 BufferLength

Truncated data Length of data 01004

21435 SQL_C_STINYINT Data converted without truncation Data Size of the C N/A
21436 SQL_C_UTINYINT data type
21437 SQL_C_TINYINT

Data Management: X/Open Database Connectivity (XDBC), Version 2 579

Converting Data from SQL to C Data Types Data Types

21438 SQL_C_SBIGINT Data converted with truncation of Truncated data Size of the C 01004
21439 SQL_C_UBIGINT fractional digits data type
21440 SQL_C_SSHORT
21441 SQL_C_USHORT Conversion of data would result Undefined Undefined 22003
21442 SQL_C_SHORT in loss of whole (as opposed to
21443 SQL_C_SLONG fractional) digits
21444 SQL_C_ULONG
21445 SQL_C_LONG Data is not a numeric literal Undefined Undefined 22018
21446 SQL_C_NUMERIC
21447 SQL_C_FLOAT
21448 SQL_C_DOUBLE

Data is within the range of the data
type to which the number is being

21449 converted a

Size of the C
data type

Data N/A

21450 Data is outside the range of the
21451 data type to which the number is
21452 being converted a

Undefined Undefined 22003

21453 Data is not a numeric literal Undefined Undefined 22018

21454 SQL_C_BIT Data is 0 or 1 a Data 1 b N/A

21455 Data is greater than 0, less than 2,
21456 and not equal to 1 a

Truncated data 1 b 01004

21457 Data is less than 0 or greater than
21458 or equal to 2 a

Undefined Undefined 22003

21459 Data is not a numeric literal Undefined Undefined 22018

21460 Length of data in octets ≤ |
21461 BufferLength

SQL_C_BINARY Data Length of data N/A

21462 Length of data in octets > ||
21463 BufferLength

Truncated data Length of data 01004

21464 SQL_C_TYPE_DATE Data value is a valid date-value a Data 6 b N/A

21465 Data value is a valid timestamp-
21466 value; time portion is zero a

Data 6 b N/A

21467 Data value is a valid timestamp-
21468 value; time portion is non-zero a,c

Truncated data 6 b 01004

21469 Data value is not a valid date-value
21470 or timestamp-value a

Undefined Undefined 22007

21471 SQL_C_TYPE_TIME Data value is a valid time-value a Data 6 b N/A

21472 Data value is a valid timestamp-
21473 value; fractional sections portion is
21474 zero a,d

Data 6 b N/A

21475 Data value is a valid timestamp-
21476 value; fractional seconds portion is
21477 non-zero a,d,e

Truncated data 6

21478 Data value is not a valid time-value
21479 or timestamp-value a

Undefined Undefined 22007

21480 SQL_C_TYPE-
21481 _TIMESTAMP

Data value is a valid timestamp-
value; fractional seconds portion

21482 not truncated a

Data 16 b N/A

21483 Data value is a valid timestamp-
21484 value; fractional seconds portion
21485 truncated a

Truncated data 16 b 01004

21486 Data value is a valid date-value a Data f 16 b N/A

21487 Data value is a valid time-value a Data g 16 b N/A

580 Direct Review (Build ID 96KAV) (Draft XDBC.33, August 1996)

Data Types Converting Data from SQL to C Data Types

21488 Data value is not a valid date-value,
21489 time-value, or timestamp-value a

Undefined Undefined 22007

21490 SQL_C_INTERVAL_* Data value is a valid interval value Data Length of N/A
21491 fractional sections portion not data
21492 truncated

21493 Data value is a valid interval value; Truncated data Length of data 01S07
21494 fractional seconds portion
21495 truncated

21496 There was no representation of the Undefined Undefined 22015
21497 data in the interval structure

21498 The data value is not a valid Undefined Undefined 22018
21499 interval value

21500 a The value of BufferLength is ignored for this conversion. The implementation assumes that the size of *TargetValuePtr |
21501 is the size of the C data type.
21502 b This is the size of the corresponding C data type.
21503 c The time portion of the timestamp-value is truncated.
21504 d The date portion of the timestamp-value is ignored.
21505 e The fractional seconds portion of the timestamp is truncated.
21506 f The time fields of the timestamp structure are set to zero.
21507 g The date fields of the timestamp structure are set to the current date.

21508 When character SQL data is converted to numeric, date, time, or timestamp C data, leading and
21509 trailing spaces are ignored.

21510 All implementations that support date, time, and timestamp data can convert character SQL |
21511 data to date, time, or timestamp C data as specified in the previous table. Implementations may |
21512 be able to convert character SQL data from other, implementation-defined formats to date, time, |
21513 or timestamp C data. Such conversions are not interoperable among data sources. |

21514 SQL to C: Numeric |

21515 The identifiers for the numeric SQL data types are:

21516 SQL_BIGINT SQL_FLOAT SQL_REAL
21517 SQL_DECIMAL SQL_INTEGER SQL_SMALLINT
21518 SQL_DOUBLE SQL_NUMERIC SQL_TINYINT

21519 The following table shows the C data types to which numeric SQL data may be converted. For
21520 an explanation of the columns and terms in the table, see Terms on page 577.

21521 *StrLen_or- SQL-
21522 C type identifier Test *TargetValuePtr _IndPtr STATE |
21523 SQL_C_CHAR Display size < BufferLength Data Length of data N/A

21524 Number of whole (as opposed to
21525 fractional) digits < BufferLength

Truncated data Length of data 01004

21526 Number of whole (as opposed to
21527 fractional) digits ≥ BufferLength

Undefined Undefined 22003

21528 SQL_C_STINYINT Data converted without truncation a Data Size of the C N/A
21529 SQL_C_UTINYINT data type
21530 SQL_C_TINYINT

Data Management: X/Open Database Connectivity (XDBC), Version 2 581

Converting Data from SQL to C Data Types Data Types

21531 SQL_C_SBIGINT Data converted with truncation of Truncated data Size of the C 01004
21532 SQL_C_UBIGINT fractional digits a data type
21533 SQL_C_SSHORT
21534 SQL_C_USHORT Conversion of data would result in loss Undefined Undefined 22003
21535 SQL_C_SHORT of whole (as opposed to fractional)
21536 SQL_C_SLONG digits a

21537 SQL_C_ULONG
21538 SQL_C_LONG Data is within the range of the data type Data Size of the C N/A
21539 SQL_C_NUMERIC to which the number is being converted a data type
21540 SQL_C_FLOAT Data is outside the range of the data Undefined Undefined 22003
21541 SQL_C_DOUBLE type to which the number is being
21542 converted a

21543 SQL_C_BIT Data is 0 or 1 a Data 1 b N/A

21544 Data is greater than 0, less than 2, and
21545 not equal to 1 a

Truncated data 1 b 01004

21546 Data is less than 0 or greater than or
21547 equal to 2

Undefined Undefined 22003

21548 SQL_C_BINARY Length of data ≤ BufferLength Data Length of data N/A

21549 Length of data > BufferLength Undefined Undefined 22003
21550 SQL_C_INTERVAL_* e Data value is a valid interval value; Data Length of data N/A
21551 fractional seconds portion not truncated

21552 Data value is a valid interval value; Truncated data Length of data 01S07
21553 fractional seconds portion truncated

21554 There was no representation of the data Undefined Undefined 22015
21555 in the interval structure

21556 The data value is not a valid interval Undefined Undefined 22018
21557 value

21558 a The value of BufferLength is ignored for this conversion. The implementation assumes that the size of *TargetValuePtr |
21559 is the size of the C data type.
21560 b This is the size of the corresponding C data type.
21561 c This conversion is supported only if the interval precision of the interval C type (as indicated by the interval_type
21562 field of the interval structure) is a single field (i.e., SQL_IS_YEAR, SQL_IS_MONTH, SQL_IS_DAY, SQL_IS_HOUR,
21563 SQL_IS_MINUTE, or SQL_IS_SECOND).
21564 d This conversion is supported only for the exact numeric data types (SQL_DECIMAL, SQL_NUMERIC,
21565 SQL_TINYINT, SQL_SMALLINT, SQL_INTEGER, and SQL_BIGINT). It is not supported for the approximate
21566 numeric data types (SQL_REAL, SQL_FLOAT,or SQL_DOUBLE).
21567 e This conversion is supported only for the exact numeric data types (SQL_TINYINT, SQL_SMALLINT,
21568 SQL_INTEGER, SQL_BIGINT, SQL_DECIMAL, and SQL_NUMERIC), and only if the interval precision of the
21569 interval C type (as indicated by the interval_type field of the interval structure) is a single field

21570 SQL to C: Bit |

21571 The identifier for the bit SQL data type is SQL_BIT.

21572 The following table shows the C data types to which bit SQL data may be converted. For an
21573 explanation of the columns and terms in the table, see Terms on page 577.

21574 *StrLen_or- SQL-
21575 C type identifier Test *TargetValuePtr _IndPtr STATE |
21576 SQL_C_CHAR BufferLength > 1 Data 1 N/A

21577 BufferLength ≤ 1 Undefined Undefined 22003
21578 SQL_C_STINYINT None a Data Size of the C N/A

582 Direct Review (Build ID 96KAV) (Draft XDBC.33, August 1996)

Data Types Converting Data from SQL to C Data Types

21579 SQL_C_UTINYINT data type
21580 SQL_C_TINYINT
21581 SQL_C_SBIGINT
21582 SQL_C_UBIGINT
21583 SQL_C_SSHORT
21584 SQL_C_USHORT
21585 SQL_C_SHORT
21586 SQL_C_SLONG
21587 SQL_C_ULONG
21588 SQL_C_LONG
21589 SQL_C_FLOAT
21590 SQL_C_DOUBLE
21591 SQL_C_NUMERIC
21592 SQL_C_BIT None a Data 1 b

21593 SQL_C_BINARY BufferLength ≥ 1 Data 1 N/A

21594 BufferLength < 1 Undefined Undefined 22003

21595 a The value of BufferLength is ignored for this conversion. The implementation assumes that the size of *TargetValuePtr |
21596 is the size of the C data type.
21597 b This is the size of the corresponding C data type.

21598 When bit SQL data is converted to character C data, the possible values are ’0’ and ’1’. |

21599 SQL to C: Binary |

21600 The identifiers for the binary SQL data types are:

21601 SQL_BINARY
21602 SQL_VARBINARY
21603 SQL_LONGVARBINARY

21604 The following table shows the C data types to which binary SQL data may be converted. For an
21605 explanation of the columns and terms in the table, see Terms on page 577.

21606 *StrLen_or- SQL-
21607 C type identifier Test *TargetValuePtr _IndPtr STATE |
21608 SQL_C_CHAR Length of data * 2 < BufferLength Data Length of data N/A

21609 Length of data * 2 ≥ BufferLength Truncated data Length of data 01004
21610 SQL_C_BINARY Length of data ≤ BufferLength Data Length of data N/A

21611 Length of data > BufferLength Truncated data Length of data 01004

21612 When binary SQL data is converted to character C data, each octet of source data is represented |
21613 as two ASCII characters. These characters are the ASCII character representation of the number
21614 in its hexadecimal form. For example, a binary 00000001 is converted to ’01’ and a binary
21615 11111111 is converted to ’FF’.

21616 The implementation always converts individual octets to pairs of hexadecimal digits and |
21617 terminates the character string with a null octet. Because of this, if BufferLength is even and is less |
21618 than the length of the converted data, the last octet of the *TargetValuePtrbuffer is not used. (The |
21619 converted data requires an even number of octets, the next-to-last octet is a null octet, and the |
21620 last octet cannot be used.)

21621 Note: Application developers are discouraged from binding binary SQL data to a character C
21622 data type. This conversion is inefficient and slow. |

Data Management: X/Open Database Connectivity (XDBC), Version 2 583

Converting Data from SQL to C Data Types Data Types

21623 SQL to C: Date |

21624 The identifier for the date SQL data type is SQL_TYPE_DATE.

21625 The following table shows the C data types to which date SQL data may be converted. For an
21626 explanation of the columns and terms in the table, see Terms on page 577.

21627 *StrLen_or- SQL-
21628 C type identifier Test *TargetValuePtr _IndPtr STATE |
21629 SQL_C_CHAR BufferLength ≥ 11 Data 10 N/A

21630 BufferLength < 11 Undefined Undefined 22003
21631 SQL_C_BINARY Length of data ≤ BufferLength Data Length of data N/A

21632 Length of data > BufferLength Undefined Undefined 22003
21633 SQL_C_TYPE_DATE None a Data 6 c N/A
21634 SQL_C_TYPE_TIMESTAMP None a Data b 16 c N/A

21635 a The value of BufferLength is ignored for this conversion. The implementation assumes that the size of *TargetValuePtr |
21636 is the size of the C data type.
21637 b The time fields of the timestamp structure are set to zero.
21638 c This is the size of the corresponding C data type.

21639 When date SQL data is converted to character C data, the resulting string is in the ’yyyy-mm-dd’
21640 format. This format is independent of the locale. |

21641 SQL to C: Time |

21642 The identifier for the time SQL data type is SQL_TYPE_TIME.

21643 The following table shows the C data types to which time SQL data may be converted. For an
21644 explanation of the columns and terms in the table, see Terms on page 577.

21645 *StrLen_or- SQL-
21646 C type identifier Test *TargetValuePtr _IndPtr STATE |
21647 SQL_C_CHAR BufferLength ≥ 9 Data 8 N/A

21648 BufferLength < 9 Undefined Undefined 22003
21649 SQL_C_BINARY Length of data ≤ BufferLength Data Length of data N/A

21650 Length of data > BufferLength Undefined Undefined 22003
21651 SQL_C_TYPE_TIME None a Data 6 c N/A
21652 SQL_C_TYPE_TIMESTAMP None a Data b 16 c N/A

21653 a The value of BufferLength is ignored for this conversion. The implementation assumes that the size of *TargetValuePtr |
21654 is the size of the C data type.
21655 b The date fields of the timestamp structure are set to the current date and the fractional seconds field of the
21656 timestamp structure is set to zero.
21657 c This is the size of the corresponding C data type.
21658 When time SQL data is converted to character C data, the resulting string is in the ’hh:mm:ss’
21659 format. This format is independent of the locale. |

584 Direct Review (Build ID 96KAV) (Draft XDBC.33, August 1996)

Data Types Converting Data from SQL to C Data Types

21660 SQL to C: Timestamp |

21661 The identifier for the timestamp SQL data type is SQL_TYPE_TIMESTAMP.

21662 The following table shows the C data types to which timestamp SQL data may be converted. For
21663 an explanation of the columns and terms in the table, see Terms on page 577.

21664 *StrLen_or- SQL-
21665 C type identifier Test *TargetValuePtr _IndPtr STATE |
21666 SQL_C_CHAR BufferLength > Display size Data Length of data N/A

21667 20 ≤ BufferLength ≤ Display size Truncated data b Undefined 01004

21668 BufferLength > 20 Undefined Undefined 22003
21669 SQL_C_BINARY Length of data ≤ BufferLength Data Length of data N/A

21670 Length of data > BufferLength Undefined Undefined 22003
21671 Time portion of timestamp is
21672 zero a

SQL_C_TYPE_DATE Data 6 f N/A

21673 Time portion of timestamp is
21674 non-zero a

Truncated data c 6 f 01004

21675 Fractional seconds portion of
21676 timestamp is zero a

SQL_C_TYPE_TIME Data 6 f N/A

21677 Fractional seconds portion of
21678 timestamp is non-zero a

Truncated data d,e 6 f 01004

21679 SQL_C_TYPE-
21680 _TIMESTAMP

Fractional seconds portion of
timestamp is not truncated a

Data e 16 f N/A

21681 Fractional seconds portion of
21682 timestamp is truncated a

Truncated data e 16 f 01004

21683 a The value of BufferLength is ignored for this conversion. The implementation assumes that the size of *TargetValuePtr |
21684 is the size of the C data type.
21685 b The fractional seconds of the timestamp are truncated.
21686 c The time portion of the timestamp is truncated.
21687 d The date portion of the timestamp is ignored.
21688 e The fractional seconds portion of the timestamp is truncated.
21689 f This is the size of the corresponding C data type.

21690 When timestamp SQL data is converted to character C data, the resulting string is in the ’yyyy-
21691 mm-dd hh:mm:ss[.f...]’ format, where up to nine digits may be used for fractional seconds. This
21692 format is independent of the locale. (Except for the decimal point and fractional seconds, the
21693 entire format must be used, regardless of the precision of the timestamp SQL data type.) |

21694 SQL to C: Interval |

21695 The identifiers for the interval SQL data types are:

21696 SQL_INTERVAL_SECOND SQL_INTERVAL_HOUR
21697 SQL_INTERVAL_DAY_TO_SECOND SQL_INTERVAL_MINUTE
21698 SQL_INTERVAL_HOUR_TO_SECOND SQL_INTERVAL_YEAR_TO_MONTH
21699 SQL_INTERVAL_MINUTE_TO_SECOND SQL_INTERVAL_DAY_TO_HOUR
21700 SQL_INTERVAL_YEAR SQL_INTERVAL_DAY_TO_MINUTE
21701 SQL_INTERVAL_MONTH SQL_INTERVAL_HOUR_TO_MINUTE

Data Management: X/Open Database Connectivity (XDBC), Version 2 585

Converting Data from SQL to C Data Types Data Types

21702 SQL_INTERVAL_DAY

21703 The following table shows the C data types to which interval SQL data may be converted. For an
21704 explanation of the columns and terms in the table, see Terms on page 577.

21705 *StrLen_or- SQL-
21706 C type identifier Test *TargetValuePtr _IndPtr STATE |
21707 SQL_C_INTERVAL_* a Data value is a valid interval Data Length of data N/A
21708 value; fractional seconds portion
21709 not truncated

21710 Data value is a valid interval Truncated data Length of data 01S07
21711 value; fractional seconds portion
21712 truncated
21713 SQL_C_STINYINT b Interval precision was a single Data Size of the C N/A
21714 SQL_C_UTINYINT b field and the data was converted data type
21715 SQL_C_USHORT b without truncation.
21716 SQL_C_SHORT b

21717 SQL_C_SLONG b Interval precision was a single Truncated Length of data 01004
21718 SQL_C_ULONG b field and truncated fractional. data
21719 SQL_C_NUMERIC b

21720 SQL_C_BIGINT b Interval precision was a single Truncated Length of data 22003
21721 field and truncated whole. data

21722 Interval precision was not a Undefined Size of the C
21723 single field. data type
21724 SQL_C_BINARY Length of data ≤ BufferLength Data Length of data N/A

21725 Length of data > BufferLength Undefined Undefined 22003
21726 SQL_C_CHAR Display size < BufferLength Data Size of the C N/A
21727 data type

21728 Number of whole (as opposed to Truncated data Size of the C 01004
21729 fractional) digits < BufferLength data type

21730 Number of whole (as opposed Undefined Undefined 22003
21731 to fractional) digits ≥
21732 BufferLength

21733 a A year-month interval SQL type can be converted to any year-month interval C type, and a day-time interval SQL
21734 type can be converted to any day-time interval C type.
21735 b If the interval precision is a single field (i.e., one of YEAR, MONTH, DAY, HOUR, MINUTE, or SECOND), then the
21736 interval SQL type can be converted to any exact numeric (i.e., SQL_C_STINYINT, SQL_C_UTINYINT,
21737 SQL_C_USHORT, SQL_C_SHORT, SQL_C_SLONG, SQL_C_ULONG, or SQL_C_NUMERIC).

21738 The default conversion of an interval SQL type is to an interval C type with the same interval
21739 subtype.

21740 The implementation does not inspect the interval_type field within the |
21741 SQL_INTERVAL_STRUCT interval structure to determine what interval subtype to convert to. |
21742 The implementation relies solely on the SQL_DESC_CONCISE_TYPE field of the ARD. |
21743 However, the implementation updates the interval_type field if the conversion changes the
21744 interval subtype.

21745 To achieve a conversion, the application sets the SQL_DESC_CONCISE_TYPE field in the
21746 appropriate record of the ARD to the appropriate concise type. The application then sets the
21747 SQL_DESC_DATA_PTR field in this ARD record to point to the initialized
21748 SQL_C_INTERVAL_STRUCT structure (or passes a pointer to this structure as TargetValuePtr in |
21749 SQLGetData()).

586 Direct Review (Build ID 96KAV) (Draft XDBC.33, August 1996)

Data Types Converting Data from SQL to C Data Types

21750 The following example demonstrates how to transfer data from a column of type
21751 SQL_INTERVAL_DAY_TO_MINUTE into the SQL_C_INTERVAL_STRUCT structure such that
21752 it comes back as a DAY_TO_HOUR interval.

21753 SQL_INTERVAL_STRUCT is;
21754 SQLINTEGER cbValue;
21755 SQLUINTEGER days, hours;

21756 // Execute a select statement; ’interval_column’ is a column
21757 // whose data type is SQL_INTERVAL_DAY_TO_MINUTE.
21758 SQLExecDirect(hstmt, ’SELECT interval_column FROM table’, SQL_NTS);

21759 // bind
21760 SQLBindCol(hstmt, 1, SQL_C_INTERVAL_DAY_TO_MINUTE, &is,
21761 sizeof(SQL_INTERVAL_STRUCT), &cbValue);

21762 //fetch
21763 SQLFetch(hstmt);

21764 // process data
21765 days = is.intval.day_second.day;
21766 hours = is.intval.day_second.hour;

21767 D.6.1 SQL to C Data Conversion Examples

21768 The following examples illustrate how the implementation converts SQL data to C data: |

21769 SQL Data Buffer SQL-
21770 SQL type identifier Value C type identifier Length *TargetValuePtr STATE |
21771 SQL_CHAR abcdef SQL_C_CHAR 7 abcdef\0 a N/A

21772 SQL_CHAR abcdef SQL_C_CHAR 6 abcde\0 a 01004

21773 SQL_DECIMAL 1234.56 SQL_C_CHAR 8 1234.56\0 a N/A

21774 SQL_DECIMAL 1234.56 SQL_C_CHAR 5 1234\0 a 01004

21775 SQL_DECIMAL 1234.56 SQL_C_CHAR 4 ---- 22003

21776 SQL_DECIMAL 1234.56 SQL_C_FLOAT ignored 1234.56 N/A

21777 SQL_DECIMAL 1234.56 SQL_C_SSHORT ignored 1234 01004

21778 SQL_DECIMAL 1234.56 SQL_C_STINYINT ignored ---- 22003

21779 SQL_DOUBLE 1.2345678 SQL_C_DOUBLE ignored 1.2345678 N/A

21780 SQL_DOUBLE 1.2345678 SQL_C_FLOAT ignored 1.234567 N/A

21781 SQL_DOUBLE 1.2345678 SQL_C_STINYINT ignored 1 N/A

21782 SQL_TYPE_DATE 1992-12-31 SQL_C_CHAR 11 1992-12-31\0 a N/A

21783 SQL_TYPE_DATE 1992-12-31 SQL_C_CHAR 10 ----- 22003

21784 SQL_TYPE_DATE 1992-12-31 SQL_C_TIMESTAMP ignored 1992,12,31, N/A
21785 0,0,0,0 b

21786 SQL_TYPE_TIMESTAMP 1992-12-31 SQL_C_CHAR 23 1992-12-31 N/A
21787 23:45:55.12 23:45:55.12\0 a

21788 SQL_TYPE_TIMESTAMP 1992-12-31 SQL_C_CHAR 22 1992-12-31 01004
21789 23:45:55.12 23:45:55.1\0 a

21790 SQL_TYPE_TIMESTAMP 1992-12-31 SQL_C_CHAR 18 ---- 22003
21791 23:45:55.12

Data Management: X/Open Database Connectivity (XDBC), Version 2 587

SQL to C Data Conversion Examples Data Types

21792 a ‘‘\0’’ represents a null terminator. The implementation always null-terminates SQL_C_CHAR data. |
21793 b The numbers in this list are the numbers stored in the fields of the TIMESTAMP_STRUCT structure.

