2Requirements to run the Trace Tool

2Setting up the MDAC Trace Tool

3To Add a Process to Trace

6Configuring Providers/Components

9To Trace SQL Server:

10To Trace DTSRUNUI

11To Trace DTSRUN (or a Scheduled Task that runs a DTS package)

15To Trace IIS (In Process – Low Process Isolation)

15To Trace IIS (Out Of Process – Medium Process Isolation)

16To Trace IIS (Out Of Process – High Process Isolation)

16Final Thoughts

Requirements to run the Trace Tool

The following are the requirements to enable tracing with Asad’s OleDb Trace Tool:

1) Debugging Tools for Windows. You can get the latest external version from here http://www.microsoft.com/ddk/debugging/default.asp.
2) Get the latest version of MDACTraceUI.exe, TraceEng.dll, and Traceres.dll located at \\dsdmdac\tools\Asad_Trace. These are the 3 files needed for tracing OleDb and the various components that the tool also allows us to trace.

3) If you need to generate INI or Signature files on the customer's side, we'll need to send the customer GenIs.exe. This exe is also found at \\dsdmdac\tools\Asad_Trace.

Setting up the MDAC Trace Tool

In order to successfully trace using Asad’s tool you should follow the steps I’ve outlined below.
1) Install Debugging Tools for Windows from the external location.

a. You'll need to add the path for the Debugging Tools for Windows to your Path environment variable.

2) Copy the MDAC Trace files to a directory that your path currently points to (the files are MDACTrace.exe and TraceEng.dll). If you copy the files to a directory that is not part of your path variable you’ll need to set those variables either through the My Computer Properties or through a Command Window.
a. I’ve run into problems on some peoples computers where their changes to the path variable are not reflected and cause the tool to failure. The best way to handle this is to add the path of the MDAC Trace tool to your PATH variable and then re-start the service/application you’ll be tracing. If this does not work try a reboot.

3) Open the MDAC Trace tool and select Trace and then Options.

[image: image1.png]
4) Set the directory of your Debugging Tools for Windows Directory. You can test that the dbghelp.dll and dbgeng.dll are able to be loaded. Then Click OK.
[image: image2.png]
To Add a Process to Trace

1) From the main window, Choose Trace and then Process Configuration.

2) From the Process Trace Settings dialog box, select Configuration and then Add.

[image: image3.png]
3) From the Setup Tracing window, fill in the appropriate fields and select the appropriate items. Generally, accept all the defaults and choose Time Stamp Log Entries. Do Not Select Auto Scroll. You do not need to type the path of your executable. You can simply type the name of your executable (e.g. rowsetviewer.exe for rowsetviewer). You can also browse to the executable to ensure that there are no errors with the process name.
a. NOTE: Make sure that whatever process you are tracing has access to the location where your log file is going to be created and written to. Often times when tracing IIS, the IUSR and/or IWAM accounts may not have access to these files. You will need to give them Create File and Read-Write access.
b. The Synchronous Write option ensures that all output to the log file is written as soon as it's received. This is useful for when you are trying to trace a process that AV's.

Note about Remote Logging: You need to select Remote Logging and Asynchronous Logging if you intend to trace a service running under something other than the System Account and you want to display a GUI window. Only Services configured to run under the system, and allowed to interact with the desktop, can display the GUI window. See step X below for explicit information on tracing these types of services.
[image: image4.png]
4) If you want to set other options click the More Options button.
a. NOTE: If you are tracing MSDE or SQL Server Development Edition you will need to set at least one option on this next dialog box. If you are tracing these versions of SQL Server you will need to select the Delayed Initialization item on the Options dialog box and in the Specialized Options area. Generally selecting the MDACTrace Log File Format is the preferred format. If you need to have the file in an easily human readable format, select the Text option.