588 Direct Review (Build ID 96KAV) (Draft XDBC.33, August 1996)

Data Types SQL to C Data Conversion Examples

21794 D.7 Converting Data from C to SQL Data Types |

21795 When an application calls SQLExecute() or SQLExecDirect(), the implementation retrieves the |
21796 data for any parameters bound with SQLBindParameter() from storage locations in the
21797 application. When an application calls SQLSetPos(), the implementation retrieves the data for an |
21798 update or add operation from columns bound with SQLBindCol(). For data-at-execution
21799 parameters, the application sends the parameter data with SQLPutData(). If necessary, the |
21800 implementation converts the data from the data type specified by ValueType in |
21801 SQLBindParameter() to the data type specified by ParameterType in SQLBindParameter(). Finally, |
21802 the implementation sends the data to the data source.

21803 The following table shows the supported conversions from C data types to SQL data types. A
21804 solid circle indicates the default conversion for an SQL data type (the C data type from which the
21805 data will be converted when the value of ValueType is SQL_C_DEFAULT). A hollow circle
21806 indicates a supported conversion.

21807 The format of the converted data is independent of the locale.

21808 [Requires a table from the sponsors which has not yet been corrected] |

Data Management: X/Open Database Connectivity (XDBC), Version 2 589

Converting Data from C to SQL Data Types Data Types

21809 The tables in the following sections describe how the implementation converts data sent to the |
21810 data source; implementations are required to support conversions from all C data types to the
21811 SQL data types that they support. For a given C data type, the first column of the table lists the
21812 legal input values of ParameterType in SQLBindParameter(). The second column lists the |
21813 outcomes of a test that the implementation performs to determine if it can convert the data. The
21814 third column lists the SQLSTATE returned for each outcome by SQLExecDirect(), SQLExecute(),
21815 SQLSetPos(), or SQLPutData(). Data is sent to the data source only if SQL_SUCCESS is returned.

21816 If ParameterType in SQLBindParameter() contains the identifier of an XDBC SQL data type that is |
21817 not shown in the table for a given C data type, SQLBindParameter() returns SQLSTATE 07006
21818 (Restricted data type attribute violation). If ParameterType contains an implementation-defined |
21819 identifier and the implementation does not support the conversion from the specific C data type |
21820 to that SQL data type, SQLBindParameter() returns SQLSTATE HYC00 (Optional feature not |
21821 implemented). |

21822 If ParameterValuePtr and StrLen_or_IndPtr in SQLBindParameter() are both null pointers, that |
21823 function returns SQLSTATE HY009 (Invalid use of null pointer). Though it is not shown in the
21824 tables, an application sets the value of the length/indicator buffer pointed to by StrLen_or_IndPtr |
21825 in SQLBindParameter() or the value of StrLen_or_IndPtr in SQLPutData() to SQL_NULL_DATAto
21826 specify a NULL SQL data value. The application sets these values to SQL_NTS to specify that
21827 the value in *ParameterValuePtr in SQLBindParameter() or *DataPtr in SQLPutData() is a null-
21828 terminated string.

21829 Terms

21830 The following terms are used in the tables:

21831 • Length of data is the number of octets of SQL data available to send to the data source, |
21832 regardless of whether the data will be truncated before it is sent to the data source. For string
21833 data, this does not include the null terminator. |

21834 • Column length is the number of octets required to store the data at the data source. |

21835 • Display size is defined for each SQL data type in Section D.3 on page 562.

21836 • Number of digits is the number of characters used to represent a number, including the
21837 minus sign, decimal point, and exponent (if needed).

21838 C to SQL: Character |

21839 The identifier for the character C data type is SQL_C_CHAR.

21840 The following table shows the SQL data types to which C character data may be converted. For
21841 an explanation of the columns and terms in the table, see Terms on page 588.

21842 SQL-
21843 SQL type identifier Test STATE |

21844 SQL_CHAR Length of data ≤ Column length N/A
21845 SQL_VARCHAR
21846 SQL_LONGVARCHAR Length of data > Column length 22001
21847 SQL_DECIMAL Data converted without truncation N/A
21848 SQL_NUMERIC
21849 SQL_TINYINT Data converted with truncation of fractional 22001
21850 SQL_SMALLINT digits

590 Direct Review (Build ID 96KAV) (Draft XDBC.33, August 1996)

Data Types Converting Data from C to SQL Data Types

21851 SQL_INTEGER
21852 SQL_BIGINT Conversion of data would result in loss of whole 22003
21853 (as opposed to fractional) digits

21854 Data value is not a numeric literal 22018
21855 SQL_REAL Data is within the range of the data type to which N/A
21856 SQL_FLOAT the number is being converted
21857 SQL_DOUBLE
21858 Data is outside the range of the data type to 22003
21859 which the number is being converted

21860 Data value is not a numeric literal 22018
21861 SQL_BIT Data is 0 or 1 N/A

21862 Data is greater than 0, less than 2, and not equal 22001
21863 to 1

21864 Data is less than 0 or greater than or equal to 2 22003

21865 Data is not a numeric literal
21866 SQL_BINARY Length of data / 2 ≤ Column length N/A
21867 SQL_VARBINARY
21868 SQL_LONGVARBINARY Length of data / 2 > Column length 22001

21869 Data value is not a hexadecimal value 22018
21870 SQL_TYPE_DATE Data value is a valid date literal N/A

21871 Data value is a valid timestamp literal; N/A
21872 time portion is zero

21873 Data value is a valid timestamp literal; 22001
21874 time portion is non-zero a

21875 Data value is not a valid date literal or 22007
21876 timestamp literal
21877 SQL_TYPE_TIME Data value is a valid time literal N/A

21878 Data value is a valid timestamp literal; N/A
21879 fractional seconds portion is zero b

21880 Data value is a valid timestamp literal; 22001
21881 fractional seconds portion is non-zero b,c

21882 Data value is not a valid time literal or 22007
21883 timestamp literal
21884 SQL_TYPE_TIMESTAMP Data value is a valid timestamp literal; N/A
21885 fractional seconds portion not truncated

Data Management: X/Open Database Connectivity (XDBC), Version 2 591

Converting Data from C to SQL Data Types Data Types

21886 Data value is a valid timestamp literal; 22001
21887 fractional seconds portion truncated

21888 Data value is a valid date literal d N/A

21889 Data value is a valid time literal e N/A

21890 Data value is not a valid date literal, 22007
21891 time literal, or timestamp literal
21892 SQL_INTERVAL_* Data value is a valid interval value; fractional N/A
21893 seconds portion not truncated

21894 Data value is a valid interval value; fractional 22001
21895 seconds portion truncated

21896 There was no representation of the data in the 22015
21897 interval structure

21898 The data value is not a valid interval value 22018

21899 a The time portion of the timestamp is truncated.
21900 b The date portion of the timestamp is ignored.
21901 c The fractional seconds portion of the timestamp is truncated.
21902 d The time portion of the timestamp is set to zero.
21903 e The date portion of the timestamp is set to the current date.

21904 When character C data is converted to numeric, date, time, or timestamp SQL data, leading and
21905 trailing blanks are ignored.

21906 When character C data is converted to binary SQL data, each two characters are converted to a |
21907 single octet of binary data. Each two characters represent a number in hexadecimal form. For |
21908 example, ’01’ is converted to binary 00000001 and ’FF’ is converted to binary 11111111. |

21909 The implementation always converts pairs of hexadecimal digits to individual octets and ignores |
21910 the null terminator. Because of this, if the length of the character string is odd, the last octet of |
21911 the string (excluding any null terminator) is not converted. |

21912 All implementations that support date, time, and timestamp data can convert character C data to |
21913 date, time, or timestamp SQL data as specified in the previous table. Implementations may be |
21914 able to convert character C data from other, implementation-defined formats to date, time, or |
21915 timestamp SQL data. Such conversions are not interoperable among data sources.

21916 Note: Application developers are discouraged from binding character C data to a binary SQL
21917 data type. This conversion is inefficient and slow. |

21918 C to SQL: Numeric |

21919 The identifiers for the numeric XDBC C data types are:

21920 SQL_C_STINYINT SQL_C_SLONG

592 Direct Review (Build ID 96KAV) (Draft XDBC.33, August 1996)

Data Types Converting Data from C to SQL Data Types

21921 SQL_C_UTINYINT SQL_C_ULONG
21922 SQL_C_TINYINT SQL_C_LONG
21923 SQL_C_SSHORT SQL_C_FLOAT
21924 SQL_C_USHORT SQL_C_DOUBLE
21925 SQL_C_SHORT SQL_C_NUMERIC
21926 SQL_C_SBIGINT SQL_C_UBIGINT

21927 The following table shows the SQL data types to which numeric C data may be converted. For
21928 an explanation of the columns and terms in the table, see Terms on page 588.

21929 SQL-
21930 SQL type identifier Test STATE |

21931 SQL_CHAR Number of digits ≤ Column length N/A
21932 SQL_VARCHAR
21933 SQL_LONGVARCHAR Number of whole (as opposed to fractional) digits 22001
21934 ≤ Column length

21935 Number of whole (as opposed to fractional) digits 22003
21936 > Column length
21937 SQL_DECIMAL Data converted without truncation N/A
21938 SQL_NUMERIC
21939 SQL_TINYINT Data converted with truncation of fractional or 22003
21940 SQL_SMALLINT
21941 SQL_INTEGER
21942 SQL_BIGINT
21943 SQL_REAL Data is within the range of the data type to which N/A
21944 SQL_FLOAT the number is being converted
21945 SQL_DOUBLE
21946 Data is outside the range of the data type to 22003
21947 which the number is being converted
21948 SQL_BIT Data is 0 or 1 N/A

21949 Data is greater than 0, less than 2, and not equal 22001
21950 to 1

21951 Data is less than 0 or greater than or equal to 2 22003
21952 SQL_INTERVAL_YEAR a Data value is a valid interval value; fractional N/A
21953 SQL_INTERVAL_MONTH a seconds portion not truncated
21954 SQL_INTERVAL_DAYa

21955 SQL_INTERVAL_HOUR a Data value is a valid interval value; fractional 22001
21956 SQL_INTERVAL_MINUTE a seconds portion truncated
21957 SQL_INTERVAL_SECOND a

21958 There was no representation of the data in the 22015
21959 interval structure

21960 The data value is not a valid interval value 22018

21961 a These conversions are supported only for the exact numeric data types (SQL_C_STINYINT,
21962 SQL_C_UTINYINT, SQL_C_SSHORT, SQL_C_USHORT, SQL_C_SLONG, SQL_C_ULONG,
21963 or SQL_C_NUMERIC). They are not supported for the approximate numeric data types
21964 (SQL_C_FLOAT or SQL_C_DOUBLE). Exact numeric C data types cannot be converted to
21965 an interval SQL type whose interval precision is not a single field.

Data Management: X/Open Database Connectivity (XDBC), Version 2 593

Converting Data from C to SQL Data Types Data Types

21966 The implementation ignores the length/indicator value when converting data from the numeric |
21967 C data types and assumes that the size of the data buffer is the size of the numeric C data type. |
21968 The length/indicator value is passed in StrLen_or_Ind in SQLPutData() and in the buffer |
21969 specified with StrLen_or_IndPtr in SQLBindParameter(). The data buffer is specified with DataPtr |
21970 in SQLPutData() and ParameterValuePtrin SQLBindParameter(). |

21971 C to SQL: Bit |

21972 The identifier for the bit C data type is SQL_C_BIT.

21973 Bit C data may be converted to the data types listed below. The conversion unconditionally
21974 succeeds and the conversion produces no SQLSTATEvalue.

21975 SQL_BIGINT SQL_FLOAT SQL_SMALLINT
21976 SQL_BIT SQL_INTEGER SQL_TINYINT
21977 SQL_CHAR SQL_LONGVARCHAR SQL_VARCHAR
21978 SQL_DECIMAL SQL_NUMERIC
21979 SQL_DOUBLE SQL_REAL

21980 The implementation ignores the length/indicator value when converting data from the bit C |
21981 data type and assumes that the size of the data buffer is the size of the bit C data type. The |
21982 length/indicator value is passed in StrLen_or_Ind in SQLPutData() and in the buffer specified |
21983 with StrLen_or_IndPtr in SQLBindParameter(). The data buffer is specified with DataPtr in |
21984 SQLPutData() and ParameterValuePtrin SQLBindParameter(). |

21985 C to SQL: Binary |

21986 The identifier for the binary C data type is SQL_C_BINARY.

21987 The following table shows the SQL data types to which binary C data may be converted. For an
21988 explanation of the columns and terms in the table, see Terms on page 588.

21989 SQL-
21990 SQL type identifier Test STATE |

21991 SQL_CHAR Length of data ≤ Column length N/A
21992 SQL_VARCHAR
21993 SQL_LONGVARCHAR Length of data > Column length 22001
21994 SQL_DECIMAL Length of data = SQL data length a N/A
21995 SQL_NUMERIC
21996 SQL_TINYINT Length of data ≠ SQL data length a 22003
21997 SQL_SMALLINT
21998 SQL_INTEGER
21999 SQL_BIGINT
22000 SQL_REAL
22001 SQL_FLOAT
22002 SQL_DOUBLE
22003 SQL_BIT
22004 SQL_TYPE_DATE
22005 SQL_TYPE_TIME
22006 SQL_TYPE_TIMESTAMP
22007 SQL_BINARY Length of data ≤ Column length N/A

594 Direct Review (Build ID 96KAV) (Draft XDBC.33, August 1996)

Data Types Converting Data from C to SQL Data Types

22008 SQL_VARBINARY
22009 SQL_LONGVARBINARY Length of data > Column length N/A

22010 a The SQL data length is the number of octets needed to store the data on the data source. |
22011 (This may be different from the column length, as defined in Terms on page 588.)

22012 C to SQL: Date |

22013 The identifier for the date C data type is SQL_C_TYPE_DATE.

22014 The following table shows the SQL data types to which date C data may be converted. For an
22015 explanation of the columns and terms in the table, see Terms on page 588.

22016 SQL-
22017 SQL type identifier Test STATE |

22018 SQL_CHAR Column length ≥ 10 N/A
22019 SQL_VARCHAR
22020 SQL_LONGVARCHAR Column length < 10 22003

22021 Data value is not a valid date 22007
22022 SQL_TYPE_DATE Data value is a valid date N/A

22023 Data value is not a valid date 22007
22024 SQL_TYPE_TIMESTAMP Data value is a valid date a N/A

22025 Data value is not a valid date 22007

22026 a The time portion of the timestamp is set to zero.

22027 For information about what values are valid in a SQL_C_TYPE_DATE structure, see ‘‘Extended
22028 C Data Types,’’ earlier in this appendix.

22029 When date C data is converted to character SQL data, the resulting character data is in the
22030 ’yyyy-mm-dd’ format.

22031 The implementation ignores the length/indicator value when converting data from the date C |
22032 data type and assumes that the size of the data buffer is the size of the date C data type. The |
22033 length/indicator value is passed in StrLen_or_Ind in SQLPutData() and in the buffer specified |
22034 with StrLen_or_IndPtr in SQLBindParameter(). The data buffer is specified with DataPtr in |
22035 SQLPutData() and ParameterValuePtrin SQLBindParameter(). |

22036 C to SQL: Time |

22037 The identifier for the time C data type is SQL_C_TYPE_TIME.

22038 The following table shows the SQL data types to which time C data may be converted. For an
22039 explanation of the columns and terms in the table, see Terms on page 588.

22040 SQL-
22041 SQL type identifier Test STATE |

22042 SQL_CHAR Column length ≥ 8 N/A
22043 SQL_VARCHAR

Data Management: X/Open Database Connectivity (XDBC), Version 2 595

Converting Data from C to SQL Data Types Data Types

22044 SQL_LONGVARCHAR Column length < 8 22003

22045 Data value is not a valid time 22007
22046 SQL_TYPE_DATE Data value is a valid time N/A

22047 Data value is not a valid time 22007
22048 SQL_TYPE_TIMESTAMP Data value is a valid time a N/A

22049 Data value is not a valid time 22007

22050 a The date portion of the timestamp is set to the current date and the fractional seconds
22051 portion of the timestamp is set to zero.

22052 For information about what values are valid in a SQL_C_TYPE_TIME structure, see ‘‘Extended
22053 C Data Types,’’ earlier in this appendix.

22054 When time C data is converted to character SQL data, the resulting character data is in the
22055 ’hh:mm:ss’ format.

22056 The implementation ignores the length/indicator value when converting data from the time C |
22057 data type and assumes that the size of the data buffer is the size of the time C data type. The |
22058 length/indicator value is passed in StrLen_or_Ind in SQLPutData() and in the buffer specified |
22059 with StrLen_or_IndPtr in SQLBindParameter(). The data buffer is specified with DataPtr in |
22060 SQLPutData() and ParameterValuePtrin SQLBindParameter(). |

22061 C to SQL: Timestamp |

22062 The identifier for the timestamp C data type is SQL_C_TYPE_TIMESTAMP.

22063 The following table shows the SQL data types to which timestamp C data may be converted. For
22064 an explanation of the columns and terms in the table, see Terms on page 588.

22065 SQL-
22066 SQL type identifier Test STATE |

22067 SQL_CHAR Column length ≥ Display size N/A
22068 SQL_VARCHAR
22069 SQL_LONGVARCHAR 19 ≤ Column length < Display size a 22001

22070 Column length < 19 22003

22071 Data value is not a valid date 22007
22072 SQL_TYPE_DATE Time fields are zero N/A

22073 Time fields are non-zero b 22001

22074 Data value does not contain a valid date 22007
22075 SQL_TYPE_TIME Fractional seconds fields are zero c N/A

22076 Fractional seconds fields are non-zero c,d 22001

22077 Data value does not contain a valid time 22007
22078 SQL_TYPE_TIMESTAMP Fractional seconds fields are not truncated N/A

596 Direct Review (Build ID 96KAV) (Draft XDBC.33, August 1996)

Data Types Converting Data from C to SQL Data Types

22079 Fractional seconds fields are truncated d 22001

22080 Data value is not a valid timestamp 22007

22081 a The fractional seconds of the timestamp are truncated.
22082 b The time fields of the timestamp structure are truncated.
22083 c The date fields of the timestamp structure are ignored.
22084 d The fractional seconds fields of the timestamp structure are truncated.

22085 For information about what values are valid in a SQL_C_TIMESTAMP structure, see ‘‘Extended
22086 C Data Types,’’ earlier in this appendix.

22087 When timestamp C data is converted to character SQL data, the resulting character data is in the
22088 ’yyyy-mm-dd hh:mm:ss[.f...]’ format.

22089 The implementation ignores the length/indicator value when converting data from the |
22090 timestamp C data type and assumes that the size of the data buffer is the size of the timestamp C |
22091 data type. The length/indicator value is passed in StrLen_or_Ind in SQLPutData() and in the |
22092 buffer specified with StrLen_or_IndPtr in SQLBindParameter(). The data buffer is specified with |
22093 DataPtr in SQLPutData() and ParameterValuePtrin SQLBindParameter(). |

22094 C to SQL: Interval |

22095 The identifiers for the interval C data types are:

22096 SQL_C_INTERVAL_MONTH SQL_C_INTERVAL_DAY_TO_HOUR
22097 SQL_C_INTERVAL_YEAR SQL_C_INTERVAL_DAY_TO_MINUTE
22098 SQL_C_INTERVAL_YEAR_TO_MONTH SQL_C_INTERVAL_DAY_TO_SECOND
22099 SQL_C_INTERVAL_DAY SQL_C_INTERVAL_HOUR_TO_MINUTE
22100 SQL_C_INTERVAL_HOUR SQL_C_INTERVAL_HOUR_TO_SECOND
22101 SQL_C_INTERVAL_MINUTE SQL_C_INTERVAL_MINUTE_TO_SECOND
22102 SQL_C_INTERVAL_SECOND

22103 The following table shows the SQL data types to which interval C data may be converted. For an
22104 explanation of the columns and terms in the table, see Terms on page 588.

22105 SQL-
22106 SQL type identifier Test STATE |

22107 SQL_CHAR Column length ≥ Display size N/A
22108 SQL_VARCHAR
22109 SQL_LONGVARCHAR 19 ≤ Column length < Display size 22001

22110 Column length < 19 22003

22111 Data value is not a valid date 22007
22112 SQL_TINYINT b The type field in the interval structure is such that TBD
22113 SQL_SMALLINT b the interval is a single field
22114 SQL_INTEGER b

Data Management: X/Open Database Connectivity (XDBC), Version 2 597

Converting Data from C to SQL Data Types Data Types

22115 SQL_BIGINT b The type field in the interval structure is not such
22116 SQL_NUMERIC b that the interval is a single field
22117 SQL_DECIMAL b

22118 SQL_INTERVAL_* c Data value is a valid interval value; fractional N/A
22119 seconds portion not truncated

22120 Data value is a valid interval value; fractional 22001
22121 seconds portion truncated

22122 There was no representation of the data in the 22015
22123 interval structure

22124 The data value is not a valid interval value 22018

22125 a All C interval data types can be converted to a character data type.
22126 b If the type field in the interval structure is such that the interval is a single field, (i.e.,
22127 SQL_YEAR, SQL_MONTH, SQL_DAY, SQL_HOUR, SQL_MINUTE, or SQL_SECOND),
22128 then the interval C type can be converted to any exact numeric (i.e., SQL_TINYINT,
22129 SQL_SMALLINT, SQL_INTEGER, SQL_BIGINT, SQL_DECIMAL, or SQL_NUMERIC).
22130 c If the type field of the interval structure represents a year-month interval, it can be
22131 converted to any year-month SQL interval type. If the type field of the interval structure
22132 represents a day-time interval, it can be converted to any day-time SQL interval type.

22133 The default conversion of an interval C type is to an interval SQL type with the same interval
22134 subtype.

22135 The implementation ignores the length/indicator value when converting data from the interval |
22136 C data type and assumes that the size of the data buffer is the size of the interval C data type. |
22137 The length/indicator value is passed in StrLen_or_Ind in SQLPutData() and in the buffer |
22138 specified with StrLen_or_IndPtr in SQLBindParameter(). The data buffer is specified with DataPtr |
22139 in SQLPutData() and ParameterValuePtrin SQLBindParameter().

22140 The following example demonstrates how to send interval C data stored in the
22141 SQL_INTERVAL_STRUCT structure into a database column. The interval structure contains a
22142 DAY_TO_SECOND interval; it will be stored in a database column of type
22143 SQL_INTERVAL_DAY_TO_MINUTE.

22144 SQL_INTERVAL_STRUCT is;
22145 SQLINTEGER cbValue;

22146 // Initialize the interval struct to contain the DAY_TO_MINUTE
22147 // interval ’154 days, 22 hours, and 44 minutes’
22148 // This is for illustration; it is not read by the implementation. |
22149 is.interval_type = SQL_DAY_TO_MINUTE;
22150 is.intval.day_second.day = 154;
22151 is.intval.day_second.hour = 22;
22152 is.intval.day_second.minute = 44;
22153 is.interval_sign = SQL_FALSE;

22154 // Bind the dynamic parameter
22155 SQLBindParameter(hstmt, 1, SQL_PARAM_INPUT, SQL_C_INTERVAL_DAY_TO_MINUTE,
22156 SQL_INTERVAL_DAY_TO_MINUTE, 0, 0, &is,
22157 sizeof(SQL_INTERVAL_STRUCT), &cbValue);

22158 // Execute an insert statement; ’interval_column’ is a column
22159 // whose data type is SQL_INTERVAL_DAY_TO_HOUR.

598 Direct Review (Build ID 96KAV) (Draft XDBC.33, August 1996)

Data Types Converting Data from C to SQL Data Types

22160 SQLExecDirect(hstmt,’INSERT INTO table(interval_column) VALUES (?)’,SQL_NTS);

22161 D.7.1 C to SQL Data Conversion Examples |

22162 The following examples illustrate how the implementation converts C data to SQL data: |

22163 Column SQL Data SQL-
22164 C type identifier C data value SQL type identifier length Value State |
22165 SQL_C_CHAR abcdef a SQL_CHAR 6 abcdef N/A

22166 SQL_C_CHAR abcdef a SQL_CHAR 5 abcde 22001

22167 SQL_C_CHAR 1234.56 a SQL_DECIMAL 8 b 1234.56 N/A

22168 SQL_C_CHAR 1234.56 a SQL_DECIMAL 7 b 1234.5 22001

22169 SQL_C_CHAR 1234.56 a SQL_DECIMAL 4 ---- 22003

22170 SQL_C_FLOAT 1234.56 SQL_FLOAT not applicable 1234.56 N/A

22171 SQL_C_FLOAT 1234.56 SQL_INTEGER not applicable 1234 22001

22172 SQL_C_FLOAT 1234.56 SQL_TINYINT not applicable ---- 22003

22173 SQL_C_TYPE_DATE 1992,12,31 c SQL_CHAR 10 1992-12-31 N/A

22174 SQL_C_TYPE_DATE 1992,12,31 c SQL_CHAR 9 ---- 22003

22175 SQL_C_TYPE_DATE 1992,12,31 c SQL_TIMESTAMP not applicable 1992-12-31 00:00:00.0 N/A

22176 SQL_C_TYPE_TIMESTAMP 1992,12,31, SQL_CHAR 22 1992-12-31 N/A
22177 23,45,55, 23:45:55.12
22178 120000000 d

22179 SQL_C_TYPE_TIMESTAMP 1992,12,31, SQL_CHAR 21 1992-12-31 22001
22180 23,45,55, 23:45:55.1
22181 120000000 d

22182 SQL_C_TYPE_TIMESTAMP 1992,12,31, SQL_CHAR 18 ---- 22003
22183 23,45,55,
22184 120000000 d

22185 a ‘‘\0’’ represents a null terminator. It is required only if the length of the data is SQL_NTS. |
22186 b In addition to octets for numbers, one octet is required for a sign and another octet is required for the decimal point. |
22187 c The numbers in this list are the numbers stored in the fields of the SQL_DATE_STRUCT structure.
22188 d The numbers in this list are the numbers stored in the fields of the SQL_TIMESTAMP_STRUCT structure.

Data Management: X/Open Database Connectivity (XDBC), Version 2 599

Data Types |

600 Direct Review (Build ID 96KAV) (Draft XDBC.33, August 1996)

•

22189 Appendix F

22190 Scalar Functions

22191 Scalar functions are syntactic components of SQL that obtain information and perform |
22192 conversions.

22193 Functions in the X/Open SQL specification

22194 A data source that complies with the X/Open SQL specification provides the following scalar
22195 functions:

22196 CHAR_LENGTH LOWER TRANSLATE
22197 CHARACTER_LENGTH OCTET_LENGTH TRIM
22198 CONVERT POSITION UPPER
22199 EXTRACT SUBSTRING

22200 The X/Open SQL specification refers to most of these as string operations. The X/Open SQL
22201 specification also supports concatenation through the L L operator and defines a CAST function
22202 comparable to the CONVERT function defined in Section F.5 on page 609.

22203 Functions in This Appendix

22204 The functions in this appendix are optional. An application can call SQLGetInfo() to determine
22205 which functions a given data source supports. The details of the call are specified at the start of
22206 each section of this appendix.

22207 If a data source asserts that it supports a given scalar function, the function must be
22208 implemented, syntactically and semantically, as specified in this appendix.

22209 Using Scalar Functions

22210 A portable application using scalar functions must account for the possibility that some are not |
22211 implemented on a given data source. The application should do both of the following: |

22212 • Query the data source using SQLGetInfo(), and make its use of the scalar functions |
22213 conditional on determining that the data source supports them.

22214 • Code calls to the scalar functions using the XDBC escape clause (see Section 8.3 on page 84) |
22215 so that the XDBC implementation passes a syntactic form acceptable to the data source.

22216 In any application algorithm that relies on scalar functions beyond those defined in the X/Open
22217 SQL specification, it is possible that the application cannot use the scalar functions on some data |
22218 sources, and it is possible that the only indication the application has that a function is |
22219 unavailable is the failure of an SQL statement in which the function occurs. The algorithm must |
22220 be written to adapt to this possibility.

Data Management: X/Open Database Connectivity (XDBC), Version 2 601

Scalar Functions

22221 Organization of This Appendix

22222 The scalar functions are organized in terms of the general category of operation:

22223 • String functions
22224 Functions that manipulate character strings (including character strings that contain sound
22225 expressions) are listed in Section F.1 on page 601.

22226 • Numeric functions
22227 Functions that perform numeric operations, such as trigonometric and transcendental
22228 functions, are listed in Section F.2 on page 603.

22229 • Time, date, and interval functions
22230 Functions that extract fields from, and perform arithmetic on, date/time and interval values |
22231 are listed in Section F.3 on page 605.

22232 • System functions
22233 Functions that retrieve information from the database are listed in Section F.4 on page 608.

22234 • CONVERT
22235 The CONVERT() function, which converts a value from one data type to another, is
22236 presented in Section F.5 on page 609.

22237 Within each of these sections, the functions are presented in alphabetic order.

602 Direct Review (Build ID 96KAV) (Draft XDBC.33, August 1996)

Scalar Functions

22238 F.1 String Functions

22239 This section lists the string manipulation functions. An application can determine which string |
22240 functions a data source supports by calling SQLGetInfo() with the SQL_STRING_FUNCTIONS |
22241 option.

22242 Character string literals used as arguments to scalar functions must be bounded by single
22243 quotes.

22244 Arguments denoted as string_exp can be the name of a column, a string literal, or the result of
22245 another scalar function, where the underlying data type can be represented as SQL_CHAR,
22246 SQL_VARCHAR, or SQL_LONGVARCHAR.

22247 Arguments denoted as start , length , or count can be a numeric literal or the result of another
22248 scalar function, where the underlying data type can be represented as SQL_TINYINT,
22249 SQL_SMALLINT, or SQL_INTEGER.

22250 The string functions listed here are 1-based, that is, the first character in the string is character 1.

22251 ASCII(string_exp) |
22252 Returns the ASCII code value of the leftmost character of string_exp as an integer.

22253 CHAR(code) |
22254 Returns the character that has the ASCII code value specified by code . The value of code
22255 should be between 0 and 255; otherwise, the return value is data-source-dependent.

22256 CONCAT(string_exp1, string_exp2) |
22257 Returns a character string that is the result of concatenating string_exp2 to string_exp1 . The
22258 resulting string is data-source-dependent. For example, if the column represented by
22259 string_exp1 contained a NULL value, DB2 would return NULL, but SQL Server would return
22260 the non-NULL string.

22261 DIFFERENCE(string_exp1, string_exp2) |
22262 Returns an integer value that indicates the difference between the values returned by the
22263 SOUNDEX function for string_exp1 and string_exp2 .

22264 INSERT(string_exp1, start, length, string_exp2) |
22265 Returns a character string where length characters have been deleted from string_exp1
22266 beginning at start and where string_exp2 has been inserted into string_exp , beginning at start .

22267 LCASE(string_exp) |
22268 Returns a string consisting of string_exp in which all upper-case characters have been
22269 converted to lower case.

22270 LEFT(string_exp, count)
22271 Returns the leftmost count characters of string_exp .

22272 LENGTH(string_exp) |
22273 Returns the number of characters in string_exp , excluding trailing blanks.

22274 LOCATE(string_exp1, string_exp2[, start]) |
22275 Returns the starting position of the first occurrence of string_exp1 within string_exp2 , or 0 if
22276 there is no occurrence. The search begins at character position start (or at the first character
22277 position in string_exp2 , if start is omitted).

22278 LOCATE_2(string_exp1, string_exp2) |
22279 Returns the starting position of the first occurrence of string_exp1 within string_exp2 , or 0 if
22280 there is no occurrence. The search begins at the first character position in string_exp2 .

22281 LTRIM(string_exp) |
22282 Returns the characters of string_exp , with leading blanks removed.

Data Management: X/Open Database Connectivity (XDBC), Version 2 603

String Functions Scalar Functions

22283 REPEAT(string_exp, count) |
22284 Returns a character string composed of string_exp repeated count times.

22285 REPLACE(string_exp1, string_exp2, string_exp3) |
22286 Scan string_exp1 , replacing all occurrences of string_exp2 with string_exp3 .

22287 RIGHT(string_exp, count) |
22288 Returns the rightmost count characters of string_exp .

22289 RTRIM(string_exp) |
22290 Returns the characters of string_exp with trailing blanks removed.

22291 SOUNDEX(string_exp) |
22292 Returns a data-source-dependent character string representing the sound of the words in
22293 string_exp . For example, SQL Server returns a four digit SOUNDEX code; Oracle returns a
22294 phonetic representation of each word.

22295 SPACE(count) |
22296 Returns a character string consisting of count spaces.

22297 SUBSTRING(string_exp, start, length) |
22298 Returns a character string that is derived from string_exp beginning at the character position
22299 specified by start for length characters.

22300 UCASE(string_exp) |
22301 Returns a string consisting of string_exp in which all lower-case characters have been
22302 converted to upper case.

604 Direct Review (Build ID 96KAV) (Draft XDBC.33, August 1996)

Scalar Functions Numeric Functions

22303 F.2 Numeric Functions

22304 This section lists the numeric scalar functions. An application can determine which functions a |
22305 data source supports by calling SQLGetInfo() with the SQL_NUMERIC_FUNCTIONS option. |

22306 Arguments denoted as numeric_exp can be the name of a column, the result of another scalar
22307 function, or a numeric literal, where the underlying data type could be represented as
22308 SQL_NUMERIC, SQL_DECIMAL, SQL_TINYINT, SQL_SMALLINT, SQL_INTEGER,
22309 SQL_BIGINT, SQL_FLOAT,SQL_REAL, or SQL_DOUBLE.

22310 Arguments denoted as float_exp can be the name of a column, the result of another scalar
22311 function, or a numeric literal, where the underlying data type can be represented as SQL_FLOAT.

22312 Arguments denoted as integer_exp can be the name of a column, the result of another scalar
22313 function, or a numeric literal, where the underlying data type can be represented as
22314 SQL_TINYINT, SQL_SMALLINT, SQL_INTEGER, or SQL_BIGINT.

22315 ABS(numeric_exp) |
22316 Returns the absolute value of numeric_exp.

22317 ACOS(float_exp) |
22318 Returns the arccosine of float_exp as an angle, expressed in radians.

22319 ASIN(float_exp) |
22320 Returns the arcsine of float_exp as an angle, expressed in radians.

22321 ATAN(float_exp) |
22322 Returns the arctangent of float_exp as an angle, expressed in radians.

22323 ATAN2(float_exp1, float_exp2) |
22324 Returns the arctangent of the x and y coordinates, specified by float_exp1 and float_exp2 ,
22325 respectively, as an angle, expressed in radians.

22326 CEILING(numeric_exp) |
22327 Returns the smallest integer greater than or equal to numeric_exp.

22328 COS(float_exp) |
22329 Returns the cosine of float_exp , where float_exp is an angle expressed in radians.

22330 COT(float_exp) |
22331 Returns the cotangent of float_exp , where float_exp is an angle expressed in radians.

22332 DEGREES(numeric_exp) |
22333 Returns the number of degrees converted from numeric_exp radians.

22334 EXP(float_exp) |
22335 Returns the exponential value of float_exp .

22336 FLOOR(numeric_exp) |
22337 Returns the largest integer less than or equal to numeric_exp.

22338 LOG(float_exp) |
22339 Returns the natural logarithm of float_exp .

22340 LOG10(float_exp) |
22341 Returns the base-10 logarithm of float_exp .

22342 MOD(integer_exp1, integer_exp2) |
22343 Returns the remainder (modulus) of integer_exp1 divided by integer_exp2 .

22344 PI() |
22345 Returns the constant value of pi as a floating point value.

Data Management: X/Open Database Connectivity (XDBC), Version 2 605

Numeric Functions Scalar Functions

22346 POWER(numeric_exp, integer_exp) |
22347 Returns the value of numeric_exp to the power of integer_exp .

22348 RADIANS(numeric_exp) |
22349 Returns the number of radians converted from numeric_exp degrees.

22350 RAND([integer_exp]) |
22351 Returns a random floating point value, in the range from 0.0 up to but not including 1.0,
22352 using integer_exp as the optional seed value.

22353 ROUND(numeric_exp, integer_exp) |
22354 Returns numeric_exp rounded to integer_exp places right of the decimal point. If integer_exp is
22355 negative, numeric_exp is rounded to | integer_exp | places to the left of the decimal point. |

22356 SIGN(numeric_exp) |
22357 Returns an indicator of the sign of numeric_exp. If numeric_exp is less than zero, −1 is
22358 returned. If numeric_exp equals zero, 0 is returned. If numeric_exp is greater than zero, 1 is
22359 returned.

22360 SIN(float_exp) |
22361 Returns the sine of float_exp , where float_exp is an angle expressed in radians.

22362 SQRT(float_exp) |
22363 Returns the square root of float_exp.

22364 TAN(float_exp) |
22365 Returns the tangent of float_exp , where float_exp is an angle expressed in radians.

22366 TRUNCATE(numeric_exp, integer_exp) |
22367 Returns numeric_exp, truncated to integer_exp places right of the decimal point. If integer_exp
22368 is negative, numeric_exp is truncated to | integer_exp | places to the left of the decimal point. |

606 Direct Review (Build ID 96KAV) (Draft XDBC.33, August 1996)

Scalar Functions Time, Date, and Interval Functions

22369 F.3 Time, Date, and Interval Functions

22370 This section lists the time, date, and interval functions. An application can determine which |
22371 time and date functions a data source supports by calling SQLGetInfo() with the |
22372 SQL_TIMEDATE_FUNCTIONS option. (Aspects of the TIMESTAMPADD and
22373 TIMESTAMPDIFF scalar functions are individually optional. The extent of support for each |
22374 option can also be determined by calling SQLGetInfo(), as noted below.)

22375 Arguments denoted as timestamp_exp can be the name of a column, the result of another scalar
22376 function, or a time, date, or timestamp literal, where the underlying data type could be
22377 represented as SQL_CHAR, SQL_VARCHAR, SQL_TIME, SQL_DATE,or SQL_TIMESTAMP.

22378 Arguments denoted as date_exp can be the name of a column, the result of another scalar
22379 function, or a date or timestamp literal, where the underlying data type could be represented as
22380 SQL_CHAR, SQL_VARCHAR, SQL_DATE,or SQL_TIMESTAMP.

22381 Arguments denoted as time_exp can be the name of a column, the result of another scalar
22382 function, or a time or timestamp literal, where the underlying data type could be represented as
22383 SQL_CHAR, SQL_VARCHAR, SQL_TIME, or SQL_TIMESTAMP.

22384 CURDATE() |
22385 Returns the current date.

22386 CURTIME() |
22387 Returns the current local time.

22388 CURTIMESTAMP(time_precision) |
22389 Returns the current local date and local time as a timestamp value. The time_precision
22390 argument determines the seconds precision of the returned timestamp.

22391 DAYNAME(date_exp) |
22392 Returns a character string containing the data source-specific name of the day (for example,
22393 Sunday, through Saturday or Sun. through Sat. for a data source that uses English, or
22394 Sonntag through Samstag for a data source that uses German) for the day portion of
22395 date_exp .

22396 DAYOFMONTH(date_exp) |
22397 Returns the day of the month in date_exp as an integer value in the range of 1-31.

22398 DAYOFWEEK(date_exp) |
22399 Returns the day to the week in date_exp as an integer value in the range of 1-7, where 1
22400 represents Sunday.

22401 DAYOFYEAR(date_exp) |
22402 Returns the day of the year in date_exp as an integer value in the range of 1-366.

22403 EXTRACT(extract_field, extract_source) |
22404 Returns the extract_field portion of the extract_source . The extract_source argument is a |
22405 date/time or interval expression. The extract_field argument can be one of the following
22406 keywords:

22407 SQL_TSI_YEAR
22408 SQL_TSI_MONTH
22409 SQL_TSI_DAY
22410 SQL_TSI_HOUR
22411 SQL_TSI_MINUTE
22412 SQL_TSI_SECOND

22413 HOUR(time_exp) |
22414 Returns the hour in time_exp as an integer value in the range of 0-23.

Data Management: X/Open Database Connectivity (XDBC), Version 2 607

Time, Date, and Interval Functions Scalar Functions

22415 MINUTE(time_exp) |
22416 Returns the minute in time_exp as an integer value in the range of 0-59.

22417 MONTH(date_exp) |
22418 Returns the month in date_exp as an integer value in the range of 1-12.

22419 MONTHNAME(date_exp) |
22420 Returns a character string containing the data source-specific name of the month (for
22421 example, January through December or Jan. through Dec. for a data source that uses
22422 English, or Januar through Dezember for a data source that uses German) for the month
22423 portion of date_exp .

22424 NOW() |
22425 Returns current date and time as a timestamp value.

22426 QUARTER(date_exp) |
22427 Returns the quarter in date_exp as an integer value in the range of 1-4, where 1 represents
22428 January 1 through March 31.

22429 SECOND(time_exp) |
22430 Returns the second in time_exp as an integer value in the range of 0 up to but not including
22431 62.

22432 TIMESTAMPADD(interval, integer_exp, timestamp_exp) |
22433 Returns the timestamp calculated by adding integer_exp intervals of type interval to
22434 timestamp_exp . Valid values of interval are the following keywords:

22435 SQL_TSI_FRAC_SECOND
22436 SQL_TSI_SECOND
22437 SQL_TSI_MINUTE
22438 SQL_TSI_HOUR
22439 SQL_TSI_DAY
22440 SQL_TSI_WEEK
22441 SQL_TSI_MONTH
22442 SQL_TSI_QUARTER
22443 SQL_TSI_YEAR

22444 where fractional seconds are expressed in billionths of a second. For example, the following
22445 SQL statement returns the name of each employee and their one-year anniversary dates:

22446 SELECT NAME,
22447 {fn TIMESTAMPADD(SQL_TSI_YEAR, 1, HIRE_DATE)}
22448 FROM EMPLOYEES

22449 If timestamp_exp is a time value and interval specifies days, weeks, months, quarters, or
22450 years, the date portion of timestamp_exp is set to the current date before calculating the
22451 resulting timestamp.

22452 If timestamp_exp is a date value and interval specifies fractional seconds, seconds, minutes, or
22453 hours, the time portion of timestamp_exp is set to 0 before calculating the resulting
22454 timestamp.

22455 An application determines which intervals a data source supports by calling SQLGetInfo()
22456 with the SQL_TIMEDATE_ADD_INTERVALSoption.

22457 TIMESTAMPDIFF(interval, timestamp_exp1, timestamp_exp2) |
22458 Returns the integer number of intervals of type interval by which timestamp_exp2 is greater
22459 than timestamp_exp1 . Valid values of interval are the following keywords:

608 Direct Review (Build ID 96KAV) (Draft XDBC.33, August 1996)

Scalar Functions Time, Date, and Interval Functions

22460 SQL_TSI_FRAC_SECOND
22461 SQL_TSI_SECOND
22462 SQL_TSI_MINUTE
22463 SQL_TSI_HOUR
22464 SQL_TSI_DAY
22465 SQL_TSI_WEEK
22466 SQL_TSI_MONTH
22467 SQL_TSI_QUARTER
22468 SQL_TSI_YEAR

22469 where fractional seconds are expressed in billionths of a second. For example, the following
22470 SQL statement returns the name of each employee and the number of years they have been
22471 employed.

22472 SELECT NAME,
22473 {fn TIMESTAMPDIFF(SQL_TSI_YEAR, {fn CURDATE()}, HIRE_DATE)}
22474 FROM EMPLOYEES

22475 If either timestamp expression is a time value and interval specifies days, weeks, months,
22476 quarters, or years, the date portion of that timestamp is set to the current date before
22477 calculating the difference between the timestamps.

22478 If either timestamp expression is a date value and interval specifies fractional seconds,
22479 seconds, minutes, or hours, the time portion of of that timestamp is set to 0 before
22480 calculating the difference between the timestamps.

22481 An application determines which intervals a data source supports by calling SQLGetInfo()
22482 with the SQL_TIMEDATE_DIFF_INTERVALSoption.

22483 WEEK(date_exp) |
22484 Returns the week of the year in date_exp as an integer value in the range of 1-53.

22485 YEAR(date_exp) |
22486 Returns the year in date_exp as an integer value. The range is data source-dependent.

Data Management: X/Open Database Connectivity (XDBC), Version 2 609

System Functions Scalar Functions

22487 F.4 System Functions

22488 This section lists the system functions. An application can determine which system functions a |
22489 data source supports by calling SQLGetInfo() with the SQL_SYSTEM_FUNCTIONS option. |

22490 Arguments denoted as exp can be the name of a column, the result of another scalar function, or
22491 a literal, where the underlying data type could be represented as SQL_NUMERIC,
22492 SQL_DECIMAL, SQL_TINYINT, SQL_SMALLINT, SQL_INTEGER, SQL_BIGINT, SQL_FLOAT,
22493 SQL_REAL, SQL_DOUBLE, SQL_DATE,SQL_TIME, or SQL_TIMESTAMP.

22494 Arguments denoted as value can be a literal constant, where the underlying data type can be
22495 represented as SQL_NUMERIC, SQL_DECIMAL, SQL_TINYINT, SQL_SMALLINT,
22496 SQL_INTEGER, SQL_BIGINT, SQL_FLOAT, SQL_REAL, SQL_DOUBLE, SQL_DATE,
22497 SQL_TIME, or SQL_TIMESTAMP.

22498 Values returned are represented as XDBC data types.

22499 DATABASE() |
22500 Returns the name of the database corresponding to the connection handle. (The name of the
22501 database is also available by calling SQLGetConnectAttr() with the
22502 SQL_CURRENT_QUALIFIER connection attribute.)

22503 IFNULL(exp, value) |
22504 If exp is null, value is returned. If exp is not null, exp is returned. The possible data type(s) of
22505 value must be compatible with the data type of exp.

22506 USER() |
22507 Returns the user name in the data source. (The user name is also available as the |
22508 SQL_USER_NAME option in SQLGetInfo().) The user name may be different from the login |
22509 name.