[image: image5.png]
5) Click OK (if you are on the More Options Dialog) and then Done.
Configuring Providers/Components

Now we’ve configured our process to trace to a given location and set specific trace options for that given process. With this part done for the given process, we’ll now configure the provider(s)/component(s) that we’ll be tracing for that process.

1) From the main Process Trace Setting window, right click on the process you have just configured and select Add and then Provider or Component (depending on what you’d like to trace).
[image: image6.png]
2) There are a number of options from the Setup Tracing Window that you can configure. Below is a description of each option.
[image: image7.png]
a. Use Provider INI File

This option is for use when you have access to the symbol and ini file for your given provider/component. For in-house repros with Microsoft Product this would be the preferred method of tracing a given component. Currently we have an ini file for SQLOLEDB, MSDAORA, and MSDASQL. These are located at \\asady01\Public\MDACTrace 2.0.
b. Use Explore Technique

This option allows you to select the provider from a dropdown box. Also, you have the ability to create a signature file. The signature file notes the interfaces and methods that you want to trace and store those interfaces/methods for later use. This option is the most useful as you can select 3rd party providers to trace. See Item X for information on this feature.

1. There is one caveat when using the Explore Technique: The Provider can not be loaded into the process you will be tracing. If you encounter this situation you must either re-start the process (not always an option for customers) or use the Signature File option.

c. Use Signature File

If you’ve already created a signature file from a previous trace and would like to use it again, you can select this signature file and only those interfaces/methods that you’ve selected will be traced in the tool. That way, from the beginning, you only trace those methods/interfaces you’ve already selected.

1. The Signature File option can be used for processes that already have the specific provider/component loaded into the process.

3) Click next after selecting the option from the Tracing Setup Method dialog box.

4) If you selected either the Explore Technique or the Use Provider INI file option, you will need to choose the provider you are going to trace on the Select Provider dialog box. You will also need to select the context you would like to trace the provider in.

5) Also, select any of the options in the Provider Options area. Generally, selecting Function Timing and Display Row Data are the items I select with each provider beyond the default options already selected. Currently the Custom Hook Module is not useable and is for future functionality. You can click the Test Provider button to ensure you can QI for the provider.

[image: image8.png]
6) You can also filter the provider at this point and define what interfaces and methods you want to filter. Click on the Filter button from this screen. If you know that the provider is failing with a given interface and/or method you can simply select those items in the filter window.

a. When you click on filter you will see all the functions that the given provider/component can support and the actual functions that the provider does support.

b. By default the Details and Error Description options are selected to be traced. You can right click on any row/column and select to set all, clear all, or change any of the current row's columns.
c. Below is a description of what each column traces:

i. Details: Trace the functions input and output parameters. Also traces the this pointer.

ii. Performance: Does function timing for each call so that you can then analyze the trace for delays.

iii. Row/Network Data: Allows you to trace the actual network data we're sending across the wire. For example when we call GetRows, it trace the actual data we've sent across the wire.

iv. Token Information: Allows you to trace the NT Security Token information. Very helpful when trying to troubleshoot security/authentication issues.

v. Error Description: Traces out failed HResults and writes out the Error Description tied to each one.

[image: image9.png]
7) Tracing an Executable that runs as a service can be hit or miss. If you’re going to trace an executable that is running as a service, under a non-system account you will need to configure the process to use Remote Logging in order to see a GUI window. Instructions are below. Configure the Process and Providers as noted above. Nothing is different.
a. Select Trace --> Attach To Process --> Select your Process --> Choose Non-Invasive --> Click OK.
b. Close the window that opens once it has injected TraceEng.dll into the appropriate process.
c. Select Tools --> Connect For Remote Logging --> Select Local Process (or Remote for another machine) --> Click OK --> Select the same Process from the list that you selected above --> Click OK.
d. Here is a trace from the output windows of a successfully connected session
Waiting for remote process pipe (\\.\pipe\inetinfo.exe_1496).
Connected to remote process for remote logging.
AND THEN POSSIBLY SOME OTHER LINES THAT LOOK LIKE THIS (this if you try to check properties/filters on the provider/component/log)
Connecting to server to get/set configuration data.
Connecting to server to get/set configuration data.
Remote configuration completed successfully.
e. Now start using the process to perform the trace.