610 Direct Review (Build ID 96KAV) (Draft XDBC.33, August 1996)

Scalar Functions Explicit Data Type Conversion

22510 F.5 Explicit Data Type Conversion
22511 The CAST and CONVERT functions both provide explicit data type conversion at the data |
22512 source. An application can determine whether the data source supports these functions by |
22513 calling SQLGetInfo() with the SQL_CONVERT_FUNCTIONS option. This returns a bitmask in |
22514 which a specific bit is set to indicate support for the corresponding function. |

22515 CAST Function |

22516 Data sources that comply with the X/Open SQL specification provide the CAST function to |
22517 convert a value to a different data type. The syntax of CAST is: |

22518 CAST({ expression | NULL} as data-type) |

22519 where data-type is one of the named data types defined in the X/Open SQL specification. The |
22520 pairs of source and destination data types for which conversion via CAST is supported are |
22521 defined in the X/Open SQL specification. |

22522 CONVERT Function |

22523 This section describes the CONVERT scalar function, which converts a value from one data type
22524 to another. Support for CONVERT is optional; moreover, a data source may support
22525 CONVERT for only certain combinations of source and target data types, and not support other |
22526 combinations. An application can determine whether the data source supports conversions
22527 between any two data types by calling SQLGetInfo() with one of the options beginning with |
22528 SQL_CONVERT_ listed in Conversion Information on page 376. The manifest constant
22529 specifies the source data type; SQLGetInfo() returns a bitmask specifying the valid target data
22530 types for that source. A data source may indicate support for the CONVERT scalar function but |
22531 may be unable to convert between any two data types.

22532 Explicit data type conversion is specified in terms of XDBC SQL data type definitions.

22533 The XDBC syntax for the explicit data type conversion function does not restrict conversions.
22534 The validity of specific conversions of one data type to another data type is implementation-
22535 defined. The implementation, as it translates the XDBC syntax into the native syntax, rejects
22536 conversions that are syntactically valid but not supported by the data source.

22537 The format of the CONVERT function is:

22538 CONVERT(value_exp, data_type)

22539 The function returns the value specified by value_exp converted to the specified data_type , where
22540 data_type is one of the following keywords:

22541 SQL_BIGINT SQL_INTERVAL_MINUTE_TO_SECOND
22542 SQL_BINARY SQL_INTERVAL_MONTH
22543 SQL_BIT SQL_INTERVAL_SECOND
22544 SQL_CHAR SQL_INTERVAL_YEAR
22545 SQL_DECIMAL SQL_INTERVAL_YEAR_TO_MONTH
22546 SQL_DOUBLE SQL_LONGVARBINARY
22547 SQL_FLOAT SQL_LONGVARCHAR
22548 SQL_INTEGER SQL_NUMERIC
22549 SQL_INTERVAL_DAY SQL_REAL
22550 SQL_INTERVAL_DAY_TO_HOUR SQL_SMALLINT

Data Management: X/Open Database Connectivity (XDBC), Version 2 611

Explicit Data Type Conversion Scalar Functions

22551 SQL_INTERVAL_DAY_TO_MINUTE SQL_TINYINT
22552 SQL_INTERVAL_DAY_TO_SECOND SQL_TYPE_DATE
22553 SQL_INTERVAL_HOUR SQL_TYPE_TIME
22554 SQL_INTERVAL_HOUR_TO_MINUTE SQL_TYPE_TIMESTAMP
22555 SQL_INTERVAL_HOUR_TO_SECOND SQL_VARBINARY
22556 SQL_INTERVAL_MINUTE SQL_VARCHAR

22557 The XDBC syntax for the explicit data type conversion function does not support specification of |
22558 conversion format. If the data source supports specification of explicit formats, the |
22559 implementation must either provide a default value or provide an implementation-defined |
22560 method of format specification.

22561 The argument value_exp can be a column name, the result of another scalar function, or a
22562 numeric or string literal. For example:

22563 {fn CONVERT({fn CURDATE()}, SQL_CHAR)} |

22564 converts the output of the CURDATE scalar function to a character string.

22565 XDBC does not mandate a data type for return values from scalar functions; this is data-source- |
22566 specific. Applications should use the CONVERT scalar function whenever possible to force data
22567 type conversion.

22568 Examples

22569 The following two examples illustrate the use of the CONVERT function. These examples
22570 assume the existence of a table called EMPLOYEES, with an EMPNO column of type
22571 SQL_SMALLINT and an EMPNAME column of type SQL_CHAR.

22572 The examples code the CONVERT function using the XDBC escape sequence for scalar function |
22573 calls defined in Section 8.3.3 on page 86. |

22574 The following SQL statement uses the CONVERT function to ensure that the output of the |
22575 CURDATE function is a date, rather than a timestamp or character data: |

22576 INSERT INTO Orders (OrderID, CustID, OpenDate, SalesPerson, Status) |
22577 VALUES (?, ?, {fn CONVERT({fn CURDATE()}, SQL_DATE)}, ?, ?) |

22578 If an application specifies the following SQL statement:

22579 SELECT EMPNO FROM EMPLOYEES WHERE {fn CONVERT(EMPNO,SQL_CHAR)} LIKE ’1%’

22580 • Then for an ORACLE data source, the implementation might translate the SQL statement to: |

22581 SELECT EMPNO FROM EMPLOYEES WHERE to_char(EMPNO) LIKE ’1%’

22582 For an SQL Server data source, the translation might be: |

22583 SELECT EMPNO FROM EMPLOYEES WHERE convert(char,EMPNO) LIKE ’1%’

22584 If an application specifies the following SQL statement:

22585 SELECT {fn ABS(EMPNO)}, {fn CONVERT(EMPNAME,SQL_SMALLINT)}
22586 FROM EMPLOYEES WHERE EMPNO <> 0

22587 • Then for an ORACLE data source, the implementation might translate the SQL statement to: |

22588 SELECT abs(EMPNO), to_number(EMPNAME) FROM EMPLOYEES WHERE EMPNO <> 0

22589 • For an SQL Server data source, the translation might be: |

22590 SELECT abs(EMPNO), convert(smallint, EMPNAME) FROM EMPLOYEES
22591 WHERE EMPNO <> 0

612 Direct Review (Build ID 96KAV) (Draft XDBC.33, August 1996)

Scalar Functions Explicit Data Type Conversion

22592 • For an Ingres data source, the translation might be: |

22593 SELECT abs(EMPNO), int2(EMPNAME) FROM EMPLOYEES WHERE EMPNO <> 0

Data Management: X/Open Database Connectivity (XDBC), Version 2 613

Scalar Functions

614 Direct Review (Build ID 96KAV) (Draft XDBC.33, August 1996)

22594 Appendix I |

22595 Driver Manager Implementation (Optional) |

Data Management: X/Open Database Connectivity (XDBC), Version 2 615

Introduction Driver Manager Implementation (Optional)

22596 I.1 Introduction |

22597 Section 3.2 on page 25 introduced the concept of an XDBC Driver Manager and separate drivers |
22598 for each type of data source. |

22599 The following figure shows how the Driver Manager and drivers connect the application to |
22600 various data sources: |

22601 Application |
22602 | <-----------XDBC API |
22603 Driver Manager |
22604 / | <----XDBC API |
22605 Driver Driver Driver |
22606 | | | |
22607 Data Data Data |
22608 Source Source Source |

22609 There are two things to notice about this diagram. First, multiple drivers and data sources can |
22610 exist, which gives the application simultaneous access to more than one data source. Second, the |
22611 XDBC API is used in two places: between the application and the Driver Manager, and between |
22612 the Driver Manager and each driver. The interface between the Driver Manager and the drivers |
22613 is sometimes referred to as the service provider interface, or SPI. For XDBC, the application |
22614 programming interface (API) and the service provider interface (SPI) are the same; that is, the |
22615 Driver Manager and each driver have the same interface to the same functions. |

22616 I.1.1 The Driver Manager |

22617 The Driver Manager is a library that manages communication between applications and drivers. |
22618 It exists mainly as a convenience to application writers and solves a number of problems |
22619 common to all applications. These include determining which driver to load based on a data |
22620 source name, loading and unloading drivers, and calling functions in drivers. |

22621 To see why the latter is a problem, consider what would happen if the application called |
22622 functions in the driver directly. Unless the application was linked directly to a particular driver, |
22623 it would have to build a table of pointers to the functions in that driver and call those functions |
22624 by pointer. Using the same code for more than one driver at a time would add yet another level |
22625 of complexity. The application would first have to set a function pointer to point to the correct |
22626 function in the correct driver, then call the function through that pointer. |

22627 The Driver Manager solves this problem by providing a single place to call each function. The |
22628 application is linked to the Driver Manager and calls XDBC functions in the Driver Manager, not |
22629 the driver. The application identifies the target driver and data source with a connection handle. |
22630 When it loads a driver, the Driver Manager builds a table of pointers to the functions in that |
22631 driver. It uses the connection handle passed by the application to find the address of the function |
22632 in the target driver and calls that function by address. |

22633 For the most part, the Driver Manager just passes function calls from the application to the |
22634 correct driver. However, it also implements some functions (SQLDataSources(), SQLDrivers(), |
22635 and SQLGetFunctions()) and performs basic error checking. For example, the Driver Manager |
22636 checks that handles are not null pointers, that functions are called in the correct order (as defined |
22637 by the state transition tables in Appendix B), and that certain function arguments are valid (as |
22638 defined in the reference manual pages). |

22639 The final major role of the Driver Manager is loading and unloading drivers. The application |
22640 loads and unloads only the Driver Manager. When it wants to use a particular driver, it calls a |
22641 connection function (SQLConnect(), SQLDriverConnect(), or SQLBrowseConnect()) in the Driver |
22642 Manager and specifies the name of a particular data source or driver, such as ’Accounting’. Using |
22643 this name, the Driver Manager searches the data source information for the driver’s file name. It |

616 Direct Review (Build ID 96KAV) (Draft XDBC.33, August 1996)

Driver Manager Implementation (Optional) The Driver Manager

22644 then loads the driver (assuming it’s not already loaded), stores the address of each function in |
22645 the driver, and calls the connection function in the driver, which then initializes itself and |
22646 connects to the data source. |

22647 When the application is done using the driver, it calls SQLDisconnect() in the Driver Manager. |
22648 The Driver Manager calls this function in the driver, which disconnects from the data source. |
22649 However, the Driver Manager keeps the driver in memory in case the application reconnects to |
22650 it. It unloads the driver only when the application frees the connection used by the driver or uses |
22651 the connection for a different driver, and no other connections use the driver. For a complete |
22652 description of the Driver Manager’s role in loading and unloading drivers, see Chapter 6. |

22653 I.1.2 Drivers |

22654 Drivers are libraries that implement the functions in the XDBC API. Each is specific to a specific |
22655 data source (for example, a to a database of a specific vendor) and typically cannot gain direct |
22656 access to data in a different data source. Drivers expose the capabilities of the underlying data |
22657 sources; they are not required to implement capabilities not supported by the data source. For |
22658 example, if the underlying data source does not support outer joins, then neither should the |
22659 driver. The only major exception to this is that drivers for data sources that do not have |
22660 standalone database engines must implement a database engine that at least supports a minimal |
22661 amount of SQL. |

22662 Driver Tasks |

22663 Specific tasks performed by drivers include: |

22664 • Connecting to and disconnecting from the data source. |

22665 • Checking for function errors not checked by the Driver Manager. |

22666 • Initiating transactions; this is transparent to the application. |

22667 • Submitting SQL statements to the data source for execution. The driver must modify XDBC |
22668 SQL to data-source-specific SQL; this is often limited to replacing escape clauses defined by |
22669 XDBC with data-source-specific SQL. |

22670 • Sending data to and retrieving data from the data source, including converting data types as |
22671 specified by the application. |

22672 • Mapping data-source-specific errors to XDBC SQLSTATEs. |

22673 Driver Architecture |

22674 Driver architecture falls into two categories, depending on what software processes SQL |
22675 statements: |

22676 • File-based drivers |

22677 The driver accesses the physical data directly. In this case, the driver acts as both driver and |
22678 data source; that is, it processes XDBC calls and SQL statements. For example, a driver may |
22679 provide access to a file-based data source, or to a data source that has no associated access |
22680 software. Such a driver must incorporate a database engine capable of processing SQL |
22681 statements. |

22682 • Data-source-based drivers |

22683 The driver accesses the physical data through a separate database engine. In this case the |
22684 driver processes only XDBC calls; it passes SQL statements to the database engine for |
22685 processing. The database might reside on the same machine as the driver, on a different |
22686 machine on the network, or through a gateway. |

Data Management: X/Open Database Connectivity (XDBC), Version 2 617

Drivers Driver Manager Implementation (Optional)

22687 Driver architecture generally matters only to the writers of the driver. However, the architecture |
22688 can affect whether an application can use data-source-specific SQL. For example, Microsoft |
22689 Access provides a standalone database engine. If a Microsoft Access driver is data-source-based |
22690 — that is, it gains access to the data through this engine — the application can pass Microsoft |
22691 Access-specific SQL statements to the engine for processing. |

22692 However, if the driver is file-based — that is, if it contains a proprietary engine that accesses the |
22693 Microsoft Access .MDB file directly — any attempts to pass Microsoft Access-specific SQL |
22694 statements to the engine are likely to result in syntax errors. The reason is that the proprietary |
22695 engine is likely to implement only XDBC SQL. |

22696 File-based Drivers |

22697 File-based drivers are used with data sources such as dBASE that do not provide a standalone |
22698 database engine for the driver to use. These drivers access the physical data directly and must |
22699 implement a database engine to process SQL statements. |

22700 In comparing file-based and data-source-based drivers, file-based drivers are harder to write |
22701 because of the database engine component, less complicated to configure because there are no |
22702 network pieces, and less powerful because few people have the time to write database engines |
22703 as powerful as those produced by database companies. |

22704 Data-source-based Drivers |

22705 Data-source-based drivers are used with data sources such as Oracle or SQL Server that provide |
22706 a standalone database engine for the driver to use. These drivers access the physical data |
22707 through the standalone engine; that is, they submit SQL statements to and retrieve results from |
22708 the engine. |

22709 Because data-source-based drivers use an existing database engine, they are generally easier to |
22710 write than file-based drivers. Although a data-source-based driver can be easily implemented by |
22711 translating XDBC calls to native API calls, this results in a slower driver. A better way to |
22712 implement a data-source-based driver is to use the underlying data stream protocol, which is |
22713 usually what the native API does. For example, a SQL Server driver should use TDS (the data |
22714 stream protocol for SQL Server) rather than DB Library (the native API for SQL Server). An |
22715 exception to this rule is when XDBC is the native API. For example, Watcom SQL is a standalone |
22716 engine that resides on the same machine as the application and is loaded directly as the driver. |

22717 Data-source-based drivers act as the client in a client-server configuration where the data source |
22718 acts as the server. Generally, the client (driver) and server (data source) reside on different |
22719 machines, although both could reside on the same machine running a multitasking operating |
22720 system. A third possibility is a gateway, which sits between the driver and data source. A |
22721 gateway is a piece of software that causes one data source to look like another. For example, |
22722 applications written to use SQL Server can also access DB2 data through the Micro Decisionware |
22723 DB2 Gateway; this product causes DB2 to look like SQL Server. |

618 Direct Review (Build ID 96KAV) (Draft XDBC.33, August 1996)

Driver Manager Implementation (Optional) Choosing a Data Source

22724 I.2 Choosing a Data Source |

22725 The data source used by an application is sometimes hard-coded in the application. For example, |
22726 a custom application written by an MIS department to transfer data from one data source to |
22727 another would contain the names of those data sources — the application simply wouldn’t work |
22728 with any other data sources. Another example is a vertical application, such as one to do order |
22729 entry. Such an application always uses the same data source, which has a predefined schema |
22730 known by the application. |

22731 Other applications choose the data source or driver at run time. Usually, these are generic |
22732 applications that do ad hoc queries, such as a spreadsheet that uses XDBC to import data. Such |
22733 applications usually list the available data sources or drivers and let users choose the ones they |
22734 want to work with. Whether a generic application lists data sources, drivers, or both often |
22735 depends on whether the application uses data-source- or file-based drivers. |

22736 Data-source-based drivers usually require a fairly complex set of connection information, such |
22737 as the network address, network protocol, database name, and so on. The purpose of a data |
22738 source is to hide all of this information. Hence, the data source paradigm lends itself to use with |
22739 data-source-based drivers. An application can display a list of data sources to the user in one of |
22740 two ways. It can call SQLDriverConnect() with the DSN (Data Source Name) keyword and no |
22741 associated value; the Driver Manager will display a list of data source names. If the application |
22742 wants control over the appearance of the list, it calls SQLDataSources() to retrieve a list of |
22743 available data sources and constructs its own dialog box. This function is implemented by the |
22744 Driver Manager and can be called before any drivers are loaded. The application then calls a |
22745 connection function and passes it the name of the chosen data source. |

22746 With file-based drivers, it’s possible to use a file paradigm. For data stored on the local machine, |
22747 users often know that their data is in a particular file. Rather than choosing an unknown data |
22748 source, it’s easier for such users to choose the file they know. To implement this, the application |
22749 first calls SQLDrivers(). This function is implemented by the Driver Manager and can be called |
22750 before any drivers are loaded. SQLDrivers() returns a list of available drivers; it also returns |
22751 values for the FileUsage and FileExtns keywords. The FileUsage keyword explains whether |
22752 file-based drivers treat files as tables, such as Xbase, or databases, such as Microsoft Access. The |
22753 FileExtns keyword lists the file extensions the driver recognizes, such as .DBF for an Xbase |
22754 driver. Using this information, the application constructs a dialog box with which the user |
22755 chooses a file. Based on the extension of the chosen file, the application then connects directly to |
22756 the driver by calling SQLDriverConnect() with the DRIVER keyword. |

22757 There is nothing to stop an application from using a data source with a file-based driver or |
22758 calling SQLDriverConnect() with the DRIVER keyword to connect directly to a data-source- |
22759 based driver. Several common uses of the DRIVER keyword for data-source-based drivers are: |

22760 • Not creating data sources |

22761 A custom application might use a particular driver and database. If the driver name and all |
22762 information needed to connect to the database are hard-coded in the application, users don’t |
22763 need to create a data source on their computer to run the application-all they need to do is |
22764 install the application and driver. |

22765 A disadvantage of this method is that the application must be recompiled and redistributed if |
22766 the connection information changes. If a data source name is hard-coded in the application |
22767 instead of complete connection information, then each user only needs to change the |
22768 information in the data source. |

22769 • Accessing a particular data source a single time |

22770 For example, a spreadsheet that retrieves data by calling XDBC functions might contain the |
22771 DRIVER keyword to identify a particular driver. Because the driver name is meaningful to |

Data Management: X/Open Database Connectivity (XDBC), Version 2 619

Choosing a Data Source Driver Manager Implementation (Optional)

22772 any users that have that driver, the spreadsheet could be passed among those users. If the |
22773 spreadsheet contained a data source name, each user would have to create the same data |
22774 source to use the spreadsheet. |

22775 • Browsing the system for all databases accessible to a particular driver |

22776 For more information, see Section 6.4.5 on page 62. |

22777 Example |

22778 The following example shows how SQLBrowseConnect() might be used to browse the |
22779 connections available with a driver for SQL Server. First, the application requests a connection |
22780 handle: |

22781 SQLAllocHandle(SQL_HANDLE_DBC, henv, &hdbc); |

22782 Next, the application calls SQLBrowseConnect() and specifies the SQL Server driver, using the |
22783 driver description returned by SQLDrivers(): |

22784 SQLBrowseConnect(hdbc, ’DRIVER={SQL Server};’, SQL_NTS, BrowseResult, |
22785 sizeof(BrowseResult), &BrowseResultLen); |

22786 Because this is the first call to SQLBrowseConnect(), the Driver Manager loads the driver and calls |
22787 the driver’s SQLBrowseConnect() function with the same arguments it received from the |
22788 application. |

22789 The driver determines that this is the first call to SQLBrowseConnect() and returns the second |
22790 level of connection attributes: server, user name, password, application name, and workstation |
22791 ID. For the server attribute, it returns a list of valid server names. The return code from |
22792 SQLBrowseConnect() is SQL_NEED_DATA.The browse result string is: |

22793 ’SERVER:Server={red,blue,green,yellow};UID:Login ID=?;PWD:Password=?; |
22794 *APP:AppName=?;*WSID:WorkStation ID=?;’ |

22795 Each keyword in the browse result string is followed by a colon and one or more words before |
22796 the equal sign. These words are the user-friendly name that an application can use to build a |
22797 dialog box. The APP and WSID keywords are prefixed by an asterisk, which means they are |
22798 optional. The SERVER, UID, and PWD keywords aren’t prefixed by an asterisk; values must be |
22799 supplied for them in the next browse request string. The value for the SERVER keyword may be |
22800 one of the servers returned by SQLBrowseConnect() or a user-supplied name. |

22801 The application calls SQLBrowseConnect() again, specifying the green server and omitting the |
22802 APP and WSID keywords and the user-friendly names after each keyword: |

22803 SQLBrowseConnect(hdbc, ’SERVER=green;UID=Smith;PWD=Sesame;’, SQL_NTS, |
22804 BrowseResult, sizeof(BrowseResult), &BrowseResultLen); |

22805 The driver attempts to connect to the green server. If there are any nonfatal errors, such as a |
22806 missing keyword-value pair, SQLBrowseConnect() returns SQL_NEED_DATAand remains in the |
22807 same state as it was prior to the error. The application can call SQLGetDiagField() or |
22808 SQLGetDiagRec() to determine the error. If the connection is successful, the driver returns |
22809 SQL_NEED_DATAand returns the browse result string: |

22810 ’*DATABASE:Database={master,model,pubs,tempdb}; |
22811 *LANGUAGE:Language={us_english,Français};’ |

22812 Since the attributes in this string are optional, the application can omit them. However, the |
22813 application must call SQLBrowseConnect() again. If the application chooses to omit the database |
22814 name and language, it specifies an empty browse request string. In this example, the application |
22815 chooses the pubs database and calls SQLBrowseConnect() a final time, omitting the LANGUAGE |
22816 keyword and the asterisk before the DATABASEkeyword: |

620 Direct Review (Build ID 96KAV) (Draft XDBC.33, August 1996)

Driver Manager Implementation (Optional) Choosing a Data Source

22817 SQLBrowseConnect(hdbc, ’DATABASE=pubs;’, SQL_NTS, BrowseResult, |
22818 sizeof(BrowseResult), &BrowseResultLen); |

22819 Because the DATABASE attribute is the final connection attribute required by the driver, the |
22820 browsing process is complete, the application is connected to the data source, and |
22821 SQLBrowseConnect() returns SQL_SUCCESS. SQLBrowseConnect() also returns the complete |
22822 connection string as the browse result string: |

22823 ’DSN=MySQLServer;SERVER=green;UID=Smith;PWD=Sesame;DATABASE=pubs;’ |

22824 The final connection string returned by the driver doesn’t contain the user-friendly names after |
22825 each keyword, nor does it contain optional keywords not specified by the application. The |
22826 application can use this string with SQLDriverConnect() to reconnect to the data source on the |
22827 current connection handle (after disconnecting) or to connect to the data source on a different |
22828 connection handle. For example: |

22829 SQLDriverConnect(hdbc, hwnd, BrowseResult, SQL_NTS, ConnStrOut, |
22830 sizeof(ConnStrOut), &ConnStrOutLen, SQL_DRIVER_NOPROMPT); |

Data Management: X/Open Database Connectivity (XDBC), Version 2 621

Role of the Driver Manager in the Connection ProcessDriver Manager Implementation (Optional)

22831 I.3 Role of the Driver Manager in the Connection Process |

22832 Remember that applications don’t call driver functions directly. Instead, they call Driver |
22833 Manager functions with the same name and the Driver Manager calls the driver functions. |
22834 Usually, this happens almost immediately. For example, the application calls SQLExecute() in |
22835 Driver Manager and after a few error checks, the Driver Manager calls SQLExecute() in the |
22836 driver. |

22837 The connection process is different. When the application calls SQLAllocHandle() with the |
22838 SQL_HANDLE_ENV and SQL_HANDLE_DBC options, the function allocates handles only in |
22839 the Driver Manager. The Driver Manager doesn’t call this function in the driver, because it |
22840 doesn’t know which driver to call. Similarly, if the application passes the handle of an |
22841 unconnected connection to SQLSetConnectAttr() or SQLGetConnectAttr(), only the Driver |
22842 Manager executes the function. It stores or gets the attribute value from its connection handle |
22843 and returns SQLSTATE 08003 (Connection not open) when getting a value for an attribute that |
22844 hasn’t been set and for which XDBC doesn’t define a default value. |

22845 When the application calls SQLConnect(), SQLDriverConnect(), or SQLBrowseConnect(), the |
22846 Driver Manager first determines which driver to use. It then checks if a driver is currently loaded |
22847 on the connection: |

22848 • If no driver is loaded on the connection, the Driver Manager checks if the specified driver is |
22849 loaded on another connection in the same environment. If not, the Driver Manager loads the |
22850 driver on the connection and calls SQLAllocHandle() in the driver with the |
22851 SQL_HANDLE_ENV option. |

22852 The Driver Manager then calls SQLAllocHandle() in the driver with the SQL_HANDLE_DBC |
22853 option, regardless of whether it was just loaded. If the application set any connection |
22854 attributes, the Driver Manager calls SQLSetConnectAttr() in the driver; if an error occurs, the |
22855 Driver Manager’s connection function returns SQLSTATE IM006 (Driver’s |
22856 SQLSetConnectAttr failed). Finally, the Driver Manager calls the connection function in the |
22857 driver. |

22858 • If the specified driver is loaded on the connection, the Driver Manager only calls the |
22859 connection function in the driver. In this case, the driver must make sure that all connection |
22860 attributes on the connection maintain their current settings. |

22861 • If a different driver is loaded on the connection, the Driver Manager calls SQLFreeHandle() in |
22862 the driver to free the connection. If there are no other connections that use the driver, the |
22863 Driver Manager calls SQLFreeHandle() in the driver to free the environment and unloads the |
22864 driver. The Driver Manager then performs the same operations as when a driver isn’t loaded |
22865 on the connection. |

22866 When the application calls SQLDisconnect(), the Driver Manager calls SQLDisconnect() in the |
22867 driver. However, it leaves the driver loaded in case the application reconnects to the driver. |
22868 When the application calls SQLFreeHandle() with the SQL_HANDLE_DBC option, the Driver |
22869 Manager calls SQLFreeHandle() in the driver. If the driver isn’t used by any other connections, the |
22870 Driver Manager then calls SQLFreeHandle() in the driver with the SQL_HANDLE_ENV option |
22871 and unloads the driver. |

622 Direct Review (Build ID 96KAV) (Draft XDBC.33, August 1996)

Driver Manager Implementation (Optional) Other Architectural Issues

22872 I.4 Other Architectural Issues |

22873 Allocation of Handles |

22874 XDBC has two levels of handles: Driver Manager handles and driver handles. The application |
22875 uses Driver Manager handles when calling XDBC functions because it calls those functions in the |
22876 Driver Manager. The Driver Manager uses this handle to find the corresponding driver handle |
22877 and uses the driver handle when calling the function in the driver. For an example of how driver |
22878 and Driver Manager handles are used, see Section I.3 on page 620. |

22879 Handles are meaningful only to the XDBC component that created them; that is, only the Driver |
22880 Manager can interpret Driver Manager handles and only a driver can interpret its own handles. |

22881 That there are two levels of handles is an artifact of the XDBC architecture; it is generally not |
22882 relevant to either the application or driver. Although there is generally no reason to do so, it is |
22883 possible for the application to determine the driver handles by calling SQLGetInfo(). |

22884 Each piece of code that implements XDBC (the Driver Manager or a driver) contains one or more |
22885 environment handles. For example, the Driver Manager maintains a separate environment |
22886 handle for each application that is connected to it. |

22887 Within a single XDBC environment, multiple connection handles might point to a variety of |
22888 drivers and data sources, the same driver and a variety of data sources, or even multiple |
22889 connections to the same driver and data source. |

22890 State Transitions |

22891 State transitions are more complex for the Driver Manager and the drivers, as they must track |
22892 the state of the environment, each connection, and each statement. Most of this work is done by |
22893 the Driver Manager; the majority of the work that must be done by drivers occurs with |
22894 statements with pending results. |

22895 Completing Transactions |

22896 Drivers for data sources that support transactions typically implement this function by |
22897 executing a COMMIT or ROLLBACK statement. The Driver Manager does not call |
22898 SQLEndTran() in when the connection is in auto-commit mode; it simply returns SQL_SUCCESS, |
22899 even if the application attempts to roll back the transaction. Because drivers for data sources that |
22900 do not support transactions are always in auto-commit mode, they can either implement |
22901 SQLEndTran() to return SQL_SUCCESS without doing anything or not implement it at all. |

Data Management: X/Open Database Connectivity (XDBC), Version 2 623

Implementation of the Diagnostic Area Driver Manager Implementation (Optional)

22902 I.5 Implementation of the Diagnostic Area |

22903 SQLGetDiagRec() and SQLGetDiagField() are implemented by the Driver Manager and each |
22904 driver. The Driver Manager and each driver maintain diagnostic records for each environment, |
22905 connection, statement, and descriptor handle and free those records only when another function |
22906 is called with that handle or the handle is freed. |

22907 Although both the Driver Manager and each driver must determine the first status record |
22908 according the rankings in Sequence of Status Records on page 196, the Driver Manager |
22909 determines the final sequence of records. |

22910 SQLGetDiagRec() and SQLGetDiagField() do not post diagnostic records about themselves. |

22911 Error Handling Rules |

22912 The following rules govern error handling in SQLGetDiagRec() and SQLGetDiagField(). |

22913 All XDBC components: |

22914 • Must not replace, alter, or mask errors or warnings received from another XDBC component. |

22915 • May add an additional status record when they receive a diagnostic message from another |
22916 XDBC component. The added record must add real information value to the original |
22917 message. |

22918 The XDBC component that directly interfaces a data source: |

22919 • Must prefix its vendor identifier, its component identifier, and the data source’s identifier to |
22920 the diagnostic message it receives from the data source. |

22921 • Must preserve the data source’s native error code. |

22922 • Must preserve the data source’s diagnostic message. |

22923 Any XDBC component that generates an error or warning independent of the data source: |

22924 • Must supply the correct SQLSTATEfor the error or warning. |

22925 • Must generate the text of the diagnostic message. |

22926 • Must prefix its vendor identifier and its component identifier to the diagnostic message. |

22927 • Must return a native error code, if one is available and meaningful. |

22928 The XDBC component that interfaces the Driver Manager: |

22929 • Must initialize the output arguments of SQLGetDiagRec() and SQLGetDiagField(). |

22930 • Must format and return the diagnostic information as output arguments of SQLGetDiagRec() |
22931 and SQLGetDiagField() when that function is called. |

22932 One XDBC component other than the Driver Manager: |

22933 • Must set the SQLSTATE based on the native error. For file-based drivers and data-source- |
22934 based drivers that do not use a gateway, the driver must set the SQLSTATE.For data-source- |
22935 based drivers that use a gateway, either the driver or a gateway that supports XDBC may set |
22936 the SQLSTATE. |

624 Direct Review (Build ID 96KAV) (Draft XDBC.33, August 1996)

Driver Manager Implementation (Optional) Role of the Driver Manager

22937 I.5.1 Role of the Driver Manager |

22938 The Driver Manager determines the final order in which to return status records. In particular, it |
22939 determines which record has the highest rank and are to be returned first. It does not matter |
22940 whether this record was generated by the driver or the Driver Manager. For more information, |
22941 see Sequence of Status Records on page 196. |

22942 The Driver Manager does as much error checking as it can. This saves every driver from |
22943 checking for the same errors. For example, if a function argument accepts a discrete number of |
22944 values, such as Operation in SQLSetPos(), the Driver Manager checks that the specified value is |
22945 legal. |

22946 The following sections describe the types of conditions checked by the Driver Manager. They are |
22947 not intended to be exhaustive; for a complete list of the SQLSTATEsthe Driver Manager returns, |
22948 see the DIAGNOSTICS section of each function. Also see the state transition tables in |
22949 Appendix B; errors shown in parentheses are detected by the Driver Manager. |

22950 Argument Values |

22951 The Driver Manager checks the following types of arguments. Unless otherwise noted, the |
22952 Driver Manager returns SQL_ERROR for errors in argument values. |

22953 • Environment, connection, and statement handles usually cannot be null pointers. The Driver |
22954 Manager returns SQL_INVALID_HANDLE when it finds a null handle. |

22955 • Required pointer arguments, such as OutputHandlePtr in SQLAllocHandle() and |
22956 CursorName in SQLSetCursorName(), cannot be null pointers. |

22957 • Option flags that do not support driver-specific values must be a legal value. For example, |
22958 Operation in SQLSetPos() must be SQL_POSITION, SQL_REFRESH, SQL_UPDATE, |
22959 SQL_DELETE, or SQL_ADD. |

22960 • Option flags must be supported in the version of XDBC supported by the driver. For |
22961 example, InfoType in SQLGetInfo() cannot be SQL_ASYNC_MODE (introduced in ODBC 3.0) |
22962 when calling an ODBC 2.0 driver. |

22963 • Column and parameter numbers must be greater than 0 or greater than or equal to 0, |
22964 depending on the function. The driver must check the upper limit of these argument values |
22965 based on the current result set or SQL statement. |

22966 • Length/indicator arguments and data buffer length arguments must contain appropriate |
22967 values. For example, the argument that specifies the length of a table name in SQLColumns() |
22968 (NameLength3) must be SQL_NTS or a value greater than 0; BufferLength in SQLDescribeCol() |
22969 must be greater than or equal to 0. The driver might also need to check these arguments. For |
22970 example, it might check that NameLength3 is less than or equal to the maximum length of a |
22971 table name in the data source. |

22972 State Transitions |

22973 The Driver Manager checks that the state of the environment, connection, or statement is |
22974 appropriate for the function being called. For example, a connection must be in an allocated state |
22975 when SQLConnect() is called and a statement must be in a prepared state when SQLExecute() is |
22976 called. The Driver Manager returns SQL_ERROR for state transition errors. |

Data Management: X/Open Database Connectivity (XDBC), Version 2 625

Role of the Driver Manager Driver Manager Implementation (Optional)

22977 General Errors |

22978 The Driver Manager checks for the following general error and always returns SQL_ERROR |
22979 when it encounters it: |

22980 • The function must be supported by the driver. |

22981 Driver Manager Errors and Warnings |

22982 The Driver Manager completely or partially implements a number of functions and therefore |
22983 checks for all or some of the errors and warnings in those functions. |

22984 • The Driver Manager implements SQLDataSources() and SQLDrivers() and checks for all errors |
22985 and warnings in these functions. |

22986 • The Driver Manager checks if a driver implements SQLGetFunctions(). If the driver does not |
22987 implement SQLGetFunctions(), the Driver Manager implements and checks for all errors and |
22988 warnings in it. |

22989 • The Driver Manager partially implements SQLAllocHandle(), SQLConnect(), |
22990 SQLDriverConnect(), SQLBrowseConnect(), SQLFreeHandle(), SQLGetDiagRec(), and |
22991 SQLGetDiagField() and checks for some errors in these functions. It may return the same |
22992 errors as the driver for some of these functions, as both perform similar operations. For |
22993 example, the Driver Manager or driver may return SQLSTATE IM008 (Dialog failed) if they |
22994 are unable to display a login dialog box for SQLDriverConnect(). |

22995 I.5.2 Role of the Driver |

22996 The driver checks for all errors and warnings not checked by the Driver Manager. This includes |
22997 errorsand warnings in data truncation, data conversion, syntax, and some state transitions. The |
22998 driver might also check errorsand warnings partially checked by the Driver Manager. For |
22999 example, although the Driver Manager checks if the value of Operation in SQLSetPos() is legal, |
23000 the driver must check whether it is supported. |

23001 The driver also maps native errors, or errors returned by the data source, to SQLSTATEs. For |
23002 example, the driver might map a number of different native errors for illegal SQL syntax to |
23003 SQLSTATE 42000 (Syntax error or access violation). The driver returns the native error number |
23004 in the SQL_DIAG_NATIVE field of the status record. Driver documentation should show how |
23005 errors and warnings are mapped from the data source to arguments in SQLGetDiagRec() and |
23006 SQLGetDiagField(). |

626 Direct Review (Build ID 96KAV) (Draft XDBC.33, August 1996)

Driver Manager Implementation (Optional) Changes to the Reference Manual Pages

23007 I.6 Changes to the Reference Manual Pages |

23008 The information in this section enhances the information in Chapter 21. |

23009 I.6.1 Information on Specific XDBC Functions |

23010 SQLAllocHandle()

23011 Limit on number of handles |

23012 Drivers may impose a limit on the number of environment, connection, statement, and/or |
23013 descriptor handles that can be allocated at any one time. |

23014 Allocating an environment handle |

23015 The Driver Manager doesn’t call SQLAllocHandle() in the driver at this time, as it doesn’t know |
23016 which driver to call. It delays calling SQLAllocHandle() in the driver until the application calls a |
23017 function to connect to a data source. |

23018 Under a Driver Manager’s environment handle, if there already exists a driver’s environment |
23019 handle, then SQLAllocHandle() with a HandleType of SQL_HANDLE_ENV is not called in that |
23020 driver when a connection is made, only SQLAllocHandle() with a HandleType of |
23021 SQL_HANDLE_DBC. If a driver’s environment handle does not exist under the Driver |
23022 Manager’s environment handle, then both SQLAllocHandle() with a HandleType of |
23023 SQL_HANDLE_ENV and SQLAllocHandle() with a HandleType of SQL_HANDLE_DBC are |
23024 called in the driver when the first connection handle of the environment is connected to the |
23025 driver. |

23026 Environment handle allocation errors |

23027 Environment allocation occurs both within the Driver Manager and within each driver. The error
23028 returned by SQLAllocHandle() with an HandleType of SQL_HANDLE_ENV depends on which
23029 level the error occurred in.

23030 If the implementation cannot allocate memory for *OutputHandlePtr when SQLAllocHandle()
23031 with a HandleType of SQL_HANDLE_ENV is called, or the application provides a null pointer for
23032 OutputHandlePtr, SQLAllocHandle() returns SQL_ERROR. The implementation sets
23033 *OutputHandlePtr to SQL_NULL_HENV (unless the application provided a null pointer). There
23034 is no handle with which to associate additional diagnostic information.

23035 The Driver Manager does not call the driver-level environment handle allocation function until
23036 the application calls SQLConnect(), SQLBrowseConnect(), or SQLDriverConnect(). If an error
23037 occurs in the driver-level SQLAllocHandle() function, then the Driver-Manager-level
23038 SQLConnect(), SQLBrowseConnect(), or SQLDriverConnect() function returns SQL_ERROR. The
23039 diagnostic data structure contains SQLSTATEIM004 (Driver’s SQLAllocHandle() failed), followed
23040 by a driver-specific SQLSTATEvalue from the driver. For example, SQLSTATEHY001 (Memory |
23041 allocation error) indicates that the Driver Manager’s call to the driver-level SQLAllocHandle()
23042 returned SQL_ERROR. The error is returned on a connection handle. •

23043 Allocating a connection handle |

23044 The Driver Manager doesn’t call SQLAllocHandle() in the driver at this time, as it doesn’t know |
23045 which driver to call. It delays calling SQLAllocHandle() in the driver until the application calls a |
23046 function to connect to a data source. For more information, see Section I.3 on page 620. |

23047 It’s important to note that allocating a connection handle isn’t the same as loading a driver. The |
23048 driver isn’t loaded until a connection function is called. Thus, after allocating a connection |
23049 handle and before connecting, the only functions the application can call with the connection |
23050 handle are SQLSetConnectAttr(), SQLGetConnectAttr(), or SQLGetInfo() with the |

Data Management: X/Open Database Connectivity (XDBC), Version 2 627

Information on Specific XDBC Functions Driver Manager Implementation (Optional)

23051 SQL_XDBC_VER option. Calling other functions with the connection handle, such as |
23052 SQLEndTran(), returns SQLSTATE 08003 (Connection not open). For complete details, see |
23053 Appendix B.

23054 The Driver Manager processes the SQLAllocHandle() function and calls the driver’s
23055 SQLAllocHandle() function when the application calls SQLConnect(), SQLBrowseConnect(), or
23056 SQLDriverConnect(). (For more information, see SQLConnect().)

23057 For additional information about the flow of function calls between the Driver Manager and a
23058 driver, see SQLConnect(). |

23059 Allocating a statement handle |

23060 When the application calls SQLAllocHandle() to allocate a statement handle: |

23061 • The Driver Manager allocates a structure in which to store information about the statement |
23062 and calls SQLAllocHandle() in the driver with the SQL_HANDLE_STMT option. |

23063 • The driver allocates its own structure in which to store information about the statement and |
23064 returns the driver statement handle to the Driver Manager. |

23065 • The Driver Manager returns the Driver Manager statement handle to the application in the |
23066 application variable. |

23067 SQLBrowseConnect()

23068 The Driver Manager loads the driver that was specified in or that corresponds to the data source
23069 name specified in the initial browse request connection string; for information on when this
23070 occurs, see the ‘‘Comments’’ section in SQLConnect().

23071 The initial browse request connection string may contain the DRIVER keyword. If the browse
23072 request connection string contains the DSN keyword, the Driver Manager locates a
23073 corresponding data source specification in the system information:

23074 • If the Driver Manager finds the corresponding data source specification, it loads the
23075 associated driver; the driver can retrieve information about the data source from the system
23076 information.

23077 • If the Driver Manager cannot find the corresponding data source specification, it locates the
23078 default data source specification and loads the associated driver; the driver can retrieve
23079 information about the default data source from the system information. ’DEFAULT’ is passed
23080 to the driver for the DSN.

23081 • If the Driver Manager cannot find the corresponding data source specification and there is no
23082 default data source specification, it returns SQL_ERROR with SQLSTATEIM002 (Data source
23083 not found and no default driver specified).

23084 If the browse request connection string contains the DRIVER keyword, the Driver Manager
23085 loads the specified driver; it does not attempt to locate a data source in the system information.
23086 Because the DRIVER keyword does not use information from the system information, the driver
23087 must define enough keywords so that a driver can connect to a data source using only the
23088 information in the browse request connection strings.

628 Direct Review (Build ID 96KAV) (Draft XDBC.33, August 1996)

Driver Manager Implementation (Optional) Information on Specific XDBC Functions

23089 SQLConnect()

23090 The Driver Manager does not load a driver until the application calls a function (SQLConnect(),
23091 SQLDriverConnect(), or SQLBrowseConnect()) to connect to the driver. Until that point, the Driver
23092 Manager works with its own handles and manages connection information. When the
23093 application calls a connection function, the Driver Manager checks if a driver is currently
23094 connected to for the specified ConnectionHandle:

23095 • If a driver is not connected to, the Driver Manager loads the driver and calls
23096 SQLAllocHandle() with a HandleType of SQL_HANDLE_ENV, SQLAllocHandle() with a
23097 HandleType of SQL_HANDLE_DBC, SQLSetConnectAttr() (if the application specified any
23098 connection attributes), and the connection function in the driver. The Driver Manager returns
23099 SQLSTATEIM006 (Driver’s SQLSetConnectAttr() failed) and SQL_SUCCESS_WITH_INFO for
23100 the connection function if the driver returned an error for SQLSetConnectAttr(). For more
23101 information, see Chapter 6.

23102 • If the specified driver is already connected to on ConnectionHandle , the Driver Manager only
23103 calls the connection function in the driver. In this case, the driver must ensure that all
23104 connection attributes for ConnectionHandle maintain their current settings.

23105 • If a different driver is loaded, the Driver Manager calls SQLFreeHandle() with a HandleType of
23106 SQL_HANDLE_DBC, and then, if no other driver is connected to in that environment, it calls
23107 SQLFreeHandle() with a HandleType of SQL_HANDLE_ENV in the connected driver and then
23108 disconnects that driver. It then performs the same operations as when a driver is not loaded.

23109 The driver then allocates handles and initializes itself.

23110 When the application calls SQLDisconnect(), the Driver Manager calls SQLDisconnect() in the
23111 driver. However, it does not disconnect the driver. This keeps the driver in memory for
23112 applications that repeatedly connect to and disconnect from a data source. When the application
23113 calls SQLFreeHandle() with a HandleType of SQL_HANDLE_DBC, the Driver Manager calls
23114 SQLFreeHandle() with a HandleType of SQL_HANDLE_DBC and then SQLFreeHandle() with a
23115 HandleTypeof SQL_HANDLE_ENV in the driver, and then disconnects the driver.

23116 Driver Manager Guidelines

23117 The contents of *ServerName affect how the Driver Manager and a driver work together to
23118 establish a connection to a data source.

23119 • If *ServerName contains a valid data source name, the Driver Manager locates the
23120 corresponding data source specification in the system information and connects to the
23121 associated driver. The Driver Manager passes each SQLConnect() argument to the driver.

23122 • If the data source name cannot be found or ServerName is a null pointer, the Driver Manager
23123 locates the default data source specification and connects to the associated driver. The Driver
23124 Manager passes to the driver the UserName and Authentication arguments unmodified, and
23125 ’DEFAULT’ for the ServerName argument.

23126 • If the ServerName argument is ’DEFAULT’, the Driver Manager locates the default data
23127 source specification and connects to the associated driver. The Driver Manager passes each
23128 SQLConnect() argument to the driver.

23129 After being connected to by the Driver Manager, a driver can locate its corresponding data
23130 source specification in the system information and use driver-specific information from the
23131 specification to complete its set of required connection information.

Data Management: X/Open Database Connectivity (XDBC), Version 2 629

Information on Specific XDBC Functions Driver Manager Implementation (Optional)

23132 SQLCopyDesc()

23133 If the Driver Manager detects that SourceDescHandle and TargetDescHandle do not belong to the |
23134 same connection or environment, it implements SQLCopyDesc() by performing a field-by-field
23135 copy of all XDBC-defined fields using SQLGetDescField() and SQLSetDescField().
23136 Implementation-defined fields are not copied. The following additional SQLSTATE value is
23137 defined:

23138 HY092 — Invalid attribute identifier
23139 SourceDescHandle and TargetDescHandle pertain to different servers, and the target server
23140 does not support at least one XDBC-defined descriptor field that the source server does
23141 support. The error is raised during a call to SQLCopyDesc() when the Driver Manager calls
23142 SQLSetDescField() at the target driver and determines that *ValuePtr is not valid for the
23143 FieldIdentifier argument on TargetDescHandle.

23144 SQLDataSources()

23145 This function is implemented solely in the Driver Manager. Therefore, it is supported for all |
23146 drivers regardless of a particular driver’s compliance level. The Driver Manager retrieves this
23147 information from the system information.

23148 In addition to the values set out in the reference manual page, Direction can be
23149 SQL_FETCH_FIRST_USER to fetch the first user DSN, or SQL_FETCH_FIRST_SYSTEM to fetch
23150 the first system DSN.