To Trace SQL Server:

1) Before you issue your Distributed Query you must attach MDAC Trace to your SQL Server Process. If you are running SQL Server under a process different than Local System Account you will not be able to have a GUI window appear by default. To accomplish this you must see note 2E and then follow step 3. If you are running SQL Server as the Local System Account you must check “Interact with the Desktop” in the Services dialog box. Otherwise the comment above regarding reading the note in 2E and following step 3 applies. You DO NOT HAVE to run MDAC Trace with a GUI window. You can simply send output to the log file, regardless of the type of application you are tracing. You can open the log file after you have finished the trace.

Known Issues:
If you are attempting to trace MSDE and/or SQL Server Developer Edition, you must follow the steps outlined in step 4 of “To Add a Process to Trace”.

To Trace DTSRUNUI
With DTSRUNUI you can choose to start the process from within the Trace Tool or you can start it by itself. There are no known issues with choosing one method over another.
1) After starting the process you will need to attach to it through the Trace Tool. Select the process and then choose how you would like to attach (Non-Invasive or Debugger) and then choose Remote Logging if want to trace in this manner. For the most part choosing Non-Invasive and not selecting Remote Logging is the best way.
[image: image10.png]
2) From the DTS Run dialog go about selecting the package you want to run and trace.
[image: image11.png]
To Trace DTSRUN (or a Scheduled Task that runs a DTS package)

When a DTS package is configured to run as a scheduled task, the DTSRUN process is spawned by SQL Server and we are unable to monitor this process in the same manner we normally would. To trace this particular process you need to do the following steps.

1) When configuring the DTSRUN process, if you want to have a GUI window displayed you will need to select Remote Logging from the Setup Tracing and Executable & Log Options dialog.

[image: image12.png]
2) The easiest way to trace a scheduled task is to select Start New Process from the MDAC Trace window.
[image: image13.png]
3) When you start the new process you will need to use the command specified in the job step that runs the DTS package. Below is a sample of where this information is found (in the red circle).
[image: image14.png]
4) Paste the command into the executable path.

5) If you want to have a GUI window, you will need to choose Start Remote logging from the last screen of the Setup options.
[image: image15.png]
To Trace IIS (In Process – Low Process Isolation)
1) When configuring the OLEDB Provider to trace, I would always select Remote Logging and Asynchronous Logging and then follow step 3 to get a GUI window. If you don’t want a GUI Window then you only have to select Log File in the Send Log Output To section.
2) Start Tracing!

Known Issues
Make sure that the IIS Account (IUSR by default) has access to the file location where you are logging the output to.

To Trace IIS (Out Of Process – Medium Process Isolation)
1) Same as above for steps 1 and 2.

Known Issues
1) Make sure that the IIS Account (IWAM by default) has access to the file location where you are logging the output to.
2) Make sure to select the correct dllhost.exe process. COM+ starts it’s own process. Hit a dummy page after you restart IIS in that Virtual Directory and monitor what PID is tied to the newly spawned dllhost.exe. Then select the correct process.

To Trace IIS (Out Of Process – High Process Isolation)
See Above. Same steps apply as those in Out Of Process – Medium Process Isolation.

Known Issues
1) I seem to have a high number of AV’s after I trace IIS when it is configured to run in High-Process Isolation. I have reported this to Asad and he is looking into this. If you see this please let me and Asad know.
2) See known issues for Medium Process Isolation Instructions

�NOTE: Update with appropriate item when I have finished this section.

� BUG: there is a limit to the size I can paste in the executable path combo-box. Asad is working on this right now and it should be fixed soon.