23151 When Direction is set to SQL_FETCH_FIRST, subsequent calls to SQLDataSources() with Direction
23152 set to SQL_FETCH_NEXT return both user and system DSNs. When Direction is set to
23153 SQL_FETCH_FIRST_USER, all subsequent calls to SQLDataSources() with Direction set to
23154 SQL_FETCH_NEXT return only user DSNs. When Direction is set to
23155 SQL_FETCH_FIRST_SYSTEM, all subsequent calls to SQLDataSources() with Direction set to
23156 SQL_FETCH_NEXT return only system DSNs.

23157 SQLDriverConnect()

23158 The attribute syntactic element of a connection string is redefined to permit use of the DRIVER
23159 keyword:

23160 attribute ::= attribute-keyword =attribute-value | DRIVER=[{] attribute-value [}]

23161 The following additional keyword is defined:

23162 Keyword Attribute value description

23163 Description of the driver as returned by the SQLDrivers() function.DRIVER

23164 If the DSN and DRIVER keywords are included in the same connection string, the
23165 implementation uses whichever keyword appears first.

23166 Because the DRIVER keyword does not use information from the system information, the driver
23167 must define enough keywords so that a driver can connect to a data source using only the
23168 information in the connection string. (For more information, see Driver Manager Guidelines on |
23169 page 629.) The driver defines which keywords are required in order to connect to the data
23170 source.

23171 The FILEDSN and DRIVER keywords are not mutually exclusive. If any keyword appears in a
23172 connection string with FILEDSN, then the attribute value of the keyword in the connection
23173 string is used rather than the attribute value of the same keyword in the file DSN. |

630 Direct Review (Build ID 96KAV) (Draft XDBC.33, August 1996)

Driver Manager Implementation (Optional) Information on Specific XDBC Functions

23174 Driver-Specific Connection Information |

23175 SQLConnect() assumes that a data source name, user ID, and password are sufficient to connect |
23176 to a data source and that all other connection information can be stored on the system. This is |
23177 often not the case. For example, a driver might need one user ID and password to log into a |
23178 server and a different user ID and password to log into a data source. Because SQLConnect() |
23179 accepts a single user ID and password, this means that the other user ID and password must be |
23180 stored with the data source information on the system if SQLConnect() is to be used. This is a |
23181 potential breach of security and should be avoided unless the password is encrypted. |

23182 SQLDriverConnect() lets the driver define an arbitrary amount of connection information in the |
23183 form of keyword-value pairs. For example, suppose a driver requires a data source name, a user |
23184 ID and password for the server, and a user ID and password for the data source. A custom |
23185 program that always uses the XYZ Corp data source might prompt the user for IDs and |
23186 passwords and build the following set of keyword-value pairs, or connection string, to pass to |
23187 SQLDriverConnect(): |

23188 DSN=XYZ Corp;UID=Gomez;PWD=Sesame;UIDDBMS=JGomez;PWDDBMS=Shazam; |

23189 The DSN (Data Source Name) keyword names the data source, the UID and PWD keywords |
23190 specify the user ID and password for the server, and the UIDDBMS and PWDDBMS keywords |
23191 specify the user ID and password for the data source. Note that the final semicolon is optional. |
23192 SQLDriverConnect() parses this string; uses the XYZ Corp data source name to retrieve |
23193 additional connection information from the system, such as the server address; and logs in to the |
23194 server and data source using the specified user IDs and passwords. |

23195 A FILEDSN keyword can be used in a call to SQLDriverConnect() to specify that a file DSN be |
23196 established as the data source. A SAVEFILE keyword can be used to specify the name of a file |
23197 DSN in which the keyword attributes of a successful connection made by the call to |
23198 SQLDriverConnect() will be saved. For more information on file DSNs, see SQLDriverConnect().

23199 Driver Manager Guidelines

23200 The Driver Manager constructs a connection string to pass to the driver in the |
23201 InConnectionString argument of the driver’s SQLDriverConnect() function. Note that the Driver
23202 Manager does not modify the InConnectionString argument passed to it by the application.

23203 If the connection string specified by the application contains the DSN keyword or does not
23204 contain either the DSN or DRIVER keywords, the action of the Driver Manager is based on the
23205 value of the DriverCompletion argument:

23206 • SQL_DRIVER_PROMPT: The Driver Manager displays the Data Sources dialog box. It
23207 constructs a connection string from the data source name returned by the dialog box and any
23208 other keywords passed to it by the application. If the data source name returned by the
23209 dialog box is empty, the Driver Manager specifies the keyword-value pair DSN=Default.

23210 • SQL_DRIVER_COMPLETE or SQL_DRIVER_COMPLETE_REQUIRED: If the connection
23211 string specified by the application includes the DSN keyword, the Driver Manager copies the
23212 connection string specified by the application. Otherwise, it takes the same actions as it does
23213 when DriverCompletion is SQL_DRIVER_PROMPT.

23214 • SQL_DRIVER_NOPROMPT: The Driver Manager copies the connection string specified by
23215 the application.

23216 If the connection string specified by the application contains the DRIVER keyword, the Driver
23217 Manager copies the connection string specified by the application.

23218 Using the connection string it has constructed, the Driver Manager determines which driver to
23219 use, loads that driver, and passes the connection string it has constructed to the driver; for more

Data Management: X/Open Database Connectivity (XDBC), Version 2 631

Information on Specific XDBC Functions Driver Manager Implementation (Optional)

23220 information about the interaction of the Driver Manager and the driver, see the ‘‘Comments’’
23221 section in SQLConnect(). If the connection string contains the DSN keyword or does not contain
23222 either the DSN or the DRIVER keyword, the Driver Manager determines which driver to use as
23223 follows:

23224 1. If the connection string contains the DSN keyword, the Driver Manager retrieves the
23225 driver associated with the data source from the system information.

23226 2. If the connection string does not contain the DSN keyword or the data source is not found,
23227 the Driver Manager retrieves the driver associated with the Default data source from the
23228 system information. The Driver Manager changes the value of the DSN keyword in the
23229 connection string to ‘‘DEFAULT’’.

23230 3. If the DSN keyword in the connection string is set to ‘‘DEFAULT’’, the Driver Manager
23231 retrieves the driver associated with the Default data source from the system information.

23232 Driver Guidelines

23233 The driver checks if the connection string passed to it by the Driver Manager contains the DSN •
23234 or DRIVER keyword. If the connection string contains the DRIVER keyword, the driver cannot
23235 retrieve information about the data source from the system information. If the connection string
23236 contains the DSN keyword or does not contain either the DSN or the DRIVER keyword, the
23237 driver can retrieve information about the data source from the system information as follows:

23238 1. If the connection string contains the DSN keyword, the driver retrieves the information for
23239 the specified data source.

23240 2. If the connection string does not contain the DSN keyword, the specified data source is not
23241 found, or the DSN keyword is set to ‘‘DEFAULT’’, the driver retrieves the information for
23242 the Default data source.

23243 The driver uses any information it retrieves from the system information to augment the
23244 information passed to it in the connection string. If the information in the system information
23245 duplicates information in the connection string, the driver uses the information in the connection
23246 string.

23247 Based on the value of DriverCompletion, the driver prompts the user for connection
23248 information, such as the user ID and password, and connects to the data source:

23249 • SQL_DRIVER_PROMPT: The driver displays a dialog box, using the values from the
23250 connection string and system information (if any) as initial values. When the user exits the
23251 dialog box, the driver connects to the data source. It also constructs a connection string from |
23252 the value of the DSN or DRIVER keyword in *InConnectionString and the information |
23253 returned from the dialog box. It places this connection string in the *OutConnectionString |
23254 buffer.

23255 • SQL_DRIVER_COMPLETE or SQL_DRIVER_COMPLETE_REQUIRED: If the connection
23256 string contains enough information, and that information is correct, the driver connects to the
23257 data source and copies *InConnectionString to *OutConnectionString. If any information is |
23258 missing or incorrect, the driver takes the same actions as it does when DriverCompletion is
23259 SQL_DRIVER_PROMPT, except that if DriverCompletion is
23260 SQL_DRIVER_COMPLETE_REQUIRED, the driver disables the controls for any information
23261 not required to connect to the data source.

23262 • SQL_DRIVER_NOPROMPT: If the connection string contains enough information, the driver
23263 connects to the data source and copies *InConnectionString to *OutConnectionString. |
23264 Otherwise, the driver returns SQL_ERROR for SQLDriverConnect().

632 Direct Review (Build ID 96KAV) (Draft XDBC.33, August 1996)

Driver Manager Implementation (Optional) Information on Specific XDBC Functions

23265 On successful connection to the data source, the driver also sets *StringLength2Ptr to the length |
23266 of *OutConnectionString.

23267 If the user cancels a dialog box presented by the Driver Manager or the driver,
23268 SQLDriverConnect() returns SQL_NO_DATA.

23269 For information about how the Driver Manager and the driver interact during the connection
23270 process, see SQLConnect(). |

23271 Connecting Directly to Drivers |

23272 As discussed in Section I.2 on page 617, some applications don’t want to use a data source at all. |
23273 Instead, they want to connect directly to a driver. SQLDriverConnect() provides a way for the |
23274 application to connect directly to a driver without specifying a data source. Conceptually, a |
23275 temporary data source is created at run time. |

23276 To connect directly to a driver, the application specifies the DRIVER keyword in the connection |
23277 string instead of the DSN keyword. The value of the DRIVER keyword is the description of the |
23278 driver as returned by SQLDrivers(). For example, suppose a driver has the description Paradox |
23279 Driver and requires the name of a directory containing the data files. To connect to this driver, |
23280 the application might use either of the following connection strings: |

23281 DRIVER={Paradox Driver};Directory=C:PARADOX; |
23282 DRIVER={Paradox Driver}; |

23283 With the first string, the driver wouldn’t need any additional information. With the second |
23284 string, the driver would need to prompt for the name of the directory containing the data files. |

23285 SQLDrivers() |

23286 The accompanying reference manual page for SQLDrivers() is mandatory when the Driver |
23287 Manager architecture is in use.

23288 SQLEndTran()

23289 This function is implemented in the Driver Manager and in each driver. To complete all
23290 transactions in an environment, the Driver Manager calls SQLEndTran() once for each driver
23291 with active work in the transaction, except that the Driver Manager never calls SQLEndTran() for
23292 a driver that is in auto-commit mode.

23293 If the Driver Manager receives SQL_ERROR on one or more connections, it returns SQL_ERROR
23294 to the application, and the diagnostic information is placed in the diagnostic data structure of the
23295 environment.

23296 SQLFreeHandle()

23297 An application should not use a handle after it has been freed; the Driver Manager does not
23298 check the validity of a handle in a function call.

23299 SQLGetDiagField()

23300 The driver does not have to implement the SQL_DIAG_RETURNCODE diagnostic field; it is
23301 always implemented by the Driver Manager.

Data Management: X/Open Database Connectivity (XDBC), Version 2 633

Information on Specific XDBC Functions Driver Manager Implementation (Optional)

23302 SQLGetFunctions()

23303 This function is implemented in the Driver Manager; it can also be implemented in drivers. If a
23304 driver implements SQLGetFunctions(), the Driver Manager calls the function in the driver.
23305 Otherwise, it executes the function itself.

23306 SQLGetFunctions() always reports that SQLGetFunctions(), SQLDataSources(), and SQLDrivers()
23307 are supported for all valid values of ConnectionHandle because these functions are implemented
23308 in the Driver Manager.

23309 SQLGetEnvAttr()

23310 There are no driver-specific environment attributes.

23311 SQLGetInfo()

23312 If InfoType is SQL_DRIVER_HDESC or SQL_DRIVER_HSTMT, InfoValuePtr is both input and
23313 output. (See SQL_DRIVER_HDESC or SQL_DRIVER_HSTMT below.)

23314 SQLGetInfo() Specific Requests

23315 SQL_DATA_SOURCE_READ_ONLY
23316 This characteristic pertains only to the data source itself; it is not a characteristic of the
23317 driver that enables access to the data source. A driver that is read/write may be used with a
23318 data source that is read-only. If a driver is read-only, all of its data sources must be read-
23319 only, and must return SQL_DATA_SOURCE_READ_ONLY.

23320 SQL_DRIVER_HDBC, SQL_DRIVER_HENV
23321 An SQLINTEGER value, the driver’s environment handle or connection handle, determined |
23322 by InfoType. |

23323 These options are implemented by the Driver Manager alone.

23324 SQL_DRIVER_HDESC
23325 An SQLINTEGER value, the driver’s descriptor handle determined by the Driver Manager’s
23326 descriptor handle, which must be passed on input in *InfoValuePtr from the application.
23327 Note that in this case, InfoValuePtr is both an input and output argument. The input
23328 descriptor handle passed in *InfoValuePtr must have been either explicitly or implicitly
23329 allocated on the ConnectionHandle.

23330 This option is implemented by the Driver Manager alone. |

23331 SQL_DRIVER_HLIB
23332 An SQLINTEGER value, a handle that refers to the driver, generated by the software that
23333 loaded the driver. The handle is only valid for the connection handle specified in the call to
23334 SQLGetInfo().

23335 This option is implemented by the Driver Manager alone. |

23336 SQL_DRIVER_HSTMT
23337 An SQLINTEGER value, the driver’s statement handle determined by the Driver Manager
23338 statement handle, which must be passed on input in *InfoValuePtr from the application.
23339 Note that in this case, InfoValuePtr is both an input and an output argument. The input
23340 statement handle passed in *InfoValuePtr must have been allocated on the argument
23341 ConnectionHandle.

23342 This option is implemented by the Driver Manager alone. |

23343 SQL_DRIVER_NAME
23344 A character string with the filename of the driver used to access the data source.

634 Direct Review (Build ID 96KAV) (Draft XDBC.33, August 1996)

Driver Manager Implementation (Optional) Information on Specific XDBC Functions

23345 SQL_DRIVER_ODBC_VER
23346 A character string with the version of ODBC that the driver supports. The version is of the
23347 form ##.##, where the first two digits are the major version and the next two digits are the
23348 minor version. SQL_SPEC_MAJOR and SQL_SPEC_MINOR define the major and minor
23349 version numbers. For the version of ODBC described in this manual, these are 3 and 0, and
23350 the driver should return ‘‘03.00’’.

23351 SQL_DRIVER_VER
23352 A character string with the version of the driver and, optionally a description of the driver.
23353 At a minimum, the version is of the form ##.##.####, where the first two digits are the major
23354 version, the next two digits are the minor version, and the last four digits are the release
23355 version.

23356 SQL_XDBC_VER
23357 This is implemented solely in the Driver Manager.

23358 SQLPrepare()

23359 The driver may modify the statement to use the form of SQL used by the data source, then
23360 submit it to the data source for preparation. For the driver, a statement handle is similar to a |
23361 statement identifier in SQL. If the data source supports statement identifiers, the driver can send
23362 a statement identifier and parameter values to the data source.

23363 SQLSetConnectAttr()

23364 If SQLSetConnectAttr() is called before the driver is loaded, the Driver Manager stores the |
23365 attributes in its connection structure and sets them in the driver as part of the connection |
23366 process. |

23367 The Driver Manager returns a SQLSTATEof HY024 only for connection and statement attributes
23368 that accept a discrete set of values, such as SQL_ATTR_ACCESS_MODE or
23369 SQL_ATTR_ASYNC_ENABLE. For all other connection and statement attributes, the driver
23370 must verify the value specified in *ValuePtr. |

23371 SQLSetDescField()

23372 (The Driver Manager returns a SQLSTATE of HY009 (Invalid use of null pointer) only for
23373 descriptor fields that accept a discrete set of values. For descriptor fields for which the ValuePtr
23374 argument is a pointer, the driver must verify the value specified in *ValuePtr.)

23375 SQLSetDescRec()

23376 The Driver Manager returns a SQLSTATE of HY009 if DataPtr points to an invalid value based
23377 on Type, SubType, Length, Precision, or Scale . value. For all other descriptor fields, the driver must
23378 verify the value of DataPtr .

23379 SQLSetEnvAttr()

23380 There are no driver-specific environment attributes.

Data Management: X/Open Database Connectivity (XDBC), Version 2 635

Information on Specific XDBC Functions Driver Manager Implementation (Optional)

23381 SQLSetStmtAttr()

23382 (The Driver Manager returns SQLSTATE HY090 (Invalid string or buffer length) only for
23383 connection and statement attributes that accept a discrete set of values, such as
23384 SQL_ATTR_ACCESS_MODE or SQL_ ATTR_ASYNC_ENABLE. For all other connection and
23385 statement attributes, the driver must verify the value specified in *ValuePtr.)

23386 A driver should not emulate the behavior of the SQL_ATTR_MAX_ROWS statement attribute
23387 for SQLFetch() or SQLFetchScroll() (if result set size limitations cannot be implemented at the
23388 data source) if it cannot guarantee that SQL_ATTR_MAX_ROWS is implemented properly. |

23389 I.6.2 SQLSTATEsof Specific XDBC Functions |

23390 This section explains which diagnostics are the responsibility of the Driver Manager and which |
23391 are the responsibility of the driver. For precise definitions of the cases where diagnostics are |
23392 raised, refer to the reference manual page of each XDBC function (DIAGNOSTICS). A cross- |
23393 reference of diagnostics, sorted first by SQLSTATEvalue and then by XDBC function, appears in |
23394 Appendix A. |

23395 Notes to Reviewers |
23396 This section with side shading will not appear in the final copy. - Ed. |

23397 I have tried to assemble a description based on the specific cases in the reference manual pages. |
23398 I suspect that this exercise will help disclose errors both here and in the source document. |

23399 In a Driver Manager implementation, the following errors are generated by the Driver Manager: |

23400 01000 — General warning |
23401 This warning is only reported by the Driver Manager in cases in which the entire function is |
23402 implemented exclusively by the Driver Manager: SQLDrivers(). In other cases, the driver |
23403 generates the warning. |

23404 01004 — String data, right truncation |
23405 The Driver Manager reports this diagnostic in SQLDataSources() and SQLDrivers(). The |
23406 driver reports it in all other cases. |

23407 07006 — Restricted data type attribute violation |
23408 The Driver Manager reports a column number of zero when use of bookmarks is disabled in |
23409 SQLBindCol(), and a record number of zero when use of bookmarks is disabled in |
23410 SQLSetDescField() and SQLSetDescRec(). The driver reports all other cases of this error. |

23411 07008 — Invalid descriptor count |
23412 The Driver Manager detects all cases of this error, reported based on the value of |
23413 FieldIdentifier in SQLDescField(). |

23414 07009 — Invalid descriptor index |
23415 The Driver Manager reports invalid values of the descriptor index in cases of negative |
23416 column number, column number of zero when use of bookmarks is disabled, and all cases |
23417 in SQLGetData() where the column number reflects an attempt to obtain columns in an |
23418 incorrect sequence (considering bound columns or the column returned in the previous call |
23419 to SQLGetData()). |

23420 The Driver Manager reports 07009 based on a failure of the consistency check in |
23421 SQLGetData(). |

23422 The driver reports invalid values of the descriptor index when it exceeds the number of |
23423 columns in the result set or the number of parameters in the associated SQL statement. |

636 Direct Review (Build ID 96KAV) (Draft XDBC.33, August 1996)

Driver Manager Implementation (Optional) SQLSTATEs of Specific XDBC Functions

23424 The driver reports 07009 in DescribeParam() when the associated SQL statement was not a |
23425 DML statement or was part of a SELECT list. |

23426 Notes to Reviewers |
23427 This section with side shading will not appear in the final copy. - Ed. |

23428 07009 was not marked as a Driver Manager error in SQLGetDescField(), SQLGetDescRec(), |
23429 SQLSetDescField(), and SQLSetDescRec(). This doesn’t seem consistent. Maybe another |
23430 paragraph is required here. |

23431 08002 — Connection name in use |
23432 The Driver Manager detects all attempts to reuse a connection handle on which a |
23433 connection is already open. |

23434 08003 — Connection does not exist |
23435 Errors regarding the status of a connection are discernible from status information |
23436 associated with the connection handle and are detected by the Driver Manager. |

23437 24000 — Invalid cursor state |
23438 In SQLGetData(), the Driver Manager reports the error if StatementHandle was in an executed |
23439 state but no result set was associated with it. |

23440 For other cases of this error, if SQLFetch() or SQLFetchScroll() had been called, this error is
23441 raised by the Driver Manager; otherwise, it is raised by the driver. Cases where the error is |
23442 caused by the cursor position with respect to the result set are raised by the driver. |

23443 HY000 — General error |
23444 Either the Driver Manager or the driver can raise this error (except in cases where the driver |
23445 is not involved: SQLDataSources() and SQLDrivers().

23446 HY001 — Memory allocation error
23447 The Driver Manager raises HY001 if it fails to allocate required memory. The driver can also
23448 raise HY001. |

23449 HY003 — Invalid application buffer type |
23450 This error is reported by the Driver Manager in SQLGetData(), and by the driver in |
23451 SQLBindCol() and SQLBindParameter() |

23452 HY007 — Associated statement is not prepared |
23453 The Driver Manager reports this error in SQLDescribeCol() if there were no preceding calls |
23454 that prepared the statement. Other cases of this error, occurring because the handle was |
23455 associated with an IRD, are reported by the driver. |

23456 HY009 — Invalid use of null pointer |
23457 The Driver Manager detects inappropriate use of null pointers, except in cases where an |
23458 argument can be either a pointer or a scalar and the Driver Manager cannot know whether |
23459 the argument of a specific call is a pointer. These include calls to SetConnectAttr(), |
23460 SetDescField(), SetEnvAttr(), and SetStmtAttr() when the attribute or descriptor field is a |
23461 driver-defined to be a string. |

23462 HY010 — Function sequence error |
23463 The Driver Manager maintains state information associated with each handle and detects all |
23464 state transition errors except the following: |

23465 — SQLExecute() reports HY010 if StatementHandle was not prepared. The Driver Manager |
23466 does not track all cases in which the driver produces a result set. However, the Driver |
23467 Manager detects that SQLExecute() was called out of sequence and reports HY010 if |
23468 either of the following is true: (1) StatementHandle is not in an executed state, or (2) a |
23469 cursor was open on StatementHandle and SQLFetch() or SQLFetchScroll() had been called. |

Data Management: X/Open Database Connectivity (XDBC), Version 2 637

SQLSTATEs of Specific XDBC Functions Driver Manager Implementation (Optional)

23470 Other cases of HY010 are reported by the driver. |

23471 — SQLGetData() reports HY010 if a cursor was open on StatementHandle and SQLFetch() or |
23472 SQLFetchScroll() had been called, but the cursor was positioned before the start of the |
23473 result set or after the end of the result set. Since the Driver Manager does not track the |
23474 cursor position in the result set, the driver issues this report. |

23475 HY012 — Invalid transaction operation code |
23476 The Driver Manager detects all cases of this error, reported based on the value of |
23477 CompletionType in SQLEndTran(). |

23478 HY017 — Invalid use of an automatically allocated descriptor handle. |
23479 The Driver Manager detects all attempts to modify or free an automatically-allocated |
23480 descriptor, such as an implementation descriptor. |

23481 HY024 — Invalid attribute value |
23482 The Driver Manager raises HY024 in SQLDriverConnect() when WindowHandle is a null |
23483 pointer and a non-null pointer is needed. Other cases of HY024, which involve the values |
23484 specified for attributes, are reported by the driver. |

23485 HY090 — Invalid string or buffer length |
23486 This diagnostic relates to the value of a length argument. |

23487 The driver detects all cases of HY090 in SQLBulkOperations() and SQLSetPos(), and all cases |
23488 of HY090 based on the value of a parameter set by SQLBindParameter(). |

23489 The Driver Manager detects all other cases when the value of the argument was negative |
23490 (except when it was legally the negative constant SQL_NTS). The Driver Manager also |
23491 detects excessive values of NameLength1 in SQLConnect(). |

23492 The driver detects other cases where the argument exceeds the maximum value for the |
23493 corresponding string. The driver detects cases of invalid length for driver-specific |
23494 environment attributes, connection attributes, and statement attributes. |

23495 Notes to Reviewers |
23496 This section with side shading will not appear in the final copy. - Ed. |

23497 Is the above really true where it mentions SQLBulkOperations() and SQLSetPos()? The errors |
23498 documented there seem capable of being detected by the DM; perhaps these new manual |
23499 pages were not reviewed for this. |

23500 HY091 — Invalid descriptor field identifier |
23501 The Driver Manager detects inappropriate values of FieldIdentifier in SQLColAttribute(). The |
23502 driver reports this error in all other cases. |

23503 HY092 — Invalid attribute identifier |
23504 The Driver Manager reports HY092 in calls to SQLAllocHandle(), SQLDriverConnect(), |
23505 SQLEndTran(), and SQLFreeHandle(), when it indicates an invalid value of an argument. |

23506 In SQLBulkOperations() and SQLSetPos(), the Driver Manager reports HY092 except that the |
23507 driver reports HY092 when Operation is not consistent with the SQL_CONCURRENCY |
23508 statement attribute. |

23509 The driver reports HY092 in SQLGetConnectAttr() when the value of the argument is not |
23510 appropriate as a connection attribute, environment attribute, or statement attribute. |

638 Direct Review (Build ID 96KAV) (Draft XDBC.33, August 1996)

Driver Manager Implementation (Optional) SQLSTATEs of Specific XDBC Functions

23511 Notes to Reviewers |
23512 This section with side shading will not appear in the final copy. - Ed. |

23513 The ODBC manual documents this differently for different attributes. |

23514 The Driver Manager reports HY092 in SQLCopyDesc(), and this case is further described in |
23515 SQLCopyDesc() on page 628. SQLCopyDesc() |

23516 HY095 — Function type out of range |
23517 The Driver Manager detects all cases of this error, reported based on the value of FunctionId |
23518 in SQLGetFunctions(). |

23519 HY097 — Column type out of range |
23520 The Driver Manager detects all cases of this error, reported based on the value of |
23521 IdentifierType in SQLSpecialColumns(). |

23522 HY098 — Scope type out of range |
23523 The Driver Manager detects all cases of this error, reported based on the value of Scope in |
23524 SQLSpecialColumns(). |

23525 HY099 — Nullable type out of range |
23526 The Driver Manager detects all cases of this error, reported based on the value of Nullable in |
23527 SQLSpecialColumns(). |

23528 HY100 — Uniqueness option type out of range |
23529 The Driver Manager detects all cases of this error, reported based on the value of Unique in |
23530 SQLStatistics(). |

23531 HY101 — Accuracy option type out of range |
23532 The Driver Manager detects all cases of this error, reported based on the value of Reserved in |
23533 SQLStatistics(). |

23534 HY103 — Invalid retrieval code |
23535 The Driver Manager detects all cases of this error, reported based on the value of Direction in |
23536 SQLDataSources() and SQLDrivers(). |

23537 HY105 — Invalid parameter type |
23538 The Driver Manager reports this error when it is based on the value of InputOutputType in |
23539 SQLBindParameter() or of the SQL_DESC_PARAMETER_TYPE field in SQLSetDescField(). |
23540 The driver reports this error if it occurs in SQLExecDirect() or SQLExecute(). |

23541 HY106 — Fetch type out of range |
23542 The Driver Manager detects all cases of invalid FetchOrientation in SQLFetchScroll(). |

23543 HY109 — Invalid cursor position |
23544 The Driver Manager reports this error in SQLSetPos() when RowNumber was 0 Operation was |
23545 SQL_POSITION, and SQLSetPos() was called after SQLBulkOperations() was called, and |
23546 before SQLFetchScroll() or SQLFetch() was called. The driver reports all other cases of this |
23547 error. |

23548 HY110 — Invalid value of DriverCompletion |
23549 The Driver Manager detects all cases of this error, reported based on the value of |
23550 DriverCompletion in SQLDriverConnect().

23551 IM001 — Function not supported
23552 The Driver Manager raises this SQLSTATE for functions that are not supported on the
23553 specified server.

23554 For SQLAllocHandle() and SQLFreeHandle(), this typically means that HandleType is |
23555 SQL_HANDLE_STMT and the driver was not an XDBC driver, or HandleType was
23556 SQL_HANDLE_DESC and the driver does not support descriptor handles.

Data Management: X/Open Database Connectivity (XDBC), Version 2 639

SQLSTATEs of Specific XDBC Functions Driver Manager Implementation (Optional)

23557 In a Driver Manager implementation, additional SQLSTATE values are defined that are not
23558 mentioned in the reference manual pages:

23559 IM002 — Data source not found and no default driver specified
23560 This diagnostic specifically deals with the lack of driver information in the system |
23561 information. The diagnostic is documented in the function reference section based on the |
23562 value of: |

23563 — InConnectionString of a call to SQLBrowseConnect()

23564 — ServerName of a call to SQLConnect()

23565 — InConnectionString of a call to SQLDriverConnect(). |
23566 In all situations except a call to SQLBrowseConnect(), IM002 also applies when information
23567 on the default data source and driver could not be found in the system information.

23568 IM003 — Specified driver could not be loaded
23569 The driver listed in the data source specification in the system information, (or, for
23570 SQLBrowseConnect() or SQLDriverConnect(), the one specified by the DRIVER keyword) was
23571 not found or could not be loaded for some other reason.

23572 IM004 — Driver’s SQLAllocHandle on SQL_HANDLE_ENV failed
23573 During an attempt to connect, the Driver Manager called the driver’s SQLAllocHandle()
23574 function with a HandleTypeof SQL_HANDLE_ENV and the driver returned an error.

23575 IM005 — Driver’s SQLAllocHandle on SQL_HANDLE_DBC failed
23576 During an attempt to connect, the Driver Manager called the driver’s SQLAllocHandle()
23577 function with a HandleTypeof SQL_HANDLE_DBC and the driver returned an error.

23578 IM006 — Driver’s SQLSetConnectAttr failed
23579 During an attempt to connect, the Driver Manager called the driver’s SQLSetConnectAttr()
23580 function and the driver returned an error. (The function returns |
23581 SQL_SUCCESS_WITH_INFO).

23582 IM007 — No data source or driver specified; dialog prohibited
23583 (.Fn SQLDriverConnect) No data source name or driver was specified in the connection
23584 string and DriverCompletion was SQL_DRIVER_NOPROMPT.

23585 IM008 — Dialog failed
23586 (.Fn SQLDriverConnect) The driver attempted to display its login dialog box and failed.

23587 IM010 — Data source name too long
23588 The attribute value for the DSN keyword was longer than SQL_MAX_DSN_LENGTH
23589 characters.

23590 IM011 — Driver name too long
23591 The attribute value for the DRIVER keyword was longer than 255 characters.

23592 IM012 — DRIVER keyword syntax error
23593 The keyword-value pair for the DRIVER keyword contained a syntax error. ||

640 Direct Review (Build ID 96KAV) (Draft XDBC.33, August 1996)

|

23594 Glossary |

23595 This Glossary is intended to assist understanding and is not a substantive part of this |
23596 specification. |
23597 Glossary |

23598 Access plan |
23599 A plan generated by the database engine to execute an SQL statement. Equivalent to |
23600 executable code compiled from a third-generation language such as C. |

23601 Aggregate function |
23602 A function that generates a single value from a group of values, often used with GROUP BY |
23603 and HAVING clauses. Aggregate functions include AVG, COUNT, MAX, MIN, and SUM. |
23604 Also known as set functions. See also scalar function. |

23605 ANSI |
23606 American National Standards Institute, the national standards organization of the United |
23607 States. The international (ISO) standards on which X/Open Data Management |
23608 specifications are based have corresponding ANSI standards. |

23609 APD |
23610 Application parameter descriptor |

23611 API |
23612 Application Programming Interface. A set of routines that an application uses to request |
23613 services from the implementation. XDBC is an API for database access. |

23614 API compliance |
23615 See Compliance level . (The term API compliance may imply that compliance is defined as |
23616 support for a defined set of functions, which for XDBC is an over-simplification.) |

23617 Application |
23618 An executable program written by or for the end-user; for purposes of this specification, it is |
23619 a program that calls XDBC functions. |

23620 Application descriptor |
23621 A descriptor, either an application parameter descriptor or an application row descriptor. |
23622 The descriptor contains the application’s version of data. For example, specifications of data |
23623 types in an application descriptor pertain to the C data types of the application’s buffers. |

23624 Application parameter descriptor (APD) |
23625 A descriptor that contains the application’s version of a set of dynamic parameters. |

23626 Application row descriptor (ARD) |
23627 A descriptor that contains the application’s version of a row of a table. |

23628 ARD |
23629 Application row descriptor. |

23630 Auto-commit mode |
23631 A transaction commit mode in which each database operation is a separate transaction. It |
23632 takes effect immediately after it is executed. In auto-commit mode there is no need for the |
23633 application to delimit transactions. |

23634 Automatically-allocated descriptor |
23635 One of the four descriptors that the XDBC implementation allocates and associates with a |
23636 statement handle when the application allocates the handle. |

Data Management: X/Open Database Connectivity (XDBC), Version 2 641

Glossary

23637 Binding |
23638 As a verb, the act of associating a column in a result set or a parameter in an SQL statement |
23639 with an application variable. As a noun, the association. |

23640 Block cursor |
23641 A cursor capable of fetching more than one row of data at a time. See Section 11.1 on page |
23642 140. |

23643 Buffer |
23644 A piece of application memory used to pass data between the application and the |
23645 implementation. Buffers often come in pairs: a data buffer and a data length buffer. |

23646 Byte |
23647 This specification assumes a byte contains 8 bits and uses the term octet to describe this unit |
23648 of storage. |

23649 C data type |
23650 The data type of a variable in a C program, in this case the application. |

23651 Catalog |
23652 The set of system tables in a database that describe the information in the database, as |
23653 opposed to the information itself. Also known as a schema or data dictionary. |

23654 Catalog function |
23655 An XDBC function used to retrieve information from the database’s catalog. |

23656 CLI |
23657 Stands for Call-Level Interface for SQL database access. The term is equivalent to the |
23658 X/Open-specific term XDBC. The term CLI was used in the March 1995 predecessor to this |
23659 specification, and is used in the ISO CLI International Standard. A call-level interface is |
23660 simply an application programming interface (API). |

23661 Client/server |
23662 A database access strategy in which one or more clients gain access to data through a server. |
23663 The clients generally implement the user interface while the server controls database access. |

23664 Column |
23665 The container for a single item of information in a row. Also known as field. |

23666 Commit |
23667 To make the changes in a transaction permanent. |

23668 Complete |
23669 To end a transaction, either by commiting the work or by rolling it back. |

23670 Compliance level |
23671 A value that indicates which of three nested sets of XDBC functions a data source |
23672 completely supports. There are three XDBC compliance levels: Core, Level 1, and Level 2, |
23673 defined in Section 1.7 on page 13. |

23674 Concurrency |
23675 The ability of more than one transaction to gain access to the same data at the same time. |

23676 Conformance |
23677 This specification uses the term Compliance as a synonym for Conformance . However, the |
23678 word CONFORMANCE exists in some manifest constants for conformance with standards. |

23679 Connection |
23680 A particular instance of a data source plus whatever connection technology is required to |
23681 gain access to the data source, such as drivers. |

642 Direct Review (Build ID 96KAV) (Draft XDBC.33, August 1996)

Glossary

23682 Connection browsing |
23683 Searching the network for data sources to connect to. Connection browsing might involve |
23684 several steps. For example, the user might first browse the network for servers, then browse |
23685 a particular server for a database. |

23686 Connection handle |
23687 A handle to a data structure that contains information about a connection. |

23688 Current row |
23689 The row currently pointed to by the cursor. Positioned operations act on the current row. |

23690 Cursor |
23691 A movable pointer to a row location within a table. |

23692 Data buffer |
23693 A buffer used to pass data. Often associated with a data buffer is a data length buffer. |

23694 Data dictionary |
23695 See catalog. |

23696 Data length buffer |
23697 A buffer used to pass the length of the value in a corresponding data buffer. The data length |
23698 buffer is also used to store indicators, such as whether the data value is null-terminated. |

23699 Data source |
23700 The data the user wants to access and its associated operating system, DBMS, and network |
23701 platform (if any). |

23702 Data type |
23703 The type of a piece of data. XDBC defines C and SQL data types. See also type indicator. |

23704 Data-at-execution column |
23705 A column for which data is sent after SQLSetPos() is called. So named because the data is |
23706 sent at execution time rather than being placed in a row-set buffer. Long data is generally |
23707 sent in parts at execution time. |

23708 Data-at-execution parameter |
23709 A parameter for which data is sent after SQLExecute() or SQLExecDirect() is called. So |
23710 named because the data is sent when the SQL statement is executed rather than being |
23711 placed in a parameter buffer. Long data is generally sent in parts at execution time. |

23712 Database |
23713 A discrete collection of data in a DBMS. Also a DBMS. |

23714 Database engine |
23715 The software in a DBMS that parses and executes SQL statements and accesses the physical |
23716 data. |

23717 DBMS |
23718 Database Management System. A layer of software between the physical database and the |
23719 user. The DBMS manages all access to the database. |

23720 DDL |
23721 Data Definition Language. Those statements in SQL that define, as opposed to manipulate, |
23722 data. For example, CREATE TABLE, CREATE INDEX, GRANT, and REVOKE. |

23723 Descriptor |
23724 A data structure that holds information about either column data or dynamic parameters. |
23725 See Chapter 13. |

Data Management: X/Open Database Connectivity (XDBC), Version 2 643

Glossary

23726 Desktop database |
23727 A DBMS designed to run on a personal computer. Generally, these DBMSs do not provide a |
23728 standalone database engine and must be accessed through a file-based driver. These engines |
23729 generally have reduced support for SQL and transactions. |

23730 Diagnostic |
23731 Diagnostics are information about the ability to which an XDBC function was able to |
23732 perform the operation requested. Diagnostics comprise errors, warnings, and the success |
23733 indication. See Chapter 15. |

23734 DML |
23735 Data Manipulation Language. Those statements in SQL that manipulate, as opposed to |
23736 define, data. For example, INSERT, UPDATE,DELETE, and SELECT. |

23737 Driver |
23738 Connection technology, usually specific to a single DBMS or type of data source. See |
23739 Appendix I. |

23740 Driver Manager |
23741 A routine library that manages access to drivers for the application. The Driver Manager |
23742 loads and unloads drivers and passes calls to XDBC functions to the correct driver. See |
23743 Appendix I. |

23744 Dynamic cursor |
23745 A scrollable cursor capable of detecting rows updated, deleted, or inserted in the result set. |

23746 Dynamic SQL |
23747 An environment in which SQL statements are created and compiled at run time. See also |
23748 static SQL. |

23749 Embedded SQL |
23750 SQL statements that are included directly in a program written in another language, such as |
23751 COBOL or C. XDBC does not use embedded SQL. See also static SQL and dynamic SQL. |

23752 Environment |
23753 A global context in which to gain access to data; associated with the environment is any |
23754 information that is global in nature, such as a list of all connections in that environment. |

23755 Environment handle |
23756 A handle to a data structure that contains information about the environment. |

23757 Escape clause |
23758 Syntax defined by XDBC that an application can include in an SQL statement that it |
23759 generates. The implementation converts the escape clause into correct syntax in the SQL |
23760 dialect that the data source uses. |

23761 Execute |
23762 Having generated the text of an SQL statement, the application executes it by passing the |
23763 text to the SQLExecDirect() or SQLExecute() function. |

23764 Explicitly-allocated descriptor |
23765 A descriptor that the application allocates by calling SQLAllocHandle(); and especially a |
23766 descriptor that the application associates with a statement handle, taking the place of one of |
23767 the automatically-allocated descriptors. |

23768 Fetch |
23769 To retrieve one or more rows from a result set. |

23770 Field |
23771 See column. |

644 Direct Review (Build ID 96KAV) (Draft XDBC.33, August 1996)

Glossary

23772 Foreign key |
23773 A column or columns in a table that match the primary key in another table. |

23774 Forward-only cursor |
23775 A cursor that can only move forward through the result set and generally fetching one row |
23776 at a time. Most relational databases support only forward-only cursors. |

23777 Handle |
23778 A value that uniquely identifies something such as a file or data structure. Handles are |
23779 meaningful only to the software that creates and uses them, but are passed by other |
23780 software to identify things. XDBC defines handles for environments, connections, |
23781 statements, and descriptors. |

23782 Implementation |
23783 The XDBC implementation refers to whatever software receives and processes an |
23784 application’s calls to the XDBC functions. A typical XDBC implementation is a run-time |
23785 library. In a client/server architecture, the implementation primarily refers to the client-side |
23786 software. |

23787 Implementation descriptor |
23788 A descriptor, either an implementation parameter descriptor or an implementation row |
23789 descriptor. The descriptor contains the implementation’s version of data. For example, |
23790 specifications of data types in an implementation descriptor pertain to the SQL data types in |
23791 which the data are stored in the database. |

23792 Implementation parameter descriptor (IPD) |
23793 A descriptor that contains the implementation’s version of a set of dynamic parameters. |

23794 Implementation row descriptor (IRD) |
23795 A descriptor that contains the implementation’s version of a row of a table. |

23796 Integrity Enhancement Facility |
23797 Features of the SQL language that let creators of tables specify constraints |
23798 (interrelationships) between the columns of a table or between columns of separate tables. |
23799 These constraints are checked at the end of any database operation. Constraints (table |
23800 constraints and column constraints) are discussed in the CREATE TABLE statement in the |
23801 X/Open SQL specification. |

23802 Interoperability |
23803 The ability of one application to use the same code when accessing data in different DBMSs. |

23804 IPD |
23805 Implementation parameter descriptor. |

23806 IRD |
23807 Implementation row descriptor. |

23808 ISO/IEC |
23809 International Standards Organization/International Electrotechnical Commission. The |
23810 XDBC API is based on the ISO/IEC Call-Level Interface. |

23811 Isolation |
23812 See transaction isolation. |

23813 Join |
23814 An operation in a relational database that links the rows in two or more tables by matching |
23815 values in specified columns. |

23816 Key |
23817 A column or columns whose values identify a row. See also primary key and foreign key. |

Data Management: X/Open Database Connectivity (XDBC), Version 2 645

Glossary

23818 Keyset |
23819 A set of keys used by a mixed or keyset-driven cursor to refetch rows. |

23820 Keyset-driven cursor |
23821 A scrollable cursor that detects updated and deleted rows by using a keyset. |

23822 Literal |
23823 A character representation of an actual data value in an SQL statement. |

23824 Locking |
23825 The process by which a DBMS restricts access to a row in a multiuser environment. The |
23826 DBMS usually sets a bit on a row or the physical page containing a row that indicates the |
23827 row or page is locked. |

23828 Long data |
23829 Any binary or character data over a certain length, such as 255 octets or characters. Typically |
23830 much longer. Such data is generally sent to and retrieved from the data source in parts. |

23831 Manual-commit mode |
23832 A mode in which the application must explicitly complete each transaction by calling |
23833 SQLTransact(). |

23834 Metadata |
23835 Data that describes a parameter in an SQL statement or a column in a result set. For |
23836 example, the data type, octet length, and precision of a parameter. |

23837 NULL value |
23838 Having no explicitly-assigned value. In particular, a NULL value is different from a zero or |
23839 a blank. |

23840 Octet |
23841 Eight bits or one byte. Programmers have treated octets and characters interchangeably, but |
23842 this assumes the use of character sets such as ASCII in which every character occupies a |
23843 single octet. For international character sets and character sets being developed, this |
23844 assumption is false. |

23845 Octet length |
23846 The length in octets of a buffer or the data it contains. |

23847 Optimistic concurrency |
23848 A strategy to increase concurrency in which rows are not locked. Instead, before they are |
23849 updated or deleted, a cursor checks to see if they have been changed since they were last |
23850 read. If so, the update or delete fails. See also pessimistic concurrency. |

23851 Option |
23852 One of a set of valid values for the argument of an XDBC function, by which the application |
23853 selects the operation to be performed; especially, an option of SQLGetInfo(), by which the |
23854 application specifies the piece of information on the implementation’s capabilities and level |
23855 of support to be retrieved. |

23856 Outer join |
23857 A join in which both matching and nonmatching rows are returned. The values of all |
23858 columns from the unmatched table in nonmatching rows are set to NULL. |

23859 Owner |
23860 The owner of a table. |

23861 Parameter |
23862 A variable in an SQL statement, marked with a parameter marker or question mark (?). |
23863 Parameters are bound to application variables and their values retrieved when the |

646 Direct Review (Build ID 96KAV) (Draft XDBC.33, August 1996)

Glossary

23864 statement is executed. |

23865 Parameter descriptor |
23866 A descriptor that represents a set of dynamic parameters; either an application parameter |
23867 descriptor or an implementation parameter descriptor. |

23868 Parameter operation array |
23869 An array containing values that an application can set to indicate that the corresponding |
23870 parameter should be ignored in a SQLExecDirect() or SQLExecute() operation. |

23871 Parameter status array |
23872 An array containing the status of a parameter after a call to SQLExecDirect() or |
23873 SQLExecute(). |

23874 Pessimistic concurrency |
23875 A strategy for implementing serializability in which rows are locked so that other |
23876 transactions cannot change them. See also optimistic concurrency. |

23877 Positioned operation |
23878 Any operation that acts on the current row. For example, positioned UPDATE and DELETE |
23879 statements, SQLGetData(), and SQLSetPos(). |

23880 Positioned UPDATEstatement |
23881 An SQL statement used to update the values in the current row. |

23882 Positioned DELETE statement |
23883 An SQL statement used to delete the current row. |

23884 Prepare |
23885 To compile an SQL statement. An access plan is created by preparing an SQL statement. |

23886 Primary key |
23887 A column or columns that uniquely identifies a row in a table. |

23888 Procedure |
23889 A group of one or more precompiled SQL statements that are stored as a named object in a |
23890 database. |

23891 Procedure column |
23892 An argument in a procedure call, the value returned by a procedure, or a column in a result |
23893 set created by a procedure. |

23894 Qualifier |
23895 A database that contains one or more tables. |

23896 Query |
23897 An SQL statement. Sometimes used to mean a SELECT statement. |

23898 Radix |
23899 The base of a number system. Usually 2 or 10. |

23900 Record |
23901 See row. |

23902 Result set |
23903 The set of rows created by executing a SELECT statement. |

23904 Return code |
23905 The value returned by an XDBC function. |

23906 Roll back |
23907 To return the values changed by a transaction to their original state. |

Data Management: X/Open Database Connectivity (XDBC), Version 2 647

Glossary

23908 Row |
23909 A set of related columns that describe a specific entity. Also known as a record. |

23910 Row descriptor |
23911 A descriptor that represents a row of a table in the database; either an application row |
23912 descriptor or an implementation row descriptor. |

23913 Row operation array |
23914 An array containing values that an application can set to indicate that the corresponding |
23915 row should be ignored in a SQLSetPos() operation. |

23916 Row status array |
23917 An array containing the status of a row after a call to SQLFetch(), SQLFetchScroll(), or |
23918 SQLSetPos(). |

23919 Row-set |
23920 The set of rows returned in a single fetch. |

23921 Row-set buffers |
23922 The buffers bound to the columns of a result set and in which the data for an entire row-set |
23923 is returned. |

23924 Scalar function |
23925 A function that generates a single value from a single value. For example, a function that |
23926 changes the case of character data. See Appendix F. |

23927 Schema |
23928 See catalog. |

23929 Scrollable cursor |
23930 A cursor that can move forward or backward through the result set. |

23931 Serializability |
23932 Whether two transactions executing simultaneously produce a result that is the same as the |
23933 serial (or sequential) execution of those transactions. Transactions must be serializable in |
23934 order to maintain database integrity. |

23935 Set function |
23936 See aggregate function. |

23937 SQL |
23938 Structured Query Language. A language used by relational databases to query, update, and |
23939 manage data. Standard SQL is defined in the ISO SQL standard. The X/Open definition of |
23940 SQL appears in the X/Open SQL specification. |

23941 SQL data type |
23942 The data type of a column or parameter as it is stored in the data source. |

23943 SQLSTATE |
23944 A five-character value that indicates a particular error. |

23945 SQL statement |
23946 A complete phrase in SQL that begins with a keyword and completely describes an action to |
23947 be taken. For example, SELECT * FROM Orders. SQL statements should not be confused |
23948 with statements. |

23949 State |
23950 A well-defined condition of an item. For example, a connection has seven states, including |
23951 unallocated, allocated, connected, and needing data. Certain operations can only be done |
23952 when an item is in a particular state. For example, a connection can only be freed only when |
23953 it is in an allocated state and not, for example, when it is in a connected state. |

648 Direct Review (Build ID 96KAV) (Draft XDBC.33, August 1996)

Glossary

23954 State transition |
23955 The movement of an item from one state to another. XDBC defines rigorous state transitions |
23956 for environments, connections, and statements. |

23957 Statement |
23958 A container for all the information related to an SQL statement. |

23959 Statement handle |
23960 A handle to a data structure that contains information about a statement. |

23961 Static cursor |
23962 A scrollable cursor that cannot detect updates, deletes, or inserts in the result set. Usually |
23963 implemented by making a copy of the result set. |

23964 Static SQL |
23965 A type of embedded SQL in which SQL statements are hard coded and compiled when the |
23966 rest of the program is compiled. See also dynamic SQL. |

23967 Stored procedure |
23968 See procedure. |

23969 System information |
23970 An implementation-defined method of storing initialization and defaults. See Section 3.6 on |
23971 page 30 |

23972 Table |
23973 A collection of rows. |

23974 Transaction |
23975 An atomic unit of work. The work in a transaction must be completed as a whole; if any part |
23976 of the transaction fails, the entire transaction fails. |

23977 Transaction isolation |
23978 The act of isolating one transaction from the effects of all other transactions. |

23979 Transaction isolation level |
23980 A measure of how well a transaction is isolated. There are five transaction isolation levels: |
23981 Read Uncommitted, Read Committed, Repeatable Read, Serializable, and Versioning. See |
23982 Section 14.2.2 on page 186. |

23983 Two-phase commit |
23984 A technique for completing transactions that ensures that associated work is either all |
23985 committed or all rolled back. See Section 14.1.2 on page 183. XDBC does not require that |
23986 implementations use two-phase commit. |

23987 Type indicator |
23988 An integer value passed to or returned from an XDBC function to indicate the data type of |
23989 an application variable, a parameter, or a column. XDBC defines type indicators for both C |
23990 and SQL data types. |

23991 View |
23992 An alternative way of looking at the data in one or more tables. A view is usually created as |
23993 a subset of the columns from one or more tables. In XDBC, the term table includes views. |

23994 XDBC |
23995 This specification, X/Open Database Connectivity, which defines an API with a standard |
23996 set of routines an application can use to gain access to data in a data source. |

Data Management: X/Open Database Connectivity (XDBC), Version 2 649

Glossary |

23997

650 Direct Review (Build ID 96KAV) (Draft XDBC.33, August 1996)

23998 Index

23999 1995 issue, differences from 2
24000 ABS function 603
24001 Access plan 639
24002 ACOS function 603
24003 active table 28
24004 active transactions per connection 1
24005 adaptation of embedded SQL 5
24006 Aggregate function 639
24007 allocate handle
24008 in Core level 13
24009 allocating descriptor
24010 timing 175
24011 allocation
24012 deferral option 175
24013 explicit, of descriptor 175
24014 no need to declare size 7
24015 ANSI 639
24016 APD 639
24017 API 1, 639
24018 API compliance 639
24019 Application 639
24020 shrink-wrapped 1
24021 Application descriptor 639
24022 Application parameter descriptor (APD) 639
24023 Application row descriptor (ARD) 639
24024 ARD 639
24025 arrow
24026 in state tables 548
24027 ASCII function 601
24028 ASIN function 603
24029 asynchrony 116
24030 determining support for 116
24031 in Level 1 14
24032 new in this issue 3
24033 prerequisites 116
24034 ATANfunction 603
24035 ATAN2function 603
24036 Auto-commit mode 639
24037 automatic data conversion 7
24038 automatic sizing 7
24039 Automatically-allocated descriptor 639
24040 batch
24041 multiple results from 156
24042 new in this issue 2
24043 binary portability 1
24044 Binding 640
24045 binding client to server 28

binding language 9
binding to an array of parameters

new in this issue 2
block cursor 140, 640
bookmark

new in this issue 2
bound column 174
brace character 84
branding

information on host language support 9
Buffer 640
Byte 640
C data type 640
call

escape sequence 86
calling procedure

escape clause 88
cancelling asynchronous function 119
CAST function 609
catalog 65, 640

that does not have a name 28
Catalog function 640
catalog-name 28

syntax 28
CEILING function 603
change

temporary, to statement attribute 93
CHAR function 601
choice of language 9
CLI 640
CLI, differences from 2
client 28
client/server 1, 640
Column 640
column-wise binding

bind offset ignored 113
commit 181, 640
compilation of embedded SQL 1
complete 181, 640
Compliance 11
Compliance level 640
compliance policy 9
compound statement

new in this issue 2
CONCAT function 601
concurrency 191, 640
concurrent processing 1

Data Management: X/Open Database Connectivity (XDBC), Version 2 651

Index

24046 limit on number of operations 123
24047 Conformance 640
24048 conformance policy 9
24049 Connection 640
24050 level of support for asynchrony 116
24051 number of active transactions 1
24052 state table 549
24053 Connection browsing 641
24054 connection enhancement 3
24055 Connection handle 641, 7
24056 connection statement
24057 executed by client 28
24058 connection string 61
24059 connection-specific state 7
24060 context
24061 for stored routine 1
24062 control flow
24063 basic 52
24064 overview 51
24065 conversion of data 7
24066 convert data type 609
24067 CONVERT function 609
24068 COS function 603
24069 COT function 603
24070 CURDATE function 605
24071 current row 140, 641
24072 cursor 133, 641
24073 block 140
24074 explicit declaration not required 7
24075 in Core level 13
24076 invalid state 547
24077 XDBC model 7
24078 cursor, scrollable
24079 in Level 1 14
24080 cursor-specification 7
24081 returning multiple rows 7
24082 CURTIME function 605
24083 CURTIMESTAMP function 605
24084 data 28
24085 global 1
24086 Data buffer 641
24087 data dictionary 65, 641
24088 Data length buffer 641
24089 data source 27, 641
24090 default 61
24091 data structure
24092 automatic sizing 7
24093 referenced by handle 7
24094 Data type 641
24095 conversion 609
24096 data-at-execute dialogue
24097 and asynchrony 122
24098 Data-at-execution column 641

Data-at-execution parameter 641
database 28, 641

concurrent operation 1
defined in X/Open SQL 1

Database engine 641
DATABASEfunction 608
date

literal escape clause 84
date value

constraints on 568
DAYNAMEfunction 605
DAYOFMONTH function 605
DAYOFWEEKfunction 605
DAYOFYEARfunction 605
DBMS 641
DDL 641
DE

in SQLBindParam() 220
in SQLGetInfo() 386, 395, 406

default
asynchrony mode 118

default data source 61
deferred allocation 175
DEGREES function 603
DELETE

footnote in state table 552
DELETE, positioned

new in this issue 2
delimiting transaction 10
Deprecated features 11
DESCRIBE INPUT

optional feature 11
descriptor 170, 641

relation to handle 7
state transition 554
when allocated 175

descriptor handle
obtaining 175
obtaining as statement attribute 175

Desktop database 642
development of XDBC 1
Diagnostic 642
diagnostic record 195
diagnostics area

contents during asynchrony 122
relation to handle 7

diagnostics statement
executed by client 28

DIFFERENCE function " 1 601
differences from March 1995 issue 2
direct invocation

XDBC cursor based on 7
dirty read 186

652 Direct Review (Build ID 96KAV) (Draft XDBC.33, August 1996)

Index

24099 discrepancy versus ISO
24100 resolving 8
24101 distributed transaction processing 1
24102 DML 642
24103 Driver 642
24104 Driver Manager 642
24105 DTP 1
24106 Dynamic cursor 642
24107 dynamic library 1
24108 Dynamic SQL 642, 1
24109 XDBC cursor based on 7
24110 Embedded SQL 642
24111 compliance 9
24112 XDBC not implemented on 5
24113 enable asynchrony 118
24114 entry in state tables
24115 specific overriding general 548
24116 Environment 642
24117 state transition 548
24118 Environment handle 642, 7
24119 equivalence to embedded SQL 1
24120 error
24121 inhibiting state transition 548
24122 escape character (LIKE)
24123 escape clause 86
24124 Escape clause 642, 84
24125 date, time, timestamp 84
24126 interval 86
24127 LIKE escape character 86
24128 of X/Open SQL 84
24129 outer join 87
24130 procedure call 88
24131 escape sequence
24132 scalar function 86
24133 Execute 642
24134 as opposed to OPEN 7
24135 execution model 7
24136 EXP function 603
24137 expanded features in this issue 2
24138 explicit allocation/freeing 175
24139 explicit declaration of cursor 7
24140 Explicitly-allocated descriptor 642
24141 extensibility
24142 of GetDescField() 175
24143 EXTRACT function 605
24144 Fetch 642
24145 fetch, multi-row
24146 new in this issue 3
24147 Field 642
24148 file-based data source 27
24149 flexibility 1
24150 FLOOR function 603
24151 flowchart of XDBC use 52

footnotes, significance of 12
Foreign key 643
forward-only cursor 133, 643
fourth-generation language 1
free handle

in Core level 13
freeing handle

descriptors freed when statement freed 175
explicit, of descriptor 175

function 97
escape sequence 86

function call facility 1
function, table of 203
GET DIAGNOSTICS

executed by client 28
GetDescField()

overview 175
GetInfo()

determine asynchrony support 116
global data 1
global variable 7
Gregorian calendar 568
Handle 643, 1

in Core level 13
statement 7
unallocated or null 547

header record 195
host language

required support for 9
HOUR function 605
IFNULL function 608
Implementation 643
Implementation descriptor 643
implementation method, asynchrony 117
Implementation parameter descriptor (IPD) 643
Implementation row descriptor (IRD) 643
Implementation-defined 12

column attributes 175
initial call 118
initial state

asynchrony 118
input parameter

notation in state tables 548
variable-length 44

INSERT function 601
Integrity Enhancement Facility 643
Interoperability 643, 1
interpretation of state table 547
interpreting dynamic SQL 1
interval

literal escape clause 86
invalid cursor state 547
invocation technique 1

Data Management: X/Open Database Connectivity (XDBC), Version 2 653

Index

24152 IPD 643
24153 IRD 643
24154 ISO CLI
24155 relation to 8
24156 resolving discrepancy 8
24157 ISO/IEC 643
24158 Isolation 643, 181
24159 Join 643
24160 Key 643
24161 Keyset 644
24162 Keyset-driven cursor 644
24163 language binding 9
24164 language support 9
24165 layering XDBC on embedded SQL 5
24166 LCASE function 601
24167 LENGTH function 601
24168 length parameter 44
24169 level of support for asynchrony 116
24170 library, dynamic 1
24171 LIKE escape character
24172 escape clause 86
24173 limit
24174 concurrency 123
24175 Literal 644
24176 escape clause for 84
24177 LOCATE function 601
24178 LOCATE_2 function 601
24179 Locking 644, 181
24180 LOG function 603
24181 LOG10 function 603
24182 long data 105, 644
24183 LTRIM function 601
24184 Manual-commit mode 644
24185 margin notation
24186 OP 11
24187 market
24188 to measure asynchrony implementation 118
24189 metadata 28, 127, 644
24190 method
24191 asynchrony implementation 117
24192 MINUTE function 606
24193 MOD function 603
24194 MONTH function 606
24195 MONTHNAME function 606
24196 MoreResults()
24197 new in this issue 4
24198 multi-row fetch
24199 new in this issue 3
24200 multiple association of descriptor 175
24201 multiple attempts to cancel 119
24202 multiple results 156
24203 multiple rows
24204 cursor-specification 7

naming 28
new features in this issue 2
no effect 117
nonrepeatable read 186
notation

in state tables 548
NOW function 606
null handle 547
NULL value 644
null-terminated string

input argument 44
object naming 28
obtaining descriptor handle 175
Octet 644
Octet length 644
OP 3, 3, 11, 14, 25

in SQLDrivers() 291
OP margin notation 11
OPEN

as opposed to EXECUTE 7
Optimistic concurrency 644
Option 644
Optional features 11
order

of asynchronous operations 123
original function 118
other X/Open documents, relation to 7
Outer join 644

escape clause 87
output parameter

notation in state tables 548
overview of control flow 51
Owner 644
parallel activity 117
Parameter 644

notation in state tables 548
Parameter descriptor 645
Parameter operation array 645
Parameter status array 645
performance

of asynchrony implementations 118
Pessimistic concurrency 645
phantom 186
PI function 603
policy, compliance 9
polling asynchronous function 116
portability 1
Positioned DELETE statement 645
Positioned operation 645
Positioned UPDATEstatement 645
positioned UPDATE/DELETE

new in this issue 2
POWER function 604

654 Direct Review (Build ID 96KAV) (Draft XDBC.33, August 1996)

Index

24205 Prepare 645
24206 preprocessor, XDBC independent of 1
24207 prerequisites for asynchrony 116
24208 previous issue, differences from 2
24209 Primary key 645
24210 procedure 97, 645
24211 escape clause 88
24212 Procedure column 645
24213 ProcedureColumns()
24214 new in this issue 4
24215 Procedures()
24216 new in this issue 4
24217 programming language 9
24218 proprietary source code 1
24219 PSM 1
24220 qualification
24221 by catalog/schema name 28
24222 Qualifier 645
24223 quality of implementation 118
24224 QUARTER function 606
24225 Query 645
24226 RADIANS function 604
24227 Radix 645
24228 RAND function 604
24229 Record 645
24230 diagnostic 195
24231 relation to standards 8
24232 relation to the X/Open SQL specification 7
24233 REPEATfunction 602
24234 REPLACE function 602
24235 restricted handle
24236 effect on state tables 548
24237 restriction
24238 during asynchrony 122
24239 Result set 645
24240 new in this issue 4
24241 results
24242 multiple 156
24243 Return code 645
24244 RIGHT function 602
24245 roll back 181, 645
24246 ROUND function 604
24247 Row 646
24248 current 140
24249 cursor-spec returning multiple 7
24250 describing with descriptor 171
24251 Row descriptor 646
24252 Row operation array 646
24253 Row status array 646
24254 row-set 3, 140, 646
24255 Row-set buffers 646
24256 run-time library, dynamic 1
24257 Scalar function 646

escape sequence 86
schema 28, 646

in Level 1 14
schema-name 28

syntax 28
scope of changes to global data 1
Scrollable cursor 646

in Level 1 14
SECOND function 606
sequence

of calls for asynchrony 119
overview of XDBC use 51

sequence error 547
sequencing error 547
Serializability 646
server 28

benefits of XDBC architecture 1
send asynchronous request to 117

SERVER_INFO
use to determine naming system 28

Set function 646
SetDescField()

overview 175
shrink-wrapped application 1
SIGN function 604
SIN function 604
skeleton environment

effect on state tables 548
SOUNDEX function 602
source code 1
SPACE function 602
SQL 646

compliance 9
SQL (embedded) 1

XDBC not implemented on 5
SQL data type 646
SQL descriptor 170

relation to handle 7
SQL statement 646
SQL-based data source 27
SQL_ASYNC_MODE 116
SQL_ATTR_ASYNC_ENABLE 118, 118

as connection attribute 458
SQL_ATTR_CONCURRENCY

in Level 2 15
SQL_ATTR_METADATA_ID

not defined as connection attribute 5
SQL_DEFAULT

as initial value of TYPE 175
SQL_DIAG_RETURNCODE

contents during asynchrony 122
SQL_INVALID_HANDLE

in state tables 547

Data Management: X/Open Database Connectivity (XDBC), Version 2 655

Index

24258 SQL_IS_NOT_POINTER 38
24259 SQL_IS_POINTER 38
24260 SQL_NTS 44, 44
24261 SQL_NULL_DATA 44
24262 SQL_STILL_EXECUTING 116
24263 SQL_XDBC_KEYWORDS 390
24264 SQLAllocHandle() 208
24265 in Core level 13
24266 SQLBindCol() 212
24267 in Core level 13
24268 SQLBindParam() 220
24269 dropped in this issue 5
24270 SQLBindParameter() 221
24271 in Core level 13
24272 SQLBrowseConnect() 234
24273 in Level 1 15
24274 new in this issue 3
24275 SQLBulkOperations() 239
24276 in Level 1 15
24277 in Level 2 15
24278 SQLCancel() 247
24279 asynchrony overview 116
24280 in Core level 14
24281 overview 107
24282 SQLCloseCursor() 250
24283 in Core level 13
24284 SQLColAttribute() 252
24285 in Core level 13
24286 SQLColumnPrivileges() 256
24287 in Level 2 15
24288 SQLColumns() 261
24289 in Core level 13
24290 SQLConnect() 269
24291 default data source 61
24292 in Core level 14
24293 SQLCopyDesc() 272
24294 in Core level 14
24295 SQLDataSources() 275
24296 in Core level 14
24297 SQLDescribeCol() 277
24298 in Core level 13
24299 SQLDescribeParam() 281
24300 in Level 2 15
24301 SQLDisconnect() 284
24302 in Core level 14
24303 SQLDriverConnect() 286
24304 default data source 61
24305 in Core level 14
24306 new in this issue 3
24307 SQLDrivers() 291
24308 in Core level 14
24309 SQLEndTran() 294
24310 in Core level 14

SQLExecDirect() 297
in Core level 14

SQLExecute() 302
in Core level 14

SQLFetch() 307
in Core level 14

SQLFetchScroll() 316
in Core level 14

SQLForeignKeys() 326
in Level 2 15

SQLFreeHandle() 333
in Core level 13

SQLFreeStmt() 336
in Core level 13

SQLGetConnectAttr() 338
in Core level 14

SQLGetCursorName() 341
in Core level 13

SQLGetData() 343
in Core level 14

SQLGetDescField() 350
in Core level 14

SQLGetDescRec() 354
in Core level 14

SQLGetDiagField() 358
in Core level 14

SQLGetDiagRec() 364
in Core level 14

SQLGetEnvAttr() 367
in Core level 14

SQLGetFunctions() 369
in Core level 14

SQLGetInfo()
new items in this issue 4

SQLGetInfo() 372
in Core level 14

SQLGetStmtAttr() 407
in Core level 14

SQLGetTypeInfo() 410
in Core level 13

SQLHDBC
state table 549

SQLHDESC 170
state transition 554

SQLHENV
state transition 548

SQLHSTMT
state table 550

SQLMoreResults() 417
in Level 1 15

SQLNativeSql() 420
in Core level 14
new in this issue 4

656 Direct Review (Build ID 96KAV) (Draft XDBC.33, August 1996)

Index

24311 SQLNumParams() 423
24312 in Core level 13
24313 new in this issue 4
24314 SQLNumResultCols() 425
24315 in Core level 13
24316 SQLParamData() 427
24317 in Core level 13
24318 SQLPrepare() 430
24319 in Core level 14
24320 SQLPrimaryKeys() 434
24321 in Level 1 15
24322 SQLProcedureColumns() 438
24323 in Level 1 15
24324 SQLProcedures() 445
24325 in Level 1 15
24326 SQLPutData() 449
24327 in Core level 13
24328 SQLRowCount() 454
24329 in Core level 13
24330 SQLSetConnectAttr() 456
24331 in Core level 14
24332 SQLSetCursorName() 462
24333 in Core level 13
24334 SQLSetDescField() 464
24335 in Core level 14
24336 SQLSetDescRec() 484
24337 in Core level 14
24338 SQLSetEnvAttr() 488
24339 in Core level 14
24340 SQLSetPos() 491
24341 in Level 1 15
24342 in Level 2 15
24343 SQLSetStmtAttr() 503
24344 in Core level 14
24345 SQLSpecialColumns() 516
24346 in Core level 14
24347 SQLSTATE 646
24348 relation to handle 7
24349 SQLStatistics() 522
24350 in Core level 13
24351 SQLTablePrivileges() 528
24352 in Level 2 15
24353 SQLTables() 533
24354 in Core level 13
24355 SQRT function 604
24356 standard
24357 relation to 8
24358 State 646
24359 state specific to connection 7
24360 state table 547
24361 State transition 647
24362 Statement 647
24363 level of support for asynchrony 116

statement attribute
temporary change from execution 93

Statement handle 647, 7
restrictions during asynchrony 122
state table 550

statement processing 54
statement text

compliance with X/Open SQL 9
statement, compound

new in this issue 2
Static cursor 647
Static SQL 647, 1
status record 195
stored modules 1
Stored procedure 647
stored routine

new support in this issue 4
string

zero-length 44
structure of database, unknown 1
subsequent call 118

syntax 119
SUBSTRING function 602
synchronous execution 116
System information 647
Table 647
table of functions 203
table, state 547
TAN function 604
temporary change to statement attribute 93
terminology

for asynchrony 118
three-part name

in Level 2 15
three-part naming 28
time

literal escape clause 84
time value

constraints on 568
time-slicing 117
timestamp

literal escape clause 84
TIMESTAMPADDfunction 606
TIMESTAMPDIFF function 606
transaction 181, 647

compliance policy 10
in Level 1 15
model 1

Transaction isolation 647
Transaction isolation level 647
transition, state 547
TRIM function 602
TRUNCATE function 604

Data Management: X/Open Database Connectivity (XDBC), Version 2 657

Index

24364 two-part name
24365 in Level 1 14
24366 Two-phase commit 647
24367 two-phase commit not mandated 184
24368 TYPE
24369 initial value 175
24370 Type indicator 647
24371 UCASE function 602
24372 unallocated handle 547
24373 Undefined 12
24374 unknown database structure 1
24375 UPDATE
24376 footnote in state table 552
24377 UPDATE,positioned
24378 new in this issue 2
24379 usage overview 51
24380 USER function 608
24381 user-defined-name
24382 as catalog-name and schema-name 28
24383 valid SQL statement 9
24384 variable-length input parameter 44
24385 vendor escape clause (SQL) 84
24386 View 647
24387 visibility of changes to global data 1
24388 WEEK function 607
24389 WHERE CURRENT OF
24390 footnote in state table 552
24391 X/Open SQL 1
24392 relation of XDBC to 7
24393 XDBC 1, 647
24394 development of 1
24395 YEAR function 607
24396 zero-length string 44
24397 for null catalog name 28

24398 658 Direct Review (Build ID 96KAV) (Draft XDBC.33, August 1996)

